
beyond
jQuery

—
Ray Nicholus

www.allitebooks.com

http://www.allitebooks.org

 Beyond jQuery

Ray Nicholus

www.allitebooks.com

http://www.allitebooks.org

Beyond jQuery

Ray Nicholus
Johnson Creek
Wisconsin, USA

ISBN-13 (pbk): 978-1-4842-2234-8 ISBN-13 (electronic): 978-1-4842-2235-5
DOI 10.1007/978-1-4842-2235-5

Library of Congress Control Number: 2016953737

Copyright © 2016 by Ray Nicholus

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction
on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Acquisitions Editor: Louise Corrigan
Development Editor: James Markham
Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black, Louise Corrigan,

Jonathan Gennick, Todd Green, Robert Hutchinson, Celestin Suresh John, Nikhil Karkal,
James Markham, Susan McDermott, Matthew Moodie, Natalie Pao, Gwenan Spearing

Coordinating Editor: Nancy Chen
Copy Editor: Corbin Collins
Compositor: SPi Global
Indexer: SPi Global
Cover Image: Courtesy of Freepik

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
 orders-ny@springer-sbm.com , or visit www.springer.com . Apress Media, LLC is a California LLC and the sole
member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com , or visit www.apress.com .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special Bulk
Sales–eBook Licensing web page at www.apress.com/bulk-sales .

Any source code or other supplementary materials referenced by the author in this text are available to
readers at www.apress.com . For detailed information about how to locate your book’s source code, go to
 www.apress.com/source-code/ . Readers can also access source code at SpringerLink in the Supplementary
Material section for each chapter.

Printed on acid-free paper

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
www.springer.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/
http://www.allitebooks.org

iii

Contents at a Glance

About the Author ... xiii

Preface ..xv

Acknowledgments ...xvii

Introduction ..xix

 ■Chapter 1: The Oppressive Magic of jQuery .. 1

 ■Chapter 2: You Don’t Need jQuery (Anymore) .. 11

 ■Chapter 3: Understanding the Web API and “Vanilla” JavaScript 19

 ■Chapter 4: Finding HTML Elements .. 31

 ■Chapter 5: Using and Understanding HTML Element Attributes 53

 ■Chapter 6: HTML Element Data Storage and Retrieval .. 69

 ■Chapter 7: Styling Elements .. 81

 ■Chapter 8: DOM Manipulation .. 97

 ■Chapter 9: AJAX Requests: Dynamic Data and Page Updates 109

 ■Chapter 10: Browser Events .. 133

 ■Chapter 11: Mastering Asynchronous Tasks ... 161

 ■Chapter 12: Common JavaScript Utility Functions .. 179

 ■Chapter 13: Going Forward .. 207

Index ... 213

www.allitebooks.com

http://www.allitebooks.org

v

Contents

About the Author ... xiii

Preface ..xv

Acknowledgments ...xvii

Introduction ..xix

 ■Chapter 1: The Oppressive Magic of jQuery .. 1

Why Have We Been Using jQuery? ... 2

Simplicity .. 2

Community ... 2

Habit ... 2

Elegance ... 3

Fear .. 4

A Crutch Is Only Temporary .. 4

You Are a Mechanic, Not a Driver.. 5

Stunted Growth ... 6

The Price of Shortcuts (a True Story) .. 7

A New Direction, a New Web Developer ... 7

Shortcuts and My Own Stunted Growth ... 7

A Challenge: No jQuery Allowed! .. 8

Focus on the Implementation, Not the Magic ... 9

www.allitebooks.com

http://www.allitebooks.org

■ CONTENTS

vi

 ■Chapter 2: You Don’t Need jQuery (Anymore) .. 11

Need vs. Want .. 11

Both Sides of the Acceptable Use Argument .. 12

When Is It Acceptable to Use It? ... 12

When Should You Refrain from Using It? .. 13

Should You Use Other Libraries Instead? ... 16

Small Shims Over Large Wrappers ... 16

Writing Your Own Shim ... 17

The Final Word .. 18

 ■Chapter 3: Understanding the Web API and “Vanilla” JavaScript 19

Everything You Need to Know About Browsers .. 19

Ancient Browsers ... 20

Modern Browsers ... 21

Evergreen Browsers ... 21

Mobile Browsers ... 22

Non-browsers ... 23

What Is This Web API and Why Is It Important? .. 23

The DOM API ... 23

Everything Else (non-DOM) ... 26

JavaScript: A Less Elegant Version of jQuery? ... 26

The Language vs. the Web API .. 27

History and Standardization ... 28

 ■Chapter 4: Finding HTML Elements .. 31

Core Element Selectors .. 31

IDs... 32

Classes ... 33

Element Tags .. 35

Pseudo-classes .. 37

www.allitebooks.com

http://www.allitebooks.org

■ CONTENTS

vii

Selecting Elements Based on Their Relations .. 38

Parents and Children .. 38

Siblings ... 41

Ancestors and Descendants ... 45

Mastering Advanced Element Selection ... 48

Excluding Elements .. 48

Multiple Selectors ... 50

Element Categories and Modifi ers .. 50

A Simple Replacement for $(selector) .. 52

 ■Chapter 5: Using and Understanding HTML Element Attributes 53

What Is an Attribute? .. 53

History and Standardization ... 54

How Do Attributes Differ from Properties? ... 55

Finding Elements Using Attributes ... 57

Finding Elements Using Attribute Names ... 57

Finding Elements Using Attribute Names and Values ... 59

The Power of Wildcard and Fuzzy Attribute Selectors .. 60

Reading and Modifying Element Attributes .. 62

Class Attributes... 63

Data Attributes .. 66

Working with Other Standard and Custom Attributes ... 66

 ■Chapter 6: HTML Element Data Storage and Retrieval .. 69

Why Would You Want to Attach Data to Elements? ... 69

Tracking State ... 69

Connecting Elements .. 70

Storing Models Directly in Your Elements ... 70

Common Pitfalls of Pairing Data with Elements ... 71

Memory Leaks .. 71

Managing Data ... 72

www.allitebooks.com

http://www.allitebooks.org

■ CONTENTS

viii

Using a Solution for All Browsers ... 72

Storing Small Bits of Data Using data- Attributes ... 73

Complex Element Data Storage and Retrieval .. 75

The Future of Element Data .. 78

The HTML5 Dataset Property .. 78

Leveraging ECMAScript 2015 WeakMap Collections .. 79

 ■Chapter 7: Styling Elements .. 81

There Are Three Ways to Style Elements .. 81
Inline Styles .. 81

Working with Styles Directly on the Element Object .. 83

Style Sheets .. 85

Getting and Setting Generalized Styles .. 87
Using jQuery ... 88

Without jQuery .. 88

Setting and Determining Element Visibility .. 89
The Typical jQuery Approach .. 90

The Native Web Approach ... 90

Determining Width and Height of Any Element .. 92
Examining an Element Using jQuery ... 93

Options Natively Provided by the Browser.. 94

 ■Chapter 8: DOM Manipulation .. 97

The DOM: A Central Component of Web Development ... 97

jQuery Exists Because of the DOM API ... 97

The DOM API Isn’t Broken, It’s Just Misunderstood .. 98

Moving and Copying Elements ... 98

Moving Elements Around the DOM ... 98

Making Copies of Elements .. 102

www.allitebooks.com

http://www.allitebooks.org

■ CONTENTS

ix

Composing Your Own Elements .. 103

Creating and Deleting Elements ... 103

Text Content .. 105

Rich Content ... 107

 ■Chapter 9: AJAX Requests: Dynamic Data and Page Updates 109

Mastering the Concepts of AJAX Communication .. 109

Async Is Hard .. 110

HTTP ... 110

Expected and Unexpected Responses .. 111

Web Sockets ... 111

Sending GET, POST, DELETE, PUT, and PATCH Requests ... 111

Sending POST Requests ... 113

Sending PUT Requests ... 114

Sending DELETE Requests .. 115

Sending PATCH Requests ... 115

Encoding Requests and Reading Encoded Responses ... 116

URL Encoding ... 116

JSON Encoding ... 119

Multipart Encoding ... 122

Uploading and Manipulating Files .. 124

Uploading Files in Ancient Browsers .. 124

Uploading Files in Modern Browsers .. 126

Reading and Creating Files ... 127

Cross-domain Communication: an Important Topic ... 128

The Early Days (JSONP) .. 128

Modern Times (CORS) ... 129

 ■Chapter 10: Browser Events .. 133

How Do Events Work? .. 133

Event Types: Custom and Native ... 134

Event Propagation: Bubbling vs. Capturing .. 134

www.allitebooks.com

http://www.allitebooks.org

■ CONTENTS

x

Creating and Firing DOM Events... 136

Firing DOM Events with jQuery ... 137

Web API DOM Events .. 138

Creating and Firing Custom Events .. 139

jQuery Custom Events .. 139

Firing Custom Events with the Web API .. 140

Listening (and Un-listening) to Event Notifi cations .. 141

jQuery Event Handlers .. 141

Observing Events with the Web API .. 142

Controlling Event Propagation .. 144

Passing Data to Event Handlers ... 146

Event Delegation: Powerful and Underused ... 147

Handling and Triggering Keyboard Events .. 150

Three Types of Keyboard Events ... 150

Identifying Pressed Keys .. 151

Making an Image Carousel Keyboard Accessible with the Web API ... 152

Determining When Something Has Loaded .. 153

When Have All Elements on the Page Fully Loaded and Rendered with Applied Styles? 154

When Has All Static Markup Been Placed on the Page? ... 155

When Has a Particular Element on the Page Fully Loaded? When Has It Failed to Load? 155

Preventing a User from Accidentally Leaving the Current Page ... 156

A History Lesson: Ancient Browser Support ... 157

The API for Listening to Events Is Non-standard .. 157

Form Field Change Events Are a Minefi eld ... 158

The Event Object Is Also Non-standard .. 159

www.allitebooks.com

http://www.allitebooks.org

■ CONTENTS

xi

 ■Chapter 11: Mastering Asynchronous Tasks ... 161

Callbacks: the Traditional Approach for Controlling
Async Operations ... 162

Node.js and the Error-First Callback ... 163

Solving Common Problems with Callbacks .. 163

Promises: an Answer to Async Complexity ... 165

The First Standardized Way to Harness Async ... 167

Using Promises to Simplify Async Operations .. 167

jQuery’s Broken Promise Implementation .. 172

Native Browser Support.. 173

Async Functions: Abstraction for Async Tasks.. 174

The Problem with Promises .. 174

Async Functions to the Rescue .. 175

Browser Support ... 177

The Future of Standardized Async Task Handling .. 178

 ■Chapter 12: Common JavaScript Utility Functions .. 179

Working with Dates, Text, XML, and JSON .. 179

Dates .. 180

Converting JSON into a JavaScript Object .. 180

Converting an XML String into a Document .. 181

String Manipulation .. 183

What Kind of Value Is This? .. 183

Primitives .. 184

Arrays ... 187

Objects .. 188

Functions .. 189

Making JavaScript Objects Bend to Your Will ... 190

Iterating over Keys and Values ... 190

Copying and Merging Objects ... 192

■ CONTENTS

xii

Solving Problems with Arrays .. 194

Iterating over Array Items ... 194

Locating Specifi c Items .. 195

Managing Pseudo-arrays.. 197

Mapping and Merging ... 199

Useful Function Tricks .. 201

A Word about JavaScript Context ... 201

Creating a New Function from an Old One ... 203

Calling an Existing Function with a New Context ... 205

 ■Chapter 13: Going Forward .. 207

Now What? ... 207

Option/Stage 1: Ignore Everything .. 207

Option/Stage 2: Rip jQuery Out of All Your Projects .. 208

Option/Stage 3: Rock Back and Forth in a Corner, Crying ... 208

Option/Stage 4: Decide to Be More Discerning Going Forward .. 208

The Future of Web Development .. 208

Further Reading and Reference ... 210

The Offi cial Web and Language Specs ... 210

Mozilla Developer Network ... 210

Caniuse.com ... 211

Stack Overfl ow ... 211

Twitter ... 211

Index ... 213

xiii

 About the Author

 Ray Nicholus is a software developer for Widen (www.widen.com) in Madison, Wisconsin, and has been
heavily involved in web development for years. Although much of his code is closed source and not publicly
available, he has spent a great deal of time contributing to the open source software movement, primary
focusing on JavaScript, front-end library development, and developer education. His open source
contributions range from large and popular open source projects, to small and focused libraries and
educational code repositories. He is a true believer in FOSS, and has even written about the topic, such as in
his post on Medium.com (https://medium.com/@RayNicholus/disrupting-open-source-the-story-of-
fine-uploader-80160eb557d9#.63z1olm9d) that detailed his decision to release Fine Uploader, a popular
commercially licensed JavaScript library, to the free open source software community.

 Since 2012 he has been the lead developer and product manager of the Fine Uploader (http://
fineuploader.com) organization, which is commonly known as for its uniquely featured cross-browser,
no-dependency file upload JavaScript library. His involvement outside of Fine Uploader in the open source
community has included creation of other popular software libraries dealing with web components, namely
ajax-form (https://github.com/rnicholus/ajax-form) and file-input (https://github.com/rnicholus/
file-input), video and image manipulation, such as frame-grab.js (https://github.com/rnicholus/
frame-grab.js), and informative code collections, such as the notable fullstack-react project on GitHub
(https://github.com/Widen/fullstack-react) and its associated articles on the Widen Engineering site
(http://engineering.widen.com/blog/future-of-the-web-react-falcor/).

 In addition to frequent coding outside of his day job, he also spends time speaking about web
development topics (https://slides.com/raynicholus). He has presented to students at the University
of Wisconsin and DePaul University regarding careers in software development. And he has prepared
and delivered presentations to many professional developers regarding the mysteries of Cross Origin
Resource Sharing, the importance of automated testing, the File API web specification, the web components
specifications, agile software development, accessibility, and software architecture (among others).
He organized and taught a JavaScript 101 class targeted at interested professionals and spoke about
the usefulness of uploading files directly to Amazon’s Simple Storage Service from the browser via Fine
Uploader.

 His writing also includes the precursor to this book, the “You Don’t Need jQuery!” series of blog posts
(http://blog.garstasio.com/you-dont-need-jquery/), articles on Google Glass (www.widen.com/blog/
ray-nicholus), and a large number of other articles that help developers integrate file uploading capabilities
into their web application or library (http://blog.fineuploader.com/author/rnicholus/). He was also
featured in an article in Fortune magazine by Anne Fisher based on his experiences with Google Glass in the
workplace (http://fortune.com/2014/09/30/google-glass-at-work/).

 He currently lives in Johnson Creek, Wisconsin, with his wife Kat and his son Ray IV. They are known
to spend long stretches of time in Thailand (especially in the Udon Thani area) where a portion of this book
was written.

http://www.widen.com/
https://medium.com/@RayNicholus/disrupting-open-source-the-story-of-fine-uploader-80160eb557d9#.63z1olm9d
https://medium.com/@RayNicholus/disrupting-open-source-the-story-of-fine-uploader-80160eb557d9#.63z1olm9d
http://fineuploader.com/
http://fineuploader.com/
https://github.com/rnicholus/ajax-form
https://github.com/rnicholus/file-input
https://github.com/rnicholus/file-input
https://github.com/rnicholus/frame-grab.js
https://github.com/rnicholus/frame-grab.js
https://github.com/Widen/fullstack-react
http://engineering.widen.com/blog/future-of-the-web-react-falcor/
https://slides.com/raynicholus
http://blog.garstasio.com/you-dont-need-jquery/
http://www.widen.com/blog/ray-nicholus
http://www.widen.com/blog/ray-nicholus
http://blog.fineuploader.com/author/rnicholus/
http://fortune.com/2014/09/30/google-glass-at-work/

xv

 Preface

 Back in 2010, I abruptly and unexpectedly moved into professional web application development. My
background up to that point was almost exclusively dedicated to the server. User interfaces were developed
using Java Applets or Swing. I spent most of my time writing Java code, without much interest in the Web.
That all changed when I joined a project in Avid’s broadcast division. It was to be our first web offering, a
multi-role media production tool code-named “Jennings,” now known as MediaCentral UX (https://
www.avid.com/US/products/MediaCentral-UX).

 Jennings was my first real web project. Sure, I had dabbled in the Web before, but never created
anything particularly interesting or useful. I wasn’t alone though—many others on the team came from a
similar place. Jennings had some lofty goals, and there was little time to get up to speed on all things web.
As a result, I spent a negligible amount of time brushing up on JavaScript, HTML, and CSS. An alternative,
it seemed at the time, was to simply embrace jQuery. I managed to stumble though my tasks, leaning on
jQuery the whole way through. But I can remember a number of instances where the warm blanket of jQuery
was unexpectedly yanked off, and I was forced to deal directly with the web API and JavaScript. I doubt I
even knew what the web API was at the time.

 Over the course of the next year, it became clear that substantial gaps in my knowledge had formed
as a result of the shortcuts I took. I (partially) learned a library instead of learning the fundamentals. I felt
anchored to jQuery, as I didn’t possess the knowledge to develop much of anything web-based without it.
Perhaps I was just a bad developer. Surely other developers were smarter, and took the proper path. But my
discussions with others through the years put this assumption to rest. Indeed, my experience was all too
common. Even today, just browsing the jQuery questions on Stack Overflow suggests that this backwards
approach is still the status quo.

 Shortly before I left Avid in early 2011, I promised myself that I would never again be confounded by the
browser or JavaScript. I pressed a figurative “reset” button and began to learn web development through a
strict study of the fundamentals. I didn’t abandon jQuery during this process. In fact, I studied jQuery just as
closely, and not just its API, but its code, design, and purpose. I began to develop small libraries, first jQuery
plug-ins, then small dependency-free libraries. And then, in 2012, I became the sole maintainer
and developer of Fine Uploader, a large cross-browser, no-dependency file upload library. I spent years
re-developing Fine Uploader, and other libraries, honing my understanding of the web API and JavaScript.

 At some point, after helping a number of developers to better understand the browser and JavaScript,
I decided to begin sharing my knowledge in the form of writing. My target audience mostly mirrored a
younger me, early on in my web development career, but I aimed to educate more experienced developers
as well. Out of this desire came a series of blog posts titled “You Don’t Need jQuery!” (http://dont-need-
jquery.raynicholus.com). In this six-post series, I covered element selectors, DOM manipulation, AJAX
requests, event handling, and common utility functions. The overarching goal was to show developers how
to solve a number of common problems without jQuery. Although “You Don’t Need jQuery!” was popular,
it was also a bit controversial. There were mostly positive responses to the information contained in my
articles, though clearly some developers with heavy attachments to the library were offended. One even
claimed that the title was “condescending.” I had struck a nerve.

https://www.avid.com/US/products/MediaCentral-UX
https://www.avid.com/US/products/MediaCentral-UX
http://dont-need-jquery.raynicholus.com/
http://dont-need-jquery.raynicholus.com/

■ PREFACE

xvi

 The heavy response to my blog meant that my message was important. It seemed clear that the web
development community needed something like this. I even wished that I had come across something
similar earlier in my career. Quite a few developers were excited at the possibilities of Life After jQuery (an
early contender for this book’s title). Their newfound knowledge empowered them, and this was ultimately
my goal. My articles were translated into Chinese and Portuguese, so, clearly, the audience was not limited
to my home country. The desire to learn about the Web outside of the lens of jQuery spanned the world.

 I originally planned to create another series of articles, this time based on cross-domain browser-based
communication, another field in which I posses a good deal of knowledge. But it occurred to me that I had
more to say on the topic of jQuery, the web API, and JavaScript. Perhaps if I took some time to expand on this
message, even more developers would benefit. Something long-form, perhaps a book, seemed like the next
logical step, and Beyond jQuery was born.

xvii

 Acknowledgments

 So many people have helped make this book possible in one way or another, but I’d like to thank three
people in particular for their advice and ideas. Annette Jensen (www.linkedin.com/in/annettekayjensen),
the director of software development at Widen (http://widen.com), gave me the initial idea to turn my
series of articles on transitioning away from jQuery into this book. Without her insight, Beyond jQuery would
not exist. Matthew Gonnering offered quite a bit of guidance and advice on publishing and procedural
decisions. He also was more than willing to listen to me gripe about the stress associated with writing a book,
and provided a great amount of feedback that allowed me to pursue my goals as a writer. Phil Nash
(https://philna.sh/), developer evangelist for Twilio, provided an amazingly comprehensive technical
review of this book for me. Not only were his suggestions insightful and appropriate but they also prompted
me to reexamine other areas of the book, which resulted in even more necessary changes before publishing.
I can't express enough how grateful I am for his help. And finally, Widen (my employer) has contributed by
providing a free environment (www.marketwired.com/press-release/worldblu-certifies-widen-as-a-
freedom-centered-workplace-2025603.htm) where developers can be creative, productive, and happy in
their pursuit of developing amazingly innovative marketing technology. Thank you to everyone who has
assisted me in my work.

http://www.linkedin.com/in/annettekayjensen
http://widen.com/
https://philna.sh/
http://www.marketwired.com/press-release/worldblu-certifies-widen-as-a-freedom-centered-workplace-2025603.htm
http://www.marketwired.com/press-release/worldblu-certifies-widen-as-a-freedom-centered-workplace-2025603.htm

xix

 Introduction

 This book is not about bashing jQuery. Although I am personally very much in favor of directly utilizing
what the browser and the JavaScript language provide, the primary purpose of this book is not necessarily to
compel developers to abandon all third-party solutions. This is not primarily a stage to host a competition
between jQuery and the web API. I have a great amount of respect for those who have maintained and
supported jQuery since its inception. I mean no disrespect to those associated with jQuery. In fact,
similar arguments could be made about other libraries, such as underscore.js, lodash, or zepto.js. But the
ubiquitousness of jQuery makes it the most appropriate reference for this book.

 The purpose of this book is to teach you about the browser’s native tools. Of course, if you want to
continue using jQuery, you may do so (not that you need my permission). This book will hopefully give
you the confidence and knowledge you need to remove this dependency from your future projects, if you
so choose. At the very least, by reading all of this, you will gain a better understanding of the web API and
JavaScript as a language, which is important to your evolution as a web developer, whether you use jQuery
or not. Although I do stress use of the native web API and JavaScript sans jQuery, my intention is not to
encourage JavaScript as a solution to all problems. JavaScript and the web API are simply tools that may be
used to solve some problems. CSS and proper use of HTML may be more appropriate solutions to some of
these problems, as you will see later on.

 In addition to instilling confidence in new web developers and those a bit overwhelmed by the
browser’s native API, Beyond jQuery has many other goals. I intend to teach you about the fundamentals,
pitfalls, and best practices that are otherwise masked by jQuery. You will learn to perform common
operations and solve common problems without the use of jQuery. I will also reveal why jQuery may have
been necessary in the past, but is no longer needed with the advent of modern browsers and more evolved
web and JavaScript specifications.

 When you finish this book, you will be able to write more efficient front-end code by examining some
performance issues historically associated with jQuery. Native alternatives are described as well. You will
learn more about the browser’s API, JavaScript, and even jQuery through detailed explanation and code
examples. I demonstrate how common operations are performed using jQuery, and then solve the same
problems using the web API and “vanilla” JavaScript. Beyond jQuery contains copious amounts of code
snippets, ranging from simple to complex, to help you understand how to develop something substantial
without the crutch of a third-party library.

 I have also created a companion exercise for readers of this book, hosted in a GitHub repository at
 https://github.com/Beyond-jQuery/exercise . This project demonstrates a number of the techniques and
native APIs described throughout this book in a single comprehensive web application. Feel free to clone the
exercise repository, run it yourself, and customize the code. Though the code itself is already annotated with
helpful comments, you may also ask questions about the exercise in the project’s issue tracker.

https://github.com/Beyond-jQuery/exercise

1© Ray Nicholus 2016
R. Nicholus, Beyond jQuery, DOI 10.1007/978-1-4842-2235-5_1

 CHAPTER 1

 The Oppressive Magic of jQuery

 For many years, both amateur and professional web developers alike have made use of jQuery to ease the
burden of bringing a library or web application to market. In a sense, jQuery has been an integral part of web
development . Even at the time of writing, jQuery is referenced in the vast majority of public websites, 1 more
so than any other library, by a wide margin.

 Many developers seem to consider jQuery to be a default requirement. The common thought is: if you
are developing a library or a web application, you must depend on jQuery. jQuery is seen as this magical
black box that solves all of the woes of web development. It’s a framework that is easy to understand and
allows even novices to swiftly codify their ideas.

 Professionals tend to be quite invested in jQuery as well. After all, this is what we used back when we
were novices. It’s comfortable. We understand it. We trust it. It has served us well over the years. You don’t
have to think (much) about the DOM, or browser bugs, or cross-browser behaviors. jQuery solves all of these
problems for us . . . doesn’t it?

 There is no denying that jQuery is indeed a bit magical. In fact, it allows developers of almost any skill
level to create something useful. But at what cost? Consider only understanding the web through rose-
colored jQuery lenses. What if you encounter a low-level behavior that jQuery has not properly abstracted?
What if you encounter a bug in jQuery? What if you are simply not able (allowed) to use jQuery? This is
akin to a city dweller being dropped into the tundra of Siberia. Under these conditions, you are scared,
disoriented, and ill-prepared.

 Although the likelihood of being whisked away to a foreign land against your will is small, being without
jQuery in the future is a much more realistic possibility. If you don’t have a good grasp of the DOM, the web
API, and JavaScript, you will eventually feel a bit like a cold and confused urbanite, trying to survive the
unfamiliar conditions of the Siberian expanse.

 One goal of Beyond jQuery is to demystify this seemingly ubiquitous front-end library. The benefits
of shedding any blind dependence on jQuery will become clear. At the end of this book, you will have the
power to grow further as a web developer given your newfound understanding of the browser’s API and
JavaScript.

 This chapter explores reasons why developers have depended on jQuery, and why they continue to do
so. You will see why relying entirely on one monolithic library creates gaps in your knowledge and prevents
you from evolving as a developer. I will discuss why a filtered understanding of the web and JavaScript
is a potentially hazardous predicament for developers. Given this knowledge, you will be able to better
understand the benefits of depending more on your own solid understanding of the fundamentals.

 1 https://w3techs.com/technologies/history_overview/javascript_library/all/y

http://w3techs.com/technologies/history_overview/javascript_library/all/y

CHAPTER 1 ■ THE OPPRESSIVE MAGIC OF JQUERY

2

 Why Have We Been Using jQuery?
 Before exploring how (and why) we should consider removing jQuery from our toolbox, we should first
understand why jQuery even exists. Why have countless web developers over the years depended on this
library? Why has it been such a central component of websites and applications? Why does it continue to
be so ubiquitous? Why have we been using jQuery? We all have our reasons, and there are many reasons
indeed. Above all else, jQuery has proven to offer a low barrier to entry. In other words, even amateur or
occasional developers find that it allows them to implement a concept or idea with little resistance.

 Simplicity
 The assumption is that, if you are reading this book, you are already somewhat familiar with jQuery. You
have likely already used it in some project, regardless of the size. So let’s explore why this library is so easy for
developers of all skills levels to use.

 Above all else, jQuery’s API is intuitive. Want to add a CSS class to an element? Just use the addClass()
method . Need to send a POST request? Just use the post() method. And hiding an element is as simple as
passing it as a parameter into jQuery’s hide() method.

 The magic of jQuery is evident in its dirt-simple API. It allows those who have little prior knowledge of
the browser or JavaScript to create something intriguing and useful. This is quite appealing and arguably
even most appropriate for those who only dabble in web development. Conversely, the simplicity of jQuery
is also a potential hazard for professional web developers. If you do not already believe this to be true, we
will explore this theory a bit more later on.

 Community
 On Stack Overflow (at the writing of this book), 1.2 million questions are tagged as JavaScript questions,
and 750,000 are tagged as jQuery questions. jQuery is the 6th-most popular tag on Stack Overflow. The next
most popular front end library is AngularJS in a distant 21st place, which only has 200,000 tagged questions.
Interestingly, 200,000 questions are tagged as jQuery and not JavaScript. In many cases, jQuery is not seen
as a JavaScript library. In fact, it is seen as an alternative to JavaScript. A way to address the browser without
having to ever deal with the underlying language or API. While the relation to JavaScript may not be clear to
some, jQuery has no shortage of developers willing and ready to offer advice on the library. Of the 750,000
jQuery-tagged questions on Stack Overflow, 550,000 (74%) contained at least one upvoted answer.

 As of mid-2016, jQuery is still the most used JavaScript library in public websites. In fact, 70% of all
public websites depend on jQuery in some way. 2 The next most popular library is Bootstrap, which is only
used in 13% of all public sites. With this impressive market share, there is certainly a fair share of users with
some working knowledge of the topic.

 In addition to the jQuery tag on Stack Overflow and the wealth of different forums and sites dedicated
to advising those invested in the technology, jQuery’s site has its own active user forums. Help is easy to find,
and any problem you may run into has likely already been solved and discussed at length. The reality of a
large and mature community is an appealing reason to depend on any software library.

 Habit
 The large number of examples, blog posts, and forums aimed at jQuery beginners is one of the reasons why
those new to web development choose this library to assist with their project. But what about seasoned
developers? Why do they continue to use jQuery in their projects? A polished, experienced developer was
once an amateur. As amateurs, they may very well have embraced jQuery. Now, with multiple projects under

 2 http://w3techs.com/technologies/history_overview/javascript_library/all/y

http://w3techs.com/technologies/history_overview/javascript_library/all/y

CHAPTER 1 ■ THE OPPRESSIVE MAGIC OF JQUERY

3

their belt, jQuery has proven itself. And even if some of the flaws in the library have been noticed, they are
well understood.

 To a seasoned developer, jQuery is consistent and reliable enough. It has become part of the
development process. A strong community is a benefit realized by experienced developers as well, and this
is yet another reason to stick with such a trustworthy tool.

 jQuery has been a prerequisite for everything we write. We mindlessly import it, partially because we
have been trained, out of habit, to do so. We have been trained to think that this is a vital component of every
web application. Habits are hard to break, especially those that have produced positive results.

 Software development can be stressful and frustrating. A typical developer wrestles with a seemingly
infinite number of variables on a daily basis. No problem, it seems, is simple to solve. Consistency and
predictability of a tool, process, or outcome is highly desired and rare. Can you blame the web development
community for relying on a consistent and reliable tool like jQuery for so long?

 Elegance
 Have you ever heard anyone claim that the DOM is ugly or JavaScript is flawed and riddled with time
bombs? Perhaps you think this yourself. While beauty is mostly subjective, this seems to be a surprisingly
common thought, especially among more seasoned developers who continue to use jQuery late into their
web development career.

 The oft-perceived lack of elegance in the native browser API and JavaScript ostensibly drives developers
to this library, among other things. The thought is that simple problems are difficult to solve without the aid
of jQuery. Don’t believe me? Ask some of the developers you work with. Why do they use jQuery? Expect to
hear about how simple it is to create elegant and terse code in response to common problems. As discussed
earlier in this section, the API itself is intuitive and elegant.

 But the elegance of jQuery is more than simply a predictable API. The usability considerations
surrounding the design of the API further this claim of elegance.

 Take method chaining , for example, which allows a developer to very easily tie together a number
of operations on the same element or elements without the burden of repetition or temporary variable
creation. Suppose you want to select a set of elements, then add a class to all of them, and finally add a class
to an even more specific subset of the initial set of elements. You can do all of this very easily by harnessing
the elegance of method chaining provided by jQuery’s API. Listing 1-1 demonstrates this by adding a class of
“underline” to all elements that contain a class of “alphabet”. It then selects only child elements of “alphabet”
elements that contain a class of “vowels” and finally annotates them with a class of “bold” while hiding any
child of “vowels” elements that themselves also contain a class of “a”:

 Listing 1-1. jQuery method chaining

 1 $('.alphabet').addClass('underline')
 2 .find('.vowels').addClass('bold')
 3 .find('.a').hide();

 I have found that many developers tend to struggle with asynchronous operations in JavaScript, such
as AJAX requests. Making these requests is not difficult, but dealing with the result, given the asynchronous
nature of the call, proves to be frustrating for some. jQuery simplifies this a bit by allowing a response
handling function to be elegantly tied to the function call that sends the underlying request. Listing 1-2
sends a request to retrieve a user’s name, providing simple access to the result from the server’s response.

 Listing 1-2. jQuery GET request

 1 $.get('name/123', function (theName) {
 2 console.log(theName);
 3 });

CHAPTER 1 ■ THE OPPRESSIVE MAGIC OF JQUERY

4

 ■ Note The console object is not available in Internet Explorer 9 and older unless the developer tools are
open. Also, the preceding example does not handle error responses, only success.

 With all this “beauty,” it’s easy to forget about other attributes of our efforts, such as performance. Are
there potential efficiency land mines in the previous examples? Yes, but these may be tough to identify
initially. I discuss this more in a later chapter.

 Fear
 jQuery makes everything easier—web development is hard. You can’t develop a solid web application or
library without some help. It’s far too difficult to ensure your app will work properly in all browsers without
jQuery. The web API implementation varies wildly between browsers. All the good plug-ins you need
depend on jQuery anyway. These are all common excuses for blindly depending on jQuery, and they are all
based on fear. We have all relied on jQuery due to fear of the unknown. We see the DOM as a mysterious and
unpredictable black box, littered with serious bugs. We fear cross-browser implementation variances.

 The creator of jQuery, John Resig, famously concluded that “The DOM is a mess” back in 2009. 3 At that
moment in web history, Internet Explorer 6 and 7 accounted for almost 60% of the browser market. 4 With this in
mind, it’s hard to argue with Mr. Resig’s statement at the time. The DOM was indeed a scary and fickle beast, and
the most popular browsers of the day had very poor and limited built-in tools. What if we look even further
back, to August 2006, when jQuery was created and first released? At that time, the newest version of Internet
Explorer was version 6. IE6 (and older) accounted for an incredible 83% of all browsers in use. 5 At this point,
the web API was exceptionally immature, stability of browsers was much lower than we have come to expect
in the current era, and standards compliance was quite inconsistent across the browsers of the time.

 In addition to immature developer tools, varying web API implementations, and the unintuitive DOM,
browsers can certainly be buggy. Similar to any other complex bundle of code, browsers are not immune
from bugs. jQuery has historically promised a wide range of browser bug workarounds. 6 For many years, the
web seemed to be akin to the Wild West in terms of standards observance and quality control. It’s not hard
to see why a library that aims to normalize the browser landscape was so popular. No need to fear cross-
browser support anymore. No need to even worry about cross-browser testing. jQuery will do all of the heavy
lifting for you, so you can focus entirely on developing intriguing and useful web applications and libraries.
Or can you? While the hope is that jQuery will free you from all of the problems and complexities baked into
the browser, the reality is a bit different.

 A Crutch Is Only Temporary
 JavaScript libraries are often useful tools. They assist in your efforts to architect a useful and reliable web
application, or perhaps even another library. They save you time and keystrokes. They serve as a buffer
between you, your code, and the browser, filling in the gaps and normalizing behavior. In another sense,
these libraries can function as crutches. They help inexperienced and uneducated developers, without
actually teaching them anything about the underlying complexity. Even though the tone of this book may at
times suggest otherwise, libraries like jQuery are not inherently bad. They are only limiting if your learning
does not progress beyond the library.

 3 http://ejohn.org/blog/the-dom-is-a-mess/
 4 www.w3counter.com/globalstats.php?year=2009&month=1
 5 www.onestat.com/html/aboutus_pressbox44-mozilla-firefox-has-slightly-increased.html
 6 https://docs.google.com/document/d/1LPaPA30bLUB_publLIMF0RlhdnPx_ePXm7oW02iiT6o/
preview?sle=true#heading=h.fumxprdxo2gn

http://ejohn.org/blog/the-dom-is-a-mess/
http://www.w3counter.com/globalstats.php?year=2009&month=1
http://www.onestat.com/html/aboutus_pressbox44-mozilla-firefox-has-slightly-increased.html
https://docs.google.com/document/d/1LPaPA30bLUB_publLIMF0RlhdnPx_ePXm7oW02iiT6o/preview?sle=true#heading=h.fumxprdxo2gn
https://docs.google.com/document/d/1LPaPA30bLUB_publLIMF0RlhdnPx_ePXm7oW02iiT6o/preview?sle=true#heading=h.fumxprdxo2gn

CHAPTER 1 ■ THE OPPRESSIVE MAGIC OF JQUERY

5

 Does jQuery always save you time? Is it always making your web development experience easier?
Are the conventions associated with the core library or its plug-ins intuitive? Does it really solve all of your
problems, or does it perhaps create some new ones? Have you taken the time to ponder the syntax and
conventions that come with the library? Is there a better solution, or does jQuery really patch all of the
usability holes that developers often fall into? Mostly, jQuery’s API is pleasing to the eye and remarkably
intuitive. But of course this is not true all of the time. There are certainly parts of the library that are
unpleasant. Let us example the elegance and necessity of jQuery a bit.

 jQuery does not completely shield you from the browser’s quirks. This is not a realistic goal of any
library. Aside from this, jQuery is simply a library, a tool, an aid. It isn’t meant to replace the entire browser
stack . Some problems are even best solved with CSS or static HTML. But to the developer using jQuery
as a crutch, it is the only way to interface with the browser. To the uninformed developer, it is perfectly
reasonable to write minimal HTML and make any and all adjustments to markup using jQuery’s API. Or
perhaps it would be even easier to generate all markup using jQuery. You can create elements with jQuery,
and then easily insert them onto the page.

 Instead of declaring styles in CSS files , the inclination is to use $(element).css('fontWeight', 'bold') .
While very convenient, this is a horribly unmaintainable method of generating inline styles. The importance
of separation of concerns may not be readily apparent to the new developer. The magical all-encompassing
API of jQuery makes it easy to ignore the native tools available to us. The appropriate roles of HTML, CSS, and
JavaScript do not always enter into the equation when you are blindly depending on a monolithic abstraction.
This library is not just a tool for some, it is the tool. It is the be-all and end-all of web development. You’ll see
why this is a dangerous line of thinking, especially for professional and aspiring developers.

 Indeed, jQuery is a crutch for many. It is not fused to the browser and merely acts as a supplement.
Experienced and knowledgeable developers may actually prefer to use jQuery, and there is certainly nothing
wrong with that. But for others, it serves as a prop. Those new to the world of web development often pick up
this crutch and hobble along for quite some time. But eventually, the crutch is pulled out from under them,
and they fall.

 You Are a Mechanic, Not a Driver
 A popular question on Stack Overflow asks “Is it a good idea to learn JavaScript before learning jQuery?” 7
One particular answer to this question provides some curious advice. The contributor goes on to say in
his answer “You really don’t need to focus too much on learning the ins and outs of the HTML DOM if you
are going to use a framework like jQuery. Just do things the ‘jQuery way’ and then pick up as much HTML
DOM as is necessary along the way.” 8 Though this line of thinking is apparently not common among others
who contributed answers to this question (perhaps more experienced developers). I myself was a new and
inexperienced web developer at one point and remember how this train of thought was embraced by those
entering the confusing world of browser-based front-end coding.

 In a series of blog posts I wrote entitled “You Don’t Need jQuery” , 9 a commenter provided a striking
analogy that outlined one of the goals of the blog (and this book).

 “One of the things I try to guide my peers on is the fact that you don’t put up walls on a foundation before
you pour the foundation. In fact you should level the ground, lie the plumbing for functionality (testing) and
then pour the foundation before you begin building the structure. This comes into understanding the core of
your tools (HTML, CSS, JS) when building for any endpoint (browsers)”, 10 Lawrence Francell).

 In other words, for a stable, long-lasting application or library, you must have a good understanding of
exactly how your tools work. Short of this, you are not a developer. You are, in fact, a library integrator .

 7 http://stackoverflow.com/questions/668642/
is-it-a-good-idea-to-learn-javascript-before-learning-jquery
 8 http://stackoverflow.com/a/841292/486979
 9 http://blog.garstasio.com/you-dont-need-jquery/
 10 http://blog.garstasio.com/you-dont-need-jquery/why-not/#comment-1799026169

http://stackoverflow.com/questions/668642/is-it-a-good-idea-to-learn-javascript-before-learning-jquery
http://stackoverflow.com/questions/668642/is-it-a-good-idea-to-learn-javascript-before-learning-jquery
http://stackoverflow.com/a/841292/486979
http://blog.garstasio.com/you-dont-need-jquery/
http://blog.garstasio.com/you-dont-need-jquery/why-not/#comment-1799026169

CHAPTER 1 ■ THE OPPRESSIVE MAGIC OF JQUERY

6

 It’s difficult to argue with the sound advice of the commenter, but the stunning magic of jQuery seems
to blind us sometimes. This does not make us “bad” developers. In fact, it may not even be our fault. We
are wired to take the path of least resistance. This is actually a well-studied and documented psychological
theory, known as the “principle of least effort” (from Human Behavior and the Principle of Least Effort by
George Kingsley Zipf (Addison-Wesley Press, 1949).

 Playing devil’s advocate, perhaps we could refute the previously quoted analogy with another. Most
of us probably drive a car on a daily basis. But how many of us are able to diagnose an issue with a typical
internal combustion engine? How many of are even capable of anything beyond changing a flat tire? The
answer to these questions is likely “very few.”

 Do we really need to be competent auto mechanics to drive a car? No, of course not. For many of us,
driving is not a profession. Instead, it’s a convenience that we rely on. We don’t have the time to understand
every minute detail of our cars, and we shouldn’t have to. Cars exist to simplify our lives and save us time. Car
manufacturers don’t expect their customers to be auto mechanics. They design their products with the average
person in mind in order to ensure their cars are usable by as many people as possible, for obvious reasons.

 Can we compare driving a car to driving the browser? As software developers, do we really need to
understand the underpinnings of the web? As you saw in the above Stack Overflow answer, some may say
no. But it’s important to understand that we are not drivers. We are mechanics and designers, not users.

 Stunted Growth
 What happens when you are thrust onto a new project without jQuery, without your crutch? If your
capabilities stop at the edge of the library’s API, your options are limited. You’re very much invested in this
abstraction, jeopardizing your ability to grow beyond it. Do you really want to be dependent on a single
chunk of code for all of your projects? In the short term, this doesn’t seem like a problem. Looking forward,
the feasibility of this path becomes questionable.

 The landscape of software development, and technology in general, is constantly changing. As
developers, we not only understand this, we embrace it. This makes our jobs both challenging and
interesting. There’s nothing wrong with using jQuery, or any other library. But by using these as a crutch, we
cease to be software developers. We are jQuery programmers.

 As a new developer, your goals shouldn’t necessarily revolve around agility. Learning the fundamentals
at this early stage is paramount. By becoming comfortable with your environment—the browser—you put
yourself in a better position to make good decisions as your project and career evolves. Only after you have
a firm grasp of the fundamentals and a better understanding of web development in its most basic form
should you focus on choosing and learning a tool to speed up your development process.

 This advice is really not specific to software development. Do you remember back when you were
first learning math? All the exercises you completed could have easily be solved using a calculator. Most
likely, you were strictly forbidden from using a calculator, though (I know I was). Why? Calculators are
faster and more accurate. Simply put, in this stage, the aim is not speed. A thorough understanding of the
fundamentals—of math—is most important. Once you understand how the calculator performs these tasks,
you can choose to use one, or not, as you solve more complex problems in the future. Understanding the
fundamentals ensures you are not chained to a tool.

 When our library of choice fades into obsolescence or is otherwise pulled out from under us, our blind
reliance prevents us from moving forward. Examples of this unfortunate situation are readily available. In
a fairly recent article in JavaWorld, 11 the author cites “6 reasons you should be using jQuery.” The reasons
are questionable as the author clearly is missing even a basic understanding of the browser stack. This is
particularly evident in claims such as “jQuery is a major component of HTML5,” conflating JavaScript with

 11 www.javaworld.com/article/2078613/java-web-development/6-reasons-you-should-be-using-
jquery.html

http://www.javaworld.com/article/2078613/java-web-development/6-reasons-you-should-be-using-jquery.html
http://www.javaworld.com/article/2078613/java-web-development/6-reasons-you-should-be-using-jquery.html

CHAPTER 1 ■ THE OPPRESSIVE MAGIC OF JQUERY

7

a document markup specification. Another troubling quote from this article: “jQuery pages load faster.” It’s
this type of oversimplification that leads us, as developers, to take the complexity of our jobs for granted. By
pretending that a beast like the browser can be tamed with a single library just opens us up to a frustrating
struggle that we will eventually lose.

 The Price of Shortcuts (a True Story)
 What follows is a real story of a real web developer who took real shortcuts (really). He only focused on
the short term, on making his job easier. His main concern was pleasing project managers. Learning the
fundamentals was a waste of time to him. Churning out code and plowing through a long list of features as
quickly as possible was his goal. That developer was me .

 jQuery makes everything easier. You can’t develop a solid web app without it. It’s far too difficult to
ensure your app will work properly in all browsers without jQuery. The DOM API implementation varies
wildly between browsers. All the good plug-ins you need depend on jQuery anyway. I bought into all of these
excuses, and more. Some of them were even good excuses at one time.

 A New Direction, a New Web Developer
 Back in the very early days of my web development career, I was transitioning from exclusive server-side
work. I was assigned to Jennings, a web-based journalist production tool. I had no professional HTML, CSS,
or JavaScript experience. My front-end skills were lacking, to say the least.

 No one on the team was comfortable with web development. We were all rookies, former back-end
developers struggling in vain to make sense of our knowledge in this new context. The deadlines were strict,
the goals lofty. It seemed that we all needed some help—perhaps a tool to make our jobs a bit easier. There
was no time to learn. We had an application to write!

 Shortcuts and My Own Stunted Growth
 My first exposure to JavaScript and the web was filtered through jQuery. In fact, I didn’t even bother to learn
proper JavaScript. I didn’t have a clue what the web API looked like, or how to deal with the DOM directly.
jQuery did everything for me. This huge gap in my knowledge caught up with me when I later ended up on a
project without my jQuery crutch. I was forced to learn proper web development, and I never looked back.

 After Jennings, jQuery was a requirement (for me) in all future projects. It was a must, because I didn’t
know any other way to tame the browser. This didn’t seem unusual at the time. In fact, it wasn’t. jQuery was
an expected dependency in most applications and libraries. My blind faith was not an obvious hinderance.

 Some of the issues of this blind dependency became apparent, to some degree, as I searched for plug-
ins to solve common problems in my projects. jQuery is a useful library by itself, but it only addresses core,
low-level concerns. If you want to support higher-level features, such as a modal dialog, you need to either
write this yourself or find a plug-in that has already solved the problem for you.

 Naturally, I looked exclusively for jQuery plug-ins to fill the holes in my projects. In fact, I shied away
from anything that didn’t depend on it. I didn’t trust any plug-in that didn’t make use of this wonderful
magic box. jQuery solved all my problems and made cross-browser development easy for me. Why should I
trust the work of a developer who hadn’t achieved this same level of enlightenment?

 After a short while, it became apparent that the quality of many of these jQuery plug-ins was
surprisingly low. The reality is, the low barrier to entry of jQuery is a double-edged sword. Sometimes it’s
easy to quickly write something useful. But it's even easier to write unmaintainable bug-prone spaghetti
code, quickly! I found that a lot of these plug-ins were very poorly written. My novice knowledge of web
development made it tough to sort through and work around the issues I encountered with these jQuery
plug-in libraries. Frustration set in, and cracks in my foundation as a developer began to appear.

CHAPTER 1 ■ THE OPPRESSIVE MAGIC OF JQUERY

8

 But bugs and inefficiencies in poorly written libraries only exposed the tip of the iceberg. Leaky
abstractions in these plug-ins and even jQuery core were rampant and nearly impossible for me to make
sense of. Why can’t I trigger a custom event handler created outside of jQuery with jQuery? jQuery supports
custom events—why doesn’t this work? This was a specific issue I ran into when working on a project that
relied both on jQuery and Prototype, an alternate JavaScript web framework with similar goals. I naively
thought I could easily trigger custom event handlers bound with Prototype using jQuery—no such luck.

 Take file uploading as another example. One would think that uploading files using jQuery is as simple
as including the file as the data in the request. Not so. If you do that, jQuery will attempt to URL-encode the
file. After a frustrating amount of reading and experimentation, I learned that two obscure properties must
be set to false to ensure that jQuery does not attempt to modify the file before the request is sent.

 Yet another issue developers run into when blindly relying on this library: sending cross-domain
requests in older browsers is unintuitive with jQuery. This is a surprising realization to make when working
with a library that is supposed to iron out web API differences and allow older browsers to be managed with
ease. I discuss all of this and much more in Chapter 9 .

 jQuery’s attribute handling utility function changed in drastic ways over the course of the library’s life.
Let’s consider a common task as an example: determining the state of a checkbox. In older versions of jQuery,
the correct approach via jQuery was to make use of the attr() method. If the checkbox is checked, a simple
invocation of $(checkboxEl).attr('checked') would return true . Otherwise, it would return false . For a
seasoned JavaScript developer, this is an odd behavior in itself, but we’ll save those details for Chapter 5 .

 For a narrowly focused jQuery developer, the story of this portion of jQuery’s API gets worse. In later
versions of jQuery, the same call would return the value of the checkbox element’s checked attribute (which
does not naturally change as the checkbox is checked and unchecked). Although this is actually the correct
behavior, as it properly mirrors the element’s actual attribute, it was confusing for me after the breaking
change. I didn’t have a proper grasp of HTML due to my over-reliance on jQuery. I didn’t understand why I
later had to rely on jQuery’s prop() method to obtain the current state of the checkbox, even though the old
behavior or the attr() method was technically incorrect.

 I fell into a trap, and this is a trap that many new, occasional, and hobbyist web developers fall into.
Had I taken the time to understand JavaScript and the API provided by the browser first, I would have saved
myself a lot of trouble. The proper sequence of events is this:

 1. Learn JavaScript.

 2. Learn the browser’s API.

 3. Learn jQuery (or any other framework/library that you may need across projects).

 Many start with #3, delaying #1 and #2 to a much later date (or never). If you don’t understand what
jQuery is actually doing for you, there will be many frustrating days ahead as the leaky abstractions come out
of the woodwork. This is a trap you must avoid if you want to effectively grow as a web developer—a trap that
stunted my career as a web developer for longer than I would have liked.

 A Challenge: No jQuery Allowed!
 In early 2012, I began to replace the Java Applet uploader in Widen Collective, 12 Widen’s flagship digital asset
management SaaS offering. Dealing with Java in the browser turned out to be a nightmare, and we were eager
to move to a native JavaScript/HTML solution. I first looked into jQuery File Upload (the most popular upload
library at the time, 13 but was put off by the large number of required dependencies needed to get this up and
running as well as the lack of cohesive documentation. So, for one of the first times in my web development
career, I settled on a non-jQuery solution, and I was a bit lost at first.

 12 www.widen.com/digital-asset-management-software/
 13 https://github.com/blueimp/jQuery-File-Upload

http://dx.doi.org/10.1007/978-1-4842-2235-5_9
http://dx.doi.org/10.1007/978-1-4842-2235-5_5
http://www.widen.com/digital-asset-management-software/
https://github.com/blueimp/jQuery-File-Upload

CHAPTER 1 ■ THE OPPRESSIVE MAGIC OF JQUERY

9

 The library I decided to replace our Java applet uploader with was, at the time, called valums/
file- uploader (due to its location on GitHub). It was unique in the respect that it was completely dependency
free. I was a bit skeptical at first as I was trained to put a lot of faith in the jQuery ecosystem, but was
pleasantly surprised at the ease at which I was able to integrate the plug-in.

 However, the plug-in had fallen into disrepair. It was no longer actively maintained, and needed a few
bugs addressed and features tweaked in order to make it production-ready for Widen Collective. Though
the work required wasn’t substantial, it took a significant amount of time me for to address these issues due
to the large gaps in my knowledge of JavaScript, HTML, and CSS. I pushed some of my changes back up to a
forked GitHub repository. My code was sloppy and flawed, but it was sufficient. 14

 My efforts were apparently noticed by the creator of the library, Andrew Valums, who asked if I was
interested in maintaining the library. Even though I had very little practical experience outside of jQuery,
I jumped at the opportunity and accepted. I was now the sole maintainer of a large and very popular
non-jQuery plug-in, to be renamed Fine Uploader.

 When I took over maintenance and development of Fine Uploader, a large cross-browser file
upload library in mid-2012, my first instinct was to rewrite it all using jQuery, because that would make
my life easier (I thought). The existing user community was very much against bringing any 3rd- party
dependencies into the library, so I was forced to deal with the native web API and vanilla JavaScript instead. 15

 My inexperience certainly slowed the evolution of Fine Uploader initially. I was forced to gain an
expert-level understanding of the core concepts. I wrote my own small shims to account for cross- browser
differences in the web API and JavaScript. A good deal of my time was spent reading and experimenting.
Over time, I was able to successfully shed my blind dependence on the oppressive magic of jQuery. I didn’t
need jQuery, and neither do you.

 Focus on the Implementation , Not the Magic
 The magic of jQuery and its promise of easy web application development is alluring. But we’ve discussed
how and why you can become a stronger developer by understanding your environment first. Learn your
trade by following the proper route: JavaScript, HTML, CSS, and the web API first. Worry about libraries later.

 Let me be frank with you and admit that it is truly both interesting and surreal for a former clueless
rookie web developer to now be playing the part of the wise “I’ve seen everything” developer. But I can
say, with a high degree of confidence, that you are in a much better position to decide when you need
to use jQuery, and when you don’t, if you are more familiar with the fundamentals of web development.
Knowledge and experience give you the freedom to make this choice and justify it with facts. You aren’t
permanently attached to any library. You have options .

 Don’t hide behind your tools—own your code. Become a web developer and a teacher, not a jQuery
developer and a library user. There is something liberating about saying “I don’t need jQuery anymore. I can
do it myself!” and actually meaning it. Don’t get into the habit of taking shortcuts. Start out on a trajectory
that you can be proud of as a professional. Don’t put off learning the fundamentals until later, because later
never happens. Avoid helplessness when your library of choice fails to shield you from the browser. You
cannot realistically expect to hide behind a layer of abstractions for your entire career. The fundamentals are
building blocks that will propel you further and empower you to master your trade.

 14 https://github.com/FineUploader/fine-uploader/compare/82c8d5b0c383738ed84c771e90dbf202bd3
acd68…55b3ca6e9f7a18fd3adc5ba7537124ae12b63e71
 15 https://github.com/FineUploader/fine-uploader/issues/326

https://github.com/FineUploader/fine-uploader/compare/82c8d5b0c383738ed84c771e90dbf202bd3acd68…55b3ca6e9f7a18fd3adc5ba7537124ae12b63e71
https://github.com/FineUploader/fine-uploader/compare/82c8d5b0c383738ed84c771e90dbf202bd3acd68…55b3ca6e9f7a18fd3adc5ba7537124ae12b63e71
https://github.com/FineUploader/fine-uploader/issues/326

11© Ray Nicholus 2016
R. Nicholus, Beyond jQuery, DOI 10.1007/978-1-4842-2235-5_2

 CHAPTER 2

 You Don’t Need jQuery (Anymore)

 The primary goal of this chapter is to explain why a web developer like yourself should or should not use
jQuery when developing a library or application. For example, file size is one common consideration when
choosing browser-based dependencies. I cover the importance of this attribute and determine how it factors
into your decision to utilize this library. Including exploration of the file size argument, the usefulness of
jQuery will be further analyzed. As part of this particular exploration effort, I will contrast the common
reasons why developers choose to use jQuery against the problems that the same developers may run into as
a result of this choice. I may even briefly investigate and discuss other libraries that may be used in place of
jQuery or even propel it into obsolescence, though this will mostly be limited. The focus of third-party code
will be centered around adopting smaller and more focused libraries and shims. The future of the native
functionality provided by the browser will also be a point of discussion.

 Upon completion of this chapter, you will in a better position to decide whether jQuery should be part
of your current or future projects. Your understanding of the importance of such a library will become clear,
and many common meritless excuses will be refuted. You will also be empowered with choices. If you do
desire a bit of help on a complex project with ambitious goals, jQuery is never your only option. The future
of web development, in terms of the evolving native browser tools, will give you confidence if you do decide
to leave jQuery behind. The term anymore in the title of this chapter has a double meaning. You don’t need
jQuery anymore because the web API and JavaScript are sufficiently evolved such that a wrapper library
can be omitted in favor of a closer-to-the-metal approach. You don’t need jQuery anymore because your
confidence and knowledge as a web developer will also be sufficiently evolved after reading this book.

 Need vs. Want
 The struggle between need and want is not specific to software development, but it is a particularly
prudent conflict to be aware of when planning a web project. Often when we make decisions regarding
dependencies, IDEs, and build tools, our choices are more focused on want than need. Why do some of
us choose WebStorm over vim? Certainly vim provides us with everything we need to develop a full-stack
web application, but we may feel more comfortable with WebStorm due to its flashy UI and exceptional
usability and intuitiveness. Why not use Make or shell scripts instead of grunt or gulp? We can define tasks
to automate aspects of our project’s build system with a Makefile, but grunt provides a more intuitive set of
conventions and integrations that JavaScript developers can easily grasp.

 What we need is often trumped by what we want . New developers are often more motivated to produce
observable progress, above all else, in each and every project, each and every time. Emerging coders aim
to prove themselves and use any help they can get from their tools in their pursuit of recognition and self-
confidence. I know this to be true, as I was a new developer once myself, and observed the same qualities in
many of my peers. As a more experienced developer, I now have a much more minimalistic approach to my
toolset. I see this same state of mind in some others, but many seem to continue to center on churning out
code and features above all else.

CHAPTER 2 ■ YOU DON’T NEED JQUERY (ANYMORE)

12

 Some get satisfaction from masterful understanding and application. But most seem to be more interested
in adopting new bleeding-edge high-level tools that promise to take them further than the traditional set ever
could. Closer-to-the-metal solutions are seen as primitive, weak, and unnecessarily complex. Their years of
existence are glossed over in favor of an abstraction that vows to be more powerful than the old tool and easier
to use. Maintaining a modest set of tools is admirable to some, but generally not a goal.

 Pulling jQuery into a project is often the result of a want or an unfounded need . Its magical reputation
is due more to lore than an objective analysis of need versus want. The truth is, it isn’t magic. jQuery, while
potentially elegant and helpful, is nothing more than a wrapper around the web API and an extension of
 JavaScript . It’s an abstraction, a simplification, and a mechanism for convenience. But make no mistake
about it, the real power comes from the underlying language and the tools native to the browser. While
jQuery can indeed be helpful in some ways, we never literally need jQuery. Of course, the same is true of
many other abstractions. And although the title of this chapter may suggest otherwise, the goal here is not to
quibble about semantics.

 Both Sides of the Acceptable Use Argument
 The goal of this book is not to declare jQuery to be “persona non grata.” My intention is not to pick on jQuery,
but rather to teach about the browser’s native tools and provide you with the confidence to develop your
web projects without feeling helplessly dependent on a library. So, let’s discuss frankly when it is acceptable
to put the “magic” of jQuery to use in your project and when it is not. Let’s put necessity aside for a bit and
focus more on want . With a proper understanding of the instances in which jQuery is an acceptable choice,
you will be able to make the correct decision when planning future projects.

 When Is It Acceptable to Use It?
 If you are quite comfortable with front-end web development and are just looking to write more elegant
code, admittedly there aren’t many good reasons to avoid jQuery as a project dependency. This doesn’t
mean that you absolutely should use it, but feel free to do so if you desire. If you also feel comfortable with
jQuery, and you are familiar enough with how jQuery works its magic, then, by all means, keep using it.

 There are certain aspects of “ancient” browsers that may make jQuery, or at least certain modules of the
library, worthwhile. Let’s define an ancient browser as one that is older than Internet Explorer 9. Anything
that isn’t an ancient browser can be considered a modern browser. I talk more about ancient, modern, and
evergreen browsers in the next chapter.

 Ancient browsers tend to have substantial API differences compared to modern browsers. Take event
handling as an example. In Internet Explorer 8 and older, event handlers must be registered with the
 attachEvent() method, and event names passed to attachEvent() must be prefixed with “on”. Also, some
important properties and methods of the Event object are non-standard. Input element “change” events do
not bubble, and event capturing is not supported at all.

 These browsers also leave a lot to be desired in terms of API and feature support. Ancient browsers lack
CSS3 selector support. The useful indexOf method is missing on the Array prototype. Very old browsers
cannot natively parse or create JSON and lack a way to easily distinguish an element from an object. These
are just a few of the struggles ancient browsers present. In some cases, jQuery was especially important when
these browsers were commonly supported. If you are in the unusual and unfortunate position to require
support for such an old browser, jQuery may not be a bad library to use.

 There is usually little benefit to extracting jQuery from a large legacy project. In cases where an
enterprise web application has shed support for ancient browsers, it may be tempting to try to eradicate
unnecessary browser-based dependencies. I have found myself in this very situation more than once.
From my experience, large multi-purpose all-encompassing libraries such as this tend to become firmly
entrenched in a complex project over time. Perhaps a planned major rewrite of the application is a
prudent excuse to remove these types of monolithic dependencies, but anything short of this would likely

CHAPTER 2 ■ YOU DON’T NEED JQUERY (ANYMORE)

13

render such an undertaking fruitless. Unless your suite of front-end automated tests are exceptionally
comprehensive, you may find that the risk of removal far outweighs any perceived drawbacks to leaving the
library in place.

 When writing unit tests for your front-end code—and you should always write tests—jQuery is an
acceptable dependency. In a testing environment, performance and page load time are not notable
factors, nor is file size. In fact, writing unit tests using some higher-level language or abstraction has some
observable benefits. A common thought is that unit tests should not only serve to test your code, but to
document it in terms of expected behaviors. An elegant and terse testing framework certainly makes tests
more maintainable and, most importantly, readable.

 Finally, there is no shame in using a little help on a one-off project. Someone without any career
ambitions in the web development space working on a small and straightforward project is probably not
giving up anything by leaning on jQuery to expedite the process. If you’re simply not a developer and need
to get, for example, a WordPress site up and running, jQuery can be a notable asset. This is a situation where
the car and driver analogy holds up. In this case, you are a driver, not a mechanic. The browser is a merely
convenience and not a central tool of your trade.

 When Should You Refrain from Using It?
 If your project only supports modern browsers, especially evergreen browsers, you may find it especially
easy to do without the conveniences that a wrapper library provides. As browsers evolve, so does the
web API and JavaScript. The higher-level amenities that a library like jQuery provides are quickly being
represented natively in modern browsers as the associated specifications evolve. For example, the ability to
add, remove, and check for CSS classes was previously a chore without jQuery’s addClass() , removeClass() ,
and hasClass() methods. But the web specification caught up and now provides a native classList
property on every element with add() , remove() , and contains() methods. This is perhaps an example of
jQuery’s powerful influence on the web specification. As the browser’s native API continues to push forward,
the necessity of jQuery also decreases. Instead of pulling a redundant dependency into new projects,
consider relying on the power of the browser instead.

 When writing a generic reusable library, especially open source, your instinct should be to keep third-
party dependencies to a bare minimum. Your library’s dependencies become your user’s dependencies as
well. Due to the current ubiquitousness of jQuery, you might think it safe to use in any exported code. Odds
are, projects making use of your library are already using jQuery. But what if they aren’t? Will a discerning
web developer pull in a large transitive client-side dependency solely for the use your library? Perhaps not.
This scenario will become much more common as the web evolves and developers elect to shed these types
of abstractions. Personally, I would skip over a library with otherwise unnecessary dependencies, and I don’t
believe that this position is unique, based on input I have received from users of a large JavaScript library I
maintain. As a library developer, your job is to solve complex problems and package them up in a box that is
proportional to the size and scope of the problem you are solving.

 Performance of your application is perhaps another reason to reject some dependencies, especially
one as complex as jQuery. As the user of such a mature and popular library, you would naturally assume
that the most basic and common areas of the codebase are all heavily optimized. In this context, efficiency
is expected. Sure, perhaps some of the more complex and lesser-used functions have some performance
implications. But all of the basic convenience methods should be quite performant. Unfortunately, in the
case of jQuery, this is not always true.

 Take the hide() method as an example of the potential performance issues that lay beneath the surface.
This seems like a simple operation to implement efficiently. In fact, it is relatively simple to do this. One
approach involves defining a proprietary CSS class name in the document tied to a style of display: none .
Instead of using a CSS class, perhaps a hidden attribute can be tied to this style instead. On hide() , add the class
or attribute to the element. On show() , remove it. This results in a simple and performant solution to a simple
problem. However, jQuery’s solution to a problem that should be simple is quite complex and inefficient.

CHAPTER 2 ■ YOU DON’T NEED JQUERY (ANYMORE)

14

 One major performance bottleneck in jQuery’s implementation of the hide() method is due to the use
of getComputedStyle() , a web API method that computes the actual set of styles of an element, taking into
account CSS files, <style> elements, and inline or JavaScript modifications to the element’s style property.
The use of getComputedStyle() is appropriate in some cases, but hiding an element may not be one of
them. The use of this method in jQuery’s hide() implementation has serious performance implications.
Benchmark testing 1 indicates that this approach is about 90 times slower than simply defining a style via an
attribute and setting that attribute on the element to be hidden. This specific performance issue is likely
to be an unexpected one, even to a seasoned developer. There are other similar issues in jQuery revolving
around the use of its CSS support, which will be covered in more detail in Chapter 7 .

 The performance issues with jQuery’s hide() method are so substantial, that the implementation was
significantly simplified in version 3.0, which removed this particular performance bottleneck. Still, for any
developers using jQuery 2.x or 1.x, the problem remains, and the changes to hide() in 3.0 are so drastic that
it may be a bit of work for some to migrate to jQuery 3.0 in a large project that has depended heavily on this
method. This is a good example of how blind faith in an all-encompassing library can lead you down the
wrong path.

 If you want to maintain ultimate control over the performance of your code, you should think twice
before pulling in this type of library, lest you unexpectedly run across other efficiency bottlenecks. Of course
some performance issues may be more related to your use of the library than anything else. But still, it is
surprisingly simple to unknowingly write inefficient code with jQuery. Consider the following code listing
that loops over a set of elements that contain a CSS class of “red” and removes any that include an attribute
of “foo” with a value of “bar”:

 Listing 2-1. Removing Elements with jQuery: Naïve Approach

 1 $('.red').each(function () {
 2 if ($(this).attr('foo') === 'bar') {
 3 $(this).remove();
 4 }
 5 });

 The preceding code certainly works, but it has some notable performance issues. A novice developer
and jQuery user without a good understanding of CSS selectors and the implications of looping over a
large set of elements may not know that there is a much simpler and more efficient way to solve the same
problem. Here is a much more performant and elegant solution to the same problem:

 1 $('.red[foo="bar"]').remove();

 The execution time between the two approaches is not noticeably different given a small document. But
if the document domains a large number of elements with a CSS class of “red”, say, 200, the consequences of
the first approach are notable. The former solution is about six times slower than the one-line solution with
a complex CSS selector 2 — Chrome 42 using jQuery 1.11.2.).

 You can still write highly performant code with jQuery, provided you know which methods in the API to
avoid, and when. The same is true of the browser’s API, but libraries often provide a false sense of security.
Code that makes use of the web API directly is a bit more explicit and specific in its intentions. jQuery, on
the other hand, provides a more high-level and seemingly magical API that obscures many details of the
implementation and glosses over potential performance tradeoffs. We often don’t want to look past the
abstraction’s conveniences, but you must. If you want to write solid and highly efficient code, you must not
only understand jQuery itself (if you choose to use it) but how jQuery makes use of the web API. Blind faith
here can present problems in many forms.

 1 http://jsperf.com/jquery-hide-vs-set-attr
 2 http://jsperf.com/jquery-loop-vs-complex-selector

www.allitebooks.com

http://dx.doi.org/10.1007/978-1-4842-2235-5_7
http://jsperf.com/jquery-hide-vs-set-attr
http://jsperf.com/jquery-loop-vs-complex-selector
http://www.allitebooks.org

CHAPTER 2 ■ YOU DON’T NEED JQUERY (ANYMORE)

15

 Another consideration that may require avoidance of jQuery involves page load time. An over- reliance
of jQuery’s ready() method is one example. The ready() method executes a passed function only after all
elements in the document have been loaded on the page. This doesn’t really have a notable effect on actual
page load time, but it does affect perceived page load time. Commonly, any code to be executed by jQuery’s
 ready() method is imported at the top of the document (usually in the <head> element). And if all scripts are
loaded at the top of the document, this may result in a noticeable delay in page rendering, since the scripts
must be loaded and executed before the elements. The recommended approach, wherever possible, is to
load all scripts at the bottom of the document instead. This results in a much faster perceived page load time
as the document elements load before anything else. If you follow this convention, using $.ready() is no
longer necessary. The use of jQuery’s ready() method is widespread and even used regularly in the example
code on jQuery’s learning site. This is another instance where you would be better off understanding all the
possible options (such as loading your scripts at the bottom of the page) instead of blindly relying on the
convenience methods that jQuery provides, such as ready() .

 Somewhat connected to page load time is file size. I’m referring to the size, in bytes, of any resources
that your page must load in order to fully render on page load. One common argument against depending on
libraries such as jQuery revolves around file size. The reality is that bandwidth is limited, and all client-side
dependencies downloaded by the browser on page load consume some of this bandwidth. If your users all
have a 60 Mbps downstream pipe available, the scripts pulled down by your application will probably not
have any noticeable effect on page load times. But what if your users are not so lucky? What if they only
have access to DSL, which maxes out at 6 Mbps downstream? What if you are targeting mobile devices? In
that case, downstream bandwidth may not exceed 4 Mbps. In developing nations, your users may only have
access to EDGE, which peaks at about 400 Kbps. Are you considering all of your users?

 The size of jQuery may or may not be significant to you and your users. If you decide to load jQuery
from a CDN, there is a greater chance that the round trip will be avoided altogether. Because this library is so
popular, there is a chance that many of your users have already cached jQuery in their browser from another
application. But this is certainly not guaranteed. The sheer number of versions of jQuery in active use makes
it less likely that the specific version your project depends on will be cached by the majority of your users.
There are also potential disadvantages to depending on a third-party server for your production runtime
dependencies. If this server experiences technical issues, your application is likely to be crippled as a result,
even if all servers under your control are functioning as expected.

 If you host jQuery yourself or via a private CDN, you have much more control over how it is served,
and where it is served from (taking the user’s location into account). Or perhaps you are worried about the
overhead of individual HTTP requests, and elect to serve jQuery combined with all other page resources as
the response to a single request. Combined with GZIP compression, this is not a bad strategy. But when your
user base relies on exceptionally low-bandwidth connections, keeping your resource list small is still of utmost
importance. If the first page load takes a noticeable amount of time, you may just lose a potential customer.

 To be fair, I should mention that jQuery 1.8 exposed a build task in the project source that allows jQuery
to be “custom” built, excluding any modules that that may not be needed for a specific project. This perhaps
negates the file size argument. But a question remains: Will new and inexperienced developers really know
what parts of jQuery they need? Do most developers even know the ability to create a custom build of jQuery
exists? The answer to both questions is, most likely, “no”. Unfortunately, the ability to create a custom build is
hidden inside of a build file in jQuery’s source tree. In order to make use of it, you must pull down the entire
repository, install the development dependencies required to build jQuery, search through the build file or
page through the README.md in the project’s GitHub repository for instructions, and run the task using
their grunt build tool with any undesired modules excluded. With all these steps, it is unlikely that most
jQuery-dependent developers will use anything other than the full build files available on the user-facing
download page.

 All those points bring to light the compromises made when developing popular monolithic libraries.
There is no disputing that a great deal of care and detail has gone into development of jQuery since its
inception. But it may not have you in mind or your edge cases, or even your goals. Do you want both
convenience and speed? These two goals may be at odds with each other, depending on your workflow and

CHAPTER 2 ■ YOU DON’T NEED JQUERY (ANYMORE)

16

intended use of the library. Do you desire seamless file uploading or a minimal footprint? Neither of these is
a jQuery goal either. jQuery, like any other large library with a huge user base, has to take great care to focus
mostly on the greatest common divisor in terms of features and workflow.

 Should You Use Other Libraries Instead?
 One goal of this book is to push you to remove your dependence on jQuery. But the only alternative I
have offered to a monolithic wrapper is a direct attachment to the browser’s native API. This is certainly
an admirable goal, and in a sense, the browser is all we need to develop all of our front-end projects. But
realistically, we may need a bit more help to reduce the inevitable hand-wringing that occurs when putting
together something overly complex. The assumption is that we are targeting modern browsers, and this is
reasonable given the current state of the web. But even “modern” browsers with an evolved API may have
inconsistent support for some of the powerful features that we need for our projects. If only there was some
way to make consistent use of modern web and JavaScript features across all modern browsers, without
wrapping the entire stack. . . .

