
Build iOS
Database Apps
with Swift and
SQLite

—
Kevin Languedoc

www.allitebooks.com

http://www.allitebooks.org

 Build iOS Database
Apps with Swift and

SQLite

 Kevin Languedoc

www.allitebooks.com

http://www.allitebooks.org

Build iOS Database Apps with Swift and SQLite

Kevin Languedoc
Montreal
Canada

ISBN-13 (pbk): 978-1-4842-2231-7 ISBN-13 (electronic): 978-1-4842-2232-4
DOI 10.1007/978-1-4842-2232-4

Library of Congress Control Number: 2016958726

Copyright © 2016 by Kevin Languedoc

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Aaron Black
Technical Reviewer: Massimo Nardone
Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black, Louise Corrigan,

Jonathan Gennick, Robert Hutchinson, Celestin Suresh John, Nikhil Karkal, James Markham,
Susan McDermott, Matthew Moodie, Natalie Pao, Gwenan Spearing

Coordinating Editor: Jessica Vakili
Copy Editor: April Rondeau
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com ,
or visit www.springeronline.com . Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com , or visit www.apress.com .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales .

 Any source code or other supplementary materials referenced by the author in this text are available to
readers at www.apress.com . For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/. Readers can also access source code at SpringerLink in the Supplementary
Material section for each chapter.

Printed on acid-free paper

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
http://www.apress.com/
http://www.apress.com/source-code/
http://www.apress.com/source-code/
http://www.allitebooks.org

 I dedicate this book to my wife, Louisa, and my children, Patrick and Megan.

www.allitebooks.com

http://www.allitebooks.org

Contents at a Glance

About the Author ...xv

About the Technical Reviewer ...xvii

Acknowledgments ..xix

Preface ...xxi

 ■Chapter 1: Creating the Objective-C Wrapper .. 1

 ■Chapter 2: Creating SQLite Databases ... 11

 ■Chapter 3: Creating Databases During Runtime .. 25

 ■Chapter 4: Altering Databases and Other Features ... 45

 ■Chapter 5: Inserting Records ... 63

 ■Chapter 6: Selecting Records .. 89

 ■Chapter 7: Updating Records ... 113

 ■Chapter 8: Deleting Records .. 131

 ■Chapter 9: Searching for Records in SQLite .. 145

 ■Chapter 10: Working with Multiple Databases .. 161

 ■Chapter 11: Backing Up SQLite Databases .. 175

 ■Chapter 12: Analyzing SQLite Databases... 187

Index ... 197

v

www.allitebooks.com

http://www.allitebooks.org

Contents

About the Author ...xv

About the Technical Reviewer ...xvii

Acknowledgments ..xix

Preface ...xxi

 ■Chapter 1: Creating the Objective-C Wrapper .. 1

Getting Started ... 1

Creating the Swift iOS Project .. 2

Create the Db Mgr Project Structure .. 3

Adding the SQLite 3 Library .. 3

Creating the Bridge .. 5

Creating the Bridge Header File.. 5

Confi guring the Swift Compiler .. 7

Creating the Swift Wrapper Functions.. 7

Add the DbMgrDAO Class ... 8

Create the init() func ... 9

Creating the SQLite Execute Function .. 10

Summary .. 10

 ■Chapter 2: Creating SQLite Databases ... 11

Creating Databases and Adding them to the Project .. 11

Launching SQLite Manager... 12

The SQLite Manager Menu ... 12

Create the Database ... 13

Add Table and Columns .. 15

vii

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS

viii

Add an Index ... 18

Add a View .. 19

Add a Trigger .. 21

Create an iOS Project ... 22

Add Database to the Project ... 23

Summary .. 24

 ■Chapter 3: Creating Databases During Runtime .. 25

Building the DB Mgr App .. 25

The Application UI ... 25

Creating the Data Model ... 27

Creating the Controllers ... 30

The DbMgrDAO Controller ... 31

The MasterViewController .. 36

The DetailViewController .. 39

Building the Winery Database .. 41

Create the Winery.sqlite File ... 42

Summary .. 44

 ■Chapter 4: Altering Databases and Other Features ... 45

Modifying Tables .. 46

Renaming a Table ... 46

Adding Columns .. 47

Re-indexing a Table .. 48

Modifying Views ... 48

Modifying Indexes .. 48

Modifying Triggers .. 49

Adding and Altering Collation Sequences .. 50

Binary ... 51

NoCase ... 51

Rtrim ... 51

sqlite3_create_collation ... 51

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS

ix

The SQLite DELETE Statement ... 52

Deleting Tables ... 52

Deleting Views .. 52

Deleting Indices .. 53

Deleting Triggers ... 53

Deleting Collation Sequences ... 53

SQLite Functions .. 53

The JSON Extension ... 53

Creating Functions using Swift ... 55

Using Functions in a SQLite Database using Swift ... 58

Pragma Statements .. 59

Foreign_key_check .. 59

Foreign_key_list ... 60

Integrity_check ... 60

Automatic_index ... 60

Busy_timeout ... 60

Shrink_memory .. 60

Auto-vacuum .. 60

Corrupting a SQLite Database .. 61

SQLite Limits .. 61

Summary .. 62

 ■Chapter 5: Inserting Records ... 63

The Data-Binding Functions ... 63

The SQLite INSERT function ... 64

Insert or Replace .. 66

Insert or Rollback ... 67

Insert or Ignore ... 67

Insert or Abort ... 67

Insert or Fail ... 67

Inserting Blobs .. 68

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS

x

Creating the Winery App ... 69

Create the Project ... 69

Add the Bridge .. 69

Creating the UI View for Inserting ... 72

Creating the Data Model ... 75

Add the Wineries Database ... 76

Add the Wine Type .. 76

Add the Wineries Type .. 77

Add the Database Schema ... 77

Creating the Controllers ... 78

Add the WineryDAO Class ... 78

The init() function init() ... 78

The buildSchema Function ... 79

The createOrOpenDatabase Function ... 80

The insertWineRecord Function .. 80

The insertWineryRecord Function .. 81

The FirstViewController .. 81

Add Photo Capture Functionality .. 82

The SecondViewController ... 83

Running the App ... 84

Inserting Records ... 84

Summary .. 87

 ■Chapter 6: Selecting Records .. 89

Column Data Types ... 89

The SELECT Statement ... 90

Selecting Data .. 90

Using a Dynamic WHERE Clause ... 92

Perform a SELECT using a Sub-Query .. 93

Perform a SELECT using Joins ... 93

Select and Display Images ... 94

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS

xi

Select and Playback Audio Records ... 95

Select and Display Video Records .. 96

Adding SELECT Functionality to the Winery App .. 96

Add the SelectWineries UIPicker .. 96

The viewDidLoad Function ... 96

The UIPickerView Functions ... 97

The selectWineriesList Function ... 98

The selectWineList Function ... 99

The selectWineryByName Function .. 99

Modifying the UI for Displaying Records .. 100

Adding the UITableViewControllers ... 100

Adding the Navigation Controllers .. 102

Connect the TableViewControllers and TableViewCellController ... 104

Adding the IBOutlets: WineList Controller ... 106

Add the Business Logic .. 107

Running the App ... 109

Summary .. 112

 ■Chapter 7: Updating Records ... 113

SQLite Update Statement ... 113

UPDATE Using a Where Clause ... 115

UPDATE Using a Sub-query .. 115

Updating Records Using a Join ... 116

UPDATE Using a Sub-Query in FROM Clause .. 116

Update On Confl ict .. 116

A Sample SQLite UPDATE Operation in Swift.. 117

Adding the UPDATE Functionality to the Winery App .. 118

Modifying the WineryDAO Controller .. 118

Modifying the UI for Updates .. 120

Running the App ... 124

Updating Records ... 125

Summary .. 130

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS

xii

 ■Chapter 8: Deleting Records .. 131

The DELETE Statement in SQLite ... 131

Using the WHERE Clause .. 131

Restrictions and Triggers .. 132

DELETE Limits .. 132

A Swift SQLite Delete Example ... 132

Adding the Delete Functionality to the Winery App .. 134

Modifying the WineryDAO Class ... 135

Modifying the ViewControllers .. 136

Modifying the TableViewControllers ... 136

Modifying the UI for Delete ... 137

Modifying the UI .. 137

Running the App ... 138

Summary .. 144

 ■Chapter 9: Searching for Records in SQLite .. 145

The Search App .. 145

Create the SQLite Database .. 146

Create the iOS/SQLite Project ... 148

Running the App ... 158

Summary .. 159

 ■Chapter 10: Working with Multiple Databases .. 161

The ATTACH Statement ... 161

The DETACH Statement .. 162

Multi-Database Limits .. 162

Performing Joins .. 163

Attach and Detach in Swift ... 163

The Project ... 164

The ViewController.. 164

Building the UI .. 169

 ■ CONTENTS

xiii

Running the App ... 171

Summary .. 173

 ■Chapter 11: Backing Up SQLite Databases .. 175

Overview of the SQLite Backup Methods ... 175

Make a Backup Copy .. 175

Back Up In-Memory SQLite Databases ... 176

Back Up On-Disk SQLite Databases .. 177

The Backup App ... 177

The ViewController.. 181

Building the UI .. 183

Summary .. 185

 ■Chapter 12: Analyzing SQLite Databases... 187

The Analyze Statement ... 187

The sqldiff Tool ... 188

The sqlite3_analyzer tool ... 189

Summary .. 196

Index ... 197

 About the Author

 Kevin Languedoc has been a database and software developer for more
than 20 years, having worked with many of the leading databases systems
on desktop, client/server, mainframe, web/cloud, IoT, and mobile. He
brings his expertise in database development to the iOS (iPhone and iPad)
platform and SQLite. He graduated from University of Quebec at Montreal
with a degree in computer science and from McGill University with a
degree in marketing management. He has developed over 50 iPhone and
iPad apps at the corporate level for clients of all sizes. He has worked in
finance, banking services and insurance, and retail and distribution, as
well as in energy, transportation, and pharmaceuticals on both sides of the
fence. He brings a wealth of practical experience to this book, along with
extensive code samples and working apps.

xv

 About the Technical Reviewer

 Massimo Nardone has more than 22 years of experience in security, web/
mobile development, cloud, and IT architecture. His true IT passions are
security and Android.

 He has been programming and teaching how to program with Android,
Perl, PHP, Java, VB, Python, C/C++, and MySQL for more than 20 years.

 He holds a Master of Science degree in computing science from the
University of Salerno, Italy.

 He has worked as a project manager, software engineer, research
engineer, chief security architect, information security manager, PCI/
SCADA auditor, and senior lead IT security/cloud/SCADA architect for
many years.

 Technical skills include security, Android, cloud, Java, MySQL,
Drupal, Cobol, Perl, web and mobile development, MongoDB, D3, Joomla,
Couchbase, C/C++, WebGL, Python, Pro Rails, Django CMS, Jekyll,
Scratch, and so on.

 He currently works as chief information security officer (CISO) for Cargotec Oyj.
 He has worked as a visiting lecturer and supervisor for exercises at the Networking Laboratory of the

Helsinki University of Technology (Aalto University). He holds four international patents (in the PKI, SIP,
SAML, and Proxy areas).

 Massimo has reviewed more than 40 IT books for different publishing companies, and he is the
coauthor of Pro Android Games (Apress, 2015).

 This book is dedicated to Antti Jalonen and his family, who are always there when I need them.

xvii

 Acknowledgments

 A book is never written in isolation; it is a team effort. Even though the author’s name appears on the front
cover, it requires the support and effort of many people who work behind the scenes to make sure the project
is successful. First and foremost, I wish to thank my wife, Louisa, and my kids, Patrick and Megan, for giving
me the support, the space, and the understanding to write this book. At Apress, I offer my sincere thanks to
Steve Anglin for offering me this opportunity and to Jessica Vakili, who was always patient and helpful and
made sure the project moved along smoothly. My thanks also go to Aaron Black for his support in organizing
this project and bringing together this great team, which also includes Jim Markham, Massimo Nardone, and
Eric Levasseur, who all provided fantastic insight to smooth out the rough edges and make the book shine.
To Dhaneesh Kumar, for preparing the front and back covers, thank you. To everyone else who has worked
on this project at Apress, I wish to say thank you for helping me with my project.

 All my sincere thanks,
 —Kevin

xix

 Preface

 I’ve been working as a software developer for over 20 years. The central theme of my IT career has been
database development, so I wanted to bring this experience to this book. I have worked with many of the
popular database systems over the years, like Oracle, MSSQL, and DB2, not to mention oldies like Borland
Dbase4, Lotus Approach, Superbase95, and, of course, Lotus Domino. However, I am uniquely impressed with
SQLite. The versatility of this technology is incredible. You can take a SQLite database that was created on a
Windows PC, for instance, and run it unchanged on an OSX, Linux, Android, JavaScript, and, of course, on iOS.

 Did you know that SQLite was once the basis for the Web DB specification in an early version of W3C’s
HTML5 specification before being dropped from the final release candidate in 2010? The technology is in
widespread use across most computing platforms, including mobile and embedded systems. Apple uses SQLite
on both OSX and iOS for various applications. For data-driven iOS applications, SQLite is the logical choice.
There are other choices, like InterBase or BerkeleyDB, if you want to use a relational database, or you can go the
NoSQL route and choose Couchbase or Realm, among others. However, SQLite offers a solid footing and strong
industry support, which I find is essential if you are planning a production-grade data-driven iOS app.

 With the introduction of Swift, Apple has provided millions of iOS developers with a modern, well-
designed programming language in tune with Python, Ruby, Scala, Groovy, and many others. The language
is fun to work with. It is also much less verbose than Objective-C, and I have had the opportunity to work on
an iOS project with this language and found Swift to be a great, lightweight language to work with.

 Since the first edition of this book was completely written in Objective-C, with one chapter on a beta
version of Swift 1, I felt it was time to re-write the book using Swift 3 and iOS 10. I wanted to explore the
opportunity this new language offers to build data-driven apps using SQLite as a backend. I also wanted to
show you how easy it is to create bridges in Swift to interface with SQLite’s C API—or any C/C++ API, for that
matter—to harness many of the mature libraries that have been developed and have stood the test of time, as
well as new ones, through Swift.

 In keeping with the original design of the first edition, Build iOS Database Apps using Swift and SQLite
walks you through the steps of creating a bridge, developing SQLite databases, and performing the standard
CRUD operations that characterize a database’s core functionality of storing and retrieving data. I also
wanted to explore extending SQLite with custom functions and attaching them using Swift, and to look at the
multi-database and backup APIs.

 The code for the apps in the book was written in Swift 3. I hope you find the book useful and practical.

xxi

1© Kevin Languedoc 2016
K. Languedoc, Build iOS Database Apps with Swift and SQLite, DOI 10.1007/978-1-4842-2232-4_1

 CHAPTER 1

 Creating the Objective-C Wrapper

 Creating a wrapper for a C library is a very easy task with Swift, as the language was designed for
interoperability with Objective-C and C, as well as for C++ language. Although this chapter focuses on using
the SQLite C API with Swift, you could easily do the reverse and call Swift from these languages. This chapter
shows how to create an Objective-C wrapper around the SQLite C API, which can then be interfaced through
Swift. This method can be replicated with other C libraries.

 In this chapter, I’m going to show you how to do the following:

• Create a Swift project

• Add the SQLite 3 C API library to the project

• Create a bridge header file to interface with the C API

• Configure the Swift compiler

• Create a DAO class to handle the execution for queries

 Getting Started
 Before getting to the bridge, I think it is important to mention the tools that are needed for this book and also
for iOS application development in general. All the iOS code for this book is produced through Xcode 8.0 at
the time of this writing. I am also using Swift 3.

 If you are planning on developing Swift iOS apps for this book or in a production environment, your
only choice is Xcode on OSX. Some will argue that Swift can compile and run on Linux also. While this is
true, Xcode cannot, and you need Xcode to develop iOS, TVos and OSX apps. You will also need an Apple
Developer account. For the development in this book, you can get by with the free edition, but to provision
and deploy you will need an Apple Developer license, which you can get though Apple Developer website.

 I will also use SQLite Manager in Firefox to create SQLite databases in chapters 2 , 5 , and 10 ; otherwise,
all development, including creating SQLite databases, will be done in Xcode.

 Xcode can be installed for free through the OSX App Store, which is accessible uniquely on a MAC OSX.
While you can purchase a copy of OSX through an Apple store, and it can be installed on a virtual machine,
the OSX App Store will only work on a real OSX machine.

 Installing Xcode is very easy. Once you select it in the App Store, it is installed automatically on your
OSX machine. When you install Xcode, the SDK (for Swift/Objective-C) is also installed. You can install more
tools through Xcode. Under the Xcode menu, select Preferences and then Components.

Electronic supplementary material The online version of this chapter (doi: 10.1007/978-1-4842-2232-4_1)
contains supplementary material, which is available to authorized users.

http://dx.doi.org/10.1007/978-1-4842-2232-4_2
http://dx.doi.org/10.1007/978-1-4842-2232-4_5
http://dx.doi.org/10.1007/978-1-4842-2232-4_10
http://dx.doi.org/10.1007/978-1-4842-2232-4_1

CHAPTER 1 ■ CREATING THE OBJECTIVE-C WRAPPER

2

 The SQLite library is already included in the iOS SDK, and this is the version that I will be using
throughout this book. You can download and install SQLite from the SQLite site, which has extra APIs such
as the JSON extension, but this is out of the scope of this book. You can also download and use Swift SQLite
frameworks that have been created as wrappers over the SQLite C API. However, I won’t be using them in
this book, as I find the C API very easy to work with on its own.

 Other than Xcode and an Apple OSX computer, you only need Firefox SQLite Manager, which can be
downloaded and installed from Mozilla. The SQLite Manager is installed from the Addon marketplace in Firefox.

 Let’s get started.

 Creating the Swift iOS Project
 To work with SQLite 3 in iOS Swift applications, you need a bridge header file to interface with the SQLite C
API. In fact, this interface is applicable to all interfaces between Swift and Objective-C, C, or C++.

 Open Xcode and create a new project from the launchpad. For this project, we are building a SQLite
Database Manager app that will allow a developer to connect to a SQLite database. The app will also provide
functionality to add or modify tables, views, indexes, and triggers. Finally, one will also be able to insert,
update, and select data from the database.

 To build this app, select the Master-Detail iOS template from the list of templates under the iOS Application
heading. Name the iPad app SQLite Mgr and create it. Figure 1-1 shows an example of the Master-Detail template
under the iOS Application heading. After selecting the template, move to the next page to fill in the app details.
This template provides a great classic layout for building iPad apps and takes advantage of the extra screen real
estate. The template has a view on the left-hand side that acts as an index by default, although you could replace
the UITableView with another view. The view on the right-hand side provides an expansive window to display
input forms or other app details, including web pages and tables or other view controllers.

 Figure 1-1. Master-Detail iOS Application template

CHAPTER 1 ■ CREATING THE OBJECTIVE-C WRAPPER

3

 For this reference app, we will use some of the default design elements that are included with the
template, namely the UITableView in the MasterViewController . For the DetailViewController , we will
develop a new UI layout.

 Figure 1-2 illustrates the information needed to name and set up the basic app structure. The
Organization Name is used throughout the project and documentation, such as for the copyright notice. The
Organization Identifier is used to create part of the Bundle ID for the App Store and to identify the app in
iTunes Connect, for instance.

 Figure 1-2. Enter the app name and other required information

 Create the Db Mgr Project Structure
 The project structure of a Swift app is identical to that of an Objective-C structure in Xcode. As a matter
of preference, I like to organize my app objects into logical groups. So, we will create groups for “views,”
“models,” and “controllers,” as well groups for “libs,” “bridge,” and “utils.” The first three are to group the files
related to the MVC design pattern. The last two will group the SQLite 3 library and some helper classes that
we will use for the app that don’t fit in the other groups.

 To add files to the project, right click on the group heading and use the context menu to select the Add
New File command, which will insert the new file that we will create under that header. You can also add
a new file from the menu in Xcode and select from the dialog box for naming the file the group where you
want to file to be created.

 Adding the SQLite 3 Library
 Add the SQLite 3 library to the project as you would normally do through the Linked Libraries and
Frameworks. Select the project root in the navigator and scroll down to the Linked Libraries and Frameworks
from the General sheet of the Project Properties page, which appears in the main window.

CHAPTER 1 ■ CREATING THE OBJECTIVE-C WRAPPER

4

 Figure 1-3 provides an example of the Search dialog box used to add libraries to an Xcode project. Click
on the “+” sign to open the Search window and type "Sqlite3." You will get two results; one of the selections
is the library and the second is a link to the library. Select the libsqlite3.tbd file and click the Add button to
add the library to the project.

 Figure 1-3. Add the SQLite library to the project

 In the project explorer (navigator), drag the SQLite3 library into the "libs" group. In the next sections, I
will show you how to create the bridge file and configure the Swift compiler.

CHAPTER 1 ■ CREATING THE OBJECTIVE-C WRAPPER

5

 Creating the Bridge
 The bridge is an interface file with which to configure access to the C, C++, or Objective-C libraries and to
configure the Swift compiler to look for and use said libraries when compiling the code. Since the SQLite
library is written in C, we will need a bridge file in order to access the C API from Swift.

 Creating the Bridge Header File
 From the File menu in Xcode, select File > New File. In the template selection page, select the Header
File template and click the Next button to move to the next page, where we will be able to name the file
(Figure 1-4).

 Figure 1-4. Select the C Header File template

 For this example, I will name it SQLite3Bridge.h, but you are free to name it as you wish; Xcode will
automatically append the header extension (.h) to the file name. If you created the project groupings as
indicated earlier, select the "bridge" group and click on the Create button to create the file and add it to the
project (Figure 1-5). Once the header file is added to the project, it will open in the Xcode editor.

CHAPTER 1 ■ CREATING THE OBJECTIVE-C WRAPPER

6

 In the C header file code that follows, you’ll notice that the template has added some directives and
constants for us to define the header file. To create the SQLite3 bridge, I will add a reference to the SQLite3
library by adding an import statement along with the SQLite3 header file name, as in the code snippet.
Save the file.

 //
 // SQlite3Bridge.h
 // Db Mgr
 //
 // Created by Kevin Languedoc on 2016-05-20.
 // Copyright © 2016 Kevin Languedoc. All rights reserved.
 //

 #ifndef SQlite3Bridge_h
 #define SQlite3Bridge_h

 #endif /* SQlite3Bridge_h */

 // Add this code to import the sqlite3 header. The code above is supplied by the template
 #import <sqlite3.h>

 Figure 1-5. Select the group and file location

CHAPTER 1 ■ CREATING THE OBJECTIVE-C WRAPPER

7

 Configuring the Swift Compiler
 The next step is to let the Swift compiler know about the bridge file, and that is all that is needed to create the
bridge.

 Open the Build Settings page by selecting the project root in the Navigator pane. In the field, type “swift”
to locate the Swift Compiler - Code Generation compiler section. In the Objective-C Bridge Header field, add
the sub-directory, which is the project name followed by the name of the bridge header file (Figure 1-6).

 Figure 1-6. Swift compiler setting on the Build Settings page

 Creating the Swift Wrapper Functions
 With the bridge in place, we can move on to the final step in this chapter, which is create the basis of the
DAO class, DbMgrDAO . This class is a sub-class of the NSObject class. You can create this class using one of
two templates. You can create it using the Cocoa Touch template, which will add the proper class signature,
but you will need to replace the import statement from UIKit to Foundation; otherwise, you will get some
errors. However, using the template, you will have the opportunity to select the sub-class and language. The
other way is to use the Swift template, which is what I will use, as the template will create a bare-bones file.

 Using the Swift template (Figure 1-7), we will need to add the class definition, as the template only adds
the import Foundation statement after we name the file and add it to the project under the "controllers"
group. The class will be titled DbMgrDAO .

CHAPTER 1 ■ CREATING THE OBJECTIVE-C WRAPPER

8

 Add the DbMgrDAO Class
 The DbMgrDAO class will provide most of the interaction between the two view controllers and the SQLite
database—or databases, if you opt to create more than one with the app.

 From the File menu in Xcode, select the Swift File template under the iOS heading. Move to the next
page using the Next button. On the next page, name the file DbMgrDAO (Xcode will add the Swift extension
if you don’t) and click the Create button (Figure 1-8). Again, if you added groups to the project structure you
will be able to select one here. I will select the “controllers” group before creating the file.

 Figure 1-7. Select the Swift template

CHAPTER 1 ■ CREATING THE OBJECTIVE-C WRAPPER

9

 //
 // DbMgrDAO.swift
 // Db Mgr
 //
 // Created by Kevin Languedoc on 2016-05-24.
 // Copyright © 2016 Kevin Languedoc. All rights reserved.
 //

 import Foundation

 public class DbMgrDAO:NSObject{

 }

 Create the init() func
 To finish up I will add two basic functions. The first is the init function . This function is called to initialize a
 DbMgrDAO object and can be used to set up the object, such as establishing a SQLite database connection and
opening a database, as I will show later in the next chapter.

 Figure 1-8. Add the DbMgrDAO file to the project

CHAPTER 1 ■ CREATING THE OBJECTIVE-C WRAPPER

10

 import Foundation

 public class DbMgrDAO:NSObject{

 override init() {
 //code here
 }
 }

 Creating the SQLite Execute Function
 Lastly, I will add the executeQuery function that will be used to execute queries like inserts, updates, and
deletes. For select operations that return records, I will create another function in a later chapter, as I won’t
need it in this example app.

 //
 // DbMgrDAO.swift
 // Db Mgr
 //
 // Created by Kevin Languedoc on 2016-05-24.
 // Copyright © 2016 Kevin Languedoc. All rights reserved.
 //

 import Foundation

 public class DbMgrDAO:NSObject{

 override init() {
 //code here
 }

 func executeQuery(query:String?){

 }

 }

 The function signature includes one string data–type parameter for the query. That’s it for now.

 Summary
 This chapter started off by showing you the tools that are needed for iOS app development in general and for
SQLite specifically. Then, we focused in on creating the Objective-C bridge that allows Swift to converse with
the SQLite C API. This is standard procedure from Apple for Swift development using C/C++ APIs.

 This bridge is the cornerstone for every app we will build and explore in the following chapters, and it is
the primary piece of glue required in order to work with SQLite using Swift.

 The next chapter will show you how to develop a SQLite database using Firefox and the SQLite Manager
add-on. Once the database is created, we will develop the Db Mgr app, add the database to the project, and
copy the database into the Document directory, because this is the primary writeable directory in an iOS app
sandbox (filesystem).

11© Kevin Languedoc 2016
K. Languedoc, Build iOS Database Apps with Swift and SQLite, DOI 10.1007/978-1-4842-2232-4_2

 CHAPTER 2

 Creating SQLite Databases

 SQLite is very flexible in regards to creating databases. You can include a file extension, or not, as all you
really need is to pass a file name and path to the sqlite3_open function and the database will be created
and opened—although it won’t contain any structure. Unlike other relational databases like MSSQL, SQLite
databases are self-contained and portable. A SQLite database file can run without any changes on all
supported platforms, including, of course, iOS. SQLite databases are not designed to run a server.

 In this chapter, I will continue to build on the previous chapter by showing how to create a SQLite
database using a database tool like SQLite Manager in Firefox and adding it to the project. In the next
chapter, I will provide you with the knowledge to create databases during runtime, including adding the
necessary structure.

 You can also create databases using the command line, like Terminal (OSX, Linux) or Windows
Command .

 The following topics are covered in this chapter:

 1. Creating and adding a SQLite database to a project

 2. Adding tables and columns

 3. Adding views

 4. Adding a trigger

 5. Adding an index

 ■ Note While you can use SQLite Manager in Firefox on all supported platforms to develop the SQLite
database, you will need to export the database file to OSX for inclusion in your iOS/Swift project. Even
though Swift and SQLite are supported on Linux, you will need Xcode to provision your app and deploy it
to iTunesConnect. The focus of this chapter, and indeed this book, is to show you how to develop iOS apps
(iPhone/iPad) using Swift 3 and SQLite databases. I assume you are using Xcode 8 on OSX El Capitan, along
with the SQLite 3 included in the iOS SDK and in SQLite Manager.

 Creating Databases and Adding them to the Project
 In this first part of this chapter, I will focus on developing a SQLite database using the SQLite Manager add-
on in Firefox, and then I will import the finished database into an iOS Swift iPad app for later use. There are
a few open source and commercial database editors for SQLite. I am using SQLite Manager in Firefox, as
it is free (on all supported platforms) and lightweight. It is a Firefox add-on and can be installed in Firefox
through the Add-on interface.

CHAPTER 2 ■ CREATING SQLITE DATABASES

12

 The second part of the chapter will concentrate on creating databases though a running iOS app. I will
expand upon the iPad app I am creating in this book to create my own database-manager app. This will
involve creating a SQLite database in the Db Mgr app, which I will build in the next chapter.

 Launching SQLite Manager
 Once the SQLite Manager is installed via the Add-on gallery, you will be able to launch it from the Tools
menu in Firefox. Figure 2-1 shows the SQLite Manager menu item in the Tools menu in Firefox.

 Figure 2-1. SQLite Manager menu in Firefox

 Figure 2-2. SQLite Manager toolbar

 The SQLite Manager Menu
 The SQLite Manager has a quick-access menu of the main activities you can perform on a SQLite database,
in addition to various menu options. Under each menu option you can create, drop, rename, and modify
the listed database element. Under the Database menu, in addition to creating, modifying, indexing, re-
indexing, attaching, and detaching a database, you can also compact a database and create in-memory
databases. The app also offers options to analyze a database.

 Figure 2-2 provides a visual of the SQLite Manager Toolbar. You can choose to create new databases,
tables, and views. You can also open an existing database.

CHAPTER 2 ■ CREATING SQLITE DATABASES

13

 For the purposes of this example, I will create a database and then add tables, views, a trigger, and
indexes. Once the database is created, I will add it to the Db Mgr project.

 The Directory selector lets you change the current directory from the Profile directory, which is the
directory used by Firefox to store the various databases it uses, to use the directory where our databases will
be located.

 Create the Database
 You can create the database using the new document icon in the menu bar or by choosing the New Database
option under the Database menu item. I will name the database Chapter 2 for this example. By default, the
.sqlite extension is used; however, you can change this behavior in the settings (the criss-cross screwdriver/
wrench icon). Figure 2-3 shows the dialog box that lets you provide the SQLite database name.

 Figure 2-3. Name the SQLite database

 SQLite Manager offers you many options to tweak and analyze a database. Switch to the Db Settings
tab, for instance, after the database is open, and you can set a panoply of different settings to fine tune the
database (Figure 2-4). I will accept the defaults for this example, but I invite you to explore these many
features of SQLite Manager and the different settings available through the SQLite API.

 Figure 2-4. SQLite Manager Settings tab

http://dx.doi.org/10.1007/978-1-4842-2232-4_2

CHAPTER 2 ■ CREATING SQLITE DATABASES

14

 I would like to touch on a couple of interesting and useful concepts, which are the sqlite_master table
located under the Master Table node, the sqlite_sequence table, and the Main database versus the Temp
database or other databases.

 Sqlite_master
 The sqlite_master table contains all the queries that are used to create the database schema; for instance,
when you add or modify a table, view, or trigger. The table also contains the names and types of each
database schema element. Later in the chapter, we will make use of this table to populate the data source for
the TableView in the MasterViewController in the next chapter. The schema for the table looks like the code
snippet that follows. SQLite creates this table for you when the first table is added to the database. This is a
representation only:

 CREATE TABLE sqlite_master (
 type TEXT,
 name TEXT,
 tbl_name TEXT,
 rootpage INTEGER,
 sql TEXT
);

 You can also browse the table by selecting the Browse & Search tab with the sqlite_master table
selected. You can also browse the information in the table or any other table by performing a SELECT query
on it, as in the code snippet following Figure 2-5 .

 SELECT * FROM sqlite_master

 or

 SELECT name, tbl_name FROM sqlite_master

 Figure 2-5. Sqlite_master Browse & Search window

 The sqlite_sequence
 The sqlite_sequence table maintains the largest ROWINDEX of a given table. It is used in conjunction with the
 AUTOINCREMENT property on a column. When I create the tables in the database, I will use AUTOINCREMENT as
the primary key. If the table is empty, then the largest ROWID will be 1 and so on as records are added to the
table.

 The last feature I want to touch on is the Main database. In SQLite you can attach many databases to the
same connection or database file. When you create a new database file or connection, SQLite automatically
adds a database to the file and calls it Main. You have the option to create additional databases in the same
connection and you name these databases separately and attach them together using the ATTACH command.
Likewise, you can remove these auxiliary databases using the DETACH command.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 ■ CREATING SQLITE DATABASES

15

 Figure 2-6 shows a screenshot the Directory menu item. The Directory menu is another useful way of
locating SQLite databases and their home directory. You can locate the database file on disk by choosing the
"Default User Directory" option. This will open a Finder window if you are on OS X or a File Explorer window
if you are using Windows.

 Figure 2-6. SQLite Manager Directory menu

 With the basic database in place, I will move to the next step and create a table and columns .

 Add Table and Columns
 Creating tables and columns in SQLite is quite easy. You can opt to use the new table icon or select the
Create Table option from the Table menu. I have provided a screenshot of the Create Table interface in
SQLite Manager (Figure 2-7). When you enter the table definition, it only captures information to build a
 Create Table query.

CHAPTER 2 ■ CREATING SQLITE DATABASES

16

 You’ll notice the dropdown menu for the database selection near the top of the interface. You have a
choice between main, which is already selected, and temp. If you attach other databases, they would appear
here as well.

 If you have experience developing database applications, you will find many of these fields self-
explanatory. You have a field for the table name. You can choose to make the table temporary using the
“Temporary table” option. You should always select the “if not exists” option so you don’t accidentally
overwrite the database table and its contents when running the app. This option is added to the query, and
the database engine checks to see if the table already exists before creating it.

 Figure 2-7 illustrates how you can also define your table columns. You can provide a column name, a
data type—the dropdown includes the data types supported by SQL language—and whether the column will
act as the primary key. You can have the column auto increment by enabling the "Autoinc" option. Note that
this option is only active if you opt to enable the primary key on the column. Of course, you can choose to
not allow nulls by selecting the "Yes" option. This is especially important for primary key fields. The "Unique"
option ensures that no duplicates are introduced through an INSERT or UPDATE . Finally, you can set a default
value depending on the selected data type.

 Once the table definition is complete and you click on the OK button, a confirmation will appear
displaying the exact query that will be performed to create the table. This is a great way to learn the proper
syntax to use to prepare the SQL queries supported by SQLite.

 For my sample database, I will create a table to store some basic information on books, like the book
title, author, pages, selling price, royalties, and publisher. Figure 2-8 provides the basic details of the table.
The screenshot immediately following the table structure provides the details of the actual query string
being used to create the table in the database (Figure 2-9). You could easily do a copy + paste in another iOS
application if you weren’t sure of the proper syntax or if you were lazy like I am sometimes and didn’t feel
like writing the code.

 Figure 2-7. SQLite Manager's Create Table interface

CHAPTER 2 ■ CREATING SQLITE DATABASES

17

 Figure 2-8. Create Table definition

 Figure 2-9. Create Table query

 In SQLite Manager, you can browse the table structure by selecting the table name and expanding
the node in the left pane, then selecting the Structure tab along the top in the pane on the right-hand side
(Figure 2-10). In addition to browsing the table structure, you can also perform some operations, like
 dropping the table or re-indexing the table.

CHAPTER 2 ■ CREATING SQLITE DATABASES

18

 Notice in the screenshot that an index was automatically added under the Indexes node. This index got
created as a result of my specifying a primary key in my Book table. SQLite also added a sqlite_sequence
table, which I mentioned before, to maintain a handle on the latest ROWID . Although SQLite created the index
for us, I’ll show you the syntax of the SQLite query needed to create your own.

 Add an Index
 In a SQLite database, as in all other relational databases, tables have indexes to help them locate records
quickly. Creating indexes in SQLite is very straightforward, especially with SQLite Manager. Figure 2-11 shows
the Chapter.sqlite schema in SQLite Manager with one index, sqlite_autoindex_book _1 . This index is
automatically created when a column is configured with the autoincrement property when creating a table.

 Figure 2-10. Browse database structure

 Figure 2-11. Indexes in SQLite Manager

CHAPTER 2 ■ CREATING SQLITE DATABASES

19

 To create an index, select the Create Index command from the Index menu in SQLite Manager. The
interface window provides the necessary fields to build the Index query in SQLite. You need to provide the
name of the target table. In Figure 2-12 , the Book table is preselected, since it is the only one in the database
other than the sqlite_sequence table. In the Define Index Columns section, which displays the available
columns of the selected table, you can define which columns are needed for the index. Click OK to generate
the query shown in Figure 2-13 .

 Figure 2-12. Create Index interface in SQLite Manager

 Figure 2-13. Create Index query

 With the index now in place for the table, I will proceed with adding a view and a trigger before adding
the finished database to an iOS project.

 Add a View
 A view provides a listing based on a SELECT statement run against the contents of a table. The view may
present all the data in a table or a subset of data depending on your needs. A view can provide better
performance when accessing large datasets if you are limiting yourself to a subset of the entire table's
contents.

CHAPTER 2 ■ CREATING SQLITE DATABASES

20

 The View menu in SQLite Manager provides several operations that you can perform on a view in
addition to creating a view. For instance, you can opt to modify a view, drop a view, or rename a view. For
now, select the Create View command from the View menu. However, in the case of modifying or altering
a view, in reality you would be performing a drop view/create view operation. You can only alter, in the
true sense of the word, a table in SQLite. Figure 2-14 illustrates the Create View interface. In the following
screenshot, you can see where to add the view name and the target database. You can also indicate if it is
temporary or that SQLite should check to see if the view already exists. The Select Statement field lets you
define the subset of records to view through the view.

 Figure 2-14. Create View query interface

 Figure 2-15. Create View query confirmation

 Figure 2-15 provides a confirmation of the query that will be used to generate the view. For this
example, I am selecting all the records, but I could have easily created a subset of content by modifying the
 SELECT query accordingly. Click the OK button, and the SQLite database engine will provide the finished
 CREATE VIEW SQL query string to create the view.

 Views are a handy tool for accessing subsets of records in a table or tables, since you could add a JOIN or
even an inline SELECT statement to build a more complex SELECT statement.

CHAPTER 2 ■ CREATING SQLITE DATABASES

21

 Add a Trigger
 The trigger is the final database element I will demonstrate before adding the database to the iOS project.
Triggers act on data in a table after a record is inserted, updated, or deleted. These database programs are
useful for performing a given operation or generating logs in case you need to maintain an audit trail.

 Triggers can be created from the Trigger menu in SQLite Manager or from the context menu by right-
clicking on the Trigger node, like all the other database schema elements, as shown in Figure 2-16 .

 Figure 2-16. Create Trigger context menu

 Figure 2-17. Create Trigger interface

 The Trigger interface window provides the necessary fields to define the trigger (Figure 2-17). You need
to specify a name and the target table or view. You also need to indicate if the trigger is launched before,
after, or instead of the creation of a record, as well as which database event the trigger is the result of, like
 UPDATE , INSERT , or DELETE .

CHAPTER 2 ■ CREATING SQLITE DATABASES

22

 Next, you need to write the query to be performed on the records. In this example, I want the trigger
to calculate the royalties an author will receive on book sales. I have a provided the code snippet for the
example trigger CalcRoyalties (Figure 2-18).

 CREATE TRIGGER CalcRoyalties AFTER INSERT ON Book
 FOR EACH ROW
 WHEN (Sales) >= 1
 BEGIN
 update Book set Royalties = Sales * .15;

 END

 Figure 2-18. Create Trigger query

 Once the trigger query is to your liking, you can add the trigger to the database by clicking the OK button.
As usual, SQLite Manager will confirm the CREATE TRIGGER action before actually adding it to the database.

 Create an iOS Project
 To complete this section of the chapter on developing SQLite databases using a database tool, I will create
an iOS project. When you add a database to an iOS project, it is inserted in the Resources directory. The
Resources directory is also the root directory of the project. This directory is read-only, and you cannot
change these file permissions.

 If you try to write data to the database while in this location, you won’t receive any errors, but your
 INSERT or UPDATE queries will fail. To make your database writable, you need to move it to the Document
directory. I will show you how to do this in the following sections.

 From within Xcode, create a new iOS project. For this chapter, I am creating a database editor, so I will
need a Master- Detail template. I am naming the project Db Mgr as an abbreviation for Database Manager.
The language is Swift, of course, and the target device is iPad. Accept the other defaults, but make sure that
"Core Data" is unchecked.

 ■ Note Did you know that Apple uses SQLite behind the scenes for Core Data?

CHAPTER 2 ■ CREATING SQLITE DATABASES

23

 Add Database to the Project
 Adding the database to the project is simple. From the File menu in Xcode, select the Add Files to “Db Mgr ...”
command. A Finder window will open requesting the file location of the database. If you don’t remember
where you saved the database file, you can go back to SQLite Manager and use Directory ➤ Select Default
Directory to identify the location of the directory where the SQLite database file is located.

 Select the file and click the Add button. By default, the file is added to the selected directory or group,
if you selected a group. You can drag and drop the database file anywhere in the Explorer. However, as I
mentioned earlier, the SQLite database file is read-only in this location. You need to copy or move the file to
the Documents directory to ensure that it's writable.

 For this example, I will add code to the AppDelegate application's didFinishLaunchWithOptions
method to copy the database file to the Documents directory. The code is provided here:

 func application(application: UIApplication, didFinishLaunchingWithOptions launchOptions:
[_ NSObject: AnyObject]?) -> Bool {

 //....Code remove for brevity
 var srcPath:URL
 var destPath:URL
 let dirManager = FileManager.default()
 let projectBundle = Bundle.main()
 do {
 let resourcePath = projectBundle.pathForResource("Chapter2", ofType: "sqlite")
 let documentURL = try dirManager.urlForDirectory(FileManager.

SearchPathDirectory.documentDirectory, in: FileManager.SearchPathDomainMask.
userDomainMask, appropriateFor: nil, create: true)

 srcPath = URL(fileURLWithPath: resourcePath!)
 destPath = documentURL.appendingPathComponent("Chapter2.sqlite")

 if !dirManager.fileExists(atPath:destPath.path!) {
 try dirManager.copyItem(at: srcPath, to: destPath)
 }

 } catch let err as NSError {
 print("Error: \(err.domain)")
 }

 }

 This code will run every time the app is started and will check to see if the file is located in the
Documents directory. If it’s not, then it is copied. Ideally, the code should check to see if the file in the
 bundle is newer than the version in the Documents directory and update accordingly.

 There are different ways you could handle this, like having a button in the UI that provides the syntax to
select the file and copy it to the Documents directory. Or, you could have the same code in the viewDidLoad
method of the main ViewController that is loaded after the app is started.

CHAPTER 2 ■ CREATING SQLITE DATABASES

24

 Summary
 This completes this chapter on creating SQLite databases and adding them to an iOS project. The next
chapter focuses on creating SQLite databases during runtime. I will continue to add functionality to the Db
Mgr iPad app.

25© Kevin Languedoc 2016
K. Languedoc, Build iOS Database Apps with Swift and SQLite, DOI 10.1007/978-1-4842-2232-4_3

 CHAPTER 3

 Creating Databases During
Runtime

 One of the great features of SQLite is its ability to create databases while the app is running. You can quickly
add or modify databases as needed.

 In the following sections I will add a data model, a UI for various databases commands and to display
the database schema, and the view controllers to handle the operations. The app will be able to create the
database and add tables and columns as well as indexes, views, and triggers.

 Building the DB Mgr App
 I will continue to build on the same iPad project from the previous chapter in order to provide the
functionality needed to be able to create databases while the app is loaded into memory. I won’t win any
design awards with the app, but it will serve its purpose of reinforcing some of the key features of SQLite on
how to build databases.

 At a high level, the app was conceived to use the detailViewController as the main interface. The
 MasterViewController will retain and display the databases in the app along with schema elements. The
 DetailViewController will include buttons to create and open databases and to create tables, views,
indexes, and triggers. The ViewController will also provide an action to execute queries.

 A data-access class will handle the communication between the data model, which includes the SQLite
database and a custom type as, and the ViewControllers.

 The Application UI
 In this section, I'll add UIButtons and connect them to the assigned view controller. Then, I'll add the
 detailSQLiteQueryField .

 Adding the Buttons
 Adding buttons and connecting them to the assigned view controller is an easy task with the Interface
Builder , or IB for short. To add the buttons, open the main storyboard in the app (Main.storyboard) and
locate the detail scene.

 From the Component palette on the lower right side, drag and drop UIButtons and align them along
the top. Figure 3-1 shows the app with the buttons and the detailSQLiteQueryField . The buttons use .gif
images. I have added all these under the Assets group in the project. If you need to add more or change
some, you can do so by using the Add Files context menu or the File menu in Xcode.

CHAPTER 3 ■ CREATING DATABASES DURING RUNTIME

26

 To configure the image for the button, do the following:

• Select the button in the detail scene.

• From the Attributes inspector , locate the image field.

• Select an image using the file-selector button.

 Once all the buttons are added and configured, we will need to create @IBActions for the buttons
in the DetailViewController . To create the connections, open the Assistant Editor from the open Main.
storyboard file and drag and drop a connection from the UIButton to the open DetailViewController .
When you release the mouse button, a popup appears (Figure 3-2) through which you can do the following:

• Add the IBAction connection name.

• Select the connection type.

• Click on Connect to create the IBAction function and create a connection (dark dot).

• Repeat this process with all the buttons, naming them as follows:

• createTableButton

• createDbButton

• createViewButton

• createIndexButton

• createTrigger

• executeQueryButton

 Figure 3-1. Db Mgr user interface

CHAPTER 3 ■ CREATING DATABASES DURING RUNTIME

27

 We will add the processing logic later when we discuss the DetailViewController .

 Adding the detailSQLiteQueryField
 The detailSQLiteQueryField is a UITextArea component that is also available from the Component palette
in Xcode. It is used to edit the database structure SQL queries and to display the SQL queries that were used
to create existing database schemas.

 You can also create a SQLite database by entering the name of the database with the .sqlite extension
and clicking on the Create/Open Database button. Query confirmation messages and error messages are
also displayed in this field.

 In order to interact with the DetailViewController and the DbMgrDAO controller, we will need to add an
 IBOutlet connection to the controller like we did with the buttons.

 With the detailSQLiteQueryField selected in the storyboard, do the following:

• Open the Assistant Editor.

• Drag and drop a connection.

• Name the outlet detailSQLiteQueryField .

• Make sure the Connection type is IBOutlet and click Connect.

 Creating the Data Model
 The model contains the Db Swift class , which is encapsulated in the Db.swift file. The class is designed with
the same fields as in the sqlite_master table, namely type, name, and sql. There are also constants defined
to hold the query templates that will be modified to architect the database. Figure 3-3 provides a snapshot of
the Db class.

 Figure 3-2. Create IBAction button

CHAPTER 3 ■ CREATING DATABASES DURING RUNTIME

28

 The templates could be contained in a SQLite database, which would improve the design of the app,
but I added them to constants to keep the concept of the app simple. I will use the templates later to create a
wine database that I will use in the next few chapters to show you how to create CRUD queries.

 These templates are basic examples of how to write queries to create a database schema. For instance,
you could create a table using an INSERT statement rather than a CREATE TABLE statement. You could also
use CREATE TABLE along with a SELECT statement to create a table based on a SELECT query definition. Tables
can also be temp, or temporary, as with other SQL systems.

 After creating the Db.swift file using the Swift file template, add the class definition, starting with the
public access identifier, followed by the class keyword and class name. As you can see from the code listing
that follows, the Db class resembles the data model, and you can see the assignment for the Create Table
template, tableDef . There are also SQL templates for views, indexes, and triggers, all assigned to their
respective constants.

 import Foundation

 public class Db{
 // These properties will populate array for MasterViewController
 var type:String = ""
 var name:String = ""
 var sql:String = ""
 var databaseObj:String = ""

 // QUERY TEMPLATES
 let tableDef:String = "CREATE TABLE IF NOT EXISTS main.tablename (\n " +
 "Id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL UNIQUE ,\n " +
 "colVarchar VARCHAR, \n " +
 "colInt INTEGER, \n " +
 "colDouble DOUBLE, \n " +
 "colBool BOOL, \n " +
 "colFloat FLOAT, \n " +
 "colReal REAL, \n " +
 "colChar CHAR, \n " +
 "colBlob BLOB, \n " +

 Figure 3-3. Db data model

CHAPTER 3 ■ CREATING DATABASES DURING RUNTIME

29

 "colDateTime DATETIME, \n " +
 "colNumeric NUMERIC, \n " +
 "colRealStrict REAL check(typeof('colRealStrict') = 'real'), \n " +
 "colIntStrict INTEGER check(typeof('colIntStrict') = 'integer'), \n " +
 "colTextStrict TEXT check(typeof('colTextStrict') = 'text') \n "

 let viewDef:String="CREATE VIEW IF NOT EXISTS “ +
 “ viewname AS SELECT * FROM main.tablename " +
 " or CREATE VIEW viewname AS SELECT columns FROM main.tablename

where column equals value" +
 " or CREATE temp (or temporary) VIEW viewname AS SELECT columns FROM “ +
 “ main.tablename "

 let indexDef:String = "CREATE UNIQUE INDEX IF NOT EXISTS main.indexname " +
 " ON TABLE tablename (Column defintion) WHERE where clause"

 let triggerDef:String="CREATE TRIGGER triggername AFTER INSERT ON main.table" +
 "FOR EACH ROW " +
 "WHEN (columnnmae) some condition " +
 "BEGIN " +
 " update Book set Royalties = Sales * .15; " +
 "END"

 The next part of the Db class includes the methods. The selectDbSchemaStructure method returns
the schema of either a specific element or all elements in a database. The selectDbSchemaListByType
method returns a list of element names based on a type that is specified though the typeName String
parameter. This method is used to build the lists of arrays for the data source of the UITableView in the
 MasterViewController . The queries are straightforward, SQL-compatible query strings. These will be used
later in the executeQuery method.

 init(){

 }

 func selectDbSchemaStructure(_ objectName:String)->String{
 var def:String = ""
 if(!objectName.isEmpty){
 def = "SELECT type, name, tbl_name, “ +
 “sql FROM main.sqlite_master WHERE name='\(objectName)';"
 }else{
 def = "SELECT type, name, tbl_name, sql FROM main.sqlite_master ;"
 }

 return def
 }

 func selectDbSchemaListByType(_ typeName:String)->String{
 var def:String = ""
 if(!typeName.isEmpty){
 def = "SELECT name FROM main.sqlite_master WHERE type='\(typeName)';"
 }

CHAPTER 3 ■ CREATING DATABASES DURING RUNTIME

30

 return def
 }

 }

 The Enums class is a small helper class used to generate the SQLite return codes that the various
functions (SQLite and Swift alike) will use as an enum. The complete code for the class is provided here:

 import Foundation
 public class Enums{
 enum SQLiteStatusCode : Int32 {
 case ok = 0
 case error = 1
 case internalLogicError = 2
 case accessPermissionDenied = 3
 case abort = 4
 case busy = 5
 case noMemory = 7
 case readOnly = 8
 case interrupt = 9
 case iOError = 10
 case corrupt = 11
 case notFound = 12
 case full = 13
 case cantOpen = 14
 case protocol = 15
 case empty = 16
 case schema = 17
 case tooBig = 18
 case constraint = 19
 case mismatch = 20
 case misuse = 21
 case noLFS = 22
 case authDeniedUTH = 23
 case format = 24
 case range = 25
 case notADatabase = 26
 case row = 100
 case done = 101
 }

 Creating the Controllers
 In this section, I'll be creating three controllers: DbMgrDAO (the main workhorse of the app), MasterView
(retrieves and displays a list of databases and its corresponding schemas), and DetailView (the working area
of the app). Let's have a look now.

CHAPTER 3 ■ CREATING DATABASES DURING RUNTIME

31

 The DbMgrDAO Controller
 The Swift class handles the database operations of creating the database, tables, views, indexes, and
triggers as needed. The class also fetches records from the open SQLite database that will be displayed in the
 MasterViewController . Query execution operations are also handled by the class.

 DbMgrDAO is a subclass of the standard NSObject, which is a basic class in the Foundation framework. To
create the subclass, right click on the controller group and select New File from the context menu. From the
iOS Source heading of the available file templates, select the Swift file template. You could create the class by
using the CocoaTouch template, which would provide an Input page on which to select the subclass from a
list of available classes. However, using this method, the template would add the Import UIKit framework at
the top of the class file, while the NSObject class is located in the Foundation framework, so you would need
to change that; otherwise, you would receive complaints.

 By using the Swift file template, the Foundation framework will be added by means of the import statement,
but the template will do little else after you provide a file name and add the file to the project. For this example, I
am naming the file DbMgrDAO , of course. Once the file is created, it will be automatically loaded in the editor.

 To set up the class, you will need to add the class definition statement below the import instruction.
You’ll probably notice that I have added the UIKit framework as well as the Foundation framework. The class
will classes from this framework to interact with DetailViewController later. You add it now, however.

 Directly below the import statements, add the public class DbMgrDao:NSObject class definition
statement followed by a curly brace. The Xcode editor will add the closing curly brace for you when you
press the Enter key.

 import Foundation
 import UIKit

 public class DbMgrDAO:NSObject{

 }

 Immediately following the class definition, I will add some properties variables. The db variable has a
 COpaquePointer data type. This data type is a wrapper for the C opaque pointer, which is a pointer for unknown
data types. SQLite make use of pointers throughout its API. The dbPath variable is an NSURL data type and will be
used to hold the path for the stored database that is open. To pass queries to the SQLite database engine, you will
need a prepared statement, which is set up using a COpaquePointer as well and is named sqlStatement .

 var db:CopaquePointer?=nil
 var dbPath:URL = URL()
 var sqlStatement:CopaquePointer?=nil
 var dbErr: UnsafeMutablePointer<UnsafeMutablePointer<Int8>>?= nil
 var errmsg:String=""

 override init() {
 //code here
 }

 The populateIndexView Function
 Following the init function, I define the populateIndexView function . The first parameter, defined as
 AnyObject, is actually the DetailViewController . The second parameter is a SELECT query that will be used
to populate the TableView in the MasterViewController . The function will return an array of Strings. I could
replace this with a custom type property, but this design works fine for my demonstration needs in this app,
especially since I am only returning a list of database schema names from the sqlite_master table.

CHAPTER 3 ■ CREATING DATABASES DURING RUNTIME

32

 After defining the return array variable, I create a DetailViewController variable and assign it the
actual DetailViewController object from the DetailViewController by using the isKindOfClass method.

 Next, I check to see if the database is still open and open it if necessary. Otherwise, I send the
 preparedStatement and query and sqlStatement and query respectively to the database engine for
execution. Notice how the Swift string is converted to the char data type that is required by SQLite using
the cStringUsingEncoding (NSUTF8StringEncoding) method of the String class. If any errors are thrown, I
assign them to my errmsg variable by passing sqlite3.errmsg(db) to fromCString .

 The preparedStatement in SQLite is created by using the sqlite3_prepare_v2 function. Once the
results are all retrieved, you need to call the sqlite3_finalize function that takes preparedStatement
as an argument. Once the sqlite3_prepare_v2 function is executed and the return status code, Enums.
SQliteStatus.Code —which you will need to get the Swift enum’s rawValue —is equal to OK or 0, you can
step through the result set using the sqlite3_step function, as seen in the code that follows. You can loop
the values by checking the return code, which should be 0 or OK. For this app, I am creating an instance of
the Db class for each iteration and assigning its name property the value of the returned name column in the
query. Converting the C string to a Swift string requires some fancy footwork.

 To retrieve a column value, you need to use one of the preparedStatements column methods of the
corresponding type. Since the name column in the database I will create later has a varchar data type, I
need to use the sqlite3_column_ text method. This method returns a C unsigned char, which we will need
to cast using the unsafePointer with an Int8 primitive type that is a char. This value is then converted to a
Swift string using the cString method that we saw before.

 ■ Note The process of binding Swift data to SQLite columns is pretty much the same for the other data
types, as I outlined in the previous paragraph. Check out the SQLite Prepared Statement web page (https://
www.sqlite.org/c3ref/stmt.html) for the complete list of methods and functions and the corresponding
argument requirements and return types.

 With the result in hand, I only need to assign the value to the name property of the Db object and append
this value to the result-set array.

 The array is returned to the calling array variable in the MasterViewController, which will update the
 TableView ’s data source and reload the data into the UITableView .

 That completes the discussion on populating a data source for the TableView . I demonstrated how to
retrieve values from a SQLite database. As I mentioned earlier, we will explore SELECT statements later on in
the chapter devoted to it, along with its API.

 func populateIndexView(_ sender:AnyObject, query:String)->Array<String>{
 var resultset = [String]()
 let sourceVC:DetailViewController = nil;
 if(sender.sourceViewController.isKindOfClass(DetailViewController)){
 sourceVC:DetailViewController = sender as! DetailViewController
 }

 if sqlite3_open(dbPath.path!, &db) != SQLITE_OK {
 errmsg = "error opening database"
 print(errmsg)
 sourceVC.detailSQLiteQueryField.text = errmsg

 }

https://www.sqlite.org/c3ref/stmt.html
https://www.sqlite.org/c3ref/stmt.html

CHAPTER 3 ■ CREATING DATABASES DURING RUNTIME

33

 let statuscode = sqlite3_prepare_v2(db, query.cString(using: String.Encoding.utf8)!,
-1, &sqlStatement, nil)

 if(statuscode != Enums.SQLiteStatusCode.ok.rawValue){
 errmsg = String (cString: sqlite3_errmsg(db))!
 print("error preparing select: \(errmsg)")

 if(sender.sourceViewController.isKind(of: DetailViewController.self)){
 let sourceVC:DetailViewController = sender as! DetailViewController

 sourceVC.detailSQLiteQueryField.text = errmsg
 }

 }else{
 while (sqlite3_step(sqlStatement)==Enums.SQLiteStatusCode.row.rawValue){
 let dbVal:Db=Db.init()

 dbVal.name = String (cString: UnsafePointer<Int8>(sqlite3_column_
text(sqlStatement, 1)))!

 resultset.append(dbVal.name)
 }

 sqlite3_finalize(sqlStatement);
 }

 return resultset
 }

 The initViewIndex function
 The next Swift function we will look at is initViewIndex . This function has a singular duty: to peruse
the Documents directory and retrieve a list of SQLite databases. This list is inserted into an array called
 sqliteDbs and is returned to the calling object. This function is called when the app is loaded from the
 viewDidLoad function in the MasterViewController .

 func initViewIndex()->Array<String>{
 var sqliteDbs:[String]=[]
 let documentsDir = FileManager.default.urlsForDirectory(.documentDirectory,

inDomains: .userDomainMask).first!

 do {
 let directoryUrls = try FileManager.default.contentsOfDirectory(at:

documentsDir, includingPropertiesForKeys: nil, options: FileManager.
DirectoryEnumerationOptions())

 sqliteDbs = directoryUrls.filter{$0.pathExtension! == "sqlite" }.map{
$0.lastPathComponent! }

CHAPTER 3 ■ CREATING DATABASES DURING RUNTIME

34

 } catch let error as NSError {
 print(error.localizedDescription)
 }
 return sqliteDbs

 }

 The logic in the function is pretty easy. It starts by getting a handle on the Documents directory through
the NSFileManager. default class and function. Afterward, it attempts to retrieve all the contents of the
Documents directory, including any sub-directories, by using the contentsOfDirectoryAtURL method in
the NSFileManager class.

 A filter is applied to the list so as to return only the files with a .sqlite extension (I am taking a leap of
faith here that all SQLite databases have a .sqlite extension, which may not be the case in a production
environment). The map is used to extrapolate only the last part of the returned paths.

 The filter and map design have been reworked in the latest version of Swift to apply a mapReduce pattern
of sorts. The design pattern eliminates the need to iterate through an array, hence it is much more efficient.
The filter uses a Boolean expression to test and return the reduced list. The map function is used to extract or
perform a transformation on portions of a collection that has been filtered.

 The executeQuery function
 The executeQuery , as its name implies, executes SQLite queries. I make extensive use of this function in
association with the Execute Query button in the DetailedViewController that we will explore later. The
function follows a path similar to that of the other functions that perform SQLite operations—namely, it
ensures the database is open or opens it as needed using the sqlite3_open command. If it can’t open the
database—or create it, for that matter—it returns an error message that will be displayed in the Editor field in
the DetailViewController .

 func executeQuery(_ sender:AnyObject, query:String?)->String{
 let sourceVC:DetailViewController = nil;
 if(sender.sourceViewController.isKindOfClass(DetailViewController)){
 sourceVC = sender as! DetailViewController
 }
 var statuscode:integer_t=0
 //There is no error checking but you should have it in a production app
 //You should see if database is present and open also.
 if sqlite3_open(dbPath.path!, &db) != Enums.SQLiteStatusCode.ok.rawValue {
 errmsg = "error opening database or database does not exist"
 }else{
 let query = query!.replacingOccurrences(of: "\n", with: "")
 statuscode = sqlite3_exec(db, query.cString(using: String.Encoding.utf8)!, nil,

nil, dbErr);
 if(statuscode != Enums.SQLiteStatusCode.ok.rawValue){
 errmsg = String.fromCString(sqlite3_errmsg(db))!
 }else{
 errmsg = "query was successful"
 }
 }
 return errmsg
 }

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3 ■ CREATING DATABASES DURING RUNTIME

35

 Next, the function preps the query string by removing the newline character \n using
 stringByReplacingOccurencesOfString , because, if you remember, the templates that I defined included
the newline character, as I wanted them to display properly in the SQL editor, which I will show later. Of
course, if the query string doesn’t include any of these characters then this line of code won’t do anything.

 The important line of code is the sqlite3_exec command. This command is really great, since it
encapsulates sqlite3_prepare_v2 , sqlite3_step , and sqlite3_finalize . I tend to use this command
when I am doing inserts, updates, or deletes and opt to use the longer version for selects simply because
I find I have more control to map the retuning columns to a custom data type. Using sqlite3_exec with a
 select query is possible; however, you need to provide a callback function in order for the third argument to
handle the result set. The command returns a status code, which I then use to update the editor on the status
of the transaction.

 The openSQLiteDatabase Function
 The openSQliteDatabase function is a simple function and is similar to some of the other functions. Its sole
duty is to create the database and open it using a user-supplied file name from the editor (UITextArea) field
in the DetailViewController . As we have seen before, the SQLite database is created in the Documents
directory, since this is one of the few places in the apps sandbox that has read/write permissions. If you
create the file in the root of the app, it will automatically be read-only, and, to make matters worse, you or
your app users won’t receive any error messages saying that it not writable.

 func openSQLiteDatabase(databaseName:String)->Enums.SQLiteStatusCode{

 //SQLite database is always created in Documents directory
 // I am assuming that the database name has the .sqlite extension for the sake of

simplicity
 //Also, you would need to check if databaseName is not empty
 let dirManager = FileManager.default()
 do {
 let directoryURL = try dirManager.urlForDirectory(FileManager.

SearchPathDirectory.documentDirectory, in: FileManager.SearchPathDomainMask.
userDomainMask, appropriateFor: nil, create: true)

 dbPath = try! directoryURL.appendingPathComponent(databaseName)
 } catch let err as NSError {
 print("Error: \(err.domain)")
 }
 return Enums.SQLiteStatusCode(rawValue: sqlite3_open(dbPath.absoluteString.cString

(using: String.Encoding.utf8)!, &db))!
 }

 The function gets a handle on the Document directory and appends the name of the database file to
the path using URLByAppendingPathComponent . Then the sqlite3_open command is used to create the
database, open it, and return the status code. Notice how the path has to be converted to the char data type
that SQLite understands using absoluteString.cStringUsingEncoding and the UTF8 encoding.

 That completes the logic for the DbMgrDAO class. The next two sections will deal with setting up the
 MasterViewController , the DetailViewController , and, finally, the UI.

CHAPTER 3 ■ CREATING DATABASES DURING RUNTIME

36

 The MasterViewController
 The MasterViewController uses a UITableView component. The TableView displays both databases as well
as their corresponding schemas in a multiple-section view. As databases are created, they are added to the
 TableView ’s data source, and the display is reloaded. When a database file is selected, the corresponding
schema is subsequently retrieved from the database using a SELECT query and is displayed in the section
associated with either a table, view, index, or trigger schema element.

 There are a number of functions that need to be implemented for the UITableView , its data source, and
its delegate, along with several custom functions.

 import UIKit

 class MasterViewController: UITableViewController {

 var detailViewController: DetailViewController? = nil
 var objects = [AnyObject]()
 //inmutable array
 let schemaSections = ["Databases", "Tables", "Views", "Indexes", "Triggers"] var

schemaDetailsItems=[[String]]()
 var tableArray:[String] = []
 var viewArray:[String] = []
 var indexArray:[String] = []
 var triggerArray:[String] = []
 var dao:DbMgrDAO = DbMgrDAO.init()

 Let’s start at the beginning with the custom properties. The first variable is detailViewController
in order to get a handle on the DetailViewController so that I may pass status messages back to
the editor without going through the segue , as is the normal documented route. Yes, that route is bi-
directional. The objects variable is a catch-all bucket for an array for every type of object. Then, I have the
 schemaSection immutable array to define the table sections for the databases and corresponding schemas.
 schemaDetailsItems is a mutable array for the schemas categorized by tables, views, indexes, and triggers.
The tableArray , viewArray , indexArray , and triggerArray, as you might suspect, are the arrays for the
section details. It is almost like creating a JSON data structure, since these last four arrays will be appended
to the schemaDetailsItems array, as will be seen in the didViewLoad function. This variable is an instance of
the DbMgrDAO class. I will use it to call the various functions I mentioned in the previous section.

 The viewDidLoad Function Implementation

 override func viewDidLoad() {
 super.viewDidLoad()

 schemaDetailsItems.append(dao.initViewIndex())
 schemaDetailsItems.append(tableArray)
 schemaDetailsItems.append(viewArray)
 schemaDetailsItems.append(indexArray)
 schemaDetailsItems.append(triggerArray)

 if let split = self.splitViewController {
 let controllers = split.viewControllers

CHAPTER 3 ■ CREATING DATABASES DURING RUNTIME

37

 self.detailViewController = (controllers[controllers.count-1] as!
UINavigationController).topViewController as? DetailViewController

 }
 }

 From the preceding code, you can extrapolate the knowledge of how to populate the UITableView
data source in the MasterViewController . First, initViewIndex is called when the app is loaded from
the AppDelegate object, which is called when the app is launched from the main.swift file. The results of
 initViewIndex are appended to the schemaDetailsItems array. I also append empty arrays for the other
sections; otherwise, the Swift compiler complains that the other sections are empty or non-existent.

 The remaining code sets up the splitViewController, the navigation, and making the
 detailViewController the initial or top controller. You don’t need to change or touch this.

 I am presenting one option, or technique, on populating a TableView . However, you can also set up a
 UITableViewCell that can act as the controller for the cell. In my case, I am using two data sources to build
the main data source, so it would be hard to define a cell controller, but not impossible.

 I won’t touch on the functions that I am not using but that are implemented as part of the UITableView
implementation, namely viewWillAppear and didReceiveMemoryWarning .

 The Data Source Functions' Implementations
 The following functions are required in order to set up and display the data in the TableView . The
 titleForHeaderInSection returns the Section Title, so, for this app, this would be Databases, Tables, Views,
Indexes, and Triggers. The numberOfSectionsinTableView function will how many sections the TableView
will contain. For this app, it will be 5, which is the number of elements in the schemaSections array.
 numberOfRowsInSection configures the number of rows to display. This is usually the count of elements in
the array that is serving as the data source. Since I am using nested arrays, I will use the number of rows per
section as schemaDetailsItems [section].count . The last required function, cellForRowAtIndexPath ,
defines the cell display. Here, I am setting the cell to display the value found in the data source at the
 IndexPath.section of schemaDetailsItems :

 override func tableView(_ tableView: UITableView, titleForHeaderInSection section: Int) ->
String?

 return self.schemaSections [section]

 }

 override func numberOfSections(in tableView: UITableView) -> Int {
 return self.schemaSections.count
 }

 override func tableView(_ tableView: UITableView, numberOfRowsInSection section: Int) ->
Int {

 return schemaDetailsItems [section].count
 }

 override func tableView(_ tableView: UITableView, cellForRowAt indexPath: IndexPath) ->
UITableViewCell {

 let cell = tableView.dequeueReusableCell (withIdentifier: "Cell", for: indexPath)

CHAPTER 3 ■ CREATING DATABASES DURING RUNTIME

38

 cell.textLabel?.text = self.schemaDetailsItems[(indexPath as NSIndexPath).section]
[(indexPath as NSInpexPath).row]

 return cell
 }

 When you need to navigate between scenes, you do so by defining threads called segues between the
various scenes. When the app moves from one view (scene) to another, the prepareForSeque function
is called. This function is very important, as it also provides a transport for data and objects to the next
 ViewController . However, prepareForSegue can only be used in one direction. If you want to return to
the calling ViewController, you need unwind from the scene, which entails creating an unWindFromSegue
function. The concept is similar to backing out of the history path in an Internet browser. However, with
unwinding you can only unwind one scene at a time and in the order that you moved forward.

 I have opted to use the tableView didSelectRowAtIndexPath , which returns the selected row. This
method is provided through the delegate. The selectDb variable stores the selected value at the specified
row index. After checking to ensure that the database is open, I query the sqlite_master table using a
 SELECT statement and assign the results to individual mutable arrays. I then append these arrays to the
 schemaDetailsItems array after I remove any existing items. If you don't, you will get a very long array
with each click, and your items won’t display in the TableView since this array won’t line up with the
 schemaSections array. Once the data source is set, I reload the TableView to refresh the view with the new
data.

 override func tableView(tableView: UITableView, didSelectRowAt indexPath: IndexPath) {

 var selectdb = schemaDetailsItems[0][(indexPath as NSIndexPath).row]

 if(dao.openSQLiteDatabase(selectdb[0]).rawValue == Enums.SQLiteStatusCode.
ok.rawValue){

 let db:Db = Db.init()
 let tables:String = db.selectDbSchemaListByType("table") as String
 let views:String = db.selectDbSchemaListByType("view") as String
 let indices:String = db.selectDbSchemaListByType("index") as String
 let triggers:String = db.selectDbSchemaListByType("trigger") as String

 tableArray = dao.populateIndexView(self, query:tables)
 viewArray = dao.populateIndexView(self, query:views)
 indexArray = dao.populateIndexView(self, query:indices)
 triggerArray = dao.populateIndexView(self, query:triggers)
 }

 schemaDetailsItems.removeAll()
 schemaDetailsItems.append(dao.initViewIndex())
 schemaDetailsItems.append(tableArray)
 schemaDetailsItems.append(viewArray)
 schemaDetailsItems.append(indexArray)
 schemaDetailsItems.append(triggerArray)
 tableView.reloadData()
 }

CHAPTER 3 ■ CREATING DATABASES DURING RUNTIME

39

 The DetailViewController
 The DetailViewController contains buttons to create and open a SQLite database and load SQL templates
as well as to execute the queries to create the database schema.

 The following code is the app’s implementation of the processing logic as it relates to the interaction
with the user, the controllers, and the model. Since the DetailViewController is a subclass of the
 UIViewController , there are several functions that are provided with the class.

 From the code, you’ll notice that I create an instance of the DbMgrDAO class as well as an instance of the
 Db class. I call their init functions to initiate the classes.

 The createDbButton @IBAction
 The createDbButton is an @IBAction . As we have seen in the section on building the UI, the function is
connected to the UIButton in the UI Detail Scene. I assign the value from the detailSQLiteQueryField
to the dbname constant. This value will be passed to the openSQLiteDatabase method that we previously
discussed to create and open the database file, thus creating a connection with the database. If the return
value is OK or 0, I will display a success or confirmation message in the same detailSQLiteQueryField .

 //
 // DetailViewController.swift
 // Db Mgr
 //
 // Created by Kevin Languedoc on 2016-05-20.
 // Copyright © 2016 Kevin Languedoc. All rights reserved.
 //

 import UIKit

 class DetailViewController: UIViewController {
 let dbDAO:DbMgrDAO = DbMgrDAO.init()
 let database:Db = Db.init()
 var dbname:String = ""
 var dbStatusMsg:String = ""

 @IBAction func createDbButton(_ sender: AnyObject) {
 dbname = self.detailSQLiteQueryField.text
 if(dbDAO.openSQLiteDatabase(dbname).rawValue == Enums.SQLiteStatusCode.ok.rawValue){
 self.detailSQLiteQueryField.text = "SQLite database \(self.

detailSQLiteQueryField.text) is created and open"

 if let delegate = self.delegate {
 delegate.didOpenDatabase(self, databaseName: dbnane)
 }

 }
 }

 That is pretty much it for the button. Let’s look at the remaining IBActions functions that are connected
to the buttons in the Detail scene next.

CHAPTER 3 ■ CREATING DATABASES DURING RUNTIME

40

 The Create Database Schema @IBAction Buttons
 The first four functions are very simple. They display the corresponding SQL queries for the database
elements that can be created in a SQLite database: tables, views, triggers, and indexes. The fifth function
calls the executeQuery function, passing the contents of the detailSQLiteQueryField to it. The returned
message is assigned to the same field.

 Each of the button functions is assigned either the tableDef , viewDef , triggerDef , or indexDef query
templates from the database object, which is an instance of the Db class.

 @IBAction func createTableButton(_ sender: AnyObject) {
 self.detailSQLiteQueryField.text = database.tableDef
 }

 @IBAction func createViewButton(_ sender: AnyObject) {
 self.detailSQLiteQueryField.text = database.viewDef
 }

 @IBAction func createTriggerButton(_ sender: AnyObject) {
 self.detailSQLiteQueryField.text = database.triggerDef
 }

 @IBAction func createIndexButton(_ sender: AnyObject) {
 self.detailSQLiteQueryField.text = database.indexDef
 }
 @IBAction func executeQueryButton(_ sender: AnyObject) {
 self.detailSQLiteQueryField.text = dbDAO.executeQuery(self.detailSQLiteQueryField.

text)
 }

 The detailSQLiteQueryField @IBOutlet
 The detailSQLiteQueryField is an IBOutlet variable associated with the UITextArea component of the
same name in the Detail scene. It is the main work area of the UI, loading and editing queries as well as
providing the SQLite database file to create and/or open.

 The variable’s signature is completely defined through the Interface Builder (IB). Keep in mind that you
can create the same functionality programmatically.

 @IBOutlet weak var detailSQLiteQueryField: UITextView!

 Set Up the View
 When the Detail scene is first loaded after the app is launched, the detailItem and the configureView
functions are called from the viewDidLoad function. These are also called when prepareForSeque is called
from the MasterViewController .

 The modifications I did here were to replace the UITextfield that is included with the Master-Detail
template with the detailSQLiteQueryField in order to receive information through the prepareForSegue
function, and to add the code to open the selected database from the MasterViewController TableView,
passing the value of detail.description . The status message is assigned to a variable dbStatusMsg instead

CHAPTER 3 ■ CREATING DATABASES DURING RUNTIME

41

of being passed directly to the detailSQLiteQueryField, because the field is not yet created when the
function is called. Instead, I assign the value of dbStatusMsg to the field in the viewWillAppear function.

 var detailItem: AnyObject? {
 didSet {
 // Update the view.
 self.configureView()
 }
 }

 func configureView() {
 if let detail = self.detailItem {
 if(dbDAO.openSQLiteDatabase(detail.description).rawValue == Enums.

SQLiteStatusCode.ok.rawValue){
 dbStatusMsg = "SQLite database \(detail.description) is created and open"
 }
 }
 }

 The viewDidLoad Function Implementation
 I replaced all the code that is included in the viewdidLoad function, except for the self.configureView ,
with some setup code to set up the detailSQLiteQueryField .

 override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view, typically from a nib.
 // Update the user interface for the detail item.
 self.detailSQLiteQueryField.layer.borderWidth = 1.0
 self.detailSQLiteQueryField.layer.borderColor = UIColor.gray().cgColor
 self.configureView()
 }

 The viewWillAppear Function Implementation
 When the viewWillAppear function is called, I assign the value of dbStatusMsg to the
 detailSQLiteQueryField , thus ensuring that the field is actually available.

 override func viewWillAppear(_ animated: Bool) {
 self.detailSQLiteQueryField.text = dbname
 }

 Building the Winery Database
 To finish this chapter, I want to demonstrate creating a database, which I will use for chapters 5 – 9 . These
chapters will perform CRUD operations using an app for wines.

http://dx.doi.org/10.1007/978-1-4842-2232-4_5
http://dx.doi.org/10.1007/978-1-4842-2232-4_9

CHAPTER 3 ■ CREATING DATABASES DURING RUNTIME

42

 Create the Winery.sqlite File
 The task is really easy. Enter the Winery.sqlite filename in the detailSQLiteQueryField and click on
the Create/Open Database button (createDbButton). I provided code snippets from the createDbButton
function in the DetailViewController as well as the openSQLiteDatabase function in the DbMgrDAO class for
reference.

 In the createDbButton function, the openSQLiteDatabase is called, passing the file name Winery.
sqlite for its required parameter. You have probably noticed that there isn’t any error checking beyond what
is required by the SQLite functions. Also, I optimistically assume that the return code will be 0 or successful
and display a successful creation message.