 Small Shims Over Large Wrappers
 There is a concept in web development that describes a very specific type of library, a regressive library .
This is a new term, one you have probably never heard of before, because I just coined it myself. Regressive
libraries are a reasonable alternative to large wrapper libraries. While they are usually small (though not
always), their true appeal is evident in the name—they are regressive . Though most libraries evolve in
size and feature sets over time, regressive libraries devolve. The ultimate goal of a regressive library is to
disappear, to be replaced entirely by the browser’s native API.

 Regressive libraries are more popularly known as shims or polyfills . They don’t provide any new APIs.
Their job is to temporarily fill in missing implementations for standardized APIs in non-compliant browsers.
These libraries keep us focused on native tools. There are no abstractions to cloud our understanding
and hide the true nature of the web. Polyfill code is usually constructed such that it is only ever used if the
browser does not contain a matching native implementation. If the browser does contain appropriate native
code, the library delegates directly to the browser instead.

 One example of a commonly used polyfill is the json2 library by Douglas Crockford. 3 It contributes
an implementation for the JSON object in browsers that do not contain their own native implementation.
As expected, the API of json2.js is a one-to-one match to the JSON API standardized in the ECMAScript
5 specification. 4 The specification describes a JavaScript object that contains methods for turning a JSON
string into a JavaScript object, and a JavaScript object back into a JSON string again. These methods are quite
useful and important when serializing and deserializing data as part of communication with a JSON aware
endpoint. Json2.js ensures that this API is available in older browsers that do not implement this particular
ECMAScript 5 specification (such as Internet Explorer 7).

 There are quite a few other popular shims such as webcomponents.js, and fetch. Their names give a
good indication as to the native APIs they are responsible for patching. Currently, both of these polyfills
contribute implementations for bleeding edge specifications. Webcomponents.js contributes patches for
browsers that do not completely implement the Web Components browser specification (meaning all
browsers other than Chrome at the moment). Fetch allows developers to make use of the new WHATWG-
created fetch specification, 5 an eventual replacement for XMLHttpRequest . Some of this will be explored later
on in this book, such as in the next chapter.

 3 https://github.com/douglascrockford/JSON-js
 4 www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
 5 https://fetch.spec.whatwg.org

https://github.com/douglascrockford/JSON-js
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
https://fetch.spec.whatwg.org/

CHAPTER 2 ■ YOU DON’T NEED JQUERY (ANYMORE)

17

 Writing Your Own Shim
 When we want to use some new and exciting cutting-edge features of the web API and JavaScript in
our projects and maintain support for a wide range of browsers and ensure that the footprint of our
dependencies is as small as possible and temporary, we turn to regressive libraries. But what exactly does
a polyfill look like? How does one go about creating such a library? These questions are more pragmatic
than academic when you find yourself needing to use a common and useful native API method in an older
browser without an available pre-existing polyfill at your disposal. Creating your own polyfill may not be as
complicated as you might expect. Don’t believe me? Let’s create one right now.

 Take the find() method , available in JavaScript Array s, which is part of the ECMAScript 2015
specification. Array.find returns an entry in an array that satisfies a provided condition. While this sounds
fairly useful, browser support is missing in all versions of Internet Explorer. But we can make use of this
method in all browsers by writing our own shim, as shown in Listing 2-2 .

 Listing 2-2. Conditionally Creating an Array.prototype.find Shim

 1 if (!Array.prototype.find) {
 2 Array.prototype.find =
 3 function (callback, ctx) {
 4 for (var i = 0; i < this .length; i++) {
 5 var el = this [i];
 6 if (callback.call(ctx, el, i, this)) {
 7 return this [i];
 8 }
 9 }
 10 };
 11 }

 If (and only if) the browser does not natively implement Array.prototype.find , the preceding
code will register an implementation. So, with this shim, you may use Array.prototype.find just as it
is presented in the ECMAScript 2015 specification 6 in any browser, even Internet Explorer 6! Essentially,
the shim, just like a native implementation, will iterate over all items in the array until it finds one that
satisfies the passed predicate function, or until it runs out of elements to examine. For each element in the
array, the passed predicate function is called, passing the current array element , the current array index,
and finally the entire array. Notice that the ctx argument, which is optional, allows the calling code to
specify an alternate value of this (also known as the context) to be used by the predicate function. If this
context argument is omitted, the actual context of the passed predicate function will be the “global object,”
which happens to be the window object if this code is executing in a browser. An array element satisfies the
predicate function if the function returns a “truthy” value. The shim will return the element that satisfies the
predicate, or undefined if no element is satisfactory.

 Using our shim, the function in Listing 2-3 returns the element in the array with a name property of
“foobar”. This happens to be the third element in the array.

 Listing 2-3. Using the Array.prototype.find Shim

 1 function findFoo() {
 2 return [
 3 {name: 'one'},
 4 {name: 'two'},
 5 {name: 'foobar'},

 6 http://people.mozilla.org/~jorendorff/es6-draft.html#sec-array.prototype.find

http://people.mozilla.org/~jorendorff/es6-draft.html#sec-array.prototype.find

CHAPTER 2 ■ YOU DON’T NEED JQUERY (ANYMORE)

18

 6 {name: 'four'}
 7].find(function (el) {
 8 return el.name === 'foobar';
 9 });
 10 }

 The Final Word
 jQuery isn’t part of the future of web development, but neither is any of the other large and currently popular
libraries or JavaScript frameworks. Libraries come and go; the browser’s API and JavaScript will outlive them
all. The future of the web, and of your career as a web developer, is codified in the web and ECMAScript
specifications. These specifications are rapidly evolving—they are quickly catching up to the libraries. Native
solutions to common problems usually result in improved performance and increased convenience.

 There is nothing necessarily wrong with using wrapper libraries like jQuery. However, it is imperative
that you have a proper understanding not only of the code that jQuery itself depends on, but also of the
reasons why you have chosen to use it. You do not really need jQuery, but if you still want to use it, be sure to
take note of the situations where its use is acceptable and of those where you may want to consider forgoing
this particular abstraction.

19© Ray Nicholus 2016
R. Nicholus, Beyond jQuery, DOI 10.1007/978-1-4842-2235-5_3

 CHAPTER 3

 Understanding the Web API and
“Vanilla” JavaScript

 Before we further explore the mysteries of the browser, JavaScript, and jQuery, there are a number of
important concepts and terms to cover. If your plan is to better understand all the different native tools
available to you in the browser, it is imperative that you are aware of the history of these tools and how they
are interrelated.

 Browsers can be lumped into a few different categories. You’ll hear about many terms used to describe
these categories, such as modern and evergreen browsers, both in this book and elsewhere—something that
will be discussed in more detail in this very chapter. A discerning look at the necessity of these categorizations
will reveal why some of the groupings are moving targets and potentially of dubious importance. And in
addition to browser-based JavaScript, you’ll even learn about how the language can be used outside of
 browsers , such as on the server, thanks to Node.js.

 Both the web API and the language of JavaScript are main topics of discussion in this book. Before
covering the intricacies of the syntax and use of these two items, you will need to be clear about their role
and importance. I go into great detail defining the web API and JavaScript and how these two essential
concepts are related. Another important goal of this chapter is to illustrate how these two technologies have
been influenced by standardization. The organizations that curate these standards will be detailed. After
completing this chapter, you will be quite comfortable with the various specifications that make up the
native browser stack.

 Everything You Need to Know About Browsers
 In the beginning (1990), there was Nexus —the first web browser—developed by Tim Berners-Lee, one of
the founders of the modern Internet. Mosaic, the first fully graphical browser, followed shortly after in 1993.
In 1994 and 1995, Netscape Navigator and Microsoft Internet Explorer 1.0 were released, respectively. By
the mid-1990s, Netscape and Explorer accounted for almost all of the browsers in common use. They both
offered a rapidly growing set of proprietary features, setting themselves apart from each other but also
favoring polarity over standardization. This, in part, lead to the later popularity of tools (such as jQuery) that
allowed web developers to more effectively target multiple browsers. While Nexus, Mosaic, and other similar
browsers of the time were relatively short-lived and fell out of favor with users and developers, Netscape and
Explorer ushered in an era of intense browser competition.

 The early web was, by today’s standards, uninspired and primitive. On the browser side, the web was
exclusively populated with static content. Information was loaded from the server one entire page at a
time, even if only a small portion of the page needed to be updated. Upon clicking on an anchor link, an
HTTP GET request was sent to the server, which responded with the contents of the next page—header,
body, footer, and all. This did not facilitate an exceptional user experience or good use of the very limited

CHAPTER 3 ■ UNDERSTANDING THE WEB API AND “VANILLA” JAVASCRIPT

20

bandwidth at the time. Then came Java Applets and Flash around the late 1990s, which allowed developers
to create dynamic, in-browser applications. However, both of these technologies required installation
of third-party software on top of the browser. Long before an official standard was codified by the World
Wide Web Consortium, Microsoft allowed developers to create a page that could be partially updated by
sending a request to the server that returned a fragment of a document. This fragment was then used to
replace existing content or create additional content without changing the rest of the page. This has been
commonly known as an AJAX request , and its invention brought dynamic content creation to the native
browser. Microsoft’s implementation of this concept was introduced in the late-1990s, soon after Flash and
Java Applets came about. Although AJAX requests were first introduced around 1999, they did not appear
elsewhere until their inclusion in the Mozilla Firefox browser in 2002, and they remained non-standard until
2006. This was a time when standardization of the web crept far behind the desire for more modern features.

 Although Internet Explorer and its proprietary features dominated the browser market for quite some
time, notable competition arrived in the early 2000s. Mozilla Firefox was the first such viable adversary to
Microsoft’s offering. The introduction of a free and open source browser caught Microsoft entirely off-guard
and ushered in a new era of the web. Firefox’s Gecko engine was the first such challenger to Microsoft’s Trident.
A few years after Gecko, Apple developed the WebKit rendering engine to power its Safari browser. WebKit was
initially a fork of the KHTML rendering engine used by the Konqueror browser, which was a browser for the
Linux desktop. Shortly after, Google developed its own browser, Chrome, also using Apple’s WebKit engine.
Later on, Google created its own rendering engine—Blink—which itself started as a fork of WebKit, similar
to Apple’s initial fork of KDE’s KHTML engine. Interestingly: Opera, somewhat of a niche browser that relied
on its homegrown “Presto” rendering engine for most of its life, switched to Chrome’s “Blink” engine in 2013.
While Firefox initially grabbed a substantial share of the market on Windows, and Safari did the same on OS
X, Chrome began its ascent into cross-OS dominance shortly after its introduction. Chrome’s success can be
attributed to its rapid evolution and significant influence on web standardization. This was a time where formal
specifications began to match and affect browser development. With a mature standards track and relatively
solid browser quality assurance, the necessity of libraries like jQuery began to seem less important.

 The history I just outlined describes a number of different mobile and desktop browsers, which, like most
things, can be categorized in many different ways. In the context of this book, a reasonable set of categories will be
used to speak to their modernity, portability, and updatability. In the following sections, you will become familiar
with some of the more common browser categories. I’ll also comment on the state of all currently available
browsers and provide some words of caution to consider when thinking of browsers in terms of these categories.

 Ancient Browsers
 Ancient browsers , also known as legacy browsers , are usually considered to be older versions of Microsoft’s
Internet Explorer. At the writing of this book, in mid-2016, ancient browsers are those older than Internet
Explorer 9. Explorer 7 is generally thought of as the oldest browser to realistically target for any purposes,
though even Internet Explorer 10 and below are no longer supported by Microsoft and should only be
supported in your new web applications if a significant chunk of your users cannot upgrade. IE6, Mosaic,
Netscape, and other similar browsers are not only out-of-date but also mostly unused. They are not part of
any set of currently in-use browsers, so we will not consider these in any future discussions throughout this
book. As of June 2016, ancient browsers thankfully only account for about 1% of currently in-use browsers
across the measured web. 1

 Ancient browsers are the most undesirable of all the browser categories. They suffer many drawbacks
that make them difficult to develop against and support, and are generally considered to be quite slow
compared to more modern choices. Their support of the DOM API and other related web APIs is primitive.
They support limited JavaScript conveni ence methods due to lack of modern specifications at the time. Many
of them, especially Internet Explorer 6, are infested with notable and serious layout bugs. For these reasons,
ancient browsers have fallen out of favor, replaced with more stable, efficient, and convenient choices.

 1 https://www.w3counter.com/globalstats.php?year=2016&month=6

https://www.w3counter.com/globalstats.php?
year=2016&month=6

CHAPTER 3 ■ UNDERSTANDING THE WEB API AND “VANILLA” JAVASCRIPT

21

 But we have to be careful when categorizing browsers using age as the key property. Ancient browsers
represent a moving target. A new browser today will likely be considered an ancient browser several years
from now. An ancient browser today will be considered dead in the near future when its market share
effectively drops to 0. This type of categorization is not a particularly pragmatic one, but is arguably effective
enough for the purposes of separating those browsers that can be reasonably addressed without jQuery in all
cases from those that cannot. However, future chapters explore other more effective techniques to distinguish
between capable and non-capable browsers through the practice of programmatic feature detection.

 Modern Browsers
 The modern adjective can be used to describe all browsers newer than those thought of as ancient. At the
time of writing, modern browsers are all those newer than and including Internet Explorer 9. This list also
includes Chrome, Firefox, and Safari version 6+. But this modern categorization does share a common
trait with the ancient one. The trailing edge of this category is a moving target. What is modern now may be
ancient in a few years. Similar to ancient , modern is simply to be used as context when reading this book.
I will often use these terms when describing the browser support for a fragment of code.

 Modern browsers are, compared to their ancient counterparts, much easier to work with due to their
relatively evolved developer tools, web API and JavaScript support, and stability. They account for a set of
browsers that can be eloquently addressed without the help of a wrapper library like jQuery. The urge to
programmatically identify this class of browser is great. If we can easily determine if we are dealing with
Internet Explorer 9 versus 8, or Safari 8 versus 5, then perhaps we can then define two discrete code
paths—one for ancient browsers, and another for modern ones. But you should resist this urge.

 This blanket classification of browsers, based mainly on age, is frivolous. Even worse is identifying
browsers in this category and making all your code path decisions based on the browser’s user agent
identification string. The correct approach is to test a browser’s API implementation for the presence of, or
lack of, a specific feature and then take the appropriate code path for that specific feature . I want to make
this clear to be sure that the classifications I have proposed thus far are seen in the proper context and not
elevated to a higher level of importance than they deserve.

 ■ Note A user agent string is a series of characters that identifies a particular type and version of web
browser. You can obtain the browser’s UA string via JavaScript by checking the userAgent property of the
 navigator object.

 Evergreen Browsers
 There is a third class of browser, one that is ageless and ever evolving. Evergreen browsers are the future
of the web. Browsers that fit into this category update themselves without any required user intervention.
Although they are versioned, most who use an evergreen browser are likely unaware of their browser’s
current version number (with the exception of Internet Explorer 10+ and possibly Safari). Updates are
completely transparent, even major version upgrades. This allows the browser to seamlessly evolve its web
API and JavaScript support. There is generally no option for the user to (easily) remain on an older version.
This allows these browsers to more quickly realize new web specifications, and ensure the entire user base is
current. The whole ecosystem wins.

 Currently, Chrome , Firefox , Safari , Opera , Internet Explorer 10+ , and Microsoft Edge are considered to be
evergreen browsers. This concept is quite popular and accounts for the majority of browsers available today.
The model of tying a browser version to a specific set of operating system versions or “service packs” mostly
died with Internet Explorer 9 and Windows Vista. Microsoft’s newest redesigned browser, known as Microsoft
Edge, is more like the other traditional evergreen browsers in the sense that the version number will be less

CHAPTER 3 ■ UNDERSTANDING THE WEB API AND “VANILLA” JAVASCRIPT

22

prominent compared to earlier Microsoft-created offerings. As evergreen browsers take over the web, we can
expect to take advantage of the rapidly evolving specifications, security improvements, and bug fixes faster than
ever before. In this world, the need for a library to fill in the browser’s gaps becomes much less important.

 Mobile Browsers
 Desktop browsers still account for the majority of web traffic, at least in the United States. However, current
measurements show that mobile browser use is rising while desktop traffic is falling. As of June 2016,
mobile/tablet devices account for about 42% of web traffic, 2 with the remainder mostly attributable to
desktop browsers. The steady rise in mobile device use, along with a consistent (and important) mantra
of “mobile first”, 3 reveal that mobile browsers are just as big a part of the future of the web as evergreen
browsers. The mobile web is still arguably in its infancy, but it cannot and should not be ignored.

 In some respects, many mobile browsers are very much evergreen browsers as well, due to the fact that
a portion of them are automatically updated without user intervention. Just as on the desktop, this behavior
allows mobile browsing to evolve rapidly and ensures that users are always equipped with the most up-to-
date version of their browser of choice. But the benefits of an automatically updating browser have historically
been tied to the capabilities of the physical device. For example, old phones running Android 2.x are likely not
able to handle a 4.x version, cutting them off from the latest versions of mobile Chrome . The same problem
exists on other mobile platforms, such as on older Apple devices stuck on outdated builds of iOS.

 The mobile landscape is largely dominated by Apple’s iPhone and iPad running iOS and a multitude of
other devices running Google’s Android operating system . Though Microsoft is beginning to make a small
impression with their Windows Phone operating system. 4 Research in Motion’s Blackberry OS is, for the
purposes of this book (and most other contexts), irrelevant due to its small and declining share of mobile
web traffic. Regardless of the mobile device, keep in mind that the code and techniques used to replace
jQuery in this book will apply equally to all modern/evergreen browsers, so the distinction between mobile
and desktop is not particularly important in this context, other than for performance considerations.

 Even with the rising ubiquitousness of the mobile web, the current situation is not all roses and
sunshine. Mobile browsers present unique challenges. Profile and battery considerations make performance
consequences of our code more noticeable, compared to desktop systems. Mobile browsers in particular
are a bit less mature than their larger form-factor counterparts. Along with this immaturity comes more
inconsistency in specification support between the various browsers. This is often more noticeable when
comparing a mobile browser to its desktop counterpart. Chrome and Safari are two examples of browsers
that have a presence both on mobile and desktop devices. While these browsers may share the same name
across multiple platforms, their goals vary, leading to differing experiences.

 In some cases, due to very mobile-unique concerns, such as data use, common portions of web
specifications behave differently. Take the autoplay Boolean attribute on the HTML5 <video > element as
an example, which will ensure the associated video begins playing immediately after loading. 5 Desktop
browsers all support this standard feature, but support on the mobile side is a bit different. Safari running
on iOS does not observe this attribute to ensure that auto-playing videos do not adversely affect a user’s
limited (and relatively expensive) mobile data consumption. 6 There are other similar examples where the
unique environment of a mobile browser may result in unexpected implementation gaps. This reality must
be considered when writing “mobile first” libraries and applications.

 2 http://gs.statcounter.com/#all-comparison-ww-monthly-201404-201606
 3 http://stratechery.com/2015/mobile-first/
 4 www.gartner.com/newsroom/id/2944819
 5 www.w3.org/TR/html5/embedded-content-0.html#attr-media-autoplay
 6 https://developer.apple.com/library/safari/documentation/AudioVideo/Conceptual/Using_HTML5_
Audio_Video/Device-SpecificConsiderations/Device-SpecificConsiderations.html

http://gs.statcounter.com/#all-comparison-ww-monthly-201404-201606
http://stratechery.com/2015/mobile-first/
http://www.gartner.com/newsroom/id/2944819
http://www.w3.org/TR/html5/embedded-content-0.html#attr-media-autoplay
https://developer.apple.com/library/safari/documentation/AudioVideo/Conceptual/Using_HTML5_Audio_Video/Device-SpecificConsiderations/Device-SpecificConsiderations.html
https://developer.apple.com/library/safari/documentation/AudioVideo/Conceptual/Using_HTML5_Audio_Video/Device-SpecificConsiderations/Device-SpecificConsiderations.html

CHAPTER 3 ■ UNDERSTANDING THE WEB API AND “VANILLA” JAVASCRIPT

23

 Non-browsers
 This section may seem a bit out of place, but to be complete I figured it is important to at least touch on
another environment where JavaScript is thriving. Full stack software development with JavaScript on
both ends is possible due to the existence of Node.js—a server-side runtime that uses Chrome’s JavaScript
engine. 7 Server-side JavaScript development does not include any type of web API, for obvious reasons. So,
although the web-based discussions presented throughout this book (and there are many) do not apply to
the Node.js world, many of the pure JavaScript areas do transcend the browser.

 If you’re not quite sure about the differences between browser-specific JavaScript and JavaScript that is
codified in the language specification (and useable outside of the browser), this will be discussed a bit more
later on when I compare, contrast, and define the web API and the language of JavaScript. The important
takeaway here is simply to understand that some of this book’s content will in fact apply to server-based
JavaScript development. And for the most part, JavaScript on the server provides you with relatively up-to-
date support for the language specification, which means that most non-browser-specific examples in this
book will be usable on the server as well.

 What Is This Web API and Why Is It Important?
 I have been referring to the web API throughout the book and will continue to do so. But the term web API is
not a standard or even a common term, so a bit of explanation is warranted to clear up any potential ambiguity.
Simply put, the web API refers to all the JavaScript methods and objects that specifically allow developers to
programmatically address and manipulate the browser. This generalized browser API is made up of two distinct
parts: one is the Document Object Model (DOM) API, which is a set of methods and properties attached to
HTML document nodes, and the second is a collection of other methods and functions available only in the
browser environment but not directly related to HTML. If these terse definitions are still a bit murky, no need to
worry. I promise to explain the DOM and the non-DOM APIs in much more detail later on in this section.

 I hope by now you are a bit more comfortable with the term web API and how it relates to the browser.
But one question still remains: why should you care? Aside from the fact that it is a key property of the
majority of the chapters and concepts in this book, it is also the most important tool available to web
developers. The web API provides everything necessary to create an exceptionally customized and dynamic
experience for end users and even other developers. It is constantly and rapidly evolving, such that the web
is destined to ultimately replace installed applications. As a professional developer, your understanding of
the web API (or lack thereof) will have a substantial effect on your ability to efficiently design and develop
rich complex web applications and libraries. This book’s goal is to inculcate this reality and teach you how
to not only make good use of the web API in lieu of jQuery, and also to gain a better understanding of the
browser environment so that you can more effectively use libraries that wrap this native API if you so choose.

 The DOM API
 The DOM is a set of methods and objects used to represent an HTML document. These representations
are often (but not exclusively) expressed using the most common language of the web: JavaScript. The
DOM provides JavaScript objects that mirror elements in a document. It allows elements to be created,
located, manipulated, and described. This language binding exposes a host of potential control points
among all HTML elements. For example, the DOM API defines a className property on the the DOM’s
 Element interface. This specific property allows for programmatic reading and changing of any element’s
CSS class attribute. All other HMTL elements, such as anchors (HTMLAnchorElement), <div> elements
(HTMLDivElement), and elements (HTMLSpanElement), inherit from the Element interface and
therefore also include the className property in their JavaScript object representations.

 7 https://code.google.com/p/v8/

https://code.google.com/p/v8/

CHAPTER 3 ■ UNDERSTANDING THE WEB API AND “VANILLA” JAVASCRIPT

24

 The element hierarchy exposed in the previous className example is an important one to understand.
Common properties and methods available on specific elements are often inherited from a more common
element type. The EventTarget type is at the top of the chain, with all other representations of HTML nodes
inheriting from this. The EventTarget type defines methods to register event handlers, which all other
HTML items inherit. A Node is a sub-type of EventTarget that all other elements inherit from as well. This
 Node interface provides methods to clone HTML items and locate sibling nodes, among other behaviors.
Sub-types of Node include Element and CharacterData. Element objects are, as you might expect, all nodes
that can be expressed with standardized HTML tags, such as <div> and . CharacterData items are
either text or comments in a document.

 In addition to per-element control, the document as a whole may also be manipulated using JavaScript.
In fact, there is a particular representation of a document, aptly named the Document interface. A Document
object inherits from Node (which, if you remember, inherits from the base type— EventTarget). Documents
contain properties that, for example, allow all style sheets associated with the markup to be examined.
A number of important methods are available as well, such as one that facilitates creation of new HTML
elements. Note that nothing inherits from Document . All properties and methods on the browser’s document
object can also be considered part of the DOM specification, for the purposes of discussion in this book.
Figure 3-1 shows the DOM element hierarchy.

 Figure 3-1. DOM element hierarchy

CHAPTER 3 ■ UNDERSTANDING THE WEB API AND “VANILLA” JAVASCRIPT

25

 All of these types, behaviors, properties, methods, and relationships are part of a standard - the DOM
specification. 8 This standard was first created in 1998 by the World Wide Web Consortium (W3C) as DOM
Level 1. 9 There have traditionally been two specific standards paths that deal with the DOM: DOM Core and
DOM HTML. DOM Core, as the spec summary points out, is “a platform- and language-neutral interface
that allows programs and scripts to dynamically access and update the content, structure, and style of
documents.” At the time of writing, the latest such standard (which became a recommendation in late 2004)
is DOM Level 3 Core, 10 which defines new properties on elements, such as the textContent property that
can be used to read or set the text of a node.

 The DOM HTML specification summary sounds similar to DOM Core but is actually a bit different.
It claims that the spec is “a platform- and language-neutral interface that allows programs and scripts
to dynamically access and update the content and structure of HTML 4.01 and XHTML 1.0 documents ”
(emphasis added by me). In other words, the DOM Core specification defines, as you might expect, core
functionality that is common to all documents, and the DOM HTML specification extends this core
specification a bit and provides a more HTML-specific API. The DOM HTML spec defines common properties
of elements, such as id , className , and title . At the writing of this book, the latest DOM HTML standard is
DOM Level 2 HTML, which became a recommendation in late 2003. 11

 There are other related standards, such as the Selectors API 12 which covers, as you might expect,
selecting elements. For example, the querySelector and querySelectorAll methods are defined on both
the Document and the Element interfaces to allow selection of elements in a document using CSS selector
strings defined in the Selectors specification (currently at Level 4. 13 Another related specification is the UI
Events specification, 14 which defines native DOM events such as mouse and keyboard events. The DOM4
specification attempts to aggregate all of these standards and more. 15

 Then there is the most widely known standard, HTML5, which became a recommendation in late 2014. 16
It is one of the latest DOM specifications and carries forward the goals of DOM4 along with a host of other
non-DOM-related specifications (which I touch on in the next section). In the context of the DOM, HTML5
defines new elements (such as <section> , <footer> , and <header>), new attributes (such as placeholder
and required), and new element methods and properties (such as naturalWidth and naturalHeight
properties of image elements). This is, of course, a very small list of changes. The W3C maintains a document
that describes, in quite a bit of detail, the changes brought on by HTML5. 17 Currently, the latest in-progress
specification is HTML 5.2, also curated by the World Wide Web Consortium. HTML 5.1 and 5.2 bring some
even newer elements to the DOM. The most notable of these new elements is <picture>, 18 which allows
multiple image sources to be specified alongside cues to the browser that indicate which image to load.
Picture sources can be tied to browser window size or pixel density, for example.

 In short, the DOM API s provide a way to read, update, traverse, and create document elements using
JavaScript. The elements themselves and their properties are also defined by this family of specifications.
The real power in the web is, in part, defined by the DOM APIs. Without it, dynamic web applications would
simply not exist in their current form. The only option would be, perhaps, embedded Flash or Java
applets—two technologies that are quickly becoming obsolete due to the power of the modern DOM API.
And let’s be clear about another thing: jQuery is built on top of the DOM API . Without the DOM API, jQuery
would not exist either. jQuery is mostly a wrapper around the DOM API, providing a level of abstraction.
A large portion of Beyond jQuery is dedicated to using the DOM APIs with and without the aid of jQuery.

 8 www.w3.org/DOM/DOMTR
 9 www.w3.org/TR/1998/REC-DOM-Level-1-19981001/
 10 www.w3.org/TR/DOM-Level-3-Core/
 11 www.w3.org/TR/DOM-Level-2-HTML/
 12 http://dev.w3.org/2006/webapi/selectors-api2/
 13 http://dev.w3.org/csswg/selectors-4/
 14 https://dvcs.w3.org/hg/dom3events/raw-file/tip/html/DOM3-Events.html
 15 www.w3.org/TR/domcore/
 16 www.w3.org/TR/html5/
 17 www.w3.org/TR/html5-diff/
 18 www.w3.org/html/wg/drafts/html/master/semantics.html#the-picture-element

http://www.w3.org/DOM/DOMTR
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/
http://www.w3.org/TR/DOM-Level-3-Core/
http://www.w3.org/TR/DOM-Level-2-HTML/
http://dev.w3.org/2006/webapi/selectors-api2/
http://dev.w3.org/csswg/selectors-4/
https://dvcs.w3.org/hg/dom3events/raw-file/tip/html/DOM3-Events.html
http://www.w3.org/TR/domcore/
http://www.w3.org/TR/html5/
http://www.w3.org/TR/html5-diff/
http://www.w3.org/html/wg/drafts/html/master/semantics.html#the-picture-element

CHAPTER 3 ■ UNDERSTANDING THE WEB API AND “VANILLA” JAVASCRIPT

26

 Everything Else (non-DOM)
 In addition to the DOM API(s), there is another set of APIs specific to the browser that makes up all properties
attached to the browser’s window object. A browser “window” contains an HTML document and the document
object (which is defined by the DOM API). This window can be programmatically accessed through the JavaScript
 window object—a global variable. Although the DOM API defines everything attached to the document object,
everything else attached to the window object is defined by a large number of other specifications. For example,
the File API, 19 which defines a set of methods and properties use to read, write, and identify files in the browser, is
represented by two interfaces: Blob and File . Both interface definitions are available on the window object.

 Another well-known API specification with bindings to the Window interface is XMLHttpRequest , 20 which
defines a set of methods and properties used to communicate with a server asynchronously over HTTP. And
in addition to new DOM API features, the HTML5 standard defines a large swath of the properties attached
to window . One example is the History interface, 21 which provides programmatic access to the browser’s
history. This is exposed as a history object on window . Yet another example is the Storage interface, 22 which
includes representations on window as sessionStorage and localStorage for managing temporary storage
of small amounts of data in the browser.

 Though the HTML 5.1 specification, discussed in the previous section on the DOM, also plays a part in the
evolution of the non-DOM APIs, it does so to a much lesser extent than the HTML5 standard. The most notable
non-DOM reference in the current version of W3C’s HTML 5.1 specification is the fetch API, 23 which was
actually drafted by a different standards group: WHATWG. And this brings us to a short discussion regarding
this relatively new phenomenon: competing web standards. On one side, we have the W3C, which has been
crafting standards for the web since 1994. 24 It is lead by Tim Berners-Lee, the inventor of the Web. The origins
of the web specifications we all use and love today were formally standardized by the W3C. Ten years after the
W3C came along, the Web Hypertext Application Technology Working Group (WHATWG) was formed.

 The WHATWG promotes a “Living Standard,” one that is not tied to version numbers or “levels.” For example,
instead of an HTML5, or an HTML 5.1 spec, they simply have an HTML spec that is updated over time. The
group has drafted some original new standards themselves, such as the previously referenced Fetch API, along
with the Notifications API, 25 which enables web applications to display notifications to the user. According to
the FAQ page, the group was created out of frustration with “the W3C’s direction with XHTML, lack of interest in
HTML and apparent disregard for the needs of real-world authors”. 26 The WHATWG does appear to be a healthy
counterbalance to the W3C, apparently promoting faster evolution of the web, which is of course a good thing.

 JavaScript: A Less Elegant Version of jQuery?
 A common reason to pull in jQuery is to make up for perceived shortcomings in the underlying language
itself—JavaScript. This is one of the most frivolous excuses. It’s a bit much to pull in a third-party
dependency like jQuery simply for a marginally better way to loop over object properties and array elements.
In fact, this is completely unnecessary with the existence of forEach and Object.keys() , both of which are
available in modern browsers. Or perhaps you think $.inArray() is an important utility function to have at
your disposal. The truth is, since Internet Explorer 9—where Array.prototype.indexOf was made available
as part of the language—the most elegant solution is to make use of “vanilla” JavaScript instead. There are, of
course, many more examples which will become apparent throughout this book.

 19 www.w3.org/TR/FileAPI/
 20 https://xhr.spec.whatwg.org/
 21 www.w3.org/TR/html5/browsers.html#the-history-interface
 22 www.w3.org/TR/html5/browsers.html#the-history-interface
 23 https://fetch.spec.whatwg.org
 24 www.w3.org/Consortium/facts#history
 25 https://notifications.spec.whatwg.org
 26 https://wiki.whatwg.org/wiki/FAQ#What_is_the_WHATWG.3F

http://www.w3.org/TR/FileAPI/
https://xhr.spec.whatwg.org/
http://www.w3.org/TR/html5/browsers.html#the-history-interface
http://www.w3.org/TR/html5/browsers.html#the-history-interface
https://fetch.spec.whatwg.org/
http://www.w3.org/Consortium/facts#history
https://notifications.spec.whatwg.org/
https://wiki.whatwg.org/wiki/FAQ#What_is_the_WHATWG.3F

CHAPTER 3 ■ UNDERSTANDING THE WEB API AND “VANILLA” JAVASCRIPT

27

 Among front-end developers, especially those with limited knowledge of web development, there is often
thought to be two possible options in terms of “languages” to utilize when coding your client-side application:
jQuery or JavaScript. The flaw in this set of options is obvious to seasoned web developers. Only one of these two
“languages” is actually a language . JavaScript is, in fact, a standardized language, whereas jQuery simply provides
a collection of utility methods that aim to make solving common problems with JavaScript easier and more
elegant across a wide range of browsers. jQuery is nothing more than a collection of web API wrapper methods.

 JavaScript is both ubiquitous and unavoidable when developing web applications, and with the advent of
Node.js, JavaScript is now a viable option on the server as well. In the following sections, I explain the significance
of JavaScript, as a language, in the context of web development. Beyond jQuery does not have an explicit goal to
dive deep into language syntax and core concepts such as inheritance and scope, though these forms of language
details may appear at times throughout the book if there is a clear tie-in to the layer of abstraction offered by
jQuery. Instead, you will gain an understanding of JavaScript’s connection to the web API. The history and
standardization of the language will be explored as well, similar to our previous discussion of the web API.

 ■ Note Actually, JavaScript is technically avoidable, especially since the advent of WebAssembly, but
that standard is in its infancy. If you are writing in a non-traditional front-end language that compiles to
WebAssembly, assuming WebAssembly is solid (which is currently not the case), then you are probably safe
from JavaScript. But short of that, it is still quite important and unavoidable.

 The Language vs. the Web API
 JavaScript is an integral component of the web API. Take the DOM, for example. While the browser DOM is usually
 implemented in C or C++ and packaged as a layout engine (such as Safari’s WebKit and Chrome’s Blink), the DOM
is most commonly manipulated using JavaScript. For example, consider working with DOM element attributes
for a moment. To do this, there are three attribute-related methods described in DOM Level 1: getAttribute , 27
 setAttribute , 28 and removeAttribute . 29 Additionally, DOM Level 2 provides hasAttribute). 30 All four of these
methods are defined in the Element interface, which has a corresponding (and commonly known) implementation
in JavaScript. Given any HTML element, you can read and manipulate its attributes in JavaScript just as they are
defined in these specifications. Chapter 5 will include much more detail on the topic of attributes.

 In addition to the DOM, JavaScript is also used when interacting with portions of the web API that are not
tied to the DOM, such as the Web Messaging API, 31 which is part of the W3C’s HTML5 specification. The Web
Messaging API provides a way for different browsing contexts to communicate with each other via message
passing. This opens up an easy way for two iframe s on differing domains to communicate, or even communication
between the browser’s main UI thread and a Web Worker threads. 32 This specification defines a MessageEvent
interface, 33 which allows a client to listen for passed messages. In JavaScript, this event object is implemented in all
modern browsers and allows developers to listen for messages using the addEventListener method available on
the window , document , and element objects. These objects get this method from the EventTarget interface, which
you may remember from earlier in this chapter, is the top-level interface from which many other native browser
objects inherit from. I will go into much more detail regarding event handling in Chapter 9 . The Web Messaging
API will be covered in a bit more detail as part of Chapter 8 .

 27 www.w3.org/TR/REC-DOM-Level-1/level-one-core.html#method-getAttribute
 28 www.w3.org/TR/REC-DOM-Level-1/level-one-core.html#method-setAttribute
 29 www.w3.org/TR/REC-DOM-Level-1/level-one-core.html#method-removeAttribute
 30 www.w3.org/TR/DOM-Level-2-Core/core.html#ID-ElHasAttr
 31 www.w3.org/TR/DOM-Level-2-Core/core.html#ID-ElHasAttr
 32 www.w3.org/TR/workers/
 33 www.w3.org/TR/webmessaging/#the-messageevent-interfaces

http://dx.doi.org/10.1007/978-1-4842-2235-5_5
http://dx.doi.org/10.1007/978-1-4842-2235-5_9
http://dx.doi.org/10.1007/978-1-4842-2235-5_8
http://www.w3.org/TR/REC-DOM-Level-1/level-one-core.html#method-getAttribute
http://www.w3.org/TR/REC-DOM-Level-1/level-one-core.html#method-setAttribute
http://www.w3.org/TR/REC-DOM-Level-1/level-one-core.html#method-removeAttribute
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-ElHasAttr
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-ElHasAttr
http://www.w3.org/TR/workers/
http://www.w3.org/TR/webmessaging/#the-messageevent-interfaces

CHAPTER 3 ■ UNDERSTANDING THE WEB API AND “VANILLA” JAVASCRIPT

28

 Although JavaScript is key to working with native browser-specific APIs, as a language it is not to be
confused with the web specifications themselves. JavaScript is used to interface with implementations of
these web specifications in the browser, but the language itself has its own specification: ECMAScript, 34
which I will discuss a bit more in the next section. Note that it is not tied to the Web, though it is
implemented in all web browsers. The web API, in some ways, builds on the foundation provided by the
JavaScript API. Array s, 35 Object s, 36 Function s, 37 and primitives such as Booleans and strings 38 are all defined
in the JavaScript spec and available in the browser (among other environments). And these core elements of
the ECMAScript specification are further defined to have additional properties. For example, Array s contain
a method to retrieve the index of a specific item, implemented as indexOf . 39 And the Function interface
contains apply 40 or call 41 methods that make it easy to invoke a function with an alternate context (value of
 this) 42 as well as pass arguments. Chapter 12 includes a great amount of detail relating to JavaScript-specific
utility functions, comparing them to jQuery’s higher-level wrapper methods.

 History and Standardization
 The story of JavaScript starts with Brendan Eich, who, as an employee of Netscape in 1995, developed the
first working version of the language in ten days. A scripting language to run inside Netscape Navigator was
to be created, and it was ordered to be “like Java.” Eich was appointed to undertake this vision and make it a
reality. The result was a mix of C, Self, 43 and Scheme, 44 with a hint of Java. 45 More details of the incarnation of
JavaScript can be found in Brendan Eich’s blog. 46

 Before a formal standardization process was created, JavaScript was, for all intents and purposes,
a proprietary language only used by Netscape in its flagship browser. But shortly after implementing
the language in Netscape Navigator, Microsoft created its own implementation, JScript, which was first
introduced in Internet Explorer 3. Similar in name, JScript was mostly identical to Netscape’s JavaScript .
The name was chosen by Microsoft to avoid any potential trademark disputes by the owner of the Java
trademark, 47 which was Sun Microsystems at the time.

 Very shortly after the arrival of JScript, a formal language specification was drafted and later adopted.
But the lack of standardization, even for a relatively short amount of time, had taken a noticeable toll
on the web. In late 1996, Netscape approached the European Computer Manufacturer’s Association
(ECMA) to create a formal language specification. This was, in part, prompted by the divergence between
implementations of the language between Netscape Navigator and Microsoft Internet Explorer 3. The first
spec was completed in June 1997 under the name ECMA-262, also known as ECMAScript . The specification
is currently curated by ECMA Technical Committee 39, also known as TC39 , a group of individuals entrusted
to evolve and maintain the language. 48 Members of TC39 include heavy-hitters such as Douglas Crockford,
Brendan Eich, and Yehuda Katz (who is also a member of the jQuery Foundation).

 34 www.ecmascript.org
 35 www.ecma-international.org/ecma-262/5.1/#sec-15.4
 36 www.ecma-international.org/ecma-262/5.1/#sec-15.2
 37 www.ecma-international.org/ecma-262/5.1/#sec-15.3
 38 www.ecma-international.org/ecma-262/5.1/#sec-4.3.2
 39 www.ecma-international.org/ecma-262/5.1/#sec-15.4.4.14
 40 www.ecma-international.org/ecma-262/5.1/#sec-15.3.4.3
 41 www.ecma-international.org/ecma-262/5.1/#sec-15.3.4.4
 42 www.ecma-international.org/ecma-262/5.1/#sec-10.3
 43 http://handbook.selflanguage.org/4.5/intro.html
 44 www.scheme.com/tspl4/intro.html
 45 www.oracle.com/technetwork/topics/newtojava/downloads/index.html
 46 https://brendaneich.com/2008/04/popularity/
 47 http://yuiblog.com/blog/2007/01/24/video-crockford-tjpl/
 48 www.ecma-international.org/memento/TC39.htm

http://dx.doi.org/10.1007/978-1-4842-2235-5_12
http://www.ecmascript.org/
http://www.ecma-international.org/ecma-262/5.1/#sec-15.4
http://www.ecma-international.org/ecma-262/5.1/#sec-15.2
http://www.ecma-international.org/ecma-262/5.1/#sec-15.3
http://www.ecma-international.org/ecma-262/5.1/#sec-4.3.2
http://www.ecma-international.org/ecma-262/5.1/#sec-15.4.4.14
http://www.ecma-international.org/ecma-262/5.1/#sec-15.3.4.3
http://www.ecma-international.org/ecma-262/5.1/#sec-15.3.4.4
http://www.ecma-international.org/ecma-262/5.1/#sec-10.3
http://handbook.selflanguage.org/4.5/intro.html
http://www.scheme.com/tspl4/intro.html
http://www.oracle.com/technetwork/topics/newtojava/downloads/index.html
https://brendaneich.com/2008/04/popularity/
http://yuiblog.com/blog/2007/01/24/video-crockford-tjpl/
http://www.ecma-international.org/memento/TC39.htm

CHAPTER 3 ■ UNDERSTANDING THE WEB API AND “VANILLA” JAVASCRIPT

29

 The first version of the ECMAScript language specification was released in 1997, titled
“ECMAScript- 262, 1st Edition.” At the time of writing, the 7th edition was just completed. Although releases
of new specifications were inconsistent throughout the life of the language, as of the 6th edition, the concept
of an annual release of updated specifications seems to be gaining momentum. Lending some credence to
this goal, the 6th edition of the spec is also titled “ECMAScript 2015,” the 7th is titled “ECMAScript 2016”,
with the assumption that the 8th edition will be “ECMAScript 2017,” and so forth. A set of “harmony”
specification(s) has also been a point of discussion, and the crux of this nomenclature seems to be related to
the general order of the spec. Version 4 and earlier were not harmonious, while version 5 and on are , earning
this period of the specification the name “harmony.” It should be noted that version 4 of the specification
was never actually completed. Instead, it was rolled into ECMAScript 5. Harmony, 49 in this context, may refer
to the goals and requirements, such as “Be a better language for writing,” and “Keep the language pleasant
for casual developers.” Another goal of the harmony movement of the language specification is to “build
on ES5 strict mode to avoid too many modes.” In other words, simplification and usability bring harmony
to the language. At the time of writing, browser support of ECMAScript 3 includes all browsers in existence.
ECMAScript 5 support is covered entirely by all “modern” browsers. ECMAScript 2015 has decent support
across most current versions of all browsers at this time. ECMAScript 2016 support is spotty at the moment,
but that of course will improve over time.

 49 http://wiki.ecmascript.org/doku.php?id=harmony%3Aharmony

http://wiki.ecmascript.org/doku.php?id=harmony:harmony

31© Ray Nicholus 2016
R. Nicholus, Beyond jQuery, DOI 10.1007/978-1-4842-2235-5_4

 CHAPTER 4

 Finding HTML Elements

 How many times have you come across a project that uses jQuery simply to perform seemingly trivial
element selection? How many times have you written $('#myElement') or $('.myElement') ? If you have
depended on jQuery for most (or all) of your projects, you may not be aware of the fact that you don’t need
jQuery to select elements! This task is fairly straightforward with the help of the plain ‘ole boring web API.
Much like jQuery, there are abundant examples (such as this book) that demonstrate how to properly
harness the power of the browser to swiftly select any and all elements in your document. None of this is
a well-kept secret, but the pervasiveness of jQuery has lead many to believe that the only sane way to find
elements is with the help of the almighty dollar sign. Nothing could be further from the truth, and all of this
will become clear as you read on.

 All the methods described here to select elements are supported in all modern browsers. In fact, many
are supported in ancient browsers as well. In other words, unless you are supporting an aging legacy web
application, even the most complex native solutions for selecting elements are available to you without the
help of any library. And for those old applications still tied to browsers of the past? You can easily replicate
any of the missing native methods with a few lines of code. In fact, I’ll provide some simple and intuitive
solutions to help you fill in important gaps in ancient browsers.

 Although jQuery does admittedly save you some keystrokes, you will sacrifice performance. That type
of higher-level abstraction is understandably slower than relying directly on native APIs. So what if you
want the convenience of jQuery without the sheer size of the dependency and the potential for hidden
performance issues? Simple, create your own very thin wrapper around the web API to save you some
keystrokes. I’ll explore this possibility with some example code before we close out this chapter.

 Core Element Selectors
 In this first section on the topic of finding HTML elements in a document, I discuss selecting elements by
using some of the more traditional element properties, such as ID, class, and tag name. Here, I compare
element selection in jQuery with “vanilla” JavaScript through examples that interface directly with the DOM
by making use of the functionality codified in various web API specifications. After completing this section,
you will have the necessary confidence and understanding to select elements in the DOM using the most
common methods—without relying on jQuery at all.

CHAPTER 4 ■ FINDING HTML ELEMENTS

32

 IDs
 The W3C HTML4 specification 1 defines the id attribute as one that must be unique among all IDs defined
inside of a document. This part of the specification goes on to describe its primary uses, 2 such as element
selection and navigation to other sections of a page using anchor links. The DOM Level 1 specification defines
the HTMLElement interface, 3 from which all other elements inherit from. The id property is defined in this
interface, which is directly connected to the id attribute defined on the corresponding element in the markup.

 For example, consider the following markup:

 1 < div id="my-element-id"></ div >

 The <div> element’s id attribute is also accessible via the JavaScript representation of the element. This
is exposed by the element object’s id property:

 1 // `theDiv` is the <div> from our sample HMTL above
 2 theDiv.id === 'my-element-id'; // returns true

 jQuery
 In jQuery-land, obtaining a handle on the <div> element object looks something like Listing 4-1 .

 Listing 4-1. Select by ID: jQuery

 1 // returns a jQuery object with 1 element -
 2 // the <div> from our sample HMTL above
 3 var result = $('#my-element-id');
 4
 5 // assuming our element has been found in the document
 6 result.is('#my-element-id'); // returns true

 In the jQuery example, we are using the ID selector string, which was first defined in the W3C CSS1
specification. 4 The jQuery object returned by this selection attempt is a pseudo-array (which Chapter 12
discusses in more detail). This pseudo-array contains the HTMLElement object representation of this element
in the document.

 Web API
 Selecting the same exact element without the help of jQuery is surprisingly easy, and in fact the code to
achieve this looks surprisingly similar. There are two different ways to select an element by ID using the web
API. The first such method involves using the getElementById method defined on the Document interface,
first formalized in the DOM Level 2 Core specification. 5 This method is supported in all browsers in existence
(first implemented in Internet Explorer 5.5):

 1 // returns the matching HTMLElement - the <div> from our sample
 2 var result = document.getElementById('my-element-id');
 3

 1 www.w3.org/TR/REC-html40/cover.html
 2 www.w3.org/TR/REC-html40/struct/global.html#adef-id
 3 www.w3.org/TR/REC-DOM-Level-1/level-one-html.html#ID-58190037
 4 www.w3.org/TR/REC-CSS1/#id-as-selector
 5 www.w3.org/TR/DOM-Level-2-Core/core.html#ID-getElBId

http://dx.doi.org/10.1007/978-1-4842-2235-5_12
http://www.w3.org/TR/REC-html40/cover.html
http://www.w3.org/TR/REC-html40/struct/global.html#adef-id
http://www.w3.org/TR/REC-DOM-Level-1/level-one-html.html#ID-58190037
http://www.w3.org/TR/REC-CSS1/#id-as-selector
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-getElBId

CHAPTER 4 ■ FINDING HTML ELEMENTS

33

 4 // assuming our element has been found in the document
 5 result.id === 'my-element-id'; // returns true

 A second approach makes use of the querySelector method, which was first defined on both the
Document and Element interfaces in the W3C Selectors API Level 1 specification. 6 Remember that the
 HTMLElement interface, on which the id attribute is defined, inherits from the Element interface, so
 Element s have an id property as well. The querySelector method is available in all modern browsers, as
well as Internet Explorer 8. In Listing 4-2 , you will start to notice some stark similarities between the native
approach and the jQuery shortcut.

 Listing 4-2. Select by ID: Web API, Modern Browsers and Internet Explorer 8

 1 // returns the matching HTMLElement - the <div> from our sample
 2 var result = document.querySelector('#my-element-id');
 3
 4 // assuming our element has been found in the document
 5 result.id === 'my-element-id'; // returns true

 ■ Performance Note querySelector is a bit slower than getElementById , 7 but this performance gap is
closing as browser JavaScript engines evolve.

 Classes
 Contrary to the focus of IDs, class attributes do not uniquely identify an element in a document. Instead,
classes are traditionally used to semantically group elements in the context of an application as a whole.
While IDs can certainly be used to style elements via CSS, this role is most often tied to class attributes.
Elements may also be assigned multiple class names, while they are limited to one ID (for obvious reasons).
The HTML 4.01 specification goes into more detail regarding the role of class attributes. 8 Chapter 5 discusses
working with element attributes in much more detail.

 Generally speaking, a valid CSS class is case-insensitive, can only contain alphanumeric characters or
hyphen or underscore, and may not start with a digit or two hyphens or a hyphen and a digit. These rules
also apply to IDs, along with other element properties used to target elements via CSS. You can read about
all of the allowed values in CSS selectors in the CSS 2.1 specification. 9

 For example, consider the following markup:

 1 < span class="some-class"></ span >

 The span element’s class attribute is also accessible via the JavaScript representation of the element on
the object’s className property. Notice the inconsistency here—the attribute name is class , whereas the
corresponding Element property is className . This is due to the fact that class is a reserved word in many
languages, such as JavaScript (even as late as the ECMAScript 5.1 edition specification), 10 which is why an
alternate name exists in the JavaScript representation of an element. For example:

 1 // `elementObject` is the in our sample markup above
 2 elementObject.className === 'some-class'; // returns true

 6 www.w3.org/TR/selectors-api/#queryselector
 7 http://jsperf.com/getelementbyid-vs-queryselector/11
 8 www.w3.org/TR/html401/struct/global.html#adef-class
 9 www.w3.org/TR/CSS21/syndata.html#characters
 10 www.ecma-international.org/ecma-262/5.1/#sec-7.6.1.2

http://dx.doi.org/10.1007/978-1-4842-2235-5_5
http://www.w3.org/TR/selectors-api/#queryselector
http://jsperf.com/getelementbyid-vs-queryselector/11
http://www.w3.org/TR/html401/struct/global.html#adef-class
http://www.w3.org/TR/CSS21/syndata.html#characters
http://www.ecma-international.org/ecma-262/5.1/#sec-7.6.1.2

CHAPTER 4 ■ FINDING HTML ELEMENTS

34

 jQuery
 Selecting an element by class in jQuery looks very similar to the approach used to select an ID. In fact, all
element selection in jQuery follows the same pattern:

 1 // Returns a jQuery object with 0 elements (element not found)
 2 // or all elements with the 'some-class' class attribute.
 3 var result = $('.some-class');
 4
 5 // assuming our element has been found in the document
 6 result.is('.some-class'); // returns true

 If there happen to be three different elements in the document with a class name of some-class , the
 result jQuery object will have three entries, one for each match.

 Web API
 As with IDs, there are several different way to select elements by class name using the web API. I will
demonstrate two of them—both available in modern browsers as well as Internet Explorer 8 (the last
example). Listing 4-3 is the most performant, but Listing 4-4 is clearly the most elegant.

 Listing 4-3. Select by Class: Web API, Modern Browsers

 1 // Returns an HTMLCollection containing all matching elements,
 2 // which is empty if there are no matches.
 3 var result = anyElement.getElementsByClassName('some-class');
 4
 5 // assuming our element has been found in the document
 6 result[0].className === 'some-class'; // returns true

 The first noticeable difference between getElementById and getElementsByClassName is the fact
that the latter returns an array-like object containing all matching elements, instead of a single element.
Remember, a document can contain many elements that share the same class name. You may also notice
another difference, one which may not be particularly obvious in the simple example provided. The
 getElementsByClassName method is available on the Document interface, just like getElementById . However,
it is also defined to be a method on the Element interface in the W3C DOM4 specification. 11 This means
that you may restrict your query to a specific subset of elements when looking for class name matches by
specifying an element in the document. When executed on a specific element, only descendant elements are
examined for matches. This allows for more focused and efficient DOM traversal.

 The getElementsByClassName method’s return value is an HTMLCollection, which is a pseudo-array,
and it provides sequentially ordered numeric properties (0, 1, 2, . . .), one for each matching element, along
with a length property and some other methods (of limited usefulness). The most notable attribute of
an HTMLCollection is the fact that it is a live collection. That is, it is updated automatically to match the
underlying elements in the DOM that it represents. For example, if an element contained in the returned
 HTMLCollection is removed from the DOM, it will also be removed from any HTMLCollection in scope.
Note that getElementsByClassName is defined in the W3C DOM4 specification.

 A second approach, shown in Listing 4-4 , to selecting elements by class name involves a cousin to the
previously demonstrated querySelector .

 11 www.w3.org/TR/2015/WD-dom-20150428/#dom-document-getelementsbyclassname

http://www.w3.org/TR/2015/WD-dom-20150428/#dom-document-getelementsbyclassname

CHAPTER 4 ■ FINDING HTML ELEMENTS

35

 Listing 4-4. Select by Class: Web API, Modern Browsers and Internet Explorer 8

 1 // Returns a NodeList containing all matching elements,
 2 // which is empty if there are no matches.
 3 var result = anyElement.querySelectorAll('.some-class');
 4
 5 // assuming our element has been found in the document
 6 result[0].className === 'some-class'; // returns true

 Like getElementsByClassName , querySelectorAll returns all matches in an array-like object. The
differences end there, though. For one, querySelectorAll returns a NodeList object, an interface which was
first formally defined in the W3C DOM Level 3 Core specification. 12 NodeList differs in one important way
from an HTMLCollection : it is not a “live” collection. So, if a matching element contained in a NodeList is
removed from the DOM, it will not be removed from any NodeList .

 querySelectorAll is available both on the Document interface and the Element interface, according
to the W3C Selectors API (just like getElementsByClassName). 13 The querySelector method, which can
 also be used when looking for an element with a specific class name, will only return the first matching
element, which may actually be desirable in some instances. In either case, a CSS selector string must
be passed. When looking for a class name, we must include a “.” prefix, which was first described in the
CSS 1 specification, 14 although more detail was included in the later CSS 2.1 specification. 15 Although
 getElementsByClassName is not available in IE8, you can alternatively locate elements by class name in this
browser simply by passing a CSS class selector string into the querySelectorAll method.

 If you must support Internet Explorer 7, or older, the approach for selecting elements by class name can
be a bit cumbersome. Since this type of support is rapidly falling out of favor, I have elected to omit the ugly
and inefficient legacy solution (which jQuery must rely on anyway). You can have a look at how a library I
maintain solved the issue 16 back when it supported ancient browsers.

 Element Tags
 The most basic property of any element is its name. In the IETF HTML specification drafted in part by Tim
Berners-Lee way back in 1993, 17 a valid element/tag name may “consist of a letter followed by up to 33 letters,
digits, periods, or hyphens.” This specification goes on to say “names are not case sensitive.” There were also a
small number of elements defined in this document, such as the anchor tag (<a>), the paragraph tag (<p>), and
the <address> element for supplying contact information. Since this first specification, many more elements
have been added, such as <video> 18 and <audio> , 19 added in the relatively recent HTML5 specification.

 Although custom elements have not been explicitly banned by browsers, there was little motivation
to create them, until the Web Components specification came along. 20 Web Components is a collection of
specifications, one being the custom elements specification, 21 which details a way to create new HTMLElement s
with their own API and properties, or even extensions of existing elements—such as the ajax-form custom
element, 22 which extends and adds features to a native <form> .

 12 www.w3.org/TR/DOM-Level-3-Core/core.html#ID-536297177
 13 www.w3.org/TR/2007/WD-selectors-api-20071221/#documentselector
 14 www.w3.org/TR/REC-CSS1/#class-as-selector
 15 www.w3.org/TR/CSS21/selector.html#class-html
 16 https://github.com/FineUploader/fine-uploader/blob/5.2.1/client/js/util.js#L107
 17 www.w3.org/MarkUp/draft-ietf-iiir-html-01.txt
 18 www.w3.org/TR/html5/embedded-content-0.html#the-video-element
 19 www.w3.org/TR/html5/embedded-content-0.html#the-audio-element
 20 www.w3.org/wiki/WebComponents/
 21 www.w3.org/TR/custom-elements/
 22 https://github.com/rnicholus/ajax-form

www.allitebooks.com

http://www.w3.org/TR/DOM-Level-3-Core/core.html#ID-536297177
http://www.w3.org/TR/2007/WD-selectors-api-20071221/#documentselector
http://www.w3.org/TR/REC-CSS1/#class-as-selector
http://www.w3.org/TR/CSS21/selector.html#class-html
https://github.com/FineUploader/fine-uploader/blob/5.2.1/client/js/util.js#L107
http://www.w3.org/MarkUp/draft-ietf-iiir-html-01.txt
http://www.w3.org/TR/html5/embedded-content-0.html#the-video-element
http://www.w3.org/TR/html5/embedded-content-0.html#the-audio-element
http://www.w3.org/wiki/WebComponents/
http://www.w3.org/TR/custom-elements/
https://github.com/rnicholus/ajax-form
http://www.allitebooks.org

CHAPTER 4 ■ FINDING HTML ELEMENTS

36

 To set up our examples, consider the following very simple HTML block:

 1 < code >System.out.println("Hello world!");</ code >

 If you are given an element reference, you can easily determine the element’s name via the tagName
property, which is defined on the Element interface as part of DOM Level 1 Core: 23

 1 // `elementObject` is the <code> element from our above HTML
 2 elementObject.tagName === 'CODE'; // returns true

 jQuery
 Selecting elements by jQuery is, predictably, facilitated by passing a CSS element selector into the $ or
 jQuery function:

 1 // Returns a jQuery object with 0 elements (element not found)
 2 // or all elements with a matching tag name.
 3 var result = $('CODE');
 4
 5 // assuming our element has been found in the document
 6 result.is('CODE'); // returns true

 Nothing magical here. In fact, the syntax for an element name selector string is defined in the first CSS
specification. 24 jQuery has simply provided a simple alias for the native methods available to select elements
by tag name, explored next.

 Web API
 Let’s start with a quick look at the traditional method for selecting elements by tag name by interfacing
directly with the native web API :

 1 // Returns a HTMLCollection containing all matching elements,
 2 // which is empty if there are no matches.
 3 var result = anyElement.getElementsByTagName('CODE');
 4
 5 // assuming our element has been found in the document
 6 result[0].tagName === 'CODE'; // returns true

 The preceding method has been available as early as DOM Level 1 Core, and, like getElementsByClass-
Name , is available on both the Document interface 25 and the Element interface. 26 So, this approach is available
on all browsers in existence.

 A more “modern” approach involves, as you might expect, querySelector or querySelectorAll :

 1 // Returns a NodeList containing all matching elements,
 2 // which is empty if there are no matches.
 3 var result = anyElement.querySelectorAll('CODE');
 4

 23 www.w3.org/TR/REC-DOM-Level-1/level-one-core.html#ID-1950641247
 24 www.w3.org/TR/REC-CSS1/#basic-concepts
 25 www.w3.org/TR/REC-DOM-Level-1/level-one-core.html#i-Document
 26 www.w3.org/TR/REC-DOM-Level-1/level-one-core.html#ID-745549614

http://www.w3.org/TR/REC-DOM-Level-1/level-one-core.html#ID-1950641247
http://www.w3.org/TR/REC-CSS1/#basic-concepts
http://www.w3.org/TR/REC-DOM-Level-1/level-one-core.html#i-Document
http://www.w3.org/TR/REC-DOM-Level-1/level-one-core.html#ID-745549614

CHAPTER 4 ■ FINDING HTML ELEMENTS

37

 5 // assuming our element has been found in the document
 6 result[0].tagName === 'CODE'; // returns true
 7
 8 // -OR-
 9
 10 // ...you can use this if you know there is only one <code>
 11 // element to find, or if you only care about the first.
 12 // Returns true.
 13 anyElement.querySelector('CODE').tagName === 'CODE';

 There is currently a potentially noticeable performance difference between getElementsByTagName and
 querySelectorAll(tagName) . 27 The performance consequences of using querySelectorAll are apparently
attributable to the fact that getElementsByTagName returns a live collection of matching elements in the
DOM (an HTMLCollection), while querySelectorAll returns a static collection (a NodeList). The latter
requires iterating over all elements in the DOM, while the former returns cached matching elements and
then queries the document for updates when the list is accessed. 28 This performance difference is similar to
that of getElementsByClassName versus query- SelectorAll(classSelector) for the same reason.

 Pseudo-classes
 While the prevalence and number of pseudo-classes has grown substantially in recent versions of the CSS
specification, pseudo-classes have existed since the earliest versions of the CSS specification. 29 Pseudo-
classes are keywords that add state to a selector string or group of elements. For example, the :visited
pseudo-class on an anchor selector string will target any links that the user has already visited. Another
example, the :focus pseudo-class will target the element that is determined to have focus, such as a text
input field that the user is currently interacting with. We will use the latter in our following examples, as
browsers prevent programatic selector access in JavaScript to visited links due to privacy concerns. 30

 To set up our examples, let’s create a simple form with a couple text inputs, and imagine that the user has
clicked on (or tabbed to) the last text input (named “company”). This last input will be the one that is “focused”:

 1 < form >
 2 < label >Full Name
 3 < input name="full-name">
 4 </ label >
 5 < label >Company
 6 < input name="company">
 7 </ label >
 8 </ form >

 jQuery
 Say we want to select the input that is currently focused, using jQuery:

 1 // Return value will be a jQuery object containing the
 2 // "company" input element
 3 var focusedInputs = $('INPUT:focus');

 27 https://jsperf.com/queryselectorall-vs-getelementsbytagname
 28 www.nczonline.net/blog/2010/09/28/why-is-getelementsbytagname-faster-that-queryselectorall/
 29 www.w3.org/TR/CSS1/#anchor-pseudo-classes
 30 www.w3.org/TR/selectors-api/#privacy

http://www.nczonline.net/blog/2010/09/28/why-is-getelementsbytagname-faster-that-queryselectorall/
http://www.nczonline.net/blog/2010/09/28/why-is-getelementsbytagname-faster-that-queryselectorall/
http://www.w3.org/TR/CSS1/#anchor-pseudo-classes
http://www.w3.org/TR/selectors-api/#privacy

CHAPTER 4 ■ FINDING HTML ELEMENTS

38

 The preceding is, once again, a standardized CSS selector string. We are making use of a tag name
selector with a pseudo-class modifier. jQuery isn’t doing anything special for us at all. In fact, it’s simply
delegating directly to the web API.

 Web API
 Consider the following:

 1 // Return value will be the "company" text input field element
 2 var companyInput = document.querySelector('INPUT:focus');

 That code avoids all of the overhead associated with filtering the call through jQuery. If we were to use
jQuery instead (as we have done in the previous example) querySelectorAll would have been invoked
internally by jQuery’s selector code with the exact same selector string. Since only one element can have
focus at once, querySelector is more appropriate than querySelectorAll . And it’s also a bit faster, for the
same reason why any of the getElementsBy methods are faster than querySelectorAll .

 Selecting Elements Based on Their Relations
 With some rudimentary approaches to selecting elements fresh in our heads, we’re ready to move on to the
next step in our trip through element selectors. The following sections cover selecting elements based on
their relation to other elements. We will examine locating children and descendants, parents of children,
and elements that are siblings of other elements. The DOM is organized as a tree-like structure. With this
in mind, it is often advantageous to be able to navigate this hierarchy of nodes with relations in mind. Just
as we already witnessed in the core selectors section, finding elements based on their relations is fairly
straightforward and more performant without jQuery.

 Parents and Children
 Remember from our discussion on the DOM API that an Element is a specific type of Node . A Node or
 Element may have zero children if it is a “leaf” node. Otherwise, it will have one or more immediate children.
But every Node or Element in a document has exactly one immediate parent. Well, almost. There are two
exceptions to this rule: one occurs with the <html> tag (HTMLHtmlElement) 31 which is the root Element in a
document, and therefore has no parent Element (though it does have a parent Node : document). This brings
us to the second exception, the document object (Document), 32 which has neither a parent Node nor a parent
 Element . It is the root Node .

 Listing 4-5 shows a simple HMTL fragment .

 Listing 4-5. Example Markup for Parent/Children Traversal Examples

 1 < div >
 2 < a href="http://fineuploader.com">
 3 < span >Go to Fine Uploader</ span >
 4 </ a >
 5 < p >Some text</ p >
 6 Some other text
 7 </ div >

 31 www.w3.org/TR/html5/semantics.html#the-html-element
 32 www.w3.org/TR/html5/dom.html#the-document-object

http://www.w3.org/TR/html5/semantics.html#the-html-element
http://www.w3.org/TR/html5/dom.html#the-document-object

CHAPTER 4 ■ FINDING HTML ELEMENTS

39

 In the following code examples, a distinction will be made between targeting child/parent Node s and
 Element s. If this distinction is not already clear, first understand that Listing 4-5 is made up of Element type
object, such as the <div> , the <a> , the , and the <p> . These Element s are also Node s, since the Element
interface is a subtype of the Node interface. But the “Go to Fine Uploader”, “Some text”, and “Some other text”
portions of the fragment are not Element s. But they are Node s. More specifically, they are Text items. The
 Text interface 33 is a subtype of the CharacterData interface, 34 which itself implements the Node interface.

 jQuery
 jQuery’s API includes a parent method. To keep things simple, we’ll assume that the “current jQuery object”
only represents one element. When calling the parent method on this object, the resulting jQuery object will
contain either the parent Element , or, in rare instances, a parent Node that is not an Element . See Listing 4-6 .

 Listing 4-6. Get Parent Element/Node: jQuery

 1 // Assuming $a is a reference to the anchor in our example HTML,
 2 // $result will contain the <div> above it.
 3 var $result = $a.parent();
 4
 5 // Assuming $span is a reference to the in our example HTML,
 6 // the first parent() call references the <a> element, and the
 7 // $result will contain the <div> root element.
 8 var $result = $span.parent().parent();
 9
 10 // Assuming someText is a reference to the "Some text" Text node,
 11 // the result will contain the <p> element in our example HTML.
 12 // Note: selecting a text node requires locating the node in the result of
 13 // using the `contents()` method, as illustrated in the next code block.
 14 var $result = $someText.parent();

 To locate children, jQuery provides a children() method that will return all immediate child Element s
of a given element. You may also select child elements given a reference element using the child selector
standardized in the CSS 2.1 W3C specification. 35 But since children() will only return Element s, we must
use jQuery’s contents() API method to obtain any Node s that are not also Element s, such as Text nodes.
Again, to keep this simple, Listing 4-7 assumes that the reference jQuery object in our example only refers to
 one specific element in the DOM.

 Listing 4-7. Get Child Elements and/or Child Nodes: jQuery

 1 // Assuming $div is a jQuery object containing the <div> in our example HTML,
 2 // $result will contain 2 elements: <a> and <p>.
 3 var $result = $div.children();
 4
 5 // $result contains the <p> element in the sample markup
 6 var $result = $('DIV > P');
 7
 8 // Again, assuming $div refers to the <div> in our example markup,
 9 // $result will contain 3 nodes: <a>, <p>, and "Some other text".

 33 www.w3.org/TR/DOM-Level-3-Core/core.html#ID-1312295772
 34 www.w3.org/TR/DOM-Level-3-Core/core.html#ID-FF21A306
 35 http://www.w3.org/TR/CSS21/selector.html#child-selectors

http://www.w3.org/TR/DOM-Level-3-Core/core.html#ID-1312295772
http://www.w3.org/TR/DOM-Level-3-Core/core.html#ID-FF21A306
http://www.w3.org/TR/DOM-Level-3-Core/core.html#ID-FF21A306

CHAPTER 4 ■ FINDING HTML ELEMENTS

40

 10 var $result = $div.contents();
 11
 12 // Assuming $a refers to the <a> element in our example markup,
 13 // $result will contains 1 element: .
 14 var $result = $a.children();
 15
 16 // This returns the exact same elements as the previous example.
 17 var $result = $('A > *')

 Web API
 For the most part, locating the parent of an element/node without jQuery is simple. DOM Level 2 Core was
the first specification to define a parentNode property on the Node interface, 36 which, as you might expect,
is set to the parent Node of the reference element. Of course, this value may be an Element or any other
type of Node. Later on, in the subsequent W3C DOM4 specification, a parentElement property was added
to the Node interface. 37 This property will always be an Element . If the parent of a reference Node is some
type of Node other than an Element , the parentElement will be null . But in most cases, parentElement
and parentNode will be identical, unless the reference node is <html> , in which case parentNode will be
 document , and parentElement will be of course null . In a general sense, and especially due to wide browser
support, the parentNode property is the best choice, but parentElement is nearly just as safe. See Listing 4-8 .

 Listing 4-8. Get Parent Element/Node: Web API

 1 // Assuming "a" is the <a> element in our HTML example,
 2 // "result" will be the the <div> above it.
 3 var result = a.parentNode;
 4
 5 // Assuming "span" is the element in our HTML example,
 6 // the first parentNode is the <a>, while "result" is the <div>
 7 // at the root of our example markup.
 8 var result = span.parentNode.parentNode;
 9
 10 // Assuming "someText" is the "Some text" Text node in our HTML example,
 11 // "result" will be the the <p> that contains it.
 12 var result = someText.parentNode;

 There are a number of different ways to locate immediate children of an element using the web API.
I will demonstrate two such ways next, and briefly discuss a third approach. The simplest and most common
method of locating an element’s children in all modern browsers involves using the children property on
the ParentNode interface . 38 ParentNode is defined to be implemented by both the Element and Document
interfaces, though it is only commonly implemented on the Element interface. It applies to a Node that
may potentially have children. It was first defined in the W3C DOM4 specification 39 and is only available in
modern browsers. ParentNode.children returns all children of the reference Node in an HTMLCollection ,
which you may remember from earlier in this chapter represents a “live” collection of Element s:

 1 // Assuming "div" is an Element object containing the <div> in our example HTML,
 2 // result will contain an HTMLCollection holding 2 elements: <a> and <p>.
 3 var result = div.children;

 36 www.w3.org/TR/DOM-Level-2-Core/core.html#ID-1060184317
 37 www.w3.org/TR/2015/WD-dom-20150428/#node
 38 www.w3.org/TR/2015/WD-dom-20150428/#parentnode
 39 www.w3.org/TR/2015/WD-dom-20150428/

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-1060184317
http://www.w3.org/TR/2015/WD-dom-20150428/#node
http://www.w3.org/TR/2015/WD-dom-20150428/#parentnode
http://www.w3.org/TR/2015/WD-dom-20150428/

CHAPTER 4 ■ FINDING HTML ELEMENTS

41

 A second method used to locate child Element s involves using querySelectorAll along with the CSS 2
child selector. 40 This approach allows us to support Internet Explorer 8, in addition to all modern browsers.
Remember that querySelectorAll returns a NodeList , which differs from an HTMLCollection in that it is a
“static” collection of elements. The collection in this case contains all Element children of the parent Node :

 1 // The result will contain a NodeList holding 2 elements: <a> and <p>
 2 // from our HTML fragment above.
 3 var result = document.querySelectorAll('DIV > *');
 4
 5 // The result will be all <p> children of the <div>, which, in this case
 6 // is only one element: <p>Some text</p>.
 7 var result = document.querySelectorAll('DIV > P');

 A third option used to select children with the web API involves the childNodes property on the Node
interface. 41 This property was declared on the original W3C DOM Level 1 Core specification. 42 As a result, it is
supported by all browsers, even ancient ones. The childNodes property will reveal all child Node s, even Text
and Comment nodes. You can filter out the non- Element objects in the collection simply by iterating over the
results and ignoring any that have a nodeType property 43 that is not equal to 1 . This nodeType property was
 also defined on the original Node interface specification:

 1 // Assuming "div" is an Element object containing the <div> in
 2 // our example HTML, result will contain a NodeList
 3 // holding 3 Nodes: <a>, <p>, and "Some other text".
 4 var result = div.childNodes;

 Given a parent Node , you may also locate either the first and last child, via the aptly named firstChild
and lastChild properties, respectively. Both properties have existed since the original Node interface
specification, and they refer to child Node s, so the first or last child may be a Text Node or an HTMLDivElement ,
for example. The firstChild property can be used as part of a fourth method of obtaining the children of a
parent Node . This approach is discussed as part of the sibling element selection section below.