 @IBAction func createDbButton(sender: AnyObject) {
 dbname = self.detailSQLiteQueryField.text
 if(dbDAO.openSQLiteDatabase(dbname).rawValue == Enums.SQLiteStatusCode.ok.rawValue){
 self.detailSQLiteQueryField.text = "SQLite database \(self.

detailSQLiteQueryField.text) is created and open"
 }
 }

 In openSQLiteDatabase , you may recall that I get a handle on the Documents directory because it is one
of the few places in an app’s sandbox that is writeable, and then I call the sqlite3_open SQLite function to
create and/or open the database at the requested path. If the file name at the requested path doesn’t exist,
then sqlite3_open will create the database file and open it; otherwise, the function will attempt to open the
database file, and by doing so establish a connection.

 func openSQLiteDatabase(databaseName:String)->Enums.SQLiteStatusCode{
 let dirManager = FileManager.default()
 do {
 let directoryURL = try dirManager.urlForDirectory(FileManager.

SearchPathDirectory.documentDirectory, in: FileManager.SearchPathDomainMask.
userDomainMask, appropriateFor: nil, create: true)

 dbPath = try! directoryURL.appendingPathComponent(databaseName)
 } catch let err as NSError {
 print("Error: \(err.domain)")
 }
 return Enums.SQLiteStatusCode(rawValue: sqlite3_open(dbPath.absoluteString.cString

(String.encoding.utf8)!, &db))!
 }

 With the database in hand, I will now create the tables and views.

 Adding the Tables
 Recall the Create Table and Create View buttons in the UI? If you click on these, they will load the templates
in the Db class into the detailSQLiteQueryField field to be edited. Once the queries are to your liking,
you need only click on the Execute Query button (executeQueryButton) to execute the query through the
database engine and create the database structure in the open database file.

 For the winery.sqlite database and app, I will need two tables: wine and producer. I could easily
extend this with a few more tables and views and triggers. I won’t go into joins or foreign keys here, as I will
revisit them in detail in chapter 5 on inserting records. Suffice to say that the two tables will have a foreign-
key relationship, and the view will use a join to access data from both for display.

http://dx.doi.org/10.1007/978-1-4842-2232-4_5

CHAPTER 3 ■ CREATING DATABASES DURING RUNTIME

43

 The first table I will create is the producer table. This table will contain the data on the wine producers.
The second table, wine , will contain information on the bottles of wine. The schema is outlined in Table 3-1 .
The foreign key will be in the wine table and is defined by the Producer_id field.

 Table 3-1. Winery Schema

 wine producer

 id id

 Producer_id name

 name country

 Rating region

 type

 To create the table in the winery.sqlite database, follow these steps:

 1. From the running app (iOS Simulator or installed on iPad), enter "winery.sqlite"
in the editor field and click on the Create/Open Database button.

 2. If the database is successfully opened, you will get a success message back that
replaces the text in the same field.

 3. Next, click on the Create Table button to load the Create Table template into the
editor field.

 4. Modify the query so that it looks like this:

 CREATE TABLE IF NOT EXISTS main.producer (
 Id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL UNIQUE ,
 Producer_id integer,
 Name VARCHAR,
 Country VARCHAR,
 Region VARCHAR,
 Foreign Key (Producer_id) references producer(id))

 5. Click on the Execute Query button to create the table. You should receive a
“query is successful” confirmation message.

 6. Repeat the same process for the wine table. The following is the query to use:

 CREATE TABLE IF NOT EXISTS main.producer (
 Id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL UNIQUE ,
 Name VARCHAR,
 Country VARCHAR,
 Region VARCHAR

)

 Again, you should get the “query is successful” confirmation message. With the two tables in place, all
that remains is the view to display the results. The next section will provide the details for the view.

CHAPTER 3 ■ CREATING DATABASES DURING RUNTIME

44

 Adding the View
 Since this is a very simple database and app, I will create just one view that will select the columns from each
table using a join. The code is as follows:

 CREATE VIEW IF NOT EXISTS wines AS SELECT w.name, w.rating, w.type, p.producer, p.country,
p.region FROM main.wine w INNER JOIN main.producer p on w.id = p.id

 SQLIte supports three types of joins. You can use the joins as just seen, or you can use the USING
(columns array) clause to build the predicate for data selection and relationship definition:

• INNER JOIN

• CROSS JOIN

• OUTER JOIN

 Summary
 That completes this chapter on creating databases during runtime. We looked at designing and building
a database manager app that is capable of executing SQLite queries to create tables, views, indexes, and
triggers. We also looked at creating a database with two tables and a view using the database manager app.

 In the next chapter, I will add functionality to the Db Mgr app to modify and delete database elements.

45© Kevin Languedoc 2016
K. Languedoc, Build iOS Database Apps with Swift and SQLite, DOI 10.1007/978-1-4842-2232-4_4

 CHAPTER 4

 Altering Databases and Other
Features

 SQLite doesn’t have an extensive API for modifying databases. Nevertheless, it does still offer functions to
alter tables, and we can still alter views, triggers, and indexes as well as functions.

 This chapter will focus on demonstrating SQLite’s altering capabilities as well as on modifying a
database using the platform’s other tools, including the following:

• Altering table

• Modifying views

• Modifying indexes

• Modifying triggers

• Re-indexing a table

• Deleting tables

• Deleting views

• Deleting indexes

• Deleting triggers

 In this section of the chapter, I will add the modifying database functionality as well as explore the other
unique features of SQLite; for instance:

• Collation sequences

• The JSON extension

• SQLite functions

• Creating custom SQLite functions

• Pragma expressions

• SQLite limits

• SQLite database corruption issues

CHAPTER 4 ■ ALTERING DATABASES AND OTHER FEATURES

46

 Modifying Tables
 Three options are available for modifying a SQLite table. You can rename a table using the RENAME
command , add a column using the ALTER command , and re-index using the REINDEX command . There is no
function or command to alter a column, but it is still possible.

 You also need to keep in mind how to handle foreign keys and indexes. You can’t directly alter these
using a built-in function or command, but it is still possible. Let us start with how to rename a table.

 Renaming a Table
 Renaming a table is a very simple task, as you only need to issue the RENAME clause in the ALTER TABLE
SQLite command. However, a couple of caveats must be respected. First, you cannot move or copy a table
from one database to another, either within the same file or in another database file. While we will look at
this feature in more depth in a later chapter, SQLite allows for multiple databases in a single database file.
Second, if you have foreign-key constraints defined, you will need to disable them first.

 Foreign keys with references will be renamed as a result the renaming, both in the table being altered
and in the referenced table. However, any indexes, views, and/or triggers that reference a table that is
renamed must be manually modified.

 Simple Table Renaming
 Except for constraints, renaming a table only requires the following, for example:

 ALTER TABLE main.producer RENAME main.wineries

 Complex Table Renaming
 Of course, if you have constraints on a table, or on indexes, or if you have triggers and views that reference
the table that you are renaming, you should use the following procedure and make the alterations.

 Run a SELECT query on the sqlite_master table to get a copy of the query you used to create the
indexes, views, and triggers. You can use a query similar to this:

 SELECT sql from main.sqlite_master

 This query would return all SQL statements for each type of element in the database. I recommend
saving this query either to a file or another database so that you have a reference to modify and re-create
these elements later. You could also just extract the SQL statements for specific elements, like a view or
trigger, in which case the SQL SELECT query would look something like the following:

 SELECT sql FROM main.sqlite_master WHERE type = ‘view’ or type = ‘trigger’

 This type of query would return all the statements associated with these database objects.
 Once you have these queries in hand, you can disable any constraints by issuing the following

command:

 PRAGMA foreign_keys=OFF

 Followed by the rename statement from earlier.

CHAPTER 4 ■ ALTERING DATABASES AND OTHER FEATURES

47

 Once the renaming is complete, you re-create the indexes, views, and triggers using the CREATE function
for each of the objects after you have dropped them from the database. To drop, you simply use the DROP
command, as follows:

 DROP viewname
 DROP triggername
 DROP indexname

 Finally, re-enable the foreign keys using the PRAGMA foreign_keys= ON command, as follows:

 PRAGMA foreign_keys=ON

 These sequences of SQL queries can all be executed from the Db Mgr app using the Rename table menu
command. Finally, you should run an UPDATE query to update the sqlite_master table with any changes to
your table, as follows:

 UPDATE main.sqlite_master
 SET sql = ‘ new creatw table query’
 WHERE type = ‘table’
 AND name = ‘your table name’

 ■ Warning If you run an update on the sqlite_master and your update query has syntax errors, you will corrupt
the sqlite_master table and your database. It is best to test your update query on a blank database or on a test
table with a similar structure as the sqlite_master table to ensure that the update query works as expected.

 In the next section, I will show how to add columns to an existing table.

 Adding Columns
 Adding columns to a SQLite database table is the second actual way of altering a SQLite database table. By
this I mean that the ALTER command is only available for these two use cases. As with the renaming, the
 Add Column functionality has a few caveats that you need to adhere to in order to add columns to a SQLite
database table; otherwise, you can define a new column using the CREATE TABLE statement.

• The new column cannot be defined as a primary key.

• The added column cannot have a date-time default value defined using the following
functions: CURRENT_TIME , CURRENT_DATE , CURRENT_TIMESTAMP.

• If the column is set to NOT NULL , then you must provide a default value.

• If you are adding a column that will be used as reference to a foreign key, then the
column must be set to NULL as a default value.

• Each new column must be added individually.

 To add a column to an existing table, you simply need to run a SQL query; for example:

 Alter table main.tablename
 Add column columnname datatype default value

CHAPTER 4 ■ ALTERING DATABASES AND OTHER FEATURES

48

 Here are some actual examples:

 Create table main.country(id integer primary key not null autoincrement, name varchar not null)

 Alter table main.country
 Add column continent varchar null

 Alter table main.country
 Add column population integer null

 Once the query is executed using sqlite3_exec or sqlite3_prepare_v2 , sqlite3_step , and sqlite3_
finalize , the alterations will be completed.

 Re-indexing a Table
 The third type of modification you can do to a table is to re-index its index. You can specify a single index
to rebuild, or all of them, if there is more than one in a table. Likewise, if you have a collation sequence to
arrange data in a database, you can re-index the collation sequence, and all indexes associated with the
collation name will be re-indexed.

 Re-indexing an index or collation sequence is accomplished using the REINDEX command followed by
the schema name or collation name, as follows:

 REINDEX collation-name
 REINDEX main.table_name
 REINDEX main.table_index_name

 It is always useful to rebuild an index on a regular basis or after loading, reloading, or deleting a dataset
from a table. This will also ensure that any unused space is removed and the sequence of the index is
optimized, thus ensuring the fast data access.

 Modifying Views
 Views in a SQLite database cannot be modified or altered. You can only DROP a view and re-create it. To drop
and create a view you can follow this sequence:

 DROP VIEW schema.view_name
 CREATE View schema.view_name as SELECT * or list of columns FROM schema.table_name WHERE
where_clause

 The column list WHERE clause in a view is often used to delimit the amount of data that is stored in a
database. The WHERE is optional but resolves to a Boolean value.

 Modifying Indexes
 Like views, an index cannot be altered or modified. You can only DROP and CREATE an index. If you have
more than one index in a table, you will need to DROP and CREATE them individually. Also, before you drop
an index, it is best to get a copy of the SQL CREATE query that was used to create the index from the sqlite_
master table, because this table will be automatically updated once you execute the DROP statement, just like
it gets updated when you CREATE an index .

CHAPTER 4 ■ ALTERING DATABASES AND OTHER FEATURES

49

 You can use the following sequence to alter an index:

 DROP INDEX schema.index_name
 CREATE optionally UNIQUE INDEX optionally IF NOT EXIST schema.index_name on schema.table_
name(column(s)) WHERE where_clause

 The use of UNIQUE and IF NOT EXIST are optional, as is the WHERE clause. The IF NOT EXIST would be
redundant here, as the index wouldn’t yet exist. If the WHERE clause is used, then the index will be known as
a partial index. Also note that you can use an expression instead of a column or sequence of columns to be
indexed. In addition, a COLLATION_NAME can be added with a sort order of ASC or DESC to arrange the data in
the index.

 It is important to remember that when creating or modifying an index, the columns that you use for
your index must be in the table where the index is. You cannot use columns in other tables.

 Here is an example of using an expression for an index:

 DROP INDEX main.wine_id
 CREATE UNIQUE INDEX main.wine_id on main.wineries(id+name)

 Using the a collation sequence, you would write a query similar to this example:

 DROP INDEX main.wine_id
 CREATE UNIQUE INDEX main.wine_id

 You can also use a function call in your expressions as long as the return value is deterministic. In other
words, you cannot use functions like RANDOM() . The function can be either one of the functions provided by
the SQLite API or a custom function. I will demonstrate functions a little later. For example, you could use
the following:

 DROP INDEX main.wine_id
 CREATE INDEX main_wine_id ON main.wineries(coalesce(name))

 Modifying Triggers
 Triggers , as we have seen elsewhere, cannot be altered. You can, however, DROP a trigger and CREATE a new
one using any of the accepted API syntax that is permitted. Before dropping a trigger, you should run the
 SELECT query on the sqlite_master t o get the existing SQL query that was used to create the original
trigger. If you want to the sqlite_master table with the new version of the trigger, you will need to execute
an UPDATE . However, as I warned before, if you execute an UPDATE on the sqlite_master table and your
update statement has syntax errors, you run the risk of corrupting the table and scraping your database. It is
always best to test on a secondary database first.

 What I usually do is either execute a SELECT on the sqlite_master table to get the SQL statement or
keep a copy of the SQL statement in a file, because the DROP statement will update the sqlite_maste r table.
For instance, this sequence should be used to replace an existing trigger:

• Retrieve copy of CREATE statement.

• DROP trigger.

• Modify the trigger’s logic.

• CREATE the new trigger.

• CREATE a test database.

CHAPTER 4 ■ ALTERING DATABASES AND OTHER FEATURES

50

• UPDATE sqlite_master table in test database.

• Fix syntax issues, if any.

• UPDATE sqlite_master table in your database.

 Here are some examples of SQLite triggers that you can execute through the Db Mgr app:

 DROP TRIGGER main.trigger_name
 CREATE TRIGGER main.trigger_name BEFORE DELETE ON main.table_name FOR EACH ROW WHEN
expression is true or false BEGIN delete-statement
 DROP TRIGGER main.trigger_name
 CREATE TRIGGER main.trigger_name BEFORE UPDATE of column ON main.table_name FOR EACH ROW
WHEN expression is true or false BEGIN update-statement
 DROP TRIGGER main.trigger_name
 CREATE TRIGGER main.trigger_name BEFORE INSERT ON main.table_name FOR EACH ROW WHEN
expression is true or false BEGIN insert-statement
 DROP TRIGGER main.trigger_name
 CREATE TRIGGER main.trigger_name AFTER DELETE ON main.table_name FOR EACH ROW WHEN
expression is true or false BEGIN delete-statement
 DROP TRIGGER main.trigger_name
 CREATE TRIGGER main.trigger_name AFTER UPDATE of column ON main.table_name FOR EACH ROW WHEN
expression is true or false BEGIN update-statement
 DROP TRIGGER main.trigger_name
 CREATE TRIGGER main.trigger_name BEFORE INSERT ON main.table_name FOR EACH ROW WHEN
expression is true or false BEGIN insert-statement
 DROP TRIGGER main.trigger_name
 CREATE TRIGGER main.trigger_name INSTEAD OF DELETE ON main.table_name FOR EACH ROW WHEN
expression is true or false BEGIN delete-statement
 DROP TRIGGER main.trigger_name
 CREATE TRIGGER main.trigger_name INSTEAD OF UPDATE of column ON main.table_name FOR EACH ROW
WHEN expression is true or false BEGIN update-statement
 DROP TRIGGER main.trigger_name
 CREATE TRIGGER main.trigger_name INSTEAD OF INSERT ON main.table_name FOR EACH ROW WHEN
expression is true or false BEGIN insert-statement

 You can also add a TEMP or TEMPORARY keyword between the CREATE and TRIGGER keywords if you only
need a temporary trigger. These triggers will only exist while the database is open. Altering triggers in SQLite
is really just creating a new trigger to replace the old one.

 Adding and Altering Collation Sequences
 Collation sequences are directives on how the data in a database is arranged or sorted. Collation structures
are present in the real world, like for cataloguing systems used in libraries, for instance, or medical records.

 You can create a collation sequence in SQLite by using the CREATE Collation command, which
modifies the database by adding the sequence to the database. The collation sequence can be added when
the database is first created, or afterward.

 SQLite uses collation sequencing internally to determine the greater of lesser of two values. SQLite has
three built-in collation sequence types:

• Binary

• Nocase

• Rtrim

CHAPTER 4 ■ ALTERING DATABASES AND OTHER FEATURES

51

 Binary
 The BINARY collation sequence algorithm uses the memcmp() C function to compare two text values
regardless of string encoding. memcmp() compares the first byte-area size of two strings. The BINARY collate
option uses comparison operators (==, <, >, !=, IS, IS NOT, =>, <=) to compare two values.

 NoCase
 The NoCase collation sequence type compares two text values by converting the 26 ASCII uppercase
characters into their lowercase equivalents. Note that it only compares ASCII because full UTF conversion
would make the tables manageable.

 Rtrim
 Lastly, the RTRIM type is the same as BINARY except that it first trims any trailing spaces to the text values to
be compared.

 To use the collating sequence, you would add COLLATE to the column definition; for example:

 CREATE TABLE Strings(
 Id INTEGER PRIMARY KEY,
 String1, //defaults to binary
 String2 COLLATE BINARY,
 String3 COLLATE NOCASE,
 String4 COLLATE RTRIM
)

 sqlite3_create_collation
 Of course, you can create your own collation sequence by implementing the sqlite3_create_collation
function . The function has three variants, whose logic is provided here:

 int sqlite3_create_collation(
 sqlite3,
 const char *zName,
 int eTextRep,
 void *pArg,
 int(*xCompare)(void*,int,const void*,int,const void*)
);

 The sqlite3_create_collation has five arguments. The first is the pointer to the database connection.
In Swift this is represented by a COpaquePointer . The second argument, const char *zName , is the name of
the collation sequence module. The third, eTextRep , is the text encoding of the string callback function and
must implement one of the following types:

• SQLITE_UTF8

• SQLITE_UTF16LE

• SQLITE_UTF16BE

• SQLITE_UTF16

• SQLITE_UTF16_ALIGNED

CHAPTER 4 ■ ALTERING DATABASES AND OTHER FEATURES

52

 The next argument, *pArg , is an application pointer for the first argument of the callback function.
The last argument is the callback function. sqlite3_create_collation_v2 is similar to the first except that
it provides a Destroy argument, and sqlite3_create_collation16 provides the functionality to create
collation sequences in a native 16 bits. See the following:

 int sqlite3_create_collation_v2(
 sqlite3*,
 const char *zName,
 int eTextRep,
 void *pArg,
 int(*xCompare)(void*,int,const void*,int,const void*),
 void(*xDestroy)(void*)
);
 int sqlite3_create_collation16(
 sqlite3*,
 const void *zName,
 int eTextRep,
 void *pArg,
 int(*xCompare)(void*,int,const void*,int,const void*)
);

 All three functions can add, modify, and delete collation sequences from a SQLite database. In Swift
these functions are implemented in the sqlite3.h header file as follows:

 sqlite3_collation_needed
 sqlite3_collation_needed16

 They both take the same arguments as the versions in C. These functions are abbreviated versions of the
former functions and are accessible as well through the standard SQLite C API. You would need to define these
functions as COpaquePointers , UnsafeMutablePointer , Int32 , and UnsafePointer<Int8 > respectively. For the
16-bit version, the last argument would be a 16-bit UnsafePointer rather than an UnsafePointer<Int8 > .

 The SQLite DELETE Statement
 Deleting elements from a SQLite database is implemented through the SQL DROP function. You can use the DROP
function to remove tables, views, indexes, and triggers. When you drop a table or an index, the sqlite_master
table is updated accordingly. For the views and triggers, you need to execute a DELETE record on the table.

 The DROP statements are provided next and can be used as is through the DB Mgr app by entering the
 DROP function followed by the schema element to remove and the name of the element. Once you click
on the Execute button, the element will be removed from the database. Removing or dropping a table will
delete any data that is in that table. Of course, the database needs to be open first.

 Deleting Tables

 DROP TABLE schema.table_name

 Deleting Views

 DROP VIEW schema.view_name

CHAPTER 4 ■ ALTERING DATABASES AND OTHER FEATURES

53

 Deleting Indices

 DROP INDEX schema.index_name

 Deleting Triggers

 DROP TRIGGER schema.trigger_name

 Deleting Collation Sequences
 Custom collation functions are deleted when you invoke the Destroy argument or when the database
connection is closed using the sqlite3_close function.

 SQLite Functions
 Unlike other relational database engines, SQLite doesn’t provide an API to create stored procedures, also
known as SPROCS. However, you can define your own functions in addition to using the built-in functions in
SQLite.

 SQLite has several built-in functions that can be categorized as follows:

• Core functions

• Aggregate functions

• Date/time functions

• JSON functions

• Standard functions

 Core functions include functions abs , coalesce , ifnull , instr , glob , like , and length . They make
up the core functionality of the SQLite platform. The Aggregate functions, as the name implies, provide
functions like count , avg , min , max , total , and sum , among others. The Date/time functions allow you to
obtain and manipulate date and time values. These functions include date , time , datetime , juliandate ,
date modifiers, and operators. For example, you can get the current date as follows:

 SELECT date('now')
 SELECT date('now', 'YYYY-MM-DD')
 SELECT date('now', 'MMM/dd/YYYY', '-1 day')
 SELECT date('now', 'MM-dd-yyyy', '-1month', '+7 days', '+1 year')

 The JSON Extension
 The JSON functions , officially known as the json1 extension, are a fairly new addition to SQLite. They aren’t
available with the standard API. You need to install them manually if you need to use them. These functions
are loaded at run-time. Using the JSON functions, you can store and parse data in the JSON format. The
extension includes the functions listed here:

• Json(json)

• Json_array

• Json_array_length(json)

CHAPTER 4 ■ ALTERING DATABASES AND OTHER FEATURES

54

• Json_array_length(json. Path)

• Json_extract

• Json_insert

• Json_object

• Json_replace

• Json_remove

• Json_set

• Json_type(json)

• Json_type(json, path)

• Json_valid

• Json_group_array

• Json_group_object

• Json_each

• Json_tree

 The JSON functions that have json as a first parameter must be a valid JSON object, a number, a string,
or a null value. Number and Null are interpreted as SQLite data types. The PATH argument must be a valid,
well-formed path value that begins with $.

 To load the json1 extension, you need to implement the loadable interface using sqlite3_load_
extension, which is available in the C API through the bridge. You also have the sqlite3_enable_load_
extension , which can disable the loading of extensions to prevent security leaks. See the following:

 sqlite3_load_extension (db: COpaquePointer,zFile: UnsafePointer<Int8>, zProc:
UnsafePointer<Int8>, pzErrMsg:UnsafeMutablePointer<UnsafeMutablePointer<Int8>>)

 sqlite3_enable_load_extension (db: COpaquePointer, onoff: Int32)

 The extension functions must be called when the database is open and running so that the extensions
can be loaded as needed.

 The first argument is the pointer to the SQLite database engine. The second argument is the file for the
shared library. For the json1 extension, the file is not included in the default sqlite3.dylib library. The
third argument is the entry point for the extension, while the fourth is a pointer for the error message:

 var db:COpaquePointer?=nil
 let lib_file: UnsafePointer<Int8>? = nil
 let proc: UnsafePointer<Int8>?=nil
 let err_json_msg:UnsafeMutablePointer<UnsafeMutablePointer<Int8>>? = nil

 func load_extension()->Void{
 sqlite3_load_extension(db, lib_file, proc, err_json_msg)
 }

CHAPTER 4 ■ ALTERING DATABASES AND OTHER FEATURES

55

 ■ Note The json1 sqlite3 extension is not included in the sqlite3 dylib, which references the sqlite3.h file
in iOS 10. You could attempt to add it by downloading the sqlite3 source code and extracting the sqlite3.c
file from the ext/misc directory. Then you would need to add it to your project, but this would probably create
conflicts with the existing sqlite3 library in iOS. The other option would be to compile a new static Objective-C
extension (.h) and add the sqlite3.h and sqlite3.c files to your project from the sqlite3 source code. Then,
you would need to import the sqlite3.h file into the Objective-C extension (header). Next, you would need to
create a new bridge header file and add it to the Swift compiler bridge configuration.

 I have created a reference project using the sqlite3.c a nd sqlite3.h files from the actual code instead
of the Xcode-supported sqlite3.dylib library.

 The project is in GitHub (https://github.com/kevlangdo/load_sqlite_json_extension) and is
experimental. I haven’t tested it, and it is outside of the context of this book, but it gives an example of how to
load the json extension in an iOS project.

 Creating Functions using Swift
 Other than the SQLite functions included with the API and the extensions, you can create your own and
attach them to your database. These extensions are written in C.

 For the next iOS app project, the Wineries, I will need a function that can convert liters into ounces and
vice versa. The code must be written in C using, in part, the SQLite API to convert values to and from SQLite.

 SQLite values are as follows:

 SQLITE_API const void *SQLITE_STDCALL sqlite3_value_blob(sqlite3_value*);
 SQLITE_API int SQLITE_STDCALL sqlite3_value_bytes(sqlite3_value*);
 SQLITE_API int SQLITE_STDCALL sqlite3_value_bytes16(sqlite3_value*);
 SQLITE_API double SQLITE_STDCALL sqlite3_value_double(sqlite3_value*);
 SQLITE_API int SQLITE_STDCALL sqlite3_value_int(sqlite3_value*);
 SQLITE_API sqlite3_int64 SQLITE_STDCALL sqlite3_value_int64(sqlite3_value*);
 SQLITE_API const unsigned char *SQLITE_STDCALL sqlite3_value_text(sqlite3_value*);
 SQLITE_API const void *SQLITE_STDCALL sqlite3_value_text16(sqlite3_value*);
 SQLITE_API const void *SQLITE_STDCALL sqlite3_value_text16le(sqlite3_value*);
 SQLITE_API const void *SQLITE_STDCALL sqlite3_value_text16be(sqlite3_value*);
 SQLITE_API int SQLITE_STDCALL sqlite3_value_type(sqlite3_value*);
 SQLITE_API int SQLITE_STDCALL sqlite3_value_numeric_type(sqlite3_value*);

 To create a SQLite function for Swift, you need to follow these steps:

• As shown in Figure 4-1 , add a C file using the C File template under the iOS
categories. For my function, I will name it sizeconverter because it will convert
volume from liters to ounces and vice versa. Xcode will ask if you want to add a
header file; say yes.

https://github.com/kevlangdo/load_sqlite_json_extension)

CHAPTER 4 ■ ALTERING DATABASES AND OTHER FEATURES

56

• Next, you need to add C logic to the C file and import whatever C library into the
header. You can also define your functions' signatures in the header file, which I
am doing for this example. For example, I am adding the #include directive for the
 sqlite3.h header file.

• Then, you need to add the C file to your bridge file using the #import statement (see
the code that follows).

• As shown in Figure 4-2 , you need to add your header file to Build Phases > Compile
Sources .

 The code for the function (sizeconverter.c) is shown here, along with the header file and the changes
to the SQLite3Bridge:

 Figure 4-1. C File template

 Figure 4-2. Build phases

CHAPTER 4 ■ ALTERING DATABASES AND OTHER FEATURES

57

 //
 // SQlite3Bridge.h
 // Db Mgr
 //
 // Created by Kevin Languedoc on 2016-05-20.
 // Copyright © 2016 Kevin Languedoc. All rights reserved.
 //

 #ifndef SQlite3Bridge_h
 #define SQlite3Bridge_h

 #endif /* SQlite3Bridge_h */

 // Add this code to import the sqlite3 header. The code above is supplied by the template
 #import <sqlite3.h>
 #import "sizeconverter.h"

 The Adjust SQLite3Bridge Header File

 //
 // sizeconverter.h
 // Db Mgr
 //
 // Created by Kevin Languedoc on 2016-07-03.
 // Copyright © 2016 Kevin Languedoc. All rights reserved.
 //

 #ifndef sizeconverter_h
 #define sizeconverter_h

 #include <stdio.h>
 #include <sqlite3.h>

 static void sizeconverter(sqlite3_context *context, int argc, sqlite3_value **argv);

 #endif /* sizeconverter_h */

 The sizeconverter header file

 // sizeconverter.c
 // Db Mgr
 //
 // Created by Kevin Languedoc on 2016-07-03.
 // Copyright © 2016 Kevin Languedoc. All rights reserved.
 //

 #include "sizeconverter.h"
 #include "SQlite3Bridge.h"

 static void sizeconverter(sqlite3_context *context, int argc, sqlite3_value **argv)
 {

 double result = 0.0;
 const char *liter;

CHAPTER 4 ■ ALTERING DATABASES AND OTHER FEATURES

58

 const char *ounce;
 const char *us;
 const char *uk;

 us = "us";
 uk = "uk";
 liter = "l";
 ounce = "o";

 if (argc==3) {
 double from = sqlite3_value_double(argv[0]); // original volume
 const unsigned char *to = sqlite3_value_text(argv[1]); // liters or ounces
 const unsigned char *country = sqlite3_value_text(argv[2]); // us or uk

 const double us_uom = 33.8140226; // 1 Liter = 33.8140226 Ounces [Fluid, US]
 const double uk_uom = 35.195079; // 1 Liter = 35.195 079 Ounces [UK]

 if (country == (const unsigned char*)us && to == (const unsigned char*)liter) {
 result = from * us_uom;
 }else if (country == (const unsigned char*)uk && to == (const unsigned char*)liter){
 result = from * uk_uom;
 }else if (country == (const unsigned char*)us && to == (const unsigned char*)ounce){
 result = from / us_uom;
 }else if (country == (const unsigned char*)uk && to == (const unsigned char*)ounce){
 result = from / uk_uom;
 }

 }
 return sqlite3_result_double(context, result);
 }

 This is a simple C function that takes three arguments: the original volume, the target unit of measure,
and the country, which can be United States or United Kingdom, since these have different liter conversion
values because their ounces are based on either the Imperial system or the American system. Most other
countries use the metric system.

 With the function done and configured, we only need to use it in the Db Mgr app and attach it to the
database.

 Using Functions in a SQLite Database using Swift
 Using custom SQLite functions requires using sqlite3_create_function . The first argument is the SQLite
database pointer, which is a COpaquePointer ; the second argument is the name of the function as a UTF-8
encoding string; the third parameter is the number of input parameters; and the fourth parameter is the text
encoding type the function prefers. In my case, it is UTF-8, which is pretty standard, but it will accept any of the
supported encodings. The fifth parameter is an arbitrary pointer that allows access through the function using the
 sqlite3_user_data() function . The last three arguments are pointers that implement the function or aggregate:

 func createSQLiteFunction()->Enums.SQLiteStatusCode{
 let funcname:String = “sizeconverter”
 return Enums.SQLiteStatusCode(rawValue:sqlite3_create_function(db, funcname.cString
(String.encoding.utf8)!, 3, SQLITE_UTF8, nil, sizeconverter, nil, nil))!
 }

CHAPTER 4 ■ ALTERING DATABASES AND OTHER FEATURES

59

 Once the function is connected, you can use the function elsewhere in your INSERT , SELECT, or UPDATE
queries, which we will look at later in this book in the chapters covering those subjects.

 Pragma Statements
 Pragma statements are a unique feature of the SQLite platform. These statements are used to set and control
environment variables within a SQLite database and environment.

 Pragma statements can be used like other queries, using the sqlite3_prepare_v2 , sqlite3_step , and
 sqlite3_finalize functions once the database is open and the connection is established. However, some
PRAGMAs will run during slite3_preapre_v2 or sqlite_step or both, depending on the Pragma statement.

 For example:

 let pragma:String = “PRAGMA schema.index_list(table_name)”

 If(sqlite3_open(db.path, db) == SQLITE_OK){

 If(sqlite3_prepare_v2(db, pragma.cString (String.encoding.utf8)!, -1, &sqlStatement, nil) ==
Enums.SQLiteStatusCode.ok.rawValue}{

 }
 }

 SQLite has many Pragma statements that are used more than others (see https://www.sqlite.org/
pragma.html for the full list). For instance, here are some useful ones:

• Foreign_key_check

• Foreign_key_list

• Integrity_check

• Automatic_index

• Busy_timeout

• Shrink_memory

• Auto_vacuum

 Foreign_key_check

 PRAGMA schema. foreign_key_check;
 PRAGMA schema. foreign_key_check(table-name);

 The foreign_key_check PRAGMA runs against the database or table to check for any foreign-key
violations. It returns a row for each violation, so you could use the sqlite3_step function to retrieve the
returning value. The resulting value has four columns, as follows:

• The name of the name containing the reference.

• The second value is the rowindex where the violation occurred.

• The third column is the table that the foreign key refers to.

• The last column is the foreign-key name.

https://www.sqlite.org/pragma.html
https://www.sqlite.org/pragma.html

CHAPTER 4 ■ ALTERING DATABASES AND OTHER FEATURES

60

 Foreign_key_list
 The Foreign_key_list PRAGMA returns the list of foreign keys in a database. It returns one row for each
foreign-key constraint.

 PRAGMA foreign_key_list(table-name)

 Integrity_check
 The integrity_check PRAGMA does a sanity check on the entire database looking for missing indexes,
broken records, out-of-order records, missing pages, and UNIQUE or NOT NULL violations, among other
verifications. The results are returned as a single column describing the issue. If no problems are found, the
returning column will contain the “OK” value only. The N refers to the max number of errors to return. It
defaults to 100.

 PRAGMA schema. integrity_check;
 PRAGMA schema. integrity_check(N)

 Automatic_index
 The automatic_index PRAGMA allows the developer to query, set, or clear the automatic index on a table.

 PRAGMA automatic_index;
 PRAGMA automatic_index = boolean ;

 Busy_timeout
 This PRAGMA expression enables you to get the current timeout or set the busy timeout for query execution.

 PRAGMA busy_timeout;
 PRAGMA busy_timeout = milliseconds ;

 Shrink_memory
 This PRAGMA expression frees up memory as much as possible. This is handy for large databases or long-
running queries. This is similar in concept to a garbage collector.

 PRAGMA shrink_memory

 Auto-vacuum
 This PRAGMA removes empty space from the page_file , thus freeing up memory and shrinking the size
on disk.

 PRAGMA schema.auto_vacuum;
 PRAGMA schema.auto_vacuum = 0 | NONE | 1 | FULL | 2 | INCREMENTAL;

CHAPTER 4 ■ ALTERING DATABASES AND OTHER FEATURES

61

 Corrupting a SQLite Database
 SQLite is an extremely stable technology and is very robust, but it is still possible to cause database files to
become corrupt if you’re not careful.

 For instance, if you move a database while the connection is open, you run the risk of corrupting the
database. Since a SQLite file is a standard binary file, there is nothing that prevents a rogue thread or process
from interfacing with. Within the context of an iOS sandbox where the app lives, this would be difficult but
not impossible.

 Another possible threat is trying to access the same file descriptor after it was closed and reopened.
Also, trying to back up or restore a database while it is open can damage the file.

 Broken file locks, which are managed by the filesystem, can damage the database file if you try to access
it while a faulty lock is in place. Although there are many other corruption issues that can arise through the
POSIX and by using different locking mechanisms or having multiple applications try to access the same
database, the environment in which a SQLite database operates on iOS somewhat protects it from corruption.

 However, one way to easily corrupt a database is to rename it while it is open. You have to be careful
when moving a database—say, from the Resources bundle to the Documents directory—that the database is
closed before attempting the operation.

 Lastly, there are syncing issues that cause damage to a database. This could be an issue if you place a
copy of the database on Dropbox, OneDrive, or iCloud or any other Cloud file storage and sharing platform
and try to sync the database files while it is open, which can cause damage to the database file. Make sure
that the connection is closed before attempting any of these operations.

 SQLite Limits
 The last word goes to the limits . SQLite is very happy storing large amounts of data within its storage facility
but it still does have its limits. Many of the limits imposed on SQLite come from the OS or memory. For
instance, memory can be confined to 32-bit or 64-bit. On an iPhone, you have 1 GB of RAM available for the
whole device. On an iPad Pro, however, you have 4 GB of RAM. SQLite must work within these small confines.

 Another limit can be the overall disk size. Since we are dealing with mobile devices, you have a finite
amount of disk space available.

 There are other limits that can be tweaked during runtime for the specific needs of the application.
The default length of a blob is defined by the macro SQLITE_MAX_LENGTH with a value of a 1 billion bytes.
However, you can change this default using the DSQLITE_MAX_LENGTH flag:

 -DSQLITE_MAX_LENGTH=123456789

 You can also change the maximum number of columns, indexes, or views, or the maximum number of
 update and insert terms or where clause terms, from the default value of 2000 to a max of 32767. But how
many databases have you seen reaching these sizes, even on a server?

 Another size limit you can change is the length of a query. The size is set at 1000000 through the
 DSQLITE_MAX_LENGTH macro. This value can be increased to 1073741824. As for tables, you can have up to 64
tables. Try that one if you can.

 Another interesting limit is the maximum amount of parameters a function can have. The default value
is 100, but this value can be modified using the SQLITE_MAX_FUNCTION_ARG macro. Also, the maximum
amount of compound SELECT statements using joins is 500. This value can be changed using the SQLITE_
MAX_COMPOUND_SELECT macro. You can attach up to 125 databases in a file, while the default is 10. The
theoretical maximum number of rows in a table is 2 64 (18446744073709551616, or about 1.8e + 19). However,
as the documentation states, this limit can never be reached, since a database file can have a maximum size
of 164 terabytes, which far surpasses the physical limits of any iOS device.

 Although SQLite has limits on other aspects of its architecture, these limits can never be reached within
the confines of any iOS device. You will run out of physical space or resources before you reach SQLite’s limits.

CHAPTER 4 ■ ALTERING DATABASES AND OTHER FEATURES

62

 Summary
 This concludes this chapter. We have explored the different features available in the SQLite API for altering
databases. We have also looked at PRAGMA statements and SQLite’s built-in functions. Finally, we built a
custom SQLite function and added to the Winery database in the DB Mgr app.

 The next several chapters will demonstrate how to perform CRUD operations on a SQLite database
through the use of an iPhone app. We will also look at how to perform searches.

63© Kevin Languedoc 2016
K. Languedoc, Build iOS Database Apps with Swift and SQLite, DOI 10.1007/978-1-4842-2232-4_5

 CHAPTER 5

 Inserting Records

 The SQL Insert statement in SQLite has some interesting features, such as being able to replace an existing
record, just like the Upsert statement in Oracle’s PL/SQL. The expression parameter can either be a literal or
the return value from a function. We will explore these interesting features together.

 This chapter will demonstrate how to insert data into a SQLite database. I will cover all the supported
variations of the API, including:

• The data-binding functions

• Inserting records

• Inserting or replacing records

• The Insert or Rollback option

• The Insert or Ignore option

• The Insert or Abort option

• The Insert or Fail option

• Inserting blobs

• Building an iOS app to insert records

 The Data-Binding Functions
 The SQLite C API has specific functions for working with data, allowing an application to bind data with the
Cocoa Touch corresponding data types. Bound data types are used with prepared statements. The following
functions work with all the major primitive data types in regards to text and numbers. For blobs, images,
videos, and audio the API provides blob and blob64 as well as zero and zeroblob64.

 int sqlite3_bind_blob(sqlite3_stmt*, int, const void*, int n, void(*)(void*));
 int sqlite3_bind_blob64(sqlite3_stmt*, int, const void*, sqlite3_uint64, void(*)(void*));
 int sqlite3_bind_double(sqlite3_stmt*, int, double);
 int sqlite3_bind_int(sqlite3_stmt*, int, int);
 int sqlite3_bind_int64(sqlite3_stmt*, int, sqlite3_int64);
 int sqlite3_bind_null(sqlite3_stmt*, int);
 int sqlite3_bind_text(sqlite3_stmt*, int, const char*, int n, void(*)(void*));
 int sqlite3_bind_text16(sqlite3_stmt*, int, const void*, int, void(*)(void*));
 int sqlite3_bind_text64(sqlite3_stmt*, int, const char*, sqlite3_uint64, (*)(void*),
unsigned char encoding);

CHAPTER 5 ■ INSERTING RECORDS

64

 int sqlite3_bind_value(sqlite3_stmt*, int, const sqlite3_value*);
 int sqlite3_bind_zeroblob(sqlite3_stmt*, int, int n);
 int sqlite3_bind_zeroblob64(sqlite3_stmt*, int, sqlite3_uint64);

 For the basic primitive types, the first parameter of the SQLite binding function is the statement that you
create using the sqlite3_stmt function and that is returned from the sqlite3_prepare_v2 function. The
second parameter is the column number in the table where you want to insert records, which corresponds
to a zero-based array, and the last parameter is the value to be inserted. The columns are a 0 (zero)-based
array. So column 1 would be 0 and column 2 would be 1, and so on.

 For blobs and 64-bit-length functions, the fourth parameter is the number of bytes in the value to be
inserted, not the characters. You use blobs to store images, videos, and audio data. The last argument is the
destructor.

 The SQLite INSERT function
 The INSERT function is the SQLite implementation of the SQL INSERT statement . The SQLite INSERT
statement comes in three variations:

• You can insert values into a database table without specifying the column names.
However, the values being inserted must match the number of columns in the table.
This type of insert takes the following form:

 INSERT into main.table VALUES(values list items)

• The second type of insert uses a SELECT statement as the list of rows to insert. If
you omit the column names in the INSERT statement then the SELECT statement
must have the exact same number of columns as in the target table, unless the table
columns have default values. Here are three examples of the second type:

 INSERT INTO main.table
 SELECT * FROM main.otherTable WHERE clause
 INSERT INTO main.table
 SELECT column list FROM main.otherTable (with or without WHERE clause)
 INSERT INTO main.table(column list)
 SELECT column list FROM main.otherTable (with or without WHERE clause)

 Here is a quick, boilerplate example of how to insert records using the SQLite C API and Swift:

 internal let SQLITE_STATIC = unsafeBitCast(0, to: sqlite3_destructor_type.self)
 internal let SQLITE_TRANSIENT = unsafeBitCast(-1, to: sqlite3_destructor_type.self)

 func sample(){

 var sqlite3_stmt:COpaquePointer?=nil;
 var sqlite3_db:COpaquePointe?r=nil;
 var txt:String = "some text";
 let integer:Int32 = 500;
 let dbl:Double = 10.45;
 var dbPath:URL = URL()

CHAPTER 5 ■ INSERTING RECORDS

65

 var sqlStatement:COpaquePointer?=nil
 var dbErr: UnsafeMutablePointer<UnsafeMutablePointer<Int8>>? = nil
 var errmsg:String=""
 let dbName = "winery.sqlite"

 //insert query
 let sql:String = "INSERT INTO table(coltext, colint, coldouble) VALUES(?,?,?)";

 let dirManager = FileManager.default()
 //Open db assuming there are no subfolders
 do {
 let documentDirectoryURL = try dirManager.urlForDirectory(FileManager.

SearchPathDirectory.documentDirectory, in: FileManager.SearchPathDomainMask.
userDomainMask, appropriateFor: nil, create: true)

 dbPath = documentDirectoryURL.urlLByAppendingPathComponent(dbName)
 } catch let err as NSError {
 print("Error: \(err.domain)")
 }

 sqlite3_open(dbPath.path!, &sqlite3_db);
 sqlite3_prepare_v2(sqlite3_db, sql, 1, &sqlite3_stmt, nil);
 sqlite3_bind_text(sqlite3_stmt, 1, txt.cString(using: String.encoding.ut)!, -1,

SQLITE_TRANSIENT);
 sqlite3_bind_int(sqlite3_stmt, 2, integer);
 sqlite3_bind_double(sqlite3_stmt, 3, dbl);
 sqlite3_step(sqlite3_stmt);
 sqlite3_finalize(sqlite3_stmt);
 sqlite3_close(sqlite3_db);

 }

 In the preceding code, SQLITE_STATIC is an immutable sqlite3_static value pointer and SQLITE_
TRANSIENT is a pointer that will change in the future, but it is SQLite that will move the pointer as needed.

 Within the confines of a function, I create a SQLite statement variable called sqlite3_stmt using a
 COPaquePointer . This will be initialized with the string query, sql , through the sqlite3_prepare_v2 function,
along with the SQLite database engine variable, db , which is created using the COPaquePointer . The next three
lines of code create some test variables to allow the code to insert values in the database. For the sake of clarity
and simplicity, I am creating a String variable, an Int32, and a Double. I will also hard code some values. However,
these can be dynamically set using a block, parameters in a method, or as a result of some process or calculation.

 The actual SQL INSERT query statement is pretty standard, as you can see from the sql String variable,
which must be converted to a C char (string of chars) later using cUsingStringEncoding and NSUTF8Encoding .
I find this statement works best. I have seen some developers trying to replace the interrogation symbols with
actual variable names, but the code can get very messy and hard to maintain, and often SQLite will complain
that there are issues with the statement because you need to convert and bind the input values.

 The next piece of the puzzle is the path to the database file. In this example, I get the path and appended
file name by using the NSSearchPathDirectory . DocumentDirectory and GetDirectory functions in the
 NSFileManager class. I append the database file name using the URLByAppendingPathComponent function,
which was changed from the stringByAppendingPathComponent method. The preceding code assumes that
there are no subfolders, otherwise I would need to store the Document folder and subfolders in an array
using the NSSearchPathForDirectoriesInDomains function.

CHAPTER 5 ■ INSERTING RECORDS

66

 The other piece of important information is the fact that you need to create your database in the
Documents directory in your app’s sandbox. It is the only useful writable directory. If you place the database
in the Resources folder, you won’t get any errors, but the data will not be written to the database because the
folder is read-only.

 Insert or Replace
 SQLite also has a special clause that allows you to insert/update using the INSERT statement. With SQLite
you use the INSERT OR REPLACE statements . If an insert constraint is encountered, the REPLACE clause will
delete the existing record and replace it with the new record. In cases where there is a NOT NULL , REPLACE
will attempt to replace it with a default value if the REPLACE is trying to insert a NULL value. If no default value
is available, the ABORT clause is used instead on that row. The remaining rows aren’t affected unless similar
conditions are encountered. The general syntax is as follows:

 INSERT OR REPLACE into schema.table_name(Id, ColText, ColInt, ColDouble) VALUES(1, ‘Kevin’,
20, 53.6)

 If the index value, Id = 1, doesn’t exist, it will be inserted. Likewise, if it does exist, the record will be
updated. You can use Swift data types instead of the primitives when inserting records, as the following
example demonstrates:

 func replace(){
 let index:Int32 = 1
 let name:String = "kevin"
 let Dbl:Double = 1000.99
 var dbPath:URL = URL();

 let dirManager = FileManager.default()
 do {
 let directoryURL = try dirManager.urlForDirectory(FileManager.

SearchPathDirectory.documentDirectory, in: FileManager.SearchPathDomainMask.
userDomainMask, appropriateFor: nil, create: true)

 dbPath = directoryURL.urlByAppendingPathComponent("database.sqlite")
 if(sqlite3_open(dbPath.absoluteString?.cString(using: String.Encoding.

utf8)!,&sqlite3_db) == 0){
 let sql:String = "INSERT OR REPLACE INTO schema.simpletable (id, name,

colDouble)VALUES(\(index),\(name.cString(using: String.Encoding.utf8)), \(Dbl))”

 if(sqlite3_prepare_v2(sqlite3_db, sql.cString(using: String.Encoding.utf8)!,
-1, &sqlite3_stmt, nil) != SQLITE_OK)

 {
 print("Problem with prepared statement")

 }else{
 sqlite3_finalize(sqlite3_stmt);
 sqlite3_close(sqlite3_db);
 }
 }

CHAPTER 5 ■ INSERTING RECORDS

67

 } catch let err as NSError {
 print("Error: \(err.domain)")
 }

 }

 This query is similar to the previous one, except that I am using interpolation to construct a new query
String.

 Insert or Rollback
 The rollback option provides you with an elegant way to back out of a transaction if things don’t go your way,
like, for instance, if there is an issue with the data being inserted into the column.

 The OR REPLACE is shorthand for the ON CONFLICT REPLACE clause, just like the other conflict-handling
clauses: ABORT , REPLACE , IGNORE , FAIL . For instance, you may not want to replace an existing record.
If a duplicate record already exists in the database, you may want to roll back that transaction without
generating an error. For general syntax, it is as follows:

 let sql:String = "INSERT or ROLLBACK INTO table(coltext, colint, coldouble) VALUES(?,?,?)";

 Again, the query assumes that you will be using SQLite3 data binding to bind data to the values, which
is the safest way or pattern to use when working with SQLite3.

 Insert or Ignore
 The IGNORE clause handles the insert constraint by skipping over the problematic row altogether and
generates an SQLITE_CONSTRAINT error like the other constraint clauses, except for REPLACE . The rows before
and after are treated normally unless another constraint is encountered. See the following example:

 let sql:String = "INSERT or IGNORE INTO table(coltext, colint, coldouble) VALUES(?,?,?)";

 Insert or Abort
 The ABORT clause aborts the current operation and backs out of the current transaction, allowing your
program to continue to handle the other potential inserts or to continue with the runtime logic. The syntax is
the same as for the other constraint clauses:

 let sql:String = "INSERT or ABORT INTO table(coltext, colint, coldouble) VALUES(?,?,?)";

 Insert or Fail
 The last clause is FAIL . This clause is triggered when a constraint is encountered and SQLITE_CONSTRAINT
is called. The previous transactions are maintained, but the current one is cancelled, and subsequent
transactions do not occur. Here is an example:

 let sql:String = "INSERT or FAIL INTO table(coltext, colint, coldouble) VALUES(?,?,?)";

CHAPTER 5 ■ INSERTING RECORDS

68

 Inserting Blobs
 Working with binary data in Swift and the Cocoa Touch framework implies that you will be using the NSData
class on the iOS side and blob on the SQLite side. In this section, we will look at two functions that will
allow you to insert any binary data into a SQLite database. While this is technically possible, I wouldn’t
recommend using this in a production app, because it would use up a tremendous amount of valuable
storage. There might be some instances where you need to provide binary data as part of your part, and this
data wouldn’t increase in size over time.

 The following two functions can be used to insert binary data like videos, images, and audio. Of the two,
the sqlite3_bind_blob function will be most always be used. The sqlite3_bind_zeroblob is used to write
blobs incrementally into the database instead of storing the full size of the blob into memory all at once. We
will demonstrate both:

 int sqlite3_bind_blob(sqlite3_stmt*, int, const void*, int n, void(*)(void*));
 int sqlite3_bind_zeroblob(sqlite3_stmt*, int, int n);

 The first parameter is the SQLite INSERT statement, the second parameter is the index of the parameter
to be set, and the third is the value to bind to the statement. If this value is nil , then the fourth parameter is
ignored; otherwise, this parameter is the amount of bytes in the buffer, which represents the length of the
binary data. The last, or fifth, parameter is a destructor to dispose of the blob once it has been inserted into
the database. The following code provides a reference implementation:

 func insertBlob(){
 var dbPath:URL = URL()
 var bindata:Data = Data()
 var imagePath:String = ""
 var urlObj:URL = URL()
 let binName:String = "Test image"
 let dirManager = FileManager.default()
 do {
 let directoryURL = try dirManager.urlForDirectory(FileManager.

SearchPathDirectory.documentDirectory, in: FileManager.SearchPathDomainMask.
userDomainMask, appropriateFor: nil, create: true)

 dbPath = directoryURL.urlByAppendingPathComponent("database.sqlite")
 if(sqlite3_open(dbPath.absoluteString?.cString(using: String.Encoding.

utf8)!,&sqlite3_db) == 0){
 let sql:String = "Insert into binaryTbl(PictureName, ImageData) VALUES(?,?)"

 if(sqlite3_prepare_v2(sqlite3_db, sql.cString (using: String.Encoding.
utf8)!, -1, &sqlite3_stmt, nil) != SQLITE_OK)

 {
 print("Problem with prepared statement")
 }else{
 imagePath = Bundle.main.pathForResource("IMG_0095", ofType: "JPG")!
 urlObj = URL(fileURLWithPath: imagePath)
 bindata = try! Data(contentsOf: urlObj)!
 sqlite3_bind_text(sqlite3_stmt, 1, binName.cString (using: String.

Encoding.utf8)!, -1, SQLITE_TRANSIENT);
 sqlite3_bind_blob(sqlite3_stmt, 2, bindata.bytes,Int32(bindata.count),

SQLITE_TRANSIENT);

CHAPTER 5 ■ INSERTING RECORDS

69

 if(sqlite3_step(sqlite3_stmt)==SQLITE_DONE){
 sqlite3_finalize(sqlite3_stmt);
 sqlite3_close(sqlite3_db);
 }
 }
 }
 } catch let err as NSError {
 print("Error: \(err.domain)")
 }
 }

 As you can see from the preceding code, the pattern is similar to the other SQLite code snippets. First,
we create either our variables using the var keyword or a constant using the let keyword. If you make a
mistake, Xcode will let you know and offer a suggestion to fix it. The visibility of the variable (or constant)
depends on your needs.

 Once the variables and constants are created, you attempt to open the SQLite database as usual and set
up your SQL query. You execute the query using the sqlite3_prepare_v2 function, and you bind your data
to the right columns.

 Binding binary is similar to binding other data types, with a few extra steps. To work with binary data
(images, videos, compiled files), you need to use NSData , which is a class in the Foundation framework that
provides wrappers for the bytes buffers.

 When you are storing binary data, you are actually storing bytes. To get the bytes, use the NSURL class
to retrieve the path to the file and read in the bytes from the file using the NSData contentsOfURL . The
 sqlite3_bind_blob needs the bytes contents of the file as well as the length of the bytes buffer in addition to
a pointer to the sqlite3_statement , column position, and the SQLITE_TRANSIENT pointer.

 Creating the Winery App
 The Winery iPhone app will allow a user to enter information about their favorite bottles of wine and take
a photo of the label or bottle. The information will be stored in a SQLite database. In later chapters, we will
expand on the app to include other CRUD (Create or Insert, Read or Select, Update, and Delete) operations.

 In this chapter, I will create the initial app and add the insert capabilities for the wine information and
wineries information. The app will be based on the Tabbed Application template.

 Create the Project
 From Xcode, create a new project and select the Tabbed Application template under the iOS Application
category.

 ■ Note If you are new to Xcode, you can create a project from the launcher if no projects are currently open,
or from File menu ➤ New ➤ Project.

 Add the Bridge
 As always, the first step after creating the project is to create an Objective-C bridge. You could create a bridge
individually for each project, or you can use create a share resource copy it to work project. You can also use
CocoaPods (CocoaPods.org) to install the sqlite3 library and the bridge in your new project. You could also
use a project from the CocoaPods repository.

CHAPTER 5 ■ INSERTING RECORDS

70

 Within the scope of this project, I will simply add the sqlite3 library to my project and manually create a
bridge file.

 To add the sqlite3 iOS-supported library, follow these steps:

 1. From the General Settings tab, locate the Linked Framework and Libraries
section.

 2. Click the “+” button and enter “sqlite3” in the Search field.

 3. Select the libsqlite3.tbd library.

 4. Click Add to add the library to your project.

 5. Next, add a new Objective-C header file using the Header File template.

 6. Add an #import <sqlite3.h > statement.

 7. Under Build Settings, search for Swift.

 8. Under the Objective-C Bridge Header entry, add the name of the bridge file
preceded by the project folder name, unless you place the file in the root
directory of the project (Figure 5-1).

 Alternatively, if there is no bridge file in your project, do the following:

 1. Select the Objective-C File template under the iOS Source category (Figure 5-2).

 Figure 5-1. Bridge file Location

CHAPTER 5 ■ INSERTING RECORDS

71

 2. Provide a name, such as SQLiteBridge (Figure 5-3).

 3. Select the Extension file type and NSObject as the class.

 4. Once you click Next and Add, Xcode will ask you to create a bridge file (Figure 5-4).

 Figure 5-2. Objective-C File template

 Figure 5-3. Name and file type

 Figure 5-4. Create Bridge popup

CHAPTER 5 ■ INSERTING RECORDS

72

 5. When you click on the Create Bridging Header button, Xcode will generate the
header file and add the reference to the Build Settings for you (Figure 5-5). You
can discard the NSObject_SQLiteBridge.h file, as it is not needed. The actual
bridge file is TheWinery-Bridging-Header.h , and it is this file that is included in
the Swift Compiler settings for the Objective-C header mapping.

 Creating the UI View for Inserting
 Before getting into the data model and controllers, I will build the UI and add the IBOutlets and IBActions
to the FirstViewController and SecondViewController .

 Without adding any other code, you can run the app as is and test Swift between the first and second
scenes. Xcode provides a lot of boilerplate code through the template for us.

 Figure 5-6 provides a view of the layout of the view controllers and navigation controller along with the
components that we will add next.

 Figure 5-5. Xcode-created bridge header

CHAPTER 5 ■ INSERTING RECORDS

73

 The first view controller will include the following UI components :

 Element Name Connection Type

 UIImageView imageView IBOutlet

 UITextField wineNameField IBOutlet

 UITextField countryNameField IBOutlet

 UISlider wineRating IBAction

 UITextField selectWineryField IBOutlet

 UIButton InsertRecordAction IBAction

 UIButton selectPhoto IBAction

 UIButton selectWinery IBAction

 UILabel Enter Wine Name

 UILabel Enter Country

 UILabel Select Winery

 UILabel Select Rating

 Figure 5-6. Winery UI in Xcode IB

CHAPTER 5 ■ INSERTING RECORDS

74

 To get started, select the FirstViewController, and from the Component Pallet on the lower right
side of Xcode, select the ImageViewer (UIImageView) and drop it on the IB canvas. Next, select and open the
Constraints tool in the bottom right of the IB window and click on the top and left beams; select both the
width and height constraints (Figure 5-7). Click on the Add 4 Components button to set the constraints.

 Continue to build the layout by adding labels (UILabel) and fields (UITextField) to the UI, like in
Figure 5-6 . Also add a slider to set the rating, and finish off by adding three buttons (UIButton): one to
take the photo, one to display a UIPickerView of possible wineries, which will have to populate first before
adding wines, and one button to insert the record.

 As before, select the various components and set the constraints so that they will adapt to the target
device. You will need to repeat the process for the SecondViewController . This second scene will allow a
user to enter new wineries to the database.

 The second view controller will include the following elements:

 Element Name Connection Type

 UITextField EnterWineryField IBOutlet

 UITextField EnterCountryField IBOutlet

 UITextField EnterRegionField IBOutlet

 UILabel Enter Winery Name

 Figure 5-7. Constraints in IB for ImageViewer

(continued)

CHAPTER 5 ■ INSERTING RECORDS

75

 Element Name Connection Type

 UILabel Enter Country

 UILabel Enter Region

 UIButton InsertWineryBtn IBAction

 Before moving on to the data model , we need to create connections for the UI IBOutlet and IBAction
elements. To create the connections, first select the FirstViewController scene and click on the Identity
inspector, which will open the FirstViewController file next to the IB window (Figure 5-8).

 Select the imageView element and hold down the Control key while dragging it to the open file. When
you release the mouse, a popup will appear allowing you to enter the name of the imageView element. Click
the Connect button, which will create the property.

 Repeat the same process for the remaining UITextFields . For the selectWineryField UITextField ,
select Attribute inspector and unselect the “Enable” property for the Read Only field. The buttons are
 IBAction so you need to perform an extra step in the Connection popup. For the IBAction , you need to
change the connection type from outlet to action.

 Once you have finished the connections for the first view controller, repeat the process with the second
view controller. Select the SecondViewController and open the Identity inspector corresponding to the
scene and drag and drop the connections. I will add the logic later in the chapter.

 Creating the Data Model
 Creating our data model requires a series of steps, which are outlined in the following sections.

 Figure 5-8. Adding an IBOutlet to the FirstViewController

CHAPTER 5 ■ INSERTING RECORDS

76

 Add the Wineries Database
 With the bridge set up, I will add the Wineries.sqlite database. I will create this database through the
 AppDelegate class in the didFinishWithOptions function. The code is provided later. The pattern is quite
simple, and we have seen this code at several points in the preceding chapters.

 I get a handle on the Documents directory using the FileManager. SearchPathDirectory . documen
tDirectory property through the URLForDirectory function of the FileManager class. I then append the
 wineries.sqlite file name to the dbPath variable and pass this value to the sqlite3_open function along
with the pointer to the sqlite3 database engine.

 Each time the app runs after the first time, sqlite3 will simply open the database and establish a connection.

 var srcPath:URL = URL.init(fileURLWithPath: "")
 var destPath:String = ""
 let dirManager = FileManager.default
 let projectBundle = Bundle.main

 do {
 let resourcePath = projectBundle.path(forResource: "thewinery", ofType:

"sqlite")
 let documentURL = try dirManager.urls(for: .documentDirectory, in:

.userDomainMask)

 srcPath = URL(fileURLWithPath: resourcePath!)

 destPath = String(describing: documentURL)

 if !dirManager.fileExists(atPath: destPath) {

 try dirManager.copyItem(at: srcPath, to: URL(fileURLWithPath: destPath))

 }

 } catch let err as NSError {
 print("Error: \(err.domain)")
 }

 Add the Wine Type

 import Foundation

 class Wine: NSObject {
 var id:Int32 = 0
 var name:String = ""
 var rating:String = ""
 var image:Data = Data()
 var producer:Int32 = 0

 override init(){

 }
 }

CHAPTER 5 ■ INSERTING RECORDS

77

 Add the Wineries Type

 import Foundation

 public class Wineries:NSObject{
 var id:Int32 = 0
 var name:String = ""
 var country:String = ""
 var region:String = ""
 var volume:Double = 0.0
 var uom:String = ""

 override init(){

 }
 }

 Add the Database Schema
 For the schema proper, I will use a script file, wineries.sql , that I created using the Empty file template
under the iOS category from the Other section. I added the following SQL script to create two tables:

• Wine

• Wineries

 CREATE TABLE IF NOT EXISTS main.wineries(
 id integer primary key autoincrement not null,
 name varchar,
 country varchar,
 region varchar,
 volume float,
 uom varchar
)

 CREATE TABLE IF NOT EXISTS main.wine(

 id integer primary key autoincrement not null,
 name varchar,
 rating integer
 producer_id integer foreign key references wineries(id)
)

 To build the table schema for inserts, I will read the file and execute the query using the sqlite3_
prepare_v2 function along with the sqlite3_step and sqlite3_finalize functions. I will provide the code
to execute these SQL scripts in the next section for the WineryDAO controller class.

CHAPTER 5 ■ INSERTING RECORDS

78

 Creating the Controllers
 In this section, I will create the controllers.

 Add the WineryDAO Class
 To create this class, select the Swift file template from the New File interface under the iOS > Source category.
Name the file WineryDAO and add the file to the project. In the class, add the NSObject subclass and the
following functions:

• buildSchema

• createOrOpenDatabase

• insertWineRecord

• insertWineryRecord

 The class signature should resemble this:

 class WineryDAO: NSObject{}

 Before getting to the functions in this class, we need to define some variables, which are listed here. The
 dbName is the SQLite database file name; the db is the pointer to the SQLite instance; the sqlStatement is the
pointer for the sqlite3_statement instance; errMsg is an UnsafeMutablePointer to capture any operational
errors thrown by SQLite; sqlite_static and sqlite_transient are unsafeBitCast pointers; dbPath is the
path to the SQLite database file in the sandbox; and errStr is a String variable to manage error messages.

 let dbName:String=" winery.sqlite "
 var db:COpaquePointer?=nil
 var sqlStatement:COpaquePointer?=nil
 var errMsg: UnsafeMutablePointer<UnsafeMutablePointer<Int8>>? = nil
 internal let SQLITE_STATIC = unsafeBitCast(0, to:sqlite3_destructor_type.self)
 internal let SQLITE_TRANSIENT = unsafeBitCast(-1, to:sqlite3_destructor_type.self)
 var dbPath:NSURL = URL()
 var errStr:String = ""

 The init() function init()
 The init function is a standard initializer in the Swift language. As you might imagine, it allows the program to
set up any variables as the instance of the class is created and loaded into memory. To use the init function , you
need to override it. In this class, I use the init to ensure that the database path is set. I could have also added
 sqlite3_open to actually open the database, but opted instead to place that operation in its own function.

 Remembering the corruption issue I mentioned in chapter 3 , if you open the same database file more
than once at the same time, hence having different threads, you risk corrupting the database. The safest
way to ensure that there are no corruption issues is to open and close the database after each operation.
The other way is to use sqlite3_open_v2 , which allows you to set some additional parameters. Using this
variation of the function, you can specify if the database will be opened in read mode or read/write mode,
and you can use the SQL_OPEN_FULLMUTEX flag to open the database in serialized mode, which offers the
most protection against file corruption. The other multi-threading option is SQLITE_OPEN_MUTEX , which also
opens the database in a multi-thread mode as long as the single-thread mode was not set when the database
was first created. The default is SQLITE_OPEN_NOMUTIEX , which is single-thread operation.

http://dx.doi.org/10.1007/978-1-4842-2232-4_3

CHAPTER 5 ■ INSERTING RECORDS

79

 For this app, I will open and close the database with each operation.

 override init() {
 /*
 Create SQLite Winery.sqlite database in Documents directory

 */
 let dirManager = FileManager.default()
 do {
 let directoryURL = try dirManager.urlForDirectory(FileManager.

SearchPathDirectory.documentDirectory, in: FileManager.SearchPathDomainMask.
userDomainMask, appropriateFor: nil, create: true)

 dbPath = try! directoryURL.urlByAppendingPathComponent(dbName)
 } catch let err as NSError {
 print("Error: \(err.domain)")
 }
 }

 The buildSchema Function
 With this app, I wanted to try a different approach to building a database schema, so I decided to add the
schema definition to a file that is loaded when the app is loaded. This function retrieves the .sql file from
the Resource directory and executes the queries, which were provided in the previous section. I am using
the sqlite3_exec function as it nicely encapsulates the different operations to execute a query, namely
 sqlite3_prepare_v2 , sqlite3_step , and sqlite3_finalize . Once the query is executed, the database is
closed.

 The function is called from the AppDelegate when the app is loaded:

 func buildSchema()->Void{
 if let filepath = Bundle.main.pathForResource("wineries", ofType: "sql") {
 do {
 let script = try NSString(contentsOfFile: filepath, usedEncoding: nil) as

String
 print(script)
 if sqlite3_open(dbName, &db)==SQLITE_OK {
 if sqlite3_exec(db, script.cString(using: String.Encoding.utf8)!, nil,

nil, errMsg) != SQLITE_OK{
 print(errStr = String (cString: sqlite3_errmsg(db))!)
 }
 }else{
 print("Could not open database " + String(cString.sqlite3_errmsg(db))!)
 }
 } catch let error as NSError {
 print(error.localizedDescription)
 }
 } else {
 print("file not found")
 }
 sqlite3_close(db)
 }

CHAPTER 5 ■ INSERTING RECORDS

80

 The createOrOpenDatabase Function
 The createOrOpenDatabase function is called from the AppDelegate function when the app is loaded to
ensure that the database is present and the schema script is executed. We could encapsulate this operation
with "file exists" check to not unnecessarily open and execute the schema script every time the app is loaded.

 func createOrOpenDatabase()->Enums.SQLiteStatusCode{
 return Enums.SQLiteStatusCode(rawValue: sqlite3_open(dbPath.absoluteString!.cString (using:
String.Encoding.utf8)!, &db))!
 }

 The insertWineRecord Function
 This function is called from the FirstViewController through the insertRecordAction IBAction . First, we
define an insert query and assign it to a constant called sql . Next, we open the database that is needed and
ensure that it is open with the SQLITE_OK status code before executing the sqlite3_prepare_v2 function,
which takes the sqlite pointer, the sql query, and the sqlStatement pointer as arguments.

 The special feature of this function is wine.image , which converts NSData into a blob for insertion into
the database. To convert it, we need to get the bytes from the NSData and then supply the length of the bytes
and convert this to an Int32.

 After opening the database and preparing the query statement, we bind the input values to the columns
using the appropriate binding functions for the required data type. We execute the query using the sqlite3_
step function and then clean up the operation using the sqlite3_finalize function. All that remains is to
close the database using the sqlite3_close function:

 func insertWineRecord(_ wine:Wine)->Enums.SQLiteStatusCode{
 let sql:String = "INSERT INTO main.wine VALUES(?, ?, ?, ?)"

 if(sqlite3_open(dbPath.path!, &db)==SQLITE_OK){
 if(sqlite3_prepare_v2(db, sql.cString (using:String.Encoding.utf8)!, -1,

&sqlStatement, nil)==SQLITE_OK){
 sqlite3_bind_value(sqlStatement, 1, nil)
 sqlite3_bind_text(sqlStatement, 2, wine.name.cString(using: String.Encoding.

utf8)!, -1, SQLITE_TRANSIENT)
 sqlite3_bind_int(sqlStatement, 3, wine.rating)
 sqlite3_bind_int(sqlStatement, 4, wine.producer)
 sqlite3_bind_blob(sqlStatement, 5, wine.image.bytes,Int32(wine.image.count),

SQLITE_TRANSIENT)
 sqlite3_step(sqlStatement)
 sqlite3_finalize(sqlStatement)
 }
 }else{
 print(String(cString: sqlite3_errmsg(db))!)
 return Enums.SQLiteStatusCode.error
 }
 sqlite3_close(db)
 return Enums.SQLiteStatusCode.ok
 }

CHAPTER 5 ■ INSERTING RECORDS

81

 The insertWineryRecord Function
 This function inserts winery records from the SecondViewController via the insertWineryBtn . The pattern
of this function is identical to the function to insert wines, except for the binding columns, which include
binding values for integers as well as for doubles and strings. As we have seen before, the strings need to be
converted to string chars using the cStringUsingEncoding property and NSUTF8StringEncoding :

 func insertWineryRecord(_ vintner:Wineries) -> Enums.SQLiteStatusCode {
 let sql:String = "INSERT INTO main.winery VALUES(?, ?, ?, ?, ?)"
 if(sqlite3_open(dbPath.path!, &db)==SQLITE_OK){
 if(sqlite3_prepare_v2(db, sql.cString(using: String.Encoding.utf8)!, -1,

&sqlStatement, nil)==SQLITE_OK){
 sqlite3_bind_value(sqlStatement, 1, nil)
 sqlite3_bind_text(sqlStatement, 2, vintner.name.cString(using: String.

Encoding.utf8)!, -1, SQLITE_TRANSIENT)
 sqlite3_bind_text(sqlStatement, 3, vintner.country. cString(using: String.

Encoding.utf8)!, -1, SQLITE_TRANSIENT)
 sqlite3_bind_text(sqlStatement, 4, vintner.region. cString(using: String.

Encoding.utf8)!, -1, SQLITE_TRANSIENT)
 sqlite3_bind_double(sqlStatement, 5, vintner.volume)
 sqlite3_bind_text(sqlStatement, 6, vintner.uom. cString(using: String.

Encoding.utf8)!, -1, SQLITE_TRANSIENT)
 sqlite3_step(sqlStatement)
 sqlite3_finalize(sqlStatement)
 }
 }else{
 print(String(cString: sqlite3_errmsg(db))!)
 return Enums.SQLiteStatusCode.error
 }
 sqlite3_close(db)
 return Enums.SQLiteStatusCode.ok
 }

 The FirstViewController
 All iOS UIs have a view controller associated with the scenes in the storyboard. When the app was created,
the template created a view controller for each of the scenes in the storyboard.

 To implement the UIImagePickerController and the UIPickerView , the app will need to implement
 UIImagePickerControllerDelegate , UIPickerViewDelegate , and UIPickerViewDataSource delegates and
data sources. With each of these, the app needs to implement a certain number of required functions, which
we will look at later.

 From the code that follows, you can see that we implement several variables and constants. The
 imageSelector variable is a UIImagePickerController type. It is used to present the UIImagePicker, which
will use the building camera as its data source. The imageData is a variable that holds the image data from
the camera. It is an NSData type that handles binary data on the iOS platform. The dbDAO is an instance of the
 WineryDAO that the app will use to interface with the database. wine and vintner are instances of the Wine
and Wineries classes that represent the data. The wineriesArray is a mutable array of the Wineries type.
This array is the data source for the UIPickerView . Finally, the IBOutlets were discussed earlier and are the
connections in the UI.

CHAPTER 5 ■ INSERTING RECORDS

82

 class FirstViewController: UIViewController, UINavigationControllerDelegate,
UIImagePickerControllerDelegate, UIPickerViewDelegate, UIPickerViewDataSource
 var imageSelector: UIImagePickerController!
 var imageData:Data = Data()
 var dbDAO:WineryDAO = WineryDAO()
 var wine: Wine = Wine()
 var wineriesArray = [Wineries]()
 var wineriesPickerView: UIPickerView = UIPickerView()
 var vintnor:Wineries = Wineries()
 @IBOutlet weak var selectWineryField: UITextField!
 @IBOutlet weak var imageView: UIImageView!
 @IBOutlet weak var wineNameField: UITextField!
 @IBOutlet weak var countryNameField: UITextField!

 Add Photo Capture Functionality
 As we have seen in the "Creating the UI for Inserting" section earlier, we need to be able to capture and insert
images (preferably wine-related ones). We have set up the UI and added the IBActions , and now we need to
add the logic to the FirstViewController .

 We start by initializing the imageSelector object and setting its delegate to the FirstViewController,
specifying that its source will be the building camera. Finally, the picker is loaded onto the view stack using
the presentViewController :

 @IBAction func takePhoto(_ sender: AnyObject) {
 imageSelector = UIImagePickerController()
 imageSelector.delegate = self
 imageSelector.sourceType = .camera
 present(imageSelector, animated: true, completion: nil)
 }

 The imagePickerController function is part of the image-picker protocol. It tells the delegate that a
picture was selected. We need to call the dismissViewControllerAnimated to close the picker and return the
selected image, which we store in the imageView.image property:

 func imagePickerController(_ picker: UIImagePickerController, didFinishPickingMediaWithInfo
info: [String : AnyObject]){
 imageSelector.dismiss(animated: true, completion: nil)
 imageView.image = info[UIImagePickerControllerOriginalImage] as? UIImage
 imageData = UIImagePNGRepresentation(imageView.image!)!
 }

 Once we have the image stored in the imageView , it is passed to the imageData using
 UIImagePNGRepresentation , which takes imageView.image as a parameter. The image data is passed and
stored in the database using insertRecordAction function, which we will look at next.

 Add the Insert Function
 The insertRecordAction calls the dbDAO object, passing in the required parameters to insert it into the
database. Most of the data used for the function comes from other functions and is assigned to the Wine
instance class’s properties.

CHAPTER 5 ■ INSERTING RECORDS

83

 @IBAction func insertRecordAction(_ sender: AnyObject) {

 dbDAO.insertWineRecord(wine))

 }

 The viewDidLoad Function
 This standard ViewController function is used after the scene is loaded onto the view stack or, in our case,
when the app is launched. The function provides a channel to set up the wineriesPickerView by setting
up the delegate and assigning the wineriesArray data source. Once the setup is complete, the UIPicker is
added as a subview to the current view controller.

 override func viewDidLoad() {
 super.viewDidLoad()
 //build data source

 self.wineriesPickerView.isHidden = true
 self.wineriesPickerView.dataSource = self
 self.wineriesPickerView.delegate = self
 self.wineriesPickerView.frame = CGRect(x:100, y:100, width: 100, height: 162)
 self.wineriesPickerView.backgroundColor = UIColor.black()
 self.wineriesPickerView.layer.borderColor = UIColor.white().cgColor
 self.wineriesPickerView.layer.borderWidth = 1
 self.wineriesArray = dbDAO.selectWineriesList()

 //other pickerView code like dataSource and delegate
 self.view.addSubview(wineriesPickerView)

 }

 Add the Rating UISlider Functionality
 The wineRating function manages the interaction with the UISlider . The sender argument returns the float
value based on the user’s selection, and then this value is converted to an Int32 and assigned to the wine.
rating property:

 @IBAction func wineRatingSlider(_ sender: AnyObject) {
 let ratingValue:float_t = sender.value
 wine.rating = Int32(ratingValue)
 }

 The SecondViewController
 The second view controller manages the entry of the wine producers. A user will need to add wineries
before wines when the app is running. It is much simpler than the first view controller, as we have to deal
with just five UITextFields that we defined with the UI. We call the insertWineryRecord method of the
 dbDAO class from the insertWineryBtn IBAction function, passing the values from the UITextFields . We
create the winery instance and assign the values before passing the object as the only argument for the

CHAPTER 5 ■ INSERTING RECORDS

84

 insertwineryRecord method. We could have simply passed the values for the UITextFields directly, but I
will need to share those values later.

 @IBOutlet weak var wineryNameField: UITextField!
 @IBOutlet weak var countryNameField: UITextField!
 @IBOutlet weak var regionNameField: UITextField!
 @IBOutlet weak var enterVolume: UITextField!
 @IBOutlet weak var enterUoM: UITextField!

 var dbDAO:WineryDAO = WineryDAO()
 var winery:Wineries = Wineries()

 @IBAction func insertWineryBtn(_ sender: AnyObject) {
 winery.name = wineryNameField.text!
 winery.country = countryNameField.text!
 winery.region = regionNameField.text!
 winery.volume = Double(enterVolume.text!)!
 winery.uom = enterUoM.text!
 dbDAO.insertWineryRecord(winery)
 }
 ...
 }

 All that is left to do is run the app and insert some records.

 Running the App
 To finish up this chapter, let's fire up the app. To properly test this app and the camera, you need to deploy it
on an iPhone. I am using iPhone 6 Plus. To deploy to an iPhone, you need to plug in your phone, provision it
on the Apple Developer website, then open the settings on the iPhone. Under the General section, look for
the Device Management section and click on "Trust link and enable the app for development."