 Siblings
 DOM Node s are siblings if they share the same immediate parent. They may be adjacent siblings (next to
each other) or “general” siblings (not necessarily next to each other). There are a number of ways to find and
navigate among sibling Node s. While I will go over how this is done using jQuery for the purpose of reference,
you will see just how easy it is to do this without jQuery as well. Listing 4-9 will be used as a reference point
for all demonstration code.

 Listing 4-9. Working with Siblings: Markup for Following Demos

 1 < div id="parent">
 2 < a href="https://github.com/rnicholus">GitHub</ a >
 3 < span >Span text</ span >
 4 < p >Paragraph text</ p >
 5 < div >Div text</ div >
 6 Text node
 7 </ div >

 40 http://www.w3.org/TR/CSS21/selector.html#child-selectors
 41 www.w3.org/TR/REC-DOM-Level-1/level-one-core.html#ID-1950641247
 42 www.w3.org/TR/REC-DOM-Level-1/level-one-core.html
 43 www.w3.org/TR/REC-DOM-Level-1/level-one-core.html#ID-1950641247

http://www.w3.org/TR/CSS21/selector.html#child-selectors
http://www.w3.org/TR/REC-DOM-Level-1/level-one-core.html#ID-1950641247
http://www.w3.org/TR/REC-DOM-Level-1/level-one-core.html
http://www.w3.org/TR/REC-DOM-Level-1/level-one-core.html#ID-1950641247

CHAPTER 4 ■ FINDING HTML ELEMENTS

42

 jQuery
 To find all sibling Element s of a given Element , jQuery provides a siblings method as part of its API. For
traversing through the siblings of a given Element , there are next() and prev() methods as well. To keep
things simple, I’ll simply review how we have all used jQuery to find and traverse through the siblings of a
given element, starting with Listing 4-10 .

 Listing 4-10. Find and Traverse Through Siblings: jQuery

 1 // $result will be a jQuery object that contains <a>, , <p>,
 2 // and <div> elements inside of the #parent <div>.
 3 var $result = $('SPAN').siblings();
 4
 5 // $result will be a jQuery object that contains the <a> element
 6 // that precedes the .
 7 var $result = $('SPAN').prev();
 8
 9 // The first next() refers to the <p>, and the 2nd next()
 10 // refers to the <div>Div text</div> element, which is also
 11 // the element contained in the jQuery $result object.
 12 var $result = $('SPAN').next().next();
 13
 14 // The first next() refers to the <p>, and the 2nd next()
 15 // refers to the <div>Div text</div> element. The final next()
 16 // does not reference any element, since the final Node in the
 17 // fragment is a Text Node, and not an element. So, the $result
 18 // is an empty jQuery object.
 19 var $result = $('SPAN').next().next().next();

 You can also use CSS sibling selectors in jQuery, which we explore a bit in the next section. jQuery
actually permits standardized W3C CSS selectors strings for this and other operations.

 Web API
 To mirror the behaviors provided by jQuery’s API, I’ll cover the following topics associated with sibling
traversal and discovery:

 1. Locating all siblings of a specific Element or Node .

 2. Navigating through preceding and subsequent siblings of a specific Element or
 Node .

 3. Locating general and adjacent siblings of an Element using CSS selectors.

 4. Locating children using the sibling properties on the Node interface.

 The simplest way to locate all sibling Element s of another Element is to make use of the CSS3 general
sibling selector. 44 This approach will work as far back as Internet Explorer 8, and provides you with a
 NodeList of all sibling Element s. The W3C CSS2 specification defined an “adjacent” sibling selector, 45 which
only selects the first Element matching the selector that occurs after the reference element. Both of the
sibling selectors described here are demonstrated in Listing 4-11 .

 44 www.w3.org/TR/css3-selectors/#general-sibling-combinators
 45 www.w3.org/TR/CSS21/selector.html#adjacent-selectors

http://www.w3.org/TR/css3-selectors/#general-sibling-combinators
http://www.w3.org/TR/CSS21/selector.html#adjacent-selectors

CHAPTER 4 ■ FINDING HTML ELEMENTS

43

 Listing 4-11. Find Siblings Using CSS Selectors : Web API, Modern Browsers, and Internet Explorer 8

 1 // "result" contains a NodeList of all siblings that occur after the
 2 // in our example HMTL at the start of this section. These siblings are
 3 // the <p> and the <div> elements.
 4 var result = document.querySelectorAll('#parent > SPAN ~ *');
 5
 6 // Another general sibling selector that specifically targets any
 7 // subsequent siblings of the that are <div>s. In our case,
 8 // there is only one such element - <div>Div text</div>. The
 9 // "result" variable is a NodeList containing this one element.
 10 var result = document.querySelectorAll('#parent > SPAN ~ DIV');
 11
 12 // This is an adjacent sibling selector in action. It will target
 13 // the first sibling after the . So, "result", is the same
 14 // as in the previous general sibling selector example.
 15 var result = document.querySelector('#parent > SPAN + *');

 You’ll notice that the general sibling selector (∼) does not select any elements that precede the reference
element—only the ones that follow it. If you do need to account for any siblings that come before the
reference element, you’ll need to make use of either the Node.previousSibling property first defined in
W3C DOM Level 1 Core 46 or the previousElementSibling property, which is part of the ElementTraversal
interface 47 first defined in the W3C Element Traversal specification. 48

 ElementTraversal is an interface that is implemented by any object that also implements the Element
interface. Simply put, all DOM elements have a previousElementSibling property. This is demonstrated in
Listing 4-12 .

 Listing 4-12. Find Both Preceding and Subsequent Siblings of a Reference Element: Web API, Modern
Browsers

 1 // Find all siblings that follow the in our example HTML
 2 var allSiblings = document.querySelectorAll('#parent > SPAN ~ *');
 3
 4 // Converts the allSiblings NodeList into an Array.
 5 allSiblings = [].slice.call(allSiblings);
 6
 7 var currentElement = document.querySelector('#parent > SPAN');
 8
 9 // This loop executes until we run out of previous siblings,
 10 // starting with the sibling before the . Each sibling
 11 // is added to the allSiblings array. After this loop is complete,
 12 // the allSiblings array will contain all siblings of the
 13 // (before and after).
 14 do {
 15 currentElement = currentElement.previousElementSibling;
 16 currentElement && allSiblings.unshift(currentElement);
 17 } while (currentElement);

 46 www.w3.org/TR/REC-DOM-Level-1/level-one-core.html#ID-1950641247
 47 www.w3.org/TR/ElementTraversal/#attribute-previousElementSibling
 48 www.w3.org/TR/ElementTraversal/

http://www.w3.org/TR/REC-DOM-Level-1/level-one-core.html#ID-1950641247
http://www.w3.org/TR/ElementTraversal/#attribute-previousElementSibling
http://www.w3.org/TR/ElementTraversal/

CHAPTER 4 ■ FINDING HTML ELEMENTS

44

 ■ Note Another approach may be to select the parent of the reference element, then collect its children,
omitting the reference element. The code in this section was created specifically to demonstrate some standard
CSS selectors and element properties.

 For Internet Explorer 8 support, you will have to use Node.previousSibling instead of Element.
previousElementSibling . This is due to lack of support for the Element Traversal spec in any version
of Explorer older than 9. This property returns any Node , so you will want to be sure you add a nodeType
property check if you only want to accept Element s. See Listing 4-13 .

 Listing 4-13. Find Both Preceding and Subsequent Siblings of a Reference Element: Web API, Modern
Browsers, and Internet Explorer 8

 1 var allSiblings = document.querySelectorAll('#parent > SPAN ~ *');
 2
 3 // Converts the allSiblings NodeList into an Array.
 4 var allSiblings = [].slice.call(allSiblings);
 5
 6 var currentElement = document.querySelector('#parent > SPAN');
 7
 8 do {
 9 currentElement = currentElement.previousSibling;
 10 // This differs from the previous example in that we must
 11 // exclude non-Element Nodes by examining the nodeType property.
 12 if (currentElement && currentElement.nodeType === 1) {
 13 allSiblings.unshift(currentElement);
 14 }
 15 } while (currentElement);

 The web API also exposes a nextSibling property on the Node interface and a nextElementSibling
property on the ElementTraversal interface . 49 As Listing 4-14 shows, browser support of these properties is
identical to their “previous” cousins.

 Listing 4-14. Traverse Through All Subsequent Siblings: Web API, Modern Browsers, and Internet Explorer 8

 1 // The first nextSibling refers to the <p>, and the 2nd nextSibling
 2 // refers to the <div>Div text</div> element. The final nextSibling
 3 // refers to the "Text node" Text Node, since nextSibling targets
 4 // any type of Node. So, the result is this Text Node.
 5 var result = document.querySelector('SPAN')
 6 .nextSibling.nextSibling.nextSibling;
 7
 8 // Same as the above example, but the final nextElementSibling returns null,
 9 // since the last Node in the example markup is not an Element. There are only
 10 // 2 Element siblings following the . Note that nextElementSibling
 11 // is not available in ancient browsers.
 12 var result = document.querySelector('SPAN')
 13 .nextElementSibling.nextElementSibling.nextElementSibling;

 49 www.w3.org/TR/ElementTraversal/#attribute-nextElementSibling

http://www.w3.org/TR/ElementTraversal/#attribute-nextElementSibling

CHAPTER 4 ■ FINDING HTML ELEMENTS

45

 In addition to the methods used to select children outlined in the previous section using the web API,
another such option exists to select only Element children of a parent Node in any browser. This involves
obtaining the firstChild of the parent Node , locating for the sibling Node of this first child, and then continuing
to traverse through all sibling elements using the nextSibling property on each Node until there are no
remaining siblings. And finally, to exclude all non-Element siblings (such as Text Node s), simply check the
 nodeType property of each Node , which will have a value of 1 if the Node is more specifically an Element . This is
how jQuery implements its children method, at least in the late 1.x versions of the library. This implementation
choice is likely due to the fact that all of these properties on the Node interface have wide browser support, even
among ancient browsers. However, there are much simpler approaches that are supported in modern browsers,
so the path just described is really only relevant from an academic or historic perspective.

 Ancestors and Descendants
 To illustrate the ancestor/descendant Node relationship , let’s start out with a brief HTML fragment:

 1 < body >
 2 < div >
 3 < span >random text</ span >
 4 < ul >
 5 < li >
 6 < span >item 1</ span >
 7 </ li >
 8 < li >
 9 < a href="#some-content">item 2</ a >
 10 </ li >
 11 </ ul >
 12 </ div >
 13 </ body >

 An element’s ancestors are any elements that appear before it in the DOM. That is, its parent, its
parent’s parent (or grandparent), its parent’s parent’s parent (great-grandparent), and so on. In the
preceding HTML fragment, the anchor element’s ancestors include its immediate parent (the), along
with the , <div> , and finally the <body> element. Conversely, an element’s descendants include its
children, its children’s children, and so on. In the preceding markup, the element has four descendants:
the two elements, the , and the <a> .

 jQuery
 jQuery’s API provides a single method used to retrieve all of an element’s ancestors - parents() :

 1 // Using our HTML example, $result is a jQuery object that
 2 // contains the following elements: , ,
 3 // <div>, and <body>
 4 var $result = $('A').parents();

 But what if you only want to retrieve the first ancestor that matches a specific condition? In our case,
say we are only looking for the first ancestor of the <a> that is also a <div> . For that, we would use jQuery’s
 closest() method. jQuery implements closest() by brute-force—through examination of each parent of
the reference Node :

 1 // Using our HTML example, $result is a jQuery object that
 2 // contains the <div> element.
 3 var $result = $('A').closest('DIV');

CHAPTER 4 ■ FINDING HTML ELEMENTS

46

 For locating descendants, you may use jQuery’s find() method :

 1 // Using our HTML example, $result is a jQuery object that
 2 // contains the following elements: both s, the ,
 3 // and the <a>.
 4 var $result = $('UL').find('*');
 5
 6 // $result is a jQuery object that contains the
 7 // under the first .
 8 var $result = $('UL').find('SPAN');

 Web API
 The native web does not provide a single API method that returns all ancestors of an element. If this is
required in your project, you can accumulate these Node s with a simple loop, making use of the Node.
parentNode property 50 or Node.parentElement . Remember that the latter targets only a specific type of Node :
an Element . This is usually what we want anyway, so we will make use of parentElement in our examples.
See Listing 4-15 .

 Listing 4-15. Retrieve All Element Ancestors: Web API , Any Browser

 1 // When this code is complete, "ancestors" will contain all
 2 // ancestors of the anchor element: , ,
 3 // <div>, and <body>
 4 var currentNode = document.getElementsByTagName('A')[0],
 5 ancestors = [];
 6
 7 while (currentNode.parentElement) {
 8 ancestors.push(currentNode.parentElement);
 9 currentNode = currentNode.parentElement;
 10 }

 We already know that jQuery provides a method that allows us to easily find the first matching ancestor of an
element, closest . The web API has a similar method on the Element interface, also called closest. Element.
closest() 51 is part of the WHATWG DOM “living standard”. 52 This method behaves exactly like jQuery’s closest() .
Browser support for this method is missing from any version of Internet Explorer and Microsoft Edge as of mid-2016,
but is supported in Chrome, Firefox, and Safari 9. In the next example, I demonstrate how the web API’s closest()
method can be used, and I even include a simple fallback for browsers without native support. Let’s again use our
example markup and try to locate the closest ancestor of the <a> that is a <div> . See Listings 4-16 and 4-17 .

 ■ Note You may remember from Chapter 3 that the WHATWG develops a set of web specifications that differ
a bit from the traditional W3C specs.

 Listing 4-16. Retrieve Closest Element Ancestor : Web API, All Modern Browsers Except IE and Edge

 1 function closest(referenceEl, closestSelector) {
 2 // use Element.closest if it is supported

 50 www.w3.org/TR/DOM-Level-2-Core/core.html#ID-1060184317
 51 https://dom.spec.whatwg.org/#dom-element-closestselectors
 52 https://dom.spec.whatwg.org

http://dx.doi.org/10.1007/978-1-4842-2235-5_3
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-1060184317
https://dom.spec.whatwg.org/#dom-element-closestselectors
https://dom.spec.whatwg.org/

CHAPTER 4 ■ FINDING HTML ELEMENTS

47

 3 if (referenceEl.closest) {
 4 return referenceEl.closest(closestSelector);
 5 }
 6
 7 // ...otherwise use brute force (like jQuery)
 8 // To find a match for our closestSelector, we must use the
 9 // Element.matches method, which is still vendor-prefixed
 10 // in some browsers.
 11 var matches = Element.prototype.matches ||
 12 Element.prototype.msMatchesSelector ||
 13 Element.prototype.webkitMatchesSelector,
 14
 15 currentEl = referenceEl;
 16
 17 while (currentEl) {
 18 if (matches.call(currentEl, closestSelector)) {
 19 return currentEl;
 20 }
 21 currentEl = currentEl.parentElement;
 22 }
 23
 24 return null ;
 25 }
 26
 27 // "result" is the <div> that exists before the <a>
 28 var result = document.querySelector('A').closest('DIV');

 Listing 4-17. Retrieve Closest Element Ancestor: Web API, All Modern Browsers

 1 function closest(referenceEl, closestSelector) {
 2 // use Element.closest if it is supported
 3 if (referenceEl.closest) {
 4 return referenceEl.closest(closestSelector);
 5 }
 6
 7 // ...otherwise use brute force (like jQuery)
 8
 9 // To find a match for our closestSelector, we must use the
 10 // Element.matches method, which is still vendor-prefixed
 11 // in some browsers.
 12 var matches = Element.prototype.matches ||
 13 Element.prototype.msMatchesSelector ||
 14 Element.prototype.webkitMatchesSelector,
 15
 16 currentEl = referenceEl;
 17
 18 while (currentEl) {
 19 if (matches.call(currentEl, closestSelector)) {
 20 return currentEl;
 21 }
 22 currentEl = currentEl.parentElement;
 23 }

CHAPTER 4 ■ FINDING HTML ELEMENTS

48

 24
 25 return null ;
 26 }
 27
 28 // "result" is the <div> that exists before the <a>
 29 var result = closest(document.querySelector('A'), 'DIV');

 Note that the cross-browser solution makes use of Element.matches , 53 which is also defined by WHATWG
in their DOM living spec. This method will return true if the element it is called on matches the passed CSS
selector. Some browsers, namely IE and Safari, still implement a naming convention consistent with an older
version of the specification along with vendor-specific prefixes. I’ve accounted for these in my example.

 The preceding solution may be less elegant, but it makes better use of the browser’s native power.
jQuery’s closest() function always uses the most primitive brute-force approach, even if the browser
supports Element.closest natively.

 Finding descendants using the web API is just as easy as with jQuery (Listing 4-18).

 Listing 4-18. Retrieve Element Descendants : Web API, Modern Browsers, and Internet Explorer 8

 1 // Using our HTML example, result is a NodeList that
 2 // contains the following elements: the two s, ,
 3 // and <a>.
 4 var result = document.querySelectorAll('UL *');
 5
 6 // "result" is a NodeList that contains the
 7 // under the first .
 8 var result = document.querySelectorAll('UL SPAN');

 Mastering Advanced Element Selection
 What follows are some more advanced methods used to select even more specific elements or groups
of elements. While jQuery provides API methods to deal with each scenario, you’ll see that modern web
specifications also provide the same support, which means that jQuery is not needed in modern browsers
for any of these examples. Web API Solutions here will mostly involve the use of various CSS3 selectors, 54
which are also usable from jQuery.

 All the native examples in this section are supported in all modern browsers. In some cases, I also touch
on how to achieve the same goals using the web API in ancient browsers as well. Should you find yourself
needing some of the following selectors in support of an ancient browser, perhaps you’ll forgo pulling in
jQuery after understanding how to approach the problem using the browser’s native tools instead. Or not,
but at least the solution will shed some light on jQuery’s inner-workings, which is still beneficial if you insist
on making it part of your core toolset.

 Excluding Elements
 Although the ability to exclude specific matches in a set is part of the jQuery API, we’ll also see how we can
achieve the same results natively with another appropriately named pseudo-class. Before we dive into code,
let’s consider the following HTML fragment :

 1 < ul role="menu">
 2 < li >choice 1</ li >

 53 https://dom.spec.whatwg.org/#dom-element-matchesselectors
 54 www.w3.org/TR/css3-selectors/

https://dom.spec.whatwg.org/#dom-element-matchesselectors
http://www.w3.org/TR/css3-selectors/

CHAPTER 4 ■ FINDING HTML ELEMENTS

49

 3 < li class="active">choice 2</ li >
 4 < li >choice 3</ li >
 5 </ ul >

 Imagine this is some sort of menu, with three items to choose from. The second item, “choice 2”, is
currently selected. What if you want to easily gather all of the menu items that are not selected?

 jQuery
 jQuery’s API provides a not() method that will remove any elements that match a selector from the original
set of elements:

 1 // $result is a jQuery object that contains all
 2 // ``s that are not "active" (the first and last).
 3 var $result = $('UL LI').not('.active');

 Although the preceding example is idiomatic jQuery, you don’t have to use the not() function. Instead,
you can make use of a CSS3 selector, discussed next.

 Web API
 The native solution for modern browsers is arguably just as elegant as jQuery’s, and certainly just as easy.
Below, we are using the W3C CSS3 negation pseudo-class 55 to locate the non-active list items. There is no
library overhead, so this is of course more performant than jQuery’s implementation:

 1 // "result" is a NodeList that contains all
 2 // ``s that are not "active" (the first and last).
 3 var result = document.querySelectorAll('UL LI:not(.active)');

 But what if we still need to support Internet Explorer 8, which unfortunately does not support the
negation pseudo-class selector? Well, the solution isn’t as elegant, but still not particularly difficult if we
need a quick fix and don’t want to pull in a large library:

 1 var allItems = document.querySelectorAll('UL LI'),
 2 result = [];
 3
 4 // "result" will be an Array that contains all
 5 // ``s that are not "active" (the first and last).
 6 for (var i = 0; i < allItems.length; i++) {
 7 if (allItems[i].className !== 'active') {
 8 result.push(allItems[i]);
 9 }
 10 }

 The preceding solution is still more performant than jQuery’s implementation of the not() method. 56

 55 www.w3.org/TR/css3-selectors/#negation
 56 http://jsperf.com/jquery-not-vs-looping-through-results1

http://www.w3.org/TR/css3-selectors/#negation
http://jsperf.com/jquery-not-vs-looping-through-results1

CHAPTER 4 ■ FINDING HTML ELEMENTS

50

 Multiple Selectors
 Suppose you want to select several groups of disparate elements. Consider the following HTML fragment:

 1 < div id="link-container">
 2 < a href="https://github.com/rnicholus">GitHub</ a >
 3 </ div >
 4 < ol >
 5 < li >one</ li >
 6 < li >two</ li >
 7 </ ol >
 8 < span class="my-name">Ray Nicholus</ span >

 What if you want to select the “link-container” and the “my-name” element, along with the ordered list?
Let’s also assume you want to accomplish this without loops—in one simple line of code.

 jQuery
 jQuery allows you to select multiple unrelated elements simply by providing one long comma-separated
string of CSS selectors:

 1 // $result is a jQuery object that contains 3 elements -
 2 // the <div>, and the from this section's
 3 // HTML fragment.
 4 var $result = $('#link-container, .my-name, OL');

 Web API
 The exact same result can be obtained without jQuery, using the web API. And the solution looks eerily
similar to the jQuery solution. jQuery is, in this case and many others, simply a very thin wrapper around
the web API. jQuery fully supports and uses the CSS specification to its advantage. The ability to select
multiple unrelated groups of elements has always been part of the CSS specification. 57 Since jQuery supports
standard CSS selector strings, the jQuery approach looks nearly identical to the native path:

 1 // "result" is a NodeList that contains 3 elements -
 2 // the <div>, and the from this section's
 3 // HTML fragment.
 4 var result = document.querySelectorAll('#link-container, .my-name, OL');

 Element Categories and Modifiers
 jQuery’s API provides quite a few of its own proprietary CSS pseudo-class selectors, such as :button ,
 :submit , and :password . In fact, jQuery’s documentation for these non-standard selectors advises against
using them , due to the fact that there are much more performant alternatives— standardized CSS selectors.
For example, the jQuery API docs for the :button pseudo-class contain the following warning:

 Because :button is a jQuery extension and not part of the CSS specification,
queries using :button cannot take advantage of the performance boost provided
by the native DOM querySelectorAll() method.

 57 www.w3.org/TR/REC-CSS1/#grouping

http://www.w3.org/TR/REC-CSS1/#grouping

CHAPTER 4 ■ FINDING HTML ELEMENTS

51

 I’ll demonstrate how to mimic the behavior of a few of jQuery’s own pseudo-classes using
 querySelectorAll . These solutions (shown in Listings 4-19 and 4-20) will be far more performant than
using the non-standard jQuery selectors. We’ll start with :button , :submit , :password , and :file .

 Listing 4-19. Implementing jQuery’s :button Pseudo-class: Web API, Modern Browsers, and Internet Explorer 8

 1 // "result" will contain a NodeList of all <button> and
 2 // <input type="button"> elements in the document, just like
 3 // jQuery's :button pseudo-class.
 4 var result = document.querySelectorAll('BUTTON, INPUT[type="button"]');

 Listing 4-20. Implementing jQuery’s :submit Pseudo-class: Web API, Modern Browsers, and Internet Explorer 8

 1 // "result" will contain a NodeList of all <button type="submit"> and
 2 // <input type="submit"> elements in the document, just like
 3 // jQuery's :submit pseudo-class.
 4 var result = document.querySelectorAll(
 5 'BUTTON[type="submit"], INPUT[type="submit"]'
 6);

 The native solutions in Listings 4-21 and 4-22 are a bit wordier, but not particularly complex, and
certainly more performant that jQuery’s :submit . You can see the same performance differences between
jQuery’s :button selector and the native solution for more: 58

 Listing 4-21. Implementing jQuery’s :password Pseudo-class: Web API, Modern Browsers, and Internet
Explorer 8

 1 // "result" will contain a NodeList of all <input type="password">
 2 // elements in the document, just like jQuery's :password pseudo-class.
 3 var result = document.querySelectorAll('INPUT[type="password"]');

 Listing 4-22. Implementing jQuery’s :file Pseudo-class: Web API, Modern Browsers, and Internet Explorer 8

 1 // "result" will contain a NodeList of all <input type="file">
 2 // elements in the document, just as jQuery's :file pseudo-class.
 3 var result = document.querySelectorAll('INPUT[type="file"]');

 Even this fairly straightforward native CSS selector is much faster than jQuery’s non-standard :file
pseudo-class. 59 Is the performance loss really worth saving a few characters in your code?

 jQuery also offers a non-standard :first pseudo-class selector. As you might expect, it filters all but the
first match in a query’s result set. Consider the following markup:

 1 < div >one</ div >
 2 < div >two</ div >
 3 < div >three</ div >

 Suppose we want to select the first <div> in this fragment. With jQuery, our code would look something
like this:

 1 // $result is a jQuery object containing
 2 // the first <div> in our example markup.

 58 http://jsperf.com/jquery-submit-vs-queryselectorall
 59 http://jsperf.com/jquery-file-vs-queryselectorall

http://jsperf.com/jquery-submit-vs-queryselectorall for more
http://jsperf.com/jquery-file-vs-queryselectorall

CHAPTER 4 ■ FINDING HTML ELEMENTS

52

 3 var $result = $('DIV:first');
 4
 5 // same as above, but perhaps more idiomatic jQuery.
 6 var $result = $('DIV').first();

 The native solution is surprisingly simple and exceptionally performant 60 compared to jQuery’s
primitive implementation:

 1 // result is the first <div> in our example markup.
 2 var result = document.querySelector('DIV');

 Since querySelector returns the first match for a selector string, this is actually a very elegant
alternative to jQuery’s :first pseudo-class or first() API method . You’ll find many other proprietary CSS
selectors in jQuery’s arsenal that have straightforward alternatives in the web API.

 A Simple Replacement for $(selector)
 Throughout this chapter, you’ve seen a number of element selection approaches that involve passing a CSS
selector string into the jQuery function (aliased as $). The native solution often involves the same selector
string passed into either querySelector or querySelectorAll . All things being equal, and assuming we are
only using valid CSS selector strings, we can replace the jQuery function with a native solution that is both
simple to wire up and more performant than jQuery.

 If we focus exclusively on selector support, and only need support for modern browsers, we can get
pretty far by forgoing jQuery entirely and replacing it with a surprisingly concise native alternative, as shown
in Listing 4-23 .

 Listing 4-23. Native Replacement for jQuery Function: All Modern Browsers, Internet Explorer 8 for CSS2
Selectors

 1 window.$ = function (selector) {
 2 return document.querySelectorAll(selector);
 3 };
 4
 5 // examples that use our replacement
 6 $('.some-class');
 7 $('#some-id');
 8 $('.some-parent > .some-child');
 9 $('UL LI:not(.active)');

 The performance benefits seen in some of the more complex selectors exist for the same reason as
described earlier when contrasting selecting these same elements using jQuery with the web API. Let’s take
a look at the child selector in our above code. Our native solution is definitively faster than jQuery, 61 and
the syntax is exactly the same between the two. Here, we give up nothing by abandoning jQuery, and gain
performance along with a leaner page—a noteworthy theme of this chapter.

 60 http://jsperf.com/jquery-first-vs-queryselector
 61 http://jsperf.com/jquery-select-children-vs-native-replacement

http://jsperf.com/jquery-first-vs-queryselector
http://jsperf.com/jquery-select-children-vs-native-replacement

53© Ray Nicholus 2016
R. Nicholus, Beyond jQuery, DOI 10.1007/978-1-4842-2235-5_5

 CHAPTER 5

 Using and Understanding HTML
Element Attributes

 Here in chapter five, prepare yourself for a full-scale, in-depth, no-holds-barred discussion on everything
related to element attributes. Everything you learned in Chapter 4 will prove to be useful as you apply this
knowledge during your journey through attributes. I’ll make sure you have a proper understanding of
attributes, how they came about and became part of HTML, and how they fit into the web API. Additionally,
you’ll learn how to use attributes to locate DOM elements. Although this is covered a bit in Chapter 4 , you’ll
find that the coverage here is much more comprehensive. And finally, I’ll dive deeper into attributes and
demonstrate how you can read, add, and update them on any DOM element. Special sections on data- and
 class attributes will be included as well.

 Other than a couple exceptions, most of the web API code in this chapter has full support across all
modern browsers and even Internet Explorer 8 in many instances. After you complete this chapter, you will
not only have a complete understanding of attributes, you will also have the confidence to read them, modify
them, and use them to select elements in all browsers, even those as old as Internet Explorer 8. Read on to
continue your quest to move Beyond jQuery!

 What Is an Attribute?
 HTML elements , declaratively speaking, are made up of three parts: name, content, and attributes, with the
last two being optional. Take a look at the following simple fragment, which I’ll reference as I explain these
three parts a bit more.

 1 < form action="/rest/login.php" method="POST">
 2 < input name="username" required>
 3 < input type="password" name="password" required>
 4 </ form >

 In that markup, you see three elements tags: one <form> and two <input> s. The <form> element
has a tag name of “FORM”. In fact, tagName is a property available on every object in the DOM that
implements the Element interface. This property was standardized as part of W3C’s DOM Level 2 Core
specification. 1 In the preceding HTML, the <form> element, represented as a HTMLFormElement object, 2 has a
 tagName property with a value of “FORM”. The two <input> elements are represented as HTMLInputElement
objects, 3 and unsurprisingly they each have tagName values of “INPUT”.

 1 www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/core.html#ID-104682815
 2 www.w3.org/TR/html5/forms.html#the-form-element
 3 www.w3.org/TR/html5/forms.html#the-input-element

http://dx.doi.org/10.1007/978-1-4842-2235-5_4
http://dx.doi.org/10.1007/978-1-4842-2235-5_4
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/core.html#ID-104682815
http://www.w3.org/TR/html5/forms.html#the-form-element
http://www.w3.org/TR/html5/forms.html#the-input-element

CHAPTER 5 ■ USING AND UNDERSTANDING HTML ELEMENT ATTRIBUTES

54

 Content, the second part of an element, describes any other nodes that are descendants of an element.
My example <form> has two <input> elements as content, while the two <input> elements have no content.
In fact, <input> elements are not allowed to have any content. This restriction was likely in place since
 <input> elements were first introduced in the HTML 2 specification, 4 but was only first explicitly mentioned
in the HTML 3 official standard document. 5

 ■ A note about my example form markup Normally you would want to associate each form field with a
 <label> that contains a text node with the field’s display name. Also, a submit button is usually prudent, but I
left all of these out of my preceding markup to keep it simple and focused on the discussion of attributes.

 Attributes, the third and final part of an element, also optional, provide a way to annotate elements directly
in your markup. You may use them to provide data or state. For example, the <form> element above contains
two such attributes: action and method , which together tell the form to send a POST request (method) to the
“/rest/login.php” server endpoint (action) when the form is submitted. The first input has a name attribute of
“username” and the second has a name of “password”. This information is used to construct the request and tie
these elements to their values when the server parses the form submit. Although not evident in the preceding
HTML, you can even create your own proprietary attributes and reference them in your code for the purposes
of associating state or data with elements in your markup. Though not strictly required, the more standard way
to do this is with data- attributes, which will be mentioned later on in this chapter.

 In addition to providing data or state, some attributes are used to define specific behaviors for
multipurpose elements. Take a look at the type attribute on the second input in the preceding fragment
for an example of this. This type attribute defines the second input to be a password input, which signals
the browser to mask any characters entered into this field by the user. The first input could include a type
attribute with a value of “text,” but this is not necessary as all <input> elements are, by default, text inputs.
This default has been in place since the inception of HTML, and is visible in one of the earliest drafts of the
specification. 6 Another example of a behavior imposed by an attribute can be seen on both of the preceding
inputs. Notice the required attributes on each of the inputs—this is a signal to any browser that supports the
 constraints API to prevent form submission if either of these fields are left empty by the user. 7

 History and Standardization
 Attributes have always been a part of HTML and were described in the first document that details HTML
tags, written by Tim Berners-Lee in 1992. 8 In this article, Berners-Lee describes the same two general types
of attributes that are used in HTML today— Boolean and variable —both of which I will elaborate on further
shortly. The passage that calls out attributes is near the start of the document:

 Some tags take parameters, called attributes. The attributes are given after
the tag, separated by spaces. Certain attributes have an effect simply by their
presence, others are followed by an equals sign and a value.

 Berners-Lee went on to mention a few such attributes, using the href , type , and name attributes of
anchor tags as an example. Note though that the name attribute on <a> elements is no longer available as it
was removed in the HTML5 specification. 9 Since this first description of HTML, the number and importance
of element attributes has increased greatly.

 4 www.w3.org/MarkUp/html-spec/html-spec_toc.html
 5 www.w3.org/MarkUp/html3/input.html
 6 www.w3.org/MarkUp/HTMLPlus/htmlplus_41.html
 7 www.w3.org/TR/html5/forms.html#constraints
 8 www.w3.org/History/19921103-hypertext/hypertext/WWW/MarkUp/Tags.html
 9 www.w3.org/TR/html5/text-level-semantics.html#the-a-element

http://www.w3.org/MarkUp/html-spec/html-spec_toc.html
http://www.w3.org/MarkUp/html3/input.html
http://www.w3.org/MarkUp/HTMLPlus/htmlplus_41.html
http://www.w3.org/TR/html5/forms.html#constraints
http://www.w3.org/History/19921103-hypertext/hypertext/WWW/MarkUp/Tags.html
http://www.w3.org/TR/html5/text-level-semantics.html#the-a-element

CHAPTER 5 ■ USING AND UNDERSTANDING HTML ELEMENT ATTRIBUTES

55

 Unbounded custom attributes are not and have never been officially supported in any HTML
specification. But you may prefix an attribute name of your choice with “data-” as of the HTML5 spec
(more on that later). However, if you would like to introduce a purely custom attribute into your markup,
such as “myproject-uuid”, you are certainly free to do so. The page will render without issue, and there will
be no errors in your browser’s developer tools console. Everything will work just fine. The only drawback
is that your document will fail validation, as it will contain non-standard attributes—attributes that are not
mentioned in any accepted HTML standard. Non-standard custom attributes are actually quite common
and are even prevalent in popular JavaScript frameworks, such as AngularJS, which relies on non-standard
custom attributes heavily to facilitate communication with element directives.

 The latest recommended HTML spec—HTML5—defines four different types of attributes. 10 One
type commonly known as a “Boolean attribute” 11 is expressed as an element attribute without any explicit
value. Take the required attribute commonly found on <input> elements as one example (seen in the
previous section’s HTML fragment). As the specification states, “The presence of a boolean attribute on an
element represents the true value, and the absence of the attribute represents the false value.” The HTML 5.1
standardized hidden attribute, 12 which instructs the browser to not render any element bearing the attribute, is
another example of this first type.

 A second type of attribute is described as “unquoted.” A little known fact is that you may omit quotes
around your attribute values, provided the attribute value does not contain spaces, equal signs, or angle
brackets (< and >), or an empty string (among other less notable character restrictions). So, the HTML
fragment in the previous section can be re-written as follows:

 1 < form action=/rest/login.php method=POST>
 2 < input name=username required>
 3 < input type=password name=password required>
 4 </ form >

 The final two types of HTML element attributes are very similar: single-quoted and double-quoted .
Both are similar in that they largely have the same restrictions and are much more common than unquoted
attributes, although double-quoted attributes are arguably the most common of all types. In contrast to
unquoted attribute values, those that are surrounded by either single or double quotation marks may contain
spaces, equal signs, angle brackets, or an empty string. The portion of the latest W3C specification that
describes attribute values mentions only that they may never contain any ambiguous ampersand characters.
An “ampersand character” is an & sign followed by a standardized ASCII character code and terminated
with a semicolon (;). An “ambiguous ampersand character” is one where this ASCII character code does not
match any of the character codes defined in the named character references 13 portion of the spec.

 How Do Attributes Differ from Properties?
 Now that you have a solid understanding of what element attributes are, you may still be confused regarding
their relation to element “properties, ” especially if you have been using jQuery for a while. 14 At a very basic
level, properties and attributes are entirely different from each other. While attributes are declared at
the HTML level in the element’s markup, properties are declared and updated on the element’s object
representation. For example, consider the following element:

 1 < div class="bold">I'm a bold element</ div >

 10 www.w3.org/TR/html5/syntax.html#attributes-0
 11 www.w3.org/TR/html5/single-page.html#boolean-attributes
 12 www.w3.org/TR/html51/editing.html#the-hidden-attribute
 13 www.w3.org/TR/html5/syntax.html#named-character-references
 14 http://blog.jquery.com/2011/05/03/jquery-16-released/

http://www.w3.org/TR/html5/syntax.html#attributes-0
http://www.w3.org/TR/html5/single-page.html#boolean-attributes
http://www.w3.org/TR/html51/editing.html#the-hidden-attribute
http://www.w3.org/TR/html5/syntax.html#named-character-references
http://blog.jquery.com/2011/05/03/jquery-16-released/

CHAPTER 5 ■ USING AND UNDERSTANDING HTML ELEMENT ATTRIBUTES

56

 The <div> has a class attribute with a value of “bold”. But we can set properties on this element too.
Suppose we want to set a property of index with a value of 0 :

 1 < div class="bold">I'm a bold element</ div >
 2
 3 < script >
 4 document.querySelector('.bold').index = 0;
 5 </ script >

 After executing the preceding fragment, our <div> now has a class attribute with a value of “bold” and
a property of index with a value of 0 . The property is set on the underlying JavaScript object, which in this
case is an implementation of the HTMLDivElement 15 interface. Element object properties such as our index
are also known as “expando” properties, which is just a terse way to classify non-standard element object
properties. Understand that not all element properties are expando properties. Don’t worry if this is still not
entirely clear. I’ll talk more about standardized element properties before this section is complete.

 Although properties and attributes are conceptually and syntactically different, they are very closely
linked together in some cases. In fact, all standardized element attributes have corresponding properties
defined in the element’s object representation. For the most part, each standard attribute and property pair
share the same value. And in all but one case, the attribute and property share the same name as well. These
standardized attributes are special in that you can update them without touching the markup. Updating the
corresponding element object’s property value will cause the browser to update the attribute’s value in the
document, and updating the attribute value will in turn up the element’s property value. Let’s take a look at a
simple example, where we define an anchor link with an initial href , and then update the anchor to point to
a different location using JavaScript:

 1 < a href="http://www.widen.com/blog/">Read the Widen blog</ a >
 2
 3 < script >
 4 document.querySelector('A').href = 'http://www.widen.com/blog/ray-nicholus';
 5 </ script >

 After executing the script in the above code block, the anchor now appears in the document as follows:

 1 < a href="http://www.widen.com/blog/ray-nicholus">Read the Widen blog</ a >

 In this case, the HTMLAnchorElement , 16 which is the object representation of an <a> , has an href
property defined on its prototype that is directly connected to the href attribute on the element tag. This
 href property is actually inherited from the URLUtils interface, 17 which the HTMLAnchorElement object also
implements. URLUtils is an interface formally defined in the WHATWG URL Living Standard 18 specification.

 There are many other element attributes with connected properties, such as id (all elements), action
(form elements), and src (script elements), to name a few. Remember that all attributes that appear in the
HTML specifications fall into this category. But there are a few special cases and points to consider. First,
 class attributes are a bit different in that the corresponding property name is not class , but className .
This is due to the fact that “class” is a reserved word in many languages, such as JavaScript. 19 More on the

 15 www.w3.org/TR/html5/grouping-content.html#the-div-element
 16 www.w3.org/TR/html51/semantics.html#the-a-element
 17 https://url.spec.whatwg.org/#urlutils
 18 https://url.spec.whatwg.org
 19 www.ecma-international.org/ecma-262/6.0/#sec-keywords

http://www.w3.org/TR/html5/grouping-content.html#the-div-element
http://www.w3.org/TR/html51/semantics.html#the-a-element
https://url.spec.whatwg.org/#urlutils
https://url.spec.whatwg.org/
http://www.ecma-international.org/ecma-262/6.0/#sec-keywords

CHAPTER 5 ■ USING AND UNDERSTANDING HTML ELEMENT ATTRIBUTES

57

 class attribute later on. Also keep in mind that the checked attribute, common to radio and checkbox input
elements, is only initially connected to the corresponding element property value. Consider the following
code to demonstrate this limitation a bit more clearly:

 1 < input type="checkbox" checked>
 2
 3 < script >
 4 // this does not remove the checked attribute
 5 document.querySelector('INPUT').checked = false ;
 6 </ script >

 After executing the preceding script, you may expect the checked attribute to be removed from the input
element, since this would happen for other Boolean attributes, such as required and disabled . However,
the checked attribute remains on the element, even though the property value has been changed to false
and the checkbox is indeed unchecked.

 “ Custom ” attributes, that is, attributes that are not defined in any accepted specification, are not linked
in any way to a similarly named property on the element object. Any properties you create to match non-
standard attributes are also considered expando properties.

 Finding Elements Using Attributes
 Building upon the class and ID selector examples from Chapter 4 , this section is going to provide a much
more comprehensive guide to selecting any and all attributes using the web API. Although ID and class
attribute selection is commonly accomplished using a selector syntax specific to these two types of
attributes, you can use the more general attribute selection approaches found in this chapter as well. In
some cases, some of the generic but powerful attribute selectors demonstrated here are most appropriate
when looking for multiple elements that follow a known ID or class pattern.

 For the sake of consistency and reference, jQuery examples will be provided throughout this section.
But attributes can be selected in a number of ways without jQuery, simply by using either querySelector or
 querySelectorAll . Since attribute selectors were first introduced as part of the W3C CSS 2 specification, 20
 all of the simple web API examples here (but not all of the more complex ones) are supported all the way back
to Internet Explorer 8 ! You truly don’t need jQuery to write simple but powerful attribute selectors.

 Finding Elements Using Attribute Names
 I cover values in quite a bit of detail shortly, but let’s first focus on attribute names. Why might you want to
only focus on an attribute name? Perhaps for many reasons:

 1. Locating disabled elements or required form fields.

 2. Finding one or more elements that include a custom attribute that groups these
elements in some way.

 3. Locating invalid markup in a document, such as elements without a
src attribute.

 20 www.w3.org/TR/CSS2/selector.html#attribute-selectors

http://dx.doi.org/10.1007/978-1-4842-2235-5_4
http://www.w3.org/TR/CSS2/selector.html#attribute-selectors

CHAPTER 5 ■ USING AND UNDERSTANDING HTML ELEMENT ATTRIBUTES

58

 The following jQuery and web API examples will revolve around #1 above. For this, a small HTML
fragment will be used for reference:

 1 < form action="/submitHandler.php" method="POST">
 2 < input name="first-name">
 3 < input name="last-name" required>
 4 < input type="email" name="email" required>
 5 < button disabled>submit</ button >
 6 </ form >

 jQuery
 There is one way to select elements given their attributes in jQuery, and that is by passing a valid CSS 2+
attribute selector string into the jQuery function:

 1 var $result = $('[required], [disabled]');

 The preceding code will result in a $result jQuery object that contains the “last-name” and “email”
 <input> elements, along with the disabled submit <button> . In case the comma in the selector string is
causing you some confusion, I covered this in the previous chapter’s multiple element selector section. This
jQuery code relies entirely on the web API behind the scenes.

 Web API
 As with many of the native solutions in the Chapter 4 , the code required to locate elements using attribute
names is eerily similar to the jQuery solution you have just seen (shown in Listing 5-1).

 Listing 5-1. Selecting by Attribute Name: Web API, All Modern Browsers, and Internet Explorer 8

 1 var result = document.querySelectorAll('[required], [disabled]');

 Similar to the jQuery example, the preceding code will populate the result variable with a NodeList
containing the “last-name” and “email” inputs, along with the disabled submit button.

 While disabled and required are Boolean attributes, the preceding code will yield the same results
even if we assigned them values. The attribute selector simply matches on the attribute name—the value
(or lack of one) is irrelevant. This means you can easily locate all elements in a document that have any CSS
classes assigned to them. For example, Listing 5-2 shows a simple attribute selector.

 Listing 5-2. Selecting All Elements with a Class Attribute: Modern Browsers and Internet Explorer 8

 1 var result = document.querySelectorAll('[class]');

 Given the following HTML:

 1 < div class="bold">I'm bold</ div >
 2 < span >I'm not</ span >

 . . . the result variable in the previous selector will yield one element: the <div> . But beware, simply
adding an empty class attribute to the may result in an unexpected result set:

 1 < div class="bold">I'm bold</ div >
 2 < span class>I'm not</ span >

http://dx.doi.org/10.1007/978-1-4842-2235-5_4

CHAPTER 5 ■ USING AND UNDERSTANDING HTML ELEMENT ATTRIBUTES

59

 Even though the does not have any CSS classes assigned to it, the mere presence of the class
attribute means that our selector includes it in the result set alongside the <div> . This is probably not
what we wanted. This is not a deficiency of the selector API, but it is important to understand exactly how
attribute name selectors function. Note that you will run into the same “problem” using jQuery if you don’t
have a firm grasp of this CSS selector.

 Finding Elements Using Attribute Names and Values
 Sometimes locating an element or group of elements by attribute name alone is not sufficient. You may want
to, for example, locate all password input fields, in which case you would need to find all <input> elements
with a type attribute of “password”. Or perhaps you need to locate all anchor elements that link to a specific
endpoint, in which case you’d need to key on the desired value of the href attribute of all <a> elements.

 To set up our jQuery and web API examples, let’s use the following HTML and state that our goal is to
locate all anchors that link to the ajax-form web component documentation page:

 1 < section >
 2 < h2 >web components</ h2 >
 3 < ul >
 4 < li >
 5 < a href="http://file-input.raynicholus.com/">file-input</ a >
 6 </ li >
 7 < li >
 8 < a href="http://ajax-form.raynicholus.com/">ajax-form</ a >
 9 </ li >
 10 </ ul >
 11 </ section >
 12 < section >
 13 < h2 >no-dependency libraries</ h2 >
 14 < ul >
 15 < li >
 16 < a href="http://ajax-form.raynicholus.com/">ajax-form</ a >
 17 </ li >
 18 < li >
 19 < a href="http://fineuploader.com/">Fine Uploader</ a >
 20 </ li >
 21 </ ul >
 22 </ section >

 jQuery
 In order to find all anchor elements that point to the ajax-form library page, we’ll use a standardized CSS
selector string passed into the jQuery function, as we’ve seen so many times before:

 1 var $result = $('A[href="http://ajax-form.raynicholus.com/"]');

 The preceding selector returns a jQuery object containing the two ajax-form HTMLAnchorElement
objects from our example markup.

CHAPTER 5 ■ USING AND UNDERSTANDING HTML ELEMENT ATTRIBUTES

60

 Web API
 You’ve already seen how a standard CSS selector is required to select by attribute name and value when
using jQuery, so of course the same selector is most appropriate when attempting to find specific anchor
elements without jQuery. The solution here is, as you have seen in most other element selection examples,
almost identical to the jQuery approach, but more efficient:

 1 var result =
 2 document.querySelectorAll('A[href="http://ajax-form.raynicholus.com/"]');

 The result variable is a NodeList containing both ajax-form anchors from our example HTML at the
start of this section. Notice that I’m combining the attribute name/value selector with a tag name selector.
This ensures that any other elements that may include a non-standard href attribute are ignored (along with
any <link> elements), since we are only concerned with anchor links.

 Remember the empty class attribute example from the selecting by attribute name section? During
our search for all elements with CSS classes, we were unable to ignore empty class attributes with a simple
attribute name selector. But if we pair an attribute name/value selector with the exclusion selector from
Chapter 4 , as shown in Listing 5-3 , we can effectively filter out empty class attributes.

 Listing 5-3. Find Anchors with Specific href Attributes: Web API, Modern Browsers

 1 var result = document.querySelectorAll('[class]:not([class=""]');

 Using the sample HTML from the initial empty class attribute example section, the preceding code
block, result contains a NodeList containing only the <div> with a class attribute of “bold”. The
with an empty class attribute has been successfully skipped over.

 The Power of Wildcard and Fuzzy Attribute Selectors
 This last part of the attribute selectors section focuses on more advanced use cases. In this section, I
demonstrate four very powerful attribute selector tricks that are also easy to understand and supported in
all modern browsers as well as Internet Explorer 8. The pattern you have already seen (many times) between
the jQuery and the web API selector code continues in this last set of examples. So, let’s just forgo the jQuery
versus web API code snippets, as they are mostly redundant when discussing element selectors. If you really
want to run the following examples “the jQuery way,” just replace document.querySelectorAll() with $()
and be prepared for your code to run a bit slower.

 Looking for Specific Characters
 Remember the example from the section on attribute names and values? We wanted to locate any anchor
links in a document that pointed to a very specific endpoint. But what if we don’t care about the entire URL?
What if we are only concerned with the domain? Consider the following HTML fragment :

 1 < a href="http://fineuploader.com/">home page</ a >
 2 < a href="http://fineuploader.com/demos">demos</ a >
 3 < a href="http://docs.fineuploader.com/">docs</ a >
 4 < a href="http://fineuploader.com/purchase">purchase</ a >

http://dx.doi.org/10.1007/978-1-4842-2235-5_4

CHAPTER 5 ■ USING AND UNDERSTANDING HTML ELEMENT ATTRIBUTES

61

 If we want to locate all anchor links at http://fineuploader.com , the instance substring attribute
selector, first standardized in the W3C CSS 3 specification, 21 allows us to do this:

 1 var result =
 2 document.querySelectorAll('A[href*="http://fineuploader.com"]');

 The result variable above is a NodeList containing all anchor links except for the third one. Why is this?
Well, we are looking for an href attribute that contains the string " http://fineuploader.com " . The third
anchor link does not contain this string. Perhaps this is not our intent, and we simply want to find all anchor
links that point in some way to fineuploader.com. Simple!

 1 var result =
 2 document.querySelectorAll('A[href*="fineuploader.com"]');

 Looking for Specific Words
 Instead of looking for groups of characters, perhaps we need to locate a specific “word” inside of an attribute
value. For example, we can write an alternate CSS class selector using this attribute word selector. Consider
the following HTML fragment:

 1 < div class="one two three">1 2 3</ div >
 2 < div class="onetwothree">123</ div >

 Let’s say we want to find only the element with a CSS class of “two”. In addition to the CSS class selector
I demonstrated in Chapter 4 , we can make use of a special attribute selector to accomplish this as well:

 1 var result = document.querySelectorAll('[class~=two]');

 The result variable is a NodeList containing one entry—the first <div> in our sample element
collection—exactly what we were looking for. But why do we need to create another class selector? We don’t,
and the preceding example is not exactly practical, though it does illustrate the behavior of this selector very
well. A more realistic example may be to locate a specific word in an element title attribute. Consider this
set of elements:

 1 < a href="https://github.com/rnicholus/frame-grab.js"
 2 title="frame-grab repo">frame-grab GitHub repo</ a >
 3
 4 < a href="https://github.com/rnicholus/frame-grab.js/blob/master/docs/api.md"
 5 title="frame-grab docs">frame-grab documentation</ a >
 6
 7 < a href="https://www.youtube.com/watch?v=hHBhP03JHIQ"
 8 title="frame-grab + fine-uploader">Video frame uploader</ a >
 9
 10 < img src="https://travis-ci.org/rnicholus/frame-grab.js.svg?branch=master"
 11 title="frame-grab build status">
 12
 13 < a href="https://foo.bar/subframe-grabber"
 14 title="window-subframe-grabber">
 15 Locates all iframes inside of a given iframe</ a >

 21 www.w3.org/TR/css3-selectors/#attribute-substrings

http://fineuploader.com/
http://fineuploader.com/
http://dx.doi.org/10.1007/978-1-4842-2235-5_4
http://www.w3.org/TR/css3-selectors/#attribute-substrings

CHAPTER 5 ■ USING AND UNDERSTANDING HTML ELEMENT ATTRIBUTES

62

 Imagine the two links and one image, all obviously related to the frame-grab library, exist among a
number of other unrelated links and images in a large document. But we want to find only those resources that
directly relate to the frame-grab library. We can’t key on “frame-grab.js” using the substring attribute selector
since not all of the elements contain an href or src attribute with “frame-grab.js”. We also don’t want to key
on the phrase “frame-grab”, as this would include the last link, which does not relate to the frame-grab library.
Instead we need to select all elements with a title attribute that contains the specific phrase “frame-grab”.

 1 var result = document.querySelectorAll('[title~=frame-grab]');

 result is a NodeList that contains all elements in our HTML sample except for the last anchor link,
which is the exact result we are looking for.

 Attribute Values That Start or End With . . .
 The final set of useful advanced attribute selectors to be aware of allow you to locate elements in a document
with attribute values that either start with or end with one or more specific characters. Perhaps you are
wondering at this point why such a selector would be useful, pragmatically speaking. As we have done so
many times before, let’s start with a bit of HTML, and then discuss how these two attribute selectors may be
important to us:

 1 < img id="dancing-cat" src="/images/dancing-cat.gif">
 2 < img id="still-cat" src="/images/still-cat.png">
 3 < img id="dancing-zebra" src="dancing-zebra.gif">
 4 < a href="#dancing-zebra">watch the zebra dance</ a >
 5 < a href="/logout">logout</ a >

 That fragment is likely to appear inside a large document, among many other anchor links and images,
but can be considered representative of a number of such elements. Say we want to locate two things in this
document:

 1. All GIF images.

 2. All anchors that reference elements on the current page.

 The refreshing reality is that we can meet both goals in one line without any third-party dependencies:

 1 var result = document.querySelectorAll('A[href^="#"], [src$=".gif"]');

 The preceding selector combines a “starts with” and an “ends with” attribute value selector (respectively)
using the multiple selectors syntax covered in Chapter 4 . Our “starts with” selector targets any anchor element
with an href attribute that starts with a hash mark, which would only include anchors that reference the
current page. And the second selector focuses on elements with a src attribute value that ends with “.gif”.
This would include references to GIF images, assuming the image URL ends with the expected extension.

 Reading and Modifying Element Attributes
 So now you know exactly what attributes are (and what they are not), and you are well-versed in selecting
elements by their attribute names and values. The final aspect of attributes for me to discuss involves
reading and updating an element’s attributes, as well as creating new attributes. You’ll discover that the
appropriate approach for parsing, adding, removing, and changing attributes may depend on the type of
attribute. In this final section, I go over three distinct types of attributes: class attributes, data attributes, and
all other generic native and custom attributes.

http://dx.doi.org/10.1007/978-1-4842-2235-5_4

CHAPTER 5 ■ USING AND UNDERSTANDING HTML ELEMENT ATTRIBUTES

63

 Class Attributes
 Element class attributes seem to be a popular topic in “Beyond jQuery” so far. Chapter 4 discusses them
at length, I mentioned how the class attribute differs from its element property name in the attributes vs.
properties section earlier in this chapter, and I even showed you how to select elements using class attributes
given various types of values recently in the finding elements with attributes section. Well, here we are again
discussing classes. But this time, I’m going to show you how to read a specific element’s classes, as well as
add, toggle, and remove an element’s classes.

 Reading Classes
 All of the situations in the reading and modifying attributes section assume you already have a handle on
a specific element or elements. So, since we already have an element, perhaps we would like to know what
specific CSS classes it is associated with. Or maybe we just want to find out if it is connected to one specific
class. This section examines both of these needs.

 Let’s start with an actual element, for reference:

 1 < p class="product-name out-of-stock manual-tool">saw</ p >

 Imagine this element is the name of a specific tool among many other such tools in a larger document.
Let’s say we want to know two things about the particular tool element we’ve landed on:

 1. Is this tool in stock?

 2. Is this a manual or a power tool?

 The solution provided by jQuery makes use of its hasClass API method:

 1 var inStock = !$toolEl.hasClass('out-of-stock');
 2 var type = $toolEl.hasClass('manual-tool') ? 'manual' : 'power';

 The inStock Boolean variable will be set to a value of false since the element contains an
“out- of-stock” class. While type is “manual” due to the presence of a “manual-tool” class. No surprises here.

 But we don’t want to use jQuery! So, how do we do all of this without it? Luckily, the modern web
API offers an equally elegant solution, thanks to the classList property on the Element interface. 22 The
WHATWG web standards organization initially drafted the specification for classList , and the W3C has
included it in its DOM4 document 23 as well.

 Note that the classList property is a DomTokenList . 24 The DomTokenList interface contains four
notable methods, each of which I will demonstrate throughout this section. You’ll see how classList can
be used to perform all sorts of operations on an element’s class attribute soon, but first I’m going to focus
one such method: contains . 25 To determine if a specific element contains a specific CSS class, the DOM API
provides an intuitive property on the classList object: contains .

 1 var inStock = !toolEl.classList.contains('out-of-stock');
 2 var type = toolEl.classList.contains('manual-tool') ? 'manual' : 'power';

 22 https://dom.spec.whatwg.org/#dom-element-classlist
 23 www.w3.org/TR/dom/#dom-element-classlist
 24 https://dom.spec.whatwg.org/#domtokenlist
 25 https://dom.spec.whatwg.org/#dom-domtokenlist-contains

http://dx.doi.org/10.1007/978-1-4842-2235-5_4
https://dom.spec.whatwg.org/#dom-element-classlist
http://www.w3.org/TR/dom/#dom-element-classlist
https://dom.spec.whatwg.org/#domtokenlist
https://dom.spec.whatwg.org/#dom-domtokenlist-contains

CHAPTER 5 ■ USING AND UNDERSTANDING HTML ELEMENT ATTRIBUTES

64

 The preceding code is identical to the jQuery example—just replace hasClass with classList.
contains and reap the performance benefits! 26

 If you need to support older browsers, you will need to resort to a regular expression in order to determine
if your target element contains a certain class. Luckily, this too is fairly simple (and works for any browser):

 1 var hasClass = function (el, className) {
 2 return new RegExp('(^|\\s)' + className + '(\\s|$)').test(el.className);
 3 };
 4 var inStock = !hasClass(toolEl, 'out-of-stock');
 5 var type = hasClass(toolEl, 'manual-tool') ? 'manual' : 'power';

 Whether you are using jQuery or not, if you want to get a list of all CSS classes associated with an
element, you must either directly access the class attribute or the className property on the Element
object. In both cases, the value will be a space-delimited string of all CSS classes attached to the element.

 Adding and Removing Classes
 Next, we have an element, and we need to remove the “red” class, and add a “blue” one instead:

 1 < p class="red">I'm red. Make me blue!</ p >

 We all know that the addClass and removeClass jQuery functions are used to add and remove CSS
classes from elements, respectively:

 1 $pEl.removeClass('red').addClass('blue');

 The jQuery solution is pretty, and we can do it all in one line without sacrificing readability. Can we do
the same thing without jQuery? Well, the web API approach is a tad wordier, and chaining isn’t built it, but
it’s just as easy. The non-jQuery solution is faster as well, 27 and works for all modern browsers except IE9:

 1 pEl.classList.remove('red');
 2 pEl.classList.add('blue');

 Once again, classList to the rescue. Perhaps you are saying to yourself, “The native solution makes me
type a few more character. This will greatly affect my productivity.” Really? If you are adding and removing
classes via JavaScript so often that a few more characters will have a profoundly negative impact on agility,
then perhaps it is time to instead re-evaluate your application design.

 Stuck supporting IE9 and older? A solution that covers every browser under the sun is similar to the
fallback for contains from the previous section:

 1 var removeClass = function (el, className) {
 2 el.className =
 3 el.className.replace(new RegExp('(^|\\s)' + className + '(\\s|$)'), ' ');
 4 };
 5 removeClass(pEl, 'red');
 6 pEl.className += ' blue';

 26 http://jsperf.com/classlist-contains-vs-hasclass
 27 http://jsperf.com/jquery-addclass-removeclass-vs-dom-classlist

http://jsperf.com/classlist-contains-vs-hasclass
http://jsperf.com/jquery-addclass-removeclass-vs-dom-classlist

CHAPTER 5 ■ USING AND UNDERSTANDING HTML ELEMENT ATTRIBUTES

65

 That is quite a bit harder than addClass(...) and removeClass(...) . Luckily, classList is
standardized and a suitable replacement for jQuery’s class manipulation going forward.

 Toggling Classes
 Say we have an element and we’d like to toggle its visibility, perhaps in response to a button click. I cover
events a bit later, so let’s just focus on the logic required to toggle the visibility of this element:

 1 < section class="hide">
 2 < h1 >User Info</ h1 >
 3 </ section >

 jQuery provides the familiar toggleClass() method, used as follows:

 1 // removes "hide" class
 2 $sectionEl.toggleClass('hide');
 3
 4 // re-adds "hide" class
 5 $sectionEl.toggleClass('hide');

 This is just as easy without jQuery, provided you are using a modern browser (except for IE9):

 1 // removes "hide" class
 2 sectionEl.classList.toggle('hide');
 3
 4 // re-adds "hide" class
 5 sectionEl.classList.toggle('hide');

 The solution for IE9 and older is a bit hairier, but still possible. It involves checking whether the class
exists and then either adding or removing it, depending on the current state:

 1 var toggleClass = function (el, className) {
 2 var pattern = new RegExp('(^|\\s)' + className + '(\\s|$)');
 3 if (pattern.test(el.className)) {
 4 el.className = el.className.replace(pattern, ' ');
 5 }
 6 else {
 7 el.className += ' ' + className;
 8 }
 9 };
 10
 11 // removes "hide" class
 12 toggleClass(sectionEl, 'hide');
 13
 14 // re-adds "hide" class
 15 toggleClass(sectionEl, 'hide');

 Note that you can refactor the preceding code example a bit to instead directly reference the hasClass()
and removeClass() methods from the earlier code examples.

CHAPTER 5 ■ USING AND UNDERSTANDING HTML ELEMENT ATTRIBUTES

66

 Data Attributes
 Although CSS class attributes are typically used for styling elements, data attributes are, as you might expect,
used to attach data to elements. Data attributes must be prefixed with “data-” and can contain stringified
data associated with a particular element. Any valid attribute value is acceptable. Although it is possible to
construct and use non-standard element attributes, the W3C HTML5 specification declares that custom
attributes should in fact be data attributes. 28

 There are other ways to attach more complex data to elements. Chapter 6 covers data attributes, the
HTML5 dataset object, the history of element data along with jQuery’s role in solving this problem, and
much, much more related to element data.

 Working with Other Standard and Custom Attributes
 As you have already seen, class attributes are special attributes that require a more specific approach to
properly manipulate and read them. In fact, class attributes are among two types of “special” attributes,
with data- being the other. But what about all of the other element attributes? How can we best work with
them? This section covers reading, writing, removing, and creating both standard and custom attributes. You
are probably already familiar and comfortable with jQuery’s support for these tasks, but you’ll see just how
easy it is to work with attributes using the power of the browser.

 Reading Attributes
 Let’s start with a simple input element that includes both a Boolean attribute and a standard string value attribute:

 1 < input type="password" name="user-password" required>

 Suppose we are given this element and we want answers to two questions:

 1. What type of <input> is this element?

 2. Is this <input> a required field?

 This is one area (of many) where jQuery fails miserably to ease the burden on the developer. While
reading an attribute value is simple, there is no API method dedicated to detecting the presence of an
attribute on a specific element. Though it is still possible to do this with jQuery, the solution is not very
intuitive and will likely require those new to the library to do a bit of web searching:

 1 // returns "password"
 2 $inputEl.attr('type');
 3
 4 // returns "true"
 5 $inputEl.is('[required]');

 jQuery does not define a hasAttr method . Instead, you must check the element using a CSS attribute
name selector. The web API does provide these conveniences, and has done so since Internet Explorer 8:

 1 // returns "password"
 2 inputEl.getAttribute('type');
 3
 4 // returns "true"
 5 inputEl.hasAttribute('required');

 28 www.w3.org/TR/html5/dom.html#embedding-custom-non-visible-data-with-the-data-%2A-attributes

http://dx.doi.org/10.1007/978-1-4842-2235-5_6
http://www.w3.org/TR/html5/dom.html#embedding-custom-non-visible-data-with-the-data-*-attributes

CHAPTER 5 ■ USING AND UNDERSTANDING HTML ELEMENT ATTRIBUTES

67

 The getAttribute method was first defined on the Element interface all the way back in 1997 as part of
the W3C DOM Level 1 Core specification. 29 And hasAttribute was added to the same interface 3 years later,
in 2000, in the DOM Level 2 Core spec. 30

 We can make the second half of the jQuery example a bit more intuitive simply by breaking out of the
jQuery object and operating directly on the underlying Element :

 1 // returns "true"
 2 $inputEl[0].hasAttribute('required');

 So if you’re stuck with jQuery for whatever reason, consider the preceding example as a more straightforward
way to determine whether an element contains a particular attribute. As an added bonus, you’ll find that bypassing
jQuery as much as possible here is, as always, more performant 31 than relying on the library wholesale.

 Modifying Attributes
 We have a handle on a specific <input> element in our document, and the element looks like this:

 1 < input name="temp" required>

 We want to modify this HTMLInputElement in three ways:

 1. Make it an “email” input field.

 2. Ensure it is not required.

 3. Rename it to “userEmail”.

 jQuery requires we solve this problem using attr() to add and change attributes and removeAttr() to
remove them:

 1 $inputEl
 2 .attr('type', 'email') // #1
 3 .removeAttr('required') // #2
 4 .attr('name', 'userEmail'); // #3

 Without jQuery, our solution looks almost identical, and has the same wide browser support. The
 Element interface was defined to have a setAttribute method since W3C’s DOM Level 1 Core specification. 32
With this method, we can change and add element attribute, just like jQuery’s attr() method . To remove
attributes, we have removeAttribute() , another method also defined on the Element interface in DOM Level
1 Core. 33 With these two methods, we can modify our input element as described earlier quite easily:

 1 inputEl.setAttribute('type', 'email'); // #1
 2 inputEl.removeAttribute('required'); // #2
 3 inputEl.setAttribute('name', 'userEmail'); // #3

 Apart from the lack of chaining support, the native approach is just as intuitive as the route that relies
on jQuery. This is one area in which web standards have always been adequate, and jQuery has never
provided more than a minor convenience advantage. As you have seen throughout this section, working
with attributes in general is surprisingly easy without any assistance from a library.

 29 www.w3.org/TR/REC-DOM-Level-1/level-one-core.html#ID-666EE0F9
 30 www.w3.org/TR/DOM-Level-2-Core/core.html#ID-666EE0F9
 31 http://jsperf.com/hasattribute-vs-jquery-is
 32 www.w3.org/TR/REC-DOM-Level-1/level-one-core.html#method-setAttribute
 33 www.w3.org/TR/REC-DOM-Level-1/level-one-core.html#method-removeAttribute

http://www.w3.org/TR/REC-DOM-Level-1/level-one-core.html#ID-666EE0F9
http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-666EE0F9
http://jsperf.com/hasattribute-vs-jquery-is
http://www.w3.org/TR/REC-DOM-Level-1/level-one-core.html#method-setAttribute
http://www.w3.org/TR/REC-DOM-Level-1/level-one-core.html#method-removeAttribute

69© Ray Nicholus 2016
R. Nicholus, Beyond jQuery, DOI 10.1007/978-1-4842-2235-5_6

 CHAPTER 6

 HTML Element Data Storage
and Retrieval

 In Chapter 5 , I mentioned data attributes when going over the three types of HTML element attributes.
Look no further for complete coverage of anything and everything related to connecting data of any kind
to your document elements. All the details are in this chapter, which will also build on the general attribute
and element properties from Chapter 5 . JavaScript objects will be introduced briefly as well, during a
demonstration on connecting non-trivial data structures to tags.

 As you continue through this chapter, expect to understand why connecting data to your document
elements is both important and potentially tricky. As always, I’ll show you how data is attached to elements and
then read back using jQuery initially. But most importantly, you’ll see how to do all this without jQuery. I’ll also
explain exactly how jQuery makes use of the web API and JavaScript to provide its own support for element data.

 The future of managing element data is exciting. I’ll show you how the web API and JavaScript are
prepared to eclipse jQuery’s support for element data across all browsers in the very near future. And
this “futuristic” native support is already available for many browsers. I’ll be sure to include copious code
examples detailing how you can make use of this built-in support right now in your project.

 Why Would You Want to Attach Data to Elements?
 Especially in modern web applications, there is a real need to tie data to the elements on a page. In this
section, we will explore common reasons for attaching custom data to your markup, and how this is
commonly accomplished, at a high level. You will see that there are many reasons why you may find it useful
to track data alongside your elements.

 Tracking State
 Perhaps you are maintaining a page for a realtor that contains a table of properties that are currently on the
market. Presumably, you’d want to order them from most popular to least, and maybe you’d like to be able to
adjust this order via drag-and-drop directly on the page:

 1 < table >
 2 < thead >
 3 < tr >
 4 < th >Address</ th >
 5 < th >Price</ th >
 6 </ tr >
 7 </ thead >

http://dx.doi.org/10.1007/978-1-4842-2235-5_5
http://dx.doi.org/10.1007/978-1-4842-2235-5_5

CHAPTER 6 ■ HTML ELEMENT DATA STORAGE AND RETRIEVAL

70

 8 < tbody >
 9 < tr >
 10 < td >6911 Mangrove Ln Madison, WI</ td >
 11 < td >$10,000,000</ td >
 12 </ tr >
 13 < tr >
 14 < td >1313 Mockingbird Ln Mockingbird Heights, CA</ td >
 15 < td >$100,000</ td >
 16 </ tr >
 17 </ tbody >
 18 </ table >

 After a row is moved, or perhaps even as part of the initial markup, you may want to annotate each
row with its original index in the table. This could potentially be used to revert any changes without
calling the server. A data- or custom attribute (data-original-idx or original-idx respectively) is most
appropriate here.

 You may also want to track initial style information for an element, such as dimensions. If you allow
the user to dynamically adjust the width and height of an element, you will likely want a simple way to reset
these dimensions should your user have a change of heart. You can store the initial dimension alongside the
element, possibly using data- attributes.

 Connecting Elements
 Seemingly disparate elements may very well need to be aware of each other. For example, two elements
in which the visibility of each is determined by the visibility of the other. In other words, if one element is
visible, the other is not. How can these elements coexist in this way? Answer: by maintaining references to
each other.

 This scenario has a number of possible solutions. One would be to embed CSS selector strings for
each element’s partner element inside of a data- or custom attribute. Assuming this is reasonable, and a
unique selector is available, this is probably the best choice. If this is not possible, then you will need to
resort to maintaining a map of the Node objects. This can be done a couple of different ways with the help of
JavaScript objects. More on that later.

 Storing Models Directly in Your Elements
 You have a list of users on a page:

 1 < ul >
 2 < li >jack</ li >
 3 < li >jill</ li >
 4 < li >jim</ li >
 5 </ ul >

 Now, you may want to associate some common properties with each of these user elements for use
by other JavaScript components on the page. For example: the user’s age, ID, and email address. This may
be best specified as JSON and can be attached directly to the user element via either a data- or custom
attribute. You may find that such a solution is not appropriate for non-trivial data, such as JavaScript objects/
JSON. In that case, pairing a unique key that identifies the element alongside its data in a “plain” JavaScript
object is more appropriate. You can read more about this approach later in this chapter.

CHAPTER 6 ■ HTML ELEMENT DATA STORAGE AND RETRIEVAL

71

 Common Pitfalls of Pairing Data with Elements
 It’s becoming easier to pair data with your elements, thanks to rapidly evolving web and JavaScript
specifications. Don’t worry, I’ll cover specifics very soon. But life is not simple even with these advancements.
There is still potential for trouble, provided this new power is not used responsibly. Of course, life before the
modern web and JavaScript was much more difficult. Attaching trivial data to elements was done using primitive
means. Storing complex data, such as other Node s, could result in memory leaks. This section covers all of that.