 Inserting Records
 It is best to start by entering wineries so that you have some data to choose from in the wineries picker in
scene one. With the app running, tap the Winery button in the menu bar.

 Inserting Wineries
 Figure 5-9 is the Wineries scene. Enter a winery and tap the Insert Winery button.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 5 ■ INSERTING RECORDS

85

 Inserting Wines
 When using the camera, the device will ask you for permission to access the camera. Click OK to proceed
(Figure 5-10).

 Figure 5-9. The Winery scene

CHAPTER 5 ■ INSERTING RECORDS

86

 Once you have accessed the camera for the first time, you will be presented with the camera as usual.
I took a photo of a Chateauneuf du Pape—la fiole du pape (Figure 5-11). Click on the shutter button. You
can cancel to opt to keep the photo. If you accept the photo, it will appear in the UIImage viewer. Enter the
remaining information and click the Insert Wine button.

 Figure 5-10. Access camera from app

CHAPTER 5 ■ INSERTING RECORDS

87

 Summary
 That’s it for this chapter. We explored the SQLite INSERT API including the OR clause. I provided sample code
to demonstrate how to handle binary data like images, videos, and audio files, and we started to build the
Winery app, which will demonstrate the general SQL CRUD operations in SQLite.

 In the next chapter, we will continue to build the Winery app by adding SELECT operations to the app
and testing the selection process.

 Figure 5-11. Entering wine information with image

89© Kevin Languedoc 2016
K. Languedoc, Build iOS Database Apps with Swift and SQLite, DOI 10.1007/978-1-4842-2232-4_6

 CHAPTER 6

 Selecting Records

 The SELECT statement is the workhorse of the SQL language no matter what platform you are using, and it is
no different with SQLite. The SELECT statement is used to perform queries against a SQLite table or view. It is
also used to populate views in SQLite databases, just as in other relational database systems.

 This chapter demonstrates how to use SELECT in Swift by binding data from columns in SQLite tables
and assigning them to Swift data-type variables.

 The examples demonstrate how to perform SELECT queries to return text and numeric data as well as
audio, image, and video data. The Winery app will be retrofitted with SELECT queries to display the list of
wineries for the UIPickerView as well as display wines that are stored in the database.

 In this chapter, we will explore the following:

• the SELECT statement syntax

• various SELECT use cases

• binding data types

• inner SELECT

• joins

• inline SELECT

• adding SELECT queries to the Winery app

 Column Data Types
 Here is a list of the data-type binding functions that you can use to assign values from a SELECT query to a
C-based variable, a Swift variable, or a custom object's properties:

• sqlite3_column_blob(sqlite3_stmt, int iCol);

• sqlite3_column_bytes(sqlite3_stmt, int iCol);

• sqlite3_column_bytes16(sqlite3_stmt, int iCol);

• sqlite3_column_double(sqlite3_stmt, int iCol);

• sqlite3_column_int(sqlite3_stmt, int iCol);

• sqlite3_column_int64(sqlite3_stmt, int iCol);

• sqlite3_column_text(sqlite3_stmt, int iCol);

• sqlite3_column_text16(sqlite3_stmt, int iCol);

CHAPTER 6 ■ SELECTING RECORDS

90

• sqlite3_column_type(sqlite3_stmt, int iCol);

• sqlite3_column_value(sqlite3_stmt, int iCol);

• sqlite3_bind_zeroblob(sqlite3_stmt, int, int iCol)

 The SELECT Statement
 The SQLite SELECT statement is used to extract data and information from a SQLite database. The SELECT
statement is the most complicated in the SQL language, mostly because of all the permutations.

 The basic syntax of a SELECT query is:

 SELECT column(s) from main.table

 You could also use a wildcard to return all the columns in the table:

 SELECT * from main.table

 If you wanted or needed to return only a subset of the data from a table, you could use a WHERE clause, as
in the following example:

 SELECT * from main.table WHERE column1 = ‘some value’

 The WHERE clause could evaluate either custom or standard functions. You could also use the IN clause.
For example:

 SELECT id, column1 FROM main.table WHERE column1 IN (SELECT col_id, column1 from main.
second_table WHERE col_id=id)

 The SELECT statement can also include another SELECT statement instead of a column; this is known as
an inline select query, as the following illustrates:

 SELECT id, column1, (SELECT column FROM main.table)

 Selecting Data
 The first use case will demonstrate how to perform a basic, boilerplate SELECT without a WHERE clause . The
 SELECT in SQLite is performed through the select-stmt function. While you don't interface directly with this
function, meaning you don't call this function directly when performing SELECT queries, the function does
support the standard SQL API on SELECT . The following example follows the same pattern of accessing the
SQLite database in the Documents path, opening it, and performing a SELECT query.

 In this example, the SELECT query retrieves a result set of contacts and assigns them to a custom Swift
data type. The SELECT query string is defined using a Swift String variable. Look at the database parameter in
the sqlite3_open statement as an example of how to use an NSString to build a SELECT query and pass it to
the sqlite3_stmt function to be executed by the database engine.

 The SELECT statement SQL query is passed to the sqlite3_prepare_v2 function before it can be
executed by the database engine. To access the result set, you will need to use the sqlite3_step function
along with the SQLITE_ROW constant to loop through the results; as long as there are records in the result set
 SQLITE_ROW remains true.

 Once the result set is exhausted, sqlite3_finalize is called to clean up the prepared statement, and
 sqlite3_close closes the database. String data is stored in the database using UTF-8 encoding, so when you
need to assign a string value to a Swift variable, you need to use the NSUTF8StringEncoding method from the
 String class.

CHAPTER 6 ■ SELECTING RECORDS

91

 The database values that are retrieved from the result set must be passed or assigned to a variable or
custom data type using a special function like sqlite3_column_text . There is a sqlite3_column for each
data type, including blobs. Access to the columns in a table is done through a zero-based array, as in the
example code that follows.

 Once the values are assigned to either a Swift variable or a custom data-type property, if you wanted
to display them in a UIPickerView or a UITableView you would need to add the values to an array or
 NSDictionary, which is the preferred, most commonly used data source method for these list-based
objects. See the example code here:

 class SelectWithSwift: NSObject {

 var dbPath:URL = URL()
 let db:COpaquePointer?=nil
 let sqlite3_stmt:COpaquePointer?=nil

 override init() {
 let dirManager = FileManager.default()
 do {
 let directoryURL = try dirManager.urlForDirectory(FileManagerSearchPathDirec

tory.documentDirectory, in FileManager.SearchPathDomainMask.UserDomainMask,
appropriateFor: nil, create: true)

 dbPath = try! directoryURL.appendingPathComponent("Contacts.sqlite")

 } catch let err as NSError {
 print("Error: \(err.domain)")
 }
 }

 func simpleSelect(){
 var contactList = [Person]()
 let sql:String = "Select id, name, address, city, zip,country from contact"

 if(sqlite3_open(dbPath.path!, &db)==SQLITE_OK){
 if(sqlite3_prepare_v2(db, sql.cString (using:String.Encoding.utf8)!, -1,

&sqlStatement, nil) == SQLITE_OK)
 {
 while (sqlite3_step(sqlStatement)==SQLITE_ROW) {
 let contact:Person = Person()
 contact.name = String(cString:UnsafePointer<Int8>(sqlite3_column_

text(sqlStatement, 0)))!
 contact.address = String(cString:UnsafePointer<Int8>(sqlite3_column_

text(sqlStatement, 1)))!
 contact.city = String(cString:UnsafePointer<Int8>(sqlite3_column_

text(sqlStatement, 2)))!
 contact.zip = String(cString:UnsafePointer<Int8>(sqlite3_column_

text(sqlStatement, 3)))!
 contact.country = String(cString:UnsafePointer<Int8>(sqlite3_column_

text(sqlStatement, 4)))!contactList.append(contact)

 }

CHAPTER 6 ■ SELECTING RECORDS

92

 }
 }
 sqlite3_finalize(sqlStatement);
 sqlite3_close(db);
 }

 ■ Note Obviously, if you are only retrieving one value from the database, like we will see in the example that
uses a WHERE clause, you don't need to loop through the result set.

 Using a Dynamic WHERE Clause
 The next use case will demonstrate how to use a WHERE clause. Using a WHERE clause with your SELECT query
is a powerful feature in SQL. The WHERE clause in SQLite acts no differently than it does in any other database
platform. The trick is how to dynamically pass values to the WHERE clause's Boolean variables.

 Basically, there are two formats you can use to pass values to the WHERE clause's variables. You can build
an NSString string or use string formatters, like in the following example:

 func SelectWhereContactInformation(){
 var contactList = [Person]()
 if(sqlite3_open(dbPath.path!, &db)==SQLITE_OK){
 let sql:String = "Select id, name, address, city, zip,country from contact where

name=?";
 if(sqlite3_prepare_v2(db, sql, -1, &sqlStatement, nil) == SQLITE_OK)
 {
 // input value for the WHERE clause unless you are
 sqlite3_bind_text(sqlStatement, 0, sql, -1, nil);

 //Bind each column in the table to the property names
 //for the contact object.
 while (sqlite3_step(sqlStatement)==SQLITE_ROW) {
 let contact:Person = Person()
 contact.name = String(cString: UnsafePointer<Int8>(sqlite3_column_

text(sqlStatement, 0)))!
 contact.address = String(cString: UnsafePointer<Int8>(sqlite3_column_

text(sqlStatement, 1)))!
 contact.city = String(cString: UnsafePointer<Int8>(sqlite3_column_

text(sqlStatement, 2)))!
 contact.zip = String(cString: UnsafePointer<Int8>(sqlite3_column_

text(sqlStatement, 3)))!
 contact.country = String(cString: UnsafePointer<Int8>(sqlite3_column_

text(sqlStatement, 4)))! contactList.append(contact)
 }
 }
 }

 sqlite3_finalize(sqlStatement);
 sqlite3_close(db);
 }

CHAPTER 6 ■ SELECTING RECORDS

93

 In the preceding code, the value for the name variable in the WHERE clause gets updated from the
 sqlite3_bind_text value, which replaces the “?” placeholder in the sql: String variable. You then pass
the string to the sqlite3_prepare_v2 method by converting the sql query string to UTF-8, as follows:

 sql.cString (using: String.Encoding.utf8)!

 Perform a SELECT using a Sub-Query
 The next example I want to show you is how to do a SELECT using a sub-query. Actually, a sub-query is
a result set of a SELECT query, and you perform your SELECT query on this result set rather than on the
complete table.

 Consider this basic example, which shows the basic syntax of a sub-query:

 SELECT id, name, sales, sales_quota, region FROM Sales WHERE id IN
 (SELECT id FROM Sales WHERE closed_deals > 10000000)

 From a Swift standpoint, this wouldn't be any different than a normal query, and you could pass the
value of the WHERE expression as in previous examples. Formatted as a String variable assignment, however,
this would look like the following:

 let intValue:Int = 1000000
 let subquery:String = "SELECT id, name, sales, sales_quota, region FROM Sales WHERE

id " +
 "IN (SELECT id FROM Sales WHERE closed_deals > \(intValue)"

 Or you could bind the value as you have seen in previous examples:

 let intValue:Int = 1000000
 let subquery:String = "SELECT id, name, sales, sales_quota, region FROM Sales WHERE

id " +
 "IN (SELECT id FROM Sales WHERE closed_deals > ?"
 // sqlite3_prepare_v2 code
 sqlite3_bind_int(sqlStatement, 0, Int32(intValue))

 There are a couple of rules that you need to keep in mind when working with sub-queries. First, the sub-
query can only have one column in the SELECT clause unless several columns in the main SELECT match up
with the same columns in the sub-query. Second, sub-queries must be enclosed in parentheses. Third, you
cannot include an ORDER BY clause in the sub-query. However, you can use ORDER BY in the main SELECT .
Fourth, a sub-query that returns more than one row must use a multiple-value operator like IN . Finally, you
can only use the BETWEEN clause in a sub-query.

 Perform a SELECT using Joins
 Joins are an essential operation in SQL, or, more precisely, in a relational database, since we look up data in
different tables based on the relationship between those tables. SQLite implements joins in a fashion similar
to that of other SQL derivatives. In this section, we will explore the standard join patterns or clauses.

 Using an INNER Join
 The most common join is the inner join . The inner join uses a matching key (primary–foreign) to create a
relationship between two tables. The key doesn't have to have the same name, only the same data type:

CHAPTER 6 ■ SELECTING RECORDS

94

 Select c.id, c.name, r.hotel, r.checkin, r.checkout from customer as C JOIN
reservations as r ON on c.id = r.custid

 You could also use a WHERE clause to achieve the same result:

 Select c.id, c.name, r.hotel, r.checkin, r.checkout from customer as C JOIN
reservations as r WHERE c.id = r.custid

 Using a CROSS Join
 The NATURAL JOIN is similar to the inner join except that the query presumes and expects to find an identical
column in each joined table and will any matching column (name and data type) that it finds:

 Select c.id, c.name, r.hotel, r.checkin, r.checkout from customer as C NATURAL JOIN
reservations AS r

 Using the OUTER Join
 With the left outer join , all the records from the left table—or, in other words, all the records from the table
immediately following the FROM keyword—even if there are no records in the table on the right.

 Select c.customerid, c.name, v.visits from customer as C LEFT JOIN Visits v ON c.id=v.custid

 Select and Display Images
 This example demonstrates how to select binary data like images and convert that binary data into the
 UIImage data type that can be displayed in a UIImageView :

 func selectImages(_ filename:String)->Array<UIImage>{
 var imageArr = [UIImage]()

 if(!(sqlite3_open(dbPath.path!, &db) == SQLITE_OK))
 {
 print("An error has occured.");
 return imageArr;
 }else{
 let sql:String = "SELECT id, filename, image FROM images where filename=?";
 if(sqlite3_prepare(db, sql, -1, &sqlStatement, nil) != SQLITE_OK)
 {
 print("Problem with prepared statement");
 }else{
 //WHERE parameter value
 sqlite3_bind_text(sqlStatement, 1,filename, -1,SQLITE_TRANSIENT)
 while (sqlite3_step(sqlStatement)==SQLITE_ROW) {
 let contact:Person = Person()

 let raw:UnsafePointer = sqlite3_column_blob(sqlStatement, 3);
 let rawLen:Int32 = sqlite3_column_bytes(sqlStatement, 3);
 let data:Data = Data(bytes: raw, count: Int(rawLen))

CHAPTER 6 ■ SELECTING RECORDS

95

 //Convert the binary data into an UIImage
 contact.avatar = UIImage(data: data)!
 imageArr.append(contact.avatar)

 }
 }

 }
 return imageArr
 }

 Select and Playback Audio Records

 func selectAudioWithPlayback(_ selectedFile:String)->Data{

 var audio:Data = Data()
 let sql:String = "SELECT audioData FROM audios wherefileName= \(selectedFile)"

 if(sqlite3_open(dbPath.path!, &db)==SQLITE_OK){
 if(sqlite3_prepare_v2(db, sql, -1, &sqlStatement, nil)==SQLITE_OK){
 while (sqlite3_step(sqlStatement)==SQLITE_ROW) {
 let raw:UnsafePointer = sqlite3_column_blob(sqlStatement, 3);
 let rawLen:Int32 = sqlite3_column_bytes(sqlStatement, 3);
 audio = Data(bytes: raw, count: Int(rawLen))
 }
 }
 sqlite3_finalize(sqlStatement);
 sqlite3_close(db);
 return audio
 }
 }

 ■ Note The following code is for representation only, meaning that it cannot be run from here. Rather, you
would need to include it in a view controller attached to an IBAction . The self-reference that follows refers to
the view controller.

 func playback(_ selectedAudioFile:NSData){

 do {
 var audioPlayer = try AVAudioPlayer(data:selectedAudioFile)
 audioPlayer.delegate = self;
 audioPlayer.prepareToPlay()
 audioPlayer.play()
 } catch let err as NSError {
 print("Error: \(err.domain)")
 }

 }

CHAPTER 6 ■ SELECTING RECORDS

96

 Select and Display Video Records
 Selecting videos for playback follows the same pattern as doing so for images and audio. To perform a
 SELECT , extract the data using the blob and store the binary data in an NSData object or objects that can be
stored in an NSMutableArray or NSDictionary, for example.

 However, you can't convert or pass the NSData object directly to the MPMoviePlayerController object
for playback like you can with images or audio. You will need to convert the NSData object to a movie
format like mp4 by saving it to a movie file in the Documents directory. To save the NSData to an mp4 file,
simply write out the data to a file with the .mp4 extension; NSData is simply a container for data, so no
transformation is needed.

 Alternatively, you could store the NSData to an NString and convert this string to an NSURL object, which
you could then use to initialize the MPMoviePlayerController using the initWithContentURL method.

 Adding SELECT Functionality to the Winery App
 In this section of the chapter, I will add the SELECT functionality to the Winery app. This functionality will
include a function to select a winery when entering a wine, another function to select and display a list of
wines from the database, as well as a function to display the different wineries. This third function will be
enhanced in a later chapter on updating records. Let's start with the wineriesPickerView .

 Add the SelectWineries UIPicker
 This little function displays the UIPicker so that a user can select a winery from the list:

 @IBAction func selectWineryButton(sender: AnyObject) {
 self.wineriesPickerView.hidden = false
 }

 The viewDidLoad Function
 This standard ViewController function runs after the scene is loaded onto the view stack, or in
our case when the app is launched. The function provides a channel through which to set up the
 wineriesPickerView by setting up the delegate and assigning the wineriesArray data source. Once the
setup is complete, the UIPicker is added as a sub-view to the current view.

 override func viewDidLoad() {
 super.viewDidLoad()
 //build data source

 self.wineriesPickerView.isHidden = true
 self.wineriesArray = dbDAO.selectWineriesList()
 self.wineriesPickerView.dataSource = self
 self.wineriesPickerView.delegate = self
 self.wineriesPickerView.frame = CGRect(x:19, y:243, width: 336, height: 216)
 self.wineriesPickerView.backgroundColor = UIColor.white()
 self.wineriesPickerView.layer.borderColor = UIColor.blueColor().cgColor
 self.wineriesPickerView.layer.borderWidth = 1

 //other pickerView code like dataSource and delegate
 self.view.addSubview(wineriesPickerView)
 }

CHAPTER 6 ■ SELECTING RECORDS

97

 The UIPickerView Functions
 The following functions are related to the UIPickerView . Some are for the delegate, which provides the
interactivity to the UI component, while others identify the number of columns, the title, and the data
source, as well as identify which row is selected.

 The numberOfComponentsInPickerView function sets the number of columns the UIPicker will display.
The pickerView function used along with the numberOfRowsInComponent argument sets the number of
rows the UIPickerView will have in its data source. Typically, this return value is the data source array’s
 count property. Next, the pickerView function used with titleForRow displays the actual list of values.
 didSelectRow returns the item that is selected by the user. Since I have a foreign key for the winery in the
wine table, I need to get the ID for the winery, which I am doing with the vintner.id value; this is also the
 row id in the data source. Then, I set the hidden property to false to hide the picker view again from the user.
The next two functions set the height and width of the rows. Finally, the typePickerViewSelected , although
I added it in this section, is not a required function. Rather, it is an IBAction that I defined to display the
 UIPickerView when the user clicks on the Select Winery button.

 func numberOfComponents (_ in pickerView: UIPickerView) -> Int {
 return 1
 }

 func pickerView(_ pickerView: UIPickerView, numberOfRowsInComponent component: Int) ->
Int {

 return wineriesArray.count
 }

 func pickerView(_ pickerView: UIPickerView, titleForRow row: Int, forComponent
component: Int) -> String? {

 vintnor = wineriesArray[row] as Wineries
 let pickernames = vintnor.name
 return pickernames }

 func pickerView(_ pickerView: UIPickerView, didSelectRow row: Int, inComponent
component: Int) {

 vintnor = wineriesArray[row] as Wineries
 vintnor.id = Int32(row)
 wineriesPickerView.isHidden = false
 }

 func pickerView(_ pickerView: UIPickerView, widthForComponent component: Int) -> CGFloat
{
 return 300.0
 }

 func pickerView(_ pickerView: UIPickerView, rowHeightForComponent component: Int) ->
CGFloat {

 return 56.0
 }

 func pickerView(_ pickerView: UIPickerView, didSelectRow row: Int, inComponent
component: Int) {

 vintnor = wineriesArray[row] as Wineries
 selectWineryField.text = vintnor.name

CHAPTER 6 ■ SELECTING RECORDS

98

 wineriesPickerView.endEditing(true)
 wineriesPickerView.hidden = true
 }
 func pickerView(_ pickerView: UIPickerView, viewForRow row: Int, forComponent component:

Int, reusing view: UIView?) -> UIView {
 let test:UILabel = UILabel()
 let titleData = wineriesArray[row].name
 let myTitle = AttributedString(string: titleData, attributes: [NSFontAttributeName:U

IFont(name: "Georgia", size: 15.0)!,NSForegroundColorAttributeName:UIColor.red()])
 test.attributedText = myTitle
 return test

 }

 The selectWineriesList Function
 This function will act as the data source for the UIPickerView that is activated when you enter the Select
Winery field in the FirstViewController . This function will also be called by the UITableViewController
to display the list of wineries. After you open the database, if it's not already open, the SELECT query string
is passed to the sqlite3_prepared_v2 function along with the sqlite3-stmt pointer, sqlStatement . While
there are records, meaning while sqlite3_step returns SQLITE_ROW , the code will loop and assign the
returned values to the wine object’s properties.

 Unbinding the returned values requires a couple of hoops, but as long you know how to deal with the return
data types, everything will move along smoothly. sqlite3_column_int returns an Int32 value. You can convert
this value to an Int, if needed, by wrapping sqlite3_column_int in an Int() function. Likewise, for sqlite3_
column_text , which returns an UnsafePointer of an Int8 type, you just need to convert the returned value into
an Int8 character, then convert this value to a String by using fromCString , which requires an Int8 value.

 The returned columns are zero based, so the last parameter in the sqlite3 column-mapping functions is
the column number whose value you need returned. See the following:

 func selectWineriesList()->Array<Wineries>{
 var wineryArray = [Wineries]()

 let sql:String = "Select name, country, region, volume, uom from main.winery"

 if(sqlite3_open(dbPath.path!, &db)==SQLITE_OK){
 if(sqlite3_prepare_v2(db, sql, -1, &sqlStatement, nil)==SQLITE_OK){
 while(sqlite3_step(sqlStatement)==SQLITE_ROW){
 let vintnor:Wineries = Wineries.init()
 vintnor.name = String(cString:UnsafePointer<Int8>(sqlite3_column_

text(sqlStatement, 0)))!
 vintnor.country = String(cString: UnsafePointer<Int8>(sqlite3_column_

text(sqlStatement, 1)))!
 vintnor.region = String(cString: UnsafePointer<Int8>(sqlite3_column_

text(sqlStatement, 2)))!
 vintnor.volume = sqlite3_column_double(sqlStatement, 3)
 vintnor.uom = String(cString: UnsafePointer<Int8>(sqlite3_column_

text(sqlStatement, 4)))!
 wineryArray.append(vintnor)
 }
 }

CHAPTER 6 ■ SELECTING RECORDS

99

 }
 sqlite3_close(db)
 return wineryArray
 }

 The selectWineList Function
 The selectWineList function acts the same way as the previous function. Its one special feature is the blob,
or stored image. In order to convert the stored blob, you need the NSData, as we saw earlier in this chapter.

 The NSData function needs the returned data as bytes, and it needs to know the length of the bytes.
These values are stored in the raw and rawLen variables, respectively. The raw variable is an UnsafePointer
because this is the return type of the sqlite3_column_blob function, and rawLen is an Int32 data type. You
then pass these two values to the NSData initializer, which is then appended to the wine.image property.
However, this value is still a binary format. Later in the chapter, the app will convert NSData into an UIImage
and display it in the UIImageView . See the following:

 func selectWineList()->Array<Wine>{
 var wineArray = [Wine]()
 let sql:String = "Select name, rating, image, producer from main.wine"
 if(sqlite3_open(dbPath.path!, &db)==SQLITE_OK){
 if(sqlite3_prepare_v2(db, sql.cString(String.Encoding.utf8)!, -1, &sqlStatement,

nil)==SQLITE_OK){
 while(sqlite3_step(sqlStatement)==SQLITE_OK){
 let wine:Wine = Wine.init()

 wine.name = String(cString: UnsafePointer<Int8>(sqlite3_column_
text(sqlStatement, 1)))!

 wine.rating = sqlite3_column_int(sqlStatement, 2)
 let raw:UnsafePointer = sqlite3_column_blob(sqlStatement, 3);
 let rawLen:Int32 = sqlite3_column_bytes(sqlStatement, 3);
 wine.image = Data(bytes: raw, count: Int(rawLen))
 wine.producer = String(cString: UnsafePointer<Int8>(sqlite3_column_

text(sqlStatement, 4)))!
 wineArray.append(wine)
 }
 }
 }
 sqlite3_close(db)
 return wineArray
 }

 The selectWineryByName Function
 The wine producer property, which is the foreign key in the database, is an Int32 value. In order to get the
winery name from the database for the Selected Winery field in the FirstViewController , the following
function performs a SELECT statement with a WHERE clause, using the ID to locate the record. I pass the WHERE
clause value using sqlite3_bind_int then retrieve the return value and assign it to the name property of the
 vintner object using the same method as before. Notice that the last parameter is a 1 instead of a 0. This is
because in the SELECT query I am requesting two columns: the ID and the name.

CHAPTER 6 ■ SELECTING RECORDS

100

 func selectWineryByName(name:String)->String{
 let vintnor:Wineries = Wineries.init()
 let sql:String = "Select name from main.winery where name=?"
 if(sqlite3_open(dbPath.path!, &db)==SQLITE_OK){
 if(sqlite3_prepare_v2(db, sql.cString(using: String.Encoding.utf8)!, -1,

&sqlStatement, nil)==SQLITE_OK){
 sqlite3_bind_text(sqlStatement, 0, vintner.name.cString(String.Encoding.

utf8)!, -1, SQLITE_TRANSIENT)
 if(sqlite3_step(sqlStatement)==SQLITE_OK){
 vintnor.name = String(cString:UnsafePointer<Int8>(sqlite3_column_

text(sqlStatement, 1)))!
 }
 }
 }
 sqlite3_close(db)
 return vintnor.name
 }

 Modifying the UI for Displaying Records
 With the SELECT queries in place, all that is needed is to add the view controllers to the UI and wire
everything up. The app is going to need two TableViewControllers to display the list of records. These will
have to be wired to the TabBarController .

 Figure 6-1 provides a visual of the additional design elements that are added to the Winery app for the
select and display functionality. These new elements include the following:

• Two table view controllers

• Two navigation controllers

• Two UITableViewCellControllers

• Three UILabels for the WineList cell prototype and five for the WineryList cell
prototype

 Adding the UITableViewControllers
 We will first add the UITableViewController for the wine list, which I will call the Cellar. Select the main.
storyboard to open it (Figure 6-1). Drag a UITablewViewController from the palette on the lower right
onto the canvas. Select the UITableViewController and then select the Attributes inspector and enter
the “Cellar” title in the Title field. To connect the TableView to the TabBarController , you first need
to create a NavigationViewController for the TableViewController . The easiest way to create the
NavigationViewController, other than dragging it from the palette onto the canvas, is to select it and select
Editor/Embed/Navigation Controller from the Xcode menu.

CHAPTER 6 ■ SELECTING RECORDS

101

 Once the navigation controller has been created, select the TabBarController and drag (press Control
or CTRL and press the left mouse button while dragging a line from the TabBar to the navigation controller)
a connection to the navigation controller. Upon releasing the mouse button, a popup will appear. From
this popup, you need to select ViewControllers from the choices. This will create a connection with the
 TabBarController and will add a navigation item to the existing tab bar. You can change the item's value by
selecting the navigation controller and changing the title value in the Attributes inspector. We need to repeat this
process for the next UITableViewController for the winery list, which will also have a modified TableViewCell .

 For now, that is all that is needed for this UITableViewController . We will add the
 TableViewControllers and the TableViewCellController in the next section.

 After creating the second UITableViewController , using the preceding instructions for the Cellar,
drag two UILabels onto the Cell Prototype (Figure 6-2). Change the label names to Wine and Winery as in
the following figure. Also add an ImageView for the wine image. We will add the view controllers in the next
section as well as create the IBOutlets .

 Figure 6-1. Extended storyboard with TableViewControllers

CHAPTER 6 ■ SELECTING RECORDS

102

 Adding the Navigation Controllers
 The final step is to provide an interface between the new UI elements and the SELECT functions,
and ultimately the SQLite database. This interface consists of TableViewControllers and a
 TableViewCellController that is configured or connected to the corresponding UI elements, which will
contain the IBOutlets that will display the data from the database.

 Both TableViewControllers are created the same way. From the File menu in Xcode, select New,
then File. In the template selector, choose the Cocoa Touch Class template under the iOS Source category
(Figure 6-3). In the next screen, enter WineryListTableViewController in the Class field. In the Subclass
dropdown, select the UItableViewController class, and leave or select the Swift language (Figure 6-4). When
the class is created, Xcode will append the name of the super class to the name. As shown in Figure 6-5 , click
the Next button and select the location in the project, then click Create.

 ■ Tip You can also add a new file by right-clicking anywhere in the Project Navigator and selecting New File…

 Figure 6-2. The Cellar TableView cell prototype

CHAPTER 6 ■ SELECTING RECORDS

103

 Figure 6-3. Select the Cocoa Touch Class

 Figure 6-4. Enter WineryList in Class field

CHAPTER 6 ■ SELECTING RECORDS

104

 The template provides a lot of code that will need to be modified later. Repeat the same
process for the WineryList controller, WineCellTableViewCell, and WineryCellTableViewCell
UITableViewCellController . Next, we will connect the view controllers and add the IBOutlets .

 Connect the TableViewControllers and TableViewCellController
 To add the IBOutlets , you first need to connect the view controllers with their corresponding UI elements.
To connect the table view controller, select the WineList in the storyboard. Select the Identity inspector
on the right side of the Xcode editor, and in the Custom Class field select WineListTableViewController
(Figure 6-6). Repeat the process with the WineryListTableViewController .

 Figure 6-5. Add the file to the project

CHAPTER 6 ■ SELECTING RECORDS

105

 To select the TableViewCellController , expand the Document Outline using the icon on the lower left
of the IB canvas (Figure 6-7). Select the TableViewCell, then select the Identity inspector and choose the
 WineCellTableViewController from the dropdown (Figure 6-8).

 Figure 6-6. Connect TableViewControllers

 Figure 6-7. Document Outline selector

CHAPTER 6 ■ SELECTING RECORDS

106

 Adding the IBOutlets: WineList Controller
 For the WineList cell, expand the Document Outline and select the WineCellTableViewCell and control-
drag a connection to the Assistant Editor (Figure 6-9).

 Next, in turn, select the ImageView and the UILabels and create IBOutlets for each of them, naming
them wineImgOutlet , wineNameOutlet , and wineryNameOutlet .

 With the IBOutlets set up, we can add the code to display the data in the scenes.
 To display the winery information in the corresponding UITableViewCell , we will need to add UILabel s

for the winery name, country, region, volume, and unit of measure. Follow the same process as for the
 WineCellTableViewCell and connect them to the WineryCellTableViewCell .

 import UIKit

 class WineCellTableViewCell: UITableViewCell {

 Figure 6-8. Connect TableViewCellController

 Figure 6-9. Create WineCell outlet

CHAPTER 6 ■ SELECTING RECORDS

107

 @IBOutlet weak var wineNameOutlet: UILabel!
 @IBOutlet weak var wineryNameOutlet: UILabel!
 @IBOutlet weak var wineRatingOutlet: UILabel!
 @IBOutlet weak var wineImageOutlet: UIImageView!

 }

 Likewise, for the WineryCell in the WineryListTableViewController (Figure 6-10), add this code:

 class WineryCellTableViewCell: UITableViewCell {

 @IBOutlet weak var wineryNameOutlet: UILabel!
 @IBOutlet weak var regionOutlet: UILabel!
 @IBOutlet weak var countryOutlet: UILabel!
 @IBOutlet weak var volumeOutlet: UILabel!
 @IBOutlet weak var uomOutlet: UILabel!

 Add the Business Logic
 To fetch the data from the database and display it in the UI, you need to add some code.

 The WineListTableViewController
 The WineryListTableViewController provides the interface between the database and the table
view cell controller. For the data source, I define a wine array, wineListArray . I populate the array
using the selectWineList function in the wineDAO instance object from the loadWineList function.
This latter function gets called when the view loads using the viewDidLoad standard function of the
 UITableViewController :

 var wineListArray = [Wine]()
 let wineDAO:WineryDAO = WineryDAO()

 func loadWineList(){
 wineListArray = wineDAO.selectWineList()
 }

 Figure 6-10. WineryCell IBOutlet

CHAPTER 6 ■ SELECTING RECORDS

108

 override func viewDidLoad() {
 super.viewDidLoad()
 loadWineList()
 }

 Next, you need to tell the controller how many sections will be in the table, as well as how many rows
the data source will have or will be displayed. Typically, the numberOfSectionsInTableView returns 1 to
indicate one section. For the number of rows, you typically return the number of elements in the array:

 override func numberOfSections(in: tableView: UITableView) -> Int {
 return 1
 }

 override func tableView(_ tableView: UITableView, numberOfRowsInSection section: Int) ->
Int {

 return wineListArray.count
 }

 To display the data in the table, you need reference the cell that we previously set up in the IB
and in the WineCellTableViewCell controller. You do that by passing the name of the cell identifier to
the dequeueReusableCellIdentifier property of the table view. Then, cast the returning value as a
 WineCellTableViewCell . Next, you simply fetch each row in the array and assign the values to the cell’s
 IBOutlets . This function is called automatically for each row in the array that you defined in the previous
function:

 override func tableView(_ tableView: UITableView, cellForRowAt indexPath: IndexPath) ->
UITableViewCell {

 let cell = tableView.dequeueReusableCell(withIdentifier: "WineCellTableViewCell",
for: indexPath) as! WineCellTableViewCell

 // Configure the cell...
 let wine = wineListArray[(indexPath as NSIndexPath).row]

 cell.wineRatingOutlet.text = String(wine.rating)
 cell.wineNameOutlet.text = wine.name
 cell.wineryNameOutlet.text = wine.producer
 cell.wineImageOutlet.image = UIImage.init(data: wine.image as Data)

 return cell
 }

 The WineryListTableViewController
 To set up the data source to the table, you need to define an array. In the sample app, I

 class WineryListTableViewController: UITableViewController {
 var wineryListArray = [Wineries]()
 let wineDAO:WineryDAO = WineryDAO()

CHAPTER 6 ■ SELECTING RECORDS

109

 func loadWineList(){
 wineryListArray = wineDAO.selectWineriesList()
 }
 override func viewDidLoad() {
 super.viewDidLoad()
 loadWineList()

 }
 override func numberOfSections(in tableView: UITableView) -> Int {
 return 1
 }

 override func tableView(_ tableView: UITableView, numberOfRowsInSection section: Int) -> Int
{
 return wineryListArray.count
 }

 To display the individual rows in the cell’s UILabels , set up the cellForRowAt function. To
reference the cell prototype, you need to pass the WineryCellTableViewCell cell identifier to the
 dequeueReusableCellWithIdentifier property and cast the table view cell as WineryCellTableViewCell .
With the cell reference in hand, you need to get each row in the data - source array and assign the values to
the components in the cell, which in our case are the IBOutlets you set up before.

 override func tableView(_ tableView: UITableView, cellForRowAt indexPath: IndexPath) ->
UITableViewCell {

 let cell = tableView.dequeueReusableCell(withIdentifier: "WineryCellTableViewCell",
for: indexPath) as! WineryCellTableViewCell

 let winery:Wineries = wineryListArray[(indexPath as NSIndexPath).row]

 cell.wineryNameOutlet.text = winery.name
 cell.regionOutlet.text = winery.region
 cell.countryOutlet.text = winery.country
 cell.volumeOutlet.text = String(winery.volume)
 cell.uomOutlet.text = winery.uom

 return cell
 }

 Running the App
 With everything now created, fire up the app and actual iPhone, or you can use the camera in the simulator
(Figure 6-11).

CHAPTER 6 ■ SELECTING RECORDS

110

 Next, select the winery and rating and click the Save button to insert it into the record in the database
(Figure 6-12).

 Figure 6-11. Photo capture

CHAPTER 6 ■ SELECTING RECORDS

111

 To call the SELECT functions and display the data in the UITableViews , select either the Cellar or
Vineyard button in the tab bar (Figure 6-13).

 Figure 6-12. Select Wineries UIPickerView

CHAPTER 6 ■ SELECTING RECORDS

112

 Summary
 The focus of this chapter was using the SQLite SELECT statement to perform queries on a SQLite database.
The first part was an overview of the API along with some sample code to demonstrate using SELECT with
Swift. We also looked at performing SELECT queries on binary data.

 Finally, we added the SELECT query's functionality to the Winery app so as to select wines and wineries
for the UITableViewControllers as well as for the UIPickerView .

 The next chapter will explore the UPDATE statement in SQLite, and we will also add the UPDATE
functionality to the Winery app.

 Figure 6-13. Displaying the list of records

113© Kevin Languedoc 2016
K. Languedoc, Build iOS Database Apps with Swift and SQLite, DOI 10.1007/978-1-4842-2232-4_7

 CHAPTER 7

 Updating Records

 Updating records in SQLite is very similar to using the UPDATE statement on other platforms like SQL Server
or Oracle. However, SQLite offers additional operations for updating records that are similar in nature to the
SQLite INSERT statement.

 In this chapter, we will discuss the various ways we can use the UPDATE statement in SQLite. These
include the following:

• The UPDATE statement

• The WHERE clause

• The LIMIT and ORDER BY clauses

• Using sub-queries

• Using joins

• Using a WHERE clause in a sub-query

• Using the ON Conflict clause

• The OR FALLBACK statement

• The OR ABORT statement

• The OR REPLACE statement

• The OR FAIL statement

• The OR IGNORE statement

 The following sections in this chapter will provide working examples of the queries for each of these
operations in addition to adding the updating functionality to the Winery app.

 SQLite Update Statement
 The UPDATE statement is used to update an existing record or records in a SQLite database. If you only need
to update a subset of the rows in a table, you can use a WHERE clause to filter or target the records that need to
be updated or replaced, as we will see later. The LIMIT clause and the ORDER BY clause can be used to limit
the number of rows to be affected by the UPDATE . Likewise, ORDER BY is primarily used to determine which
rows are included when using the LIMIT clause.

 WHERE , LIMIT , and ORDER BY are optional; however, the WHERE clause is almost always used. The table
name should include the schema, especially if you have more than one database attached to the same file.
See the following:

CHAPTER 7 ■ UPDATING RECORDS

114

 UPDATE main.tableName
 SET column(s) = expression
 WHERE whereClause
 LIMIT numer_of_rows
 ORDER BY column(s)

 Other options that can be used with UPDATE are the OR clauses , which include ROLLBACK , FAIL , ABORT ,
 IGNORE , and REPLACE .