 Memory Leaks
 When connecting two (or more) elements together, the natural instinct is to simply store a reference to the
other elements in some common JavaScript object. For example, consider the following markup:

 1 < ul >
 2 < li >Ford</ li >
 3 < li >Chevy</ li >
 4 < li >Mercedes</ li >
 5 </ ul >

 Each of these car types responds to click events, and when one of the cars is clicked, the clicked car
must be prominently styled, while all other cars must become less prominent. One way to accomplish that is
to store references to all elements in a JavaScript array and iterate over all elements in the array when one of
the list items is clicked. The clicked item must be colored red, while the others should be set to their default
color. Our JavaScript might look something like this:

 1 var standOutOnClick = function (el) {
 2 el.onclick = function () {
 3 for (var i = 0; i < el.typeEls.length; i++) {
 4 var currentEl = el.typeEls[i];
 5 if (el === currentEl) {
 6 currentEl.style.color = 'red';
 7 }
 8 else {
 9 currentEl.style.color = '';
 10 }
 11 }
 12 };
 13 },
 14 setupCarTypeEls = function () {
 15 var carTypes = [],
 16 carTypeEls = document.getElementsByTagName('LI');
 17
 18 for (var i = 0; i < carTypeEls.length; i++) {
 19 var thisCarType = carTypeEls[i];
 20 thisCarType.typeEls = carTypes;
 21 carTypes.push(thisCarType);
 22 standOutOnClick(thisCarType);
 23 }
 24 };
 25
 26 setupCarTypeEls();

CHAPTER 6 ■ HTML ELEMENT DATA STORAGE AND RETRIEVAL

72

 ■ Don’t use inline event handlers In the preceding example, I am assigning a click handler to an element
via the element’s onclick property. This is known as an inline event handler , and you should avoid doing it.
Because I haven’t covered events yet, I took this shortcut to keep the code example as simple as possible, but
you should never use inline event handler assignments in your code. To learn more about how to properly deal
with events without jQuery, take a look at Chapter 10 .

 Avoid inline style assignment In the preceding example, I change the color of a by altering the color
value of the element’s style property. I took this shortcut to keep the example as simple as possible, but you
should almost always avoid this type of style assignment in your code. The proper approach involves removing
or adding CSS classes for each element, with the proper styles/colors defined in a style sheet for these specific
classes. For more information on how to properly manipulate element CSS classes without jQuery, see Chapter 5 .

 The preceding code works in every browser available, including Internet Explorer 6, though a
large hidden issue exists. It demonstrates a circular reference involving a DOM object (the JavaScript
representation of the element) and a “plain” JavaScript object (the carTypeEls array). Each
references the carTypeEls array, which in turn references the element. This is a good example of a
well-documented memory leak present in Internet Explorer 6 and 7. The leak is so severe that the memory
may be unclaimed even after a page refresh. Luckily, Microsoft fixed this issue in Internet Explorer 8, 1 but
this demonstrates some early challenges with storing data alongside HTML elements.

 Managing Data
 For trivial amounts of data, you can make use of data- attributes or other custom attributes. But what if you
need to store a lot of data? You could perhaps attach the data to a custom property on the element. This is
known as an expando property . This is was illustrated in the previous example. To avoid potential memory
leaks, you may instead elect to store the data in a JavaScript object along with a selector string for the
associated element(s). This ensures the reference to the element is a “weak” one. Unfortunately, neither of
these approaches is particularly intuitive, and you get the feeling that you are either reinventing the wheel or
writing kludgey, brittle code along the way. Surely there must be an easier route.

 Then again, what is a “trivial” amount of data? When do attributes become a less-feasible storage
and retrieval mechanism? To developers who have not come across this problem before, the large array of
approaches may be a bit overwhelming. Can you simply make use of expando properties for all instances?
What are the drawbacks and advantages to one approach over the others? Don’t worry, you’ll not only
understand how and when to use a specific approach when storing element data, but you’ll also learn how
to do it easily and effectively in the final two sections of this chapter.

 Using a Solution for All Browsers
 Although there exist some pretty nifty ways to read and track element data in new specifications, such
as ECMAScript 2015 and HTML5, I realize that the browser support for some of these APIs is not yet
comprehensive. In a relatively short amount of time, these new tools will be implemented in the vast majority
of all browsers in use. Until then, you should understand how to accomplish these same tasks with the most
commonly available APIs. In some cases, the approaches described in this section are likely to withstand the
test of time and remain most appropriate and simplest even as web standards continue to evolve.

 1 https://msdn.microsoft.com/en-us/library/dd361842(VS.85).aspx

http://dx.doi.org/10.1007/978-1-4842-2235-5_10
http://dx.doi.org/10.1007/978-1-4842-2235-5_5
https://msdn.microsoft.com/en-us/library/dd361842(VS.85).aspx

CHAPTER 6 ■ HTML ELEMENT DATA STORAGE AND RETRIEVAL

73

 Storing Small Bits of Data Using data- Attributes
 Data attributes, which first appeared in the W3C HTML5 specification, 2 is one example of an existing standard
that is simple enough to be usable in all current browsers. Its simplicity and flexibility is such that it may be
leveraged in future incarnations of web specifications. In fact, data attributes already are a lot more powerful
due to a relatively new Element interface property defined in the HTML5 spec (more on that soon).

 The HTML5 specification declares data- attributes to be custom attributes. The two are one and the same.
The only valid custom attribute is a data- attribute. The specification describes data- attributes as follows:

 A custom data attribute is an attribute in no namespace whose name starts with
the string “data-” has at least one character after the hyphen. . . .

 The spec also gives data- attributes a specific purpose. They are “intended to store custom data private
to the page or application, for which there are no more appropriate attributes or elements.” So, if you need to
describe a title for an anchor link, use the title attribute. 3 If you must define a language for a paragraph that
differs from the language defined on the <html> element for the rest of the document, you should use the
 lang attribute. 4

 But what if you need to store an alternate URL for an , one that is used when the image either
receives focus via the keyboard or when the user hovers over it with a pointing device, such as a mouse.
In this instance, there is no standard attribute to store this information. So, we must make use of a custom
data-attribute:

 1 < img src="default.png"
 2 data-zoom-url="default-zoomed.png"
 3 alt="default image">

 The image to display on focus/hover is stored in the data-zoom-url attribute. We may follow the same
approach if we want to annotate a <video> with the offsets at which the scenes change:

 1 < video src="my-video.mp4" data-scene-offsets="9,22,38">

 The preceding video changes scenes at the 9-, 22-, and 38-second marks, according to the data-scene-
offsets custom attribute we’ve tied to the element.

 There are no drastic consequences for defining a custom element that does not confirm to the data-
convention defined in the HTML5 spec. The browser will not complain or fail to render your document. But
you will lose the ability to utilize any future portions of the API that build on this convention, including the
 dataset property. More on that specific property shortly.

 Reading and Updating data- Attributes with jQuery
 Now that we have a way to annotate our elements with a bit of data via our markup, how can we actually
 read this data in our code? If you are familiar with jQuery, you probably already know about the data() API
method. Just in case the details are a little fuzzy, take a look at the following example:

 1 < video src="my-video.mp4" data-scene-offsets="9,22,38">
 2
 3 < script >

 2 www.w3.org/TR/html5/dom.html#embedding-custom-non-visible-data-with-the-data-%2A-attributes
 3 www.w3.org/TR/html4/struct/global.html#edef-TITLE
 4 www.w3.org/TR/html4/struct/dirlang.html#adef-lang

http://www.w3.org/TR/html5/dom.html#embedding-custom-non-visible-data-with-the-data-*-attributes
http://www.w3.org/TR/html4/struct/global.html#edef-TITLE
http://www.w3.org/TR/html4/struct/dirlang.html#adef-lang

CHAPTER 6 ■ HTML ELEMENT DATA STORAGE AND RETRIEVAL

74

 4 // offsets value will be "9,22,38"
 5 var offsets = $('VIDEO').data('sceneOffsets');
 6 </ script >

 Notice that we must access the value of the data- attribute by referencing the unique portion of the
attribute name as a camel-case string. Changing the value of the data attribute is very similar:

 1 < video src="my-video.mp4" data-scene-offsets="9,22,38">
 2
 3 < script >
 4 // Does NOT update the attribute. Updates jQuery
 5 // internal data store instead.
 6 $('VIDEO').data('sceneOffsets', '1,2,3');
 7 </ script >

 Notice that there is something peculiar and unexpected about jQuery’s data() method. When
attempting to update the data- attribute via this method, nothing appears to happen. That is, the data-
scene-offsets attribute value remains unchanged in the document. Instead, jQuery stores this value, and
all subsequent values, in a JavaScript data store. There are a couple downsides to this implementation:

 1. Our markup is now out-of-sync with the element’s data.

 2. Any changes we make to the element’s data are only accessible to jQuery.

 Though there are some good reasons for this implementation, it seems unfortunate in this situation.

 Using the Web API to Read and Update data- Attributes
 Later, I describe a more modern way to read and update data- attributes using JavaScript with the same
elegance as jQuery’s data() method but without the drawbacks. In the meantime, let’s explore a solution
that will work with any browser:

 1 < video src="my-video.mp4" data-scene-offsets="9,22,38">
 2
 3 < script >
 4 // offsets value will be "9,22,38"
 5 var offsets = document.getElementsByTagName('VIDEO')[0]
 6 .getAttribute('data-scene-offsets');
 7 </ script >

 We’ve already seen this before back in the “reading attributes” section of the previous chapter.
The data- attribute is, of course, just an element attribute, so we can easily read it in any browser using
 getAttribute() .

 As you might expect, updating data- attributes without jQuery makes use of the setAttribute()
method, courtesy of the web API’s Element interface:

 1 < video src="my-video.mp4" data-scene-offsets="9,22,38">
 2
 3 < script >
 4 // updates the element's data attribute value to "1,2,3"
 5 document.getElementsByTagName('VIDEO')[0]
 6 .setAttribute('data-scene-offsets', '1,2,3');
 7 </ script >

CHAPTER 6 ■ HTML ELEMENT DATA STORAGE AND RETRIEVAL

75

 This primitive yet effective approach yields two benefits over jQuery’s data() method in this situation:

 1. Our markup is always in-sync with the element’s data.

 2. Any changes we make to the element’s data are accessible to any JavaScript.

 So, in this instance, the native solution may be a better route route.

 Complex Element Data Storage and Retrieval
 Simple element data consists of a short string, such as a phrase, word, or short sequence of characters or
numbers. Perhaps even a small JSON object or array can be considered simple. But what about complex
data? And what exactly is complex data?

 Remember the list of cars from the memory leaks section earlier in this chapter? I demonstrated a way
to link the individual list item elements such that we could easily highlight the clicked item while making
the other items in the list less prominent. We were associating JavaScript representations of HTML elements
with other elements. This can certainly be considered “complex” data.

 If we expand upon the previous example with the <video> tag , another example of complex element
data can be demonstrated. In addition to scene offsets, we also need to record a short description of each
scene, along with a title and a location. What we are describing here is something that demands a proper
JavaScript object instead of a single string of text stored as an attribute value.

 The solution I proposed in the memory leaks section involved use of expando properties, which was, in
part, responsible for a memory leak in older browsers. Even though this leak has been patched in all modern
browsers, expando properties are discouraged, as is modifying JavaScript representations of elements in any
non-standard way. The video data scenario I detailed earlier is far too much data to store in a data- attribute .
And of course, we shouldn’t resort to expando properties here either. So the proper way to associate these
types of complex data with elements is to maintain a JavaScript object that is linked to one or more elements
via a data- attribute. This is the approach jQuery takes, and we can do the same without jQuery fairly easily.

 The Familiar jQuery Approach
 The jQuery solution to our problem involves, as you might have already surmised, the data() method:

 1 $('VIDEO').data('scenes', [
 2 {
 3 offset: 9,
 4 title: 'intro',
 5 description: 'introducing the characters',
 6 location: 'living room'
 7 },
 8 {
 9 offset: 22,
 10 title: 'the problem',
 11 description: 'characters have some issues',
 12 location: 'the park'
 13 },
 14 {
 15 offset: 38,
 16 title: 'the resolution',
 17 description: 'characters resolve their issues',
 18 location: 'the cemetery'
 19 }
 20]);

CHAPTER 6 ■ HTML ELEMENT DATA STORAGE AND RETRIEVAL

76

 Now, if we want to look up the title of the second scene:

 1 // variable will have a value of 'the problem'
 2 var sceneTwoTitle = $('VIDEO').data('scenes')[1].title;

 jQuery maintains the array we supplied inside an internal cache object. Each cache object is
given an “index,” and this index is stored as the value of an expando property that jQuery adds to the
 HTMLVideoElement object , which is the JavaScript representation of a <video> tag .

 Using a More Natural Approach
 When deciding how to tie complex data to an element in this section, we must be aware of our three goals:

 1. No jQuery.

 2. Must work in all browsers.

 3. No expando properties.

 And we can respect the first two goals by mimicking jQuery’s approach to storing element data. To
respect the third, we must make some adjustments to jQuery’s approach. In other words, we will have to tie
our elements to the underlying JavaScript object via a simple data- attribute instead of an expando property:

 1 var cache = [],
 2 setData = function (el, key, data) {
 3 var cacheIdx = el.getAttribute('data-cache-idx'),
 4 cacheEntry = cache[cacheIdx] || {};
 5
 6 cacheEntry[key] = data;
 7 if (cacheIdx == null) {
 8 cacheIdx = cache.push(cacheEntry) - 1;
 9 el.setAttribute('data-cache-idx', cacheIdx);
 10 }
 11 };
 12
 13 setData(document.getElementsByTagName('VIDEO')[0],
 14 'scenes', [
 15 {
 16 offset: 9,
 17 title: 'intro',
 18 description: 'introducing the characters',
 19 location: 'living room'
 20 },
 21 {
 22 offset: 22,
 23 title: 'the problem',
 24 description: 'characters have some issues',
 25 location: 'the park'
 26 },
 27 {
 28 offset: 38,
 29 title: 'the resolution',
 30 description: 'characters resolve their issues',

CHAPTER 6 ■ HTML ELEMENT DATA STORAGE AND RETRIEVAL

77

 31 location: 'the cemetery'
 32 }
 33]);

 What’s going on here? First, I’ve created a convenience method (the setData function) to handle
association of data with a specific element, along with an array (cache) used to hold data for all my elements.
The setData function has been set up to accept an element, data key, and data object, while the cache array
holds one JavaScript object per element with data attached to (potentially) multiple key properties.

 When handling a call, we first check to see whether the element is already tied to data in our cache . If it
is, we look up the existing data object in cache using the array index stored in the data-cache-idx attribute
on the element and then add a new property to this object that contains the passed data. Otherwise, we create
a new object initialized to contain the passed data with the passed key. If this element does not yet have an
entry in cache , a data-cache-idx attribute with the index of the new object in cache must be created as well.

 As with the jQuery solution, we want to look up the title of second scene, and we can do that with just a
bit more code:

 1 var cacheIdx = document.getElementsByTagName('VIDEO')[0]
 2 .getAttribute('data-cache-idx');
 3
 4 // variable will have a value of 'the problem'
 5 var sceneTwoTitle = cache[cacheIdx].scenes[1].title;

 We could easily create a getData() function to accompany our setData() that makes storing and
looking up our element data a bit more intuitive. But this all-browser non-jQuery solution is surprisingly
simple. For an even more elegant non-jQuery approach that targets more modern browsers, check out the
next section, where I demonstrate the dataset element property and the WeakMap API.

 Removing Data from Our Cache When Elements Are Removed from the DOM

 One potential issue with the approach I just demonstrated is the fact that the cache will grow unbounded. It
would be useful to remove items from the cache when corresponding elements are removed from the DOM.
Ideally, we could simply “listen” to DOM element removal “events” and revoke elements from our cache
accordingly. Luckily, this is possible in most modern browsers natively, thanks to MutationObserver , a web
standard maintained by WHATWG as part of its DOM specification. 5 Internet Explorer 9 and 10 are holdouts,
but a polyfill fills in 6 those two gaps. Before MutationObserver , there was still native ability to observe
changes to the DOM via “Mutation Events,” but these proved to be highly inefficient and are no longer part of
any active specification. The polyfill I just referred to falls back to Mutation Events in IE10 and 9.

 Mutation Observers allow for a callback function to be executed whenever any change to any DOM
element (or its child or descendants) is detected. This is exactly what we are looking for. More specifically,
when a DOM element attached to a cache item is removed, we’d like to be notified so the cache can be
cleaned up. Take the <video> element from the cache example. Remember that we stored some data about
various scenes present in the video in a cache object. When the <video> is removed, the cache entry should
be removed as well to prevent our cache from growing needlessly. Using Mutation Observers, our code to
accomplish that may look something like this:

 1 var videoEl = document.querySelector('video'),
 2 observer = new MutationObserver(function (mutations) {
 3 var wasVideoRemoved = mutations.some(function (mutation) {

 5 https://dom.spec.whatwg.org/#mutation-observers
 6 https://github.com/webcomponents/webcomponentsjs/blob/v0.7.20/MutationObserver.js

https://dom.spec.whatwg.org/#mutation-observers
https://github.com/webcomponents/webcomponentsjs/blob/v0.7.20/MutationObserver.js

CHAPTER 6 ■ HTML ELEMENT DATA STORAGE AND RETRIEVAL

78

 4 return mutation.removedNodes.some(function (removedNode) {
 5 return removedNode === videoEl;
 6 });
 7 });
 8
 9 if (wasVideoRemoved) {
 10 var cacheIdx = videoEl.getAttribute('data-cache-idx');
 11 cache.splice(cacheIdx, 1);
 12 observer.disconnect();
 13 }
 14 });
 15
 16 observer.observe(videoEl.parentNode, {childList: true });

 There, all changes to children of our video’s parent element are being observed. If we observe the video
element directly, we won’t be notified when it is removed. The childList configuration option passed to
our observer ensures that we are notified whenever our video or any of its siblings are changed. When our
callback function is hit, if our video element was removed, we remove the corresponding entry in the cache
and then disconnect our Mutation Observer, since we no longer need it. For more on MutationObserver , 7
have a look at Mozilla Developer Network.

 The Future of Element Data
 Storing trivial or complex data without jQuery in all browsers is not particularly difficult, but it’s also not
very elegant. Luckily for us, the web is evolving quickly, and two new APIs exist that should make our code
more beautiful and maybe even a bit more performant. I’ll show you how to manage trivial element data
with the HTML5 dataset property, and complex data using the ECMAScript 2015 collection. Keep in mind
that everything in this section is meant for the latest browsers only. In each case, nothing older than Internet
Explorer 11 is an option. In a short amount of time all common browsers will be supported as the definition
of “modern browsers” evolves and the world leaves Internet Explorer 9 and 10 behind.

 The HTML5 Dataset Property
 The HTML5 specification, which became a recommendation in October of 2014, defined a new property on
the HTMLElement interface: dataset . 8 Think of this new property as a JavaScript object available on any element
object. In fact, it is an object, more specifically a DOMStringMap object, 9 which is also defined in the HTML5
spec. Any property you add to the dataset object is reflected as data- attribute on the element’s tag in your
document. You can also read any data- attribute defined on the element’s tag by checking the corresponding
property on the element’s dataset object. In this respect, HTMLElement.dataset provides all the behaviors you
have come to love about jQuery’s data() method. It’s an intuitive way to read and write data to an element,
without the drawbacks. Because changes to the properties on the dataset object are always synced to the
element’s markup, and vice-versa, this new standard property is a perfect way to deal with trivial element data.

 Element.dataset is currently available on a subset of “modern” browsers—Internet Explorer 9 and 10
are not supported, though polyfills are available, such as https://www.npmjs.com/package/dataset .

 7 https://developer.mozilla.org/en/docs/Web/API/MutationObserver
 8 www.w3.org/TR/html5/dom.html#dom-dataset
 9 www.w3.org/TR/html5/infrastructure.html#domstringmap-0

https://www.npmjs.com/package/dataset
https://developer.mozilla.org/en/docs/Web/API/MutationObserver
http://www.w3.org/TR/html5/dom.html#dom-dataset
http://www.w3.org/TR/html5/infrastructure.html#domstringmap-0

CHAPTER 6 ■ HTML ELEMENT DATA STORAGE AND RETRIEVAL

79

Keep this in mind when viewing the following code examples. And for our first demonstration, let’s re-write the
first code block displayed in the earlier section on reading and updating data- attributes using the web API:

 1 < video src="my-video.mp4" data-scene-offsets="9,22,38">
 2
 3 < script >
 4 // offsets value will be "9,22,38"
 5 var offsets = document.querySelector('VIDEO').dataset.sceneOffsets;
 6 </ script >

 Here we’ve simplified the earlier example quite a bit. Notice how we must use the camel-case form of
the data- attribute. Arguably, the dataset model is more intuitive to use than jQuery’s data() method . We
treat all of our data as properties on an object, which is exactly how jQuery represents this data internally.
But when using jQuery’s API, we are expected to call the function passing the key as a string argument.

 Take a look at a more modern version of the second code example, which illustrates how to change or
add data to an element:

 1 < video src="my-video.mp4" data-scene-offsets="9,22,38">
 2
 3 < script >
 4 // updates the element's data attribute value to "1,2,3"
 5 document.querySelector('VIDEO').dataset.sceneOffsets = '1,2,3';
 6 </ script >

 The element data has been updated along with the associated data- attribute, all with one simple and
elegant line of code. But we can do more! Because dataset is a JavaScript object, we can easily remove data
from our element, just as we would remove a property from any other JavaScript object:

 1 < video src="my-video.mp4" data-scene-offsets="9,22,38">
 2
 3 < script >
 4 // removes the element's data-scene-offsets attribute
 5 delete document.querySelector('VIDEO').dataset.sceneOffsets;
 6 </ script >

 You can now see how dataset actually exceeds the convenience of jQuery’s data() method.

 Leveraging ECMAScript 2015 WeakMap Collections
 You already know how to leverage the latest web technology to connect trivial data to elements. But what
about complex data? We could make use of our previous example, but maybe the latest and greatest web
specifications bring us a more elegant solution, maybe something more intuitive that is a perfect fit for this
type of problem.

 ECMAScript 2015 brings a new collection called a WeakMap . 10 A WeakMap can contain keys that are
objects and values that are anything —elements, objects, primitives, and so on. In this new collection, keys
are “weakly” held. This means that they are eligible for garbage collection by the browser if nothing else
references them. This allows us to safely use the reference elements as keys!

 10 www.ecma-international.org/ecma-262/6.0/#sec-weakmap-objects

http://www.ecma-international.org/ecma-262/6.0/#sec-weakmap-objects

CHAPTER 6 ■ HTML ELEMENT DATA STORAGE AND RETRIEVAL

80

 Although WeakMap is only supported in the latest and greatest browsers (Internet Explorer 11+,
Chrome 36+, Safari 7.1+) along with Firefox 6+, it provides an exceptionally simple way to associate HTML
elements with data. Remember the all-browser code examples demonstrated earlier? Let’s start rewriting
them using WeakMap :

 1 var cache = new WeakMap();
 2 cache.set(document.querySelector('VIDEO'), {scenes: [
 3 {
 4 offset: 9,
 5 title: 'intro',
 6 description: 'introducing the characters',
 7 location: 'living room'
 8 },
 9 {
 10 offset: 22,
 11 title: 'the problem',
 12 description: 'characters have some issues',
 13 location: 'the park'
 14 },
 15 {
 16 offset: 38,
 17 title: 'the resolution',
 18 description: 'characters resolve their issues',
 19 location: 'the cemetery'
 20 }
 21]});

 Thanks to WeakMap , we’ve managed to eliminate all the boilerplate from our earlier non-jQuery
example. The elegancy of this approach equals that of jQuery’s data() method, which I also demonstrated
earlier. Looking up data is just as easy:

 1 // variable will have a value of 'the problem'
 2 var sceneTwoTitle = cache.get(document.querySelector('VIDEO')).scenes[1].title;

 And finally, we can clean up after ourselves by removing elements we no longer want to track with a
simple API call:

 1 cache.delete(document.querySelector('VIDEO'));

 Once the element is removed from the DOM, the video element should be eligible for garbage
collection by the browser, assuming there are no other references to this element. Since the video element
reference is weakly held by WeakMap, this by itself does not prevent garbage collection. Since the video
element should then be removed from the WeakMap automatically once the element is no longer in the
DOM, we probably don’t even need to explicitly delete this entry.

 The web without jQuery is looking pretty powerful.

81© Ray Nicholus 2016
R. Nicholus, Beyond jQuery, DOI 10.1007/978-1-4842-2235-5_7

 CHAPTER 7

 Styling Elements

 If you are used to using jQuery’s css() method to work with styles in your document, this chapter is for
you. I can certainly relate to blind dependence on this magical aspect of the API. Adjusting the dimensions,
color, opacity, and any other style imaginable is really easy to do with the help of jQuery. Unfortunately, this
simplicity sometimes comes at a substantial cost.

 jQuery’s internal code that backs its easy-to-use CSS API has some notable performance issues. If you
value efficiency, and if you want to provide your users with an optimal experience, you should learn how to
properly manipulate and read element styles using the web API. Instead of relying on a “one-size-fits-all”
approach, you should choose the leanest route possible by bypassing jQuery’s abstraction.

 You may continue to rely on jQuery, or get rid of it entirely in favor of a more “natural” programmatic
approach . But there are concepts to be aware of other than which JavaScript methods and properties to
use. Consider the possibility that JavaScript is not always the best way to define styles in your document.
In addition to HTML and JavaScript, the browser provides a third valuable tool: style sheets.

 This book aims to provide you with a better understanding of the options provided natively by your
browser, with each chapter building on your newfound knowledge. In this chapter, you’ll learn some new
things about working with element styles, both with and without JavaScript. You’ll learn enough from
this chapter to understand when to target elements using CSS rules in style sheets instead of resorting to
JavaScript every time. Your strong knowledge of selectors and attributes, courtesy of the last few chapters,
will make this much easier.

 There Are Three Ways to Style Elements
 Before I dive into examples and details related to actually adjusting and reading back style information from
elements in your document, it’s important to get a few key concepts out of the way first. In this chapter, I show
you three distinct routes you may take when working with element styles. The first covers managing styles
directly in your markup—something that is not recommended, but possible. Another method involves making
changes to standardized properties on Element objects—one approach you may elect to take if you intend to
read or update styles on demand. Finally, I go over writing CSS rules inside of style sheets as a third option.

 Inline Styles
 A couple chapters back, I introduced you to the class attribute. Although this attribute is often used
for styling elements, it is also used for selecting and classifying them. This section introduces the style
attribute , which is used exclusively for adjusting the appearance of an element. This attribute is not new; it
was first introduced in 1996 as part of the first formal W3C CSS specification. 1

 1 www.w3.org/TR/REC-CSS1/#containment-in-html

http://www.w3.org/TR/REC-CSS1/#containment-in-html

CHAPTER 7 ■ STYLING ELEMENTS

82

 Let’s suppose you have a very simple document with a few heading elements and associated content.
You’ve decided that each <h2> should be blue, and each <h3> should be green. As a novice web developer,
or perhaps a developer without much knowledge of your styling options, you may choose to set the color of
these headings using the style attribute, which is available on all elements, as shown in Listing 7-1 .

 Listing 7-1. Setting Styles Using the Style Attribute

 1 < h1 >Fake News</ h1 >
 2 < div >Welcome to fakenews.com. All of the news that's unfit to print.</ div >
 3
 4 < h2 style="color: blue">World</ h2 >
 5
 6 < h3 style="color: green">Valdimir Putin takes up knitting</ h3 >
 7 < div >The infamous leader of Russia appears to be mellowing with age as he reportedly

joined a local knitting group in Moscow.</ div >
 8
 9 < h2 style="color: blue">Science</ h2 >
 10
 11 < h3 style="color: green">Sun goes on vacation, moon fills in</ h3 >
 12 < div >Fed up after over 4 billion years without a day off, the sun headed off to the

Andromeda galaxy for a few weeks of rest and relaxation.</ div >

 Looking at this example, you can see how the headings have been colored as desired. You can fit
multiple styles on a single element, simply by separating the styles with a semicolon. For example, suppose
we want to not only color each <h2> blue, but also ensure they stand out a bit more by making them bold:

 1 < h2 style="color: blue; font-weight: bold">World</ h2 >
 2
 3 ...
 4
 5 < h2 style="color: blue; font-weight: bold">Science</ h2 >

 Any standardized style 2 can be applied to any element, simply by using the style attribute as illustrated in the
preceding code fragments. But there are other ways to style your elements, as you will learn shortly, so why would
anyone choose this particular method? First, specifying your styles alongside your elements directly in the markup
seems like an intuitive and reasonable approach. But using the style attribute is most likely done out of laziness or
naivete more often than not. It’s painfully obvious how easy it is to specify styles for your elements this way.

 Styling your document using the style attribute , also known as inline styling , is something you should
 almost always avoid. Despite its simplicity and intuitiveness, there are a number of reasons why this practice
will cause you grief. First, inline styles add quite a bit of noise to your markup. In addition to content,
tags, and other attributes, now you have style attributes—perhaps for many of your elements. And these
attributes could very well contain a number of semicolon-separated styles. As your document begins to grow
and become more complex, this noise becomes more apparent.

 In addition to cluttering up the document, defining styles directly on each element in your markup
precludes you from easily re-skinning your page. Suppose a designer took a look at the preceding code
and informed you that the “green” and “blue” color values are a bit too “generic-looking,” and should be
substituted for slightly different colors. The designer then supplies you with hex codes for the new colors, and
this adjustment requires changing style attribute for all <h2> and <h3> elements in your document. This is
a common consequence of not following the “Don’t Repeat Yourself” principle 3 of software development.
Overuse of the style attribute can result in a maintenance nightmare.

 2 www.w3.org/TR/CSS2/
 3 www.artima.com/intv/dry.html

http://www.w3.org/TR/CSS2/
http://www.artima.com/intv/dry.html

CHAPTER 7 ■ STYLING ELEMENTS

83

 Defining styles in your document via the style attribute is also a potential security risk. If you intend
to implement a Content Security Policy, 4 styling elements using attributes is strictly prohibited in the most
basic (and safest) policy definition. A strong Content Security Policy, also known as a CSP, is becoming more
commonplace now that all modern browsers (with the exception of IE9) include support for at least the
initial version of the specification. 5

 Finally, peppering your page with style attributes—or <style> elements, which can contain various sets
of CSS rules—can result in more overhead. If a single style needs to be changed, now the entire document
has to be re-fetched by the browser the next time a user loads the page. If your styles were defined in a more
specific location, outside of your markup, style changes could be introduced while still allowing a portion of
your page to be fetched from the browser’s cache, avoiding an unnecessary round-trip to the server.

 I strongly suggest avoiding the use of style attributes. There are other much more appropriate options. The
initially visible benefits are shadowed by the hardships that will become a harsh reality further down the road.

 Working with Styles Directly on the Element Object
 The style property on the object representation of an element was first introduced in the year 2000 as
part of DOM Level 2. 6 It was defined as the lone property of a new ElementCSSInlineStyle interface .
The Element interface implements ElementCSSInlineStyle , which allows elements to be styled
programmatically using JavaScript. And all CSS properties, such as opacity and color , are accessible as
properties on the associated CSSStyleDeclaration 7 instance, where they can be read or updated.

 If all this talk of style properties isn’t clear, take another look at the code example from the previous section.
Listing 7-2 rewrites it by taking advantage of the style property that is available on all Element objects.

 Listing 7-2. Setting Styles Using the style Property : All Modern Browsers and Internet Explorer 8

 1 < h1 >Fake News</ h1 >
 2 < div >Welcome to fakenews.com. All of the news that's unfit to print.</ div >
 3
 4 < h2 >World</ h2 >
 5
 6 < h3 >Valdimir Putin takes up knitting</ h3 >
 7 < div >The infamous leader of Russia appears to be mellowing with age as he report

edly joined a local knitting group in Moscow.</ div >
 8
 9 < h2 >Science</ h2 >
 10
 11 < h3 >Sun goes on vacation, moon fills in</ h3 >
 12 < div >Fed up after over 4 billion years without a day off, the sun headed off to the

Andromeda galaxy for a few weeks of rest and relaxation.</ div >
 13
 14 < script >
 15 var headings = document.querySelectorAll('h2, h3');
 16
 17 for (var i = 0; i < headings.length; i++) {
 18 if (headings[i].tagName === 'H2') {
 19 headings[i].style.color = 'blue';
 20 }

 4 https://developer.mozilla.org/en-US/docs/Web/Security/CSP/Introducing_Content_Security_Policy
 5 www.w3.org/TR/2012/CR-CSP-20121115/
 6 www.w3.org/TR/DOM-Level-2-Style/css.html#CSS-ElementCSSInlineStyle
 7 www.w3.org/TR/DOM-Level-2-Style/css.html#CSS-CSSStyleDeclaration

https://developer.mozilla.org/en-US/docs/Web/Security/CSP/Introducing_Content_Security_Policy
http://www.w3.org/TR/2012/CR-CSP-20121115/
http://www.w3.org/TR/DOM-Level-2-Style/css.html#CSS-ElementCSSInlineStyle
http://www.w3.org/TR/DOM-Level-2-Style/css.html#CSS-CSSStyleDeclaration

CHAPTER 7 ■ STYLING ELEMENTS

84

 21 else {
 22 headings[i].style.color = 'green';
 23 }
 24 }
 25 </ script >

 That seems a bit clumsy, but it illustrates how you can programmatically update styles using the web API.
 In the last section, I extended the initial code fragment to illustrate how to define multiple styles on a

single element. Let’s see how we can do this with the style property:

 1 < h2 >World</ h2 >
 2
 3 ...
 4
 5 < h2 >Science</ h2 >
 6
 7 < script >
 8 var headings = document.querySelectorAll('h2');
 9
 10 for (var i = 0; i < headings.length; i++) {
 11 headings[i].style.color = 'blue';
 12 headings[i].style.fontWeight = 'bold';
 13 }
 14 </ script >

 Notice that the font-weight CSS style name has been converted to camel case, which is perfectly
legal, but we can still change this style using the dashed name, if we really want to, like this: headings[i].
style['font-weight'] = 'bold' .

 We’re not done just yet; there is another way to set multiple styles on a single HTML element using the
 style property. The CSSStyleDeclaration interface defines a special property: cssText . This allows you to
read and write multiple styles to the associated element. The value string looks exactly like a collection of
semicolon-separated CSS rules, as you can see in Listing 7-3 .

 Listing 7-3. Setting Multiple Styles Using the style.cssText Property : All Modern Browsers and Internet
Explorer 8

 1 < h2 >World</ h2 >
 2
 3 ...
 4
 5 < h2 >Science</ h2 >
 6
 7 < script >
 8 var headings = document.querySelectorAll('h2');
 9
 10 for (var i = 0; i < headings.length; i++) {
 11 headings[i].style.cssText = 'color: blue; font-weight: bold';
 12 }
 13 </ script >

 Why might you want to make use of the style property on an element (or elements)? Maybe you
are writing a JavaScript library that needs to make a few quick adjustments to some elements based on
environmental or user input. It may be inconvenient to create and depend on a library-specific style sheet

CHAPTER 7 ■ STYLING ELEMENTS

85

for these styles. Also, styles set using this method will usually override any other styles previously set on the
element, which may be your intent.

 But be careful about overusing this power. Styles set in this manner are difficult to override via style
sheet rules. This may be your intent, but it also may not. If it is not, and you want to allow style sheets to
easily make adjustments to styles, you will likely want to avoid changing styles using the style property
(or inline styles). Finally, using the style property can make it very difficult to track down style changes, and
can clutter up your JavaScript. It seems unnatural for your code to be focused on setting specific element
styles. This should be a rare practice. As you’ll see in the next section, this job is better suited for style sheets.

 Style Sheets
 JavaScript isn’t the only way to attack styling challenges in the browser. It probably isn’t even the best way
to change the appearance of your elements. The browser provides a dedicated mechanism for styling your
document: style sheets. Through this medium you may define all CSS styles for your web document in
dedicated files, encapsulated in a specific HTML element, or even add them to the document via JavaScript
on demand. I’ll demonstrate each of these three methods for working with styles in this section.

 The <style> element, first defined in the W3C CSS 1 specification, 8 lets us group all of our styles for an
entire document in one convenient location. Listing 7-4 is a rewrite of the previous code fragment, this time
with style added courtesy of HTMLStyleElement .

 Listing 7-4. Setting Styles Using the <style> Element: All Browsers

 1 < style >
 2 h2 { color: blue; }
 3 h3 { color: green; }
 4 </ style >
 5
 6 < h1 >Fake News</ h1 >
 7 < div >Welcome to fakenews.com. All of the news that's unfit to print.</ div >
 8
 9 < h2 >World</ h2 >
 10
 11 < h3 >Valdimir Putin takes up knitting</ h3 >
 12 < div >The infamous leader of Russia appears to be mellowing with age as he report edly

joined a local knitting group in Moscow.< div >
 13
 14 < h2 >Science</ h2 >
 15
 16 < h3 >Sun goes on vacation, moon fills in</ h3 >
 17 < div >Fed up after over 4 billion years without a day off, the sun headed off to the

Andromeda galaxy for a few weeks of rest and relaxation. < div >

 As you can see, all the JavaScript code used to style these elements in the previous section is completely
replaced by two lines of CSS. Not only is this a more efficient solution, it’s also much more elegant and
straightforward. And if we want to add additional styles, we can easily do so by including them among the
existing styles, semicolon-separated:

 1 < style >
 2 h2 {

 8 www.w3.org/TR/REC-CSS1/

http://www.w3.org/TR/REC-CSS1/

CHAPTER 7 ■ STYLING ELEMENTS

86

 3 color: blue;
 4 font-weight: bold;
 5 }
 6 h3 {
 7 color: green;
 8 font-weight: bold;
 9 }
 10 </ style >
 11 ...

 The preceding styles could even be improved a bit using the power of the multiple selector , which you
learned about earlier:

 1 < style >
 2 h2 , h3 { font-weight: bold; }
 3 h2 { color: blue; }
 4 h3 { color: green; }
 5 </ style >
 6 ...

 Jamming your styles into a <style> element may be fine for a small set of rules, but this is probably
not ideal for a complex document. Perhaps you even want styles to be shared across documents/pages.
Duplicating these styles in each HTML document doesn’t seem like a scalable approach. Luckily, there is a
better way—style sheets—as shown in Listings 7-5 and 7-6 .

 Listing 7-5. styles.css External Style Sheet: All Browsers

 1 h2 { color: blue; }
 2 h3 { color: green; }

 Listing 7-6. index.html Setting Styles Using an External CSS Style Sheet File: All Browsers

 1 < link href="styles.css" rel="style sheet">
 2
 3 < h1 >Fake News</ h1 >
 4 < div >Welcome to fakenews.com. All of the news that's unfit to print.</ div >
 5
 6 < h2 >World</ h2 >
 7 ...

 We’ve defined two files here: styles.css and index.html . The first houses our style sheet, the second
contains our markup. In our index file, we can pull in all of these styles simply by referencing the styles.css
file via the <link> element, which can be seen as early as the HTML 2.0 specification. 9 This may not be new
knowledge for many of you, but it’s easy to lose sight of the entire picture when you are accustomed to using
a tool like jQuery, which sometimes seems to be a solution to all browser problems.

 It is rarely appropriate to rely exclusively on JavaScript in any form (including through jQuery’s API) to
style your markup. Cascading Style Sheets exist for this purpose. But that does not mean that there is never
an occasion where it is appropriate to dynamically change styles directly through JavaScript. Perhaps you

 9 www.w3.org/MarkUp/html-spec/html-spec_toc.html#SEC5.2.4

www.allitebooks.com

http://www.w3.org/MarkUp/html-spec/html-spec_toc.html#SEC5.2.4
http://www.allitebooks.org

CHAPTER 7 ■ STYLING ELEMENTS

87

have constructed a web application that allows your users to create their own custom landing page. Your
user needs to display all secondary headings in italics. To easily do this, you can programmatically add a CSS
rule to the document using the insertRule method on the CSSStyleSheet interface :

 1 // This grabs the first loaded style sheet on the current page.
 2 // This also assumes the first style sheet is appropriate here.
 3 var sheet = document.style Sheets[0]
 4
 5 sheet.insertRule(
 6 'h2 { font-style: italic; }', sheet.cssRules.length - 1
 7)

 The preceding example will create a new style that will display all <h2> elements in italics. The rule will
be appended to the end of a style sheet. The style sheet variable can refer to a <style> element we’ve
created on demand for these sorts of dynamic styles, or even an existing style sheet imported using a <link>
tag. If you need to support Internet Explorer 8, you’ll have to use addRule instead, if it is defined in the
browser’s implementation of the DOM API.

 Using style sheets is almost always the preferred approach over a JavaScript- only solution. Even so, it
is often acceptable to take a holistic approach , incorporating JavaScript, HTML, and style sheets into your
solution as the situation dictates.

 Now that you have a more complete understanding of the possibilities, you are in a better position
to make these kinds of decisions correctly in your own projects. The rest of this chapter is dedicated to
more specific styling situations. As is customary in Beyond jQuery , I use the familiar jQuery approach as a
reference, followed by copious web API examples as part of a discussion of alternatives.

 Getting and Setting Generalized Styles
 After describing and demonstrating several distinct ways to add style to your HTML elements, it’s now time
to examine working with CSS a bit closer. If you are familiar with jQuery (and if you are reading this book,
you probably are), then you already know that there is typically one narrow path to adjusting document look
and feel when using jQuery. I’ll provide a demonstration, for the purposes of reference. But the native route
provided by the browser stack is much richer. In this section, you’ll see how to properly get styles and set
them dynamically without any assistance from jQuery.

 To set up the jQuery and non-jQuery demonstrations below, let’s start with a simple HTML fragment:

 1 < button >cookies</ button >
 2 < button >ice cream</ button >
 3 < button >candy</ button >

 Suppose you would like to style a button a bit differently after it is clicked (or selected via the keyboard).
The clicked button should be styled in some way to indicate that it has been selected. I haven’t covered
event handlers yet (though I will in a later chapter), so just assume that a function already exists with the
associated button element passed in as a parameter whenever the button is selected. Your job is to fill in the
implementation of this function by changing the background and border color of the selected button to blue,
and the button text to white.

 And to demonstrate reading styles (and further demonstrate setting them), consider an element that
has already been styled as a box. Whenever this box is clicked, it becomes slightly more opaque, until it
disappears entirely. Again, assume you are passed a function whenever the box is clicked. Your job is to
make the box 10% more opaque whenever this function is called. I walk you through both solutions in this
section, starting with the (likely) familiar jQuery approach.

CHAPTER 7 ■ STYLING ELEMENTS

88

 Using jQuery
 jQuery, being a very popular JavaScript library relied upon by far too many developers, has a duty (in my
humble opinion) to teach these developers the proper way to adjust element styles. Unfortunately, it fails
to do so. Even the jQuery Learning Center article on styling 10 only briefly touches on how to properly style
elements, without any real demonstration of this technique at all. The reason for this is simple: idiomatic
jQuery is often at odds with best practices. That fact was one of several inspirations for this book. Let’s see
how most jQuery-minded developers would solve the problem:

 1 function onSelected($selectedButton) {
 2 $selectedButton.css({
 3 color: 'white',
 4 backgroundColor: 'blue',
 5 borderColor: 'blue'
 6 });
 7 }

 When writing styles to elements, the css method acts as a wrapper around the style property on the
 HTMLElement interface. This is elegant, no doubt, but is it really the proper approach? The answer, of course,
is “no.”. I covered this earlier. Granted, the previously described way is not the only solution to this problem
using jQuery, but it is the most common one among jQuery developers.

 Now, let’s examine how one would typically solve the second problem using jQuery:

 1 function onClicked($clickedBox) {
 2 var currentOpacity = $clickedBox.css('opacity');
 3
 4 if (currentOpacity > 0) {
 5 $clickedBox.css('opacity', currentOpacity - 0.1);
 6 }
 7 }

 Unfortunately, jQuery’s css API method is quite inefficient. Each call to this method to look up a style
requires jQuery to utilize the getComputedStyle() method on the window object, which is completely
unnecessary after the first call and adds a notable amount of processing overhead to this solution.

 Without jQuery
 The proper way to solve the first problem is to include the CSS rules in an external style sheet and trigger
these rules using minimal JavaScript. Remember, we are looking to style a button, when it is selected/
pressed, to stand out. We can expect a function to be called, with the element passed as a parameter, when
the button is pressed.

 Let’s start by defining our styles for the pressed button in a style sheet, as shown in Listing 7-7 .

 Listing 7-7. styles.css Pressed Button Styles : All Browsers

 1 button.selected {
 2 color: white;
 3 background-color: blue;
 4 border-color: blue;
 5 }

 10 https://learn.jquery.com/using-jquery-core/css-styling-dimensions/

https://learn.jquery.com/using-jquery-core/css-styling-dimensions/

CHAPTER 7 ■ STYLING ELEMENTS

89

 When the button is pressed, all we need to do is add a CSS class to the element to trigger the styles
defined in the styles.css file. Now we need to implement the function that adds the “selected” class to this
button in order to trigger the style rules defined in the style sheet:

 1 function onSelected(selectedButton) {
 2 selectedButton.className += ' selected';
 3 }

 What follows is a line to import the CSS file, our button element, and the function that, when called,
triggers the previously defined style rules on the button:

 1 < link rel="style sheet" href="styles.css">
 2 < script src="button-handler.js"></ script >
 3 < button >demo button</ button >

 This approach has a few advantages. First, it demonstrates a separation of concerns. In other words, rules
for display belong in style sheets, behavior in JavaScript files, and content in HTML files. This separation makes
maintenance simpler and potentially less risky. It also ensures that if, for example, the styles are adjusted, the
HTML and JavaScript files continue to be cached by the browser. If all this logic were jammed into a single
HTML file, the entire file would have to be re-downloaded by the browser, regardless of the scope of the change.

 Another advantage of tying these styles to a CSS class and defining this in an external style sheet is that these
can be easily re-used for other purposes elsewhere in this document, or any other document. The idiomatic jQuery
approach leaves us copying and pasting the same styles over and over again, since we are defining them inline.

 And the second scenario? Remember, we want to increase the opacity of a box by 10% each time it is
clicked. Again, we are given a function that will be called with the box element whenever it is clicked:

 1 function onClicked(clickedBox) {
 2 var currentOpacity = clickedBox.style.opacity ||
 3 getComputedStyle(clickedBox, null).opacity;
 4
 5 if (currentOpacity > 0) {
 6 clickedBox.style.opacity = currentOpacity - 0.1;
 7 }
 8 }]

 Our optimized non-jQuery approach is a little more code, but it is much faster than the idiomatic
jQuery solution. 11 Here, we are only utilizing the expensive call to getComputedStyle 12 when there is no
style defined on the element’s style property. getComputedStyle determines an element’s actual style
by examining not only the element’s style property, but also by looking at any available style sheets. As a
result, this operation can be a bit expensive, so we avoid it unless absolutely necessary.

 Setting and Determining Element Visibility
 Showing and hiding elements is a common problem in web development. These tasks may not be
straightforward, but it’s often even more complicated to determine, programmatically, whether an element
is visible or not. Traditionally, element visibility is a confounding problem for developers to deal with. But it
doesn’t have to be this way. There are two ways to do handle element visibility: the way you’ve always done it
(using jQuery) and the correct way (without jQuery). You’ll see how inefficient jQuery is in this context, and
how this illustrates why blind faith in this type of software library is dangerous.

 11 http://jsperf.com/jquery-css-vs-optimized-non-jquery-approach3
 12 www.w3.org/TR/DOM-Level-2-Style/css.html#CSS-CSSview-getComputedStyle

http://jsperf.com/jquery-css-vs-optimized-non-jquery-approach3
http://www.w3.org/TR/DOM-Level-2-Style/css.html#CSS-CSSview-getComputedStyle

CHAPTER 7 ■ STYLING ELEMENTS

90

 The Typical jQuery Approach
 The upside of using jQuery to show, hide, and determine the visibility of an element is simplicity. As you’ll
find out soon, this is the only upside. But for now, let’s focus on this advantage.

 Hiding and showing elements with jQuery is almost always accomplished using the show() and
 hide() API methods , respectively. There’s no real need to create a fragment of HTML to demonstrate these
methods, so let’s just dive into a couple code samples:

 1 // hide an element
 2 $element.hide();
 3
 4 // show it again
 5 $element.show();

 None of that code demands further elaboration. What does need further examination is the underlying
code that actually carries out these operations. Unfortunately, both of these methods make use of window.
getComputedStyle , a method discussed in the last section. In some cases, particularly with hide() ,
 getComputedStyle() may be called multiple times. This has serious performance consequences. Why is all
this processing power needed simply to hide or show a single DOM element? For the most part, all the clever
and generally unnecessary code underneath these two commonly used API methods is in place solely to
handle styling edge cases where it is otherwise difficult to show or hide a targeted element. As I said before,
element visibility doesn’t have to be a complex problem. We can avoid all the CPU cycles required by jQuery
to hide and show elements simply by adopting a simpler approach. More on that in the next section, where I
discuss the “native web approach” to this problem.

 What if we need to figure out whether a specific element is hidden or not? Well, jQuery makes this really
easy too:

 1 // is the element visible?
 2 $element.is(':visible');
 3
 4 // conversely, is the element hidden?
 5 $element.is(':hidden');

 jQuery has decided to invent a couple of new pseudo-classes to represent element visibility. Even the
creator of jQuery, John Resig, went on at length about the usefulness of this new innovative jQuery concoction. 13
But just like show() , hide() , and the css() API methods, these two non-standard pseudo-classes are quite slow.
Again, they delegate to window.getComputedStyle() , again, sometimes multiple times per invocation.

 In the next section, I outline several non-jQuery methods of showing and hiding elements, as well as
determining the visibility of an element. The performance differences between the native and the jQuery
methods will be included as well, and the differences will be notable, to say the least.

 The Native Web Approach
 Ultimately, jQuery’s long-standing approach to toggling element visibility was exceptionally complex, and
this contributed to potentially crippling performance issues. After reframing the problem, it became clear
that the simplest approach was the best and most efficient one. The jQuery 3.0 release notes even suggest
instead using a class name that is tied to appropriate CSS to show or hide hide an element.

 13 http://ejohn.org/blog/selectors-that-people-actually-use/

http://ejohn.org/blog/selectors-that-people-actually-use/

CHAPTER 7 ■ STYLING ELEMENTS

91

 The simplicity of hiding, showing, and evaluating the visibility of an element in jQuery is compelling.
This is the part where you may expect me to say something like, “It is a bit more difficult to do all of this
without jQuery,” or, “There’s an easy way to solve this problem without jQuery, but it requires use of
bleeding-edge browsers.” In reality, it is very easy to show, hide, and determine element visibility in any
browser without jQuery. jQuery developers may want you to believe that these are complex problems to
solve, and that you need jQuery to solve them, but none of this is true. In this section, I demonstrate some
simple conventions that will result in simple solutions.

 There are many ways to hide an element. Some of the more unconventional methods include setting
the element’s opacity to 0, or setting the position to “absolute” and positioning it outside the visible page.
These and other similar approaches may be effective, but they are generally considered to be “kludge.” As a
result, using these methods is generally discouraged when attempting to hide an element. Please don’t do
this; there are better ways.

 A more reasonable approach involves setting the element’s display style property to “none”. As you
have already learned, there are a number of different ways to adjust an element’s style. But you have also
learned that the best approach is to define this style in an external style sheet. So, perhaps the best solution
would be to define a custom CSS class or attribute in your style sheet, include a display: none style for this
selector, and then add the associated class or attribute to this element when it needs to be hidden.

 So, which should we choose? An attribute or a CSS class? Does it really matter? The W3C HTML5
specification defines a hidden Boolean attribute, 14 which, as you might expect, allows you to hide an element
simply by adding this attribute to the element. Not only does this standardized attribute allow you to easily hide
an element, it also enhances the semantics of your markup and provides a useful cue to all screen readers. 15
Yes, it even makes your elements more accessible. And because the hidden attribute is part of a formal
specification, it isn’t just a convention—it represents the standardized way to deal with element visibility.

 At this point, you are probably checking to see which browsers support this attribute. Let me save you
the trouble—not all of them. In fact, the hidden attribute wasn’t first supported by Microsoft until Internet
Explorer 11. Luckily, the polyfill for the standardized hidden attribute is unbelievably simple and elegant : just
add the rule shown in Listing 7-8 to your global style sheet.

 Listing 7-8. Polyfill for Standardized Hidden Attribute : All Browsers

 1 [hidden] { display: none; }

 ■ Making sure your element is always hidden The native hidden attribute marks an element as “irrelevant,”
which does not always mean that the element will be invisible to the eye. For example, if an element has an
explicitly declared display style, such as display: block , the native hidden attribute will not remove it from
view. Furthermore, simply including the preceding “polyfill” for this attribute will not always ensure the element is
hidden from view either. That is due to the rules of specificity, outlined in W3C’s CSS2 specification. 16 Specificity
determines which of several competing styles associated with an element “win.” For example, if a display:
block rule pointing to the same element with a higher specificity exists, the element will remain visible. If you want
any element with a hidden attribute to never be visible, you must utilize the following rule in your style sheet:

 1 [hidden] { display: none !important; }

 14 www.w3.org/TR/html5/editing.html#the-hidden-attribute
 15 www.html5accessibility.com/tests/hidden2013.html
 16 www.w3.org/TR/CSS2/cascade.html#specificity

http://www.w3.org/TR/html5/editing.html#the-hidden-attribute
http://www.html5accessibility.com/tests/hidden2013.html
http://www.w3.org/TR/CSS2/cascade.html#specificity

CHAPTER 7 ■ STYLING ELEMENTS

92

 Given the preceding one-line polyfill, you can hide any element in any browser with the following line
of JavaScript:

 1 element.setAttribute('hidden', '');

 Hiding elements couldn’t possibly be simpler, more elegant, or more performant. This approach is
incredibly faster than jQuery’s hide() API method. In fact, jQuery’s hide() method is more than 25 times
slower! 17 There is no reason to continue using jQuery to hide elements.

 Since the simplest and most performant method of hiding an element involves adding an attribute, you
may not be surprised to learn that you can show the same element simply by removing that same attribute:

 1 element.removeAttribute('hidden');

 Because we’re following this convention—add an attribute to hide and element and remove it to
show the element again—determining the visibility of the element is simple. All we need to do is check the
element for the existence of this attribute, which is a trivial operation in all notable browsers:

 1 // the element is hidden if this returns true
 2 element.hasAttribute('hidden');

 Yes, it’s really that easy.

 Determining Width and Height of Any Element
 Before I review how jQuery allows you to check the width and height of an element, and how you can easily
do this without using a DOM abstraction , you need to understand some basic concepts. The most critical
specification required to intelligently calculate the width and height of any element is the box model. 18

 Every element is a box. One more time: every element is a box . This is simple, yet very surprising for
many web developers to hear. Once you get over the initial shock of this realization, the next step is to
understand how an element’s box is divided up. This is called the box model . Look at Figure 7-1 , a drawing of
the box model from the World Wide Web Consortium’s CSS 2.1 specification.

 As you can see, an element, which again is a box , is made up of four “layers”: content, padding,
border, and margin. Simply put, an element’s content, padding, and border are used to determine its
height and width. Margins are not considered to be part of an element’s “dimensions”—they simply push
other elements away instead of influencing the element’s height and width. How you measure width and
height largely depends on which of the first three layers you care about. Generally speaking, an element’s
dimensions can take into account a subset of these three layers—content and padding—or all three layers.
jQuery takes a different approach and only considers the content dimensions. More on that next.

 17 http://jsperf.com/jquery-hide-vs-setattribute-hidden
 18 www.w3.org/TR/CSS21/box.html

http://jsperf.com/jquery-hide-vs-setattribute-hidden
http://www.w3.org/TR/CSS21/box.html

CHAPTER 7 ■ STYLING ELEMENTS

93

 Examining an Element Using jQuery
 Just as with the web API—described in the following section—there are many ways to discover the
dimensions of an element using jQuery’s API. You may already be aware of some or even all of these
methods. What you may not be aware of is the poor performance associated with jQuery’s built-in element
dimension methods—most developers are not. And why should you? The methods are so simple and
elegant, the possibility that you are paying a substantial penalty in terms of performance is not often a
concern. You probably trust that this critical library is not degrading the efficiency of your application in any
noticeable way. But you would be wrong.

 The most visible API methods are width() and height() . Remember the box model diagram from
Figure 7-1 ? These two jQuery methods only measure the “content” portion of an element’s box. This sounds
like a reasonable behavior, but it is not necessarily a complete representation, since content only accounts
for a portion of an element’s actual width and height. Remember that margin is the only element of the box
model that does not directly affect the visible width and height of an element. Also remember that jQuery
isn’t magic—it must delegate to the web API for all of its API methods. And the web API does not provide a
simple way to determine the dimensions of an element’s content. So, jQuery must perform some unpleasant
operations in order to determine these values, sacrificing performance as a result. When I demonstrate how
to calculate the width and height of an element using the web API in the next section, I’ll show you just how
relatively inefficient jQuery’s other width and height API methods really are.

 Figure 7-1. The box model. Copyright 2015 W3C. License available at www.w3.org/Consortium/Legal/2015/
copyright-software-and-document .

http://www.w3.org/Consortium/Legal/2015/copyright-software-and-document
http://www.w3.org/Consortium/Legal/2015/copyright-software-and-document

CHAPTER 7 ■ STYLING ELEMENTS

94

 Options Natively Provided by the Browser
 Although jQuery’s width and height are popular methods, there is no similar pair of methods or properties
to be found in any web specification. The appeal of these methods is likely tied to their suggestive names.

 To better illustrate the code in this section, I’ll start off with a simple element that takes up space in all
four segments of the box model :

 1 < style >
 2 .box {
 3 padding: 10px;
 4 margin: 5px;
 5 border: 3px solid;
 6 display: inline-block;
 7 }
 8 </ style >
 9 < span class="box">a box</ span >

 Width and Height of Content + Padding
 To obtain the width or height of the preceding box, only considering the content and padding values, we can
use the clientWidth 19 and clientHeight 20 properties found on the Element interface. These are comparable
to jQuery’s innerWidth() and innerHeight() API methods, but the web API has significant performance
advantages over jQuery’s solution. 21 The native solution is about ten times faster!

 These properties were first defined in the Cascading Style Sheet Object Model (CSSOM) View
specification, 22 drafted by the W3C. As of mid-2016, the CSSOM spec is not yet a recommended standard—
in fact, it is only a working draft. But these two Element properties, along with many of the other items
represented in this specification, have been supported by browsers for a very long time. For example, the
 Element.clientWidth and Element.clientHeight properties are supported all the way back to Internet
Explorer 6, yet they are only currently defined in this working draft spec. That seems a bit strange, doesn’t it?
Indeed it is, but the CSSOM spec is a special one. It exists mostly to codify and formally standardize long-
standing CSS-related browser behaviors. Element.clientWidth and Element.clientHeight are two such
examples, but you will see others in this section as well.

 Listing 7-9 shows what clientWidth and clientHeight return on the in our markup from earlier.

 Listing 7-9. Find width/height of Content + Padding: Web API, Modern Browsers, and Internet Explorer 8

 1 // returns 38
 2 document.querySelector('.box').clientHeight;
 3
 4 // returns 55
 5 document.querySelector('.box').clientWidth;

 19 www.w3.org/TR/cssom-view/#dom-element-clientwidth
 20 www.w3.org/TR/cssom-view/#dom-element-clientheight
 21 http://jsperf.com/innerheight-vs-element-clientheight
 22 www.w3.org/TR/cssom-view/

http://www.w3.org/TR/cssom-view/#dom-element-clientwidth
http://www.w3.org/TR/cssom-view/#dom-element-clientheight
http://jsperf.com/innerheight-vs-element-clientheight
http://www.w3.org/TR/cssom-view/

CHAPTER 7 ■ STYLING ELEMENTS

95

 Note that the preceding return values may vary slightly between browsers, as default fonts and styling may also
vary slightly between browsers. This will ultimately lead to a slight variance in the size of the element’s content,
which is to be expected.

 There is something else at play here that you may not be aware of. Notice the display: inline-
block style attached to our element? Remove it and check the return values of clientWidth and
 clientHeight again. Without this style, both of these properties report a value of 0 . By default, all browsers
render elements as display: inline , and inline elements will always report 0 as their clientWidth
and clientHeight . Keep this in mind when using these properties. Note that floating a default inline
element will also allow you to calculate width and height this way.

 For comparison, jQuery’s width() and height() methods return 35 and 18 , respectively. Remember
that these methods only consider the element’s content, ignoring padding, border, and margin.

 Width and Height of Content + Padding + Border
 What if you need to include the border when reporting the width and height of an element? That is, content,
padding, and border? Simple—use HTMLElement.offsetWidth 23 and HTMLElement.offsetHeight . 24 These
properties have also long been implemented by browsers, but only first brought into a formal specification
in the CSSOM View standard. Both properties are comparable to jQuery’s outerWidth() and outerHeight()
methods, as shown in Listing 7-10 .

 Listing 7-10. Find width/height of Content + Padding + Border: Web API, Modern Browsers, and Internet
Explorer 8

 1 // returns 44
 2 document.querySelector('.box').offsetHeight;
 3
 4 // returns 61
 5 document.querySelector('.box').offsetWidth;

 As expected, these values are a bit larger than what clientHeight and clientWidth report since we are
also taking border into account. In fact, each value is exactly 6 pixels larger. This is expected due to a border
of 3 pixels on each side, defined in our <style> element.

 Again, the returned values above may vary slightly between browsers due to the way browsers style
element content. Also, display: inline-block is not needed for offsetHeight and offsetWidth —they will
 not report a zero height and width for inline elements.

 There is a lot more to discuss regarding styling elements, but this book is about so much more. I’ve
provided you with some of the critical concepts that will allow you to end your dependence on jQuery when
facing other styling-related challenges going forward.

 23 www.w3.org/TR/cssom-view/#dom-htmlelement-offsetwidth
 24 www.w3.org/TR/cssom-view/#dom-htmlelement-offsetheight

http://www.w3.org/TR/cssom-view/#dom-htmlelement-offsetwidth
http://www.w3.org/TR/cssom-view/#dom-htmlelement-offsetheight

97© Ray Nicholus 2016
R. Nicholus, Beyond jQuery, DOI 10.1007/978-1-4842-2235-5_8

 CHAPTER 8

 DOM Manipulation

 One of the most confusing and misunderstood aspects of the web API pertains to DOM manipulation.
I suspect you are already used to working with DOM elements through jQuery. But is it necessary to
continue depending on a library in this regard? In this chapter, I show you how to create, update, and move
elements and element content without any help from third-party code. You’ll come to appreciate how easy it
is to work with the DOM in virtually all browsers.

 The DOM: A Central Component of Web Development
 Most likely you’ve heard about the DOM. It’s a common term in the world of web development. But maybe
the DOM is still a mostly mysterious word to you. What exactly is the DOM, and why is it so important? How
and why does jQuery abstract the DOM API away from developers?

 As stated in one of the early W3C-maintained documents, 1 “The history of the Document Object Model,
known as the DOM, is tightly coupled with the beginning of the JavaScript and JScript scripting languages.”
This model expresses an API, commonly implemented in JavaScript for use in web browsers, that allows
programmatic access to an HTML document. In addition to working with attributes, selecting elements, and
storing data, the DOM API also provides a way to create new content, remove elements, and move existing
elements around the document. These specific aspects of the DOM API are the primary focus of this chapter.

 jQuery Exists Because of the DOM API
 Okay, it’s not the only reason why jQuery was created, but it’s certainly one of the reasons. John Resig, the
creator of jQuery, famously called the DOM a “mess” in a 2009 presentation at Yahoo. 2 So this perhaps gives
us some insight into one of the problems jQuery aims to solve. A few years before Resig’s talk, jQuery 1.0 was
released (2006), which included about 25 DOM-manipulation-specific methods. This accounted for about
17% of the entire API. Even as the API has grown to handle all aspects of the web API, DOM manipulation
functions still account for 15%.

 Sure, jQuery provides some elegant solutions to working with the DOM. But are they really necessary?
Of course not! Is the DOM still “broken”? Not in my opinion. The DOM API may have some rough edges,
but it is fairly easy to use and quite reliable. You can painlessly manipulate the DOM yourself without the
help of jQuery.

 1 www.w3.org/2002/07/26-dom-article.html
 2 http://ejohn.org/blog/the-dom-is-a-mess/

http://www.w3.org/2002/07/26-dom-article.html
http://ejohn.org/blog/the-dom-is-a-mess/

CHAPTER 8 ■ DOM MANIPULATION

98

 The DOM API Isn’t Broken, It’s Just Misunderstood
 In Resig’s talk at Yahoo, he said “Nearly every DOM method is broken in some way, in some browser.”
Although that is a bit hyperbolic, it may have had some truth to it back in 2009. The current age of browsers
paints a much different picture, though. Browsers still have bugs, but this is true of all software, even jQuery. 3
The jQuery team already apparently knows that the library is no longer useful as a shield from browser bugs,
as is evident in their responses to issues that appear to be browser-specific. 4

 One of the major goals of jQuery has always been to shield developers from the DOM API. Why?
Because it historically has been a mess. It’s also seen as a muddled path to follow when attempting to
programmatically update a page’s markup. This has a bit of truth to it, but only because many developers have
not taken the time to learn the DOM API. As you’ll see throughout this chapter, working with the DOM isn’t
as hard as you might think and is well supported throughout all popular browsers. It’s hard to argue with the
convenience offered by jQuery’s API. You can even make better use of jQuery, should you continue to use it,
once you have a better understanding of the underlying DOM API methods that jQuery itself relies on.

 Moving and Copying Elements
 In this first part, I’m going to focus on moving and copying existing elements. You’ll learn how to insert
elements anywhere in the DOM, change the order of adjacent elements, and clone an element. I’ll
demonstrate methods present on the Document , 5 Element , 6 and Node 7 interfaces, among others. You’ll see
how basic DOM operations have been executed with jQuery, followed by explanations and demonstrations
of the same tasks utilizing the DOM API alone.

 Moving Elements Around the DOM
 I’m going to start this section out with one of my patented (pending) sample documents. In order to focus
primarily on the functionality of the demonstrable methods, I’ll keep this simple and straightforward.
Admittedly, this results in a somewhat contrived example, but I feel it will easily allow us to compare and
contrast jQuery with the DOM API in the context of DOM manipulation.

 Our super-simple document consists of a few different categories and attributes of ice cream: flavors,
types, and a section of unassigned types and flavors. This document represents some choices for customers
of an ice cream shop. Using this markup, we’re going to solve several “problems,” first with jQuery, and then
with the plain old DOM API.

 The first challenge involves reordering the flavors and types in descending order, based on their
popularity. Chocolate is the most popular flavor, followed by vanilla and strawberry. We’ll have to change the
order of the flavors list items to reflect their popularity, but the types list is already in the correct order.

 Second, we really want to present our readers with the types of ice cream first , followed by the flavors.
The current order, which includes flavors first, is known to be less than ideal, as our customers want to be
informed of the types first before deciding on flavors.

 Finally, we need to take the items in the “unassigned” section and assign them to the proper category.
“Rocky road” is a flavor that is less popular than vanilla, but more popular than strawberry. And “gelato” is a
type, also the least popular of the bunch:

 1 < body >
 2 < h2 >Flavors</ h2 >

 3 https://github.com/jquery/jquery/issues
 4 https://github.com/jquery/jquery/issues/2679#issuecomment-152289474
 5 https://developer.mozilla.org/en-US/docs/Web/API/Document
 6 https://developer.mozilla.org/en-US/docs/Web/API/Element
 7 https://developer.mozilla.org/en-US/docs/Web/API/Node

https://github.com/jquery/jquery/issues
https://github.com/jquery/jquery/issues/2679#issuecomment-152289474
https://developer.mozilla.org/en-US/docs/Web/API/Document
https://developer.mozilla.org/en-US/docs/Web/API/Element
https://developer.mozilla.org/en-US/docs/Web/API/Node

CHAPTER 8 ■ DOM MANIPULATION

99

 3 < ul class="flavors">
 4 < li >chocolate</ li >
 5 < li >strawberry</ li >
 6 < li >vanilla</ li >
 7 </ ul >
 8
 9 < h2 >Types</ h2 >
 10 < ul class="types">
 11 < li >frozen yogurt</ li >
 12 < li >custard</ li >
 13 < li >Italian ice</ li >
 14 </ ul >
 15
 16 < ul class="unassigned">
 17 < li >rocky road</ li >
 18 < li >gelato</ li >
 19 </ ul >
 20 </ body >

 After solving the problems described so far, our document should look like this:

 1 < body >
 2 < h2 >Types</ h2 >
 3 < ul class="types">
 4 < li >frozen yogurt</ li >
 5 < li >Italian ice</ li >
 6 < li >custard</ li >
 7 < li >gelato</ li >
 8 </ ul >
 9
 10 < h2 >Flavors</ h2 >
 11 < ul class="flavors">
 12 < li >chocolate</ li >
 13 < li >vanilla</ li >
 14 < li >rocky road</ li >
 15 < li >strawberry</ li >
 16 </ ul >
 17
 18 < ul class="unassigned">
 19 </ ul >
 20 </ body >

 Moving Elements Using jQuery
 In order to properly order the flavors, “vanilla” must be moved after “chocolate”. To accomplish this, we must
make use of jQuery’s after() API method:

 1 var $flavors = $('.flavors'),
 2 $chocolate = $flavors.find('li').eq(0),
 3 $vanilla = $flavors.find('li').eq(2);
 4
 5 $chocolate.after($vanilla);

CHAPTER 8 ■ DOM MANIPULATION

100

 For our second challenge, we have to move the “types” list and the heading (<h2>) for the “types” list before
the “flavors” list. We can take advantage of the fact that this means the heading and list must be the first set of
children inside the <body> element. First, we prepend the “types” heading to the <body> using the prependTo()
method and then insert the “types” list after the newly moved heading, again using jQuery’s after() method:

 1 var $typesHeading = $('h2').eq(1);
 2
 3 $typesHeading.prependTo('body');
 4 $typesHeading.after($('.types'));

 Finally, we need to move the unassigned “rocky road” just above “strawberry” in the flavors list, and “gelato”
to the end of the “types” list. For the first move, we can again use jQuery’s after() method. For the second move,
we will use the appendTo method on the “gelato” element to insert it as the last child in the “types” list:

 1 var $unassigned = $('.unassigned'),
 2 $rockyRoad = $unassigned.find('li').eq(0),
 3 $gelato = $unassigned.find('li').eq(1);
 4
 5 $vanilla.after($rockyRoad);
 6 $gelato.appendTo($('.types'));

 None of the preceding solutions is particularly elegant or intuitive. It’s certainly possible to come up
with more attractive examples to solve these problems, but I would expect this attempt to be common
among jQuery developers. We also could have made use of some of jQuery’s proprietary pseudo-classes,
such as :first and :last , but we already learned how inefficient those options are.

 The DOM API’s Solution to Reordering Elements
 In order to make the proper adjustments to our ice cream store page without jQuery, I’m going to introduce
two new DOM API methods. You’ll also see a number of selectors and other DOM API methods previously
discussed in Chapter 4 . Surprisingly, all of the code in this section works in all modern browsers and
Internet Explorer 8 as well! Before we start, the eye-rolling nature of this example ice cream store markup
is not lost on me, but it allows me to succinctly demonstrate a number of DOM manipulation operations
without getting bogged down in details unrelated to the problem at hand. That said, let’s get started.

 Remember that our first task is to move the “vanilla” element before the “strawberry” element. To
accomplish this, we can make use of the insertBefore() method), 8 which was added to the Node interface
as part of W3C’s DOM Level 2 Core specification. This method, as you might imagine, allows us to move
one element just before another in the DOM. And because this is available on the Node interface, we have
the power to move anything in the DOM, even a Text or Comment node! Take a look at how we move this
element—I’ll explain what’s going on immediately after the following code fragment:

 1 var flavors = document.querySelector('.flavors'),
 2 strawberry = flavors.children[1],
 3 vanilla = flavors.children[2];
 4
 5 flavors.insertBefore(vanilla, strawberry);

 8 www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/core.html#ID-952280727

http://dx.doi.org/10.1007/978-1-4842-2235-5_4
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/core.html#ID-952280727

CHAPTER 8 ■ DOM MANIPULATION

101

 At the top of the preceding code, I’m simply selecting elements needed by our move operation. The last
line is the most important one. Since the insertBefore() method is defined on the Node object’s prototype ,
we must call insertBefore() on an DOM object that implements this interface. In fact, this element must be
a parent element of the Node we are moving. Since we are moving the “vanilla” element, we can use its
parent—the “flavors” .