 The first example query we will look at is the basic UPDATE statement. If you have used UPDATE in SQL or
in other platform derivatives of the SQL language like Pl/ SQL or T-SQL, you will be right at home, because
 UPDATE works exactly the same way in SQLite:

 UPDATE main.CityTemperature
 SET Temperature = 1
 , Scale = 'C'
 , Date = '11-15-2014'

 In the preceding example, the CityTemperature table is updated to reflect the current temperature
reading. The assumption here is that there is only one entry in the database; otherwise, every entry would be
updated as well.

 In an iOS application, the UPDATE statement could use values captured from the UI fields (IBOutlets)
and pass them to the query statement using SQLite binding types, as we have seen before. Using
the preceding example, let us suppose there are three fields (UITextField) that are connected to a
 ViewController using IBOutlets . The code would look like something like this:

 func updateRecords(){

 let sql:String = "Update main.data set coltext=?"

 if(sqlite3_open(dbPath.path!, &db)==SQLITE_OK){

 if(sqlite3_prepare_v2(db, sql.cString(using: String.Encoding.utf8)!, -1,
&sqlStatement, nil) == SQLITE_OK)

 {
 sqlite3_bind_text(stmt, 1, txt.cString(using: String.Encoding.utf8)!, -1,

SQLITE_TRANSIENT);
 }

 }

 sqlite3_step(stmt);
 sqlite3_finalize(stmt);
 sqlite3_close(cruddb);

 }

 In this example, I define a Swift String constant with a placeholder for the new value for the column to
be updated. After opening the database, the query string is attached to the sqlite3_prepared_v2 function,
and the value is bound using sqlite3_bind_text .

 Although functional, this query is not very practical, as it either assumes that there is only one record in
the database or that every row will be updated with this new value. The next example will use a WHERE clause
to limit the update to a common set of rows or a single row, as the case may be.

CHAPTER 7 ■ UPDATING RECORDS

115

 UPDATE Using a Where Clause
 To make an UPDATE statement more precise, it is often used in conjunction with a WHERE clause . This clause is
included at the end of the UPDATE statement, as seen in the following example. Of course, you could include
multiple Boolean expressions in the WHERE by using the AND operator or even a standard or custom function.

 UPDATE CityTemperature
 SET Temperature = 1
 , Scale = 'C'
 , Date = '11-15-2014'
 WHERE City = 'Montreal'

 In Swift, this query could be represented as follows:

 func updateRecords(){

 let sql:String = "Update Temperature set TemperatureScale =? where City=? and
Country = ?"

 if(sqlite3_open(dbPath.path!, &db)==SQLITE_OK){

 if(sqlite3_prepare_v2(db, sql.cString (using: String.Encoding.utf8)!, -1,
&sqlStatement, nil) == SQLITE_OK)

 {
 sqlite3_bind_text(stmt, 1, txt.cString (String.Encoding.utf8)!, -1, SQLITE_

TRANSIENT);
 sqlite3_bind_text(stmt, 2, utxt.cString (String.Encoding.utf8)!, -1, SQLITE_

TRANSIENT);
 sqlite3_bind_text(stmt, 3, txt.cString (String.Encoding.utf8)!, -1, SQLITE_

TRANSIENT);
 }
 sqlite3_step(stmt);
 sqlite3_finalize(stmt);
 sqlite3_close(cruddb);

 }

 In the preceding example , I bind values for each of the value placeholders, which are represented by
question marks. The query can have as many binding values as are needed as long as you place the binding
values in the same order as the placeholders in the query string.

 UPDATE Using a Sub-query
 Another way to assign a value to a column is to use a sub-query to fetch the rewired value and assign it to
the required column. The sub-query would have to return only one value; otherwise, you would get an error.
You could also use a function that evaluates an expression and returns a result. This expression could also
include another query, for example, or a calculation of some sort. Let's see an example sub-query:

 UPDATE CityTemperature
 SET Scale = (Select Scale from TemperatureScales where Country = 'Canada')
 where Country = ‘Canada’

CHAPTER 7 ■ UPDATING RECORDS

116

 Updating Records Using a Join
 You can also use a join to fetch data from another table. In the following example, I use an INNER JOIN , but
you can also use an OUTER JOIN or a CROSS JOIN . However, in most cases you would use an INNER JOIN .

 UPDATE CityTemperature
 SET TemperatureScale = 'C'
 FROM CityTemperature ct INNER JOIN TemperatureScales s
 ON ct.id = s.id
 WHERE ct.Country = 'Canada'

 UPDATE Using a Sub-Query in FROM Clause
 Another option for an UPDATE operation is to use a sub-query in the WHERE clause , as the following example
demonstrates. Here, the sub-query is named tmpSelect and it is the temperature column from this inner
select, or sub-query, that is being referenced.

 You could use this query in Swift as long as you maintain the order of the placeholders when binding
the columns.

 UPDATE CityTemperature
 SET Temperature = tmpSelect.Temperature
 FROM (SELECT id, Temperature from TempReadings where id = CityTemperature.Id and City =
'Montreal') as tmpSelect

 Update On Conflict
 SQLite provides five special operations to handle conflicts during a SQL transaction. These are ROLLBACK ,
 IGNORE , FAIL , ABORT , and REPLACE . These aren't part of the SQL standard, but are provided through the
SQLite API. These special statements enable a SQL script to handle conflicts at the column level when
updating data. They handle constraints related to primary keys and unique, or not null, columns and values.

 For the UPDATE command, like for the INSERT command, the ON CONFLICT is changed to OR followed by
one of the keywords mentioned. We will look at these commands in the following sections.

 Update or Rollback Records
 When using the ROLLBACK , if the record you are trying to update is violating a constraint such as a
primary key, the ROLLBACK option can help you gracefully handle the error and move on by rolling back
the transaction. If the query is updating more than one record, the ROLLBACK will behave like the ABORT
operation.

 UPDATE OR ROLLBACK BooksToRead
 SET Title = 'To Kill a Mockingbird'
 , Author = 'Harper Lee'
 WHERE id = 2

 Update or Abort Records
 The ABORT option stops the current transactional operation if there is a constraint issue, such as a null record
or the data type of the updating value not being correct. The SQLite operation will back out of the current
operation but leave any previous transactions intact.

CHAPTER 7 ■ UPDATING RECORDS

117

 UPDATE OR ABORT BooksToRead
 SET Title = 'To Kill a Mockingbird'
 , Author = 'Harper Lee'
 WHERE id = 2

 Update or Replace Records
 When the query encounters a row with a constraint issue, if the REPLACE option is being used, the query
will delete the constraining row and replace it with a new row, thus removing the constraint. If any DELETE
triggers are in play, these will also fire.

 UPDATE OR REPLACE BooksToRead
 SET Title = 'To Kill a Mockingbird'
 , Author = 'Harper Lee'
 WHERE id = 2

 Update or Fail Records
 If the FAIL option is used, when a transaction encounters a constraint issue and throws a SQLITE_
CONSTRAINT , the previous transactions are preserved, if any, but the current transaction that failed and any
subsequent transactions won’t be processed by the query. The operation stops at the faulty transaction.

 UPDATE OR FAIL BooksToRead
 SET Title = 'To Kill a Mockingbird'
 , Author = 'Harper Lee'
 WHERE id = 2

 Update or Ignore Records
 When the IGNORE option is used, the transaction with the problem is skipped and the remaining rows, if any,
are processed.

 UPDATE OR IGNORE BooksToRead
 SET Title = 'To Kill a Mockingbird'
 , Author = 'Harper Lee'
 WHERE id = 2

 A Sample SQLite UPDATE Operation in Swift
 To demonstrate the UPDATE queries, we will add the update functionality to our minimalist iOS app that we
have used in the previous chapters. In this installment, we will add the updateRecords method to the CrudOp
custom class, which will update records in the database.

 To begin, open the Crud iOS project in Xcode and locate the CrudOp.h header file. Add the
 updateRecords method as follows:

 func updateRecords(){

 let sql:String = "Update data set coltext=? where coltext=?"

CHAPTER 7 ■ UPDATING RECORDS

118

 if(sqlite3_open(dbPath.path!, &db)==SQLITE_OK){

 if(sqlite3_prepare_v2(db, sql, -1, &sqlStatement, nil) == SQLITE_OK)
 {
 sqlite3_bind_text(stmt, 1, txt, -1, SQLITE_TRANSIENT);
 sqlite3_bind_text(stmt, 2, utxt, -1, SQLITE_TRANSIENT);
 }
 }
 sqlite3_step(stmt);
 sqlite3_finalize(stmt);
 sqlite3_close(cruddb);

 }

 As you can see, the code pattern is very similar to that of other SQLite operations. After creating a
 sqlite3_stmt and a local sqlite3 database object, we create the update query as const char . The query
could also be an NSString object, in which case you don’t need to specify the UTF8String encoding to
convert the string to the universal character set. Next, we establish a connection to the database engine and
open the database using the cruddatabase NSString variable. Then, we encode it using the UTF8string
property and the sqlite3 object.

 With the connection made, we can execute the query by using the sqlite3_prepare_v2 function and
binding the parameter variables for the set and where clauses. The binding function must match the data
type of the column and parameter values or you will get an error, unless you cast the value to the proper
type.

 The sqlite3_step function will execute the statement that we prepared in the previous operation and
will finally use sqlite3_finalize before closing the connection using sqlite3_close . This is the basic
setup for the update query in SQLite. Using this pattern, you can do any type of update query.

 As with the other CRUD operations, we will call the method through the segButton IBAction in the
 kcbViewController custom class of the ViewController in the storyboard.

 Adding the UPDATE Functionality to the Winery App
 The next piece of the winery app’s functionality is the ability to update existing records. We will need to
modify the wineyDAO class and add two functions: one for the wines and the other for the wineries. We will
look at these next.

 Modifying the WineryDAO Controller
 I will add the wineUpdate function for the wines and wineryUpdate for the wineries. Both will have the same
design and will update all columns in the table, regardless of whether that value is changing based on a
 WHERE clause.

 Adding the wineUpdate Function
 The wineUpdate function updates a wine record in the SQLite database. The function takes a wine object as
an input parameter. After defining an SQL UPDATE string, I open the SQLite database using the sqlite3_open
function as usual. Then, I set up the query using the sqlite3_prepare_v2 function, which takes the SQLite
database pointer, the sqlite_statement pointer, and the sql query string as input parameters. If the query
string is OK, the function will return SQLITE_OK status.

CHAPTER 7 ■ UPDATING RECORDS

119

 Next, you need to bind the wine properties to the input columns and WHERE clause using sqlite3_bind_
text for strings, sqlite3_bind_int for the integers, and sqlite3_bind_blob for the image.

 Finally, execute the query using the sqlite3_step function, then clean up using sqlite3_finalize and
close the database using sqlite3_close . See the following code.

 ■ Note You can use the ternary operator to build the query string and binding values based on the available
values if you don’t want to replace every value. Also, this code doesn’t have any error handling.

 func WineUpdate(_ wine:Wine){
 let sql:String = "UPDATE main.Wine " +
 "SET name = ?," +
 "rating = ?, " +
 "image = ?, " +
 "producer = ? " +
 "WHERE id = ?"

 if(sqlite3_open(dbPath.path!, &db)==SQLITE_OK){
 if(sqlite3_prepare_v2(db, sql, -1, &sqlStatement, nil)==SQLITE_OK){
 sqlite3_bind_text(sqlStatement, 0, wine.name.cString(using: String.Encoding.

utf8), -1, SQLITE_TRANSIENT)
 sqlite3_bind_int(sqlStatement, 1, wine.rating)
 sqlite3_bind_blob(sqlStatement, 2, wine.image.bytes, Int32(wine.image.

count), SQLITE_TRANSIENT)
 sqlite3_bind_text(sqlStatement, 4, wine.producer.cString(uisng: String.

Encoding.utf8), -1, SQLITE_TRANSIENT)
 sqlite3_bind_int(sqlStatement, 5, wine.id)
 sqlite3_step(sqlStatement)
 }
 }
 sqlite3_close(db)
 }

 Adding the wineryUpdate Function
 The wineryUpdate function follows exactly the same pattern as seen in the previous function. Except for the
different columns and table targeted in the SQL query string, as well as the number of binding values, the
functionality is identical to the previous one:

 func WineryUpdate(_ winery:Wineries)->Int32{
 let sql:String = "UPDATE winery SET country = '\(winery.country)', region = ' \(winery.
region) ', volume = \(winery.volume), uom = ' \(winery.uom) ' WHERE name = ' \(winery.name)
' ;"
 var status_code:Int32 = 0

 if(sqlite3_open(dbPath.path!, &db)==SQLITE_OK){
 status_code = sqlite3_prepare_v2(db, sql, -1, &sqlStatement, nil)
 if(status_code==0){
 status_code = sqlite3_step(sqlStatement)

CHAPTER 7 ■ UPDATING RECORDS

120

 status_code = sqlite3_finalize(sqlStatement)
 }
 }
 sqlite3_close(db)

 return status_code

 }

 Modifying the UI for Updates
 To enable the update functionality that was added to the wineryDAO class, some changes need to be made to
the UI and corresponding FirstViewController and SecondViewController .

 When a user selects an item from either the Wine list or Winery list, the data will be displayed in the
corresponding scene so that the information can be changed. When the Save button is clicked, instead of
calling the insert functions, the update functions will be called instead.

 Set Up the showWineDetail Segue
 Figure 7-1 depicts the layout of the new segue that connects the Cellar scene , which is the
 TableViewController for the list of wines that are stored in the database, with the Enter Wine scene, which
is the initial view controller when the app starts.

 To set up the segue, follow these steps:

 1. Control + drag a connection from the WineCellTableViewCell in the Cellar scene
to the Enter Wine scene using the mouse. When you release the mouse button a
popup will appear. Select the showDetail option.

 2. Select the newly created segue and select Attributes inspector. There, you can
enter the showWineDetail . This is used in the prepareForSegue function, which
is triggered just before the segue is executed.

 Figure 7-1. Adding the showWineDetail segue

CHAPTER 7 ■ UPDATING RECORDS

121

 WineListTableViewController
 Next, switch to the WineListTableViewController . We will add the functionality to transfer the data to
the Enter Wine scene. To send data to FirstViewController's field outlets, we need to uncomment the
 prepareForSegue function, which is n=one of the optional function in the standard TableViewController class.

 Given the fact that we need to send information to the FirstViewController when a row is selected
in the table view, we first need to define a constant of that type. In the code that follows, I create the
 wineViewController constant and assign the segue.destinationViewController property, then cast this as
a FirstViewController object. Next, I attempt to create a constant for the cell in the table by assigning the
sender, as an optional WineCellTableCell, to the wineCell constant. If the operation is successful, I merely
need to assign the selected values to the fields in the FirstViewController object.

 The value of the UISlider can’t be directly set, so I created a new function in the FirstViewController
(see the code snippet that follows) that sets its value. Here, I simply call the setWineRating function, passing
the value of the rating outlet and casting it as a float.

 In addition, I added a new property to the FirstViewController called isEdit , which I will
assign a value of 1. We can now click the Save button to call the WineUpdate function rather than the
 insertWineRecord function. The code is listed after the end of this section.

 override func prepare (_for segue: UIStoryboardSegue, sender: AnyObject?) {
 // Get the new view controller using segue.destinationViewController.
 // Pass the selected object to the new view controller.
 if(segue.identifier == "showWineDetail"){
 let wineViewController = segue.destinationViewController as! FirstViewController
 if let wineCell = sender as? WineCellTableViewCell{

 let indexPath = tableView.indexPath(for: wineCell)!
 let selectedWine = wineListArray[(indexPath as NSIndexPath).row]
 wineViewController.wine = selectedWine
 wineViewController.isEdit = 1
 }
 }
 }

 However, before you can set the wineRatingSelected , which is the IBOutlet for the UISlider in the
storyboard, you need to create the IBOutlet .

 Follow these steps:

 1. Open the storyboard and select the Enter Wine view controller; click on the
Identity inspector to open the FirstViewController file alongside the IB canvas.

 2. Select the UISlider in the IB canvas and control + drag a connection over to an
empty space in the FirstViewController file.

 3. As shown in Figure 7-2 , release the mouse button and enter the name of the
outlet. In this app, I name it wineRatingSelector .

CHAPTER 7 ■ UPDATING RECORDS

122

 4. Accept the other default values, including the IBOutlet connection type

 5. Click on the Connect button to create the outlet connection on the
 FirstViewController file, as follows:

 @IBOutlet weak var wineRatingSetter : UISlider!

 6. Now you can access it through the WineListTableViewController .

 var isEdit:Int = -1
 //skip code for brevity
 @IBAction func insertRecordAction(sender: AnyObject) {
 if(isEdit==1){
 //we should update
 let editWine = Wine()
 editWine.name = self.wineNameField.text!
 editWine.producer = self.selectWineryField.text!
 editWine.rating = Int32(self.wineRatingSetter.value)
 dbDAO.wineUpdate(editWine)
 }else{
 wine.name = self.wineNameField.text
 wine.producer = self.selectWineryField.text!
 dbDAO.insertWineRecord(wine)
 }
 }

 WineryListTableViewController
 You need to follow the same approach for the WineryListTableViewController . Figure 7-3 demonstrates
the layout of the storyboard with the new segue for this.

 Figure 7-2. Set the wineRatingSetter IBOutlet connection

CHAPTER 7 ■ UPDATING RECORDS

123

 Follow these steps to create the segue for the second view controller:

 1. Select the WineryCellTableViewCell from the Document Outline view.

 2. Then control + drag a connection from the selected cell in UI over to the Winery
scene.

 3. Release the mouse button and select "Show Detail" in the popup.

 4. Next, select the new segue and open the Attributes inspector; name the segue
 showWineryDetail in the Identity field.

 With the segue created, we open the SecondViewController and uncomment the prepareForSegue
function near the end of the code.

 As before, we need to create a constant with a segue.destinationViewController assignment, then
cast this as a SecondViewController . This will give us the IBOutlets in the SecondViewController . Next,
we need to define a constant for the cell in the Winery List TableViewController so that we can access the
 IBOutlets defined there. Then, it’s a simple operation of assigning the values of the selected row in the table
to the outlets in the wineryController object before the segue pushes the SecondViewController onto the
stack with the corresponding fields populated.

 Notice the isEdit property, described later, that we are adding to the SecondViewController to
indicate that we need to run the WineryUpdate function rather than the insertWineryRecord function.

 Figure 7-3. The showWineryDetail segue

CHAPTER 7 ■ UPDATING RECORDS

124

 override func prepare(_ for segue: UIStoryboardSegue, sender: AnyObject?) {
 // Get the new view controller using segue.destinationViewController.
 // Pass the selected object to the new view controller.
 if(segue.identifier == "showWineryDetail"){
 let wineryController = segue.destinationViewController as! SecondViewController
 if let wineryCell = sender as? WineryCellTableViewCell {
 let indexPath = tableView.indexPath(for: wineryCell)!
 let selectedWinery = wineryListArray[(indexPath as NSIndexPath).row]
 wineryController.winery = selectedWinery
 wineryController.isEdit = 1

 }
 }
 }

 As with the previous discussion on saving changes, we have modified the SecondViewController by
adding the isEdit property and setting its initial value to -1 . Mind you, we could set this value to anything,
really. Also, we could have used the unwind Segue functionality, but this little bit of code suits our purposes
better. In addition, we kept the previous connection as insertWineryBtn instead of renaming it something
like saveWinery , simply to illustrate a possible functionality of saving records to a SQLite database.

 var isEdit:Int = -1

 @IBAction func insertWineryBtn(_ sender: AnyObject) {
 winery.name = wineryNameField.text!
 winery.country = countryNameField.text!
 winery.region = regionNameField.text!
 winery.volume = Double(enterVolume.text!)!
 winery.uom = enterUoM.text!
 if(winery.isEdit==1){
 dbDAO.wineryUpdate(winery)
 }else{
 dbDAO.insertWineryRecord(winery)
 }
 isEdit = -1
 }

 With the controllers in place, all that is needed is to run the app to see if everything checks out, and to
debug if necessary.

 Running the App
 For this example, we will fetch a wine record as well as a winery record from the database, update the
records, and save them back to the database.

CHAPTER 7 ■ UPDATING RECORDS

125

 Updating Records
 Launch the app on an iPhone and switch to the Winery List (wineries). In this example, we have one winery
in the list. If we click on it, it should display the contents in the proper fields in the Winery scene. Figure 7-4
displays one record from the winery table in the database.

 When we select the item in the list, the contents are displayed back in the FirstViewController for
editing (Figure 7-5). After making edits, we click on the Save button to send the data back to the database.

 Figure 7-4. List of wineries

CHAPTER 7 ■ UPDATING RECORDS

126

 Figure 7-6 displays the changes that are made to the Lamartine bottle of wine.

 Figure 7-5. Displaying winery data from segue

CHAPTER 7 ■ UPDATING RECORDS

127

 Figure 7-7 demonstrates the new data being passed to the UPDATE query, and once the sqlite3_step
is complete the status code contains the value of 0 or SQLITE_OK . Figure 7-8 shows the status code of 101,
meaning SQLITE_DONE , which means that the query has successfully completed execution.

 Figure 7-6. Displaying changes to winery

 Figure 7-7. Updating record with Status Code = 0

CHAPTER 7 ■ UPDATING RECORDS

128

 Figure 7-9 lists a few wine entries. There are a few misses, which we will clean up in the next chapter,
and the image needs to be rotated 90 degrees, but we have a good fetch from the database.

 Figure 7-8. sqlite3_finalize's successful completion status code

 Figure 7-9. List of wines

CHAPTER 7 ■ UPDATING RECORDS

129

 Figure 7-10 displays the selected contents of the Lamartine wine record from the preceding table list.

 Figure 7-11 shows a status code of 101 , or SQLITE_DONE , which signifies that the query was successfully
completed.

 Figure 7-10. Wine details

CHAPTER 7 ■ UPDATING RECORDS

130

 Summary
 This completes the UPDATE discussion and how to do additions in the Winery app. We explored the SQLite
 UPDATE in detail, including the OR clauses. We looked at how to add UITableViewControllers and manage
updates and inserts using the same IBAction .

 The last operation is DELETE , which wraps up the CRUD group of operations on the Winery app.
The DELETE chapter will provide detailed information on the SQLite DELETE statement and how we can
incorporate the deletion functionality in the UITableViews .

 Figure 7-11. Successful UPDATE operation

131© Kevin Languedoc 2016
K. Languedoc, Build iOS Database Apps with Swift and SQLite, DOI 10.1007/978-1-4842-2232-4_8

 CHAPTER 8

 Deleting Records

 In this chapter, we will discuss the DELETE function in SQLite. In contrast to the other CRUD functions in
SQLite, the DELETE function API is the same as in other platforms and implements the basic SQL API, except
for the LIMIT clause, which allows a developer to set a limit on the number of rows to delete. We will cover
the following:

• The DELETE statement

• DELETE using a WHERE clause

• DELETE restrictions and TRIGGERS

• LIMITS

• A Swift DELETE example

 The DELETE Statement in SQLite
 The DELETE statement is a standard SQL statement that is used to permanently remove one or more records
from a table in a SQLite database. The basic syntax is as follows:

 DELETE FROM main.tablename

 or,

 DELETE FROM main.tablename
 WHERE Boolean expression

 If the WHERE clause is not used, then the entire contents of a given table is deleted.

 Using the WHERE Clause
 To better control the records that you are deleting, you can use the WHERE clause to specify a Boolean
variable. As with other SQL WHERE clauses, you can use the AND keyword to specify more than one column
or the OR keyword to specify one column or another. There is no limit on the number of columns that you
can add to your WHERE arguments. In addition, you can use NOT , as in NOT IN or NOT EQUAL . You can also use
the BETWEEN keyword; for example, to specify a date or number range. By using the WHERE clause along with
 DELETE , you can limit the number of records that are affected by the query.

CHAPTER 8 ■ DELETING RECORDS

132

 The syntax is as follows:

 DELETE FROM table
 WHERE columnA = 'value'
 AND columnB = 'value'

 You can also write a query as follows:

 DELETE FROM table
 WHERE (columnA = 'value'
 AND columnB = 'value') OR
 (columnC = 'value'
 AND columnD = 'value')

 Restrictions and Triggers
 When using the DELETE statement with a TRIGGER , you are not allowed to use the schema name, only the
table name. In other words, you must use the DELETE as follows:

 DELETE FROM table

 Rather than:

 DELETE FROM main.tablename

 Also, if the DELETE statement in the trigger is not associated with a TEMP table, then the trigger must be
in the same database as the trigger. The trigger will search for tables in each of the attached databases in the
order in which the database was attached.

 DELETE Limits
 You can use the LIMITS clause along with the ORDER BY clause to restrict the number of rows to delete. By
using the ORDER BY , you can sort the records in either an ascending (ASC) or descending (DESC) order so as to
ensure the proper rows are targeted for deletion.

 In order to use the LIMIT and ORDER BY clauses, you must enable the SQLITE_ENABLE_UPDATE_DELETE_
LIMIT option when compiling the database. Also, it is important to keep in mind that the limits and triggers
are not supported for the DELETE statement in SQLite.

 A Swift SQLite Delete Example
 Using the SQLite DELETE statement in Swift is very easy, as the following example illustrates. After setting
the usual variables and constants, we set up the database in the viewDidLoad function and call the
 setupSampleTable , addRecords , and sampleDelete functions sequentially.

 The first two functions create a table and add one record to the table. The main purpose of this code is
to demonstrate the DELETE query in Swift, which I do in the sampleDelete function .

 let dbName:String="chapter8.sqlite"
 var db:COpaquePointer?=nil
 var sqlStatement:COpaquePointer?=nil

CHAPTER 8 ■ DELETING RECORDS

133

 var errMsg: UnsafeMutablePointer<UnsafeMutablePointer<Int8>>! = nil
 internal let SQLITE_STATIC = unsafeBitCast(0, for:sqlite3_destructor_type.self)
 internal let SQLITE_TRANSIENT = unsafeBitCast(-1, for:sqlite3_destructor_type.self)
 var dbPath:URL = URL(fileWithPath:””)
 var errStr:String = ""
 override func viewDidLoad() {
 super.viewDidLoad()
 let dirManager = FileManager.default()
 do {
 let directoryURL = try dirManager.urlForDirectory(FileManager.

SearchPathDirectory.documentDirectory, in: FileManager.SearchPathDomainMask.
userDomainMask, appropriateForL: nil, create: true)

 dbPath = try! directoryURL.appendingPathComponent(dbName)
 } catch let err as NSError {
 print("Error: \(err.domain)")
 }
 self.setupSampleTable()
 self.addRecords()
 self.sampleDelete()

 }
 func setupSampleTable(){
 let creatSQL:String = "CREATE TABLE IF NOT EXISTS sample(id int, name varchar)"
 if(sqlite3_open(dbPath.path!, &db)==SQLITE_OK){
 if(sqlite3_prepare_v2(db, creatSQL, -1, &sqlStatement, nil)==SQLITE_OK){
 if(sqlite3_step(sqlStatement)==SQLITE_DONE){
 print("table created")
 sqlite3_finalize(sqlStatement)
 sqlite3_close(db)
 }else{
 print("unable to create table")
 }
 }
 }
 }

 func addRecords(){
 let insertSQL:String = "INSERT INTO TABLE main.sample (id, name) VALUES(?,?)"
 if(sqlite3_open(dbPath.path!, &db)==SQLITE_OK){
 if(sqlite3_prepare_v2(db, insertSQL, -1, &sqlStatement, nil)==SQLITE_OK){
 sqlite3_bind_int(sqlStatement, 1, 1)
 sqlite3_bind_text(sqlStatement, 2, "kevin", -1, SQLITE_TRANSIENT)
 if(sqlite3_step(sqlStatement)==SQLITE_DONE){
 print("table created")
 sqlite3_finalize(sqlStatement)
 sqlite3_close(db)
 }else{
 print("unable to create table")
 }
 }
 }
 }

CHAPTER 8 ■ DELETING RECORDS

134

 As you can see from the code that follows, the DELETE query follows a pattern similar to that of the other
CRUD operations. We first set a SQL query string for the DELETE statement, then we attempt to open the
database and load the DELETE SQL query string into memory using the sqlite3_prepare_v2 function .

 Then we bind the WHERE value using the sqlite3_bind_int function and execute the query using the
 sqlite3_step function. If we get a successful status result, we clean up the query with sqlite3_finalize
and close the database.

 func sampleDelete(){
 let deleteStmt:String = "DELETE FROM sample WHERE id = ?"

 if(sqlite3_open(dbPath.path!, &db)==SQLITE_OK){
 if(sqlite3_prepare_v2(db, deleteStmt, -1, &sqlStatement, nil)==SQLITE_OK){
 sqlite3_bind_int(sqlStatement, 1, 1)
 if(sqlite3_step(sqlStatement)==SQLITE_DONE){
 print("item deleted")
 sqlite3_finalize(sqlStatement)
 sqlite3_close(db)
 }else{
 print("unable to delete")
 }
 }
 }
 }

 Alternatively, we could perform the same query operation using the sqlite3_exec function, as in the
following example. As you may remember, the sqlite3_exec function encapsulates the sqlite3_prepare_
v2 , sqlite3_step , and sqlite3_finalize functions. See here:

 func sampleExecDelete(){
 let deleteStmt:String = "DELETE FROM sampleTable WHERE id = ?"
 if(sqlite3_open(dbPath.path!, &db)==SQLITE_OK){
 if(sqlite3_exec(db, deleteStmt, nil, &sqlStatement, errMsg)==SQLITE_OK){
 sqlite3_bind_int(sqlStatement, 1, 1)
 sqlite3_close(db)
 }else{
 print("unable to delete")
 }
 }
 }

 Adding the Delete Functionality to the Winery App
 This is the final installment of the CRUD application that we have been building. To begin adding the DELETE
functionality to our app, open the header and the deleteRecords method as shown in the code that follows.
The deleteRecords method will take only one parameter for the WHERE clause variable.

 To implement the DELETE functionality in the Winery app, we will need to make several
modifications to the various view controllers and table view controllers as well as to the storyboard's
 UITableViewControllers . We will also need to add two functions to the WineryDAO class.

CHAPTER 8 ■ DELETING RECORDS

135

 Modifying the WineryDAO Class
 In the WineryDAO class, we will need to add two functions to handle the deletes in the Wine table as well as
the deletes in the Winery table. Both functions will perform a DELETE statement on the winery database.
Both functions will implement the same design using two different approaches. Actually, this code could
be replaced by one function, and we could pass the query string as an input parameter, but I decided to use
 sqlite3_exec for the second function to demonstrate the two ways to execute a query in SQLite.

 Add the deleteWineRecord Function
 The deleteWineRecord function contains a string constant that defines a DELETE SQL statement and takes
one parameter for the WHERE clause.

 The SQLite execution operation includes the opening of the SQLite database using the sqlite3_open
function, followed by the sqlite3_prepared_v2 function if the database is successfully opened.

 If the SQL statement contains no errors and is successfully loaded into memory, the parameter is
passed to the query using the sqlite3_bind_text function, and finally the query is executed with the
 sqlite3_step function.

 I will test the function and post the results at the end of the chapter, as usual.

 func deleteWineRecord(record:String){
 let deleteSQL = "DELETE FROM wine WHERE name = ?"

 if(sqlite3_open(dbPath.path!, &db)==SQLITE_OK){
 if(sqlite3_prepare_v2(db, deleteSQL, -1, &sqlStatement, nil)==SQLITE_OK){
 sqlite3_bind_text(sqlStatement, 1, record, -1, SQLITE_TRANSIENT)
 if(sqlite3_step(sqlStatement)==SQLITE_DONE){
 print("item deleted")
 }else{
 print("unable to delete")
 }
 }

 }
 }

 Add the deleteWineryRecord Function
 As with the previous function, the deleteWineryRecord will delete a record from the SQLite database that
is selected in the WineryListTableViewController . The first line of the body of the function contains a
SQL string constant that defines a SQL DELETE statement. Notice how the schema is absent from the table
definition as per the API requirements.

 Next, sqlite3_open is used to open the database, followed by the sqlite3_exec function, which
encapsulates the execute API of sqlite3_prepare_v2 , sqlite3_step , and sqlite3_finalize .

 func deleteWineryRecord(record:String){
 let deleteSQL = "DELETE FROM winery WHERE name = ?"
 if(sqlite3_open(dbPath.path!, &db)==SQLITE_OK){
 if(sqlite3_exec(db, deleteSQL, nil, &sqlStatement, errMsg)==SQLITE_OK){
 sqlite3_bind_text(sqlStatement, 1, record, -1, SQLITE_TRANSIENT)
 sqlite3_close(db)

CHAPTER 8 ■ DELETING RECORDS

136

 }else{
 print("unable to delete")
 }
 }
 }

 Modifying the ViewControllers
 For this part of the app, we don’t need to make any changes to either the FirstViewController or the
 SecondViewController .

 Modifying the TableViewControllers
 Adding the delete functionality requires a couple of changes to both the WineryListTableController and
the WineListTableViewController . We have to enable the Edit button in the menu as well as call the delete
functions in the WineDAO class.

 WineryListTableViewController
 For the WineryListTableViewController , we enable the Edit button in the viewDidLoad method just
below the loadWineList() function. The edit.editButtonItem is assigned to the self.navigationItem.
rightBarButtonItem method, which you will able to see when the app runs.

 override func viewDidLoad() {
 super.viewDidLoad()
 loadWineList()

 // Uncomment the following line to display an Edit button in the navigation bar for
this view controller.

 self.navigationItem.rightBarButtonItem = self.editButtonItem()
 }

 The second change is to enable the following tableView standard function. The code is already
included when we create a sub-class of the UITableViewController ; we only need to uncomment it to
enable it.

 However, we still need to add some code to actually delete the row from the database, as
 deleteRowsAtIndexPath will remove an item from the array, but if we don’t remove the same row from the
database, when the view is refreshed, the record will re-appear. We accomplish this by getting the row index
of the selected record and retrieving that record from the wineries array. Then, we create an instance object
of the winery class and pass the name of the winery to the deleteWineryRecord function.

 We also add tableView.beginUpdates and tableView.endUpdates at the beginning and end of the
delete operation. These indicate that subsequent operations are performed and terminated.

 override func tableView(tableView: UITableView, commitEditingStyle editingStyle:
UITableViewCellEditingStyle, forRowAtIndexPath indexPath: NSIndexPath) {
 if editingStyle == .delete {
 tableView.beginUpdates()
 // Delete the row from the data source
 let winery:Wineries = wineryListArray[(indexPath as NSIndexPath).row]

CHAPTER 8 ■ DELETING RECORDS

137

 tableView.deleteRows(at: [indexPath], with: .fade)
 wineDAO.deleteWineryRecord(winery.name)
 tableView.endUpdates() } else if editingStyle == .Insert {
 // Create a new instance of the appropriate class, insert it into the array, and

add a new row to the table view
 }
 }

 WineListTableViewController
 In kind, we implement the Edit button for the WineListTableViewController as we did with the previous
 TableViewController :

 override func viewDidLoad() {
 super.viewDidLoad()
 self.loadWineList()
 self.navigationItem.rightBarButtonItem = self.editButtonItem()
 }

 Again, we implement the following tableView function to enable the delete capabilities of the
 TableView . In the delete editingStyle , we enclose tableView.beginUpdates and tableView.endUpdates
and fetch the row index from the wineListArray before creating an instance object and passing the name
value of the selected record to the deleteWineRecord function.

 override func tableView(tableView: UITableView, commitEditingStyle editingStyle:
UITableViewCellEditingStyle, forRowAtIndexPath indexPath: NSIndexPath) {
 if editingStyle == .delete {
 tableView.beginUpdates()
 let wine = wineListArray[(indexPath as NSIndexPath).row]
 // Delete the row from the data source
 tableView.deleteRows(at: [indexPath], with: .fade)
 wineDAO.deleteWineRecord(wine.name)
 tableView.endUpdates()
 } else if editingStyle == .Insert {
 // Create a new instance of the appropriate class, insert it into the array, and

add a new row to the table view
 }
 }

 With this code in place, all that is needed now is to run the app and test it.

 Modifying the UI for Delete

 Modifying the UI
 When we enabled the Edit button in the viewDidLoad methods of both the table view controllers, we
activated the Edit buttons. When you click on the Edit menu item, the UI changes to display the Delete icon.
Other than this, no change is needed to the UI. In order to see the Edit and Delete buttons, you will need to
run the app, which I will do next.

CHAPTER 8 ■ DELETING RECORDS

138

 Running the App
 Figure 8-1 is the list of wines in the Cellar TableViewController . Instead of selecting an item, click on the
“Edit” link. This will switch the view into Edit mode.

 Figure 8-2 shows the Cellar TableView in Edit mode. Notice how the Edit button was converted to Done .
All this is provided with one line of code in the viewDidLoad function. Select one of the empty rows, and the
row will display a Delete button.

 Figure 8-1. The Cellar TableView

CHAPTER 8 ■ DELETING RECORDS

139

 Figure 8-3 shows the Delete button for the selected row. If you click on the button, the
 override tableView (tableView : UITableView, commitEditingStyle editingStyle:
 UITableViewCellEditingStyle, forRowAtIndexPath indexPath: NSIndexPath) will be called, and the
selected item will be removed from the array using the deleteRowsAtIndexPaths function . As you may
remember, we also call deleteWineRecord to delete the record from the database.

 Figure 8-2. The Cellar TableView in Edit mode

CHAPTER 8 ■ DELETING RECORDS

140

 Figure 8-4 displays the TableView for the Wineries table view. It currently has only one entry. We will
repeat the same process as before and click on the Edit button to switch into Edit mode.

 Figure 8-3. the Selected item for deletion

CHAPTER 8 ■ DELETING RECORDS

141

 As shown in Figure 8-5 , with the TableView in Edit mode , you can select the entry, which will trigger the
row to display a Delete button. Also notice the "Done" link, which you use to switch the TableView back into
Read mode.

 Figure 8-4. The Wineries TableView

CHAPTER 8 ■ DELETING RECORDS

142

 Figure 8-6 displays the Delete button, and if you click on the button the selected entry will be deleted
from both the winery array and the winery table in the database.

 Figure 8-5. The Wineries in Edit mode

CHAPTER 8 ■ DELETING RECORDS

143

 Figure 8-7 displays the absent-entry Wineries TableView .

 Figure 8-6. The Wineries TableView with item selected for deletion

CHAPTER 8 ■ DELETING RECORDS

144

 Summary
 In this chapter we discussed how to use the SQLite DELETE statement to delete records from a SQLite
database. Also how we can use a WHERE clause to limit the number of records to delete or to target a certain
record or records.

 We also explored how to implement the DELETE statement in Swift 3 and finally we added the delete
functionality to the Wine app using Swift. In the next chapter, we will implement searching for records in a
SQLite database and displaying those records.

 Figure 8-7. The selected ite m has been deleted

145© Kevin Languedoc 2016
K. Languedoc, Build iOS Database Apps with Swift and SQLite, DOI 10.1007/978-1-4842-2232-4_9

 CHAPTER 9

 Searching for Records in SQLite

 This chapter doesn’t show any new SQLite APIs. Rather, it focuses on how you can use the SQLite APIs to
create an iOS iPhone app for searching for records in a SQLite database. In this chapter, we will explore the
following:

• Creating an iOS app

• Creating a SQLite database

• Adding the Search function

• Developing the UI for searches

• Searching for records

• Displaying search results

• Developing a UISearchBar iPhone app

 The Search App
 This tutorial demonstrates how to use the SELECT statement to search for content in a database using the
 UISearchBar and display the results in a TableView embedded in a ViewController . Figure 9-1 provides a
visual of the running app.

CHAPTER 9 ■ SEARCHING FOR RECORDS IN SQLITE

146

 The UISearchBar and UITableViewController are embedded in the ViewController . The search term
is passed to a function in the ViewController .

 The UISearchBar is an iOS component in the UIKit that was introduced in version 2.0 of the Cocoa
Touch Framework and iOS SDK. The UIControl and protocol have several important features to help a
developer quickly implement a Search field in their applications. You can enable a Search button, a Cancel
button, and a Bookmark button. The delegate has methods that interact with those buttons that are pressed.

 This tutorial will demonstrate how to quickly develop an iPhone app that searches a SQLite database
using the UISearchBar text field. The database contains a list of names in separate columns. The app will
implement a SQL query to search either field, then display the results in a UITableView .

 The whole application is built using a single-view application template. The SQLite database is built and
sample data is added to it using the SQLite Manager in Firefox.

 Create the SQLite Database
 For this example app, we will create a SQLite database using SQLite Manager in Firefox, which is a free add-
on. As Figure 9-2 shows, we create a database titled dbsearch.sqlite and one table, names , to hold a sample
of first and last names. The file should be saved to a convenient location, since it will have to be added to the
iOS project later.

 Figure 9-1. The Search iPhone app

CHAPTER 9 ■ SEARCHING FOR RECORDS IN SQLITE

147

 Then, we add two columns:

 firstname:varchar
 lastname:varchar

 Figure 9-3 shows a screenshot of how SQLite Manager in Firefox creates an input screen based on the
columns you define. Using SQLite Manager, we add some sampling data so that we can perform a search
later. Figure 9-4 shows the sample data entered into the database through SQLite Manager in Firefox.

 Figure 9-2. Create dbSearch.sqlite and names table

 Figure 9-3. SQLite data input

CHAPTER 9 ■ SEARCHING FOR RECORDS IN SQLITE

148

 Create the iOS/SQLite Project
 Figure 9-5 shows where to select a template for the project. Choose the single-view application template
from the iOS Project category to create a simple iOS iPhone app. Call the app SQLiteSearch and ensure that
the Swift language is selected in the language options.

 Once the project is created, you need to add the sqlite3 library to the project and create the bridge.
Figure 9-6 shows how to add the sqlite3 library to the project. Select the project root in the navigator and
scroll to the Linked Libraries and Frameworks section on the General tab. Click on the “+” button to bring
up the library selector popup. In the Search field, type "sqlite" and then select the libsqlite3.tbd library. Click
Add to close the popup and add the library to the project.

 Figure 9-4. Sample data in dbSearch.sqlite

 Figure 9-5. Create th e SQLiteSearch app

CHAPTER 9 ■ SEARCHING FOR RECORDS IN SQLITE

149

 Next, right-click on the DbSearch group and select the “Add files to …” context-menu item. Browse to the
location where the dbsearch.sqlite file was saved, select the database file, and click Add to begin copying
the database to the project. A second popup will appear from which you will need to select the first option:
“copy items to destination group’s folder (if needed)” to actual the project. This is important, or only a
reference will be added. Now that the project is set up, we can build the storyboard and controller logic.

 Set Up the Bridge
 With the library in place, we must set up the Objective- C bridge. Add a new file to the project by selecting the
Cocoa Touch class template from the iOS Source category from the available templates (Figure 9-7), then do
the following:

• Name the bridge SQLiteSearchBridge

• Select the category for the file types, which will trigger the Add Bridge Interface

• Select the NSObject class

 Figure 9-6. Add the sqlite3 library

CHAPTER 9 ■ SEARCHING FOR RECORDS IN SQLITE

150

 Figure 9-8 shows the Create Bridge Interface , which appears after adding the file to the project. When
we create the bridge using this method, Xcode will create the bridge file and add the file to the Build settings
for the Swift Compiler. You can discard the Objective-C header and implementation files that are also
created. In this project, the files are NSObject+SQLiteSearchBridge.h and NSObject+SQLiteSearchBridg
e.m . We only need the SQLiteSearch-Bridging-Header.h file. You need to open this latter file and add the
 #import <sqlite3.h > directive in order to interface with the SQLite3 API.

 The Controller Code
 Before getting to the interface and adding the controls and the IBOutlets , we will need to add the code to
the ViewController to handle the search operations and interface with the UISearchBar, UITablewView ,
and UITableViewCell .

 Figure 9-8. Setting up the bridge in the Xcode

 Figure 9-7. Create the SQLiteSearchBridge

CHAPTER 9 ■ SEARCHING FOR RECORDS IN SQLITE

151

 Open the ViewController and add the UISearchBarDelegate , UITableViewDelegate , and
 UITableViewDataSource next to the class definition (see following code). We will also need to set up the
delegates when the app loads, so we need to assign the delegates to self in the viewDidLoad function.

 import UIKit

 class ViewController: UIViewController, UISearchBarDelegate, UITableViewDelegate,
UITableViewDataSource {

 // code skipped for clarity

 override func viewDidLoad() {
 super.viewDidLoad()
 searchResults.dataSource = self
 searchResults.delegate = self
 searchField.delegate = self
 }

 A variable for an array will be used to store that data for the UITableView , hence its data source is
needed as well. For this project, the array, nameList , is of the String data type. If you want to manipulate the
data in the UITableView , you would interface with its data source. In other words, with the array. Also, we
need to create an UnsafeBirCast pointer called SQLITE_TRANSIENT . This is a destructor pointer that is used
in the sqlite3_bind_text later in the searchDatabase function.

 var nameList = [String]()
 internal let SQLITE_TRANSIENT = unsafeBitCast(-1, sqlite3_destructor_type.self)

 For the UITableViewDelegate and UITableViewDataSource protocols, as well as for the UITableView
itself, we need to add some required functions. These are described next.

 The numberOfSectionsInTableView Function

 To display the returned results, we will need to set up the UITableView delegate and data source.
 n umberOfSectionsInTableView tells the table how many sections the table will have. Sections are groups of
rows. We will set this to 1 :

 func numberOfSectionsInTableView(tableView: UITableView) -> Int{
 return 1

 }

 The tableView:numberOfRowsInSection Function

 numberOfRowsInSection tells the table how many rows to display. It is customary to indicate the number of
elements in the array or data source:

 func tableView(tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int{
 return nameList.count
 }

CHAPTER 9 ■ SEARCHING FOR RECORDS IN SQLITE

152

 The tableView:cellForRowAtIndexPath:indexPath Function

 This method configures the UITableCell by getting a handle on the cell prototype in the UITableView and
assigning the value at indexPath of the array to the label property of the cell. This method will be called
repeatedly for each row that was defined in the numberOfRowsInSection function or the number of objects
in the array.

 The cell identifier, searchResultCell , will be configured later in the UI. Also, famousName is the
 UILabel IBOutlet that we will add later in the UITableViewCell . With the cell variable set up and cast as a
 searchResultCellTableViewCell UITableViewCell type, the other variable, nameObject , is assigned the
value from the current array index. This value is then assigned to call.famousName.text :

 func tableView(tableView: UITableView,
 cellForRowAtIndexPath indexPath: NSIndexPath) -> UITableViewCell{
 let cell = tableView.dequeueReusableCellWithIdentifier("searchResultCell", forIndexPath:

indexPath) as! searchResultCellTableViewCell

 // Configure the cell...
 let nameObj = nameList[indexPath.row]
 cell.famousName.text = nameObj

 return cell
 }

 So, for the UISearchBar delegate, UISearchBarDelegate , which requires the implementation of
the searchBarCancelButtonClicked and searchBarSearchButtonClicked methods, the interactivity
will respond to the buttons in the UISearchBar . For the UITableView , the UITableViewDelegate and
 UITableViewDataSource protocols. The function definitions are provided next.

 The searchBarCancelButtonClicked Function

 The searchBarCancelButtonClicked method will reset not only the UISearchBar field but also its data
source and UITableView, and will also dismiss the keyboard. The complete code is provided here:

 func searchBarCancelButtonClicked(searchBar: UISearchBar){
 self.searchField.text=""
 searchResults.reloadData()
 searchField.resignFirstResponder()
 self.view.endEditing(true)

 }

 The searchBarSearchButtonClicked Function

 The searchBarSearchButtonClicked method is similar in design to searchBarCancelButtonClicked except
that it calls the searchDatabase method. Then, the code resets the Search field, reloads the data in the
 UITableView , and resigns the keyboard:

 func searchBarSearchButtonClicked(searchBar: UISearchBar){
 self.searchDatabase(searchField.text!)
 self.searchField.text=""
 searchResults.reloadData()

CHAPTER 9 ■ SEARCHING FOR RECORDS IN SQLITE

153

 searchField.resignFirstResponder()
 self.view.endEditing(true)
 }

 The searchDatabase Function

 The other addition is a method to interface with the database: searchDatabase . This method will take one
argument for the search term. Technically, you should be able to pass multiple search terms, which would
be split into an array, but for simplicity's sake I am assuming a single-term search term.

 The first variable, fileExist , is a Boolean. It will allow us to ensure that the dbSearch.sqlite file is
available in the main application bundle. The db variable is a COpaquePointer for the SQLite database.
Likewise, the sqlStatement variable is a COpaquePointer for the sqlite3_stmt statement.

 In order to open the database, we need to get the path to the file in the main application bundle. We are
leaving it there because we don't need to write to it and the main bundle is read-only during runtime. The
 projectBundle gets a handle to the mainBundle through the NSBundle class. Then the fileMgr constant is
created as an NSFileManager . This class handles interactivity with the file system. The resourcePath String
constant will be assigned the fully qualified path to the database using pathForResource .

 Once these constants and variables are defined and assigned their initial values, we check to make
sure the database file is available using fileExistsAtPath , which returns a Boolean value. If the database
file exists, the database is opened using the sqlite3_open function. SQLITE_OK is returned if the database is
successfully opened or will print an error message to the console if not.

 Once open, we define a SQL SELECT query string, sqlQry , which takes two arguments in the WHERE
clause. Both arguments will receive a copy of the searchTerm argument that is passed to the function from
the UISearchBar IBOutlet . We then assign and bind the inout values to the SQL query using the sqlite3_
bind_text function—one for each argument in the WHERE clause. Then, the code will execute and return the
values if successful. These values are then assigned to the concatName constant and in turn are appended to
the nameList array. Finally, the memory is cleaned up and the database is closed.

 func searchDatabase(searchTerm:String){
 var fileExist:Bool = false
 var db:COpaquePointer = nil
 var sqlStatement:COpaquePointer=nil

 let projectBundle = NSBundle.mainBundle()
 let fileMgr = NSFileManager.defaultManager()
 let resourcePath = projectBundle.pathForResource("dbsearch", ofType: "sqlite")

 fileExist = fileMgr.fileExistsAtPath(resourcePath!)

 if(fileExist){
 if(!(sqlite3_open(resourcePath!, &db) == SQLITE_OK))
 {
 print("An error has occured.")

 }else{

 let sqlQry = "SELECT firstname,lastname FROM names where firstname=? or
lastname=?"

 if(sqlite3_prepare_v2(db, sqlQry, -1, &sqlStatement, nil) != SQLITE_OK)
 {
 print("Problem with prepared statement " + String(sqlite3_errcode(db)));

CHAPTER 9 ■ SEARCHING FOR RECORDS IN SQLITE

154

 }
 sqlite3_bind_text(sqlStatement, 0, searchTerm, -1, SQLITE_TRANSIENT)
 sqlite3_bind_text(sqlStatement, 1, searchTerm, -1, SQLITE_TRANSIENT)
 while (sqlite3_step(sqlStatement)==SQLITE_ROW) {

 let concatName:String = String.fromCString(UnsafePointer<Int8>(sqlite3_
column_text(sqlStatement,0)))! + " " + String.fromCString(UnsafePointer<Int8
>(sqlite3_column_text(sqlStatement,1)))!

 print("This is the name : " + concatName)
 nameList.append(concatName)
 }
 sqlite3_finalize(sqlStatement);
 sqlite3_close(db);
 }

 }

 }

 With the array populated, the UITableView in the ViewController will display the results.

 The searchResultCellTableViewCell Function

 Before we get to the storyboard, we need to add a UITableViewCell object called
 searchResultCellTableViewCell . We will add the IBOutlet for the UILabel that we will add to the cell
prototype next.

 Develop the Storyboard
 The storyboard is going to be very simple, with only a UISearchBar control, a UITableView , and the
corresponding UITableCell . Figure 9-9 depicts the UISearchBar control that needs to be added to the
 ViewController . Before adding any controls, select the ViewController and set Simulator Size to iPhone 4.7
inch. You can adjust the setting in the Attributes inspector.

 The UISearchBar & UITableView

 Drag a UISearchBar onto the canvas and add it to the top of the scene (Figure 9-9). Figure 9-10 shows how
to set the attributes for the Cancel and Search buttons. With the control key pressed, open the Attributes
inspector and select the following options:

• Shows Search Results button

• Shows Cancel button

CHAPTER 9 ■ SEARCHING FOR RECORDS IN SQLITE

155

 We won’t need the other options for this example app. Next, add a UITableView UIControl and a
 UITableCell (Figure 9-11). Superimpose the cell control on the table. With the UITableCell selected,
add an identifier through the Attributes inspector page. Drag a connection from the UITableView to the
 UIViewController proxy (yellow globe or circle on the bar at the top of the main scene), as shown in
Figure 9-12 . When you release the mouse button, a popup will appear to allow you to set the delegate and
the data source. Set both of them.

 Figure 9-10. Setting the UISearchBar attributes

 Figure 9-9. Adding the UISearchBar to the ViewController

CHAPTER 9 ■ SEARCHING FOR RECORDS IN SQLITE

156

 The IBOutlets

 As shown in Figure 9-13 , next we will create the IBOutlets . Open the Assistant Editor by clicking on the
double circle icon in the toolbar. To create the IBOutlets, drag a connection (ctrl + drag) using the mouse
button to the open header file in the Assistant Editor. Releasing the mouse button activates a popup, thus
allowing you to create an IBOutlet connection by entering a name for the connection in the appropriate
field and clicking on Connect. For the UISearchBar , I named the IBOutlet searchField . Repeat this operation
for the UISearchBar and the UITableView . For the UITableView , I named the outlet searchResults .

 Figure 9-11. Adding the UITableView and UITableViewCell

 Figure 9-12. Adding proxy for table delegate and data source

CHAPTER 9 ■ SEARCHING FOR RECORDS IN SQLITE

157

 @IBOutlet weak var searchField: UISearchBar!
 @IBOutlet weak var searchResults: UITableView!

 The Prototype Cell

 Finally, for the prototype cell we need to configure the cell identifier and add a UILabel to display the search
results. To configure the cell identifier, open the document outline and select searchResultCell from the
document hierarchy (Figure 9-14). Then, open the Attributes inspector, add the searchResultCell name,
and hit Enter. This value is used in the ViewController , as we saw in the previous section.

 Figure 9-14. Configuring the prototype cell

 Figure 9-13. Add the searchField IBOutlet

CHAPTER 9 ■ SEARCHING FOR RECORDS IN SQLITE

158

 Also add a UILabel to the cell and add an IBOutlet to the searchResultCellTableViewCellController
by dragging a connection to the open Identity inspector.

 import UIKit

 class searchResultCellTableViewCell: UITableViewCell {

 @IBOutlet weak var famousName: UILabel!

 //code removed for brevity
 }

 All that is needed now is to run the app and test the functionality.

 Running the App
 As Figure 9-15 shows, when a user enters a name in the Search field and performs the search by clicking
on the Search button, the results, if any, are fetched from the database and displayed in the database. The
 UITableView is reset before each search. For this example, I entered the name David and hit Enter, since I am
testing in the simulator.

 Figure 9-15. Enter a search term, such as David

CHAPTER 9 ■ SEARCHING FOR RECORDS IN SQLITE

159

 Figure 9-16 displays two names from the database that match our search term.

 Summary
 In this chapter, we revisited the SQLite SELECT statement and implemented a database search function,
which can be helpful for locating information in a database. The next chapter will focus on attaching and
using multiple databases in a single file.

 Figure 9-16. The search results

161© Kevin Languedoc 2016
K. Languedoc, Build iOS Database Apps with Swift and SQLite, DOI 10.1007/978-1-4842-2232-4_10

 CHAPTER 10

 Working with Multiple Databases

 SQLite has a great feature for managing large volumes of data: multi-database apps. In this chapter, you'll
see that by creating and attaching multiple databases to the same connection you can improve disk I/O
performance and reliability.

 Here are the topics covered:

• Overview of the ATTACH function

• Detaching databases using DETACH

• Multi-database limits

• Creating joins

• Working with ATTACH AND DETACH in Swift

 The ATTACH Statement
 SQLite 3 provides the ATTACH DATABASE statement for multi-database queries. Although you could manage
multiple database connections via an Objective-C DAO class, it is much more efficient to use SQLite’s API.
Attaching databases means that more than one database is sharing the same database connection. To the
SQLite engine, the first database that uses a database connection is known as **main** . Any additional
databases that are attached must be assigned a new name to distinguish them in the connection pool. The
syntax is very straightforward:

 let attachdb = "ATTACH DATABASE database_file AS schema_name"

 The value of database_file is the file name of the database to attach and schema_name is the alias for
the database so that the database engine can identify the other databases. It also allows you as a developer to
query these additional databases by using their alias.

 To attach a SQLite database to an open connection, you first need to open an initial database, thus
opening a connection to the SQLite engine. This will be the main database, and you must refer to this
database by its schema main.table_name . Subsequently, you need to create the other databases as needed,
either up front or later. With the databases in hand and after opening the first, or main, database, you can
issue the ATTACH statement like any other SQL query, specifying the name and path of the database you wish
to attach to the main database connection, as well as the alias or schema.

 You would then refer to the other attached databases by their schema names, like seconddb.table_
name or attacheddb.table_name . The name of the attached database schema is arbitrary and can be
anything you like, except that it must be a single word or a compound word.

CHAPTER 10 ■ WORKING WITH MULTIPLE DATABASES

162

 You can also attach in-memory databases. We haven’t looked at in-memory databases within the scope
of this book; however, you can create an in-memory database using the special :memory: keyword when
opening a database, as in the following example:

 sqlite3_open(":memory:", &db);

 Each time you create an in-memory database using the preceding command, it exists separately from
any others. Once the in-memory databases are created, you can attach them as usual, as follows:

 let temp1 = "ATTACH DATABASE ':memory:' AS temp1;"

 This will cause the second in-memory database (the second one created) to be attached to the first, or
main, one. You can attach as many in-memory databases as are needed, as long as you remember that they
will be attached in the sequence in which they were created.

 If you are using temporary databases—again, out of the scope of this book—you create the temporary
database using the following command:

 sqlite3_open("", &db)

 Then, you attach the temporary databases as usual:

 Let tempdb = "ATTACH DATABASE ‘’ as temp1"

 Both of these types of databases can be made to cease to exist once the SQLite connection is closed by
using the command:

 sqlite3_close(&db)

 Also, it is possible to attach the same database more than once using different schema names. However,
you must not have the enable_cache_mode enabled or you will get an error.

 The DETACH Statement
 The DETACH statement performs the opposite function of the ATTACH database. In other words, the command
detaches a previously attached database from the open connection. Detaching a physical (on0disk)
database, an in-memory database, or a temporary database is performed by issuing the DETACH command
followed by the schema name, as follows:

 Let detach_db:String = "DETACH DATABASE schema_name"

 Like the ATTACH statement, you can detach the same database that was attached multiple times using
different schemas by using the same schema names to reference the databases to be detached. Like with the
 ATTACH operation, enable_cache_mode must be disabled or an error will be thrown.

 Multi-Database Limits
 Beyond the physical limit, in terms of the storage space of the iOS device where the app resides, the limit of
attached databases is set using SQLITE_LIMIT_ATTACHED and the sqlite3_limit command. The syntax for
the command is as follows:

CHAPTER 10 ■ WORKING WITH MULTIPLE DATABASES

163

 int sqlite3_limit(sqlite3*, int id, int newVal);

 The first parameter is the pointer to the open database connection; the second is one of the limit
categories (listed next); and the last parameter is the new limit of the attached databases. For attached
databases, you need to use the SQLITE_LIMIT_ATTACHED constant.

 If a negative number is used for the third parameter, no changes are made to the database limits.

 RUN-TIME LIMIT CATEGORIES VALUE

 SQLITE_LIMIT_LENGTH 0

 SQLITE_LIMIT_SQL_LENGTH 1

 SQLITE_LIMIT_COLUMN 2

 SQLITE_LIMIT_EXPR_DEPTH 3

 SQLITE_LIMIT_COMPOUND_SELECT 4

 SQLITE_LIMIT_VDBE_OP 5

 SQLITE_LIMIT_FUNCTION_ARG 6

 SQLITE_LIMIT_ATTACHED 7

 SQLITE_LIMIT_LIKE_PATTERN_LENGTH 8

 SQLITE_LIMIT_VARIABLE_NUMBER 9

 SQLITE_LIMIT_TRIGGER_DEPTH 10

 SQLITE_LIMIT_WORKER_THREADS 11

 Performing Joins
 Building queries that take multiple databases into account is exactly like building joins between tables
within the same database. The one caveat that you need to remember is that you need to reference the table
or tables in the additional databases by prefixing the table with the database schema name, as the following
example demonstrates.

 SQLite supports three types of join: INNER JOIN , OUTER JOIN , and CROSS JOIN . All three can be formed
using multiple databases that are attached to the same open connection. See this example:

 SELECT c.name, a.address, a.city FROM mainDb.contacts c INNER JOIN secondDb.addresses a ON
c.name, a.name

 Attach and Detach in Swift
 This is a simple single-view iPhone app to demonstrate and test the ATTACH and DETACH SQLite functionality
in Swift. The app will provide a function to create databases (and open them). There will also be a function
to ATTACH and DETACH a database from the main database.

 For the sake of simplicity, another function will pre-populate the databases using a sampling of city
names and the countries in which they are located. A final function will fetch the data from the database and
display the data in a TableViewController .

CHAPTER 10 ■ WORKING WITH MULTIPLE DATABASES

164

 The Project
 After the project is created, we need to add the sqlite3 library as we have seen before; it is found in the
Linked Libraries and Framework section in General settings.

 With the library in place, we will add the bridge using the Objective-C class template and choosing the
Category file type, which will trigger Xcode to create the bridge file for us and set up the Build settings for the
Swift compiler. Of course, we still need to add the #import <sqlite3.h > header reference in the bridge file
to actually interface with the sqlite3 library.

 With the project set up, we can add the logic to the ViewController to handle the multi-database
operations.

 The ViewController
 The ViewController is the main entry point for the app’s logic. Other than the global variables and constants
that are usually needed in order to interface with SQLite, the ViewController will have six functions. We will
explore these in the following sections.

 Since the main view in the storyboard will contain a UIPickerView for the created databases, we will
need to add the delegate and data source protocols:

 class ViewController: UIViewController, UIPickerViewDelegate, UIPickerViewDataSource

 The Global Variables and Constants
 The ViewController is created by default when the Single View Application template is used to create an
app. To work with SQLite, we need a variable for the database name and path, which is called dbPath for this
app. The databases array will contain the database names so that we can select a database to attach to the
main one later.

 We also need a pointer, or COpaquePointer variable, for the SQLite database connection and a variable
for the SQLite 3 statement. These are named db and sqlStatement respectively. SQLITE_TRANSIENT is a
movable pointer for the SQLite destructor, which uses the sqlite3_destructor_type type. This has to be
cast using the unsafeBitCast function in Swift.

 internal let SQLITE_TRANSIENT = unsafeBitCast(-1, to:sqlite3_destructor_type.self)
 var databases = [String]()
 var dbPath = URL()
 var db:COpaquePointer? = nil
 var sqlStatement:COpaquePointer? = nil
 var attachDb:String = ""

 The IBActions and IBOutlets
 Although the IBActions and IBOutlets will be added through the UI storyboard later, I wanted to mention
the code that is added to the IBActions . The saveBtn will call the createDatabase function explained
later. After the createDatabase function is called, the UIPickerView is re-loaded with the new value in the
database array, which is the UIPickerView ’s data source. The attachDatabase function is called from the
 AttachDbBtn, and detachDatabase is called from detachDbBtn .

 The first parameter value, attachDb , is populated from the dbnamePicker pickerView function that we
will look at later. Likewise, for the second parameter's values, we simply concatenate the “schema” string to
the name of the attachDb variable.

CHAPTER 10 ■ WORKING WITH MULTIPLE DATABASES

165

 @IBOutlet weak var dbnamePicker: UIPickerView!
 @IBOutlet weak var dbnameField: UITextField!
 @IBAction func saveBtn(sender: AnyObject) {
 self.createDatabase(self.dbnameField.text!)
 dbnamePicker.reloadAllComponents()
 }

 @IBAction func attachDbBtn(_ sender: AnyObject) {
 let dbame = attachDb.components(separatedBy: ".")[0]
 self.attachDatabase(self.getDbToAttach(attachDb).path!, schemaName: dbame+"_schema")
 }

 @IBAction func detachDbBtn(_ sender: AnyObject) {
 let dbame = attachDb.components(separatedBy: ".")[0]
 self.detachDatabase(dbame+"schema")

 }

 The viewDidLoad Function
 The viewDidLoad function sets the delegate and data source for the UIPickerView object. Afterward, the
code retrieves a list of the sqlite files in the Document directory and populates the databases array:

 override func viewDidLoad() {
 super.viewDidLoad()
 dbnamePicker.delegate = self
 dbnamePicker.dataSource = self
 // Get the document directory url
 let documentsUrl = FileManager.default.urlsForDirectory(.documentDirectory,

inDomains: .userDomainMask).first!

 do {
 // Get the directory contents urls (including subfolders urls)
 let directoryContents = try FileManager.default.contentsOfDirectory(at:

documentsUrl, includingPropertiesForKeys: nil, options: [])
 print(directoryContents)

 // if you want to filter the directory contents you can do so like this:
 let sqliteFiles = directoryContents.filter{ $0.pathExtension == "sqlite" }

 databases = sqliteFiles.flatMap({$0.lastPathComponent})
 print("list:", databases)
 self.setDbpath()
 } catch let error as NSError {
 print(error.localizedDescription)
 }

 }

CHAPTER 10 ■ WORKING WITH MULTIPLE DATABASES

166

 The getDbToAttach Function
 This little function merely gets the name and path of the database to be attached. The code retrieves the path
value from the Document directory and stores the value into the db_to_attach_path variable :

 func getDbToAttach(_ db_to_attach:String)->URL{
 let dirManager = FileManager.default)
 var db_to_attach_path = URL()
 do {
 let directoryURL = try dirManager.urlForDirectory(FileManager.

SearchPathDirectory.documentDirectory, in: FileManager.SearchPathDomainMask.
userDomainMask, appropriateFor: nil, create: true)

 db_to_attach_path = try! directoryURL.appendingPathComponent(db_to_attach)
 } catch let err as NSError {

 print("Error: \(err.domain)")
 }
 return db_to_attach_path
 }

 The setDbpath Function
 The setDbPath function sets the path value of the selected database name in the UIPickerView list and
stores it in the dbPath variable. This function is called when the app is launched:

 func setDbpath(){
 let dirManager = FileManager.default()
 let dbname = "cities.sqlite"
 do {
 let directoryURL = try dirManager.urlForDirectory(FileManager.

SearchPathDirectory.documentDirectory, in: FileManager.SearchPathDomainMask.
userDomainMask, appropriateFor: nil, create: true)

 dbPath = try! directoryURL.appendingPathComponent(dbname)

 } catch let err as NSError {
 print("Error: \(err.domain)")
 }
 }

 The createDatabase Function
 To set up the databases, we will use the createDatabase function . The function will get a handle on the
Document directory and assign it to directoryURL . Next, the database name, using the input parameter
 database , will be assigned to the dbPath variable by using the URLByAppendingPathComponent function.

 Once the database name and path are set, sqlite3_open will create the database file and open the
database. Any errors are caught by the NSError class. See here:

 func createDatabase(_ database:String){
 let dirManager = FileManager.default()
 do {
 let directoryURL = try dirManager.urlForDirectory(FileManager.SearchPathDirectory.

documentDirectory, in: FileManager.SearchPathDomainMask.userDomainMask,
appropriateFor: nil, create: true)

CHAPTER 10 ■ WORKING WITH MULTIPLE DATABASES

167

 dbPath = try! directoryURL.appendingPathComponent (database)
 if(!(sqlite3_open(dbPath.path!, &db) == SQLITE_OK))
 {
 print("Unable to create database")

 }else{
 print("Database: " + database + " successfully created ")
 databases.append(database)
 sqlite3_close(db);
 }
 } catch let err as NSError {
 print("Error: \(err.domain)")
 }
 }

 The attachDatabase Function
 This function’s singular purpose is to attach a database to the open connection. To keep things simple,
minimal error checking is added. sqlite3_open ensures that the main database is opened and that the
 ATTACH query string is passed to the sqlite3_exec function. If there are no errors with the query, the input
values are bound to the query using Swift inline text binding and the query is executed. The query memory
is released, and the connection is closed to complete the operation. See here:

 func attachDatabase(_ dbName:String, schemaName:String){
 var err:UnsafeMutablePointer<Int8>? = nil
 if(!(sqlite3_open(dbPath.path!, &db) == SQLITE_OK))
 {
 print("An error has occured.")
 }else{
 let dbstatus = sqlite3_open(dbName, &db)
 print(dbstatus)
 if(sqlite3_open(dbName, &db) == SQLITE_OK){
 let attachSQL = "ATTACH DATABASE '\(dbName)' AS '\(schemaName)'"
 let status = sqlite3_exec(db, attachSQL, nil, &sqlStatement, &err)
 if(status != SQLITE_OK)
 {
 print("Problem with prepared statement " + String(sqlite3_

errcode(db)));
 }
 if (status == SQLITE_OK) {
 print("Database : " + dbName + " attached as " + schemaName)
 }
 }

 sqlite3_finalize(sqlStatement);
 sqlite3_close(db);
 }
 }

CHAPTER 10 ■ WORKING WITH MULTIPLE DATABASES

168

 The detachDatabase Function
 The detachDatabase function is similar in design to attachDatabase . After ensuring that the main database
is open using the sqlite#_open function, the DETACH query string is passed to the sqlite3_exec function
along with the pointer for the sql3_statement pointer. The name of the schema is passed to the query using
the Swift inline text binding method. If the query is successfully executed, the memory is cleaned up and the
main database connection is closed. See here:

 func detachDatabase(_ dbName:String, schemaName:String){
 var err:UnsafeMutablePointer<Int8>? = nil
 if(!(sqlite3_open(dbPath.path!, &db) == SQLITE_OK))
 {
 print("An error has occured.")

 }else{
 let detachSQL = "DETACH DATABASE '\(schemaName)' "
 var status = sqlite3_exec(db, detachSQL, nil, &sqlStatement, &err)

 status = sqlite3_prepare_v2(db, "PRAGMA database_list", -1, &sqlStatement,
nil)

 while(sqlite3_step(sqlStatement) == SQLITE_ROW){
 print(sqlite3_column_int(sqlStatement, 0))
 print(sqlite3_column_text(sqlStatement, 1))

 }

 sqlite3_finalize(sqlStatement);
 sqlite3_close(db);

 }

 }

 The UIPickerView Functions
 The UIPicker functions include numberOfComponentsInPickerView , which configures the number
of columns in the UIPickerView . The pickerView with the numberOfRowsInComponent specifies how
many rows will be displayed in the UIPickerView . This return value is usually the data source’s element
count. titleForRow displays the actual value in the UIPickerView for each element in the data source.
 widthForComponent and rowHeightForComponent are helpers to set the width and height of the cells that
display the elements in the UIPickerView . Finally, didSelectRow returns the selected value. This is used to
select the database to attach. See here:

 func numberOfComponents(in pickerView: UIPickerView) -> Int {
 return 1
 }

 func pickerView(_ pickerView: UIPickerView, numberOfRowsInComponent component: Int) -> Int {
 return databases.count
 }

CHAPTER 10 ■ WORKING WITH MULTIPLE DATABASES

169

 func pickerView(_ pickerView: UIPickerView, titleForRow row: Int, forComponent component:
Int) -> String? {

 let dbname:String = databases[row]
 return dbname
 }

 func pickerView(_ pickerView: UIPickerView, didSelectRow row: Int, inComponent
component: Int) {

 attachDb = databases[row]
 }

 func pickerView(_ pickerView: UIPickerView, widthForComponent component: Int) -> CGFloat {
 return 250.0
 }

 func pickerView(_ pickerView: UIPickerView, rowHeightForComponent component: Int) ->
CGFloat {

 return 50.0
 }

 Building the UI
 Figure 10-1 shows the application's minimalist design, which allows a user to create a database or select a
database from the UIPicklist . The UI features a UITextField to allow a user to create a new database by
clicking the Save button.

 The UIPicklist contains a list of databases that are stored in the Documents directory. To attach or
detach a database, a user selects a database from the list and clicks on the appropriate button. As you may
have noticed, these databases don’t contain any tables or other design elements. The app’s purpose is
demonstrating the minimal code needed to attaching and detaching databases.

 For this project, you are going to need the following components, which are laid out as in Figure 10-1 :

 Name Connection Type Design Element

 Create SQLite Db None UILabel

 DbnameField IBOutlet UITextField

 Save IBAction UIButton

 DBNamePicker IBOutlet UIPickerList

 Attach IBAction UIButton

 Detach IBAction UIButton

CHAPTER 10 ■ WORKING WITH MULTIPLE DATABASES

170

 Once the design elements are in place, we need to create connections with the ViewController . Open
the Identity assistant and control + drag a connection to the open ViewController Swift files above the
 viewDidLoad function, as we previously discussed in the ViewController section (Figure 10-2).

 Figure 10-2. Adding the IBActions and IBOutlets

 Figure 10-1. UI design

CHAPTER 10 ■ WORKING WITH MULTIPLE DATABASES

171

 Running the App
 Figure 10-3 illustrates the running app. For this example, I have added two databases: cities.sqlite and
 countries.sqlite . A third one was added for testing purposes. The cities.sqlite database is the “main”
database and is opened when the app is launched. By selecting countries.sqlite and clicking the Save
button, the countries.sqlite database is attached.

 Figure 10-4 shows output for the attached database. After the sqlite3_exec function is executed, the
 SQLITE_OK or 0 status code is returned stating whether the operation was successful. Likewise for the detach
operation, which is executed through the detachDatabase function (Figure 10-5).

 Figure 10-3. The running app

CHAPTER 10 ■ WORKING WITH MULTIPLE DATABASES

172

 Figure 10-5 shows the output of the PRAGMA database_list command, which returns the list of
databases attached to a connection. The output console shows the two database pointers and their index
number in the array.

 Figure 10-6 shows the output of the detached database, countries_schema , which was previously
attached.

 Figure 10-5. PRAGMA database_list output

 Figure 10-4. The attach status

CHAPTER 10 ■ WORKING WITH MULTIPLE DATABASES

173

 Summary
 In this chapter, you saw that attaching and detaching databases is a simple process. Although using
multiple databases is not always necessary depending on your app's needs, doing so can improve disk I/O
performance and reliability.

 Figure 10-6. The database_list output minus the second database

175© Kevin Languedoc 2016
K. Languedoc, Build iOS Database Apps with Swift and SQLite, DOI 10.1007/978-1-4842-2232-4_11

 CHAPTER 11

 Backing Up SQLite Databases

• Copy contents to new database

• Backing up on-disk databases

• Backing up in-memory databases

 Overview of the SQLite Backup Methods
 Prior to the introduction of the Backup API, the only way to perform a backup was to make a copy. While this
is still a viable option, it does have its drawbacks, like trying to make a copy while there is a lock on the open
database, for instance. Another drawback is if the app stops running before the copy is finished, the app
would need to delete the copy and start over. In addition to those two examples, there are numerous ways
a copy process can fail and possibly corrupt the database files. In short, there isn’t any kind of intelligence
built in to this option.

 But in a jam, this option will and does work. In a Swift iOS setting, your app would need to use the
Swift FileManager class to physically make a copy of the database and move it off to another location. Then,
you would need to figure out how much data to keep in the database and then remove excess data from
the production database to free up space, if needed. To regain some space, you could also run the VACUUM
PRAGMA option.

 Make a Backup Copy
 The following code snippet is an example of a possible way to perform a backup using FileManager .
The logic is quite simple:

 1. First, you ensure that the database is closed using the sqlite3_close command.

 2. Then, you get a handle on the file system using the FileManager.
defaultManager property.

 3. Next, you use the copyItemAtPath to physically make a copy of the file.

 4. Then, you remove n th records from the database, if needed.

 5. Finally, you run VACUUM to remove the empty space and re-index the indexes for
good measure.

CHAPTER 11 ■ BACKING UP SQLITE DATABASES

176

 func backupCopyDatabase(){
 if sqlite3_close(db) == SQLITE_OK{
 let fileMgr = FileManager.default

 do {
 try fileMgr.copyItem(atPath: self.sourcedb, toPath: self.targetdb)
 let deleteSQL = "DELETE FROM main.table"
 if(sqlite3_exec(db, deleteSQL, nil, sqlStatement, err) == SQLITE_OK){
 if(sqlite3_exec(db, "VACUUM", nil, &sqlStatement, &err) == SQLITE_OK){
 print("database compressed")
 }
 })

 }
 catch let error as NSError {
 print("Backup error: \(error)")
 }

 }

 }

 Back Up In-Memory SQLite Databases
 SQLite has a Backup API that can support backups on running databases and in-memory databases . The
backup works by copying the contents from one database into another SQLite database. When the API
copies the contents from the source to the target, it will overwrite the contents in the target, so you may need
to make different copies if you need to preserve all versions of the content. You can also restore a database in
a similar fashion.

 The Backup API allows you to make backups while there is still a shared lock on the source database. If
you lose power or have other issues, like having an app crash, the Backup API will remember where it left off
and continue from that point.

 Backing up a database using the API has three distinct steps:

• Initialize using sqlite3_backup_init .

• Execute the backup with sqlite3_backup_step .

• Finally, clean up the operation using sqlite3_backup_finish .

 To check to see if there are still records to back up, you can use the sqlite3_backup_remaining
function, which returns the number of records remaining in the database. The sqlite3_backup_pagecount
provides the total count of pages to be backed up in the source database.