 The first parameter passed to insertBefore() is the element we want to relocate: the “vanilla” list item.
The second parameter is the “reference node.” This is the Node that will become the next sibling of our target
element (the “vanilla”) after the move operation. Since we want to move “vanilla” before “strawberry,”
the “strawberry” is our reference node.

 We’ve reordered our flavors, but we still need to move the flavors heading and list to the top of our
document. We can easily accomplish this goal with the insertBefore() method as well:

 1 var headings = document.querySelectorAll('h2'),
 2 flavorsHeading = headings[0],
 3 typesHeading = headings[1],
 4 typesList = document.querySelector('.types');
 5
 6 document.body.insertBefore(typesHeading, flavorsHeading);
 7 document.body.insertBefore(typesList, flavorsHeading);

 ■ Note Regarding this line of code in the preceding code listing - document.body.
insertBefore(typesHeading, flavorsHeading) - this behaves just like $typesHeading.prependTo('body’)
in the earlier jQuery code listing. Why? Because flavorsHeading happens to be the first child of document.body.

 The meat of our logic is contained in the final two lines of the preceding code. First, we’re moving the
“types” <h2> to the top of our document. The parent of this heading is the <body> element, which we can
easily select using document.body . Our target element is, of course, the “types” heading. We want to move
this just before the “flavors” <h2> , so that becomes our reference element.

 The second insertBefore() moves the of ice cream types after the recently moved heading.
Again, <body> is our parent element. Since we need to move this list before the “flavors” heading, that is
again our reference node.

 Our final task is to move the unassigned elements into their respective lists. To accomplish this, we’ll
again make use of insertBefore() , but you’ll also see a new method in action. The W3C DOM Level 1
specification, which is quite an old spec, first defined an appendChild() method on the Node interface. 9
This method will be of some use to us as we wrap up our exercise:

 1 flavors.insertBefore(
 2 document.querySelector('.unassigned > li'), strawberry);
 3
 4 document.querySelector('.types').appendChild(
 5 document.querySelector('.unassigned > li'));

 In the first statement, we’re moving the “rocky road” element from the unassigned list into the flavors list.
The flavors list is our parent element, as expected. The target is the first list item child of the unassigned list,
which happens to be the “rocky road” . And the reference node is the strawberry item in the flavors list,
since we want to move “rocky road” before this element.

 9 www.w3.org/TR/REC-DOM-Level-1/level-one-core.html#ID-184E7107

http://www.w3.org/TR/REC-DOM-Level-1/level-one-core.html#ID-184E7107

CHAPTER 8 ■ DOM MANIPULATION

102

 We also want to move the unassigned “gelato” list item to the end of the types list. The simplest way to
do this is to use appendChild() . As with the insertBefore() method, appendChild() expects to be called
on the parent of the node we plan to move—the “types” list. The appendChild() method only takes one
argument—the element that is to become the last child of the parent element. At this point, the “gelato”
item is the first child in the unassigned list, so we can use the same selector as used to locate the target
element in our insertBefore() statement.

 That was all surprisingly easy, wasn’t it? The DOM API may not be as scary as many make it out to be!

 Making Copies of Elements
 To demonstrate the various ways to clone elements using jQuery and the DOM API, consider the
following markup:

 1 < ol class="numbers">
 2 < li >one</ li >
 3 < li >two</ li >
 4 </ ol >

 The DOM API offers a method to clone the and its children, as well as a way to clone only and
 not any of its children/content. The former is called a deep clone , and the latter a shallow clone . jQuery only
offers a way to deep clone.

 In jQuery-land, we must make use of $.clone() :

 1 // deep clone: return value is an exact copy
 2 $('.numbers').clone();

 You can optionally pass Boolean parameters to the preceding clone() if you’d like jQuery to clone any
data and event listeners on the element. But be warned that jQuery will only copy event listeners and data
attached to the element via jQuery. Any listeners and data added outside of jQuery’s API will be lost.

 The DOM API provides a similarly named method, cloneNode() , available on the Node interface. It was
first standardized as part of DOM Level 2 Core, 10 which became a W3C recommendation back in 2000. As a
result, cloneNode() is supported in any browser. The next example is limited to Internet Explorer 8 and up
(though this is hardly a problematic limitation) due to my use of querySelector() :

 1 // shallow clone: return value is an empty <ol class="numbers">
 2 document.querySelector('.numbers').cloneNode();
 3
 4 // deep clone: return value is an exact copy of the tree
 5 document.querySelector('.numbers').cloneNode(true);

 In both cases, the element copies will contain everything defined in the markup, even the class names,
and any other attributes such as inline styles. Event listeners are not included with the copy, nor are any
properties exclusively set on the element’s JavaScript object representation. In other words, cloneNode()
copies only what you see: markup.

 Whether you are using jQuery or the DOM API, the copy created by cloneNode() is not added to the
document for you. You will need to do this yourself using one of the methods demonstrated earlier in
this section.

 10 www.w3.org/TR/DOM-Level-2-Core/core.html#ID-3A0ED0A4

http://www.w3.org/TR/DOM-Level-2-Core/core.html#ID-3A0ED0A4

CHAPTER 8 ■ DOM MANIPULATION

103

 Composing Your Own Elements
 Now that we’ve explored moving and coping elements, how about creating and removing them? You’ll see
how these common problems have been solved with jQuery, and how you can solve them just as easily with
the DOM API. As with the previous section, all DOM API code here will work in all modern browsers, and
most are supported in Internet Explorer 8 as well.

 To best demonstrate all of the concepts outlined in this final section, I’ll build upon the modified
example document from the previous section that I used to demonstrate moving elements. Using jQuery
and then the bare DOM API, I’ll show you how to perform various operations on our example document,
such as the following:

 1. Add some new ice cream flavors.

 2. Remove some existing types.

 3. Make simple text adjustments to our document.

 4. Read parts of the document to a string to allow it to be saved.

 5. Create a new section to further classify our ice cream.

 Creating and Deleting Elements
 Suppose we have a couple new flavors to add to our list: pistachio and neapolitan. These of course belong in
the “flavors” section. To accomplish this task, we’ll need to create two new elements with Text Node s
that contain the names of these two new flavors. It’s fine to simply add these new flavors to the end of the
list so that we can stay focused on creating the representative elements. We also want to remove the “gelato”
type from the end of the list of types, since we no longer sell gelato ice cream.

 Creating elements is pretty easy with jQuery, and due to chaining we can add both elements in two lines:

 1 var $flavors = $('.flavors');
 2
 3 // add two new flavors
 4 $('pistachio').appendTo($flavors);
 5 $('neapolitan').appendTo($flavors);

 Removing an element isn’t very difficult either:

 1 // remove the "gelato" type
 2 $('.types li:last').remove();

 Here we’ve made use of a CSS selector, partially proprietary. The last beneath the element with
a “types” CSS class is being removed from the document. This happens to be our “gelato” type. The :last
pseduo-class is specific to jQuery and as such is not particularly performant. There is a native CSS pseduo-
class we could use, which you will see in a moment, but many jQuery developers may not know that it exists,
since the jQuery API provides this proprietary alternative as part of its documented API.

 How can we achieve the same results with the DOM API? Depending on desired browser support,
we may have several options. Although newer browsers may allow for more elegant options than older ones,
this is not always the case, and these operations are all relatively simple in all modern browsers (and even
older ones) without relying on jQuery.

CHAPTER 8 ■ DOM MANIPULATION

104

 We can add our two new flavors to the end of the “flavors” list in two total lines, just like the jQuery
solution, although the lines are a bit longer:

 1 var flavors = document.querySelector('.flavors');
 2
 3 // add two new flavors
 4 flavors.insertAdjacentHTML('beforeend', 'pistachio')
 5 flavors.insertAdjacentHTML('beforeend', 'neapolitan')

 In the preceding code, I’m using the insertAdjacentHTML method 11 present on the Element interface
prototype. While this method has likely existed in browsers for many years, it was only first standardized in
the W3C’s DOM Parsing and Serialization specification, 12 drafted in 2014.

 What about removing “gelato” from our list of types? In the newest available browsers, we have the most
elegant solution:

 1 // remove the "gelato" type
 2 document.querySelector('.types li:last-child').remove();

 The preceding code is very similar to the jQuery solution, with a couple noticeable differences. First,
I am of course using querySelector to locate the element to remove. Second, I’m making use of the
 :last-child CSS3 pseudo-class 13 selector. The remove() method, present on the ChildNode interface, is
relatively new and only supported in Microsoft Edge, Chrome, Firefox, and Safari 7. It is not supported by
any versions of Internet Explorer, nor is it available on Apple iOS browsers. This method was first defined by
the WHATWG as part of its DOM living standard 14 and in particular is our limiting factor in terms of browser
support.

 Luckily, we have a solution that covers all modern browsers, which requires only a little more code:

 1 var gelato = document.querySelector('.types li:last-child');
 2
 3 // remove the "gelato" type
 4 gelato.parentNode.removeChild(gelato);

 I’ve replaced ChildNode.remove() with Node.removeChild() , which has existed since DOM Level 1
Core, 15 so it is supported in all browsers. To remove a child node, of course, we need to access the parent
first. Luckily, it’s really easy to do this, as you learned in Chapter 4 . In this instance, the code that limits us to
modern browsers is the :last-child CSS3 pseudo-class, which isn’t available in Internet Explorer 8.

 To support IE8, you’ll have to replace the selector with document.querySelectorAll('.types li')[3] .
And if you don’t want to hard-code the index of the gelato element, you’ll have to move the result of the
 querySelectorAll() into a variable and access the last element in the returned collection by examining this
variable’s length property.

 11 https://w3c.github.io/
DOM-Parsing/#widl-Element-insertAdjacentHTML-void-DOMString-position-DOMString-text
 12 https://w3c.github.io/DOM-Parsing/
 13 www.w3.org/TR/css3-selectors/#last-child-pseudo
 14 https://dom.spec.whatwg.org/#dom-childnode-remove
 15 www.w3.org/TR/REC-DOM-Level-1/level-one-core.html#method-removeChild

http://dx.doi.org/10.1007/978-1-4842-2235-5_4
https://w3c.github.io/DOM-Parsing/#widl-Element-insertAdjacentHTML-void-DOMString-position-DOMString-text
https://w3c.github.io/DOM-Parsing/#widl-Element-insertAdjacentHTML-void-DOMString-position-DOMString-text
https://w3c.github.io/DOM-Parsing/
http://www.w3.org/TR/css3-selectors/#last-child-pseudo
https://dom.spec.whatwg.org/#dom-childnode-remove
http://www.w3.org/TR/REC-DOM-Level-1/level-one-core.html#method-removeChild

CHAPTER 8 ■ DOM MANIPULATION

105

 Text Content
 There are two workflows to address in terms of element text: updating and parsing. Although jQuery provides
one specific method to accomplish both tasks, the DOM API offers two—both with different behaviors that
accommodate different needs. In this section, I demonstrate jQuery’s text() method, the native textContent
property, and the native innerText property. You’ll see how each of these differ as we make changes to our
document of ice cream types and flavors and then output the resulting document as text.

 First, let’s examine jQuery’s text() method , which allows us to both read and update text in a
document. Notice that one of our types—“Italian ice”—starts with a capital letter. None of the other types or
flavors shares this trait. Even though “Italian” is a proper adjective and normally should start with a capital
“I,” let’s modify it to be consistent with the case of the rest of our types and flavors:

 1 $('.types li').eq(1).text('italian ice');

 As you probably already know, the text of an element can be updated simply by passing the new text as a
parameter of the text() method. This is exactly what I have done in order to normalize the case of this type of
ice cream. What would our modified document look like if we output it using jQuery’s text() method? Like this:

 1 "
 2 Types
 3
 4 frozen yogurt
 5 italian ice
 6 custard
 7 gelato
 8
 9
 10 Flavors
 11
 12 chocolate
 13 vanilla
 14 rocky road
 15 strawberry
 16
 17 "

 The quotation marks have been added to show where the output starts and ends. They are not part of
the actual text. Notice that this output reflects the structure of our markup . This can be verified by examining
the indentation of the text as well as the line breaks at the end of the document. The series of line breaks
before the output ends account for the empty “unassigned” list. You’ll see how this output mirrors the output
of one of the two native text manipulation properties offered by the DOM API.

 There are two common properties available on the DOM elements used to read and update text:
 textContent and innerText . There are notable advantages and disadvantages of both properties, but their
presence allows for more flexibility in dealing with text than jQuery’s text() method alone. Next, I compare
and contrast these two properties against each other and jQuery’s text() method, and it will be clear when
you should choose one over the other.

 Let’s first examine textContent , which was added to the Node interface in W3C’s DOM Level 3 Core). 16
This property allows element text to be read and updated in all modern browsers. Changing the text of our
“Italian ice” list item to “italian ice” is just as simple as jQuery’s text() method:

 1 document.querySelectorAll('.types li')[1].textContent = 'italian ice';

 16 www.w3.org/TR/DOM-Level-3-Core/core.html#Node3-textContent

http://www.w3.org/TR/DOM-Level-3-Core/core.html#Node3-textContent

CHAPTER 8 ■ DOM MANIPULATION

106

 The textContent property not only matches the behavior of jQuery’s text() method when writing
text, it also functions exactly like jQuery when reading text as well. Take our previous example where we
outputted our entire ice cream document after modifying the “Italian ice” type. The output from the DOM
API’s textContent property matches that of jQuery’s text() exactly :

 1 "
 2 Types
 3
 4 frozen yogurt
 5 italian ice
 6 custard
 7 gelato
 8
 9
 10 Flavors
 11
 12 chocolate
 13 vanilla
 14 rocky road
 15 strawberry
 16
 17 "

 As you can see, textContent outputs the text inside an element and its descendants formatted with the
structure of the document markup in mind, just like jQuery’s text() .

 The second available property, innerText , is available on the HTMLElement interface, though it is a bit
strange in that it is not yet part of any formal web specification. However, it is supported by all versions of all
browsers, except for Firefox, which didn’t add support until version 45. 17 Even though innerText is not yet
standardized, there is a rudimentary draft proposal 18 in place, created by Robert O’Callahan of Mozilla.

 Changing “Italian ice” to “italian ice” using innerText is not much different than textContent or
jQuery’s text() , with the exception of the addition of Internet Explorer 8 support and lack of Firefox support
for versions older than 45:

 1 document.querySelectorAll('.types li')[1].innerText = 'italian ice';

 So what happens if we attempt to output our document using innerText ? You’ll see that the result looks
a bit different than the result garnered from textContent and jQuery’s text() :

 1 "Types
 2
 3 frozen yogurt
 4 italian ice
 5 custard
 6 gelato
 7 Flavors
 8
 9 chocolate
 10 vanilla
 11 rocky road
 12 strawberry"

 17 https://developer.mozilla.org/en-US/Firefox/Releases/45
 18 https://rocallahan.github.io/innerText-spec/index.html

https://developer.mozilla.org/en-US/Firefox/Releases/45
https://rocallahan.github.io/innerText-spec/index.html

CHAPTER 8 ■ DOM MANIPULATION

107

 Initially, the preceding output may look a bit odd, but it actually makes perfect sense if you understand
what it represents. I’d like you to paste the markup from the modified document listed earlier into a browser,
copy the rendered result to your system’s clipboard, and then paste it into a text editor. You’ll notice that the
pasted text is formatted identically to the output listed here. As the draft specification describes, innerText
“return(s) the ‘rendered text’ of an element.”

 I was asked once “When dealing with reading element text, is there a general solution for using
web APIs that is supported in all browsers?” Well, that depends on your requirements. If the behavior of
textContent is appropriate and you only need modern browser support, then that is probably your best
choice. But there are certainly instances when innerText is more appropriate, as previously mentioned.
jQuery's text() behaves like textContent, so, if you want to mirror the behavior of jQuery and need to support
all modern browsers including older versions of Firefox, that is another reason to favor textContent.

 Rich Content
 HTML is nothing more than text formatted per conventions defined by a set of web specifications. This reality
is useful when we need to serialize or deserialize a document or a portion of a document. Deserialization of
HTML may occur when receiving server-generated markup in response to an HTTP request. In this instance, the
HTML in the response must be inserted into the DOM in an appropriate location. I’ll demonstrate this specific
scenario and talk about how this may be completed with the help of several methods available in the DOM API.
And perhaps this server-generated markup must be returned to the server and persisted for later use after it is
modified in some way. That, too, can be accomplished with the DOM API, and you’ll see how in this final section.

 jQuery provides a grand total of one method for reading and writing HTML. This is accomplished using
the aptly named html() function. First, let’s assume we’ve already received a string of HTML from our server
and we need to insert it into our document. Keeping with the theme of this chapter, this markup represents
an entirely new section for our ice-cream store page. We simply need to insert it after the existing sections.
The markup from our server is simply a long string of HTML, such as “<h2>Containers</h2>cone
cup”. This string of HTML will be stored in a variable named container . Here you can see
how this should be inserted at the end of our document using jQuery:

 1 $('<div>').html(container).appendTo('body');

 First, we are creating a new <div> , which is disconnected from the DOM, then we’re setting the contents
of this disconnected <div> to the HTML from our server, and finally this element is added to the end of our
ice cream store page. After modifying our page in various ways, we now want to send the markup back to our
server, which can also be accomplished using jQuery’s html() method:

 1 var contents = $('body').html();
 2 // ...send `contents` to server

 The jQuery-less DOM API route is a bit less elegant, but still very simple and widely supported. In order
to read and write the same markup, we’ll use the innerHTML property defined on the Element interface.
This property, while supported in every browser imaginable, has only recently achieved standardization.
 innerHTML started as a Microsoft Internet Explorer proprietary extension, but is now part of the W3C DOM
Parsing and Serialization specification. 19

 We can use innerHTML to add the server-generated HTML to the end of our page:

 1 var div = document.createElement('div');
 2 div.innerHTML = container;
 3 document.body.appendChild(div);

 19 www.w3.org/TR/DOM-Parsing/#widl-Element-innerHTML

http://www.w3.org/TR/DOM-Parsing/#widl-Element-innerHTML

CHAPTER 8 ■ DOM MANIPULATION

108

 The createElement method of the Document interface is courtesy of W3C’s DOM Level 1 Core 20
specification, which means it is supported in any browser. Reading the markup of our document back for
persistence server-side also uses innerHTML , and it’s just as elegant as jQuery’s html() method:

 1 var contents = document.body.innerHTML;
 2 // ...send `contents` to server

 The DOM API is a bit more flexible than jQuery in this instance; it provides a few more options.
For example, the standardized Element.outerHTML property will take the reference element into account
when reading or updating HTML. Conversely, innerHTML is only concerned with the descendents of the
reference element. Had I used outerHTML in the “add a string” demonstration above, everything in the
document including the <body> element would have been replaced with the new <div> -wrapped ice
cream containers section. In the last DOM API example, where we read back the contents of the document,
the <body> element would have been included in the stringified-html had we used outerHTML instead.
Depending on your requirements, this may be desirable.

 Though I certainly haven’t demonstrated all the properties and methods provided by the DOM API,
the point I am trying to make is that the browser already provides more than enough in terms of reasonable
and intuitive native support for DOM manipulation.

 20 www.w3.org/TR/REC-DOM-Level-1/level-one-core.html#method-createElement

http://www.w3.org/TR/REC-DOM-Level-1/level-one-core.html#method-createElement

109© Ray Nicholus 2016
R. Nicholus, Beyond jQuery, DOI 10.1007/978-1-4842-2235-5_9

 CHAPTER 9

 AJAX Requests: Dynamic Data and
Page Updates

 AJAX , or Asynchronous JavaScript and XML, is a feature provided by the web API that allows data to be updated
or retrieved from a server without reloading the entire page. This capability was absent from the browser
initially. The time without this feature marked the infancy of the web, and with it came along a less-than-
ideal user experience that resulted in a fair amount of redundant bytes circulated between client and server.
The inefficiency of this primitive model was compounded by the fact that Internet bandwidth was extremely
limited by today’s standards. Back in 1999 when Microsoft first introduced XMLHTTP as an ActiveX control in
Internet Explorer 5.0, 1 about 95% of Internet users were limited by a 56 Kbps or slower dial-up connection. 2

 XMLHTTP was a proprietary JavaScript object implemented in Microsoft’s Internet Explorer browser, and
it represented a huge leap in both web development technology and user experience. It was the first full-
featured built-in transport for focused client/server communication that allowed for updates without replacing
the entire page. Previously, the entire page had to be reloaded even if only a small segment of the data on
the page had changed. The initial API for this new transport matches its modern-day standardized cousin:
 XMLHttpRequest . Essentially, this object allows a developer to construct a new transport instance, send a GET,
POST, PUT, PATCH, or DELETE request to any endpoint (on the same domain), and then programmatically
retrieve the status and message body of the server’s response. Although the aging XMLHttpRequest will
eventually be replaced by the Fetch API, 3 it has thrived unopposed and mostly unchanged for about 15 years.

 Mastering the Concepts of AJAX Communication
 It is critical to understand a few key concepts when dealing with AJAX communication:

 1. Asynchronous operations.

 2. HyperText Transfer Protocol, also know as HTTP.

 3. JSON, URL encoding, and multipart form encoding.

 4. The Same Origin Policy.

 The first two items will be dealt with directly in this section, in addition to an introduction to web
sockets (which are not as important as some other concepts, but still potentially useful). The last two in the
list will be addressed later on in this chapter.

 1 https://blogs.msdn.microsoft.com/ie/2006/01/23/native-xmlhttprequest-object/
 2 www.websiteoptimization.com/bw/0403/
 3 https://fetch.spec.whatwg.org

https://blogs.msdn.microsoft.com/ie/2006/01/23/native-xmlhttprequest-object/
http://www.websiteoptimization.com/bw/0403/
https://fetch.spec.whatwg.org/

CHAPTER 9 ■ AJAX REQUESTS: DYNAMIC DATA AND PAGE UPDATES

110

 Async Is Hard
 Based on my extensive experience with AJAX communication, along with observations of other developers
struggling with this piece of the web API, the most attractive attribute of this feature is also its most
confusing. JavaScript does not abstract asynchronous operations nearly as well as other more traditional
languages, such as Java. On top of the historical lack of intuitive native support for tasks that occur out of
band (such as AJAX requests), there are currently three different common ways to account for these types
of asynchronous operations. These methods include callbacks, promises, and asynchronous functions.
Although native support for asynchronous operations has improved over time, most developers still must
explicitly deal with these types of tasks, which can be challenging due to the fact that it often requires all
surrounding code to be structured accordingly. That often makes the software developer’s job of accounting
for asynchronous calls awkward and the resulting code complex. This, of course, adds risk and potentially
more bugs to the underlying application.

 Callbacks will be demonstrated in this chapter, as will promises. Both promises and callbacks are
covered in much more detail in Chapter 11 , along with asynchronous functions, a feature defined in the
ECMAScript 2017 specification that aims to make dealing with asynchronous operations, such as AJAX
requests, surprisingly easy. However, some developers don’t have the luxury of using async functions (due to
lack of current browser support as of 2016), so the reality of dealing with AJAX requests remains that you must
embrace their asynchronous nature instead of hiding from it. This is quite mind-bending, initially. Even after
you have successfully grasped this concept, expect frequent frustration in less-than-trivial situations, such as
when dealing with nested asynchronous requests. If this is not already clear through previous experience, you
may even come to realize this complexity as you complete this chapter. Still, this concept is perhaps the most
important of all to master when working with AJAX requests.

 HTTP
 The primary protocol used to communicate between a browser and a server is, of course, HTTP, which
stands for HyperText Transfer Protocol. Tim Berners-Lee, the father of the Web, created the first official HTTP
specification 4 in 1991. This first version was designed alongside HTML and the first web browser with one
method: GET. When a page was requested by the browser, a GET request would be sent, and the server would
respond with the HTML that makes up the requested page, which the web browser would then render. Before
AJAX was introduced as a complementary specification, HTTP was mostly limited to this workflow.

 Though HTTP started with just one method—GET—several more were added over time. Currently,
HEAD, POST, PUT, DELETE, and PATCH are all part of the current specification, version 2, which is
maintained by the Internet Engineering Task Force (IETF) as RFC 7540. 5 GET requests are expected to have
an empty message body (request payload), with a response that describes the resource referenced in the
request URI (Universal Resource Indicator). It is a “safe” method, such that no changes to the resource
should be made server-side as a result of handling this request. HEAD is very similar to GET, except it returns
an empty message body. However, HEAD is useful in that it includes a response header— Content-Length —
with a value equal the the number of bytes that would be transferred had the request been GET instead. This
is useful to, for example, check the size of a file without actually returning the entire file. HEAD, as you might
expect, is also a “safe” method.

 DELETE, PUT, POST, and PATCH are not safe, in that they are expected to possibly change the associated
resource on the server. Of these four “unsafe” methods, two of them—PUT and DELETE—are considered to be
 idempotent , which means that they will always produce the same result even though they are called multiple
times. PUT is commonly used to replace a resource, whereas DELETE is, obviously, used to remove a resource.
PUT requests are expected to have a message body that describes the updated resource content, and DELETE
is not expected to have a payload. POST differs from PUT in that it will create a new resource. Finally, PATCH,

 4 www.w3.org/Protocols/HTTP/AsImplemented.html
 5 https://httpwg.github.io/specs/rfc7540.html

http://dx.doi.org/10.1007/978-1-4842-2235-5_11
http://www.w3.org/Protocols/HTTP/AsImplemented.html
https://httpwg.github.io/specs/rfc7540.html

CHAPTER 9 ■ AJAX REQUESTS: DYNAMIC DATA AND PAGE UPDATES

111

a relatively new HTTP request method, 6 allows a resource to be modified in very specific ways. The message
body of this request describes exactly how the resource should be modified. PATCH differs from the PUT
method in that it does not entirely replace the referenced resource.

 All AJAX requests will use one of these methods to communicate dynamically with a server. Note that
new methods such as PATCH may not be supported in older browsers. Later in this chapter, I go into more
detail regarding proper use of these methods, and how the AJAX request specification can be used with these
methods to produce a highly dynamic web application.

 Expected and Unexpected Responses
 An understanding of the protocol used to communicate between client and server is a fundamentally
important concept. Part of this is, of course, sending requests, but the response to these requests is equally
important. Requests have headers and optionally a message-body (payload), whereas responses are made
up of three parts: the response message-body, headers, and a status code. The status code is unique to
responses and is usually accessible on the underlying transport instance (such as XMLHttpRequest or fetch).
Status codes are usually three digits and can be generally classified based on the most significant digit.
200-level status codes are indicative of success, 300 is used for redirects, while 400- and 500-level statuses
indicate some sort of error. These are all formally defined in great detail in RFC 2616. 7

 Just as it is important to handle code exceptions with a try / catch block, it is equally important to
address exceptional AJAX responses. Although 200-level responses are often expected, or at least desired,
you must also account for unexpected or undesired responses, such as 400- and 500-level, or even responses
with a status of 0 (which may happen if the request is terminated due to a network error or the server returns
a completely empty response). I have observed that simply ignoring exceptional conditions appears to be
common, and this is not limited to handling of HTTP responses. In fact, I am guilty of this myself.

 Web Sockets
 Web sockets are a relatively new web API feature compared to traditional AJAX requests. They were first
standardized in 2011 by the IETF (Internet Engineering Task Force) in RFC 6455 8 and are currently supported
by all modern browsers, with the exception of Internet Explorer 9. Web sockets differ from pure HTTP
requests in a number of ways, most notably their lifetime. Whereas HTTP requests are normally very short
lived, web socket connections are meant to remain open for the life of the application instance or web page.
A web socket connection starts as an HTTP request, which is required for the initial handshake. But after this
handshake is complete, client and server are free to exchange data at will in whatever format they have agreed
upon. This web socket protocol allows for true real-time communication between client and server. Although
web sockets are not explored in more depth in this chapter, I felt it was useful to at least mention them,
because they do account for another method of JavaScript-initiated asynchronous communication.

 Sending GET, POST, DELETE, PUT, and PATCH Requests
 jQuery provides first-class support for AJAX requests through the appropriately named ajax() method.
Through this method, you can send AJAX requests of any type, but jQuery also provides aliases for some
standardized HTTP request methods—such as get() and post() —which save you a few keystrokes. The
web API provides two objects, XMLHttpRequest and fetch , to send asynchronous requests of any type from
browser to server. XMLHttpRequest is supported in all browsers, but fetch is relatively new and not supported
in all modern browsers, though a solid polyfill is available which provides support for all browsers.

 6 https://tools.ietf.org/html/rfc5789
 7 www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10
 8 https://tools.ietf.org/html/rfc6455

https://tools.ietf.org/html/rfc5789
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10
https://tools.ietf.org/html/rfc6455

CHAPTER 9 ■ AJAX REQUESTS: DYNAMIC DATA AND PAGE UPDATES

112

 A simple GET request to a server endpoint using jQuery, with a trivial response handler, looks
something like this:

 1 $.get('/my/name').then(
 2 function success(name) {
 3 console.log('my name is ' + name);
 4 },
 5 function failure() {
 6 console.error('Name request failed!');
 7 }
 8);

 ■ Note The console object is not available in Internet Explorer 9 and older unless the developer tools are open.

 In the preceding code, we are sending a GET request to the “/my/name” server endpoint and expecting
a plaintext response containing a name value, which we are then printing to the browser console. If the
request fails (such as if the server returns an error status code), the failure function is invoked. In this
case, I’m making use of the promise-like object (or “thenable”) that jQuery’s ajax() method and its
aliases return. jQuery provides several ways to deal with responses, but I will focus specifically on the one
demonstrated before. Chapter 11 talks more about promises, which are a standardized part of JavaScript.

 The same request, sent without jQuery and usable in all browsers, involves a bit more typing but is
certainly not too difficult:

 1 var xhr = new XMLHttpRequest();
 2 xhr.open('GET', '/my/name');
 3 xhr.onload = function () {
 4 if (xhr.status >= 400) {
 5 console.error('Name request failed!');
 6 }
 7 else {
 8 console.log('my name is ' + xhr.responseText);
 9 }
 10 };
 11 xhr.onerror = function () {
 12 console.error('Name request failed!');
 13 };
 14 xhr.send();

 onload is called when the request completes and some response has been received. It may be an error
response, though, so we must confirm by looking at the response status code. onerror is called if the request
fails at some very low level, such as due to a CORS error. The onload property is where we can easily set our
response handler. From here, we can be sure the response has completed and then can determine whether
the request was successful and get a handle on the response data. All of this is available on the instance
of XMLHttpRequest we created and assigned to the xhr variable. From the preceding code, you may be a
bit disappointed that the web API doesn’t support promises like jQuery. That was true, up until the fetch
API 9 was created by the WHATWG. The Fetch API provides a modern native replacement for the aging
 XMLHttpRequest transport, and it is currently supported by Firefox, Chrome, Opera, and Microsoft Edge, with
Safari support likely on the horizon. Let’s look at this same example using fetch :

 9 https://fetch.spec.whatwg.org

http://dx.doi.org/10.1007/978-1-4842-2235-5_11
https://fetch.spec.whatwg.org/

CHAPTER 9 ■ AJAX REQUESTS: DYNAMIC DATA AND PAGE UPDATES

113

 1 fetch('/my/name').then(function (response) {
 2 if (response.ok) {
 3 return response.text();
 4 }
 5 else {
 6 throw new Error();
 7 }
 8 }).then(
 9 function success(name) {
 10 console.log('my name is ' + name);
 11 },
 12 function failure() {
 13 console.error('Name request failed!');
 14 }
 15);

 The code not only embraces the promises specification, it also removes a lot of the boilerplate
commonly seen with XMLHttpRequest . You’ll see more examples of fetch throughout this chapter. Note
that any of the previous examples are identical for HEAD requests, with the exception of the method
specifier. You’ll also notice that fetch returns a Promise , similar to jQuery’s ajax() . The difference is that
jQuery executes the error function when a non-success status code is executed. fetch only does this, like
 XMLHttpRequest , when a low-level network error occurs. But we can trigger our error function when the
server returns a response with an error code by throwing an exception if the response is not “ ok ”, via the ok
property on the Response object passed to our first promise handler.

 Many developers who learned web development through a jQuery lens probably think that this library
is doing something magical and complex when you invoke the $.ajax() method. That couldn’t be further
from the truth. All the heavy lifting is done by the browser via the XMLHttpRequest object. jQuery’s ajax()
is just a wrapper around XMLHttpRequest . Using the browser’s built-in support for AJAX requests isn’t very
difficult, as you’ll see in a moment. Even cross-origin requests are not only simple without jQuery—you’ll
see how they are actually easier without jQuery.

 Sending POST Requests
 I’ve demonstrated how to GET information from a server endpoint using jQuery, XMLHttpRequest , and
 fetch . But what about some of the other available HTTP methods? Instead of GETting a name, suppose you
would like to add a new name to the server. The most appropriate method for this situation is POST. The
name to add will be included in our request payload, which is a common place to include this sort of data
when sending a POST. To keep it simple, we’ll send the name using a MIME type of text/plain (I cover more
advanced encoding techniques later in this chapter). I’ll omit response handling code here as well so we can
focus on the key concepts:

 1 $.ajax({
 2 method: 'POST',
 3 url: '/user/name',
 4 contentType: 'text/plain',
 5 data: 'Mr. Ed'
 6 });

 We’re using jQuery’s generic ajax() method, so we can specify various parameters, such as the
request’s Content-Type header. This will send a POST request with a plaintext body containing the text “Mr.
Ed”. We must explicitly specify the Content-Type in this case because jQuery will otherwise set this header to
“application/x-www-form-urlencoded”, which is not what we want.

CHAPTER 9 ■ AJAX REQUESTS: DYNAMIC DATA AND PAGE UPDATES

114

 The same POST request using XMLHttpRequest looks like this:

 1 var xhr = new XMLHttpRequest();
 2 xhr.open('POST', '/user/name');
 3 xhr.send('Mr. Ed');

 Sending this request without jQuery actually takes fewer lines of code. By default, the Content-Type is set
to “text/plain” by XMLHttpRequest in this case, 10 so we don’t need to mess with any request headers. We can
conveniently pass the body of our request as a parameter to the send method, as illustrated before.

 If your goal is to embrace the latest and greatest web standards, you can try sending this POST using
 fetch instead:

 1 fetch('/user/name', {
 2 method: 'POST',
 3 body: 'Mr. Ed'
 4 });

 Sending this request looks similar to jQuery, but without a lot of the boilerplate. Like XMLHttpRequest ,
 fetch intelligently sets the request Content-Type based on the request payload (in some cases), so we do
not need to specify this request header. 11

 Sending PUT Requests
 Whereas POST requests are often used to create a new resource, PUT requests typically replace an existing
one. For example, PUT would be more appropriate for replacing information about an existing product. The
URI of the request identifies the resource to be replaced with the new information located in the body. To
simply illustrate sending a PUT request using jQuery, XMLHttpRequest , and fetch , I’ll demonstrate updating
a mobile phone number for an existing user record:

 1 $.ajax({
 2 method: 'PUT',
 3 url: '/user/1',
 4 contentType: 'text/plain',
 5 data: //complete user record including new mobile number
 6 });

 This PUT request using jQuery looks almost identical to the previously illustrated POST, with the
exception of the method property. This user is identified by their ID, which happens to be 1. You likely won’t
be surprised to see that sending a PUT with XMLHttpRequest is similar to the previous example as well:

 1 var xhr = new XMLHttpRequest();
 2 xhr.open('PUT', '/user/1');
 3 xhr.send(/* complete user record including new mobile number */);

 The Fetch API, as expected, provides the most concise approach:

 1 fetch('/user/1', {
 2 method: 'PUT',
 3 body: //complete user record including new mobile number
 4 });

 10 www.w3.org/TR/XMLHttpRequest#dom-xmlhttprequest-send
 11 https://fetch.spec.whatwg.org/#body-mixin

http://www.w3.org/TR/XMLHttpRequest#dom-xmlhttprequest-send
https://fetch.spec.whatwg.org/#body-mixin

CHAPTER 9 ■ AJAX REQUESTS: DYNAMIC DATA AND PAGE UPDATES

115

 Sending DELETE Requests
 DELETE requests are similar to PUTs in that the resource to be acted upon is specified in the request URI.
The main difference, even though this is not clearly mandated by RFC 7231, 12 DELETE requests typically do
 not contain a message body. The IETF document refers to the possibility that a message body may in fact
cause problems for the requestor: 13

 A payload within a DELETE request message has no defined semantics;
sending a payload body on a DELETE request might cause some existing
implementations to reject the request.

 This means that the only safe way to specify parameters, apart from the resource to be acted upon, is to
include them as query parameters in the request URI. Other than this exceptional case, DELETE requests are
sent in the same manner as PUTs. And like a PUT request, DELETE requests are idempotent. Remember that an
 idempotent request is one that behaves the same regardless of the number of times it is called. It would be quite
surprising if multiple calls to delete the same resource resulted in, for example, removal of a different resource.

 A request to remove a resource, using jQuery, looks like this:

 1 $.ajax('/user/1', {method: 'DELETE'});

 And the same simple request, using XMLHttpRequest , can be achieved with only two extra lines of code:

 1 var xhr = new XMLHttpRequest();
 2 xhr.open('DELETE', '/user/1');
 3 xhr.send();

 Finally, we can send this DELETE request natively in many modern browsers using the ever-so-elegant
Fetch API (or in any browser with a polyfill for fetch (maintained on GitHub)) 14

 1 fetch('/user/1', {method: 'DELETE'});

 Sending this request with fetch is just as simple as $.ajax() ; we can easily write the entire thing in one
line without losing readability.

 Sending PATCH Requests
 As mentioned earlier, PATCH requests are relatively new on the HTTP scene and are used to update a portion
of an existing resource. Take our previous PUT request example, where we only want to update a user’s
mobile phone number, but have to include all other user data in our PUT request as well. For small records,
that may be fine, but for records of substantial size, it may be a waste of bandwidth. One approach may be
to define specific endpoints for each part of the user’s data, or identify the data to be updated based on URI
query parameters, but that just clutters up our API. For this situation, it is best to use PATCH requests instead.

 Let’s revisit the PUT example where we need to update an existing user’s mobile number, this time
with PATCH. A jQuery approach—using a simple plaintext-based key-value message body to indicate the
property to change along with the new property value—would look like this:

 1 $.ajax({
 2 method: 'PATCH',

 12 https://tools.ietf.org/html/rfc7231
 13 https://tools.ietf.org/html/rfc7231#section-4.3.5
 14 https://github.com/github/fetch

https://tools.ietf.org/html/rfc7231
https://tools.ietf.org/html/rfc7231#section-4.3.5
https://github.com/github/fetch

CHAPTER 9 ■ AJAX REQUESTS: DYNAMIC DATA AND PAGE UPDATES

116

 3 url: '/user/1',
 4 contentType: 'text/plain',
 5 data: 'mobile: 555-5555'
 6 });

 ■ Note If your underlying model is JSON, it is more appropriate to send a JSON Patch Document instead. 15
But we haven’t talked much about JSON yet. I cover that later in this chapter.

 Remember that we can use any format we choose for the body of the PATCH request to specify the
data to update, as long as client and server are in agreement. If we prefer to use XMLHttpRequest , the same
request looks like this:

 1 var xhr = new XMLHttpRequest();
 2 xhr.open('PATCH', '/user/1');
 3 xhr.send('mobile: 555-5555');

 For the sake of completeness, I’ll show you how to send the exact same request using the Fetch API as well:

 1 fetch('/user/1', {
 2 method: 'PATCH',
 3 body: 'mobile: 555-5555'
 4 });

 Encoding Requests and Reading Encoded Responses
 In the preceding section, I touched on the simplest of all encoding methods—text/plain—which is the
Multipurpose Internet Mail Extension (MIME) for unformatted text that makes up an HTTP request or
response. The simplicity of plain text is both a blessing and a curse. That is, it is easy to work with, but
it’s only appropriate for very small and simple cases. The lack of any standardized structure limits its
expressiveness and usefulness. For more complex (and more common) requests, there are more appropriate
encoding types. In this section, I discuss three other MIME types: “application/x-www-form-urlencoded”,
“application/json”, and “multipart/form-data”. At the end of this section, you will be not only familiar
with these additional encoding methods, you will also be able to understand how to encode and decode
messages without jQuery, especially when sending HTTP requests and parsing responses.

 URL Encoding
 URL encoding can take place in the request’s URL or in the message body of the request/response. The
MIME type of this encoding scheme is “application/x-www-form-urlencoded”, and data consists of simple
key/value pairs. Each key and value is separated by an equal sign (=), while each pair is separated by
an ampersand (&). But the encoding algorithm is much more than this. Keys and values may be further
encoded, depending on their character makeup. Non-ASCII characters, along with some reserved
characters, are replaced with a percent character (%) followed by the hex value of the character’s associated
byte. This is further defined in the HTML forms section of the W3C HTML5 specification. 16 This description
is arguably a bit over-simplistic, but it’s appropriate and comprehensive enough for the purposes of this
chapter. If you’d like to learn more about the encoding algorithm for this MIME type, please have a look at
the spec, though it is a bit dry and may take a few reads to properly parse.

 15 https://tools.ietf.org/html/rfc6902
 16 www.w3.org/TR/html5/forms.html%23application/x-www-form-urlencoded-encoding-algorithm

https://tools.ietf.org/html/rfc6902
http://www.w3.org/TR/html5/forms.html#application/x-www-form-urlencoded-encoding-algorithm

CHAPTER 9 ■ AJAX REQUESTS: DYNAMIC DATA AND PAGE UPDATES

117

 For GET and DELETE requests, URL-encoded data should be included at the end of the URI, since these
request methods typically should not include payloads. For all other requests, the body of the message is
the most appropriate place for your URL-encoded data. In this case, the request or response must include
a Content-Type header of “application/x-www-form-urlencoded”—the MIME type of the encoding
scheme. URL-encoded messages are expected to be relatively small, especially when dealing with GET and
DELETE requests due to real-world URI length restrictions in place on browsers and servers. 17 Although this
encoding method is more elegant than text/plain, the lack of hierarchy means that these messages are also
limited in their expressiveness to some degree. However, child properties can be tied to parent properties
using brackets. For example, a “parent” key that has a value of a set of child key/value pairs—“child1” and
“child2”—can be encoded as “parent[child1]=child1val&parent[child2]=child2val”. In fact, this is what
jQuery does when encoding a JavaScript object into a URL-encoded string.

 jQuery’s API provides a function that takes an object and turns it into a URL-encoded string: $.param .
For example, if we wanted to encode a couple simple key/value pairs into a URL-encoded string, our code
would look like this:

 1 $.param({
 2 key1: 'some value',
 3 'key 2': 'another value'
 4 });

 That line would produce a string of “key1=some+value&key+2=another+value”. The specification for the
application/x-www-form-urlencoded MIME type does declare that spaces are reserved characters that should
be converted to the “plus” character. However, in practice, the ASCII character code is also acceptable. So, the
same couple of key/value pairs can also be expressed as “key1=some%20value&key%202=another%20value”.
You’ll see an example of this when I cover URL encoding with the web API.

 If we wanted to create a new user with three properties—name, address, and phone—we could send a
POST request to our server with a URL-encoded request body containing the information for the new user.
The request would look like this with jQuery:

 1 $.ajax({
 2 method: 'POST',
 3 url: '/user',
 4 data: {
 5 name: 'Mr. Ed',
 6 address: '1313 Mockingbird Lane',
 7 phone: '555-555-5555'
 8 }
 9 });

 jQuery does admittedly make this relatively intuitive, as it allows you to pass in a JavaScript object
describing the new user. There is no need to use the $.param method. As mentioned earlier, jQuery’s
 $.ajax() API method assumes a Content-Type of “application/x-www-form-urlencoded”, and it encodes
the value of your data property to automatically to match this assumption. You don’t have to think about
encoding or encoding types at all in this case.

 Even though the web API does require you to be conscious of the encoding type and it requires you encode
your data before sending the request, these tasks are not overly complicated. I’ve already showed you how jQuery
allows you to encode a string of text to “application/x-www-form-urlencoded”—using $.param() —and you can
accomplish the same without jQuery using the encodeURI() and encodeURIComponent() methods available on
global namespace. These methods are defined in the ECMAScript specification and have been available since the
ECMA-262 3rd edition specification, 18 completed in 1999.

 17 http://stackoverflow.com/questions/417142/
what-is-the-maximum-length-of-a-url-in-different-browsers
 18 http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-
262%2C3rdedition%2CDecember1999.pdf

http://stackoverflow.com/questions/417142/what-is-the-maximum-length-of-a-url-in-different-browsers
http://stackoverflow.com/questions/417142/what-is-the-maximum-length-of-a-url-in-different-browsers
http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262%2C3rdedition%2CDecember1999.pdf
http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262%2C3rdedition%2CDecember1999.pdf

CHAPTER 9 ■ AJAX REQUESTS: DYNAMIC DATA AND PAGE UPDATES

118

 Both encodeURI() and encodeURIComponent() perform the same general task—URL encode a string.
But they each determine which parts of the string to encode a bit differently, so they are tied to specific use
cases. encodeURI() is meant to be used for a complete URL, such as or a string of key-value pairs separated
by an ampersand (&), such as “first=ray&last=nicholus”. However, encodeURIComponent() is meant to only
be used on a single value that needs to be URL encoded, such as “Ray Nicholus” or “Mr. Ed”. If you use
 encodeURIComponent() to encode the full URL listed earlier in this paragraph, then the colon, forward slashes,
question mark, and ampersand will all be URL encoded, which is probably not what you want (unless the
entire URL is itself a query parameter).

 Looking back at the simple URL-encoding example with jQuery a little while back in this section, we
can encode the same data with the web API using encodeURI() :

 1 encodeURI('key1=some value&key 2=another value');

 A couple things about the output of encodeURI , which produces “key1=some%20value&key%202
=another%20value”. First, notice that, while jQuery replaced spaces with the plus sign (+), encodeURI()
(and encodeURI-Component) replace spaces with “%20”. This is perfectly valid, but a notable difference.
Second, whereas jQuery allows you to express the data to be encoded as a JavaScript object, encodeURI()
requires you separate the keys from the values with an equals sign (=) and the key/value pairs with an
ampersand (&). Taking this a bit further, we can duplicate the same POST request we sent earlier that adds a
new name, first using XMLHttpRequest :

 1 var xhr = new XMLHttpRequest(),
 2 data = encodeURI(
 3 'name=Mr. Ed&address=1313 Mockingbird Lane&phone=555-555-5555');
 4 xhr.open('POST', '/user');
 5 xhr.setRequestHeader('Content-Type', 'application/x-www-form-urlencoded');
 6 xhr.send(data);

 Another notable difference between the XMLHTTPRequest route and jQuery’s $.ajax() is that we must
set the request header’s Content-Type header as well. jQuery sets it for us by default, and it is necessary to
let the server know how to decode the request data. Luckily, XMLHttpRequest provides a method for setting
request headers—the aptly named setRequestHeader() .

 We can gain some of the same benefits seen previously with the Fetch API, but we still need to do our
own encoding. No worries—that can be accomplished without much trouble:

 1 var data =
 2 encodeURI('name=Mr. Ed&address=1313 Mockingbird Lane&phone=555-555-5555');
 3 fetch('/user', {
 4 method: 'POST',
 5 headers: {'Content-Type': 'application/x-www-form-urlencoded'},
 6 body: data
 7 });

 Just as with XMLHttpRequest , the Content-Type header must also be specified here, since the default
 Content-Type for fetch -initiated requests with a String body is also “text/plain”. But, again, the Fetch API
allows AJAX requests to be constructed in a more elegant and condensed form, similar to the solution that
jQuery has provided for some time now. Fetch is supported in Firefox, Chrome, Opera, and Edge, there is
an open case to add support to Safari. 19 In the near future, XMLHttpRequest will be an artifact of history, and
 fetch , which rivals jQuery’s AJAX support, will be the AJAX transport of choice.

 19 https://bugs.webkit.org/show_bug.cgi?id=151937

https://bugs.webkit.org/show_bug.cgi?id=151937

CHAPTER 9 ■ AJAX REQUESTS: DYNAMIC DATA AND PAGE UPDATES

119

 JSON Encoding
 JavaScript Object Notation, better known as JSON , is considered to be a “data-interchange language”
(as described on json.org). If this obscure description leaves you a bit puzzled, don’t feel bad—it’s not a
particularly useful summary. Think of JSON as a JavaScript object turned into a string. There is a bit more to
explain, but this is a reasonable high-level definition in my opinion. In web development, this is particularly
useful if a browser-based client wants to easily send a JavaScript object to a server endpoint. The server can,
in turn, respond to requests from this client, also supplying JSON in the response body, and the client can
easily convert this into a JavaScript object to allow easy programmatic parsing and manipulation. Although
“application/x-www-form-urlencoded” requires that data be expressed in a flat format (or denote parent/
child relationships using non-standard bracket notation), “application/json” allows data to be expressed in
a hierarchical format. A key can have many sub-keys, and those sub-keys can have child keys as well. In this
sense, JSON is more more expressive than URL-encoded data, which itself is more expressive and structured
than plain text.

 In case you are not already familiar with this common data format, let’s represent a single user in JSON:

 1 {
 2 "name": "Mr. Ed",
 3 "address": "1313 Mockingbird Lane",
 4 "phone": {
 5 "home": "555-555-5555"
 6 "mobile": "444-444-4444"
 7 }
 8 }

 Notice that JSON gives us the power to easily express sub-keys, a feature that is lacking with plaintext
and URL-encoded strings. Mr. Ed has two phone numbers, and with JSON we can elegantly associate both
numbers with with a parent “phone” property. Extending our AJAX example from the previous section, let’s
add a new name record to our server using jQuery, this time with a JSON-encoded payload:

 1 $.ajax({
 2 method: 'POST',
 3 url: '/user',
 4 contentType: 'application/json',
 5 data: JSON.stringify({
 6 name: 'Mr. Ed',
 7 address: '1313 Mockingbird Lane',
 8 phone: {
 9 home: '555-555-5555',
 10 mobile: '444-444-4444'
 11 }
 12 });
 13 });

 Notice that our code is looking a bit uglier than the previous URL-encoded example. Two reasons for this,
one being that we must explicitly specify the Content-Type header via a contentType property, an abstraction
that isn’t really much help. Second, we must leave the comfortable and familiar jQuery API to convert our
JavaScript object into JSON. Since jQuery provides no API method to accomplish this (which is odd since
it does provide a way to convert a JSON string to an object - $.parseJSON()), we must make use of the JSON
object, which has been standardized as part of the ECMAScript specification. The JSON object provides
a couple of methods for converting JSON strings to JavaScript objects and back again. It first appeared in

CHAPTER 9 ■ AJAX REQUESTS: DYNAMIC DATA AND PAGE UPDATES

120

the ECMAScript 5.1 specification, 20 which means it is supported in Node.js as well as all modern browsers,
including Internet Explorer 8. The JSON.stringify() method, used in the earlier jQuery POST example, takes
the user record, which is represented as a JavaScript object, and converts it into a proper JSON string. This is
needed before we can send the record to our server.

 If you’d like to send a GET request that receives JSON data, you can do that quite simply using get JSON :

 1 $.getJSON('/user/1', function (user) {
 2 // do something with this user JavaScript object
 3 });

 What about sending the previous POST request without jQuery? First, with XMLHttpRequest :

 1 var xhr = new XMLHttpRequest(),
 2 data = JSON.stringify({
 3 name: 'Mr. Ed',
 4 address: '1313 Mockingbird Lane',
 5 phone: {
 6 home: '555-555-5555',
 7 mobile: '444-444-4444'
 8 }
 9 });
 10 xhr.open('POST', '/user');
 11 xhr.setRequestHeader('Content-Type', 'application/json');
 12 xhr.send(data);

 No surprises with XHR. This attempt looks very similar to the URL-encoded POST request we sent in the
last section, with the exception of stringifying our JavaScript object and setting an appropriate Content-Type
header. As you have already seen, we must address the same issues whether we are using jQuery or not.

 But sending a JSON-encoded request is only half of the required knowledge. We must be prepared to
receive and parse a JSON response too. That looks something like this with XMLHTTPRequest :

 1 var xhr = new XMLHttpRequest();
 2 xhr.open('GET', '/user/1');
 3 xhr.onload = function () {
 4 var user = JSON.parse(xhr.responseText);
 5 // do something with this user JavaScript object
 6 };
 7 xhr.send();

 Notice that we’re sending a GET request for user data and expecting our server to return this record in
a JSON-encoded string. In the preceding code we’re leveraging the onload function, which will be called
when the request completes. At that point, we can grab the response body via the responseText property
on our XHR instance. To turn this into a proper JavaScript object, we must make use of the other method
on the JSON object— parse() . In modern browsers (except Internet Explorer), receiving JSON data with
 XMLHttpRequest is even easier:

 1 var xhr = new XMLHttpRequest();
 2 xhr.open('GET', '/user/1');
 3 xhr.onload = function () {
 4 var user = xhr.response;

 20 www.ecma-international.org/ecma-262/5.1/#sec-15.12

http://www.ecma-international.org/ecma-262/5.1/#sec-15.12

CHAPTER 9 ■ AJAX REQUESTS: DYNAMIC DATA AND PAGE UPDATES

121

 5 // do something with this user JavaScript object
 6 };
 7 xhr.send();

 The preceding example assumes that the server has included a Content-Type header of “application/json”.
This lets XMLHttpRequest know what to do with the response data. It ultimately converts it to a JavaScript object
and makes the converted value available on the response property of our XMLHttpRequest instance.

 Finally, we can use the Fetch API to add this new user record to our server, again using a JSON- encoded
request:

 1 fetch('/user', {
 2 method: 'POST',
 3 headers: {'Content-Type': 'application/json'},
 4 body: JSON.stringify({
 5 name: 'Mr. Ed',
 6 address: '1313 Mockingbird Lane',
 7 phone: {
 8 home: '555-555-5555',
 9 mobile: '444-444-4444'
 10 }
 11 });
 12 });

 This is unsurprising and straightforward, but what about receiving a JSON-encoded response from our
server? Let’s send a simply GET request using fetch for a user record, with the expectation that our server
will respond with a user record encoded as a JSON string:

 1 fetch('/user/1').then(function (request) {
 2 return request.json();
 3 }).then(function (userRecord) {
 4 // do something with this user JavaScript object
 5 });

 The Fetch API provides our promissory callback with a Request object. 21 Since we are expecting JSON,
we call the json() method on this object, which itself returns a Promise . Note that the json() method is
actually defined on the Body interface. 22 The Request object implements the Body interface, so we have
access to methods on both interfaces here. By returning that promise, we can chain another promissory
handler and expect to receive the JavaScript object representation of the response payload as a parameter in
our last success callback. Now we have our user record from the server. Pretty simple and elegant! Again, if
promises are still a bit murky, don’t worry—I cover them in great detail later in Chapter 11 .

 Interestingly, ECMAScript 2016 provides the ability to use an alternate syntax that makes the above
(any many other code example) even more elegant. Below, I’ve re-written the preceding example using
“arrow functions”:

 1 fetch('/user/1')
 2 .then(request => request.json())
 3 .then(userRecord => {
 4 // do something with this userRecord object
 5 });

 21 https://fetch.spec.whatwg.org/#request-class
 22 https://fetch.spec.whatwg.org/#body

http://dx.doi.org/10.1007/978-1-4842-2235-5_11
https://fetch.spec.whatwg.org/#request-class
https://fetch.spec.whatwg.org/#body

CHAPTER 9 ■ AJAX REQUESTS: DYNAMIC DATA AND PAGE UPDATES

122

 Arrow functions are out of scope for this book, but I thought it would be nice to point this out to readers
who were not already aware of this language feature. Note that not all browsers support arrow functions, so
you’ll likely need to use a build-time compiler that converts these to “traditional” functions. Some JavaScript
compilers include TypeScript, Closure Compiler, Babel, and Bublè. Some of these are mentioned later in the
book, such as in Chapter 11 .

 Multipart Encoding
 Another common encoding scheme, usually associated with HTML form submissions, is multipart/- form-
data, also known as multipart encoding . The algorithm for this method of passing data is formally defined
by the IETF in RFC 2388. 23 The use of this algorithm in the context of HTML forms is further described by
the W3C in the HTML specification. 24 Non-ASCII characters in a multipart/form-data message do not have
to be escaped. Instead, each piece of the message is split into fields, and each field is housed inside of a
multipart boundary. Boundaries are separated by unique IDs that are generated by the browser, and they are
guaranteed to be unique among all other data in the request, as the browser analyzes the data in the request
to ensure a conflicted ID is not generated. A field in a multipart encoded message is often an HTML <form>
field. Each field is housed inside of its own multipart boundary. Inside of each boundary is a header, where
metadata about the field lives (such as its name/key), along with a body (where the field value lives).

 Consider the following form:

 1 < form action="my/server" method="POST" enctype="multipart/form-data">
 2 < label >First Name:
 3 < input name="first">
 4 </ label >
 5
 6 < label >Last Name:
 7 < input name="last">
 8 </ label >
 9
 10 < button >Submit</ button >
 11 </ form >

 When the submit button is hit, any entered data will be submitted to the server. Let’s say the user enters
“Ray” into the first text input, and “Nicholus” into the second text input. After hitting submit, the request
body may look something like this:

 1 -----------------------------1686536745986416462127721994
 2 Content-Disposition: form-data; name="first"
 3
 4 Ray
 5 -----------------------------1686536745986416462127721994
 6 Content-Disposition: form-data; name="last"
 7
 8 Nicholus
 9 -----------------------------1686536745986416462127721994--

 23 www.ietf.org/rfc/rfc2388.txt
 24 www.w3.org/TR/html5/forms.html#multipart-form-data

http://dx.doi.org/10.1007/978-1-4842-2235-5_11
http://www.ietf.org/rfc/rfc2388.txt
http://www.w3.org/TR/html5/forms.html#multipart-form-data

CHAPTER 9 ■ AJAX REQUESTS: DYNAMIC DATA AND PAGE UPDATES

123

 The server knows how to find each form field by looking for the unique ID marking each section in
the request body. This ID is included by the browser in the Content-Type header, which in this case is
“multipart/form-data; boundary=—————————1686536745986416462127721994”. Notice that the
MIME type of the message body is separated by the multipart boundary ID with a semicolon.

 But HTML form submissions are not the only instance where we might want to encode our request
message using the multipart/form-data MIME type. Since this MIME type is trivial to implement in all
server-side languages, it is probably a safe choice for transmitting key/value pairs from client to server. But,
above all else, multipart encoding is perfect for mixing key/value pairs with binary data (such as files). I talk
more about uploading files in the next section.

 So how can we send a multipart encoded request using jQuery’s $.ajax() method? As you’ll see
shortly, it’s ugly, and the layer of abstraction that jQuery normally provides is incomplete in this case, as you
must delegate directly to the web API anyway. Continuing with some of the previous examples, let’s send a
new user record to our server—a record consisting of a user’s name, address, and phone number:

 1 var formData = new FormData();
 2 formData.append('name', 'Mr. Ed');
 3 formData.append('address', '1313 Mockingbird Lane');
 4 formData.append('phone', '555-555-5555');
 5
 6 $.ajax({
 7 method: 'POST',
 8 url: '/user',
 9 contentType: false ,
 10 processData: false ,
 11 data: formData
 12 });

 To send a multipart encoded AJAX request, we must send a FormData object that contains our key/value
pairs, and the browser takes care of the rest. There is no jQuery abstraction here; you must make use of the
web API’s FormData directly. Note that FormData isn’t supported in Internet Explorer 9. This lack of abstraction
is a hole in jQuery’s blanket, though FormData is relatively intuitive and quite powerful. In fact, you can pass
it a <form> element, and key/value pairs will be created for you, ready for asynchronous submission to your
server. Mozilla Developer Network has a great writeup on FormData . 25 You should read it for more details.

 The biggest problem with sending MPE requests with jQuery is the obscure options that must be set to make
it work. processData: false ? What does that even mean? Well, if you don’t set this option, jQuery will attempt
to turn FormData into a URL-encoded string. As for contentType: false , this is required to ensure that jQuery
doesn’t insert its own Content-Type header. Remember from the section introduction that the browser must specify
the Content-Type for you as it includes a calculated multipart boundary ID used by the server to parse the request.

 The same request with plain old XMLHttpRequest contains no surprises and, quite frankly, isn’t any less
intuitive than jQuery’s solution:

 1 var formData = new FormData(),
 2 xhr = new XMLHttpRequest();
 3
 4 formData.append('name', 'Mr. Ed');
 5 formData.append('address', '1313 Mockingbird Lane');
 6 formData.append('phone', '555-555-5555');
 7
 8 xhr.open('POST', '/user');
 9 xhr.send(formData);

 25 https://developer.mozilla.org/en-US/docs/Web/API/FormData

https://developer.mozilla.org/en-US/docs/Web/API/FormData

CHAPTER 9 ■ AJAX REQUESTS: DYNAMIC DATA AND PAGE UPDATES

124

 In fact, using XHR results in less code, and we don’t have to include nonsensical options such as
 contentType: false and processData: false . As expected, the Fetch API is even simpler:

 1 var formData = new FormData();
 2 formData.append('name', 'Mr. Ed');
 3 formData.append('address', '1313 Mockingbird Lane');
 4 formData.append('phone', '555-555-5555');
 5
 6 fetch('/user', {
 7 method: 'POST',
 8 body: formData
 9 });

 See? If you can look Beyond jQuery , just a bit, you’ll find that the web API is not always as scary as some
make it out to be. In this case, jQuery’s API suffers from inelegance.

 Uploading and Manipulating Files
 Asynchronous file uploading, a topic that I have quite a bit of experience with, 26 is yet another example of how
jQuery can often fail to effectively wrap the web API and provide users with an experience that justifies use of
the library. This is indeed a complex topic, and though I can’t cover everything related to file uploads here, I’ll
be sure to explain the basics and show how files can be uploaded using jQuery, XMLHttpRequest , and fetch
both in modern browsers and ancient browsers. In this specific and somewhat unusual case, note that Internet
Explorer 9 is excluded from the definition of “modern browsers.” The reason for this will become clear soon.

 Uploading Files in Ancient Browsers
 Before we get into uploading files in older browsers, let’s define a very important term for this section:
 browsing context . A browsing context can be a window or an iframe , for example. So if we have a window , and
an iframe inside of this window , we have two browsing contexts: the parent window and the child iframe .

 The only way to upload files in ancient browsers, including Internet Explorer 9 , is to include an <input
type="file"> element inside of a <form> and submit this form. By default, the server’s response to this form
submit replaces the current browsing context. When working with a highly dynamic single-page web application,
this is unacceptable. We need to be able to upload files in older browsers and still maintain total control over the
current browsing context. Unfortunately, there is no way to prevent a form submit from replacing the current
browsing context. But we can certainly create a child browsing context where we submit the form and then
monitor this browsing context to determine when our file has been uploaded by listening for changes.

 This approach can be implemented quite easily, simply by asking the form to target an <iframe> in
the document. To determine when the file has finished uploading, attach an “onload” event handler to the
 <iframe> . To demonstrate this approach, we’ll need to make a few assumptions in order to make this relatively
painless. First, imagine our primary browsing context contains a fragment of markup that looks like this:

 1 < form action="/upload"
 2 method="POST"
 3 enctype="multipart/form-data"
 4 target="uploader">
 5

 26 http://fineuploader.com

http://fineuploader.com/

CHAPTER 9 ■ AJAX REQUESTS: DYNAMIC DATA AND PAGE UPDATES

125

 6 < input type="file" name="file">
 7
 8 </ form >
 9
 10 < iframe name="uploader" style="display: none;"></ iframe >

 Notice that the enctype attribute is set to “multipart/form-data”. You may remember from the previous
section that a form with file input elements must generate a multipart encoded request in order to properly
communicate the file bytes to the server.

 Second assumption: we are given a function— upload() —that is called when the user selects a file via
the file input element. I’m not going to cover this specific detail now, since we haven’t yet covered event
handling. I discuss events in Chapter 10 .

 Okay, so how do we make this happen with jQuery? Like this:

 1 function upload() {
 2 var $iframe = $('IFRAME'),
 3 $form = $('FORM');
 4
 5 $iframe.on('load', function () {
 6 alert('file uploaded!')
 7 });
 8
 9 $form.submit();
 10 }

 We could have accomplished a lot more with JavaScript/jQuery here if we needed to, such as setting the
 target attribute . If we were working with nothing more than a single file input element, we could have also
dynamically created the form and moved the file input inside of it as well. But none of that was necessary
since our markup contained everything we needed already. How much work and complexity has jQuery
saved us from here? Let’s take a look at the non-jQuery version for a comparison:

 1 function upload() {
 2 var iframe = document.getElementsByTagName('IFRAME')[0],
 3 form = document.getElementsByTagName('FORM')[0]
 4
 5 iframe.onload = function () {
 6 alert('file uploaded!');
 7 }
 8
 9 form.submit();
 10 }

 jQuery hasn’t done much at all for us. The web API solution is almost identical to the initial jQuery
code. In both cases, we must select the iframe and form, attach an onload handler that does something
when the upload has completed, and the submit the form. In both cases, our primary browsing context/
window remains untouched. The server’s response is buried in our hidden <iframe> . Pretty neat!

http://dx.doi.org/10.1007/978-1-4842-2235-5_10

CHAPTER 9 ■ AJAX REQUESTS: DYNAMIC DATA AND PAGE UPDATES

126

 Uploading Files in Modern Browsers
 There is a much more modern way to upload files asynchronously, and this is possible in all modern
browsers , with the exception of Internet Explorer 9. The ability to upload files via JavaScript is possible due
to the File API, 27 and XMLHttpRequest Level 2 (a small and non-breaking update to the original specification
in terms of API). 28 Both of these elements of the web API are standardized by W3C specifications. jQuery
does nothing to make uploading files easier. The modern native APIs that bring file uploading the browser
are elegant, easy to use, and powerful. jQuery doesn’t do much to attempt to provide a layer of abstraction
here, and actually makes file uploading a bit awkward.

 A typical workflow involves the following steps:

 1. User selects one or more files via a <input type="file" multiple> element.
Note that the multiple Boolean attribute allows the user to select multiple files,
provided that the browser supports this attribute.

 2. JavaScript is used to specify a “change” event listener, which is called when the
user selects one or more files.

 3. When the “change” listener is invoked, grab the file or files from the <input
type="file"> element. These are made available as File objects, 29 which extend
the Blob interface. 30

 4. Upload the File objects using your AJAX transport of choice.

 Because we haven’t covered events yet, assume a function exists that, when called, signals that our user
has selected one or more files on the <input type="file"> that we are monitoring. The goal is to upload
these files. And to keep this example focused and simple, also assume that the user is only able to select
 one file. This means our <input type="file"> element will not include a multiple Boolean attribute. File
uploading in modern browsers (except in IE9) with jQuery can be accomplished, given the environment I
just described, like this:

 1 function onFileInputChange() {
 2 var file = $('INPUT[type="file"]')[0].files[0];
 3
 4 $.ajax({
 5 method: 'POST',
 6 url: '/uploads',
 7 contentType: false ,
 8 processData: false ,
 9 data: file
 10 });
 11 }

 The preceding code will send a POST request to an “/uploads” endpoint, and the request body will
contain the bytes of the file our user selected. Again we must use the obscure contentType: false option
to ensure that jQuery leaves the Content-Type header alone so that it may be set by the browser to reflect the
MIME type of the file. Also, processData: false is needed to prevent jQuery from encoding the File object,
which would destroy the file we are trying to upload. We also could have included the file in a FormData
object and uploaded that instead. This becomes a better option if we need to upload multiple files in a single
request, or if we want to easily include other form data alongside the file or files.

 27 www.w3.org/TR/FileAPI/
 28 www.w3.org/TR/XMLHttpRequest2/
 29 www.w3.org/TR/FileAPI/#dfn-file
 30 www.w3.org/TR/FileAPI/#dfn-Blob

http://www.w3.org/TR/FileAPI/
http://www.w3.org/TR/XMLHttpRequest2/
http://www.w3.org/TR/FileAPI/#dfn-file
http://www.w3.org/TR/FileAPI/#dfn-Blob

CHAPTER 9 ■ AJAX REQUESTS: DYNAMIC DATA AND PAGE UPDATES

127

 Without jQuery, using XMLHttpRequest , file uploading is actually much simpler:

 1 function onFileInputChange() {
 2 var file = document.querySelector('INPUT[type="file"]').files[0],
 3 xhr = new XMLHttpRequest();
 4
 5 xhr.open('POST', '/uploads');
 6 xhr.send(file);
 7 }

 As with the jQuery example, we’re grabbing the selected File from the file input’s files property,
which is included as part of the File API, and sending it to our endpoint by passing it into the send()
method, which supports Blob s as of XMLHttpRequest level 2.

 File uploading is also possible with the Fetch API. Let’s take a look:

 1 function onFileInputChange() {
 2 var file = document.querySelector('INPUT[type="file"]').files[0];
 3
 4 fetch('/uploads', {
 5 method: 'POST',
 6 body: file
 7 });
 8 }

 Reading and Creating Files
 Generally speaking, developers comfortable with jQuery often attempt to solve all of their front-end
development problems with jQuery. They sometimes fail to see the web beyond this library. When
developers become dependent on this safety net, it can often lead to frustration when a problem is not
addressable through jQuery. This is the oppressive magic I wrote about in Chapter 1 . You just saw how
jQuery, at best, provides almost no help when uploading files. Suppose you want to read a file, or even
create a new one or modify an existing one to be sent to a server endpoint? This is an area where jQuery has
absolutely zero coverage. For reading files, you must rely on the FileReader interface, 31 which is defined as
part of the File API. Creation of “files” browser-side requires use of the Blob constructor. 32

 The simplest FileReader example, which is sufficient for demonstration purposes here, is to read a text
file to the console. Suppose a user selected this text file via a <input type"file"> , and the text File object is
sent to a function for output. The code required to read this file and output it to the developer tools console
would involve the following code:

 1 function onTextFileSelected(file) {
 2 var reader = new FileReader();
 3
 4 reader.onload = function () {
 5 console.log(reader.result);
 6 }
 7
 8 reader.readAsText(file);
 9 }

 31 www.w3.org/TR/FileAPI/#dfn-filereader
 32 www.w3.org/TR/FileAPI/#dfn-Blob

http://dx.doi.org/10.1007/978-1-4842-2235-5_1
http://www.w3.org/TR/FileAPI/#dfn-filereader
http://www.w3.org/TR/FileAPI/#dfn-Blob

CHAPTER 9 ■ AJAX REQUESTS: DYNAMIC DATA AND PAGE UPDATES

128

 No jQuery needed or even possible to read files. And why would you need it? Reading files is pretty
easy. Suppose you want to take the same text file and then append some text to the end of the file before
uploading it to your server? Surprisingly, this is pretty easy too:

 1 function onTextFileSelected(file) {
 2 var modifiedFile = new Blob([file, 'hi there!'], {type: 'text/plain'});
 3 // ...send modifiedFile to uploader
 4 }

 The modifiedFile here is a copy of the selected file with the text “hi there!” added to the end. This was
accomplished in a grand total of one line of code.

 Cross-domain Communication: an Important Topic
 As more and more logic is offloaded to the browser, it is becoming common for web applications to pull
data from multiple APIs, some of which exist as part of third-party services. A great example of this is a
web application (like Fine Uploader) 33 that uploads files directly to an Amazon Web Services (AWS) Simple
Storage Service (S3) bucket. Server-to-server cross-domain requests are simple and without restrictions.
But the same is not true for cross-domain requests initiated from the browser. For the developer who wants
to develop a web application that sends files directly to S3 from the browser, an obstacle lies in the way: the
same-origin policy. 34 This policy places restrictions on requests initiated by JavaScript. More specifically,
requests made by XMLHttpRequest between domains are prohibited. For example, sending a request to
 https://api.github.com from https://mywebapp.com is prevented by the browser because of the same-
origin policy. While this restriction is in place for added security, this seems like a major limiting factor. How
can you make legitimate requests from domain A to domain B without funneling them through a server on
domain A first? The next two sections cover two specific approaches to accomplish this.

 The Early Days (JSONP)
 The same-origin policy prevents scripts from initiating requests outside the domain of their current
browsing context. Although this covers AJAX transports such as XMLHttpRequest , elements such as <a> ,
 , and <script> are not bound by the same-origin policy. JavaScript Object Notation with Padding, or
JSONP, exploits one of these exceptions to allow scripts to make cross-origin GET requests.

 If you’re not familiar with JSONP , the name may be a bit misleading. There is actually no JSON involved here
at all. It’s a very common misconception that JSON must be returned from the server when the client initiates a
JSONP call, but that’s simply not true. Instead, the server returns a function invocation, which is not valid JSON.

 JSONP is essentially just an ugly hack that exploits the fact that <script> tags that load content from a
server are not bound by the same-origin policy. There need to be cooperation and an understanding of the
convention by both client and server for this to work properly. You simply need to point the src attribute of
a <script> tag at a JSONP-aware endpoint and include the name of an existing global function as a query
parameter. The server must then construct a string representation that, when executed by the browser, will
invoke the global function, passing in the requested data.

 Exploiting this JSONP approach in jQuery is actually pretty easy. Say we want to get user information
from a server on a different domain:

 1 $.ajax('http://jsonp-aware-endpoint.com/user/1', {
 2 jsonp: 'callback',

 33 http://fineuploader.com
 34 https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy

https://api.github.com/
https://mywebapp.com/
http://fineuploader.com/
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy

CHAPTER 9 ■ AJAX REQUESTS: DYNAMIC DATA AND PAGE UPDATES

129

 3 dataType: 'jsonp'
 4 }).then(function (response) {
 5 // handle user info from server
 6 });

 jQuery takes care of creating the <script> tag for us and also creates and tracks a global function. When
the global function is called after the response from the server is received, jQuery passes that to our response
handler mentioned earlier. This is actually a pretty nice abstraction. Completing the same task without
jQuery is certainly possible, but not as nice:

 1 window.myJsonpCallback = function (data) {
 2 // handle user info from server
 3 };
 4
 5 var scriptEl = document.createElement('script');
 6 scriptEl.setAttribute('src',
 7 'http://jsonp-aware-endpoint.com/user/1?callback=myJsonpCallback');
 8 document.body.appendChild(scriptEl);

 Now that you have this newfound knowledge, I suggest you forget it and avoid using JSONP altogether. It’s
proven to be a potential security issue. 35 Also, in modern browsers, CORS is a much better route. And you’re in
luck: CORS is featured in the next sub-section. This explanation of JSONP serves mostly as a history lesson and
an illustration of how jQuery was quite useful and important before the modern evolution of web specifications.

 Modern Times (CORS)
 CORS , short for Cross Origin Resource Sharing , is the more modern way to send AJAX requests between
domains from the browser. CORS is actually a fairly involved topic and very commonly misunderstood even
by seasoned web developers. Although the W3C specification 36 can be hard to parse, Mozilla Developer
Network has a great explanation. 37 I’m only going to touch on a few CORS concepts here, but the MDN
article is useful if you’d like to have a more detailed understanding of this topic.

 With a reasonable understanding of CORS, sending a cross-origin AJAX request via JavaScript is not
particularly difficult in modern browsers. Unfortunately, the process is not as easy in Internet Explorer 8 and
9. Cross-origin AJAX requests are only possible via JSONP in IE7 and older, and you are restricted to GET
requests in those browsers (because this is an inherent limitation of JSONP). In all non-JSONP cases, jQuery
offers zero assistance.

 For modern browsers, all the work is delegated to server code. The browser does everything necessary
client-side for you. In the most basic case, your code for a cross-origin AJAX request in a modern browser is
identical to a same-origin AJAX request when using jQuery’s ajax() API method, or when directly using the
web API’s XMLHttpRequest transport, and even with the Fetch API. So, I won’t bother showing that here.

 CORS requests can be divided up into two distinct types: simple and non-simple. Simple requests
consist of GET, HEAD, and POST requests, with a Content-Type of “text/plain” or “application/x-www-form-
urlencoded”. Non-standard headers, such as “X-” headers, are not allowed in “simple” requests. These CORS
requests are sent by the browser with an Origin header that includes the sending domain. The server must
acknowledge that requests from this origin are acceptable. If not, the request fails. Non-simple requests
consists of PUT, PATCH, and DELETE requests, as well as other Content-Types, such as “application/json”.
Also, non-standard headers, as you just learned, will mark a CORS request as “non-simple.” In fact, even a
GET or POST request can be non-simple if it, for example, contains non-standard request headers.

 35 http://security.stackexchange.com/a/23439
 36 www.w3.org/TR/cors/
 37 https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS

http://security.stackexchange.com/a/23439
http://www.w3.org/TR/cors/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS

CHAPTER 9 ■ AJAX REQUESTS: DYNAMIC DATA AND PAGE UPDATES

130

 A non-simple CORS request must be “preflighted” by the browser. A preflight is an OPTIONS request sent by
the browser before the underlying request is sent. If the server properly acknowledges the preflight, the browser
will then send the underlying/original request. Non-simple cross-origin requests, such as PUT or POST/GET
requests with an X-header (for example) could not be sent from a browser pre-CORS specification. So, for these
types of requests, the concept of preflighting was written into the specification to ensure servers do not receive
these types of non-simple cross-origin browser-based requests without explicitly opting in. In other words, if
you don’t want to allow these types of requests, you don’t have to make any changes to your server. The preflight
request that the browser sends first will fail, and the browser will never send the underlying request.

 It is also important to know that cookies are not sent by default with cross-origin AJAX requests. You
must set the withCredentials flag on the XMLHttpRequest transport. For example:

 1 $.ajax('http://someotherdomain.com', {
 2 method: 'POST',
 3 contentType: 'text/plain',
 4 data: 'sometext',
 5 beforeSend: function (xmlHttpRequest) {
 6 xmlHttpRequest.withCredentials = true ;
 7 }
 8 });

 jQuery offers somewhat of a leaky abstraction here. We must set the withCredentials property
on the underlying xmlHttpRequest that jQuery manages. This can also be accomplished by adding a
withCredentials property with a value of true to an xhrFields settings object. This is mentioned in the ajax
method documentation, but it may be difficult to locate unless you know exactly where to look. The web API
route is familiar, and, as expected, we must set the withCredentials flag in order to ensure cookies are sent
to our server endpoint:

 1 var xhr = new XMLHttpRequest();
 2 xhr.open('POST', 'http://someotherdomain.com');
 3 xhr.withCredentials = true ;
 4 xhr.setRequestHeader('Content-Type', 'text/plain');
 5 xhr.send('sometext');

 The Fetch API makes sending credentials with cross-origin AJAX requests simpler:

 1 fetch('http://someotherdomain.com', {
 2 method: 'POST',
 3 headers: {
 4 'Content-Type': 'text/plain'
 5 },
 6 credentials: 'include'
 7 });

 The credentials option used there ensures that any credentials, such as cookies, are sent along with
the CORS request. Note that even for same-origin requests, fetch does not send cookies to the server
endpoint by default. For same-origin requests, you must include a credentials: 'same-origin' option to
ensure fetch sends cookies with the request. The default value of the credentials option is “omit”, which is
why fetch does not send cookies with any request by default.

CHAPTER 9 ■ AJAX REQUESTS: DYNAMIC DATA AND PAGE UPDATES

131

 jQuery actually becomes a headache to deal with when we need to send a cross-domain AJAX request
in IE8 or IE9. If you’re using jQuery for this purpose, you are truly trying to fit a square peg into a round hole.
To understand why jQuery is a poor fit for cross-origin requests in IE9 and IE8, it’s important to consider a
couple low-level points:

 1. Cross-origin AJAX requests in IE8 and IE9 can only be sent using the IE-
proprietary XDomainRequest transport. I’ll save the rant for why this was such
a huge mistake by the IE development team for another book. Regardless,
 XDomainRequest is a stripped-down version of XMLHttpRequest and it must
be used when making cross-origin AJAX requests in IE8 and IE9. There are
significant restrictions restrictions imposed on this transport, 38 such as an
inability to send anything other than POST and GET requests, and the lack of API
methods to set request headers or access response headers.

 2. jQuery’s ajax() method (and all associated aliases) are just wrappers for
 XMLHttpRequest . It has a hard dependency on XMLHttpRequest . I mentioned this
earlier in the chapter, but it’s useful to point it out here again, given the context.

 So, you need to use XDomainRequest to send the cross-origin request in IE8/9, but jQuery.ajax() is
hard-coded to use XMLHttpRequest . That’s a problem, and resolving it in the context of jQuery is not easy.
Luckily, for those dead-set on using jQuery for this type of call, there are a few plug-ins that will “fix” jQuery
in this regard. Essentially, the plug-ins must override jQuery’s AJAX request sending/handling logic via the
 $.ajaxTransport() method.

 Instead of wrestling with jQuery when attempting to send cross-origin AJAX requests in older browsers,
stick with the web API. The following code demonstrates a simple way to determine whether you need to use
 XDomainRequest instead of XMLHttpRequest (use only if needed):

 1 if (new XMLHttpRequest().withCredentials === undefined) {
 2 var xdr = new XDomainRequest();
 3 xdr.open('POST', 'http://someotherdomain.com');
 4 xdr.send('sometext');
 5 }

 The native web not only provides a reasonable API for initiating AJAX requests, both with XMLHttpRequest
and even more so with fetch , it sometimes is even more intuitive than jQuery in this context, especially when
sending some cross-origin AJAX requests.

 38 http://blogs.msdn.com/b/ieinternals/archive/2010/05/13/xdomainrequest-restrictions-limita-
tions-and-workarounds.aspx

http://blogs.msdn.com/b/ieinternals/archive/2010/05/13/xdomainrequest-restrictions-limitations-and-workarounds.aspx
http://blogs.msdn.com/b/ieinternals/archive/2010/05/13/xdomainrequest-restrictions-limitations-and-workarounds.aspx

133© Ray Nicholus 2016
R. Nicholus, Beyond jQuery, DOI 10.1007/978-1-4842-2235-5_10

 CHAPTER 10

 Browser Events

 Reacting to changes on a page is a big part of modern web application development. Although this has
always been possible to some degree with anchor links and form submit buttons, the introduction of
an events system made it possible to write code that adjusts to user input without the need to reload or
changing the current page. You can probably see how this complements the ability to send AJAX requests
as well. Since Internet Explorer version 4 (with the introduction of Microsoft’s Trident layout engine)
and Netscape Navigator version 2 (along with the first JavaScript implementation), it has been possible
to listen for DOM events in order to provide a more dynamic user experience in the browser. The first
implementation of this model was quite limited. But as the browser evolved via standardization, so did the
events system. Today, we have a fairly elegant native API for listening to and triggering both standardized
DOM events and custom events. You’ll see throughout this chapter how you can make use of events in
modern browsers to accomplish various tasks.

 While the modern Web provides a powerful and intuitive set of methods for working with events,
this was not always the case. This unfortunate point in history, along with lack of parity between Internet
Explorer and the rest of the browsers in terms of the events API, made jQuery a great library for dealing with
events across all popular browsers. In addition to normalizing events, jQuery also provides additional help
through its support for event delegation and one-time event listener binding. jQuery is no longer needed to
normalize significant event API implementation differences between browsers, but it still provides added
convenience through extra-useful features. In this chapter, I also show you how to mirror the most important
event-related jQuery features simply by relying on the native web API.

 Throughout the following sections, you’ll learn how to create, trigger, and listen for standard browser
events and custom events. The jQuery method will be compared to the native web API approach, and you’ll
feel much more comfortable dealing with events yourself without using jQuery as a crutch. At the very least,
even if you decide to continue using jQuery for event handling in your projects, this chapter will give you a
comprehensive understanding of the event system provided by the browser. I will be focusing primarily on
modern browsers in this chapter, but a section at the end will include some useful information that will help
you understand how the events API worked in ancient browsers, and how this differs from the modern system.

 How Do Events Work?
 Before I cover using events to solve common problems, I think it’s prudent to first outline how browser
events “work.” This event system follows the publish-subscribe pattern at a basic level, but there is much
more to browser events than this. For starters, there are multiple classifications of browsers events. The two
broadest categories are referred to as “custom” and “native” (by me).

 “Native” browser events can be further assigned to sub-groups, such as mouse events, keyboard events,
and touch events (to name a few). Apart from event types, browser events also have a unique attribute: the
process by which they are dispersed to registered listeners. In fact, there are two distinct ways that a browser
event can be broadcast across a page. Individual listeners can affect these events in various ways as well.
In addition to event types , I also explain event propagation in this section. After completing this first section,

CHAPTER 10 ■ BROWSER EVENTS

134

you will have a good understanding of the core concepts surrounding browser events. This will allow you to
effectively follow the subsequent sections that outline more specific uses of the events API.

 Event Types: Custom and Native
 To start off my comprehensive coverage of browser events, I’ll now introduce you to the two high-level
categories that all events fit into: “custom” and “native.” Native events are those defined in one of the official
web specifications, such as those maintained by WHATWG or W3C. A listing of most events can be found in
the DOM Level 3 UI Events specification 1 maintained by the W3C. Please note that this is not an exhaustive
list; it only contains a subset of the events available today. Some of the native events include “click”, a mouse
event triggered by the browser when a DOM element is activated via a pointing device or keyboard. Another
common event is “ load ”, which is fired when an , document, window , or <iframe> (among others) has
successfully loaded. There are quite a few other native events available. A good resource that provides a list
of all currently available native DOM events can be seen on the Mozilla Developer Network events page. 2

 Custom events are, as you might expect, non-standard events that are created to be specific to a
particular application or library. They can be created on-demand to support dynamic event-based workflows.
For example, consider a file upload library that would like to fire an event whenever an file upload has started,
and then another when the file upload is finished. Just after (or perhaps just before) the upload commences,
the library might want to fire an “uploadStart” event, and then “uploadComplete” once the file is successfully
on the server. It can even fire an “uploadError” event if a file upload ends prematurely. There really aren’t any
native events that provide the semantics needed for this situation, so custom events are the best solution.
Luckily, the DOM API does provide a way to trigger custom events. Although triggering custom events has
been a bit inelegant in some browsers without a polyfill, that is changing. More on that later.

 A custom event created and triggered without jQuery can be observed and handled using jQuery’s event API.
However, there is an interesting limitation associated with jQuery when dealing with custom events, something
you won’t find anywhere in the jQuery documentation. A custom event created and triggered with jQuery’s
event API cannot be observed and handled without also using jQuery’s event API. In other words, custom events
created by jQuery are entirely proprietary and non-standard. The reason for this is actually quite simple. Although
it is possible for jQuery to trigger all event handlers on a specific element for a native DOM event, it is not possible
to do the same for custom events, nor is it possible to query a specific HTML element for its attached event
listeners. For this reason, jQuery custom events are only usable by jQuery custom event handlers.

 There is one object that ties custom and native events together. This central object is the Event object, 3
which is described in a specification curated by the W3C. Every DOM event, custom or native, is represented
by an Event object , which itself has a number of properties and methods useful for identifying and controlling
the event. For example, a type property makes the name of the custom or native event available. A “click”
event has a type of ‘click’ on its corresponding Event object. That same Event object instance will also
contain, among others, a stopPropagation() method, which can be called to prevent the click event from
being further broadcasted to other listeners on the page.

 Event Propagation: Bubbling vs. Capturing
 In the early days of the Web, Netscape provided one way to disperse events throughout the DOM—event
capturing—while Internet Explorer provided a contrasting process—event bubbling. Before standardization,
browsers essentially made their own proprietary choices when implementing features, which is what led to
these two divergent approaches. This all changed in 2000 when the W3C drafted the DOM Level 2 Events
Specification. 4 This document describes an event model that includes both event capturing and bubbling.

 1 www.w3.org/TR/DOM-Level-3-Events
 2 https://developer.mozilla.org/en-US/docs/Web/Events
 3 www.w3.org/TR/uievents/#h-event-interfaces
 4 www.w3.org/TR/DOM-Level-2-Events/

http://www.w3.org/TR/DOM-Level-3-Events
https://developer.mozilla.org/en-US/docs/Web/Events
http://www.w3.org/TR/uievents/#h-event-interfaces
http://www.w3.org/TR/DOM-Level-2-Events/

CHAPTER 10 ■ BROWSER EVENTS

135

All browsers that adhere to this specification follow this process of distributing events across the DOM.
Currently, all modern browsers implement DOM Level 2 Events. Ancient browsers, which only support event
bubbling, are covered at the end of this chapter.

 In all modern browsers, per the DOM Level 2 Events spec, When a DOM event is created, the capturing
phase begins. Assuming the event is not canceled at some point after it is triggered, it starts at window ,
followed by document , and propagates downwards, ending with the element that triggered the event. After
the capturing phase is complete, the bubbling phase commences. Starting with this target element, the event
"bubbles" up the DOM, hitting each ancestor, until the event is cancelled or until it hits window again.

 If the description regarding the progress of an event is still a bit confusing, let me try to explain with a
simple demonstration. Consider the following HTML document:

 1 <!DOCTYPE html>
 2 < html >
 3 < head >
 4 < title >event propagation demo</ title >
 5 </ head >
 6 < body >
 7 < section >
 8 < h1 >nested divs</ h1 >
 9 < div >one
 10 < div >child of one
 11 < div >child of child of one</ div >
 12 </ div >
 13 </ div >
 14 </ section >
 15 </ body >
 16 </ html >

 Suppose the <div>child of child of one</div> element is clicked. The click event takes the
following path through the DOM:

 Capturing Phase
 1. window

 2. document

 3. <html>

 4. <body>

 5. <section>

 6. <div>one

 7. <div>child of one

 8. <div>child of child of one

 Bubbling Phase
 9. <div>child of child of one

 10. <div>child of one

CHAPTER 10 ■ BROWSER EVENTS

136

 11. <div>one

 12. <section>

 13. <body>

 14. <html>

 15. document

 16. window

 So, when is it appropriate to focus on the capturing phase instead of the bubbling phase, or vice versa?
The most common choice is to intercept events in the bubbling phase. One reason for the overwhelming
focus on the bubbling phase is due to historical reasons. Before Internet Explorer 9, this was the only
phase available. This is no longer an obstacle with the advent of standardization and modern browsers. In
addition to lack of support for capturing in ancient browsers, jQuery also lacks support for this phase. This
is perhaps yet another reason why it is not particularly popular, and bubbling is the default choice. But there
is no denying that the concept of event bubbling is more intuitive than capturing. Envisioning an event that
moves up the DOM tree, starting with the element that created the event, seems to be a bit more sensible
than an event that ends with the event that created it. In fact, capturing is rarely discussed when describing
the browser event model. Attaching a handler to the event bubbling phase is also the default behavior when
using the web API to listen for events.

 Even though the event bubbling phase is often preferred, there are instances where capturing is the
better (or only) choice. There appears to be a performance advantage to utilization of the capturing phase.
Because event capturing occurs before bubbling, this seems to make sense. Basecamp, a web-based project-
management application, has made use of event capturing to improve performance in their project, 5 for
example. Another reason to make use of the capturing phase: event delegation for “focus” 6 and “blur” 7
events. Although these events do not bubble, handler delegation is possible by hooking into the capturing
phase. I cover event delegation in detail later in this chapter.

 Capturing can also be used to react to events that have been cancelled in the bubbling phase. There are
a number of reasons to cancel an event—that is, to prevent it from reaching any subsequent event handlers.
Events are almost always cancelled in the bubbling phase. I discuss this a bit more later in this chapter, but
for now imagine a click event cancelled by a third-party library in your web application. If you still need
access to this event in another handler, you can register a handler on an element in the capturing phase.

 jQuery has made the unfortunate choice of artificially bubbling events. In other words, when an event is
triggered via the library, it calculates the expected bubbling path and triggers handlers on each element in this
path. jQuery does not make use of the native support for bubbling and capturing provided by the browser. This
certainly adds complexity and bloat to the library and likely introduces performance consequences as well.

 Creating and Firing DOM Events
 To demonstrate firing DOM events with and without jQuery , let’s use the following HTML fragment:

 1 < div >
 2 < button type="button">do something</ button >
 3 </ div >
 4
 5 < form method="POST" action="/user">

 5 https://signalvnoise.com/posts/3137-using-event-capturing-to-improve-basecamp-page-load-times
 6 www.w3.org/TR/uievents/#event-type-focus
 7 www.w3.org/TR/uievents/#event-type-blur

https://signalvnoise.com/posts/3137-using-event-capturing-to-improve-basecamp-page-load-times
http://www.w3.org/TR/uievents/#event-type-focus
http://www.w3.org/TR/uievents/#event-type-blur

CHAPTER 10 ■ BROWSER EVENTS

137

 6 < label >Enter user name:
 7 < input name="user">
 8 </ label >
 9 < button type="submit">submit</ button >
 10 </ form >

 Firing DOM Events with jQuery
 jQuery’s events API contains two methods that allow DOM events to be created and propagated throughout
the DOM: trigger and triggerHandler . The trigger method is most commonly used. It allows an event to
be created and propagated to all ancestors of the originating element via bubbling. Remember that jQuery
artificially bubbles all events, and it does not support event capturing. The triggerHandler method differs
from trigger in that it only executes event handlers on the element in which it is called; the event is not
bubbled to ancestor elements. jQuery’s triggerHandler is different from trigger in some other ways as
well, but the definition I have provided is sufficient for this section.

 In the next few listings, I use jQuery’s trigger method to:

 1. Submit the form in two ways.

 2. Focus the text input.

 3. Remove focus from the input element.

 Listing 10-1. Triggering DOM Events: jQuery

 1 // submits the form
 2 $('FORM').trigger('submit');
 3
 4 // submits the form by clicking the button
 5 $('BUTTON[type="submit"]').trigger('click');
 6
 7 // focuses the text input
 8 $('INPUT').trigger('focus');
 9
 10 // removes focus from the text input
 11 $('INPUT').trigger('blur');

 To be fair, there is a second way to trigger the same events with jQuery, by using aliases for these events
defined in the library’s API.

 Listing 10-2. Another Way of Triggering DOM Events: jQuery

 1 // submits the form
 2 $('FORM').submit();
 3
 4 // submits the form by clicking the button
 5 $('BUTTON[type="submit"]').click();
 6
 7 // focuses the text input
 8 $('INPUT').focus();
 9
 10 // removes focus from the text input
 11 $('INPUT').blur();

CHAPTER 10 ■ BROWSER EVENTS

138

 What if we want to click the button that appears before the form, but we don’t want to trigger any click
handlers attached to ancestor elements? Suppose the parent <div> contains a click handler that we do not
want to trigger in this instance. With jQuery, we can use triggerHandler() to accomplish this, as shown in
Listing 10-3 .

 Listing 10-3. Triggering DOM Events without Bubbling: jQuery

 1 // clicks the first button - the click event does not bubble
 2 $('BUTTON[type="button"]').triggerHandler('click');

 Web API DOM Events
 There are two or three ways to trigger the same events just demonstrated without using jQuery. It’s good to
have choices (sometimes). Anyway, the easiest way to trigger the preceding events using the web API is to
invoke corresponding native methods on the target elements. Listing 10-4 shows code that looks very similar
to Listing 10-2 .

 Listing 10-4. Triggering DOM Events: Web API, All Modern Browsers, and Internet Explorer 8

 1 // submits the form
 2 document.querySelector('FORM').submit();
 3
 4 // submits the form by clicking the button
 5 document.querySelector('BUTTON[type="submit"]').click();
 6
 7 // focuses the text input
 8 document.querySelector('INPUT').focus();
 9
 10 // removes focus from the text input
 11 document.querySelector('INPUT').blur();

 The preceding code is only limited to IE8 and newer due to use of querySelector() , but this is far more
than sufficient given the current year and state of browser support. The click() , focus() , and blur() methods
are available on all DOM element objects that inherit from HTMLElement . 8 The submit() method is available
to <form> elements only, as it is defined on the HTMLFormElement interface. 9 The “click” and “submit” events
bubble when they are triggered with these methods. Per the W3C specification, 10 “blur” and “focus” events do
 not bubble, but they are available to event handlers that are coded to make use of the capturing phase.

 The preceding events can also be created by using either the Event() constructor or the
createEvent() method available on document . 11 The former is supported in all modern browsers, with
the exception of any version of Internet Explorer. In the next code demonstration, I show you how to
programmatically determine whether the Event constructor is supported and then fall back to the
alternative path for triggering events. Perhaps you are wondering why you would even need to trigger events
using an approach different from the simple one outlined here. If you want to alter the default behavior of an
event in some way, construction of an Event object is required. For example, in order to mimic the behavior
of jQuery’s triggerHandler() method and prevent an event from bubbling, we must pass a specific
configuration property to our “click” event when constructing it. You will see this at the end of Listing 10-5 ,
which demonstrates a second approach to triggering events.

 8 www.w3.org/TR/html5/dom.html#htmlelement
 9 www.w3.org/TR/html5/forms.html#the-form-element
 10 www.w3.org/TR/DOM-Level-2-Events/
 11 www.w3.org/TR/DOM-Level-3-Events/#widl-DocumentEvent-createEvent

http://www.w3.org/TR/html5/dom.html#htmlelement
http://www.w3.org/TR/html5/forms.html#the-form-element
http://www.w3.org/TR/DOM-Level-2-Events/
http://www.w3.org/TR/DOM-Level-3-Events/#widl-DocumentEvent-createEvent

CHAPTER 10 ■ BROWSER EVENTS

139

 Listing 10-5. Triggering DOM Events without Bubbling: Web API, All Modern Browsers

 1 var clickEvent;
 2
 3 // If the `Event` constructor function is not supported,
 4 // fall back to `createEvent` method.
 5 if (typeof Event === 'function') {
 6 clickEvent = new Event('click', {bubbles: false });
 7 }
 8 else {
 9 clickEvent = document.createEvent('Event');
 10 clickEvent.initEvent('click', false , true);
 11 }
 12
 13 document.querySelector('BUTTON[type="button"]')
 14 .dispatchEvent(clickEvent);

 In the listing, when we must fall back to initEvent() , the second parameter is bubbles , which must be
set to false if we do not want the event to bubble. The third parameter, which is set to true, indicates that
this event is indeed cancelable. In other words, any default browser actions associated with this event may
be prevented using the preventDefault() method on the Event object. I’ll explain canceling events a bit more
later on in this chapter. The Event constructor provides a more elegant way to set this and other options
using a set of object properties. Once Internet Explorer 11 is dead and buried, we can focus exclusively on
the Event constructor and forget initEvent() ever existed. But until then, the preceding check will allow
you to choose the proper path if you must construct an event with special configuration options.

 Creating and Firing Custom Events
 Remember that custom events are those that are not standardized as part of an accepted web specification,
such as those maintained by the W3C and the WHATWG. Let’s imagine a scenario where we are writing a
third-party library that handles adding and removing items from a gallery of images. When our library is
integrated into a larger application, we need to provide a simple way to notify any listeners when an item is
added or removed by our library. In this case, our library will wrap the gallery of images so we can signal a
removal or addition simply by triggering an event that can be observed by an ancestor element. There aren’t
any standardized DOM events that are appropriate here, so we’ll need to create our own event, a custom
event. The custom event associated with removing an image will be aptly named “image-removed”, and will
need to include the ID of the removed image.

 jQuery Custom Events
 Let’s first fire this event using jQuery. We’ll assume that we already have a handle on an element controlled
by our library. Our event will be triggered by this particular element:

 1 // Triggers a custom "image-removed" element,
 2 // which bubbles up to ancestor elements.
 3 $libraryElement.trigger('image-removed', {id: 1});

 This looks identical to the code used to trigger native DOM events, and it is. jQuery has a simple,
elegant, and consistent API for triggering events of all types. But there is a problem here—the code that
listens for this event, outside of our jQuery library, must also use jQuery to observe this event. This is a
limitation of jQuery’s custom event system. It matters little if the user of our library is using some other

CHAPTER 10 ■ BROWSER EVENTS

140

library or even if the user does not want to use jQuery outside of this library. Perhaps it is not clear to our
user that jQuery must be used to listen for this event. They are forced to rely on jQuery and jQuery alone to
accept messages from our library.

 Firing Custom Events with the Web API
 Triggering custom events with the web API is exactly like triggering native DOM events. The difference here
is with creating custom events, although the process and API are still quite similar.

 1 var event = new CustomEvent('image-removed', {
 2 bubbles: true ,
 3 detail: {id: 1}
 4 });
 5 libraryElement.dispatchEvent(event);

 Here, we can easily create our custom event, trigger it, and ensure it bubbles up to ancestor elements. So,
our “image-removed” event is observable outside of our library. We’ve also passed the image ID in the detail
property of the event payload. More on accessing this data later on. But there’s a problem here: this will not
work in any version of Internet Explorer. Unfortunately, as I mentioned in the last section, Explorer does not
support the Event constructor. So, we must fall back to the following approach for cross-browser support:

 1 var event = document.createEvent('CustomEvent');
 2 event.initCustomEvent('image-removed', false , true , {id: 1});
 3 libraryElement.dispatchEvent(event);

 Instead of creating an ‘Event,’ as we did when attempting to trigger a native DOM event in Internet
Explorer in the previous section, we must instead create a ‘CustomEvent.’ This exposes an initCustomEvent()
method, which is defined on the CustomEvent interface. This special method allows us to pass custom data
along with this event, such as our image ID.

 The preceding code currently (as of mid-2016) works in all modern browsers, but this may change in
the future once the CustomEvent constructor is supported in all browsers. It may be removed from any future
browser version. To make our code future proof and still ensure it works in Internet Explorer, we need to use
the check for the existence of the CustomEvent constructor, just as we did with the Event constructor in the
previous section:

 1 var event;
 2
 3 // If the `CustomEvent` constructor function is not supported,
 4 // fall back to `createEvent` method.
 5 if (typeof CustomEvent === 'function') {
 6 event = new CustomEvent('image-removed', {
 7 bubbles: true ,
 8 detail: {id: 1}
 9 });
 10 }
 11 else {
 12 event = document.createEvent('CustomEvent');
 13 event.initCustomEvent('image-removed', false , true , {
 14 id: 1
 15 });
 16 }
 17
 18 libraryElement.dispatchEvent(event);

CHAPTER 10 ■ BROWSER EVENTS

141

 After Internet Explorer fades into obsolesce and Microsoft Edge takes its place, you can use the
 CustomEvent constructor exclusively, and the preceding code will no longer be needed at all.

 Listening (and Un-listening) to Event Notifications
 Triggering events is one important part of passing messages around the DOM, but these events provide
more value with corresponding listeners. In this section, I cover handling DOM and custom events. You may
already be familiar with the process of registering event observers with jQuery, but I’ll demonstrate how this
is done first so that the differences are apparent when relying exclusively on the web API.

 A window resize event handler may be important to make adjustments to a complex application as the
view of your page is changed by the user. This “resize” event, which is triggered on the window when the
browser is resized by the user, will provide us with a good way to demonstrate registering and unregistering
event listeners.

 jQuery Event Handlers
 jQuery’s on API method provides everything necessary to observe both DOM and custom events triggered
on an element:

 1 $(window).on('resize', function () {
 2 // react to new window size
 3 });

 If, at some point in the future, we no longer care about the size of the window, we can remove this
handler using jQuery’s appropriately named off handler, but that is less straightforward than adding a new
listener. We have two options:

 1. Remove all resize event listeners (easy).

 2. Remove only our resize event listener (a bit harder).

 Let’s look at option 1 first:

 1 // remove all resize listeners - usually a bad idea
 2 $(window).off('resize');

 The first option is quite simple, but we run the risk of causing problems for other code on the page that
still relies on window resize events. In other words, option 1 is usually a poor choice. That leaves us with
option 2, which requires that we store a reference to our handler function and provide that to jQuery so it
can unbind only our listener. So, we will need to rewrite our event listener call from before such that we can
easily unregister our listener later:

 1 var resizeHandler = function () {
 2 // react to new window size
 3 };
 4
 5 $(window).on('resize', resizeHandler);
 6
 7 // ...later
 8 // remove only our resize handler
 9 $(window).off('resize', resizeHandler);

CHAPTER 10 ■ BROWSER EVENTS

142

 Binding an event listener to a specific element and then removing it later when it is no longer needed
is usually sufficient, but we may have a situation where an event handler is only ever needed once. After it is
first executed, it can and should be removed. Perhaps we have an element that, once clicked, changes state
in such a way that subsequent clicks are not prudent. jQuery provides a one API method for such cases:

 1 $(someElement).one('click', function () {
 2 // handle click event
 3 });

 After the attached handler function is executed, the click event will no longer be observed.

 Observing Events with the Web API
 Since the beginning of time (almost), there have been two simple ways to attach an event handler to a
specific DOM element, and both can be considered “inline.” The first, shown in Listing 10-6 , involves
including the event handler function as the value of an attribute of the element in the document markup:

 Listing 10-6. Inline Event Handler : Web API , All Browsers

 1 < button onclick="handleButtonClick()">click me</ button >

 There are a couple problems with this approach. First, it requires a global handleButtonClick()
function. If you have a number of buttons or other elements that require specific click handler functions,
you will end with a cluttered and messy global namespace. Global variables and functions should always be
limited to prevent conflicts and uncontrolled access to internal logic. This type of inline event handler is a
step in the wrong direction for that reason.

 A second reason why this is bad: it requires mixing your JavaScript and HTML in the same file.
Generally speaking, that is discouraged because it goes against the principle of separation of concerns. That
is, content belongs in HTML files, and behavior belongs in JavaScript files. This isolates the code such that
changes are potentially less risky, and caching is improved as changes to JavaScript do not invalidate the
markup files, and vice versa.

 Another way to register for the same click event requires attaching a handler function to the element’s
corresponding event property:

 1 buttonEl.onclick = function () {
 2 // handle button click
 3 };

 Although this approach is slightly better than the HTML-based event handler, since we are not forced
to bind to a global function, it is still a non-optimal solution. You cannot specify an attribute-based event
handler and an element property handler for the same event on the same element. The last specified
handler will effectively remove any other inline event handler on the element for a given event type. In fact,
only one total inline event handler may be specified for a given event on a given element. This is likely a big
issue for modern web applications, as it is quite common for multiple uncoordinated modules to exist on the
same page. Perhaps more than one of these modules needs to attach an event handler of the same type to
the same element. With inline event handlers, this simply is not possible.

 Since Internet Explorer 9, an addEventListener() method has been available on the EventTarget
interface. All Element objects implement this interface, as does Window (among other DOM objects).
The EventTarget interface first appeared in the W3C DOM Level 2 Events specification, 12 and the
 addEventListener() method was part of this initial version of the interface. Registering for custom and

 12 www.w3.org/TR/DOM-Level-2-Events/

http://www.w3.org/TR/DOM-Level-2-Events/

CHAPTER 10 ■ BROWSER EVENTS

143

DOM events is possible with this method, and the syntax is very similar to jQuery’s on() method. Continuing
with the button example:

 1 buttonEl.addEventListener('click', function () {
 2 // handle button click
 3 });

 This solution does not suffer from any of the issues that plague inline event handlers. There is no
required binding to global functions. You may attach as many different click handlers to this button element
as you like. The handler is attached purely with JavaScript, so it may exist exclusively in a JavaScript file. In
the previous section, I reminded you how a “resize” event was bound to the window with jQuery. The same
handler using the modern web API looks like this:

 1 window.addEventListener('resize', function () {
 2 // react to new window size
 3 });

 This looks a lot like our example of binding to the same event with jQuery, with the exception of a longer
event binding method (on() versus addEventListener()). You may be glad to know that an appropriately
named web API method exists to un-bind our handler, should we need to do this at some point. The
 EventTarget interface also defines a removeEventListener() method. The removeEventListener()
method differs from jQuery’s off in one notable way: there is no way to remove all event listeners of a given
type from a particular element. Perhaps this is a good thing. So, in order to remove our window “resize”
handler, we must structure our code like so:

 1 var resizeHandler = function () {
 2 // react to new window size
 3 };
 4
 5 window.addEventListener('resize', resizeHandler);
 6
 7 // ...later
 8 // remove only our resize handler
 9 window.removeEventListener('resize', resizeHandler);

 Remember the one-time click handler we created with jQuery’s one API method? Does something similar
exist in the web API? Good news: yes! Bad news: It’s a fairly new addition (added to the WHATWG’s DOM living
standard (https://dom.spec.whatwg.org/#interface-eventtarget). As of mid-2016, only Firefox offers
support, but it’s an exciting feature:

 1 someElement.addEventListener('click', function(event) {
 2 // handle click event
 3 }, { once: true });

 For better cross-browser support, especially since there isn’t any elegant way to programmatically
determine support for listener options, use this instead:

 1 var clickHandler = function () {
 2 // handle click event
 3 // ...then unregister handler
 4 someElement.removeEventListener('click', clickHandler);
 5 };
 6 someElement.addEventListener('click', clickHandler);

CHAPTER 10 ■ BROWSER EVENTS

144

 After the attached handler function is executed, the click event will no longer be observed, just like
jQuery’s one() method. There are more elegant ways to solve this problem, but this solution makes use of
only what you have learned so far in this book. You may discover a more elegant method after completing
this book, especially after reading about JavaScript utilities.

 Controlling Event Propagation
 I’ve showed you how to fire and observe events in the last couple sections, but sometimes you need to do
more than just create or listen for events. Occasionally, you need to either influence the bubbling/capturing
phase or even attach data to an event in order to make it available to subsequent listeners.

 As a contrived example (but possibly realistic in a very twisted web application piloted by project
managers who have no understanding of the web), suppose you were asked to prevent users from selecting
any text or images on an entire page. How can you accomplish that? Perhaps by interfering with some mouse
event, somehow. But which event, and how? Perhaps the event to concentrate on is “click”. If this was your
first guess, you were close, but not quite correct.

 According to the W3C DOM Level 3 Events specification , the “mousedown” event 13 starts a drag or text
selection operation as its default action. So, we must prevent the default action of a “mousedown” event. We
can prevent text and image selection/dragging across the entire page using jQuery or the pure web API by
simply registering a “mousedown” event listener on window and calling the preventDefault() method on
the Event object that is passed to our handler once our handler is executed:

 1 $(window).on('mousedown', function (event) {
 2 event.preventDefault();
 3 });
 4
 5 // ...or...
 6 $(window).mousedown(function (event) {
 7 event.preventDefault();
 8 });

 preventing a default event action - web API - modern browsers

 1 window.addEventListener('mousedown', function (event) {
 2 event.preventDefault();
 3 });

 The jQuery approach is almost identical to the one that only relies on the native web API. Either way,
we’ve satisfied the requirements: no text or images can be selected or dragged on our page.

 This is probably a good time to start discussing the Event object. Earlier, an Event instance is passed
to our event handler function when it is executed by jQuery or the browser. The native Event interface is
defined in the W3C DOM4 specification. 14 When a custom or native DOM event is created, the browser
creates an instance of Event and passes it to each registered listener during the capturing and bubbling
phases.

 The event object passed to each listener contains a number of properties that, for instance, describe the
associated event, such as:

• The event type (click, mousedown, focus)

• The element that created the event

 13 www.w3.org/TR/DOM-Level-3-Events/#event-type-mousedown
 14 www.w3.org/TR/dom/#interface-event

http://www.w3.org/TR/DOM-Level-3-Events/#event-type-mousedown
http://www.w3.org/TR/dom/#interface-event

CHAPTER 10 ■ BROWSER EVENTS

145

• The current event phase (capturing or bubbling)

• The current element in the bubbling or capturing phase

 There are other, similar properties, but that list represents a good sampling of the more notable ones. In
addition to properties that describe the event, there are also a number of methods that allow the event to be
controlled. One such method is preventDefault() , as I just demonstrated. But there are others, which I will
cover shortly.

 jQuery has its own version of the Event interface (of course). 15 According to jQuery’s docs, their event
object “normalizes the event object according to W3C standards.” This was potentially useful for ancient
browsers. But for modern browsers, not so much. For the most part, with the exception of a few properties
and methods, the two interfaces are very similar.

 The next two examples demonstrate how to prevent a specific event from reaching other registered
event handlers. In order to prevent a click event from reaching any event handler on subsequent DOM
nodes, simply call stopPropagation() on the passed Event object. This method exists in both the jQuery
 Event interface and the standardized web API Event interface:

 1 $someElement.click(function (event) {
 2 event.stopPropagation();
 3 });
 4
 5 // ...or...
 6
 7 $someElement.on('click', function (event) {
 8 event.stopPropagation();
 9 });

 Using jQuery, you can stop an event from bubbling with stopPropagation() , but you cannot stop the
event during the capturing phase, unless of course you defer to the web API, as shown in Listing 10-7 .

 Listing 10-7. Stop a Click Event from Propagating: Web API, Modern Browsers

 1 // stop propagation during capturing phase
 2 someElement.addEventListener('click', function (event) {
 3 event.stopPropagation();
 4 }, true);
 5
 6 // stop propagation during bubbling phase
 7 someElement.addEventListener('click', function (event) {
 8 event.stopPropagation();
 9 });

 The web API is capable of stopping event propagation in either the capturing or the bubbling phase. But
 stopPropagation() does not stop the event from reaching any subsequent listeners on the same element.
For this task, the stopImmediatePropagation() event method is available, which stops the event from
reaching any further handlers, whether they are registered on the current DOM node or subsequent nodes.
Again, jQuery (Listing 10-8) and the web API (Listing 10-9) share the same method name, but jQuery is
restricted to the bubbling phase, as always.

 15 https://api.jquery.com/category/events/event-object/

https://api.jquery.com/category/events/event-object/

CHAPTER 10 ■ BROWSER EVENTS

146

 Listing 10-8. Stop a Click Event from Reaching Any Other Handlers: jQuery

 1 $someElement.on('click', function (event) {
 2 event.stopImmediatePropagation();
 3 });

 Listing 10-9. Stop a Click Event from Reaching Any Other Handlers: Web API, Modern Browsers

 1 someElement.addEventListener('click', function (event) {
 2 event.stopImmediatePropagation();
 3 });

 Note that both jQuery and the web API offer a shortcut to prevent an event’s default action and to
prevent the event from reaching handlers on subsequent DOM nodes. You can effectively call both event.
preventDefault() and event.stopPropagation() by returning false in your event handler.

 Passing Data to Event Handlers
 Sometimes the standard data associated with an event is not enough. Event handlers may need more
specific information about the event they are handling. Remember the “uploadError” custom event I
detailed earlier? This is triggered from a library embedded on a page, and the “uploadError” event exists
to provide information to listeners outside of the library about a failed file upload. Suppose the file upload
library we are using is attached to a container element, and our application wraps this container element
and registers an “uploadError” event handler. When a particular file upload fails, this event is triggered, and
our handler displays an informational message to the user. In order to customize this message, we need the
name of the failed file. The upload library can pass the file’s name to our handler in the Event object.

 First, let’s review how data is passed to event handlers with jQuery:

 1 // send the failed filename w/ an error event
 2 $uploaderElement.trigger('uploadError', {
 3 filename: 'picture.jpeg'
 4 });
 5
 6 // ...and this is a listener for the event
 7 $uploaderParent.on('uploadError', function (event, data) {
 8 showAlert('Failed to upload ' + data.filename);
 9 });

 jQuery makes the object passed to the trigger() function available to any event listeners via a second
parameter passed to the handler. With this, we can access any properties on the passed object.

 To achieve the same result with the web API, we would make use of CustomElement and its built-in
ability to handle data:

 1 // send the failed filename w/ an error event
 2 var event = new CustomEvent('uploadError', {
 3 bubbles: true ,
 4 detail: {filename: 'picture.jpeg'}
 5 });
 6 uploaderElement.dispatchEvent(event);
 7
 8 // ...and this is a listener for the event

CHAPTER 10 ■ BROWSER EVENTS

147

 9 uploaderParent.addEventListener('uploadError', function (event) {
 10 showAlert('Failed to upload ' + event.detail.filename);
 11 });

 This is not as succinct as the jQuery solution, but it works, at least in all modern browsers other than
IE. For a more cross-browser solution, you can rely on the old custom event API, as demonstrated earlier. I’ll
focus only on the old API in the following demonstration, but I encourage you to read about a more future-
proof method of creating CustomEvent instances covered earlier:

 1 // send the failed filename w/ an error event
 2 var event = document.createEvent('CustomEvent');
 3 event.initCustomEvent('uploadError', true , true , {
 4 filename: 'picture.jpeg'
 5 });
 6 uploaderElement.dispatchEvent(event);
 7
 8 // ...and this is a listener for the event
 9 uploaderParent.addEventListener('uploadError', function (event) {
 10 showAlert('Failed to upload ' + event.detail.filename);
 11 });

 In both cases, the data attached to the CustomEvent is available to our listeners via a standardized
 detail property. 16 With the CustomEvent constructor, this data is provided on a detail property of the object
passed when creating a new instance. The detail property on this object matches the detail property on
the CustomEvent object available to our listeners, which is nice and consistent. Our listeners still have access
to this same detail property when setting up our “uploadError” event using the old event creation API, but
it is buried in a sea of parameters passed to initCustomEvent() . In my experience, anything more than two
parameters is confusing and non-intuitive. This is not an uncommon preference, which may explain why the
more modern CustomEvent constructor only mandates two parameters, the second being an object where all
custom even configuration and data is provided.

 Event Delegation : Powerful and Underused
 There have been multiple occasions where I have danced around and entirely avoided a very important
topic: event delegation. Simply put, event delegation involves attaching a single event handler to a top-
level element with the intention of handling events that bubble up from descendant elements. The event
handler logic in this top-level element may contain code paths that differ based on the event target element
(the element that first received the event). But why do this? Why not simply attach specific event handlers
directly to the appropriate elements?

 One reason that has been discussed ad nauseam is potential performance benefits of delegated event
handlers. CPU cycles are saved by binding a single event handler that is responsible for monitoring events
on many descendant elements, as opposed to querying each element and attaching a dedicated handler
function to each element directly. This theory makes a lot of sense, and of course it’s true. But how much
time in terms of CPU cycles is really saved here? I suppose the answer to that question is: it depends. It
depends on how many elements you intend to monitor, for one.

 16 https://dom.spec.whatwg.org/#dom-customevent-detail

https://dom.spec.whatwg.org/#dom-customevent-detail

CHAPTER 10 ■ BROWSER EVENTS

148

 It’s hard to imagine a common scenario where delegated event handling is both desirable and
detrimental to performance. The practice has caught on, partially for the expected performance reasons,
and also due to the ability to centralize event handling code to one specific root element instead of spreading
it out across the DOM. Take React, for example. React is a JavaScript library that focuses specifically on the
“view” portion of a typical Model View Controller web application. In terms of event handling, React has
implemented an interesting abstraction: 17

 React doesn’t actually attach event handlers to the nodes themselves. When
React starts up, it starts listening for all events at the top level using a single event
listener.

 In other words, all event handlers attached to elements with React are promoted to a single delegated
event handler on a common parent element. Perhaps you still don’t see an instance where delegated event
handlers are appropriate. In the rest of this section, I focus on a simple example that demonstrates the power
of event delegation.

 Suppose you have a list filled with list items, each with a button that removes an item from the list. You
 could attach a click handler to each individual list item’s button. But doesn’t it seem like the wrong approach
to loop over all of the button elements and attach the very same click handler function to each? You may
argue that this is not unreasonable, and even easy to accomplish. But what if new items can be added to this
list dynamically after the initial page load? Now attaching a new event handler to each new list item, after it
is added, becomes less appealing.

 The best solution here is to use event delegation. In other words, attach one click handler to the list
element. When any of the delete buttons inside of the list item elements is clicked, the event will bubble
up to the list element. At this point, your one event handler will be hit, and you can easily determine,
by inspecting the event object, which list item was clicked and respond appropriately by removing the
associated list item. In this section, we’re using some text to make our delete buttons more accessible,
as well as close/remove icons from the Ionicons site 18 to enhance the appearance of our buttons.

 The HTML for such a list may look something like this:

 1 < link href="http://code.ionicframework.com/ionicons/2.0.1/css/ionicons.min.css"
 2 rel="stylesheet">
 3 < ul id="cars-list">
 4 < li >Honda
 5 < button >
 6 < span >delete</ span >
 7 < span class="ion-close-circled"></ span >
 8 </ button >
 9 </ li >
 10 < li >Toyota
 11 < button >
 12 < span >delete</ span >
 13 < span class="ion-close-circled"></ span >
 14 </ button >
 15 </ li >
 16 < li >Kia
 17 < button >
 18 < span >delete</ span >
 19 < span class="ion-close-circled"></ span >

 17 https://facebook.github.io/react/docs/interactivity-and-dynamic-uis.
html#under-the-hood-autobinding-and-event-delegation
 18 http://ionicons.com

https://facebook.github.io/react/docs/interactivity-and-dynamic-uis.html#under-the-hood-autobinding-and-event-delegation
https://facebook.github.io/react/docs/interactivity-and-dynamic-uis.html#under-the-hood-autobinding-and-event-delegation
http://ionicons.com/

CHAPTER 10 ■ BROWSER EVENTS

149

 20 </ button >
 21 </ li >
 22 < li >Ford
 23 < button >
 24 < span >delete</ span >
 25 < span class="ion-close-circled"></ span >
 26 </ button >
 27 </ li >
 28 </ ul >

 With jQuery, we can use the click alias to attach a click handler to the and delete the appropriate
car list item by inspecting the event object:

 1 $('#cars-list').on('click', 'button', function () {
 2 $(this).closest('li').remove();
 3 });

 But wait, we didn’t have to examine the event object at all! jQuery provides a nice feature here by setting
the event handler function’s context (this) to the click element target. Note that this click event might target
the “delete” span element or the “x” icon, depending upon which of these elements is selected by our user.
In either case, we are only interested in clicks on the <button> or its children. jQuery ensures that our event
handler will only be called if this is true, and at that point we can use jQuery’s closest() method to find the
associated and remove it from the DOM, as shown in Listing 10-10 .

 Listing 10-10. Delegated Event Handling : Web API, All Modern Browsers (with closest Shim)

 1 document.querySelector('#cars-list')
 2 .addEventListener('click', function (event) {
 3 if (event.target.closest('BUTTON')) {
 4 var li = event.target.closest('LI');
 5 li.parentElement.removeChild(li);
 6 }
 7 });

 The above pure web API solution is a bit more verbose than jQuery’s API (ok, it’s a lot more verbose).
But it shows how to accomplish a few common goals without jQuery:

 1. Attach a click event handler to an element.

 2. Examine an Event object to focus on events triggered only by one of our
 <button> elements.

 3. Remove the associated with the clicked delete button.

 We’re making use of Element.closest here to easily find the parent and determine if the event
target’s parent is indeed a <button> , all without explicitly dealing with the fact that the event target may be
multiple levels beneath the <button> or . Since Element.closest is not supported in Internet Explorer,
Microsoft Edge (at least, as of version 13), or older versions of iOS Safari and Android, you’ll need to make
use of the shim demonstrated in Chapter 4 if you require solid cross-browser support.

 This may all seem a bit inelegant compared to jQuery, and that may indeed be true. But remember,
the mission of this book isn’t necessarily about compelling you to eschew jQuery or any other library, but
rather to show you how to solve the same problems by yourself without the aid of third-party dependencies.
The knowledge gained from these exercises and demonstrations will empower you as a web developer by

http://dx.doi.org/10.1007/978-1-4842-2235-5_4

CHAPTER 10 ■ BROWSER EVENTS

150

offering insight into the web API and allow you to make better decisions when deciding if your project will
benefit from some outside help. And perhaps you will elect to pull in small and focused shims (such as the
 Element.closest polyfill demonstrated earlier) instead of depending on a large library like jQuery.

 Handling and Triggering Keyboard Events
 Keyboard events are, as you might expect, native DOM events triggered by the browser when a user presses a
key on their keyboard. Just like all other events, keyboard events go through both a capturing and a bubbling
phase. The target element is the one that is focused when the key is pressed. You may be wondering why
I have dedicated a special section exclusively to keyboard events. As you’ll see shortly, key events are a bit
different than the other DOM and custom events discussed earlier. Plus, keyboard events can be a bit trickier
to handle than the other DOM events.

 This is mostly due to mostly misunderstood multiple keyboard event types and the confusing array of
event properties used to identify keys with varying browser support. Fear not—after this section, you’ll have a
pretty good understanding of keyboard events. You’ll fully comprehend when to use the three types of keyboard
events, how to identify the pressed key, and even how to put this knowledge to use to solve real problems.

 Three Types of Keyboard Events
 Each key on your keyboard is not a separate event type. Instead, a keyboard-triggered action is attached to
one of three possible keyboard-specific event types:

 1. keydown

 2. keyup

 3. keypress

 The browser triggers a “keydown” event before a pushed key is released. It may fire repeatedly if the
key is held down, and is triggered for any key on the keyboard (even Shift/Ctrl/Command/other). Though
some keys will not trigger multiple “keydown” events when held, such as Shift/Command/Option/Function.
jQuery provides a keydown alias in its API to handle these events:

 1 $(document).keydown(function (event) {
 2 // do something with this event
 3 });

 And the same event can be handled (for the web API and modern browsers) without jQuery using trusty
old addEventListener() :

 1 document.addEventListener('keydown', function (event) {
 2 // do something with this event
 3 });

 After a key (any key) in the down position is released, the browser fires a “keyup” event. The logic for
handling this event is identical to “keydown”—just replace “keydown” with “keyup” in the code samples
just given. In fact, the same is true for the “keypress” event, which is the the final keyboard event type.
The “keypress” event is very similar to “keydown”—it is also triggered when a pressed key is in the down
position. The only difference is that “keypress” events are only fired for printable characters. For example,
pressing the “a,” “Enter,” or “1” keys will trigger a “keypress” event. Conversely, “Shift,” “Command,” and the
arrow keys will not result in a “keypress” event.

CHAPTER 10 ■ BROWSER EVENTS

151

 Identifying Pressed Keys
 Suppose we are building a modal dialog. If a user of our dialog presses the “Esc” key, we would like to close
the dialog. In order to accomplish this, we need to do a few things:

 1. Listen for “keydown” events on the document.

 2. Determine if the “keydown” event corresponds to the “Esc” key.

 3. If the “keydown” event is the result of pressing “Esc,” close the modal dialog.

 If we are using jQuery, our code will look something like this:

 1 $(document).keydown(function (event) {
 2 if (event.which === 27) {
 3 // close the dialog...
 4 }
 5 });

 The number 27 corresponds to the ESC key’s key code. 19 We can make use of the same key code without
jQuery (for the web API and modern browsers) by also looking at the which property on the KeyboardEvent
that our handler receives:

 1 document.addEventListener('keydown', function (event) {
 2 if (event.which === 27) {
 3 // close the dialog...
 4 }
 5 });

 But the web API is beginning to advance beyond jQuery in this respect. The UI Events Specification, 20
maintained by the W3C, defines a new property on KeyboardEvent : key . 21 When a key is pressed, the
 KeyboardEvent (in supported browsers) will contain a key property with a value that corresponds to the
exact key pressed (for printable characters) or a standardized string that describes the pressed key (for
non-printable characters). For example, if the “a” key is pressed, the key property on the corresponding
 KeyboardEvent will contain a value of “a”. In our case, the Esc key is represented as the string “Escape”. This
value, along with the key values for other non-printable characters, are defined in the DOM Level 3 Events
specification, 22 also maintained by W3C. If we are able to use this key property, our code will look like Listing
 10-11 .

 Listing 10-11. Closing a Modal Dialog on Esc: Web API, All Modern Browsers Except Safari

 1 document.addEventListener('keydown', function (event) {
 2 if (event.key === 'Escape') {
 3 // close the dialog...
 4 }
 5 });

 19 https://lists.w3.org/Archives/Public/www-dom/2010JulSep/att-0182/keyCode-spec.
html#fixed-virtual-key-codes
 20 www.w3.org/TR/uievents/
 21 www.w3.org/TR/uievents/#widl-KeyboardEvent-key
 22 www.w3.org/TR/DOM-Level-3-Events-key/

https://lists.w3.org/Archives/Public/www-dom/2010JulSep/att-0182/keyCode-spec.html#fixed-virtual-key-codes
https://lists.w3.org/Archives/Public/www-dom/2010JulSep/att-0182/keyCode-spec.html#fixed-virtual-key-codes
http://www.w3.org/TR/uievents/
http://www.w3.org/TR/uievents/#widl-KeyboardEvent-key
http://www.w3.org/TR/DOM-Level-3-Events-key/

CHAPTER 10 ■ BROWSER EVENTS

152

 At the moment, Safari is the only modern browser without support for this KeyboardEvent property.
This will likely change as the WebKit engine evolves. In the meantime, you may want to consider sticking
with the which property until Safari is brought up-to-date.

 Making an Image Carousel Keyboard Accessible with the Web API
 One important benefit of mastering keyboard events: accessibility. An accessible web application is one
that can be easily used by those with varying requirements. Perhaps the most common accessibility
consideration involves ensuring that those without the ability to use a pointing device can completely and
effectively navigate the web application. This requires, in some cases, listening for keyboard events and
responding appropriately.

 Suppose you are building an image carousel library. An array of image URLs is passed to the carousel,
the first image rendered in a full-screen modal dialog, and the user can move to the next or previous image
by clicking buttons on either side of the current image. Making it possible to cycle through the images
with the keyboard allows those without the ability to use a pointing device to use the carousel. It also adds
convenience to the carousel for those who simply don’t want to use a mouse or trackpad.

 Just to keep this simple, let’s say our image gallery HTML template looks like this:

 1 < div class="image-gallery">
 2 < button class="previous" type="button">Previous</ button >
 3 < img >
 4 < button class="next" type="button">Next</ button >
 5 </ div >

 And JavaScript to cycle through the images when a button is clicked looks like this (for modern browsers):

 1 // assuming we have an array of images in an `images` var
 2 var currentImageIndex = 0;
 3 var container = document.querySelector('.image-gallery');
 4 var updateImg = function () {
 5 container.querySelector('IMG').src =
 6 images[currentImageIndex];
 7 };
 8 var moveToPreviousImage = function () {
 9 if (currentImageIndex === 0) {
 10 currentImageIndex = images.length - 1;
 11 }
 12 else {
 13 currentImageIndex--;
 14 }
 15 updateImg();
 16 };
 17 var moveToNextImage = function () {
 18 if (currentImageIndex === images.length - 1) {
 19 currentImageIndex = 0;
 20 }
 21 else {
 22 currentImageIndex++;
 23 }
 24 updateImg();
 25 };
 26

CHAPTER 10 ■ BROWSER EVENTS

153

 27 updateImg();
 28
 29 container.querySelector('.previous')
 30 .addEventListener('click', function () {
 31 moveToPreviousImage();
 32 });
 33
 34 container.querySelector('.next')
 35 .addEventListener('click', function () {
 36 moveToNextImage();
 37 });

 If we want to allow our users to move though the set of images with the left and right arrow
keys, we can attach keyboard event handlers to the left and right arrows and delegate to the existing
 moveToPreviousImage() and moveToNextImage() functions as appropriate:

 1 // add this after the block of code above:
 2 document.addEventListener('keydown', function (event) {
 3 // left arrow
 4 if (event.which === 37) {
 5 event.preventDefault();
 6 moveToPreviousImage();
 7 }
 8 // right arrow
 9 else if (event.which === 39) {
 10 event.preventDefault();
 11 moveToNextImage();
 12 }
 13 });

 The addition of event.preventDefault() ensures that our arrow keys only change the image in this
context instead of providing any undesired default actions, such as scrolling the page. In our example, it’s
not clear when our carousel is no longer in use, but we would likely provide some mechanism to close the
carousel. Once the carousel is closed, don’t forget to use removeEventListener() to unregister the keydown
event handler. You’ll need to refactor the event listener code such that the logic is moved into a standalone
function. This will make it easy to unregister the keydown handler by passing removeEventListener() the
‘keydown’ event type as the first parameter, and the event listener function variable as the second. For more
information on using removeEventListener() , check out the earlier section on observing events.

 Determining When Something Has Loaded
 The following questions may occur to you as a web developer at one point or another:

• When have all elements on the page fully loaded and rendered with applied styles?

• When has all static markup been placed on the page?

• When has a particular element on the page fully loaded? When has an element failed
to load?

CHAPTER 10 ■ BROWSER EVENTS

154

 The answer to all of these questions lies in the browser’s native event system. The “load” event , 23
defined in the W3C UI Events specification, allows us to determine when an element or page has loaded.
There are some other related events, such as “DOMContentLoaded” and “beforeunload”. I discuss both of
those as well in this section.

 When Have All Elements on the Page Fully Loaded and Rendered
with Applied Styles?
 To answer this particular question, we can rely on the “load” event fired by the window object. This event will
be fired after:

 1. All markup has been placed on the page.

 2. All style sheets have been loaded.

 3. All elements have loaded.

 4. All <iframe> elements have fully loaded.

 jQuery provides an alias for the “load” event, similar to many other DOM events:

 1 $(window).load(function () {
 2 // page is fully rendered
 3 });

 But you can (and should) use the generic on() method instead and pass in the name of the event -
“load” - especially since the load() alias is deprecated and was subsequently removed in jQuery 3.0. Here's
the same listener without the deprecated alias:

 1 $(window).on('load', function () {
 2 // page is fully rendered
 3 });

 The web API solution looks almost exactly like the preceding jQuery code. We’re making using of
 addEventListener() , which is available to all modern browsers, and passing the name of the event followed
by a callback to be invoked when the page has been loaded:

 1 window.addEventListener('load', function () {
 2 // page is fully rendered
 3 });

 But why might we care about this event? Why is it important to know when the page has entirely
loaded? The most common understanding of the load event is that it should be used to determine when it
is safe to perform DOM manipulation. This is technically true, but waiting for the “load” event is probably
unnecessary. Do you really need to ensure all images, style sheets, and iframes have loaded before operating
on the document? Probably not.

 23 www.w3.org/TR/uievents/#event-type-load

http://www.w3.org/TR/uievents/#event-type-load

CHAPTER 10 ■ BROWSER EVENTS

155

 When Has All Static Markup Been Placed on the Page?
 Another question we can ask here: when is the earliest point at which I can safely operate on the DOM?
The answer to this and the question in this heading here is the same: wait for the browser to fire the
 “DOMContentLoaded” event . This event fires after all markup has been placed on the page, which means it
often occurs much sooner than “load”.

 jQuery provides a “ready” function that mirrors the behavior of the native “DOMContentLoaded”. But
under the covers, it delegates to “DOMContentLoaded” itself in modern browsers. Here’s how you have been
determining when a page is ready for interaction with jQuery:

 1 $(document).ready(function () {
 2 // markup is on the page
 3 });

 You may even be familiar with the shorthand version:

 1 $(function () {
 2 // markup is on the page
 3 });

 Because jQuery just makes use of the browser’s native “DOMContentLoaded” event in modern
browsers to feed its ready API method, we can build our own ready using “DOMContentLoaded” with
 addEventListener() :

 1 document.addEventListener('DOMContentLoaded', function () {
 2 // markup is on the page
 3 });

 Note that you will likely want to ensure your script that registers the “DOMContentLoaded” event
handler is placed before any style sheet <link> tags, since loading these style sheets will block any script
execution and prolong the “DOMContentLoaded” event until the defined style sheets have completely loaded.

 When Has a Particular Element on the Page Fully Loaded? When Has
It Failed to Load?
 In addition to window , load events are associated with a number of elements, such as , <link> , and
 <script> . The most common use of this event outside of window is to determine when a specific image has
loaded. The appropriately named “error” event is used to signal a failure to load an image (or a <link> or
 <script> , for example).

 jQuery, as you might expect, has aliases in its API for the “load” and “error” events , but these are both
deprecated and were subsequently removed from the library in jQuery 3.0. So to determine if an image has
loaded, or has failed to load with jQuery, we should simply rely on the on() method. And our code would
look something like this:
 1 $('IMG').on('load', function () {
 2 // image has successfully loaded
 3 });
 4
 5 $('IMG').on('error', function () {
 6 // image has failed to load
 7 });

CHAPTER 10 ■ BROWSER EVENTS

156

 There is a one-to-one mapping between the event names used in jQuery and those used in the
browser’s native event system. As you might expect, jQuery relies on the browser’s “load” and “error” events
to signal success and failure, respectively. So, the same end can be reached without jQuery by registering for
these events with addEventListener() :

 1 document.querySelector('IMG').addEventListener('load', function () {
 2 // image has successfully loaded
 3 });
 4
 5 document.querySelector('IMG').addEventListener('error', function () {
 6 // image has failed to load
 7 });

 As we’ve seen many times before, the syntax between jQuery and the web API here for modern
browsers is strikingly similar.

 Preventing a User from Accidentally Leaving the Current Page
 Imagine yourself as a user (we can’t always be the developer). You’re filling out a (long) series of form fields.
It takes ten minutes to complete the form, but you’re finally done. And . . . then . . . you . . . accidentally . . .
close . . . the browser tab. All your work is gone! Replace “filling out a form” with “writing a document” or
“drawing a picture.” Regardless of the situation, it’s a tragic turn of events. As a developer, how can you save
your users from this mistake? Can you? You can!

 The “beforeunload” event is fired on the window just before the current page is unloaded. By observing
this event, you can force the user to confirm that they really to want to leave the current page, or close the
browser, or reload the page. They will be presented with a confirm dialog, and if they select Cancel, they will
remain safely on the current page.

 In jQuery-land, you can observe this event using the on API method and return a message for the user
to be displayed in the confirm dialog:

 1 $(window).on('beforeunload', function () {
 2 return 'Are you sure you want to unload the page?';
 3 });

 Note that not every browser will display this specific message. Some will always display a hard-coded
message, and there is nothing that jQuery can do about this.

 The web API approach is similar, but we must deal with a small difference in implementation of this
event between various browsers:

 1 window.addEventListener('beforeunload', function (event) {
 2 var message = 'Are you sure you want to unload the page?';
 3 event.returnValue = message;
 4 return message;
 5 });

 Some browsers accept the return value of the handler function as the text to display to the user, whereas
others take a more non-standard approach and require this message be set on the event’s returnValue
property. Still, this isn’t much of a hoop to jump through. It’s pretty simple either way.

CHAPTER 10 ■ BROWSER EVENTS

157

 A History Lesson: Ancient Browser Support
 This final section in the events chapter is where I describe a time when jQuery was a required library for web
applications. This section applies to ancient browsers only. Back when it was common to support Internet
Explorer 8, the web API was a bit of a mess in some instances. This was especially true when dealing with the
browser’s event system. In this section, I discuss how you can manage, observe, and fire events in ancient
browsers. Because ancient browsers are becoming less important to worry about, all of this serves as more of
a history lesson than a tutorial. Please keep that in mind when reading this section, as it is not intended to be
a comprehensive guide to event handling in super-old browsers.

 The API for Listening to Events Is Non-standard
 Take a look at the following code snippet that registers for a click event:

 1 someElement.attachEvent('onclick', function () {
 2 // do something with the click event...
 3 });

 You’ll notice two distinct differences between this and the modern browser approach:

 1. We are relying on attachEvent instead of addEventListener .

 2. The click event name includes a prefix of “on”.

 The attachEvent() method 24 is proprietary to Microsoft’s Internet Explorer. In fact, it is still technically
supported up until (and including) Internet Explorer 10. attachEvent() was never part of any official
standard. Unless you must support IE8 and older, avoid using attachEvent() entirely. The W3C standardized
 addEventListener() provides a more elegant and comprehensive solution for observing events.

 Perhaps you’re wondering how you can programmatically use the correct event-handling method
based on the current browser’s capabilities. If you’re developing apps exclusively for modern browsers, this
isn’t a concern. But if, for some reason, you must target ancient browsers such as IE8 (or older), you can use
the following code to register for an event in any browser:

 1 function registerHandler(target, type, callback) {
 2 var listenerMethod = target.addEventListener
 3 || target.attachEvent,
 4
 5 eventName = target.addEventListener
 6 ? type
 7 : 'on' + type;
 8
 9 listenerMethod(eventName, callback);
 10 }
 11
 12 // example use
 13 registerHandler(someElement, 'click', function () {
 14 // do something with the click event...
 15 });

 24 https://msdn.microsoft.com/en-us/library/ms536343(VS.85).aspx

https://msdn.microsoft.com/en-us/library/ms536343(VS.85).aspx

CHAPTER 10 ■ BROWSER EVENTS

158

 And if you want to remove an event handler in an ancient browser, you must use detachEvent() instead
of removeEventListener() . detachEvent() is another non-standard proprietary web API method. If you’re
looking for a cross-browser way to remove an event listener, try this out:

 1 function unregisterHandler(target, type, callback) {
 2 var removeMethod = target.removeEventListener
 3 || target.detachEvent,
 4
 5 eventName = target.removeEventListener
 6 ? type
 7 : 'on' + type;
 8
 9 removeMethod(eventName, callback);
 10 }
 11
 12 // example use
 13 unregisterHandler(someElement, 'click', someEventHandlerFunction);

 Form Field Change Events Are a Minefield
 Very old versions of Internet Explorer have some serious change-event deficiencies. Here are the two big
ones that you may come across (if you haven’t already):

 1. Change events in old versions of IE do not bubble.

 2. Checkboxes and radio buttons may not trigger a change event at all in old
versions of IE.

 Keep in mind that the second issue was also reproducible when using jQuery with IE7 and 8 for quite a
long time. As far as I can tell, current versions of jQuery do properly address this issue. But this is yet another
reminder that jQuery is not without its own bugs.

 To solve the change event issue, you must attach a change handler directly to any form field that you’d
like to monitor, since event delegation is not possible. In order to tackle the checkbox and radio buttons
conundrum, your best bet may be to attach a click handler directly to radio/checkbox fields (or attach the
handler to a parent element and make use of event delegation) instead of relying on the change event to
occur at all.

 ■ Note Generally, the enter key will fire a click event (for example on a button). In other words, click events
are not only fired by a pointing device. For accessibility reasons, activating an element via the keyboard will also
trigger a click event. In the case of a checkbox or radio button input element, the “enter” key will not activate the
form field. Instead, “spacebar” key is required to activate a checkbox or radio button and trigger a click event.

CHAPTER 10 ■ BROWSER EVENTS

159

 The Event Object Is Also Non-standard
 Some properties of the Event object instance are a bit different in older browsers. For example, although
the target of an event in modern browsers can be found by checking the target property of the Event
instance, IE8 and older contain a different property for this element: srcElement . The relevant portion of a
cross-browser event handler function may look like this:

 1 function myEventHandler(event) {
 2 var target = event.target || event.srcElement
 3 // ...
 4 }

 In modern browsers, the event.target will be truthy, which short-circuits the conditional evaluation
just given. But in IE8 and older, the Event object instance will not contain a target property, so the target
variable will be the value of the srcElement property on the Event .

 In terms of controlling your events, the stopPropagation() method is not available on an Event object
instance in IE8 and older. If you want to stop an event from bubbling, you must instead set the non-standard
 cancelBubble property on the Event instance. A cross-browser solution looks like this:

 1 function myEventHandler(event) {
 2 if (event.stopPropgation) {
 3 event.stopPropagation();
 4 }
 5 else {
 6 event.cancelBubble = true ;
 7 }
 8 }

 IE8 and older also do not have a stopImmediatePropagation() method. There isn’t much that can be
done to work around this limitation. However, I personally don’t see lack of this method as a big problem.
Using stopImmediatePropagation() seems like a code smell to me since the behavior of this call is
completely dependent on the order that multiple event handlers are attached to the element in question.

 The important takeaway for this chapter: events are pretty simple to work with in modern browsers
without jQuery, but if you are unlucky enough to support Internet Explorer 8 or older, consider using the
cross-browser functions demonstrated here, or pull in a reliable events library for more complex event
handling requirements.

161© Ray Nicholus 2016
R. Nicholus, Beyond jQuery, DOI 10.1007/978-1-4842-2235-5_11

 CHAPTER 11

 Mastering Asynchronous Tasks

 I would expect most web developers to be aware of the concept of asynchronous operations. In fact, I’ve
already demonstrated some such tasks in earlier chapters. Admittedly, when this concept appeared previous
to this chapter, I elected to avoid exploring in much detail. That is precisely the goal of this chapter—to cover
the intricacies, challenges, and importance of async tasks in the world of web development. Although jQuery
provides adequate support for managing async tasks, I’ll show you how limited jQuery is in this context,
how the web API is advancing far past jQuery, and how jQuery has failed to correctly implement an essential
async task-management pattern.

 Just so we are all on the same page throughout this chapter, let’s be clear about the precise definition of
the central topic here. An asynchronous call is one that is processed out-of-band. Still not clear? Sorry, let’s
try again. An asynchronous call is one that does not immediately return the requested result. Hmm, that’s
still a bit vague, isn’t it? Okay, how about: an asynchronous call is one that makes your code much more
difficult to manage and evolve. That last one is tongue-in-cheek, but it is likely a real opinion held by many
(and rightfully so).

 My inability to describe async tasks in a manner that can be easily understood by everyone is partially
my fault, but it suggests just how hard it may be to actually manage these types of operations with JavaScript.
In my experience, proper use and management of asynchronous operations is one of the more frustrating
tasks that web developers face. If the definitions I’ve provided don’t suffice, perhaps some real-world
examples will clear things up.

 So what are some actual examples of async tasks? Where might we come across this concept in everyday
web development? There are actually quite a few operations that are asynchronous by nature. For example:

 1. Handling responses to AJAX requests.

 2. Reading files or blobs of data.

 3. Requesting user input.

 4. Passing messages between browsing contexts.

 The most common async task involves AJAX requests. Client/server communication is understandably
asynchronous. When you send a request to a server endpoint from the browser using XMLHttpRequest
or fetch , the server may respond in milliseconds, or perhaps even seconds after the request has been
initiated. The point is, after you send the request, your application doesn’t simply freeze until the request
has returned. Code continues to execute. The user continues to be able to manipulate the page. So you must
register a function that is invoked by the browser once the server has properly responded to your request.