 It is important to ensure there aren’t any locks prior to starting a backup; otherwise, SQLite will
immediately return a SQLITE_BUSY error. To avoid any conflicts, it is best to test to see if the database is
accessible for backup. To run these tests, the code should implement sqlite3_busy_handler or sqlite3_
busy_timeout .

CHAPTER 11 ■ BACKING UP SQLITE DATABASES

177

 The former calls a callback function in the event that an error occurs. The latter sets a timer in
milliseconds in case of a lock situation. It can be called repeatedly until the lock is removed.

 Back Up On-Disk SQLite Databases
 Backing up on disk is similar to the first option, but uses the SQLite API. With this option, the app is actually
moving data from the source database to the target database. Both databases are physical files. In theory, the
target database could be on a remote server or in the same Document directory as the source.

 The on-disk operation uses four different functions to perform the backup:

• sqlite3_backup_init

• sqlite3_backup_step

• sqlite3_sleep

• sqlite3_backup_remaining

• sqlite3_backup_pagecount

• sqlite_backup_finish

 sqlite3_backup_init is called to create the sqlite3_backup object. The function takes a source
database pointer and a target database pointer as arguments. Either one of these pointers can be for an in-
memory database and the other for a physical database, or both can be physical database pointers.

 The next operation is the sqlite3_backup_step function, which is repeatedly called to copy the n th
number of pages specified in argument 5 to the target database. At the end of each iteration, the app needs
to call sqlite3_sleep , which freezes the process for 250 ms in order for the write process to complete.
 sqlite3_backup_remaining returns the remaining amount of pages in the database after the sqlite3_
backup_step function has executed. I usually call the sqlite3_backup_pagecount function at the beginning
of the process to determine how many pages are in the database, as the sample will demonstrate later in this
chapter, and then call the sqlite3_backup_remaining function after each iteration.

 Once the source database is completely backed up, the sqlite3_backup_finish function is called to
clean up the resources allocated with the sqlite3_backup_init function.

 The Backup App
 To demonstrate the various APIs for backup, I will create a single-view iOS iPhone app. The app will
implement two methods for the SQLite Backup APIs in addition to backupCopyDatabase from earlier.

 I am using a copy of the Chinook database (https://chinookdatabase.codeplex.com/) for
sample data. You will need to import the database into the project if you intend to try out the code. To
make the database writeable, it needs to be copied into the Documents directory, so add the method
 copyDatabaseIntoDocuments to the project.

 Figure 11-1 shows the second screen, in which you enter a name for the Single View Application project .
For this example, I will name the project BackupSQLite. The language is Swift, of course, and the target
device is iPhone. You can leave the other options as is.

https://chinookdatabase.codeplex.com/

CHAPTER 11 ■ BACKING UP SQLITE DATABASES

178

 As we will be working with SQLite databases and the SQLite Backup API, we will need to create a bridge,
as usual. Select the Objective-C File template and click Next to move to the next screen, where you will
need to specify a name for the bridge and the file type, which should be Category (Figure 11-2). Choosing
this option will initiate Xcode, which will request to create the bridge file for you and set up the Swift Build
settings.

 Figure 11-2. The bridge interface

 Figure 11-1. The Backup Project: Single View Template

CHAPTER 11 ■ BACKING UP SQLITE DATABASES

179

 Figure 11-4 shows the interface that allows Xcode to set up the bridge file and adds the setting to the
Build settings.

 Figure 11-3. The BackupBridge file

 Figure 11-4. The Create Bridge Header interface

 Figure 11-3 provides a screenshot of the options for the bridge file. The first field is for the name of the
file. In this case it is BackupBridge. Selecting the Category file type will trigger the Create Bridge interface
once the file is saved to the project.

 Figure 11-5 provides a visual of the Swift Compiler Build settings that are automatically configured by
the Objective-C bridge setup process .

CHAPTER 11 ■ BACKING UP SQLITE DATABASES

180

 Remember to add the sqlite3 library to the Linked Libraries (Figure 11-6), as we need to use the sqlite
library.

 Figure 11-5. The Swift Compiler Build settings

 Figure 11-6. Add the sqlite library

 Next, add the header to the DatabaseBackup-Bridging-Header.h header file using the import keyword,
as in the code snippet here:

 #import <sqlite3.h>

 With the bridge in place, we can add the code to perform backups.

CHAPTER 11 ■ BACKING UP SQLITE DATABASES

181

 The ViewController
 The ViewController is the main controller for the application. We add three database pointers and a
pointer to the sqlite3_backup object. We also add a FileManager to perform file operations like copying
the database files to the Documents directory. The source and target databases are defined as sourcedb and
 targetdb , and the last two COpaquePointers are for the sqlite3_statement and sqlite3 database errors.

 var db:OpaquePointer? = nil // SQLite database connection for sourceDB filename
 var bakdb :OpaquePointer? = nil // the SQLite Backup Object
 var filedb :OpaquePointer? = nil // the SQLite Backup Object
 let fileMgr:FileManager = FileManager.default
 let sourcedb:String = "Chinook_Sqlite.sqlite" // The SQLite database to be backed up
 let targetdb:String = "backup_chinook.sqlite"
 var sqlStatement:OpaquePointer? = nil
 var err:UnsafeMutablePointer<Int8>? = nil

 The viewDidLoad and copyDatabaseIntoDocument Functions
 In the viewDidLoad function , we call the copyDatabaseIntoDocuments function for each of the databases.
This function simply gets a handle on the files and on the Document directory and uses openItem to copy
the files to the Document directory if the files don’t already exist:

 override func viewDidLoad() {
 super.viewDidLoad()
 self.copyDatabaseIntoDocuments(sourcedb)
 self.copyDatabaseIntoDocuments(targetdb)
 }

 func copyDatabaseIntoDocument(_ dbFilename:String){

 var srcPath:URL
 var destPath:URL
 let dirManager = FileManager.default
 let projectBundle = Bundle.main
 do {
 let resourcePath = projectBundle.pathForResource(dbFilename.

components(separatedBy: ".")[0], ofType: "sqlite")
 let documentURL = try dirManager.urlForDirectory(FileManager.

SearchPathDirectory.documentDirectory, in: FileManager. SearchPathDomainMask .
userDomainMask, appropriateFor: nil, create: true)

 srcPath = URL(fileURLWithPath: resourcePath!)
 destPath = try! documentURL.appendingPathComponent(dbFilename)

 if !dirManager.fileExists(atPath: destPath.path!) {

 try dirManager.copyItem(at: srcPath, to: destPath)

 }

CHAPTER 11 ■ BACKING UP SQLITE DATABASES

182

 } catch let err as NSError {
 print("Error: \(err.domain)")
 }

 }

 The getDatabasePath Function
 Finally, getDatabasePath is a helper function to get the fully qualified path for each of the database files. The
function is used in the copyDatabaseIntoDocument function:

 func getDatabasePath(_ database:String)->URL{
 var dbfile:URL = URL.init(fileURLWithPath:"")
 let dirManager = FileManager.default

 do {
 let directoryURL = try dirManager.urlForDirectory(FileManager.

SearchPathDirectory.documentDirectory, in: FileManager.SearchPathDomainMask.
userDomainMask, appropriateFor: nil, create: true)

 dbfile = try! directoryURL.appendingPathComponent(database)

 } catch let err as NSError {
 print("Error: \(err.domain)")
 }
 return dbfile
 }

 Back Up a Running Database
 To demonstrate how to back up a running database, you will need to get a handle on the running database
by using the open command and initializing the backup process using sqlite3_backup_init . With a
running database you can run into locks, and so you will need to step through the records in the database,
all the while checking to see if there is a lock on the database. SQLite provides the sqlite3_sleep function ,
which is usually set to 250 ms. With each iteration, the remaining- records count is fetched until nine are left.
See here:

 func backupRunningDatabase(){
 var rc:Int32 = -1
 var remaining:Int32 = 0
 var page_count:Int32 = 0

 if(sqlite3_open(self.getDatabasePath(sourcedb).path!, &db)==SQLITE_OK){
 if(sqlite3_open(self.getDatabasePath(targetdb).path!, &filedb) == SQLITE_OK){
 bakdb = sqlite3_backup_init(filedb, "main", db, "main");
 remaining = sqlite3_backup_remaining(db)

CHAPTER 11 ■ BACKING UP SQLITE DATABASES

183

 while(remaining != 0){
 rc = sqlite3_backup_step(bakdb, 10) //copy 10 pages to backup db
 if(rc == SQLITE_OK){
 remaining = sqlite3_backup_remaining(db)
 page_count = sqlite3_backup_pagecount(db)

 if(rc==SQLITE_OK || rc==SQLITE_BUSY || rc==SQLITE_LOCKED){
 sqlite3_sleep(250);
 }
 }

 }
 sqlite3_backup_finish(bakdb)
 }
 }
 sqlite3_close(db)
 sqlite3_close(filedb)
 }

 Backup an In-Memory Database
 Creating an in-memory backup is slightly different than backing up a running database. From the code
that follows, you can see how simple it is to create an in-memory backup of your database. All you need is a
pointer to your database and a pointer to the backup. Then, step through the database until all records have
been backed up into the in-memory database:

 func backupInMemory(){
 if(sqlite3_open(sourcedb, &db)==SQLITE_OK){
 if(sqlite3_open("file::memory:", &db) == SQLITE_OK){
 bakdb = sqlite3_backup_init(filedb, "main", db, "main")
 sqlite3_backup_step(bakdb, -1)
 sqlite3_backup_finish(bakdb)

 sqlite3_close(db);
 sqlite3_close(filedb)
 }
 }
 }

 Building the UI
 As seen in Figure 11-7 , the UI is very simple, with only two buttons, which are used to call the
 backupInMemory and backupRunningDatabase functions. These will be connected to the ViewController as
 IBActions .

CHAPTER 11 ■ BACKING UP SQLITE DATABASES

184

 To create the connecting IBActions , open the Identity assistant in Xcode and control + drag a
connection line from the UIButton to the open ViewController file. In Figure 11-8 , you can see that
releasing the mouse button triggers a popup, allowing you to enter the name of the IBAction , which will be
 backupOnDisk, for the corresponding UIButton .

 Figure 11-7. The app's UI

 For the Backup In Memory button, name the IBAction backupInMemory . The code for these two
 IBActions is provided following Figure 11-9 .

 Figure 11-8. The backupOnDisk IBAction

CHAPTER 11 ■ BACKING UP SQLITE DATABASES

185

 Figure 11-9. The backupInMemory IBAction

 Finally, both IBActions call their respective backup functions in the ViewController .

 @IBAction func backupOnDisk(_ sender: AnyObject) {
 self.backupRunningDatabase()
 }

 @IBAction func backupInMemory(_ sender: AnyObject) {
 self.backupInMemory()
 }

 All that will remain after the backup completes is to determine where to store the backup. On a mobile
device, the options are slim, so you would need to export these files to another location like iCloud or some
other similar service. The files can also be moved to a corporate network.

 Summary
 The last chapter will cover the analysis of SQLite databases.

187© Kevin Languedoc 2016
K. Languedoc, Build iOS Database Apps with Swift and SQLite, DOI 10.1007/978-1-4842-2232-4_12

 CHAPTER 12

 Analyzing SQLite Databases

 This last chapter will focus on the different tools the SQLite platform provides to help you analyze your app's
databases. Except for the ANALYZE statement, which can be executed with the sqlite3_exec command, the
other tools are external software programs. Specifically, in this chapter we will discuss and explore, through
examples, the following technologies:

• The ANALYZE statement

• The sqldiff tool

• The sqlite3_analyzer tool

 Other than the ANALYZE statement, which we will explore in Swift, all the other tools are external tools
that can help you analyze your databases for support and/or for development optimization.

 The Analyze Statement
 The role of the ANALYZE statement is to gather information on tables and indexes in a database through
statistics. SQLite accomplishes this task by creating a sqlite_stats1 table in your app's database when the
 ANALYZE statement is executed. SQLite passes this information to the SQLite Query Optimizer, which in turn
uses the collected information to use the best query algorithm for the best performance.

 If you build the database or enable SQLITE3_ENABLE_STAT3 or SQLITE3_ENABLE_STAT4 , additional
histogram information is gathered and stored in the sqlite3_stat3 and sqlite3_stat4 tables respectively.

 To run the ANALYZE functionality in a database, you simply need to execute the ANALYZE statement, as follows:

 ANALYZE schema

 This will create a stat1 table for the whole database. If you only want to target a table, you could issue a
command like:

 ANALYZE schema.tablename

 Of course, you can also build a stat1 table for an index in a table using the following command:

 ANALYZE schema with or without the schema prefix:

 ANALYZE schema.indexname

 or,

 ANALYZE indexname

CHAPTER 12 ■ ANALYZING SQLITE DATABASES

188

 In Swift, the ANALYZE statement can be executed like any other query, as follows:

 func analyzeDatabase(_ name:String){

 let sql:String = "ANALYZE Chinook_Sqlite.sqlite"
 if(sqlite3_open(dbPath.path!, &db)==SQLITE_OK){
 if(sqlite3_prepare_v2(db, sql.cString(using: String.Encoding.utf8)!, -1,

&sqlStatement, nil)==SQLITE_OK){
 while(sqlite3_step(sqlStatement)==SQLITE_ROW){
 let output = String(cString: UnsafePointer<Int8>(sqlite3_column_

text(sqlStatement, 0)))
 print(output)
 }
 }
 }
 sqlite3_close(db)
 }

 The sqldiff Tool
 The sqldiff utility is an external application from SQLite. You can download it along with SQLite3_Analyzer—
and SQLite, for that matter–from the download page at www.sqlite.org . Look for the zip package for OSX x86.

 You only need to unzip the compressed file to a handy directory on your OSX machine. These tools are
equally available for Windows and Linux. The instructions that follow are for OSX only; however, I am sure
they work the same way on Windows and Linux.

 The sqldiff utility is used to compare two SQLite databases and generates a SQL script to convert the
source database (database1) into the target database (database2). The sqldiff tool is easy to use. A sample
output is shown in Figure 12-1 . From a Terminal window, navigate to the directory where you unzipped the
utility, and sqldiff will issue the following command:

 Figure 12-1. sqldiff output to standard output

http://www.sqlite.org/

CHAPTER 12 ■ ANALYZING SQLITE DATABASES

189

 sqldiff database1.sqlite databse2.sqlite

 To illustrate, I will run the utility on the Chinook_SQLite.sqlite database that I used for the backups.
The second database is DbToBackup.sqlite , which is another empty database I created for the backups.

 The utility has a number of options that you can use as well. For instance:

• --changeset FILE

• --lib or L

• --primaryKey

• --schema

• --summary

• --table TABLENAME

• --transaction

• --vtab

 The –changeset option re-directs the output to a file. The –lib option loads a user-defined library prior
to comparing the databases, like collating_sequences , for instance. If you prefer using the primary key in
a table instead of the rowed, then –primaryKey is the way to go. Using the –schema flag, you can show the
differences in the schema only, excluding the content. To pinpoint the changes that have occurred in two
tables, use –summary . However, the actual changes won’t be displayed. Using the –table option allows you
to compare specific table content. The –transaction option allows you to generate one large transaction for
the complete operation. Finally, the –vtab choice works with virtual tables like FTS3, FTS5, and rtree tables.

 The sqldiff utility works by comparing pairwise rowids, unless you are using the –primaryKey option. The
output is generated as updates if the content is in similar tables. If the two databases have distinct tables, then
the source tables are dropped (DELETE) and new ones created, along with using INSERT to insert the content.

 There are, of course, some limitations with the current version of the tool. For instance, the utility only
works on tables, and rowids must be accessible, unless you are using the –primaryKey option. Also, the
content of virtual tables isn’t compared unless it results in a physical table. However, using the tool in this
capacity can create corrupted databases.

 The sqlite3_analyzer tool
 The sqlite3_analyzer is a handy tool used to measure the effective use of the space in the tables in the target
database. Like the sqldiff tool before, the sqlite3_analyzer is a command-line tool that is included in the
same download package as the sqldiff tool.

 The utility generates a text (ASCII)-based report in a text file. It is a human-readable file. To
demonstrate, I will run the tool with the Chinook_Sqlite.sqlite database file from before.

 From a Terminal window, navigate to the directory where the sqlite3_analyzer tool is situated and issue
the following command:

 sqlite3_analyzer database.sqlite

 For example, here is the output of the DbToBackup.sqlite database:

 Last login: Mon Sep 5 17:04:01 on ttys001
 Kevins-MacBook-Air:~ kevinlanguedoc$ /Users/kevinlanguedoc/Documents/sqlitetools/sqlite3_
analyzer /Users/kevinlanguedoc/Documents/sqlitetools/DbToBackup.sqlite
 /** Disk-Space Utilization Report For /Users/kevinlanguedoc/Documents/sqlitetools/
DbToBackup.sqlite

CHAPTER 12 ■ ANALYZING SQLITE DATABASES

190

 Page size in bytes................................ 32768
 Pages in the whole file (measured)................ 4
 Pages in the whole file (calculated).............. 4
 Pages that store data............................. 4 100.0 %
 Pages on the freelist (per header)................ 0 0.0 %
 Pages on the freelist (calculated)................ 0 0.0 %
 Pages of auto-vacuum overhead..................... 0 0.0 %
 Number of tables in the database.................. 4
 Number of indices................................. 0
 Number of defined indices......................... 0
 Number of implied indices......................... 0
 Size of the file in bytes......................... 131072
 Bytes of user payload stored...................... 0 0.0 %

 *** Page counts for all tables with their indices *****************************

 CARS.. 1 25.0 %
 SQLITE_MASTER..................................... 1 25.0 %
 SQLITE_SEQUENCE................................... 1 25.0 %
 SQLITE_STAT1...................................... 1 25.0 %

 *** Page counts for all tables and indices separately *************************

 CARS.. 1 25.0 %
 SQLITE_MASTER..................................... 1 25.0 %
 SQLITE_SEQUENCE................................... 1 25.0 %
 SQLITE_STAT1...................................... 1 25.0 %

 *** All tables **

 Percentage of total database...................... 100.0 %
 Number of entries................................. 3
 Bytes of storage consumed......................... 131072
 Bytes of payload.................................. 296 0.23 %
 Average payload per entry......................... 98.67
 Average unused bytes per entry.................... 43543.67
 Maximum payload per entry......................... 141
 Entries that use overflow......................... 0 0.0 %
 Primary pages used................................ 4
 Overflow pages used............................... 0
 Total pages used.................................. 4
 Unused bytes on primary pages..................... 130631 99.66 %
 Unused bytes on overflow pages.................... 0
 Unused bytes on all pages......................... 130631 99.66 %

 *** Table CARS **

 Percentage of total database...................... 25.0 %
 Number of entries................................. 0
 Bytes of storage consumed......................... 32768
 Bytes of payload.................................. 0 0.0 %
 B-tree depth...................................... 1

CHAPTER 12 ■ ANALYZING SQLITE DATABASES

191

 Average payload per entry......................... 0.0
 Average unused bytes per entry.................... 0.0
 Maximum payload per entry......................... 0
 Entries that use overflow......................... 0
 Primary pages used................................ 1
 Overflow pages used............................... 0
 Total pages used.................................. 1
 Unused bytes on primary pages..................... 32760 99.976 %
 Unused bytes on overflow pages.................... 0
 Unused bytes on all pages......................... 32760 99.976 %

 *** Table SQLITE_MASTER ***

 Percentage of total database...................... 25.0 %
 Number of entries................................. 3
 Bytes of storage consumed......................... 32768
 Bytes of payload.................................. 296 0.90 %
 B-tree depth...................................... 1
 Average payload per entry......................... 98.67
 Average unused bytes per entry.................... 10783.67
 Maximum payload per entry......................... 141
 Entries that use overflow......................... 0 0.0 %
 Primary pages used................................ 1
 Overflow pages used............................... 0
 Total pages used.................................. 1
 Unused bytes on primary pages..................... 32351 98.7 %
 Unused bytes on overflow pages.................... 0
 Unused bytes on all pages......................... 32351 98.7 %

 *** Table SQLITE_SEQUENCE ***

 Percentage of total database...................... 25.0 %
 Number of entries................................. 0
 Bytes of storage consumed......................... 32768
 Bytes of payload.................................. 0 0.0 %
 B-tree depth...................................... 1
 Average payload per entry......................... 0.0
 Average unused bytes per entry.................... 0.0
 Maximum payload per entry......................... 0
 Entries that use overflow......................... 0
 Primary pages used................................ 1
 Overflow pages used............................... 0
 Total pages used.................................. 1
 Unused bytes on primary pages..................... 32760 99.976 %
 Unused bytes on overflow pages.................... 0
 Unused bytes on all pages......................... 32760 99.976 %

 *** Table SQLITE_STAT1 **

 Percentage of total database...................... 25.0 %
 Number of entries................................. 0
 Bytes of storage consumed......................... 32768

CHAPTER 12 ■ ANALYZING SQLITE DATABASES

192

 Bytes of payload.................................. 0 0.0 %
 B-tree depth...................................... 1
 Average payload per entry......................... 0.0
 Average unused bytes per entry.................... 0.0
 Maximum payload per entry......................... 0
 Entries that use overflow......................... 0
 Primary pages used................................ 1
 Overflow pages used............................... 0
 Total pages used.................................. 1
 Unused bytes on primary pages..................... 32760 99.976 %
 Unused bytes on overflow pages.................... 0
 Unused bytes on all pages......................... 32760 99.976 %

 *** Definitions ***

 Page size in bytes

 The number of bytes in a single page of the database file.
 Usually 1024.

 Number of pages in the whole file

 The number of 32768-byte pages that go into forming the complete
 database

 Pages that store data

 The number of pages that store data, either as primary B*Tree pages or
 as overflow pages. The number at the right is the data pages divided by
 the total number of pages in the file.

 Pages on the freelist

 The number of pages that are not currently in use but are reserved for
 future use. The percentage at the right is the number of freelist pages
 divided by the total number of pages in the file.

 Pages of auto-vacuum overhead

 The number of pages that store data used by the database to facilitate
 auto-vacuum. This is zero for databases that do not support auto-vacuum.

 Number of tables in the database

 The number of tables in the database, including the SQLITE_MASTER table
 used to store schema information.

 Number of indices

 The total number of indices in the database.

 Number of defined indices

 The number of indices created using an explicit CREATE INDEX statement.

CHAPTER 12 ■ ANALYZING SQLITE DATABASES

193

 Number of implied indices
 The number of indices used to implement PRIMARY KEY or UNIQUE constraints
 on tables.

 Size of the file in bytes

 The total amount of disk space used by the entire database files.

 Bytes of user payload stored

 The total number of bytes of user payload stored in the database. The
 schema information in the SQLITE_MASTER table is not counted when
 computing this number. The percentage at the right shows the payload
 divided by the total file size.

 Percentage of total database

 The amount of the complete database file that is devoted to storing
 information described by this category.

 Number of entries

 The total number of B-Tree key/value pairs stored under this category.

 Bytes of storage consumed

 The total amount of disk space required to store all B-Tree entries
 under this category. This is the total number of pages used times
 the pages size.

 Bytes of payload

 The amount of payload stored under this category. Payload is the data
 part of table entries and the key part of index entries. The percentage
 at the right is the bytes of payload divided by the bytes of storage
 consumed.

 Average payload per entry

 The average amount of payload on each entry. This is just the bytes of
 payload divided by the number of entries.

 Average unused bytes per entry

 The average amount of free space remaining on all pages under this
 category on a per-entry basis. This is the number of unused bytes on
 all pages divided by the number of entries.

 Non-sequential pages

 The number of pages in the table or index that are out of sequence.
 Many filesystems are optimized for sequential file access, so a small
 number of non-sequential pages might result in faster queries,

CHAPTER 12 ■ ANALYZING SQLITE DATABASES

194

 especially for larger database files that do not fit in the disk cache.
 Note that after running VACUUM, the root page of each table or index is
 at the beginning of the database file and all other pages are in a
 separate part of the database file, resulting in a single non-
 sequential page.

 Maximum payload per entry

 The largest payload size of any entry.

 Entries that use overflow

 The number of entries that use one or more overflow pages.

 Total pages used

 This is the number of pages used to hold all information in the current
 category. This is the sum of index, primary, and overflow pages.

 Index pages used

 This is the number of pages in a table B-tree that hold only key (rowid)
 information and no data.

 Primary pages used

 This is the number of B-tree pages that hold both key information and data.

 Overflow pages used

 The total number of overflow pages used for this category.

 Unused bytes on index pages

 The total number of bytes of unused space on all index pages. The
 percentage at the right is the number of unused bytes divided by the
 total number of bytes on index pages.

 Unused bytes on primary pages

 The total number of bytes of unused space on all primary pages. The
 percentage at the right is the number of unused bytes divided by the
 total number of bytes on primary pages.

 Unused bytes on overflow pages

 The total number of bytes of unused space on all overflow pages. The
 percentage at the right is the number of unused bytes divided by the
 total number of bytes on overflow pages.

 Unused bytes on all pages

CHAPTER 12 ■ ANALYZING SQLITE DATABASES

195

 The total number of bytes of unused space on all primary and overflow
 pages. The percentage at the right is the number of unused bytes

 divided by the total number of bytes.

 The entire text of this report can be sourced into any SQL database
 engine for further analysis. All of the text above is an SQL comment.
 The data used to generate this report follows:
 */
 BEGIN;
 CREATE TABLE space_used(
 name clob, -- Name of a table or index in the database file
 tblname clob, -- Name of associated table
 is_index boolean, -- TRUE if it is an index, false for a table
 is_without_rowid boolean, -- TRUE if WITHOUT ROWID table
 nentry int, -- Number of entries in the BTree
 leaf_entries int, -- Number of leaf entries
 depth int, -- Depth of the b-tree
 payload int, -- Total amount of data stored in this table or index
 ovfl_payload int, -- Total amount of data stored on overflow pages
 ovfl_cnt int, -- Number of entries that use overflow
 mx_payload int, -- Maximum payload size
 int_pages int, -- Number of interior pages used
 leaf_pages int, -- Number of leaf pages used
 ovfl_pages int, -- Number of overflow pages used
 int_unused int, -- Number of unused bytes on interior pages
 leaf_unused int, -- Number of unused bytes on primary pages
 ovfl_unused int, -- Number of unused bytes on overflow pages
 gap_cnt int, -- Number of gaps in the page layout
 compressed_size int -- Total bytes stored on disk
);
 INSERT INTO space_used VALUES('sqlite_master','sqlite_
master',0,0,3,3,1,296,0,0,141,0,1,0,0,32351,0,0,32768);
 INSERT INTO space_used VALUES('sqlite_stat1','sqlite_stat1',0,0,0,0,1,0,0,0,0,0,1,0,0,32760
,0,0,32768);
 INSERT INTO space_used VALUES('cars','cars',0,0,0,0,1,0,0,0,0,0,1,0,0,32760,0,0,32768);
 INSERT INTO space_used VALUES('sqlite_sequence','sqlite_
sequence',0,0,0,0,1,0,0,0,0,0,1,0,0,32760,0,0,32768);
 COMMIT;

 This analysis report provides very detailed information on the use of space in the pages that are in the
database. What follows is the extract on the Cars table. The primary concern to me as a database developer is
the amount of free space in the database’s table. In this case, it is at 99.976 %, which is fantastic. This means
that there isn’t any bloat in the pages.

 A page is a unit of storage in a database—any database, really. In this table, only one page is used. However,
that database is free to use as many pages as is needed to efficiently manage itself. When there is a lot of activity
from inserts, deletes, and updates, the database can be become bloated with unused space in the pages.

 In order to regain that space and optimize the database, you can execute the VACUUM command on the
database, as we have discussed before, which removes empty space. You can also re-index the tables to
optimize table I/O efficiency.

CHAPTER 12 ■ ANALYZING SQLITE DATABASES

196

 *** Table CARS **

 Percentage of total database...................... 25.0 %
 Number of entries................................. 0
 Bytes of storage consumed......................... 32768
 Bytes of payload.................................. 0 0.0 %
 B-tree depth...................................... 1
 Average payload per entry......................... 0.0
 Average unused bytes per entry.................... 0.0
 Maximum payload per entry......................... 0
 Entries that use overflow......................... 0
 Primary pages used................................ 1
 Overflow pages used............................... 0
 Total pages used.................................. 1
 Unused bytes on primary pages..................... 32760 99.976 %
 Unused bytes on overflow pages.................... 0
 Unused bytes on all pages......................... 32760 99.976 %

 Summary
 This chapter is different from the other chapters in that the focus was primarily outside of Xcode and Swift.
Most of these tools that we looked at are run in the Terminal. The sqldiff lets us compare two databases and
copy the schema and content from one to another. The sqlite3_analyzer tool generates a report on how the
space is used in the pages in the database. We also looked at the ANALYZE statement, which creates a stat1
table to store statistics on the tables, which are then used in the SQLite Query Optimizer to select the best
algorithm to use to perform various queries against a database.

 I hope this book serves you well.

197© Kevin Languedoc 2016
K. Languedoc, Build iOS Database Apps with Swift and SQLite, DOI 10.1007/978-1-4842-2232-4

 A
 ANALYZE statement , 187–188
 attachDatabase function , 167
 ATTACH DATABASE statement , 161–162
 ATTACH SQLite functionality , 163–170

 B
 Backup API

 BackupBridge fi le , 179
 bridge interface , 178–179
 FileManager , 175–176
 in-memory databases , 176
 on-disk operation , 177
 sqlite library , 179–180
 Swift Compiler Build settings , 179–180
 UI building , 183–185
 View Application project , 177–178
 ViewController , 181–183

 C
 cellForRowAt , 37
 Chinook_SQLite.sqlite database , 189
 Collation sequences , 50

 BINARY collation , 51
 NoCase collation , 51
 RTRIM type , 51
 sqlite3_create_collation function , 51

 Controllers , 77
 buildSchema , 79
 FirstViewController , 81
 init function , 78
 insertWineRecord function , 80
 insertWineryRecord function , 80
 photo capture function , 82

 imagePickerController function , 82
 insertRecordAction , 82
 UISlider , 83
 viewDidLoad function , 82
 wineRating function , 83

 SecondViewController , 83
 WineryDAO class , 77

 copyDatabaseIntoDocuments function , 181
 createDatabase function , 166
 createOrOpenDatabase function , 79
 CROSS JOIN , 163

 D
 Data model , 75

 database schema , 77
 wineries database , 76

 documentDirectory , 76
 SearchPathDirectory , 76
 types , 76

 DbMgrDAO controller , 30
 contentsOfDirectoryAtURL method , 34
 COpaquePointer , 31
 DetailViewController , 32
 executeQuery function , 34
 initViewIndex function , 33
 NSFileManager class , 34
 NSFileManager.defaultManage classr , 34
 openSQliteDatabase function , 35
 populateIndexView function , 31
 preparedStatement , 32
 sqlite3_column_text method , 32
 stringByReplacingOccurencesOfString , 35
 TableView , 32
 viewDidLoad function , 33

 Db Swift class , 27
 CREATE TABLE statement , 28
 Enums class , 30
 executeQuery method , 29
 insert statement , 28
 selectDbSchemaListByType method , 29
 selectDbSchemaStructure method , 29
 tableDef , 28

 db_to_attach_path variable , 166
 DELETE function

 collation sequences , 53
 DELETE statement , 131

 Index

■ INDEX

198

 indices , 53
 LIMITS clause , 132
 sampleDelete function , 132–134
 tables , 52
 TRIGGER , 53, 132
 views , 52
 WHERE clause , 131
 Winery app

 Cellar TableView , 138–139
 commitEditingStyle , 139
 deleteRowsAtIndexPaths , 139
 deleteWineRecord , 139–140
 Edit mode , 141–142
 UITableView , 139
 UITableViewCellEditingStyle , 139
 ViewControllers , 136
 viewDidLoad method , 137
 Wineries TableView , 140–144
 WineryDAO Class , 135–136
 WineryListTableController , 136–137

 dequeueReusableCellWithIdentifi er , 152
 detachDatabase function , 168
 DETACH SQLite functionality , 163–170
 DETACH statement , 162
 DetailViewController , 39

 createDbButton , 39
 dbStatusMsg , 41
 detailSQLiteQueryField

method , 39–40
 @IBAction Buttons , 40
 openSQLiteDatabase method , 39
 prepareForSeque , 40
 viewDidLoad function , 41
 viewWillAppear function , 41

 E
 executeQuery function , 34

 F
 FileManager , 175–176

 G, H
 getDatabasePath function , 182

 I, J, K
 IBAction , 164, 184
 IBOutlets , 157, 164
 Index , 48

 DROP INDEX , 49
 UNIQUE INDEX , 49

 INNER JOIN , 163
 INSERT statement , 64

 ABORT clause , 67
 blobs , 68
 data-binding functions , 63
 DocumentDirectory , 65
 IGNORE clause , 67
 last clause , 67
 NSFileManager , 65
 NSSearchPathDirectory , 65
 NSSearchPathForDirectoriesInDomains , 65
 records , 84–85
 REPLACE statements , 66
 rollback , 67

 iOS app
 Create Bridge interface , 150
 database creation , 146–147
 project creation , 148–149
 SQLiteSearchBridge , 149–150
 UISearchBar , 146
 ViewController , 150–159
 project creation , 22

 AppDelegate application , 23
 bundle , 23
 database , 22
 didFinishLaunchWithOption , 23
 documents directory , 23
 fi nder , 23
 Master-Detail template , 22
 resources , 22

 L
 LIMITS clause , 132

 M
 MasterViewController , 36

 cellForRowAtIndexPath , 37
 numberOfRowsInSection , 37
 schemaDetailsItems , 36
 segue , 36
 titleForHeaderInSection , 37
 UITableView component , 36
 unWindFromSegue function , 38
 viewDidLoad function , 36

 N
 NSObject + SQLiteSearchBridge , 150
 numberOfRowsInSection , 37, 151

 O
 OUTER JOIN , 163

DELETE function (cont.)

■ INDEX

199

 P, Q
 PRAGMA database , 172–173
 Pragma statements , 59

 automatic_index , 60
 auto-vacuum , 60
 busy timeout , 60
 foreign_key_check , 59
 Foreign_key_list , 60
 integrity_check , 60
 shrink_memory , 60

 Prototype , 158

 R
 REPLACE statements , 66
 RTRIM type , 51

 S
 searchBarCancelButtonClicked method , 152
 searchBarSearchButtonClicked

method , 152
 searchDatabase function , 153–154
 searchResultCellTableViewCell , 154
 SELECT statement , 89

 cross join , 94
 data-type binding functions , 89
 display images , 94
 IBOutlets , 106
 inner join , 93
 list of records , 112
 MPMoviePlayerController , 96
 navigation controllers , 102
 outer join , 94
 playback audio records , 95
 selectWineList function , 99
 selectWineriesList function , 98
 SelectWineries UIPicker , 96
 selectWineryByName function , 99
 SQLITE_ROW constant , 90
 TableViewControllers , 102
 UIPickerView function , 97
 UITableViewController , 100
 using sub query , 93
 ViewController function , 96
 WHERE clause , 90, 92
 WineListTableViewController , 104
 Wineries UIPickerView , 111
 WineryListTableViewController , 107–108

 setDbPath function , 166
 sqldiff , 188–189
 SQLite functions

 corrupt , 61
 JSON functions , 53, 55

 limits , 61
 sqlite3_analyzer , 189–196
 sqlite3_enable_load_extension , 54
 sqlite3_exec function , 171
 sqlite3_load_extension , 54
 using Swift

 build phases , 56
 compile sources , 56
 header File , 57
 sizeconverter , 57
 sqlite3_user_data() function , 58
 values , 55

 SQLite library , 1
 SQLITE_LIMIT_ATTACHED , 162
 SQLite Manager , 1, 147
 SQLite Manager, fi refox , 11

 Db Settings , 13
 directory selector , 13
 index , 11, 18

 defi nition , 19
 sqlite_autoindex_book , 18

 menu option , 12
 Sqlite_master , 14

 browse & search , 14
 schema , 14

 sqlite_sequence , 14
 ATTACH command , 14
 AUTOINCREMENT property , 14
 DETACH command , 14
 ROWINDEX , 14

 tables and columns , 11, 15
 defi nition , 16
 dropping , 17
 INSERT/UPDATE , 16
 primary key , 16
 re-indexing , 17
 table name , 17

 terminal , 11
 tools menu , 12
 trigger , 11, 19, 21
 view , 11, 19

 CREATE VIEW , 20
 select statement , 20

 windows command , 11
 SQLiteSearch-Bridging-Header , 150
 SQLITE_TRANSIENT , 151
 Storyboard , 154
 Swift iOS application , 2

 add SQLite 3 library , 3
 bridge , 5

 header fi le , 5
 Swift compiler , 7

 DetailViewController , 3
 MasterViewController , 3
 wrapper functions , 7

■ INDEX

200

 DbMgrDAO class , 8
 executeQuery function , 10
 init function , 9

 T
 Tables, modifi cation

 add columns , 47
 ALTER command , 46–47
 DROP command , 47
 foreign keys , 46
 REINDEX command , 46, 48
 RENAME command , 46
 UPDATE command , 47

 Triggers , 49

 U
 UIButtons , 25

 Assistant Editor , 26
 Attributes inspector , 26
 detailSQLiteQueryField , 25, 27
 @IBActions , 26
 Interface Builder , 25
 repeat process , 26

 UIPickerView , 168
 UITableViewCell , 106, 150
 umberOfSectionsInTableView , 151
 UPDATE statement

 ABORT option , 116
 CityTemperature table , 114
 FAIL option , 117
 FirstViewController , 125–126
 IBOutlets , 114
 IGNORE option , 117
 JOIN , 116
 Lamartine wine , 126–127, 129
 ON CONFLICT , 116
 OR clauses , 114
 Pl/SQL/T-SQL , 114

 REPLACE option , 117
 ROLLBACK , 116
 SQLITE_DONE , 129–130
 SQLITE_OK , 127–128
 sub-query , 115
 Swift String constant , 114
 UI fi elds , 114
 updateRecords method , 117
 WHERE clause , 113, 115–116
 wineries , 125
 wines list , 128
 wineyDAO class , 118

 columns updation , 118–119
 segue.destinationViewController ,

123–124
 showWineDetail segue , 120
 WineListTableViewController , 121–122
 WineryListTableViewController , 122–123

 V
 viewDidLoad function , 151, 165, 181
 Views, modifi cation , 48

 W, X, Y, Z
 Winery application , 69

 add bridge , 69
 constraints , 74
 creation , 69
 data model , 75
 imageView , 75
 UI components , 73
 view controller , 72

 Winery database
 CRUD operations , 41

 createDbButton function , 42
 detailSQLiteQueryField , 42

 openSQLiteDatabase , 42
 table creation , 42
 view creation , 44

Swift iOS application (cont.)

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Preface
	Chapter 1: Creating the Objective-C Wrapper
	Getting Started
	Creating the Swift iOS Project
	Create the Db Mgr Project Structure
	