 There is no telling exactly when the function purposed with handling the server response will be
executed, and that’s “okay.” Your application and code must be structured to account for the fact that this
data will not be available until some unknown point in the future. Indeed, some logic may depend on this
response, and your code will need to be written accordingly. Managing a single request or asynchronous
operation may not be particularly difficult. But at scale, with a number of requests and other async tasks in
progress concurrently, or a series of async tasks that depend on each other, this becomes mighty hairy.

CHAPTER 11 ■ MASTERING ASYNCHRONOUS TASKS

162

 In a general sense, APIs benefit from support of async operations. Consider a library that executes a
provided function when a user chooses a file to be uploaded. This function can prevent a file from being
uploaded by returning false . But what if the function must delegate to a server endpoint to determine
whether the file is valid? Perhaps the file must be hashed client-side and then the server must be checked
to ensure a duplicate file does not exist. This accounts for two asynchronous operations: reading the file (to
generate a hash) and then contacting the server to check for duplicates. If the library doesn’t provide support
for this type of task in its API, integration is limited to some degree.

 Another example: a library maintains a list of contacts. The user is given the ability to delete a contact
via a <button> . It is quite common to display a confirm dialog before actually deleting the contact. Our
library provides a function that is called before the delete operation occurs and allows it to be ignored if
the function returns false . If you want a confirm dialog that stops execution of your code before the user
responds, you could use the browser’s built-in confirm dialog and then return false if the user elects to
cancel the operation, but the native confirm dialog is barebones and ugly. It isn’t an ideal choice for most
projects, so you will need to provide your own styled dialog, which will be non-blocking. In other words, the
library will need to account for the asynchronous nature of waiting for a user to decide if they are really sure
that the file should be deleted forever. These are just two examples of how important it may be to consider
async support when building an API, but there are many more.

 This chapter deals with both traditional and some relatively new methods for dealing with async calls,
but I also cover another solution that can probably be classified as “bleeding edge.” The reason for inclusion
of a new specification in this chapter is to provide you with an indication of how important dealing with the
asynchronous nature of the web has become, and how the maintainers of JavaScript are doing their best to
make a traditionally difficult concept to manage much easier.

 Callbacks: the Traditional Approach for Controlling
Async Operations
 The most familiar way to provide support for asynchronous tasks is via a system of callback functions. Let’s take
the the contacts list library example and apply a callback function to account for the fact that a beforeDelete
handler function may need to ask the user to confirm the contact removal, which is an async operation
(assuming we don’t rely on the built-in window.confirm() dialog). Our code may look something like this:

 1 contactsHelper.register('beforeDelete', function (contact, callback) {
 2 confirmModel.open(
 3 'Delete contact ' + contact.name + '?',
 4 function (result) {
 5 callback({cancel: result.cancel});
 6 });
 7 });

 When the user clicks the delete button next to a contact, the function passed to the the “beforeDelete”
handler is invoked. The contact to be deleted is passed to this function, along with a callback function. If
the delete operation is to be ignored, an object with a cancel property set to true must be passed into this
callback. Otherwise, the callback will be invoked with a false value for the cancel property. The library will
“wait” for this call before attempting to delete the contact. Note that this “waiting” does not involve blocking
the UI thread, so all other code can continue to execute.

 I’m assuming there is a modal dialog component with an open function that displays a delete confirm dialog
to the user. The result of the user’s input is passed into another callback function supplied to the open function. If
the user clicks the Cancel button on this dialog, the result object passed to this particular callback function will
contain a cancel property with a value of true . At that point, the callback function passed to the “beforeDelete”
callback function will be invoked, indicating that the file to be deleted should not in fact be deleted.

CHAPTER 11 ■ MASTERING ASYNCHRONOUS TASKS

163

 Notice how the preceding code depends on a number of varying conventions—a number of
 non-standard conventions. In fact, there aren’t any standards associated with callback functions. The value
or values passed to the callback are part of a contract defined by the supplier of the function. In this case, the
conventions are similar enough between the modal callback and the “beforeDelete” callback, but that may
not always be the case. Although callbacks are a simple and well-supported way to account for async results,
some of the problems with this approach may already be clear to you.

 Node.js and the Error-First Callback
 I haven’t spent a lot of time discussing Node.js , but it has come up periodically throughout this book. The non-
browsers section of Chapter 3 goes into a bit of detail about this surprisingly popular server-side JavaScript-based
system. Node.js has long relied on callbacks to support asynchronous behavior across APIs. In fact, it has has
popularized a very specific type of callback system: the “error-first” callback. This particular convention is very
common throughout the Node.js landscape and can be found as part of the API in many major libraries, such as
Express, 1 Socket.IO, 2 and request. 3 It is arguably the most “standard” of all the various callback systems, though of
course there is no real standard, just conventions, though some conventions are more popular than others.

 Error-first callbacks require, as you might expect, an error to be passed as the first parameter to a supplied
callback function. Usually, this error parameter is expected to be an Error object. The Error object has always
been part of JavaScript, starting with the first ECMAScript specification published back in 1997. The Error
object can be thrown in exceptional situations or passed around as a standard way to describe an application
error. With error-first callbacks, an Error object can be passed as the first parameter to a callback if the related
operation fails in some way. If the operation succeeds, null should be passed as the first parameter instead.
This makes is easy for the callback function itself to determine the status of the operation. And if the related
task did not fail, subsequent arguments are used to supply relevant information to the callback function .

 Don’t worry if this is not entirely clear to you. You’ll see error-first callbacks in action through the rest
of this section, and that error-first callbacks are the most elegant way to either signal an error or deliver the
requested information when supporting an asynchronous task via a system of callbacks.

 Solving Common Problems with Callbacks
 Let’s look at a simple example of a module that asks the user for their email address (which is an
asynchronous operation):

 1 function askForEmail(callback) {
 2 promptForText('Enter email:', function (result) {
 3 if (result.cancel) {
 4 callback(new Error('User refused to supply email.'));
 5 }
 6 else {
 7 callback(null , result.text);
 8 }
 9 })
 10 }
 11
 12 askForEmail(function (err, email) {
 13 if (err) {

 1 http://expressjs.com
 2 http://socket.io
 3 www.npmjs.com/package/request

http://dx.doi.org/10.1007/978-1-4842-2235-5_3
http://expressjs.com/
http://socket.io/
http://www.npmjs.com/package/request

CHAPTER 11 ■ MASTERING ASYNCHRONOUS TASKS

164

 14 console.error('Unable to get email: ' + err.message);
 15 }
 16 else {
 17 // save the `email` with the user's account record
 18 }
 19 });

 Can you figure out the flow of the preceding code? An error-first callback is passed in as the sole
parameter when invoking the function that ultimately asks our user for their email address. If the user
declines to provide one, an Error with a description of the situation is passed as the first parameter to our
error-first callback. The callback logs this and moves on. Otherwise, the err argument is null , which signals
to the callback function that we did indeed receive a valid response from our user—the email address—
which is contained in the second argument to the error-first callback.

 Another practical use of callbacks is to handle the result of an AJAX request. Since the very first version
of jQuery, it has been possible to supply a callback function to be invoked when an AJAX request succeeds.
Chapter 9 demonstrates GET requests with jQuery (among others). Here’s an alternate version of the first
GET request:

 1 $.get('/my/name', function (name) {
 2 console.log('my name is ' + name);
 3 });

 The second parameter is a success callback function, which jQuery will call with the response data if the
request succeeds. But this example only handles success. What if the request fails? Yet another way to write
this and account for both success and failure is to pass an object that contains the URL, success, and failure
callback functions:

 1 $.get({
 2 url: '/my/name',
 3 success: function (name) {
 4 console.log('my name is ' + name);
 5 },
 6 error: function () {
 7 console.error('Name request failed!');
 8 }
 9 });

 The same section in the AJAX requests chapter demonstrates making this call without jQuery. This
solution for all browsers also relies on callbacks to signal success and failure:

 1 var xhr = new XMLHttpRequest();
 2 xhr.open('GET', '/my/name');
 3 xhr.onload = function () {
 4 if (xhr.status >= 400) {
 5 console.error('Name request failed!');
 6 }
 7 else {
 8 console.log('my name is ' + xhr.responseText);
 9 }
 10 };
 11 xhr.onerror = function () {
 12 console.error('Name request failed!');

http://dx.doi.org/10.1007/978-1-4842-2235-5_9

CHAPTER 11 ■ MASTERING ASYNCHRONOUS TASKS

165

 13 };
 14 xhr.send();

 The onload callback is invoked if the request has been sent a response from the server. Conversely, the
 onerror callback is used if the request cannot be sent, or if the server fails to respond. Callbacks certainly
seem to be a reasonable way to register for the result of an asynchronous task. And this is indeed true for
simple cases. But a system of callbacks becomes less appealing for more complex scenarios.

 Promises: an Answer to Async Complexity
 Before I discuss an alternative to callbacks, perhaps it would be prudent to first point out some of the issues
associated with a dependence on callbacks to manage async tasks. The first fundamental flaw in the callback
system described in the preceding section is evident in every method or function signature that supports this
convention. When invoking a function that utilizes a callback to signal success or failure of an asynchronous
operation, you must supply this callback as a method parameter. Any input values used by the method must
also be passed as parameters. In this case, you are now passing input values and managing the method’s
output all through method parameters. This is a bit non-intuitive and awkward. This callback contract also
precludes any return value. Again, all work is done via method parameters.

 Another issue with callbacks: there is no standard, only conventions. Whenever you find yourself
needing to invoke a method that executes some logic asynchronously and expects a callback to manage this
process, it may expect an error-first callback , but it may not . And how can you possibly know? Since there
is no standard for callbacks, you are forced to refer to the API documentation and pass the appropriate
callback. Perhaps you must interface with multiple libraries, all of which expect callbacks to manage async
results, each relying on different callback method conventions. Some may expect error-first callbacks. Others
may include an error or status flag elsewhere when invoking the supplied callback. Some may not even
account for errors at all!

 Perhaps the biggest issue with callbacks becomes apparent when they are forced into non-trivial
use. For example, consider a few asynchronous tasks that must run sequentially, each subsequent task
depending on the result from the previous. To demonstrate such a scenario, imagine you need to send an
AJAX request to one endpoint to load a list of user IDs and then a request must be made to a server to load
personal information for the first user in the list. After this, the user’s info is presented on-screen for editing,
and finally the modified record is sent back to the server. This whole process involves four asynchronous
tasks, with each task depending on the result of the previous. How would we model this workflow with
callbacks? It’s not pretty, but it might look something like this:

 1 function updateFirstUser() {
 2 getUserIds(function (error, ids) {
 3 if (!error) {
 4 getUserInfo(ids[0], function (error, info) {
 5 if (!error) {
 6 displayUserInfo(info, function (error, newInfo) {
 7 if (!error) {
 8 updateUserInfo(id, info, function (error) {
 9 if (!error) {
 10 console.log('Record updated!');
 11 }
 12 else {
 13 console.error(error);
 14 }
 15 });
 16 }

CHAPTER 11 ■ MASTERING ASYNCHRONOUS TASKS

166

 17 else {
 18 console.error(error);
 19 }
 20 });
 21 }
 22 else {
 23 console.error(error);
 24 }
 25 });
 26 }
 27 else {
 28 console.error(error);
 29 }
 30 });
 31 }
 32
 33 updateFirstUser();

 Code like the preceding is commonly referred to as callback hell . Each callback function must be nested
inside of the previous one in order to make use of its result. As you can see, the callback system does not
scale very well. Let’s look at another example that further confirms this conclusion. This time, we need
to send three files submitted for a product in three separate AJAX requests to three separate endpoints
concurrently. We need to know when all requests have completed and whether one or more of these
requests failed. Regardless of the outcome, we need to notify our user with the result. If we are stuck using
 error-first callbacks , our solution is a bit of a brain-teaser:

 1 function sendAllRequests() {
 2 var successfulRequests = 0;
 3
 4 function handleCompletedRequest(error) {
 5 if (error) {
 6 console.error(error);
 7 }
 8 else if (++successfulRequests === 3) {
 9 console.log('All requests were successful!');
 10 }
 11 }
 12
 13 sendFile('/file/docs', pdfManualFile, handleCompletedRequest);
 14 sendFile('/file/images', previewImage, handleCompletedRequest);
 15 sendFile('/file/video', howToUseVideo, handleCompletedRequest);
 16 }
 17
 18 sendAllRequests();

 That code isn’t awful , but we had to create our own system to track the result of these concurrent
operations. What if we had to track more than three async tasks? Surely there must be a better way!

CHAPTER 11 ■ MASTERING ASYNCHRONOUS TASKS

167

 The First Standardized Way to Harness Async
 The flaws and inefficiencies associated with relying on callback conventions often prompt developers to look
for other solutions. Surely some of problems, and the boilerplate common to this async handling approach,
can be solved by and packaged into a more standardized API. The Promises specification defines an API that
achieves this very goal, and so much more.

 Promises have been publicly discussed on the JavaScript front for some time. The first instance of a
Promise-like proposal (that I am able to locate) was created by Kris Kowal. Dating to mid-2011, it describes
“Thenable Promises”. 4 A couple lines from the introduction provide a good glimpse into the power of promises:

 An asynchronous promise loosely represents the eventual result of a function.
A resolution can either be “fulfilled” with a value or “rejected” with a reason,
corresponding by analogy to synchronously returned values and thrown
exceptions respectively.

 This loose proposal was, in part, used to form the Promises/A+ specification. 5 This specification has a
number of implementations, many of which can be seen in various JavaScript libraries, such as bluebird, 6
Q, 7 and rsvp.js. 8 But perhaps the more important implementation appeared in the ECMA- 262 6th Edition
specification. 9 Remember from Chapter 3 that the ECMA-262 standard defines the JavaScript language
specification. The 6th edition of this spec was officially completed in 2015. At the time of writing, the Promise
object defined in this standard is available natively in all modern browsers, with the exception of Internet
Explorer. Luckily, many lightweight polyfills are available to fill in this gap.

 Using Promises to Simplify Async Operations
 So what exactly are promises? You could read through the ECMAScript 2015 or A+ specifications, but like
most formal language specifications, these are both a bit dry and perplexing. First and foremost, a promise,
in the context of ECMAScript, is an object used to manage the result of an asynchronous operation. It
smoothes all the rough edges in a complex application left by traditional convention-based callbacks.

 Now that the overarching goal of promises is clear, let’s take a deeper look at this concept. The first
logical place to start exploring promises in more depth is through Domenic Denicola’s “States and Fates”
article). 10 From this document, we learn that promises have three states:

 1. Pending : The initial state, before the associated operation has concluded

 2. Fulfilled : The associated operation monitored by the promise has completed
without error

 3. Rejected : The associated operation has reached an error condition

 Domenic goes on to define a term that groups both the “fulfilled” and “rejected” states: settled .
So, a promise is initially pending, and then it is settled once it has concluded.

 4 https://github.com/kriskowal/uncommonjs/blob/ea03e6d40430318b1d9821a181f3961bbf02eb12/
promises/specification.md
 5 https://github.com/promises-aplus/promises-spec
 6 https://github.com/petkaantonov/bluebird
 7 https://github.com/kriskowal/q
 8 https://github.com/tildeio/rsvp.js
 9 www.ecma-international.org/ecma-262/6.0/#sec-promise-objects
 10 https://github.com/domenic/promises-unwrapping/blob/master/docs/states-and-fates.md

http://dx.doi.org/10.1007/978-1-4842-2235-5_3
https://github.com/kriskowal/uncommonjs/blob/ea03e6d40430318b1d9821a181f3961bbf02eb12/promises/specification.md
https://github.com/kriskowal/uncommonjs/blob/ea03e6d40430318b1d9821a181f3961bbf02eb12/promises/specification.md
https://github.com/promises-aplus/promises-spec
https://github.com/petkaantonov/bluebird
https://github.com/kriskowal/q
https://github.com/tildeio/rsvp.js
http://www.ecma-international.org/ecma-262/6.0/#sec-promise-objects
https://github.com/domenic/promises-unwrapping/blob/master/docs/states-and-fates.md

CHAPTER 11 ■ MASTERING ASYNCHRONOUS TASKS

168

 There are also two distinct “fates” defined in this document:

 1. Resolved : A promise is resolved when it is fulfilled or rejected, or when it has been
redirected to follow another promise. An example of the latter condition can be
seen when chaining asynchronous promise-returning operations together. (More
on that soon.)

 2. Unresolved : As you might expect, this means that the associated promise has not
yet been resolved.

 If you can understand these concepts, you are very close to mastering promises, and you will find
working with the API defined in the A+ and ECMA-262 specifications much easier.

 The Anatomy of a Promise
 A JavaScript promise is created simply by constructing a new instance of an A+ compliant Promise object,
such as the one detailed in the ECMAScript 2015 specification. The Promise constructor takes one
argument: a function. This function itself takes two arguments, which are both functions that give the
promise a resolved “fate” (as described in the preceding section). The first of these two function arguments
is a “fulfilled” function. This is to be called when the associated asynchronous operation completes
successfully. When the “fulfilled” function is invoked, a value related to the completion of the promissory
task should be passed. For example if a Promise is used to monitor an AJAX request, the server response may
be passed to this “fulfilled” function once the request completes successfully. When a fulfilled function is
called, the promise assumes a “fulfilled” state, as described earlier.

 The second argument passed to the Promise constructor’s function parameter is a “reject” function .
This should be called when the promissory task has failed for some reason, and the reason describing the
failure should be passed into this rejected function. Often, this will be an Error object. If an exception is
thrown inside of the Promise constructor, this will automatically cause the “reject” function to be invoked
with the thrown Error passed as an argument. Going back to the AJAX request example, if the request were
to fail, the “reject” function should be called, passing either a string description of the result, or perhaps the
HTTP status code. When a reject function is called, the promise assumes a “rejected” state, described in
number 3 of the list of promise states given earlier.

 When a function returns a Promise , the caller can “observe” the result a couple of different ways. The most
common way to handle a promissory return value is to call a then method on the promise instance. This method
takes two parameters, both functions. The first functional parameter is invoked if the associated promise is
fulfilled. As expected, if a value is associated with this fulfillment (such as a server response for an AJAX request),
it is passed to this first function. The second function parameter is invoked if the promise fails in some way. You
may omit the second parameter if you are only interested in fulfillment (though it is generally unsafe to assume
your promise will succeed). Additionally, you may specify a value of null or undefined , or any value that is not
considered to be “callable” 11 as the first argument if you are only interested in promise rejection. An alternative to
this, which also lets you focus exclusively on the error case, is to call the catch method on the returned Promise .
This catch method takes one argument: a function that is invoked when/if the associated promise errors.

 The ECMAScript 2015 Promise object includes several other helpful methods, but one of the more useful
non- instance methods is all() , which allows you to monitor many promises at once. The all method returns
a new Promise that is fulfilled if all monitored promises are fulfilled, or rejects as soon as one of the monitored
promises is rejected. The Promise.race() method is very similar to Promise.all() , the difference being
that the Promise returned by race() is fulfilled immediately when the first monitored Promise is fulfilled.
It does not wait for all monitored Promise instances to be fulfilled first. One use for race() could also apply
to AJAX requests. Imagine you were triggering an AJAX request that persisted the same data to multiple
redundant endpoints. All that is important is the success of one request, in which case Promise.race() is more
appropriate and much more efficient than waiting for all requests to complete with Promise.all() .

 11 www.ecma-international.org/ecma-262/6.0/#sec-iscallable

http://www.ecma-international.org/ecma-262/6.0/#sec-iscallable

CHAPTER 11 ■ MASTERING ASYNCHRONOUS TASKS

169

 Simple Promise Examples
 If the previous section isn’t enough to properly introduce you to JavaScript promises, a few code examples
should push you over the edge. Earlier, I provided a couple code blocks that demonstrated handling of async
task results using callbacks. The first one outlined a function that prompts the user to enter an email address
in a dialog box—an asynchronous task. An error-first callback system was used to handle both successful
and unsuccessful outcomes. The same example can be rewritten to make use of promises:

 1 function askForEmail() {
 2 return new Promise(function (fulfill, reject) {
 3 promptForText('Enter email:', function (result) {
 4 if (result.cancel) {
 5 reject(new Error('User refused to supply email.'));
 6 }
 7 else {
 8 fulfill(result.text);
 9 }
 10 });
 11 });
 12 }
 13
 14 askForEmail().then(
 15 function fulfilled(emailAddress) {
 16 // do something with the `emailAddress`...
 17 },
 18 function rejected(error) {
 19 console.error('Unable to get email: ' + error.message);
 20 }
 21);

 In the preceding example rewritten to support promises, our code is much more declarative and
straightforward. The askForEmail() function returns a Promise that describes the result of the “ask the user
for email” task. When calling this function, we can intuitively handle both a supplied email address and an
instance where the email is not provided by following a codified standard. Notice that we are still assuming
that the promptForText() function API is unchanged, but the code can be simplified even further if this
function also returns a promise:

 1 function askForEmail() {
 2 return promptForText('Enter email:');
 3 }
 4
 5 askForEmail().then(
 6 function fulfilled(emailAddress) {
 7 // do something with the `emailAddress`...
 8 },
 9 function rejected(error) {
 10 console.error('Unable to get email: ' + error.message);
 11 }
 12);

CHAPTER 11 ■ MASTERING ASYNCHRONOUS TASKS

170

 If promptForText() returns a Promise , it should pass the user-entered email address to the fulfilled
function if an address is supplied, or a descriptive error to the rejected function if the user closes the dialog
without entering an email address. These implementation details are not visible above, but based on the
 Promise specification, this is what we can expect.

 The other example in the callbacks section demonstrates the onload and onerror callbacks provided
by XMLHttpRequest . Just to recap, onload is called when the request completes (regardless of the server
response status code), and onerror is invoked if the request fails to complete for some reason (such as
due to CORS or other network issues). As Chapter 9 mentions, the Fetch API brings a replacement for
 XMLHttpRequest that makes use of the Promise specific to signal the result of an AJAX request. I’ll dive
into a more complex example that makes use of fetch shortly, but first, let’s write a wrapper around the
 XMLHttpRequest call from the callbacks section that presents a more elegant interface using promises:

 1 function get(url) {
 2 return new Promise(function (fulfill, reject) {
 3 var xhr = new XMLHttpRequest();
 4 xhr.open('GET', url);
 5 xhr.onload = function () {
 6 if (xhr.status >= 400) {
 7 reject('Name request failed w/ status code ' + xhr.status);
 8 }
 9 else {
 10 fulfill(xhr.responseText);
 11 }
 12 }
 13 xhr.onerror = function () {
 14 reject('Name request failed!');
 15 }
 16 xhr.send();
 17 });
 18 }
 19
 20 get('/my/name').then(
 21 function fulfilled(name) {
 22 console.log('Name is ' + name);
 23 },
 24 function rejected(error) {
 25 console.error(error);
 26 }
 27);

 Although the Promise -wrapped XMLHttpRequest doesn’t simplify that code much, it gives us a great
opportunity to generalize this GET request, which makes it more reusable. Also, our code that uses this new
GET request method is easy to follow and magnificently readable and elegant. Both the success and failure
conditions are a breeze to account for, and the logic required to manage this is wrapped away inside the Promise
constructor function. Of course, we could have created a similar approach without Promise , but the fact that this
async task-handling mechanism is an accepted JavaScript language standard makes it all the more appealing.

 The same exact AJAX request logic can more elegantly make use of the Promise API (for Firefox,
Chrome, Opera, and Edge) by relying on the Fetch API:

 1 function get(url) {
 2 return fetch(url).then(
 3 function fulfilled(response) {
 4 if (response.ok) {

http://dx.doi.org/10.1007/978-1-4842-2235-5_9

CHAPTER 11 ■ MASTERING ASYNCHRONOUS TASKS

171

 5 return response.text();
 6 }
 7 throw new Error('Request failed w/ status code ' + response.status);
 8 }
 9);
 10 }
 11
 12 get('/my/name').then(
 13 function fulfilled(name) {
 14 console.log('Name is ' + name);
 15 },
 16 function rejected(error) {
 17 console.error(error);
 18 }
 19);

 Here we’ve been able to simplify the GET name request much more with the help of promises and
 fetch . If the server indicates a non-successful status in its response, or if the request fails to send at all, then
the rejected handler will be hit. Otherwise, the fulfilled function handler is triggered with the text of the
response (the user name). A lot of the boilerplate that plagues the XHR version has been avoided entirely.

 Fixing “ Callback Hell ” with Promises
 Earlier, I demonstrated one of the many issues with callbacks that presents itself in a non-trivial situation
where consecutive dependent async tasks are involved. That particular example required retrieving all
user IDs in the system, followed by retrieval of the user information for the first returned user ID, and
then displaying the info for editing in a dialog, followed by a callback to the server with the updated user
information. This accounts for four separate but interdependent asynchronous calls. The first attempt to
handle this made use of several nested callbacks, which resulted in a pyramid-style code solution— callback
hell . Promises are an elegant solution to this problem, and callback hell is avoided entirely due to the ability
to chain promises. Take a look at a rewritten solution that makes use of the Promise API:

 1 function updateFirstUser() {
 2 getUserIds()
 3 .then(function (ids) {
 4 return getUserInfo(ids[0]);
 5 })
 6 .then(function (info) {
 7 return displayUserInfo(info);
 8 })
 9 .then(function (updatedInfo) {
 10 return updateUserInfo(updatedInfo.id, updatedInfo);
 11 })
 12 .then(function () {
 13 console.log('Record updated!');
 14 })
 15 . catch (function (error) {
 16 console.error(error);
 17 });
 18 }
 19
 20 updateFirstUser();

CHAPTER 11 ■ MASTERING ASYNCHRONOUS TASKS

172

 That is quite a bit easier to follow! The flow of the async operations is probably apparent as well. Just in case it
isn’t, I’ll walk you through it. I’ve contributed a fulfilled function for each of the four then blocks to handle specific
successful async operations. The catch block at the end will be invoked if any of the async calls fails. Note that
 catch is not part of the A+ Promise specification, though it is part of the ECMAScript 2015 Promise spec.

 Each async operation— getUserIds() , getUserInfo() , displayUserInfo() , and updateUserInfo() —
returns a Promise . The fulfilled value for each async operation’s returned Promise is made available to the
fulfilled function on the subsequently chained then block. No more pyramids, no more callback hell, and a
simple and elegant way to handle a failure of any call in the process.

 Monitoring Multiple Related Async Tasks with Promises
 Remember the callbacks example from the start of this section that illustrated one approach to handling
three separate AJAX requests to three separate endpoints concurrently? We needed to know when all
requests completed and whether one or more of them failed. The solution wasn’t ugly, but it was verbose
and contained a fair amount of boilerplate that could become cumbersome should we find ourselves in this
situation often. I surmised that there must be a better solution to this problem, and there is! The Promise API
allows for a much more elegant solution, particularly with the all method, which allows us to easily monitor
all three asynchronous tasks and react when they all complete successfully, or when one fails. Take a look at
the rewritten Promise-ified code:

 1 function sendAllRequests() {
 2 Promise.all([
 3 sendFile('/file/docs', pdfManualFile, handleCompletedRequest),
 4 sendFile('/file/images', previewImage, handleCompletedRequest),
 5 sendFile('/file/video', howToUseVideo, handleCompletedRequest)
 6]).then(
 7 function fulfilled() {
 8 console.log('All requests were successful!');
 9 },
 10 function rejected(error) {
 11 console.error(error);
 12 }
 13)
 14 }
 15
 16 sendAllRequests();

 The preceding solution assumes sendFile() returns a Promise . With this being true, monitoring these
requests becomes much more intuitive and lacks almost all the boilerplate and ambiguity from the callbacks
example. Promise.all takes an array of Promise instances and returns a new Promise . This new returned
 Promise is fulfilled when all the Promise objects passed to all are fulfilled, or it is rejected if one of these
passed Promise objects is rejected. This is exactly what we are looking for, and the Promise API provides this
support to us natively.

 jQuery’s Broken Promise Implementation
 Almost all the code in this chapter has focused exclusively on the support for async tasks that is native to
JavaScript. The rest of this chapter is going follow a similar pattern. This is mostly due to the fact that jQuery
simply doesn’t provide much in terms of powerful async support. The ECMA- 262 standard is far ahead of
jQuery in this regard. But because this book aims to explain much of the web API and JavaScript to those

CHAPTER 11 ■ MASTERING ASYNCHRONOUS TASKS

173

coming from a jQuery-centric perspective, I feel it is important to at least mention jQuery in this section, since
it does have support for promises—but this support has been, unfortunately, broken and completely non-
standard in all released versions of jQuery up until June of 2016. While the problems with promises have been
fixed in jQuery 3.0, promises have suffered from some notable deficiencies in the library for quite some time.

 There have been at least two serious bugs in jQuery's promise implementation. Both of these deficiencies
made promises non-standard and frustrating to work with. The first related to error handling. Suppose an
 Error is thrown inside of a promise’s fulfilled function handler, part of a first then block. To catch this sort of
issue, it is customary to register a rejected handler on a subsequent then block, chained to the first then block.
Remember that each then block returns a new promise. Your code may look something like this:

 1 someAsyncTask
 2 .then(
 3 function fulfilled() {
 4 throw new Error('oops!');
 5 }
 6)
 7 .then(null , function rejected(error) {
 8 console.error('Caught an error: ' + error.message);
 9 });

 Using the ECMA-262 Promise API, the preceding code will print an error log to the console that reads
“Caught an error: oops!” But if the same pattern is implemented using jQuery’s deferred construct, 12 the error
will not be caught by the chained rejected handler. Instead, it will remain uncaught. Valerio Gheri goes into
much more detail in his article on the subject. 13 I’ll leave it to you to read further if you are interested in more
specifics regarding the issues with jQuery’s promise error handling and won’t spend more time on this here.

 The second major issue with jQuery’s promise implementation is a break in the expected order of
operations. In other words, instead of observing the expected execution order of code alongside promise
handlers, jQuery changes the order of execution to match the order in which the code appears in the
executable source. This is an overly simplistic explanation, and if you'd like to read more, take a peek at
Valera Rozuvan's “jQuery Broken Promises Illustrated” article. 14 The lesson here is simple - avoid jQuery's
promise implementation, unless you are using a very recent version (3.0+). It has been non-standard and
deficient for many years.

 Native Browser Support
 As mentioned earlier, the Promise API is standardized as part of ECMA-262 6th edition. As of this writing,
all modern browsers, with the exception of Internet Explorer, implement promises natively. A number of
Promises/A+ libraries are available (such as RSVP.js, Q, and Bluebird), but I prefer a small and focused polyfill
to bring promises to non-compliant browsers (Internet Explorer). For this, I highly recommend the small and
effective “es6-promise” 15 polyfill by Stefan Penner.

 12 https://api.jquery.com/jquery.deferred/
 13 https://thewayofcode.wordpress.com/2013/01/22/
javascript-promises-and-why-jquery-implementation-is-broken/
 14 http://valera-rozuvan.github.io/nintoku/jquery/promises/jquery-broken-promises-illustrated
 15 https://github.com/stefanpenner/es6-promise

https://api.jquery.com/jquery.deferred/
https://thewayofcode.wordpress.com/2013/01/22/javascript-promises-and-why-jquery-implementation-is-broken/
https://thewayofcode.wordpress.com/2013/01/22/javascript-promises-and-why-jquery-implementation-is-broken/
http://valera-rozuvan.github.io/nintoku/jquery/promises/jquery-broken-promises-illustrated
https://github.com/stefanpenner/es6-promise

CHAPTER 11 ■ MASTERING ASYNCHRONOUS TASKS

174

 Async Functions: Abstraction for Async Tasks
 The TC39 group that standardized promises in ECMA-262 6th edition worked on a related specification that
builds upon the existing Promise API. The async functions specification, 16 also known as async/await, will be
part of the 8th edition of the ECMAScript specification in 2017. At the writing of this chapter, it is currently
sitting in stage 4, which is the last stage in the TC39 specification acceptance process. 17 This means async
functions are complete and ready to be associated with a future formal edition of JavaScript. There seems to
be a lot of momentum and excitement surrounding async functions (and rightfully so).

 Async functions provide several features that make handling async operations incredibly easy. Instead
of getting lost in a sea of conventions or async-specific API methods, they allow you to treat asynchronous
code as if it were completely synchronous. This lets you use the same traditional constructs and patterns
for asynchronous code that you have already been using for your synchronous code. Need to catch an
error in an asynchronous method call? Simply wrap it in a try/catch block. Want to return a value from an
async function? Go ahead, return it! The elegance of async functions is a bit surprising at first, and web
development will benefit enormously once they become more commonly used and understood.

 The Problem with Promises
 The Promise API provides a refreshing break from callback hell and all the other inelegance and inefficiency
associated with callback-based async task-handling conventions. But promises don’t mask the process of
handling async. Promise merely provide us with a more elegant API—an API that makes managing async a
bit easier than the alternatives that came before it. Let’s look at two code samples—one that deals with two
very similar tasks—one synchronous, the other asynchronous:

 1 function handleNewRecord(record) {
 2 try {
 3 var savedRecord = saveRecord(record);
 4 showMessage('info', 'Record saved! ' + savedRecord);
 5 }
 6 catch (error) {
 7 showMessage('error', 'Error saving!' + error.message);
 8 }
 9 }
 10
 11 handleNewRecord({name: 'Ray', state: 'Wisconsin'});

 ■ Note The implementation of showMessage() has been left out as it is not important to the example code. It
is intended to illustrate a commonly used approach to dealing with success and errors by displaying a message
to the user.

 In the preceding code, we’re given a record of some type, which is then “saved” with the help of the
 saveRecord function. In this case, the operation is synchronous, and the implementation doesn’t rely on an
AJAX call or some other out-of-band processing. Because of this, we’re able to use familiar constructs to handle
the result of the call to saveRecord . When saveRecord is called, we expect a return value that represents the
saved record. At that point, we may inform a user that the record was saved, for example. But if saveRecord
fails unexpectedly—say it throws an Error —we have that covered too. A traditional try/catch block is all that is
needed to account for such a failure. This is a basic pattern that virtually all developers are familiar with.

 16 https://tc39.github.io/ecmascript-asyncawait/
 17 https://tc39.github.io/process-document/

https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/process-document/

CHAPTER 11 ■ MASTERING ASYNCHRONOUS TASKS

175

 But suppose the saveRecord function was asynchronous. Suppose it did delegate to a server endpoint
from the browser. Our code, using promises, would have to change to look something like this instead:

 1 function handleNewRecord(record) {
 2 saveRecord(record).then(
 3 function fulfilled(savedRecord) {
 4 showMessage('info', 'Record saved! ' + savedRecord);
 5 },
 6 function rejected(error) {
 7 showMessage('error', 'Error saving!' + error.message);
 8 }
 9);
 10 }
 11
 12 handleNewRecord({name: 'Ray', state: 'Wisconsin'});

 That code, rewritten to use promises due to the async nature of saveRecord , isn’t terribly difficult to follow
or write, but it’s a notable departure from the familiar var savedRecord = try/catch block from the previous
example. The burden of directly depending on the Promise API becomes even clearer as we run into more
promissory functions throughout our project. Instead of simply using familiar patterns, we are continually
forced to think about async. We must treat our async code completely differently from our synchronous code.
That’s unfortunate. If only we could handle async tasks without thinking about the async part. . . .

 Async Functions to the Rescue
 The primary asset that async functions bring to the table is the almost total abstraction they offer—so much
so that asynchronous promissory tasks appear to be completely synchronous. It seems like magic at first.
There are some things to be aware of, lest you get sucked up in the magic and become frustrated when an
async function’s dependency on promises leaks through the abstraction.

 Let’s start with a really simple and somewhat contrived example (don’t worry, we’ll work up to the real
examples from the promises section soon). First, here’s the saveRecord example that we recently discussed,
written to make use of async functions:

 1 async function handleNewRecord(record) {
 2 try {
 3 var savedRecord = await saveRecord(record);
 4 showMessage('info', 'Record saved! ' + savedRecord);
 5 }
 6 catch (error) {
 7 showMessage('error', 'Error saving!' + error.message);
 8 }
 9 }
 10
 11 handleNewRecord({name: 'Ray', state: 'Wisconsin'});

 Did we just assign the result of an asynchronous operation to a variable without using a then block and
handle an error by wrapping that call in a try/catch block? Why, yes we did! That code looks almost exactly
like the initial example where we called a completely synchronous saveRecord function . Under the covers,
this is all promises, but there’s no trace of a then or even a catch block.

CHAPTER 11 ■ MASTERING ASYNCHRONOUS TASKS

176

 Earlier, I demonstrated how to prevent “ callback hell ” with the help of the Promise API. The solution
presented in that section is certainly a vast improvement over the traditional callback-based approach, but
the code is still a bit unfamiliar, and of course we are clearly forced to explicitly deal with the fact that we are
invoking a number of interdependent asynchronous calls. Our code must be structured to account for this
reality. Not so with async functions:

 1 async function updateFirstUser() {
 2 try {
 3 var ids = await getUserIds(),
 4 info = await getUserInfo(ids[0]),
 5 updatedInfo = await displayUserInfo(info);
 6
 7 await updateUserInfo(updatedInfo.id, updatedInfo);
 8 console.log('Record updated!');
 9 }
 10 catch (error) {
 11 console.error(error);
 12 }
 13 }
 14
 15 updateFirstUser();

 The preceding code is markedly more succinct and elegant than the earlier version that relied on direct
use of promises. But what about the code in the next part of the promises section? This is the one where
I converted the callback example that sent, managed, and monitored three files submitted for a product
in three separate AJAX requests to three separate endpoints concurrently. I made use of the Promise.all
method to simplify the code. Well, we can simplify that even further with some help from async functions.

 But remember, as of the writing of this chapter, async functions are still an ECMA-262 proposal. It is not
part of any formal specification yet (though it will be very soon). As with many proposals, async functions
have changed a bit since the initial version of the proposal. In fact, this initial version included some
syntactic sugar to make it even easier and more elegant to monitor an array of promissory functions. Let’s
look at a rewrite of the concurrent async tasks example, using the initial async functions proposal:

 1 async function sendAllRequests() {
 2 try {
 3 // This is no longer valid syntax - do not use!
 4 await* [
 5 sendFile('/file/docs', pdfManualFile, handleCompletedRequest),
 6 sendFile('/file/images', previewImage, handleCompletedRequest),
 7 sendFile('/file/video', howToUseVideo, handleCompletedRequest)
 8];
 9 console.log('All requests were successful!');
 10 }
 11 catch (error) {
 12 console.error(error);
 13 }
 14 }
 15
 16 sendAllRequests();

CHAPTER 11 ■ MASTERING ASYNCHRONOUS TASKS

177

 At one point early on in the development of the async functions proposal, await* was included as an
alias for Promise.all() . Sometime after April 2014, this was removed from the proposal, apparently to avoid
confusion with a keyword in the “generators” specification in the ECMAScript 6th edition standard. The
 yield* keyword in the generators spec resembles await* in appearance, but the two do not share similar
behaviors. So, it was removed from the proposal. The appropriate way to monitor a number of concurrent
promissory functions with async functions requires making use of Promise.all() :

 1 async function sendAllRequests() {
 2 try {
 3 await Promise.all([
 4 sendFile('/file/docs', pdfManualFile, handleCompletedRequest),
 5 sendFile('/file/images', previewImage, handleCompletedRequest),
 6 sendFile('/file/video', howToUseVideo, handleCompletedRequest)
 7]);
 8 console.log('All requests were successful!');
 9 }
 10 catch (error) {
 11 console.error(error);
 12 }
 13 }
 14
 15 sendAllRequests();

 It’s perhaps unfortunate that we still must make some direct use of promises in this one specific case,
even when utilizing async functions, but this doesn’t negatively impact the readability or elegance of the
solution. But it’s true, async functions aren’t perfect—you still have to define functions as async, and you still
must include the await keyword before a function that returns a promise, but the syntax is much simpler and
more elegant than the bare Promise API . You can use familiar and traditional patterns to handle both async
and non-async code. That’s a pretty clear win to me. This is one of many ways in which specifications are
evolving quite rapidly, building upon each other, and outpacing the progression of jQuery.

 Browser Support
 Sadly, async functions are not natively supported in any browsers as of August 2016. But this is to be
expected as this proposal is just that, a proposal—it is not part of any formal JavaScript standard yet .
That doesn’t mean you must wait for browser adoption before using async functions in your project. Since
async functions offer new keywords, a polyfill is not the appropriate solution. Instead, you will have to make
use of a tool that compiles your async functions at build time into something that browsers can understand.

 There are many such tools that are able to compile async function syntax into cross-browser JavaScript.
Babel is one such tool, and a number of Babel plug-ins exist to accomplish this task. Discussing Babel or
any other JavaScript compilation tool is beyond the scope of this book, but I can tell you that most plug-ins
seems to compile async functions to ECMAScript 2015 generator functions. Generator functions must then
be compiled down into ECMAScript 5 code if the project is browser based (since generator functions are not
natively supported in all modern browsers). Type Script is another JavaScript compilation tool that performs
many of the same tasks as Babel but also supports a number of non-standard language features. Type Script
currently offers native support for async functions, but only in browsers that natively support generator
functions. That limitation may very well be relaxed in a future release.

CHAPTER 11 ■ MASTERING ASYNCHRONOUS TASKS

178

 The Future of Standardized Async Task Handling
 When I began writing this chapter, I intended to dedicate two entire sections to a couple additional
ECMA-262 proposals. These proposals—Asynchronous Iterators 18 and Observable 19 —were created to further
enhance JavaScript async task handling. I initially planned to dedicate a section to each of these proposals,
complete with copious code examples, but I ultimately decided against it for a few reasons. First, these
proposals are still fairly immature. Asynchronous Iterators is a stage 2 proposal, and Observable is only at
stage 1. It didn’t seem appropriate to include these proposals in a book when they could very well change in
unexpected ways at some point during the process. Even worse, one or both proposals could be withdrawn.
And no complete implementations of either proposal exist at the moment. That makes it difficult to actually
create runnable code when attempting to demonstrate the benefits of these concepts. Even though Async
Functions is also a proposal, it did make the cut due to its momentum in the JavaScript community and its
advanced stage 4 status.

 Asynchronous Iterators aim to make it simple use familiar looping constructs, such as a for loop, to
iterate over a collection of items produced by an asynchronous operation. Each item in this collection is not
immediately available after the invocation of the function. Instead, as the loop executes, logic inside of the
asynchronous function progressively loads new items asynchronously. An intuitive example in the proposal
repository 20 demonstrates how this new concept allows us to use a for loop to print out lines in a file. The
process of reading the file is asynchronous, and our for loop only attempts to read each subsequent line as
the for loop requests it. If the loop terminates,
so does the file reader. This proposal pairs Async Functions with ECMAScript 2015 Generator Functions.
Although I did cover Async Functions in this chapter, I intentionally left out Generator Functions. Generator
Functions are indeed useful for handling async tasks, but their use in this scenario is fairly low-level and
awkward—not appropriate for this particular book, due to the explicit complexity associated with use of this
language feature.

 Observables are a bit better understood. A number of implementations of this pattern already exist,
both in JavaScript and other languages. RxJS 21 is perhaps the most well-known Observable implementation,
though it remains to be seen if this is a “standard” implementation, since the Observable proposal is just
that—a proposal. Observables provide a standardized method for sifting through and focusing on specific
data points in a stream of data. An example in the proposal repository 22 demonstrates use of Observables
that monitor all browser keyboard events to focus on a specific combination of keys in this stream of events.

 Although Async Iterators and Observables may be part of the future of JavaScript async task handling,
I’ve already demonstrated a number of available APIs that can be used today . You no longer have to rely
on conventions or proprietary solutions that are tied to a specific library. JavaScript continues to evolve to
standardize intuitive solutions for complex operations. Support for asynchronous tasks is just one of many
such examples.

 18 https://tc39.github.io/proposal-async-iteration/
 19 https://tc39.github.io/proposal-observable/
 20 https://github.com/tc39/proposal-async-iteration
 21 https://github.com/ReactiveX/rxjs
 22 https://github.com/zenparsing/es-observable

https://tc39.github.io/proposal-async-iteration/
https://tc39.github.io/proposal-observable/
https://github.com/tc39/proposal-async-iteration
https://github.com/ReactiveX/rxjs
https://github.com/zenparsing/es-observable

179© Ray Nicholus 2016
R. Nicholus, Beyond jQuery, DOI 10.1007/978-1-4842-2235-5_12

 CHAPTER 12

 Common JavaScript Utility
Functions

 Here in chapter 12 , I plan to match jQuery’s utility functions 1 against the native APIs defined in the
ECMAScript specification. Most of the code in this chapter will work both in the browser and on the server
(with the notable exception of DOMParser and any references to window or document in examples). In
modern browsers, jQuery is unnecessary most of the time. But even where jQuery saves a few keystrokes, it’s
important to be able to roll your own utility function, even if you do choose to pull in a library for some of
the more complex and lesser-supported features. After all, understanding how jQuery works its magic makes
you a more complete and effective software developer.

 jQuery may provide other utility functions not detailed in this chapter, but I cover all of the “important”
ones. First, I demonstrate and explain how functions that jQuery provides to work with strings, dates,
XML, and JSON can be duplicated without any external libraries. Next, I move on to code that is useful
for inspecting variable types. For example, determining if a value is an Object , Array , Function , or some
specific primitive value. Don’t worry, I elaborate on primitive values a bit, just in case you are not completely
familiar with each of the primitive value types available in JavaScript. jQuery does provide functions to
detect value types. I go over those and show you how the same type checking (and more) can be performed
with vanilla JS.

 I also explain manipulating, creating, and traversing objects, along with arrays. Finally, we’ll figure
out functions together—that is, how to perform various important and common operations on JavaScript
functions sans jQuery. After this chapter is complete, you’ll feel much more comfortable working with
JavaScript objects, functions, arrays, and primitives yourself, without any “outside” help.

 Working with Dates, Text, XML, and JSON
 This first section considers duplicating the behavior of jQuery’s Date and string helper functions in plain old
vanilla JavaScript. But not just run-of-the-mill strings—JSON and XML too. Although jQuery makes it pretty
easy to perform simple, common tasks with dates and strings, you’ll see shortly how unnecessary this library
is in this context.

 1 https://api.jquery.com/category/utilities/

http://dx.doi.org/10.1007/978-1-4842-2235-5_12
https://api.jquery.com/category/utilities/

CHAPTER 12 ■ COMMON JAVASCRIPT UTILITY FUNCTIONS

180

 Dates
 jQuery doesn’t really focus much on dates, although perhaps it could have contributed some valuable
utility functions to make some of the more useful Date prototype methods more reliable cross-browser. For
example, Date.prototype offers a number of methods that can be used to format a specific date according to
a specific locale, such as Date.prototype.toLocaleString() and Date.prototype.toLocateDateString() .
Though this is well supported for the current locale, the ability to pass a variable locale has spotty browser
support at the moment. Furthermore, these same methods allow a date to be formatted according to a
specific set of requirements. Say you want the current month to be printed using its full name (instead of a
number or an abbreviation). Simply pass an options object (the second parameter) to toLocaleString() as
 {month: 'long'} . But this too is not well supported across even modern browsers.

 No, jQuery doesn’t help us with any real Date -related problems in JavaScript. Instead, it only provides
a single method to return the number of milliseconds since the Unix epoch (00:00:00 UTC, 1 January, 1970).
Suppose the current time is midnight on 4 June, 2016. What if we were to call this utility function provided by
jQuery to obtain the number of milliseconds since the Unix epoch? What would the code look like?

 1 var currentTime = $.now();

 The same value can be obtained without jQuery in any browser with just a few more characters:

 1 var currentTime = new Date().getTime();

 The currentTime variable in both code blocks is identical (assuming both lines are executed at the
exact same point in time). The getTime() method has been available on Date.prototype since the very first
version of the ECMAScript specification 2 1st edition%2C June 1997.pdf). But if we depend only on modern
browsers, the same exact call can be made without jQuery even more elegantly:

 1 var currentTime = Date.now();

 The now() function was added to the Date object in the 5.1 edition of the ECMAScript spec. 3 In fact,
recent versions of jQuery connect $.now() directly to Date.now() . 4 The same level of succinctness and
convenience is available today without jQuery. But even if you are unfortunate enough to require support for
ancient browsers (perhaps in a legacy web application that simply won’t die), the same behavior is possible
with only a minuscule amount of additional finger work, as you have already seen.

 Converting JSON into a JavaScript Object
 In version 1.4.1 of jQuery, an API method was introduced that parsed a JSON string, converting it into the
appropriate JavaScript representation (String , Number , Boolean , Object , or Array). 1.4.1 was released
in 2010, a year after Internet Explorer 8 was released (which was able to parse JSON strings natively).
However, IE7 was still in use, as was IE6 to some degree, neither of which was able to easily convert JSON
into JavaScript. jQuery’s parseJSON() method aimed to make this task possible in all supported browsers.
Consider the following simple JSON string:

 1 {
 2 "name" : "Ray",
 3 "id" : 123
 4 }

 2 www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262%2C
 3 www.ecma-international.org/ecma-262/5.1/#sec-15.9.4.4
 4 https://github.com/jquery/jquery/blob/2.2.4/src/core.js#L453

http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,
http://www.ecma-international.org/ecma-262/5.1/#sec-15.9.4.4
https://github.com/jquery/jquery/blob/2.2.4/src/core.js#L453

CHAPTER 12 ■ COMMON JAVASCRIPT UTILITY FUNCTIONS

181

 The preceding JSON string is made available to our code as a jsonString variable, which is, of course, a
 string . This JSON string can be turned into a JavaScript object using jQuery’s $.parseJSON() method:

 1 var user = $.parseJSON(jsonString);
 2
 3 // prints "Ray"
 4 console.log(user.name);
 5
 6 // prints 123
 7 console.log(user.id);

 Although $.parseJSON() certainly does provide an elegant way to turn a JSON string into a proper
JavaScript value, it has been a completely unnecessary abstraction for many years now. All modern browsers
and all versions of Node.js (as well as Internet Explorer 8, as mentioned before) include support for the JSON
object, first included in ECMAScript 5.1. 5 Here’s the exact same solution without jQuery:

 1 var user = JSON.parse(jsonString);
 2
 3 // prints "Ray"
 4 console.log(user.name);
 5
 6 // prints 123
 7 console.log(user.id);

 jQuery even hands all JSON string parsing work off to JSON.parse() if the browser supports the JSON object.
In addition to parsing a JSON string, the native JSON object can also convert a JavaScript value into a string, via
the stringify() method. There is no such abstraction included in jQuery’s API, nor has there ever been.

 For browsers older than and including Internet Explorer 7, there has always been at least one way to
parse JSON strings without access to a native method. The most common approach involves using the native
 eval() function to parse the JSON string into a JavaScript value. Although this does work, it is widely known
to be a bad idea due to the security implications of using eval() . Blindly parsing a string into a JavaScript
value using eval() requires executing the underlying code. With a user-supplied string, this can lead to
disastrous consequences. To combat this reality, Douglas Crockford created a library in 2007—json.js 6 —also
delegates to eval() but only after verifying that the string to evaluate is “safe”. Regardless, none of this is
needed anymore due to the fact that browsers without support for JSON are not widely used.

 Converting an XML String into a Document
 Similar to $.parseJSON() for converting a JSON string into a JavaScript representation, jQuery also defines a
 parseXML() method in its public API. jQuery’s $.parseXML() turns an XML string into a document . This gives
you the ability to query the document using jQuery’s selector API just as you would an HTML document. For
example, consider an application that makes a request directly to a Microsoft Azure REST API endpoint. If
the URL includes an invalid query parameter, the Azure service will respond with the following XML string
in the response: 7

 1 <?xml version="1.0" encoding="utf-8"?>
 2 <Error>
 3 <Code> InvalidQueryParameterValue </Code>

 5 www.ecma-international.org/ecma-262/5.1/#sec-15.12
 6 https://github.com/douglascrockford/JSON-js/blob/master/json2.js
 7 https://msdn.microsoft.com/en-us/library/azure/dd179382.aspx

http://www.ecma-international.org/ecma-262/5.1/#sec-15.12
https://github.com/douglascrockford/JSON-js/blob/master/json2.js
https://msdn.microsoft.com/en-us/library/azure/dd179382.aspx

CHAPTER 12 ■ COMMON JAVASCRIPT UTILITY FUNCTIONS

182

 4 <Message> Value for one of the query parameters specified in the request URI is\
 5 invalid. </Message>
 6 <QueryParameterName> popreceipt </QueryParameterName>
 7 <QueryParameterValue> 33537277-6a52-4a2b-b4eb-0f905051827b </QueryParameterValue>
 8 <Reason> invalid receipt format </Reason>
 9 </Error>

 I chose an Azure response for this section as I distinctly remember dealing with parsing an XML string
browser-side when integrating the “upload to Azure ” feature into Fine Uploader , which had to parse the
response, and report the error code and message for display and logging. 8

 Let’s say we wanted to do the same—extract the <Code> and the <Message> portions of the error message.
We certainly could parse the string ourselves, using regular expressions, but that’s hardly an ideal approach.
Converting the XML string into a proper document is the goal, and this is easily doable with jQuery:

 1 // assuming we have the above XML string assigned to a var
 2 var errorDocument = $.parseXML(azureErrorXmlString);
 3
 4 // code = "InvalidQueryParameterValue"
 5 var code = $(errorDocument).find('Code').text();
 6
 7 // message = "Value for one of the query parameters..."
 8 var message = $(errorDocument).find('Message').text();

 Note that jQuery does in fact give us back a document as the return value of $.parseXML() , so if we want
to use jQuery’s API to parse the document, we must wrap it ourselves.

 You may be happy to know that we can do all of this, very easily, in all modern browsers without jQuery:

 1 // assuming we have the above XML string assigned to a var
 2 var errorDocument = new DOMParser()
 3 .parseFromString(azureErrorXmlString, 'application/xml');
 4
 5 // code = "InvalidQueryParameterValue"
 6 var code = errorDocument.querySelector('Code').textContent;
 7
 8 // message = "Value for one of the query parameters..."
 9 var message = errorDocument.querySelector('Message').textContent;

 Although the same solution is admittedly much less elegant in ancient browsers, that really isn’t
a concern in the current day. The DOMParser interface is defined as part of the W3C DOM Parsing and
Serialization specification, 9 which was first drafted in 2012 and is still listed as a “draft” as of mid-2016. But
the behavior described in that document has been implemented in all modern browsers for some time now.
This particular specification is meant to standardize behaviors that have already been implemented across a
wide range of browsers, similar to the CSS Object Model specification. 10

 Perhaps you are saying to yourself, “Why must I include a XML MIME type (application/xml)?” jQuery’s
 parseXML() method does not require this to be included. The answer is simple and already may be obvious
based on the generic name of the native parser. DOMParser was not solely created to parse XML strings.
Although this is currently the most widely supported document type, there is also support for parsing SVG

 8 https://github.com/FineUploader/fine-uploader/blob/6aa179f7b009cb80376b997975a7acf3
5cc72635/client/js/azure/util.js#L78
 9 www.w3.org/TR/DOM-Parsing/
 10 https://www.w3.org/TR/cssom-1/

https://github.com/FineUploader/fine-uploader/blob/6aa179f7b009cb80376b997975a7acf35cc72635/client/js/azure/util.js#L78
https://github.com/FineUploader/fine-uploader/blob/6aa179f7b009cb80376b997975a7acf35cc72635/client/js/azure/util.js#L78
http://www.w3.org/TR/DOM-Parsing/
https://www.w3.org/TR/cssom-1/

CHAPTER 12 ■ COMMON JAVASCRIPT UTILITY FUNCTIONS

183

strings into SVG elements (image/svg+xml) and support for parsing HTML (text/html) . The latter two
document types are supported in all modern browsers, with the exception of Internet Explorer 9. DOMParser
is much more powerful than any single offering in jQuery’s API, and it has the potential to be expanded to
support additional types in the future.

 String Manipulation
 It’s surprising that a seemingly important and common string manipulation task—trimming the whitespace
from the beginning and end of a line of text—was not natively supported as a JavaScript method until
ECMAScript 5.1. 11 Internet Explorer 9 is the oldest browser to implement the String.prototype.trim()
method defined in this spec. The late arrival of trim() explains one primary reason why jQuery has offered
its own trim() method since version 1.0. The next three listings compare the jQuery API method, the
 String.protoype.trim() native method, and a workaround for ancient browsers:

 Listing 12-1. Trim a String: jQuery

 1 // trimmed = 'some name'
 2 var trimmed = $.trim(' some name ');

 Listing 12-2. Trim a String: JavaScript, Modern Browsers

 1 // trimmed = 'some name'
 2 var trimmed = (' some name ').trim();

 Listing 12-3. Trim a String: JavaScript, All Browsers

 1 // trimmed = 'some name'
 2 var trimmed = (' some name ').replace(/^\s+|\s+$/g, '');

 The workaround for browsers that don’t natively implement String.prototype.trim() requires resorting to a
regular expression. The preceding workaround is included in Fine Uploader in one of its many cross-browser utility
methods (which was needed as the library has supported browsers as old as Internet Explorer 6 in the past. 12

 $. trim() is the only string-related convenience method provided by jQuery. You can read more about
other string manipulation and parsing methods provided by JavaScript on the Mozilla Developer Network
page dedicated to the String interface. 13 But this will not be the last time we dive into strings in this chapter.

 What Kind of Value Is This?
 The ECMAScript language specification for JavaScript defines two general data types: Object and primitive. As
of the 7th edition of the standard, there are exactly six primitive data types: null , undefined , Boolean , Number ,
 String , and Symbol . As far as the non-primitive types, Object is one, and all other such types inherit from
 Object . There are many complex JavaScript types that inherit from Object. Array and Function are two such
examples. Some types are easier than others to reliably identify, but all values can be identified without the aid
of a third-party library. Yet even if you already rely on such a library, this section will help you understand some
of the logic your library may use in order to determine JavaScript value types. And since this book is focused on
developers who are already familiar with jQuery and its collection of convenience API methods, expect me to
mostly focus on the existing solutions provided by jQuery as I show you how to identify value types in JavaScript.

 11 www.ecma-international.org/ecma-262/5.1/#sec-15.5.4.20
 12 https://github.com/FineUploader/fine-uploader/blob/537a86bf3d6edd8068e66422a605b392dc8d0
b1e/client/js/util.js#L292
 13 https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String

http://www.ecma-international.org/ecma-262/5.1/#sec-15.5.4.20
https://github.com/FineUploader/fine-uploader/blob/537a86bf3d6edd8068e66422a605b392dc8d0b1e/client/js/util.js#L292
https://github.com/FineUploader/fine-uploader/blob/537a86bf3d6edd8068e66422a605b392dc8d0b1e/client/js/util.js#L292
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String

CHAPTER 12 ■ COMMON JAVASCRIPT UTILITY FUNCTIONS

184

 Primitives
 jQuery contributes two API methods that may be used to resolve primitive values: $.isNumeric() and
 $. type() . The type() API method provides the most useful and expected behavior. It will return a single-
word (lowercase) string that identifies the JavaScript type of a provided value. For example:

 1 // true
 2 $.type(3) === 'number';
 3
 4 // true
 5 $.type('3') === 'string';
 6
 7 // true
 8 $.type(null) === 'null';
 9
 10 // true
 11 $.type(undefined) === 'undefined';
 12
 13 // true
 14 $.type(false) === 'boolean';
 15
 16 // true (only supported in Chrome, Firefox, and Safari)
 17 $.type(Symbol('mysymbol')) === 'symbol';

 jQuery’s type() method will also produce expected results for uncommon values, such as the following:

 1 // true
 2 $.type(new Number(3)) === 'number';
 3
 4 // true
 5 $.type(new String('3')) === 'string';
 6
 7 // true
 8 $.type(new Boolean(false)) === 'boolean';

 Although it is perfectly legal to create a String , Number , or Boolean using a constructor function, it
is unusual, and this practice provides no real benefit. It can also make comparison difficult between two
primitives constructed this way. For example:

 1 // both are true
 2 3 === 3;
 3 3 == 3;
 4
 5 // all are false
 6 3 === new Number(3);
 7 new Number(3) === new Number(3);
 8 new Number(3) == new Number(3);
 9
 10
 11 // both are true
 12 'string' === 'string';
 13 'string' == 'string';

CHAPTER 12 ■ COMMON JAVASCRIPT UTILITY FUNCTIONS

185

 14
 15 // all are false
 16 'string' === new String('string');
 17 new String('string') === new String('string');
 18 new String('string') == new String('string');
 19
 20
 21 // both are true
 22 false === false;
 23 false == false;
 24
 25 // all are false
 26 false === new Boolean(false);
 27 new Boolean(false) === new Boolean(false);
 28 new Boolean(false) == new Boolean(false);

 In fact, a Boolean created with the Boolean constructor always evaluates to true in a conditional unless
the valueOf() method is called on the Boolean instance. 14 How very intuitive!

 So, how can we make the same primitive type comparisons without jQuery? The fact is that these
operations are trivial in all browsers (both modern and ancient). Take a look:

 1 // true
 2 typeof 3 === 'number';
 3
 4 // true
 5 typeof '3' === 'string';
 6
 7 // true
 8 typeof undefined === 'undefined';
 9
 10 // true
 11 typeof false === 'boolean';
 12
 13 var someVal = null;
 14 // true
 15 someVal === null;
 16
 17 // true (only supported in Chrome, Firefox, and Safari)
 18 typeof Symbol('mysymbol') === 'symbol';

 In all cases, except for one, we can make use of the typeof keyword to provide the exact same result
as jQuery’s type() method. typeof has been part of the language since the very first version of JavaScript.
However, one small quirk has existed since this first version as well, which can be seen when evaluating null
with the typeof keyword:

 1 // false
 2 typeof null === 'null';
 3
 4 // 'object'
 5 typeof null;

 14 www.ecma-international.org/ecma-262/5.1/#sec-15.6.4.3

http://www.ecma-international.org/ecma-262/5.1/#sec-15.6.4.3

CHAPTER 12 ■ COMMON JAVASCRIPT UTILITY FUNCTIONS

186

 As you can see, typeof thinks null is an Object , strangely enough. This is largely considered to be a
mistake in the initial implementation of JavaScript that has remained in place for backward-compatibility
reasons. But another explanation is provided by the ECMAScript-262 language specification. The definition
of a null value 15 is described as a “primitive value that represents the intentional absence of any object value.”
In that respect, it may arguably be appropriate to call this type an “object”. This theory makes even more sense
when we look at the result of typeof NaN , which evaluates to “number”. Surely if the antithesis of Number
evaluates to “number”, it stands to reason that the antithesis of Object would evaluate to “object”. Speaking
in terms of consistency, this makes perfect sense (at least to me). Feel free to form your own opinion though.
Regardless, this behavior will likely never change, as proposals to fix this have been rejected in the past. 16

 What about jQuery’s $.isNumeric() method? Well, it is a bit bizarre, or at least it may appear that way
initially. Take a look:

 1 // all true
 2 $.isNumeric(3);
 3 $.isNumeric('3');
 4
 5 // all false
 6 $.isNumeric(NaN);
 7 $.isNumeric(Infinity);

 In other words, if a value is indeed a Number or can be coerced into a Number , then jQuery’s isNumeric()
will return true . And by “coerced,” I mean that a string such as “3” can be easily converted to a proper Number by,
for example, passing it into parseInt() . Also, this string can be evaluated as a proper Number for the purposes
of comparison with another value by using a double equal sign (==) which will convert the string to a Number
as part of the comparison operation. Furthermore, values that are indeed Number s but are not typically thought
of as “numbers” (such as NaN and Infinity) result in a false return value when passed into $.isNumeric() .
Achieving the same behavior sans jQuery involves a bit of thought (and perhaps Googling). But the solution can
be found after realizing that we need to make two determinations when evaluating our value:

 1. Is it NaN ?

 2. Is it a finite value?

 Granted, it is unlikely that most will reach the point where it is clear that these two specific questions
must be answered, but the fact remains that this is indeed what we need to determine. Luckily, there are two
methods defined in the language that have been present since the first version that will allow us to easily
mimic the behavior of jQuery’s isNumeric() :

 1 function isNumeric(maybeNumber) {
 2 return !isNaN(parseFloat(maybeNumber))
 3 && isFinite(maybeNumber);
 4 }
 5
 6 // all true
 7 isNumeric(3);
 8 isNumeric('3');
 9
 10 // all false
 11 isNumeric(NaN);
 12 isNumeric(Infinity);

 15 www.ecma-international.org/ecma-262/5.1/#sec-4.3.11
 16 http://wiki.ecmascript.org/doku.php?id=harmony%3Atypeof_null

http://www.ecma-international.org/ecma-262/5.1/#sec-4.3.11
http://wiki.ecmascript.org/doku.php?id=harmony:typeof_null

CHAPTER 12 ■ COMMON JAVASCRIPT UTILITY FUNCTIONS

187

 The addition of parseFloat when determining whether a value is NaN is required for properly evaluating
a null value. In other words, if maybeNumber is null and we leave out the parseFloat() , isNaN() will
evaluate to false and the null value will erroneously be declared “numeric”.

 Arrays
 In all browsers, determining whether a value is an array is trivial, but modern browser support for this
determination is exceptionally elegant. For that, we have Array.isArray() :

 1 // both are true
 2 Array.isArray([]);
 3 Array.isArray(new Array());
 4
 5 // both are false
 6 Array.isArray(3);
 7 Array.isArray({});

 The JavaScript Array object was given an isArray() method in ECMAScript-262 5.1. 17 And jQuery has
included a similar convenience method for quite some time: $.isArray() :

 1 // both are true
 2 $.isArray([]);
 3 $.isArray(new Array());
 4
 5 // both are false
 6 $.isArray(3);
 7 $.isArray({});

 But all versions of jQuery since 2.0 delegate directly to the native Array.isArray() in all cases. In
other words, $.isArray() is just an alias for Array.isArray() . Older version of jQuery also delegated to
 Array.isArray() , but only conditionally. If Array.isArray() was not available (which would be the case
in an ancient browser) jQuery’s type method was used to determine if value was an ‘array.’ But we can
duplicate the same behavior and support all browsers without jQuery, even ancient ones:

 1 function isArray(value) {
 2 return Array.isArray
 3 ? Array.isArray(value)
 4 : Object.prototype.toString.call(value) === '[object Array]';
 5 }
 6
 7 // both are true
 8 isArray([]);
 9 isArray(new Array());
 10
 11 // both are false
 12 isArray(3);
 13 isArray({});

 17 www.ecma-international.org/ecma-262/5.1/#sec-15.4.3.2

http://www.ecma-international.org/ecma-262/5.1/#sec-15.4.3.2

CHAPTER 12 ■ COMMON JAVASCRIPT UTILITY FUNCTIONS

188

 Keep in mind the preceding code is only useful if you plan on supporting very old browsers, such as
Internet Explorer 8. Otherwise, Array.isArray() covers all possible cases. But let’s look closer at a portion of
the example above anyway, specifically Object.prototype.toString.call(value) . You may be wondering
why we don’t simply use typeof here. Somewhat surprisingly, typeof [] and typeof new Array() produce
a result of “object”. This is technically true—an Array is a type of Object since it inherits from Object.
prototype , a type value of “object” is a little less specific than expected. Of course, a more effective result
would be “array”. But, sadly, this is not the case.

 It’s often helpful to think of JavaScript arrays as objects with a few convenience methods. This is, more
or less, the truth. Diving deeper into arrays, you’ll see that array element access follows the same pattern as
object property access. For example, to access the third element in an array: myArray[2] . And to access a
property named 2 in an object: myObject[2] . Arrays are mostly just objects with some convenience methods
and a length property, and typeof reflects this reality. By calling the toString() method available on the
 Object prototype using the call() method, which allows us to change the context of the call of toString()
to the array literal, we are able to see the “true” type of our array. Don’t worry if you are confused about the
 call method. I cover that near the end of this chapter.

 Objects
 An object is not a primitive data type, partly because objects are mutable and primitive data types are generally
 immutable across most programming languages. But the object type in JavaScript is the base type for all
non-primitive values. Functions are objects, and arrays are objects too! More on those two value types soon.

 In JavaScript, an object is just a “collection” of key/value properties. Keys can be strings, or integers
(which are converted to strings), or even Symbol s (if the browser supports this primitive data type). Anything
is a valid property value, even another object.

 jQuery’s type API method can certainly tell us when a value is an object, just as the native typeof
keyword. But remember from the earlier sections that typeof null === 'object' and typeof [] ===
'object' . These values are identified instead as “null” and “array” by $.type() , and it’s possible that this is
the behavior you desire and expect. So, how can we create a simple cross-browser function that will identify
any “real” object as an object, leaving out the “array object”? This can be accomplished as follows:

 1 function isObject(value) {
 2 return value !== null &&
 3 Object.prototype.toString.call(value) === '[object Object]';
 4 }
 5
 6 // both are true
 7 isObject({});
 8 isObject(new Object());
 9
 10 // both are false
 11 isObject(null);
 12 isObject([]);

 In addition to $.type() , jQuery has a couple more interesting methods used to identify specific kinds
of JavaScript objects. One is $.isPlainObject() , which is supposed to determine if a specific value is either
an object literal ({}) or a base Object instance (new Object()). jQuery’s type() method is not appropriate
in this case, as it will identify DOM elements as objects (which is technically correct). But even though
 isPlainObject() is useful in theory, it is a determination that I have rarely needed to make across my entire
career. Also, jQuery’s documentation for isPlainObject() warns that the method is potentially unreliable
and may provide unexpected results in some browsers. For these reasons, I’m not going to focus further
on this particular API method. Suffice it to say that, if you need to reliably determine if a value is an object
literal, you may find that reframing your problem is a better route to pursue.

CHAPTER 12 ■ COMMON JAVASCRIPT UTILITY FUNCTIONS

189

 jQuery’s isEmptyObject() is another interesting method, with more practical use cases. It’s not
uncommon to find yourself in a situation where you are passed an object and need to determine whether
the object includes any properties at all. Perhaps an “empty” object indicates that no data is available when
querying an API. jQuery’s isEmptyObject() method fulfills this need:

 1 // true
 2 $.isEmptyObject({});
 3
 4 // false
 5 $.isEmptyObject({name: 'Ray'});

 And there is a simple (though not as elegant) solution to make the same determination without jQuery,
for all browsers. Peering at jQuery’s implementation of isPlainObject() , we can extract this logic and create
a tiny reusable function for our own project, without pulling in an entire library:

 1 function isEmptyObject(value) {
 2 for (property in value) {
 3 return false;
 4 }
 5 return true;
 6 }
 7
 8 // true
 9 isEmptyObject({});
 10
 11 // false
 12 isEmptyObject({name: 'Ray'});

 Functions
 Functions are, with one specific exception, really easy to identify with or without jQuery. jQuery provides
two API methods that will allow you to determine whether a JavaScript value is a function or not. One is
 $.type() , which I’ve demonstrated several times already in this section. Another is $.isFunction() , which
simply delegates to $.type() , effectively making it an alias:

 1 // all true
 2 $.isFunction(function () {});
 3 $.type(function () {}) === 'function';
 4 $.isFunction(Object.prototype.toString);
 5 $.isFunction(document.body.getAttribute);
 6
 7 // all false
 8 $.isFunction({});
 9 $.type({}) === 'function';
 10 $.isFunction(3);

 The standard typeof operator in JavaScript produces the exact same results:

 1 // all true
 2 typeof function () {} === 'function';
 3 typeof Object.prototype.toString === 'function';

CHAPTER 12 ■ COMMON JAVASCRIPT UTILITY FUNCTIONS

190

 4 typeof document.body.getAttribute === 'function';
 5
 6 // all false
 7 typeof {} === 'function';
 8 typeof 3 === 'function';

 Even JavaScript classes are identified as “functions” by both jQuery and the typeof operator. This is not
entirely surprising since there is no “class” type in JavaScript. ECMAScript 2015 classes are nothing more
than “syntactic sugar”—an easier way to create an object that inherits from another object.

 jQuery really doesn’t perform any magic to determine if a value is a function. This is true to the extent
that an unexpected result is produced when attempting to identify web API functions in ancient browsers
both with and without jQuery. Earlier versions of Internet Explorer (version 8 and older) misreported
standard web API functions, such as those defined on the Element and Window interfaces, as objects. For
example, in Internet Explorer 8, $.isFunction(document.body.getAttribute) is false , as is typeof
document.body.getAttribute === 'function' . Clearly this is a function, but IE appears to consider it
an “object”. This is not completely incorrect—after all, functions are objects. They inherit from
Object.prototype . They are sometimes even called “function objects.”

 Making JavaScript Objects Bend to Your Will
 As you learned in the last section, all non-primitive values in JavaScript inherit from Object . This makes
 Object the most important type of value to understand when working with complex data. And once you
are able to identify a value as an Object —something you learned in the previous section—it’s helpful to
understand how to copy, parse, and create objects without the help of any third-party code. Here, I show
you how jQuery allows you to perform various important and useful operations on objects and how you can
achieve the exact same results just by using the standard methods provided by JavaScript. In most cases,
these “native” solutions will be equally or similarly elegant when compared with jQuery’s API. But of course,
some operations will admittedly show the elegance of jQuery. Still, even covering the native solutions that
seem less ideal compared to a library-based solution has great value. All code in this section will allow you
to gain more insight into JavaScript, and this will in turn give you more confidence and make you a stronger
and more capable developer. After all, this is the primary goal of Beyond jQuery .

 Iterating over Keys and Values
 Let’s start out with an object that contains a number of properties:

 1 var user = {
 2 name: 'Ray Nicholus',
 3 address: '1313 Mockingbird Lane',
 4 city: 'Mockingbird Heights',
 5 state: 'California'
 6 };

 . . . and we have an HTML form that needs to receive these values:

 1 < form >
 2 < input name='name'>
 3 < input name='address'>
 4 < input name='city'>
 5 < input name='state'>
 6 </ form >

CHAPTER 12 ■ COMMON JAVASCRIPT UTILITY FUNCTIONS

191

 As you can see, each form field has a matching property in our initial object. This particular object
might be supplied by an AJAX call, and we must simply take the resulting object data and fill in the form
with the matching values. Assume you know nothing about the form or object ahead of time, other than the
object will have properties that match name attributes on form fields, and these form fields may be updated
using their value property. This requires that we do the following:

• Loop over the properties in the object

• Set the value for the matching <input> to equal the object property’s value

 You already learned how to work with HTML elements in previous chapters. Here, I show you how to
loop over the properties of an object so you can easily solve this problem without jQuery. But first, let’s look
at the solution with jQuery:

 1 $.each(user, function (property, value) {
 2 $('form [name="' + property + '"]').val(value);
 3 });

 We can solve this problem very easily without jQuery for modern browsers and IE8:

 1 for (var property in user) {
 2 var value = user[property];
 3 document.querySelector('FORM [name="' + property + '"]').value = value;
 4 }

 We’re using a standard for...in loop, something that has always been part of the language. The only
reason our code is “limited” to Internet Explorer 8 and newer is due to the use of querySelector , but this
seems like a reasonable accommodation. Note that, in this case, we can be sure that our object only contains
properties defined on that object, and not any properties defined on an inherited object. But if that is a
concern, and you only want to retrieve properties that belong exclusively to this user object, you will need to
make use of an additional check , and your code will look like this:

 1 for (var property in user) {
 2 if (user.hasOwnProperty(property)) {
 3 var value = user[property];
 4 document.querySelector('FORM [name="' + property + '"]').value = value;
 5 }
 6 }

 The hasOwnProperty() method, present on every Object , tells us if a given property belongs exclusively
to the source object. It has been part of the language since the 3rd edition of the ECMAScript specification,
so it’s quite safe to use in all browsers. Again, this is not something we need to use in our case, but you might
find it useful in alternate circumstances.

 You might be asking yourself, “Why didn’t I have to use hasOwnProperty() in the jQuery example
earlier?” And the answer is: you do! jQuery’s each() API method does not call hasOwnProperty() when
iterating through the properties of an object. It was determined that call is simply too expensive 18 to
use in the library in all cases, and the work required to add this “enhancement” to the existing method
implementation was too substantial. It’s unfortunate that the documentation page for $.each() does not
alert users to the fact that they may have to use hasOwnProperty() themselves.

 18 https://bugs.jquery.com/ticket/5499

https://bugs.jquery.com/ticket/5499

CHAPTER 12 ■ COMMON JAVASCRIPT UTILITY FUNCTIONS

192

 JavaScript provides another standard way to iterate over object properties, with an added benefit: no
need for hasOwnProperty() (ever):

 1 Object.keys(user).forEach(function (property) {
 2 var value = user[property];
 3 document.querySelector('FORM [name="' + property + '"]').value = value;
 4 });

 The preceding code uses Object.keys() , a method that turns all properties in an object into an array.
This method was added to Object in ECMAScript 5.1, 19 and is available in all modern browsers. We are then
utilizing the forEach() method available on all Array objects. More on this property in the next section, but
it too is supported in all modern browsers. True, this is still one more line than the jQuery solution (I told
you, stop worrying about lines of code!), but it eliminates the need to ever invoke hasOwnProperty() , which
does potentially end up saving some code (if you still care about that sort of thing).

 Copying and Merging Objects
 Extending the preceding example a bit, suppose we have two mostly different sets of information about the
same user, and we need to combine one of them into the other to form a single object that contains all user
data. Our two objects look like this:

 1 var userLocation = {
 2 name: 'Ray Nicholus',
 3 address: '1313 Mockingbird Lane',
 4 city: 'Mockingbird Heights',
 5 state: 'California'
 6 };
 7
 8 var userPersonal = {
 9 name: 'Ray Nicholus',
 10 sex: 'male',
 11 age: 35
 12 };

 What we want is one object— user —that contains all properties from the userLocation and
 userPersonal objects. The combined object will need to look like this:

 1 var user = {
 2 name: 'Ray Nicholus',
 3 address: '1313 Mockingbird Lane',
 4 city: 'Mockingbird Heights',
 5 state: 'California',
 6 sex: 'male',
 7 age: 35
 8 };

 jQuery provides a single API method to handle this quite effectively - $.extend() :

 1 var user = $.extend(userLocation, userPersonal);

 19 www.ecma-international.org/ecma-262/5.1/#sec-15.2.3.14

http://www.ecma-international.org/ecma-262/5.1/#sec-15.2.3.14

CHAPTER 12 ■ COMMON JAVASCRIPT UTILITY FUNCTIONS

193

 So now we have a single user object with properties from both initial user objects. The ability to merge
two objects is possible without jQuery as well (unsurprisingly—why else would I have started to describe
object merging otherwise?) While there is a very elegant method, similar to jQuery’s extend() (which I will
demonstrate very soon), wide browser support (at the current time) is only possible with a more long-
winded solution. In effect, we must write our own poor man’s extend() method to support all browsers:

 1 function extend(first, second) {
 2 for (var secondProp in second) {
 3 var secondVal = second[secondProp];
 4 first[secondProp] = secondVal;
 5 }
 6 return first;
 7 }
 8
 9 var user = extend(userLocation, userPersonal);

 Another, much simpler approach requires Object.assign() , which was first added to the language in
ECMAScript 2015: 20

 1 var user = Object.assign(userLocation, userPersonal);

 Object.assign() is great, but no version of Internet Explorer supports it. Until Internet Explorer 11 is
completely eclipsed by Microsoft Edge, you’ll need to rely on a polyfill to provide access to this language
feature in all browsers. Not to worry, though, there are several very small polyfills that will suffice.

 One valid concern with all of the preceding code examples (jQuery and non-jQuery) is that the
first object, userLocation , is modified with the properties from userPersonal . The returned value for
 $.extend() , our custom extend() method, and Object.assign() is the first object passed to each function.
So how can we create a new object that contains the two merged user objects without modifying either
object? Simple: we need to create a copy of the first object and then merge the second object into that copy.

 With jQuery’s extend method, we can simply declare the first parameter (the “target” object) to be an
empty object. Since $.extend() takes a variable number of parameters, we can specify the two initial user
objects as the subsequent parameters:

 1 var user = $.extend({}, userLocation, userPersonal);

 The custom extend function we wrote earlier can be used to produce the exact same result. Remember,
we need to create a copy of the first user object and then merge the second object into this copy:

 1 var user = extend(extend({}, userLocation), userPersonal);

 The nested extend() call results in a copy of userLocation as the first parameter to the outer extend ,
which is exactly what we need to do to create a brand new object based on the two original user objects.

 The newest addition to JavaScript, Object.assign() , tackles this problem with the same elegance and
simplicity as jQuery’s extend :

 1 var user = Object.assign({}, userLocation, userPersonal);

 20 www.ecma-international.org/ecma-262/6.0/#sec-object.assign

http://www.ecma-international.org/ecma-262/6.0/#sec-object.assign

CHAPTER 12 ■ COMMON JAVASCRIPT UTILITY FUNCTIONS

194

 Solving Problems with Arrays
 Similar to the previous section on objects, you’ll learn how to copy, parse, and create arrays in this section.
Remember that arrays are objects. That is, they inherit all methods/properties defined on Object.
prototype . 21 But the Array object defines some unique methods of its own, such as forEach() , map() ,
 concat() , indexOf() , find() , and many, many more. I’ll introduce you to a number of these methods and
demonstrate how you can duplicate the results from some popular array-specific jQuery API methods.

 Iterating over Array Items
 Without having any scientific data to back up this assertion (or the motivation to search for such statistics),
I would say that, from my own experience as a developer, iterating over items in an array is one of the most
common and basic patterns present in software projects. As expected, jQuery has a single method that
iterates over arrays (and objects too)— $.each() :

 1 var languages = ['C', 'JavaScript', 'Go'];
 2
 3 $.each(languages, function (index, language) {
 4 // ...
 5 });

 That loop will execute three times, once for each array element. index will be, for each iteration: 0 , 1 ,
and 2 (respectively). Similarly, the language value will be "C" , "JavaScript" , and "Go" . You’re likely familiar
with jQuery, so none of this is particularly surprising. And perhaps you already know how to iterate over
array elements without jQuery too. But maybe you aren’t familiar with the most modern method of array
iteration, and you may not know about one particular type of looping mechanism that you should not use
when dealing with arrays. I address all of this next.

 Many developers will likely make use of a traditional for loop when attempting to iterate over anything .
Especially if you have working experience in C/C++ or a C-influenced language, such as Java, PHP, or Perl
(to name a few). The code required to iterate over our languages array using a C-loop would look something
like this (for all browsers):

 1 var languages = ['C', 'JavaScript', 'Go'];
 2
 3 for (var index = 0; index < languages.length; index++) {
 4 var language = languages[index];
 5 // ...
 6 }

 Another advantage of the preceding loop (in addition to familiarity) is browser support. C-loops have
always been supported in JavaScript. But clearly this approach is not as elegant as jQuery’s each() method.
There’s some seemingly unnecessary boilerplate in our “native” solution. Luckily, ECMAScript 5 defines a new
method on Array.prototype : forEach() . 22 It behaves exactly like jQuery’s each() , with a more appealing API:

 1 var languages = ['C', 'JavaScript', 'Go'];
 2
 3 languages.forEach(function (language) {
 4 // ...
 5 });

 21 www.ecma-international.org/ecma-262/6.0/#sec-properties-of-the-object-prototype-object
 22 www.ecma-international.org/ecma-262/5.1/#sec-15.4.4.18

http://www.ecma-international.org/ecma-262/6.0/#sec-properties-of-the-object-prototype-object
http://www.ecma-international.org/ecma-262/5.1/#sec-15.4.4.18

CHAPTER 12 ■ COMMON JAVASCRIPT UTILITY FUNCTIONS

195

 Can you spot the two improvements that forEach() offers over $.each() ?

 1. More intuitive syntax. Instead of passing the array into a utility function, you can
call the loop method directly on the array.

 2. The “current item” argument is the first argument passed to the callback
function. This is usually what you are most interested in anyway. Sometimes, the
array index is unimportant.

 Both of these improvements also eliminate redundant code and make the loop more readable. But
perhaps you are wondering, “Why not just use a for . . . in loop?” Certainly, that was a reasonably elegant
solution in the previous section when dealing with objects. But there is a hidden danger when using a for . . .
in loop when attempting to iterative over Array elements. The order of the elements traversed by a for . . . in
loop is not guaranteed. In other words, it is conceivable that your for . . . in loop may encounter the second
item before the first, for example. This may lead to unexpected results in your code if order is important, and
this is a reasonable assumption since arrays are used to store data in a specific order. Another issue: for . . . in
loops will include all properties that belong to the target object (in this case, an array object). So, if a custom
property is added to the Array instance, this will be unexpectedly included among the index values. In short,
don’t use a for . . . in loop to iterate over arrays. There are many other safer choices.

 An even more modern native looping mechanism, which works for modern browsers except for IE, is
the for . . . of loop, first defined in ECMAScript 6: 23

 1 var languages = ['C', 'JavaScript', 'Go'];
 2
 3 for (var language of languages) {
 4 // ...
 5 }

 In this case, each element in the languages array will be encountered in the expected order. This is due
to the fact that for . . . of loops call a special iterator method that exists on Array.prototype . This iterator
method was also first defined in ES6, 24 and is present on other iterable types, including Set , Map , and even
 NodeList (returned by querySelectorAll()).

 Locating Specific Items
 Being able to loop through the items in an array opens up the door to other possibilities, such as filtering and
searching. All the methods discussed in this chapter—both jQuery and non-jQuery—are simply wrappers
around a traditional loop. But these more focused functions make searching and filtering arrays more intuitive.

 As luck would have it, jQuery has dedicated two of its own API methods to searching and filtering. First,
let’s talk about $.inArray() , which is a method that returns the index of a matching element (or –1 if no
match can be located). Consider the following array:

 1 var names = [
 2 'Joe',
 3 'Jane',
 4 'Jen',
 5 'Jim',
 6 'Bill',
 7 'Beth'
 8];

 23 www.ecma-international.org/ecma-262/6.0/#sec-for-in-and-for-of-statements
 24 www.ecma-international.org/ecma-262/6.0/#sec-symbol.iterator

http://www.ecma-international.org/ecma-262/6.0/#sec-for-in-and-for-of-statements
http://www.ecma-international.org/ecma-262/6.0/#sec-symbol.iterator

CHAPTER 12 ■ COMMON JAVASCRIPT UTILITY FUNCTIONS

196

 If we wanted to locate the position of ‘Jen’, we could do so quite easily using jQuery’s inArray() method:

 1 // returns 2
 2 $.inArray('Jen', names);

 Without jQuery, there is no elegant way to search an array in ancient browsers without writing your own
helper function, for example:

 1 function inArray(value, array) {
 2 var foundIndex = -1;
 3 for (var index = 0; index < array.length; index++) {
 4 if (array[index] === value) {
 5 foundIndex = index;
 6 break;
 7 }
 8 }
 9 return foundIndex;
 10 }
 11
 12 // returns 2
 13 inArray('Jen', names);

 Luckily, modern browsers have it a bit easier with ES5’s indexOf() method on Array.prototype : 25

 1 // returns 2
 2 names.indexOf('Jen');

 Just like Array.prototype.forEach() , indexOf() provides an even more elegant interface over
jQuery’s $.inArray() and solves the exact same problem. But modern browser support for arrays goes
much further than indexOf() . Suppose you aren’t looking for a specific value, but you need to gather some
information about your array. Say you want to know if at least one value in the names array starts with the
letter “B”. Array.prototype.some() allows you to pass a function to test elements of the array. As soon as the
condition is met, the method returns true . Otherwise, false is returned once all array items are exhausted:

 1 // returns true
 2 names.some(function (name) {
 3 return name[0] === 'B';
 4 });

 Notice how we’re able to treat the string literal as an array. ECMAScript 5 first standardized this
behavior, which is available on all modern browsers. But a string is not a real array, it’s a “pseudo-array.”
More on that later. Similarly, Array.prototype.every() will return true if each and every array item
matches the passed test function. This is also an ECMAScript 5 method, supported in all modern browsers.

 ECMAScript 2015 provides Array.prototype.findIndex() 26 and Array.prototype.find() 27 . The
former will return the index of the array item that matches the passed test function, and the latter will return
the actual matching array item, for modern desktop browsers except IE and some mobile browsers:

 1 // returns 4
 2 names.findIndex(function (name) {

 25 www.ecma-international.org/ecma-262/5.1/#sec-15.4.4.14
 26 www.ecma-international.org/ecma-262/6.0/#sec-array.prototype.findIndex
 27 www.ecma-international.org/ecma-262/6.0/#sec-array.prototype.find

http://www.ecma-international.org/ecma-262/5.1/#sec-15.4.4.14
http://www.ecma-international.org/ecma-262/6.0/#sec-array.prototype.findIndex
http://www.ecma-international.org/ecma-262/6.0/#sec-array.prototype.find

CHAPTER 12 ■ COMMON JAVASCRIPT UTILITY FUNCTIONS

197

 3 return name[0] === 'B';
 4 });
 5
 6 // returns "Bill"
 7 names.find(function (name) {
 8 return name[0] === 'B';
 9 });

 find() and findIndex() have somewhat limited browser support as of mid-2016. In an already crowded
group of array methods, ECMAScript 2016 provides yet another way to determine if a specific element exists
in an array. We can use Array.prototype.includes() 28 to even more elegantly determine if one or more
array items are “Bill”, for modern desktop browsers except IE and Edge, and all mobile browsers except IE:

 1 // returns true
 2 names.includes("Bill");

 Many of these new methods are arguably unnecessary and only really save a line or two of code, but
their presence illustrates the rapid growth of the language in response to libraries like jQuery.

 The other array-specific API method provided by jQuery is $.grep() , which searches an array and
returns all items that match a test function. Using our names array, you can use $.grep() to locate all items
that are exactly three characters long:

 1 // returns ["Joe", "Jen", "Jim"]
 2 $.grep(names, function (name) {
 3 return name.length === 3;
 4 });

 ECMAScript 5 provides a Array.prototype.filter() to solve the same exact problem in modern
browsers:

 1 // returns ["Joe", "Jen", "Jim"]
 2 names.filter(function (name) {
 3 return name.length === 3;
 4 });

 Although many of these utility functions have been present in jQuery since version 1.0, JavaScript has
come a long way since then. Not only does the language provide native implementations for these jQuery
functions, it even provides additional methods that offer more functionality than anything present in
jQuery’s API.

 Managing Pseudo-arrays
 In JavaScript, there are real arrays:

 1 var realArray = ['a', 'b', 'c'];

 28 https://tc39.github.io/ecma262/#sec-array.prototype.includes

https://tc39.github.io/ecma262/#sec-array.prototype.includes

CHAPTER 12 ■ COMMON JAVASCRIPT UTILITY FUNCTIONS

198

 . . . and “pseudo-arrays”:

 1 var pseudoArray = {
 2 0: 'a',
 3 1: 'b',
 4 2: 'c',
 5 length: 3
 6 };

 There are some native pseudo-arrays as well, such as NodeList , 29 HTMLCollection , 30 and FileList , 31 to
name a few. Pseudo-arrays are not real arrays since they are not on the same prototype chain as Array . That
is, they inherit nothing from Array.prototype because they are not arrays. In fact, they are just plain old
objects. But, due to their length property, you can treat them as an array, in some respects. For example, you
may iterate over their “elements” using a C-loop, just as you would any real array.

 When dealing with a pseudo-array in an ancient browser, the fact that it doesn’t inherit from
Array.prototype probably doesn’t matter much, since you’ll need to iterate over the items using a
traditional for loop anyway. But, suppose you are using a modern browser, and you want to make this
object that looks very much like an array act like an array. Perhaps you want to use forEach() , or map() , or
 filter() , or any of the other array methods I’ve already covered in this section. Or maybe you need to pass
it to an API method that expects a real array.

 You can convert a pseudo-array to a real array in jQuery using $.makeArray();

 1 var realArray = $.makeArray(pseudoArray);
 2
 3 // now you can call all methods available on Array.prototype:
 4 realArray.forEach(function (element, index) {
 5 // ...
 6 });

 If you’d like to transform a pseudo-array to a real array without jQuery for modern browsers, you can
use this trick:

 1 var realArray = [].slice.call(pseudoArray);
 2
 3 // now you can call all methods available on Array.prototype:
 4 realArray.forEach(function (element, index) {
 5 // ...
 6 });

 A real-world-scenario might require you to select a bunch of elements and iterate over them, or even
gather those that meet specific criteria. Imagine selecting all text inputs and excluding those that are empty:

 1 var textInputs = document.querySelectorAll('INPUT[type="text"]');
 2 var textInputsArray = [].slice.call(textInputs);
 3 var nonEmptyFields = textInputsArray.filter(
 4 function (input) {
 5 return input.value.length > 0;
 6 }
 7);

 29 https://developer.mozilla.org/en-US/docs/Web/API/NodeList
 30 https://developer.mozilla.org/en-US/docs/Web/API/HTMLCollection
 31 https://developer.mozilla.org/en-US/docs/Web/API/FileList

https://developer.mozilla.org/en-US/docs/Web/API/NodeList
https://developer.mozilla.org/en-US/docs/Web/API/HTMLCollection
https://developer.mozilla.org/en-US/docs/Web/API/FileList

CHAPTER 12 ■ COMMON JAVASCRIPT UTILITY FUNCTIONS

199

 Why does this work? The slice() method on Array.prototype only expects the object it is operating
on to have numeric properties along with a length property. So, by changing the context of the call to
 slice() to the pseudo-array, we end up getting a real array in exchange. This also works since Array.
prototype.slice() , when called with no parameters, simply returns a new Array .

 The preceding “trick” seems like more of a hack, even though it reliably works cross-browser. Starting
with ECMAScript 2015, we have an official method on the Array object that will convert a pseudo-array into
a real array: Array.from() :

 1 var realArray = Array.from(pseudoArray);
 2
 3 // now you can call all methods available on Array.prototype:
 4 realArray.forEach(function (element, index) {
 5 // ...
 6 });

 Less hacky, but unfortunately this method is not supported in Internet Explorer or most mobile
browsers. This will become less of an issue over time. In the meantime, the cross-browser code
demonstrated earlier is effective and simple if you want to work with pseudo-arrays without using jQuery.

 Mapping and Merging
 Here, look at this array of names:

 1 var names = [
 2 'ray',
 3 'kat',
 4 'mark',
 5 'emily'
 6];

 Do you notice anything wrong with these names? Names are proper nouns in English, and, as such,
should begin with a capital letter, but all of the names in our array start with a lowercase letter. Perhaps these
names are not meant for display. One way to fix this involves creating a new array with the proper case for
each name. jQuery’s map() function allows us to do just that—create a new array based on an existing one:

 1 // properNames will contain properly-cased names after execution
 2 var properNames = $.map(names, function (name) {
 3 return name[0].toUpperCase() + name.slice(1);
 4 });

 In ancient browsers, we must create a new empty array, use a C-loop to iterate over the values of the
names array, and push each properly cased name onto the new properNames array. This isn’t difficult, but
it would be nice if a more elegant solution were available (without using jQuery). ECMAScript 5 gave us a
native solution: Array.prototype.map() : 32

 1 // properNames will contain properly-cased names after execution
 2 var properNames = names.map(function (name) {
 3 return name[0].toUpperCase() + name.slice(1);
 4 });

 32 www.ecma-international.org/ecma-262/5.1/#sec-15.4.4.19

http://www.ecma-international.org/ecma-262/5.1/#sec-15.4.4.19

CHAPTER 12 ■ COMMON JAVASCRIPT UTILITY FUNCTIONS

200

 Mapping one array to a new array is obviously useful, but what if we want to combine two arrays? As
usual, jQuery offers one method for this specific purpose: the aptly named merge() . Let’s use jQuery’s merge()
method to combine two arrays of users. Each of these arrays represents a set of users from a different system,
and we want to account for each set in a single array.

 The two arrays look something like this:

 1 var users1 = [
 2 {name: 'Ray'},
 3 {name: 'Kat'},
 4 {name: 'Mark'}
 5];
 6
 7 var users2 = [
 8 {name: 'Emily'},
 9 {name: 'Joe'},
 10 {name: 'Huang'}
 11];

 And our jQuery code is as follows:

 1 // users1 will contain all users1 user and
 2 // all users2 users after this completes
 3 $.merge(users1, users2);

 Now we have a single array with both sets of users, but we’ve also modified one of the original arrays
(users1). We might not want to do this. Instead, it is probably wiser to create a new array that merges the
contents of users1 and users2 . Although $.merge() wasn’t built with this specific scenario in mind, it is still
possible, though the solution isn’t particularly elegant:

 1 // users3 will contain all users1 user and
 2 // all users2 users after this completes
 3 var users3 = $.merge($.merge([], users1), users2);

 You can alternatively merge two arrays into a new array by using the native Array.prototype.concat()
method:

 1 // users3 will contain all users1 user and
 2 // all users2 users after this completes
 3 var users3 = users1.concat(users2);

 Not only is that far easier than using jQuery, it’s also supported in all browsers. But let’s say, for the sake
of argument, you really do want to merge all items from users2 into users1 . In this specific (and probably
uncommon) scenario, jQuery’s merge() method wins in terms of simplicity, but you can still accomplish this
without too much trouble using nothing but the tools provided by the TC39 group: 33

 1 // users1 will contain all users1 user and
 2 // all users2 users after this completes
 3 users2.forEach(function (user) {
 4 users1.push(user);
 5 });

 33 www.ecma-international.org/memento/TC39.htm

http://www.ecma-international.org/memento/TC39.htm

CHAPTER 12 ■ COMMON JAVASCRIPT UTILITY FUNCTIONS

201

 We can make the preceding code work in ancient browsers too by using a standard C-loop instead of
 Array.prototype.forEach() .

 But there’s another option! ECMAScript 2015 defines a new “spread” operator 34 that can be used to
(among other things) combine two arrays, for browsers except IE:

 1 // users3 will contain all users1 user and
 2 // all users2 users after this completes
 3 var users3 = [...users1, ...users2];

 The preceding is functionally equivalent to our earlier use of Array.prototype.concat() . The users3
array contains the values of both of the other users arrays, and no changes are made to users1 or users2 .

 Useful Function Tricks
 There are a number of interesting ways to make JavaScript arrays and objects solve problems for you and
meet the requirements of your project. We’ve already walked through many such examples in the preceding
sections. I’ve covered generic Object s, and Array objects, but I have yet to cover one more important Object
type: function s! That’s right, JavaScript functions are objects too.

 In this final section, you will learn how to create new functions, change the context of existing functions,
and even create a new function that calls an old function with a set of default arguments. jQuery provides
 some support for all of this, but, as usual, all of the power required to work with functions effectively exists in
the underlying language (JavaScript).

 A Word about JavaScript Context
 There are many important concepts that JavaScript and front-end developers must understand in order to
be effective. Although my intent is not to cover all of these concepts in this book, I’ve already demonstrated
quite a few. In this section, I focus on yet another important language feature: context.

 In JavaScript, context dictates the value of the this keyword at any given time during execution of code.
That’s a pretty simple explanation for an often confused and misunderstood concept. One common error
involves conflating scope and context, or ignorance of the differences between scope and context. Suffice
it to say, scope and context are two completely different concepts. Whereas context deals with this , scope
describes which variables are accessible at a particular point. Up until ECMAScript 2015, JavaScript only
supported function scope. Now, with the introduction of the const and let keywords, block scope is finally
available as well.

 I think the best way to explain context is through code examples. Next, I’ll illustrate three separate
and common scenarios where the value of this differs. This is not meant to be a complete and exhaustive
discussion of context, but a bit of information to remove some of the complexity from the subject and allow
you to gain a better overall understanding.

 In this first example, the value of this , inside the function, will be the “global” object. In the browser,
this global object is window , and on the server (with Node.js) the value is the global object.

 1 function printThis() {
 2 console.log(this);
 3 }
 4
 5 printThis();

 34 www.ecma-international.org/ecma-262/6.0/#sec-array-initializer

http://www.ecma-international.org/ecma-262/6.0/#sec-array-initializer

CHAPTER 12 ■ COMMON JAVASCRIPT UTILITY FUNCTIONS

202

 That code will log the window or global object to the console. But there’s a bit of a catch. If this code is
executed in “strict” mode, the value of this will be undefined . To execute the same code in strict mode, all
we need to do is add the “use strict” pragma to the top of our printThis() function:

 1 function printThis() {
 2 'use strict';
 3 console.log(this);
 4 }
 5
 6 printThis();

 And now, undefined is logged to the console. Strict mode was first introduced in ECMAScript 5. 35 While
I don’t intend to talk much more about this in this book, suffice it to say that strict mode attempts to guard
against some potentially dangerous coding errors, such as relying on the value of this inside of a standalone
function or attempting to override an arguments pseudo-array. Browser support for strict mode is limited to
modern browsers, with the exception of Internet Explorer 9.

 A second example of context in JavaScript involves executing a function that is a property of an object.
What do you think will be printed to the console in the following code fragment?

 1 var person = {
 2 name: 'Ray',
 3 printName: function () {
 4 console.log(this .name);
 5 }
 6 }
 7
 8 person.printName();

 If you guessed “Ray” you’re correct. When a function belongs to an object, the context of that function is
bound to the parent object. Strict mode does not change the context in this scenario. In some respects, this is
no different than the previous example. Since all “orphan” functions belong to the global or window object, it
stands to reason that the context of these functions would be bound to the window / global object, at least for
the sake of consistency.

 A third and final example of context relates to constructor functions. A constructor function represents
an object that can be created using the new keyword. Consider the following constructor function and some
code that constructs a new instance of the associated object. Perhaps you can guess what will be printed to
the console:

 1 var Person = function (name) {
 2 console.log(name + ' lives in the ' + this .country);
 3 };
 4 Person.prototype.country = 'United States';
 5
 6 var rayPerson = new Person('Ray');

 Spoiler alert: executing the preceding code will print “Ray lives in the United States” to the console. But
why? Person is an “orphan” function, isn’t it? Well, yes, it is, and if we removed the new keyword from the
last line, our code fragment would end with var rayPerson = Person('Ray') and this.country would

 35 www.ecma-international.org/ecma-262/5.1/#sec-10.1.1

http://www.ecma-international.org/ecma-262/5.1/#sec-10.1.1

CHAPTER 12 ■ COMMON JAVASCRIPT UTILITY FUNCTIONS

203

be undefined (unless of course some other code added a country property to the window / global object
beforehand). When a function is “constructed,” the context of that function is bound to the corresponding
object. In this case, that is the Person object, which has a country property on its prototype chain.

 One other question you may have regarding this constructor function: why is the first letter in the
constructor function name capitalized? This is completely unrelated to scope, but still a fair question. By
convention, constructor function names are capitalized. When this convention is followed consistently,
it becomes easier for developers to distinguish between objects that should be constructed using the new
keyword and those that should not be constructed. If an object that is meant to be created using new is not
created this way, unexpected behavior will likely occur.

 Creating a New Function from an Old One
 Knowing the particulars of how context is assigned to a function is useful, but these are not hard-and-fast
rules. No, not at all. Context can be arbitrarily specified for any function. First, you can create a new function
from an existing function and initialize that new function using an alternate context. jQuery provides
 $.proxy() for this specific purpose:

 1 var person = {
 2 name: 'Ray',
 3 handleClick: function () {
 4 console.log(this .name + ' was clicked');
 5 }
 6 }
 7
 8 $('#my-person').click(
 9 $.proxy(person.handleClick, person)
 10);

 When the element (presumably a <button>) with an ID of “my-person” is clicked, “Ray was clicked” will
be printed to the console. If we remove the $.proxy() call, the result will be “undefined was clicked” instead.
But why? Shouldn’t the handleClick() function, which belongs to the person object, receive person as its
context by default? Yes, by default it will, but handleClick() is no ordinary function—it’s an event handler.
And the browser auto-magically sets the context for all event handlers to the target element. In this case, that
would be the “clicked” element, and this is not what we want. So, we need to create a new function that uses
the person object as its context so we can log the name of the person when handling the click event. jQuery’s
 proxy() API method provides a way to accomplish this, as you saw earlier.

 jQuery’s proxy() method was amazingly useful and elegant before ECMAScript 5 came along and
created the Function.prototype.bind() method. 36 Before support for bind() , a mind-bending polyfill was
required to achieve the same behavior, or you could simply pull in jQuery and move on to coding up your
project. Luckily, all modern browsers support bind() , and the preceding example can be duplicated without
jQuery, and without the indirection of a wrapper, for modern browsers:

 1 var person = {
 2 name: 'Ray',
 3 handleClick: function () {
 4 console.log(this .name + ' was clicked');
 5 }
 6 };

 36 www.ecma-international.org/ecma-262/5.1/#sec-15.3.4.5

http://www.ecma-international.org/ecma-262/5.1/#sec-15.3.4.5

CHAPTER 12 ■ COMMON JAVASCRIPT UTILITY FUNCTIONS

204

 7
 8 document.getElementById('my-person').addEventListener(
 9 'click',
 10 person.handleClick.bind(person)
 11);

 Fantastic—we can change the context of our event handlers to match the object holding these
functions, mirroring our expectations for functions properties bound to objects. But what if we need to do
more? What if we need to supply specific arguments to this event handler when the handler function is
bound? Suppose the handle also needs to know some specifics about its environment outside of the object
it is bound to. In our case, the person.handleClick() function also needs to have a handle on the current
logged-in user. With jQuery’s proxy() function, we can fulfill this new requirement simply by passing the
user information as an additional parameter, after the context argument:

 1 var person = {
 2 name: 'Ray',
 3 handleClick: function (user) {
 4 console.log(this .name + ' was clicked by ' + user);
 5 }
 6 };
 7
 8 $('#my-person').click(
 9 $.proxy(person.handleClick, person, 'Kat')
 10);

 We can do this using Function.prototype.bind() too!

 1 var person = {
 2 name: 'Ray',
 3 handleClick: function (user) {
 4 console.log(this .name + ' was clicked by ' + user);
 5 }
 6 };
 7
 8 document.getElementById('my-person').addEventListener(
 9 'click',
 10 person.handleClick.bind(person, 'Kat')
 11);

 Again, just as with the $.proxy() example, the preceding code will print “Ray was clicked by Kat” to
the console. I suspect that some of you are wondering what happened to the Event object parameter that is
usually passed as the first argument to an event handler function. Well, it’s still there, and it is passed by the
browser to our event handler. Remember the new function we created with bind ? We insisted that our new
function receive an argument of “Kat.” This will always be the first argument received by our new function,
making the Event object second in line. Had we passed two new arguments as part of our call to bind() ,
 Event would have been the third argument instead. jQuery’s proxy() method works the same way.

CHAPTER 12 ■ COMMON JAVASCRIPT UTILITY FUNCTIONS

205

 Calling an Existing Function with a New Context
 There is an alternative to creating an entirely new function with an altered context and additional
arguments. Instead, you may prefer to invoke the original function on demand and specify a new context
(and optionally arguments) at the time of invocation. jQuery does not provide any methods to accomplish
this, which is likely due to the fact that this behavior has been supported natively by JavaScript since the
early days of the language.

 The first version of JavaScript included Function.prototype.call() , which allows an arbitrary
function to be called with an alternate context. Let’s rewrite the first vanilla JavaScript person event handler
that used bind with call instead:

 1 var person = {
 2 name: 'Ray',
 3 handleClick: function () {
 4 console.log(this .name + ' was clicked');
 5 }
 6 };
 7
 8 document.getElementById('my-person').addEventListener(
 9 'click',
 10 function () {
 11 person.handleClick.call(person);
 12 }
 13);

 Instead of creating a new function based off of the person.handleClick() function, we’re providing
a function to addEventListener() that, when executed by a click action, invokes person.handleClick()
function with a context of person . The result is the same as our previous bind example, but the approach is a
bit different. Before bind was introduced, using call in this manner was an alternative to using a polyfill or
pulling in jQuery to make use of $.proxy() .

 The call() method also provides a way to supply additional arguments to the target function, just like
 bind() . So, we can rewrite the second bind() example using call() as well:

 1 var person = {
 2 name: 'Ray',
 3 handleClick: function (user) {
 4 console.log(this .name + ' was clicked by ' + user);
 5 }
 6 };
 7
 8 document.getElementById('my-person').addEventListener(
 9 'click',
 10 function () {
 11 person.handleClick.call(person, 'Kat');
 12 }
 13);

CHAPTER 12 ■ COMMON JAVASCRIPT UTILITY FUNCTIONS

206

 The call() method, like bind() , accepts a new context as the first parameter, and a set of comma-separated
initial arguments to pass to the target function. This comma-separated list becomes the arguments
pseudo-array made available to the target function. In our example, the argument passed to the initial event
handler function is completely ignored (the Event object)—it is not passed on to the handleClick() function.
This is another way in which call() differs from bind() . In cases where a single known argument needs to
passed through to the target function, this is ideal. But if an intermediate function must act as a simple proxy
for a target function, the requirement to pass a comma-separated list of arguments becomes a limitation.

 Imagine a function that is designed to log function calls. It doesn’t want or need to know much about
the target function. Its job is simple: intercept the function call, log it, and then pass control to the target
function. To properly accomplish this feat, we must be able to pass the entire arguments pseudo-array on to
the target function. For this, we must use Function.protoype.apply() , which allows us to pass an array or
array-like object in addition to the context of the target function:

 1 var person = {
 2 name: 'Ray',
 3 handleClick: function (user) {
 4 console.log(this .name + ' was clicked by ' + user);
 5 }
 6 };
 7
 8 function logFunctionCall(targetFunction) {
 9 // We need to pass only the "original" arguments, which means
 10 // we have to slice off the first one passed to this function,
 11 // and remember `arguments` is a pseudo-array!
 12 var originalArguments = [].slice.call(arguments, 1);
 13
 14 console.log('Calling ' + targetFunction.toString() +
 15 ' with ' + originalArguments);
 16
 17 targetFunction.apply(this , originalArguments);
 18 }
 19
 20 document.getElementById('my-person').addEventListener(
 21 'click',
 22 logFunctionCall.bind(person, person.handleClick, 'Kat')
 23);

 In our original event handler, to keep things simple, we’re using bind() to call our intermediate logging
function. The context of the log() function will be the person object. This will make it easier for the log()
function to blindly invoke the target function with the desired context. And of course, we need to supply
the current user’s name to the handleClick() function, so that is passed to the log() function, along with a
“reference” to the handleClick() function.

 When the logFunctionCall() function is invoked as part of handling the click event, the target function
source and and target arguments are logged to the console, and then the target function is called with
whatever arguments were supplied to the original calling function. In this case, this will ensure the user
name “Kat” and the MouseEvent object instance representing the click event are all passed to the
 person.handleClick() function. And since logFunctionCall ’s context is already bound to the person
object, we can use this as the desired context when invoking the target function.

 This last example is a bit more complex than some of the previous, but it illustrates a non-trivial
and real-world use of the powerful API that is natively available to us as web developers. You can assert
full control over functions, arrays, objects, and primitives without the help of any libraries. A simple
understanding of the language is all that is required!

207© Ray Nicholus 2016
R. Nicholus, Beyond jQuery, DOI 10.1007/978-1-4842-2235-5_13

 CHAPTER 13

 Going Forward

 It’s been fun, but, sadly, Beyond jQuery has to end eventually. A lot of time and research has been put into
demonstrating to you that there are viable alternatives to jQuery present in the browser and in JavaScript
itself. In fact, even I stumbled upon some new knowledge while putting this book together. And even if
you do decide to rely on a familiar and convenient option, such as jQuery, you now have a much better
understanding of how this particular abstraction functions. This knowledge will not only prepare you for
your next project, it will also help you to troubleshoot performance or behavior issues you run into on
existing projects that are still tied to jQuery.

 As I pointed out in the opening chapters of the book, we are all software developers, and web
developers, and JavaScript developers, not jQuery, or Zepto, or AngularJS, or (insert your favorite library or
framework here) developers. Libraries come and go, but the web and the language that holds it all together
will live on for much longer.

 What shall we do with all this newfound knowledge? Well, I know what I’m going to do, but do you? For
some, it may be obvious what your next course of action is. For others, not so much. It might not be clear
what your options are, or how you should proceed with current and future projects. Should you change
anything at all? And what about any questions you might have that are not answered in this book? How do
you stay current with the constantly evolving landscape?

 This final chapter offers some suggestions and guidance for life after Beyond jQuery .

 Now What?
 If you learned even half as much about JavaScript and the web API reading this book as I did writing it, you
probably have a lot to think about. There are quite a few choices you could make, and a number of different
reactions you might have in response to the content and tone of this book. Realistically, I think there are
four common paths forward for readers. While some may pick one of these paths, others may find that this
section outlines four successive stages that follow completion of this book.

 Option/Stage 1: Ignore Everything
 Perhaps you are still defiant, even after reading the entire book (or maybe you just skimmed it). The
language and DOM API are ugly. jQuery is still the best choice. Well, we are all entitled to our own
opinions. And there is nothing wrong with using jQuery, as long as the choice isn’t made in ignorance of
the alternatives. Unless this is merely the first stage in a process that ends in enlightenment, it is unlikely
that much else will change your mind. I can only hope that you at least benefitted from this book in some
small way. Maybe you learned a new CSS selector, or gained a better understanding of promises. Regardless,
if Beyond jQuery provided you with some new knowledge and made you a stronger developer, then I’m
certainly happy.

CHAPTER 13 ■ GOING FORWARD

208

 Option/Stage 2: Rip jQuery Out of All Your Projects
 Some readers may have the urge to take an opposite approach to Option 1. Instead of a laissez-faire
attitude, you may decide to take on major refactors of all of your active (and inactive) projects. Your mantra
may be “Remove all of the jQuery, replace with vanilla JS .” I can certainly respect this point of view (I felt
this way myself at one point), but I would suggest you step back, take a deep breath, and think about the
consequences of this decision for a while first. Does your project have a comprehensive set of automated
tests? Do you have a fair amount of free time on your hands? Is there nothing else more important for you to
do instead? If the answer to one or more of these questions is no, then I would suggest you not rock the boat
and make a lot of unnecessary changes to an existing codebase—unless at least one of the following are true:

• The project is fairly small.

• You don’t really have any (or many) users, and this is more of an academic exercise
to get you started down the vanilla JS path.

• A major refactor is already underway for other reasons, or you have one planned.

• After profiling your project, your current use of jQuery is causing notable
performance issues.

 If any of those describes your situation, happy coding, and best of luck to you! Beyond jQuery will serve
as a useful reference during your quest.

 Option/Stage 3: Rock Back and Forth in a Corner, Crying
 “I can’t or shouldn’t use jQuery anymore?!” For many, jQuery has been a core component in every web
project throughout their entire career. The thought of giving up such a reliable and familiar helper can be
devastating to some. But fear not, you do not have to abandon jQuery, as I’ve already mentioned several
times throughout the book, unless you really want to. So if you’d prefer to ween yourself off and slowly move
over to closer-to-the-metal solutions, bit by bit, feel free to do that instead. jQuery (probably) isn’t going
anywhere. Let this phase be a short bump in the road as you move on the the final and most important step
in the post-reading process.

 Option/Stage 4: Decide to Be More Discerning Going Forward
 If you end up (or start) here, then I’ve accomplished one of the goals I set out to reach with this book. It is not
just a guide for those looking to move beyond a specific library—the intent is also for you to begin thinking
more critically about libraries, frameworks, and your browser-side dependencies in general. Personally,
I’ve found this way of thinking prevents me (though not necessarily those around me) from unnecessarily
complicating dependency trees in new projects. This state of mind helps me be more frugal, more careful,
and forces me to spend more time thinking, and less time coding. I’m not sure this is something that can be
taught, but perhaps, with enough inculcation, you can adopt this state of mind yourself.

 The Future of Web Development
 It is, of course, impossible to definitively predict the future of software development, especially since the
technology evolves and common workflows pivot so quickly and often. Still it’s fun to think about what our
world might look like at some distant point from now. As you ponder (and live though) the future of web
development, I think it’s important to keep a solid set of best practices in mind. And you cannot simply
follow a set of practices because someone tells you to do so. You must believe in them yourself.

CHAPTER 13 ■ GOING FORWARD

209

 Some will say that “best practices” evolve over time, and this is true to some extent. Although it is
important to have a set of established goals and guidelines when developing a complex project, there are
few hard-and-fast rules, and context is key when deciding what best practices are most appropriate. There
may be many reasons to abandon established best practices. Once you have decided to abide by a specific
set of guidelines, it’s important not to discard them simply out of convenience (or laziness). It will be easy
to cut corners “just this once,” especially with the dizzying array of options that you will face as the software
technology landscape progresses at the current breakneck pace. Here are some established “best practices”
that I like to follow, a few of which are mentioned in this book:

• Maintain a separation of concerns, not necessarily between HTML, CSS, and
JavaScript, but in terms of behavior and roles. Though I will admit this particular
best practice has a wide array of interpretations. For example, does React violate this
principle? Is vue.js a better choice since it maintains a clearer separation between
HTML, CSS, and JavaScript? Speaking strictly in the context of code, concerns don’t
 necessarily need to be divided in terms of files. Although I do believe that this particular
example illustrates that, this is perhaps a larger debate for another book.

• Develop small, focused components that do one thing, and do it well.

• Keep dependencies light and focused. Use external dependencies sparingly.
And be discerning.

• Explore the code base of any dependency before relying on it. Is it well designed?
Well maintained? Well tested? Do the developers of that dependency subscribe to
the same set of best practices?

• When using dependencies, favor shims and polyfills over libraries and frameworks.
That is not to say that all libraries and frameworks are bad and should be avoided,
but I tend to favor smaller and more focused ones.

• Write automated tests wherever and whenever feasible. This will make refactoring
less risky and painful. Some developers maintain that Test Driven Development
is the only way to write tests, but I disagree. TDD can be overwhelming, and is not
appropriate in all cases, based on my experience. What is important is that you write
reliable and comprehensive tests, not necessarily how you write them.

 Of course, there are others, but that represents a list of the most notable best practices that I follow,
and they have served me well. But why have I dedicated so much of a section titled “The Future of Web
Development” to a discussion of best practices? Simple: I feel it is important to have a set of guiding
principles to keep you on course as you navigate a constantly changing set of new technologies.

 As I’ve mentioned a number of times throughout this chapter (and book), web technology seems
to be changing and growing at an unbelievable pace. I myself find it difficult to stay on top of the latest
advancements. But often the advancements we focus on are limited to libraries and frameworks. These are
usually the most “interesting” aspects of our evolving industry. Just as web and JavaScript specifications
are the building blocks that allow jQuery to work its magic, the same is true of all of the newest flashy
libraries and framework. As standards evolve, libraries and frameworks are able to evolve in turn. The
future of the Web lies in the W3C, WHATWG, and ECMAScript specifications. Follow the newest libraries
and frameworks, but keep just as close an eye on standards. The additions to existing specs and the birth of
new ones will give you and others the ability to create more powerful, efficient, and performant solutions to
complex problems.

CHAPTER 13 ■ GOING FORWARD

210

 Further Reading and Reference
 Learning never stops, especially in our industry. Beyond jQuery can and should be a new reference for you
whenever you’re looking for a refresher on DOM manipulation, Ajax requests, JavaScript in general, or any
of the other many topics covered here. But this book can’t be your only reference. It was never meant to be
an exhaustive source for all things web and JavaScript. The focus of this book has always been on the areas
of the web API and the language that overlap with jQuery. This allowed for a large range of material to be
discussed, but there are admittedly other topics that had to be left out as a result.

 For everything that is not covered in this book, there are a set of resources that come with my full
recommendation as I rely on all of them quite heavily myself. Some of the following are geared toward
keeping your knowledge of web development and JavaScript up-to-date as well, something that a book
cannot offer. For each recommended resource, I explain any notable limitations and strengths.

 The Official Web and Language Specs
 The specs themselves—WHATWG, 1 W3C, 2 and ECMA-262 3 —wield the most information in terms of the the
web API and JavaScript. They contain an incredible amount of detail and can be seen as the source of truth
for all of the native APIs discussed in this book. I wrote about each of these standards documents in Chapter
 3 . Unfortunately, these documents are also a bit hard to digest for most. If you truly want to understand
every minute detail of a particular method or property, and are willing and able to spend time deciphering
the abstruse language in these documents, then the official specs are an ideal resource. Otherwise, there are
more appropriate choices.

 The TC39 group, responsible for curating the JavaScript specification, maintains a GitHub organization. 4
There, they record their meeting notes, agendas, and proposals. It ’ s a great place to keep up on the very
latest progress on ECMA-262, and sometimes the proposals and meeting notes are a bit easier to follow than
the official standards documents themselves. My favorite reference in this organization is the README.
md file 5 inside of the proposals repository. 6 There, you can see the latest progress of each proposal, from
stage 1 to 3. This document even links to a list of stage 0 proposals, which provides insight into possibilities
regarding the distant future of the language.

 Mozilla Developer Network
 The clearest and most concise alternative to the official standards documents is, without a doubt, Mozilla
Developer Network. 7 This is often my first reference choice if I am looking for a details about a specific web API
or JavaScript method. In addition to easy-to-parse language and code examples, MDN also includes a browser
support matrix for almost every interface. And for API items that are not well supported cross-browser, MDN
often includes code for a polyfill that you can simply drop into your project. If you really want to take a peek at
the underlying specification document, each page includes a table that details when a particular feature was
first introduced along with links to the official documents. Mozilla Developer Network is considered by many
(me included) to be the best comprehensive reference for web developers available today.

 1 http://whatwg.org
 2 www.w3.org
 3 www.ecma-international.org/publications/standards/Ecma-262.htm
 4 https://github.com/tc39
 5 https://github.com/tc39/proposals/blob/master/README.md
 6 https://github.com/tc39/proposals
 7 https://developer.mozilla.org/en-US/

http://dx.doi.org/10.1007/978-1-4842-2235-5_3
http://whatwg.org/
http://www.w3.org/
http://www.ecma-international.org/publications/standards/Ecma-262.htm
https://github.com/tc39
https://github.com/tc39/proposals/blob/master/README.md
https://github.com/tc39/proposals
https://developer.mozilla.org/en-US/

CHAPTER 13 ■ GOING FORWARD

211

 Caniuse.com
 If you’re instead looking for more details regarding browser support for a specific feature, a group of related
features, or even a group of unrelated features, caniuse.com is the ultimate resource. For any specific interface
or feature, caniuse.com describes browser support in the form of a table, with a separate column for each
popular browser. Support for each feature is tracked all the way back to include ancient browsers (even
Internet Explorer 6). Exceptional cases are noted in the table as well. Take the FileReader API as an
example—caniuse includes notes that link to an article (written by me) 8 that describes critical bugs
introduced into the implementation of the API in iOS 8. Each feature tracks these types of issues and other
related resources, such as a link to the MDN page, the specification document, browser-specific support
documents, and even important browser-specific implementation notes. For example, on the SVG favicons
support table, a note indicates that Firefox requires the MIME-type of the served resource to be “image/svg+xml.”

 Caniuse also allows you to group information by browser, feature category, and type of browser
(desktop, mobile, and so on). A neat feature renders the support table as a bar graph that determines the
height of each browser version bar under a particular browser based on the relative usage of each browser
version. And this relative browser version data can be region specific as well, if desired. Although I prefer
MDN for an understandable explanation of web and JavaScript features, caniuse is unmatched in terms of
browser support information.

 Stack Overflow
 Most of us have already spent a fair amount of time on Stack Overflow. After all, it seems most software
development questions, when typed into your search engine of choice, reveal Stack Overflow at the top
of the results list. SO is a no-nonsense question and answer site, with a set of strict rules and a dedicated
community hell-bent on enforcing these rules. This level of purity and perfection that the SO community
maintains often frustrates new or casual contributors, but it also makes the site an amazingly effective
resource for all things programming.

 Even seemingly picayune topics are represented on Stack Overflow, such as this question, “What is the
best comment in source code you have ever encountered?” 9 But be warned, new questions of this nature
are frowned upon these days. Still, if you are (amazingly) unable to find an existing answer to your unusual
programming question on Stack Overflow, the enormous community is available to answer your well-formed
query. This is particularly true for JavaScript related questions, as “javascript” is the most used tag on the site.

 Twitter
 In terms of keeping up-to-date with the latest advancements in web development, Twitter is my number
one resource. I don’t personally follow many developers on Twitter, but I still manage to almost drown in the
seemingly endless flow of interesting discussions, news about new web and JavaScript features, and notable
libraries that make the future of the web seem more like the present. Twitter is an often-overlooked medium
for broadcasting and absorbing bite-sized software-related information. And some of the more interesting
web-dev-related discussions happen on Twitter, in my experience. It’s not critical to simply follow the most
influential or prolific developers. If you are able to locate a handful of engineers that are willing to share
interesting opinions and articles, you’ll find that your sphere of knowledge can grow quite rapidly.

 Whichever resource you choose to keep up-to-date, or to explore existing APIs, the most important goal
is to keep learning. The first step is to move Beyond jQuery , but don’t just stop there. Comfort is a sign of
stagnation. If you become set in your ways, are unwilling keep an open mind, and refuse to consider moving
beyond your current set of tools and processes, you will stop growing as a software developer.

 8 http://blog.fineuploader.com/2014/09/10/ios8-presents-serious-issues-that-prevent-file-
uploading/
 9 http://stackoverflow.com/questions/184618/what-is-the-best-comment-in-source-code-you-
have-ever-encountered

http://blog.fineuploader.com/2014/09/10/ios8-presents-serious-issues-that-prevent-file-uploading/
http://blog.fineuploader.com/2014/09/10/ios8-presents-serious-issues-that-prevent-file-uploading/
http://stackoverflow.com/questions/184618/what-is-the-best-comment-in-source-code-you-have-ever-encountered
http://stackoverflow.com/questions/184618/what-is-the-best-comment-in-source-code-you-have-ever-encountered

213

 A
 addClass() method , 2
 addEventListener , 154, 156
 AJAX communication , 20

 asynchronous operations , 110
 expected and unexpected responses , 111
 HTTP , 110
 web sockets , 111

 AJAX requests
 DELETE requests , 115
 encoding (see Encoding requests and

responses)
 fetch API , 112
 GET request , 112
 onerror , 112
 onload , 112
 PATCH requests , 115–116
 POST requests , 113–114
 PUT requests , 114

 Ancient browsers , 20
 Ancient browser support

 addEventListener , 157
 attachEvent method , 157
 detachEvent , 158
 Event object , 159
 fi eld change events , 158
 stopPropagation method , 159

 Arrays , 187–188
 iterating array items , 194–195
 locating specifi c items , 195–197
 mapping and merging , 199–200
 pseudo-arrays management , 197–199

 Async functions
 browser support , 177
 callback hell , 176
 promise API , 174, 177
 saveRecord function , 175

 Asynchronous call , 161
 Asynchronous operations , 110
 attr() method , 67
 Attribute

 action and method , 54
 Boolean and variable , 54
 custom , 57
 element properties , 55
 href, type, and name , 54
 HTML 5.1 standardized hidden , 55
 HTML elements , 53
 non-standard custom , 55
 single-quoted and double-quoted , 55

 B
 “Beforeunload” event , 156
 Box model , 92
 Browser events

 “beforeunload” event , 156
 bubbling phase , 135–136
 bubbling vs. capturing , 134–135
 capturing phase , 135–136
 controlling event , 144–145

 preventDefault() , 145
 custom events , 134, 139–140
 DOM eventscreation (see DOM events)
 event delegation , 147–149
 load , 134
 “native” browser events , 133–134

 C
 Callbacks

 beforeDelete handler function , 162
 callback hell , 166, 171–172, 176
 error-fi rst callbacks , 163, 165–166
 node.js , 163
 onload and onerror

callbacks , 170
 solving common problems , 163–165

 Caniuse.com , 211
 Chrome , 21
 “click” event , 134
 closest. Element.closest() , 46

 Index

© Ray Nicholus 2016
R. Nicholus, Beyond jQuery, DOI 10.1007/978-1-4842-2235-5

■ INDEX

214

 Complex element data storage and retrieval
 data- attribute , 75
 DOM element removal events , 77
 jQuery approach , 75–76
 natural approach , 76–77

 Controlling event propagation , 144
 Click event , 146
 preventDefault() , 144
 web API , 145

 Core element selectors
 class attributes

 jQuery , 34
 Web API , 34

 element tags
 jQuery , 36
 native <form> , 35
 web API , 36

 IDs
 jQuery , 32
 web API , 32–33

 pseudo-classes , 37–38
 createElement method , 108
 Cross-domain communication

 CORS , 129–131
 JSONP , 128–129

 Cross Origin Resource Sharing (CORS) , 129–131
 Custom events , 132, 147

 jQuery custom events , 139
 web API , 140

 D
 Data attributes

 reading and updating, jQuery , 73–74
 storing small bits of data , 73
 web API, read and update , 74

 data-cache-idx attribute , 77
 data-scene-off sets attribute , 74
 Desktop browsers , 22
 Document object model (DOM) , 23
 DOM API , 25
 “DOMContentLoaded” event , 155
 DOM element hierarchy , 24
 DOM events

 fi ring DOM events
 with jQuery , 137–138
 without jQuery , 136–137

 web API , 138–139
 DOM manipulation

 clone elements, DOM API , 102
 creating and deleting elements , 103–104
 insertAdjacentHTML method , 104
 moving elements , 98–99
 reordering elements, DOM API , 100–101

 rich content , 107
 text content , 105–106
 web development , 97–98

 DomTokenList , 63

 E
 ECMAScript , 28
 ECMAScript language , 183
 ECMAScript language specifi cation , 29
 Element interface property , 73
 Element attributes, reading and

modifying
 class attributes

 adding and removing classes , 64
 reading classes , 63
 toggling classes , 65

 custom attributes
 modifying attributes , 67
 reading attributes , 66–67

 data attributes , 66
 Element.dataset , 79
 Element data storage

 ECMAScript 6 WeakMap , 78
 elements connecting , 70
 HTML5 dataset property , 78–79
 storing models , 70
 tracking state , 69–70

 Element.outerHTML property , 108
 Elements fi nding using attributes

 attribute names , 57–58
 attribute values and names , 59–60
 wildcard and fuzzy attribute selectors

 attribute values , 62
 HTML fragment , 60
 specifi c characters , 60
 specifi c words , 61

 Encoding requests and responses
 JSON , 119–121
 multipart encoding , 122–124
 URL encoding , 116–118

 “error” events , 153
 Error-fi rst callback , 163, 165–166, 169
 European Computer Manufacturer’s Association

(ECMA) , 28
 Event object , 134, 159
 Event delegation , 147–149
 Event handlers

 passing data , 146–147
 Event notifi cations

 jQuery event handlers , 141–142
 Web API , 142–144

 EventTarget type , 24
 Expando property , 72

■ INDEX

215

 F
 Firefox , 21
 Flash and Java Applets , 20
 Functions , 189–190

 G
 Google’s Android operating system , 22

 H
 hide() method , 13
 HTML 4.01 and XHTML 1.0 documents , 25
 HTML5 , 25
 HTMLInputElement , 67
 HTMLVideoElement object , 76
 HyperText Transfer

Protocol (HTTP) , 110

 I
 Inline event handlers , 72, 142
 Inline style assignment , 72
 innerHTML property , 107
 Internet Explorer 10+ , 21

 J
 JavaScript , 23, 27
 JavaScript context , 201–203
 JavaScript libraries , 4
 JavaScript objects

 copying and merging , 192–193
 keys and values , 190–192

 JavaScript utility functions
 calling existing function , 205–206
 creating function existing , 203–204
 date prototype methods , 180
 JSON conversion , 180–181
 string manipulation , 183
 XML string , 181–183

 jQuery
 browser’s native tools , 12
 closer-to-the-metal solutions , 12
 CSS classes , 13
 CSS fi les , 5
 current array element , 17
 DOM , 4
 elegance , 3
 Event object , 12
 fi nd() method , 17
 getComputedStyle() , 14
 GET request , 3
 GZIP , 15

 hide() method , 13
 HTTP , 15
 implementation , 9
 JavaScript , 12
 JSON , 12
 method chaining , 3
 preceding code , 14
 ready() method , 15
 Regressive libraries , 16
 Software development , 3
 usage , 2
 web API and JavaScript , 11
 web API method , 14
 web developer , 7
 web development , 1

 jQuery method chaining , 3
 JSON encoding , 119

 fetch API , 121
 onload function , 120
 XMLHttpRequest , 121

 JSONP , 128–129

 K
 Keyboard events

 event.preventDefault() , 153
 identifying pressed keys , 151–152
 image carousel , 152–153
 types , 150

 L
 Legacy browsers , 20
 Leveraging ECMAScript 2015

weakMap collections , 79
 Load events , 155

 M
 Mastering advanced element selection

 element categories
and modifi ers , 50–51

 fi rst() API method , 52
 HTML fragment , 48
 jQuery’s API , 49
 multiple selectors , 50
 querySelectorAll , 51
 web API , 49

 Mobile browsers , 22
 Mobile Chrome , 22
 Mobile landscape , 22
 Modern browsers , 21
 Mozilla , 20
 Mozilla Developer Network , 210
 Multipart encoding , 122–124

■ INDEX

216

 N
 Native events , 134
 Netscape’s JavaScript , 28
 Nexus , 19
 Node.js , 163

 O
 Objects , 188–189
 Objects . See JavaScript objects
 Offi cial web and language specs , 210
 Opera , 21

 P
 Pairing data, elements

 managing data , 72
 memory leaks , 71

 Primitives , 184–186
 Promises , 167

 AJAX request , 170
 askForEmail function , 169
 async operations simplifi cation , 167–168
 async tasks monitoring , 172
 callback hell, fi xing , 171–172
 catch method , 168
 constructor , 168
 fulfi lled function , 168
 jQuery’s promise implementation , 173
 native browser support , 173
 ECMAScript 2015 promise object , 168
 promptForText function , 169
 “reject” function , 168

 Pseudo-arrays , 197–199

 Q
 querySelector , 34
 querySelectorAll , 35, 38

 R
 Ready() method , 15
 Regressive libraries , 16
 Replacement for $(selector) , 52

 S
 Safari , 21
 Selecting elements, based on relations

 ancestors and descendants
 closest() function , 48
 closest. Element.closest() , 46
 Element.matches , 48
 fi nd() method , 46

 jQuery’s , 45
 Node relationship , 45
 retrieve closest element ancestor , 46, 48
 retrieve element descendants , 48
 web API , 46

 parents and children
 HMTL fragment , 38
 jQuery , 39
 node/element , 38
 nodeType property , 41
 ParentNode interface , 40
 ParentNode.children , 40
 web API , 40

 siblings
 CSS selectors , 43
 ElementTraversal , 43
 ElementTraversal interface , 44
 jQuery , 42
 modern browsers and internet explorer 8 , 44
 nextSibling property , 45
 Node.previousSibling property , 43
 preceding and subsequent, reference

element , 43
 web API , 42

 setAttribute method , 67
 show() and hide() API methods , 90
 Stack overfl ow , 211
 Standardized async task handling , 178
 String manipulation , 183
 Style attribute , 82
 Style sheets

 addRule , 87
 CSSStyleSheet interface , 87
 holistic approach , 87
 index.html setting styles , 86
 insertRule method , 87
 multiple selector , 86
 setting styles, <style> Element , 85
 styles.css and index.html , 86
 styles.css external style sheet , 86

 Styling elements
 jQuery’s css() method , 81
 CSSStyleDeclaration interface , 83–84
 Element objects—one approach , 81
 ElementCSSInlineStyle interface , 83
 font-weight CSS style , 84
 inline styles , 81–82
 “natural” programmatic approach , 81
 optimized non-jQuery approach , 89
 setting and determining element visibility

 native web approach , 90, 92
 standardized hidden attribute , 91
 typical jQuery approach , 90

 setting styles, the style property , 83
 style.cssText property , 84

■ INDEX

217

 styles.css pressed button styles , 88
 style sheets (see Stylesheets)
 using jQuery , 88
 width and height, determining

 box model , 92, 94
 content + padding , 94
 content + padding + border , 95
 DOM abstraction , 92
 using jQuery , 93

 without jQuery , 88–89

 T
 TC39 , 28
 text() method , 105
 Twitter , 211
 Style attribute , 81

 U
 Uploading and manipulating fi les

 Internet Explorer 9 , 124
 modern browsers , 126
 reading and creating fi les , 127
 target attribute , 125

 URL encoding , 116–118

 V
 vanilla JS , 208

 W
 W3C DOM Level 3 Events

specifi cation , 144
 WeakMap , 80
 Web API , 23
 Web API and “Vanilla” JavaScript

 ancient browsers , 20
 browsers , 19
 DOM , 23
 DOM API , 23
 language vs. Web API , 27
 Mobile Browsers , 22
 Modern Browsers , 21
 Nexus , 19
 organizations , 19
 standardization process , 28

 Web API DOM Events , 138–139
 Web development , 208–209
 Web sockets , 111
 window resize

event handler , 141
 window.getComputedStyle , 90

 X, Y, Z
 XMLHTTP , 109
 XMLHttpRequest , 26
 XML string conversion , 181–183

	Contents at a Glance
	Contents
	About the Author
	Preface
	Acknowledgments
	Introduction
	Chapter 1: The Oppressive Magic of jQuery
	Why Have We Been Using jQuery?
	Simplicity
	Community
	Habit
	Elegance
	Fear

	A Crutch Is Only Temporary
	You Are a Mechanic, Not a Driver
	Stunted Growth

	The Price of Shortcuts (a True Story)
	A New Direction, a New Web Developer
	Shortcuts and My Own Stunted Growth
	A Challenge: No jQuery Allowed!

	Focus on the Implementation, Not the Magic

	Chapter 2: You Don’t Need jQuery (Anymore)
	Need vs. Want
	Both Sides of the Acceptable Use Argument
	When Is It Acceptable to Use It?
	When Should You Refrain from Using It?

	Should You Use Other Libraries Instead?
	Small Shims Over Large Wrappers
	Writing Your Own Shim

	The Final Word

	Chapter 3: Understanding the Web API and “Vanilla” JavaScript
	Everything You Need to Know About Browsers
	Ancient Browsers
	Modern Browsers
	Evergreen Browsers
	Mobile Browsers
	Non-browsers

	What Is This Web API and Why Is It Important?
	The DOM API
	Everything Else (non-DOM)

	JavaScript: A Less Elegant Version of jQuery?
	The Language vs. the Web API
	History and Standardization

	Chapter 4: Finding HTML Elements
	Core Element Selectors
	IDs
	jQuery
	Web API

	Classes
	jQuery
	Web API

	Element Tags
	jQuery
	Web API

	Pseudo-classes
	jQuery
	Web API

	Selecting Elements Based on Their Relations
	Parents and Children
	jQuery
	Web API

	Siblings
	jQuery
	Web API

	Ancestors and Descendants
	jQuery
	Web API

	Mastering Advanced Element Selection
	Excluding Elements
	jQuery
	Web API

	Multiple Selectors
	jQuery
	Web API

	Element Categories and Modifiers

	A Simple Replacement for $(selector)

	Chapter 5: Using and Understanding HTML Element Attributes
	What Is an Attribute?
	History and Standardization
	How Do Attributes Differ from Properties?

	Finding Elements Using Attributes
	Finding Elements Using Attribute Names
	jQuery
	Web API

	Finding Elements Using Attribute Names and Values
	jQuery
	Web API

	The Power of Wildcard and Fuzzy Attribute Selectors
	Looking for Specific Characters
	Looking for Specific Words
	Attribute Values That Start or End With . . .

	Reading and Modifying Element Attributes
	Class Attributes
	Reading Classes
	Adding and Removing Classes
	Toggling Classes

	Data Attributes
	Working with Other Standard and Custom Attributes
	Reading Attributes
	Modifying Attributes

	Chapter 6: HTML Element Data Storage and Retrieval
	Why Would You Want to Attach Data to Elements?
	Tracking State
	Connecting Elements
	Storing Models Directly in Your Elements

	Common Pitfalls of Pairing Data with Elements
	Memory Leaks
	Managing Data

	Using a Solution for All Browsers
	Storing Small Bits of Data Using data- Attributes
	Reading and Updating data- Attributes with jQuery
	Using the Web API to Read and Update data- Attributes

	Complex Element Data Storage and Retrieval
	The Familiar jQuery Approach
	Using a More Natural Approach
	Removing Data from Our Cache When Elements Are Removed from the DOM

	The Future of Element Data
	The HTML5 Dataset Property

	Leveraging ECMAScript 2015 WeakMap Collections

	Chapter 7: Styling Elements
	There Are Three Ways to Style Elements
	Inline Styles
	Working with Styles Directly on the Element Object
	Style Sheets

	Getting and Setting Generalized Styles
	Using jQuery
	Without jQuery

	Setting and Determining Element Visibility
	The Typical jQuery Approach
	The Native Web Approach

	Determining Width and Height of Any Element
	Examining an Element Using jQuery
	Options Natively Provided by the Browser
	Width and Height of Content + Padding
	Width and Height of Content + Padding + Border

	Chapter 8: DOM Manipulation
	The DOM: A Central Component of Web Development
	jQuery Exists Because of the DOM API
	The DOM API Isn’t Broken, It’s Just Misunderstood

	Moving and Copying Elements
	Moving Elements Around the DOM
	Moving Elements Using jQuery
	The DOM API’s Solution to Reordering Elements

	Making Copies of Elements

	Composing Your Own Elements
	Creating and Deleting Elements
	Text Content
	Rich Content

	Chapter 9: AJAX Requests: Dynamic Data and Page Updates
	Mastering the Concepts of AJAX Communication
	Async Is Hard
	HTTP
	Expected and Unexpected Responses
	Web Sockets

	Sending GET, POST, DELETE, PUT, and PATCH Requests
	Sending POST Requests
	Sending PUT Requests
	Sending DELETE Requests
	Sending PATCH Requests

	Encoding Requests and Reading Encoded Responses
	URL Encoding
	JSON Encoding
	Multipart Encoding

	Uploading and Manipulating Files
	Uploading Files in Ancient Browsers
	Uploading Files in Modern Browsers
	Reading and Creating Files

	Cross-domain Communication: an Important Topic
	The Early Days (JSONP)
	Modern Times (CORS)

	Chapter 10: Browser Events
	How Do Events Work?
	Event Types: Custom and Native
	Event Propagation: Bubbling vs. Capturing
	Capturing Phase
	Bubbling Phase

	Creating and Firing DOM Events
	Firing DOM Events with jQuery
	Web API DOM Events

	Creating and Firing Custom Events
	jQuery Custom Events
	Firing Custom Events with the Web API

	Listening (and Un-listening) to Event Notifications
	jQuery Event Handlers
	Observing Events with the Web API

	Controlling Event Propagation
	Passing Data to Event Handlers
	Event Delegation: Powerful and Underused
	Handling and Triggering Keyboard Events
	Three Types of Keyboard Events
	Identifying Pressed Keys
	Making an Image Carousel Keyboard Accessible with the Web API

	Determining When Something Has Loaded
	When Have All Elements on the Page Fully Loaded and Rendered with Applied Styles?
	When Has All Static Markup Been Placed on the Page?
	When Has a Particular Element on the Page Fully Loaded? When Has It Failed to Load?
	Preventing a User from Accidentally Leaving the Current Page

	A History Lesson: Ancient Browser Support
	The API for Listening to Events Is Non-standard
	Form Field Change Events Are a Minefield
	The Event Object Is Also Non-standard

	Chapter 11: Mastering Asynchronous Tasks
	Callbacks: the Traditional Approach for Controlling Async Operations
	Node.js and the Error-First Callback
	Solving Common Problems with Callbacks

	Promises: an Answer to Async Complexity
	The First Standardized Way to Harness Async
	Using Promises to Simplify Async Operations
	The Anatomy of a Promise
	Simple Promise Examples
	Fixing “Callback Hell” with Promises
	Monitoring Multiple Related Async Tasks with Promises

	jQuery’s Broken Promise Implementation
	Native Browser Support

	Async Functions: Abstraction for Async Tasks
	The Problem with Promises
	Async Functions to the Rescue
	Browser Support

	The Future of Standardized Async Task Handling

	Chapter 12: Common JavaScript Utility Functions
	Working with Dates, Text, XML, and JSON
	Dates
	Converting JSON into a JavaScript Object
	Converting an XML String into a Document
	String Manipulation

	What Kind of Value Is This?
	Primitives
	Arrays
	Objects
	Functions

	Making JavaScript Objects Bend to Your Will
	Iterating over Keys and Values
	Copying and Merging Objects

	Solving Problems with Arrays
	Iterating over Array Items
	Locating Specific Items
	Managing Pseudo-arrays
	Mapping and Merging

	Useful Function Tricks
	A Word about JavaScript Context
	Creating a New Function from an Old One
	Calling an Existing Function with a New Context

	Chapter 13: Going Forward
	Now What?
	Option/Stage 1: Ignore Everything
	Option/Stage 2: Rip jQuery Out of All Your Projects
	Option/Stage 3: Rock Back and Forth in a Corner, Crying
	Option/Stage 4: Decide to Be More Discerning Going Forward

	The Future of Web Development
	Further Reading and Reference
	The Official Web and Language Specs
	Mozilla Developer Network
	Caniuse.com
	Stack Overflow
	Twitter

	Index

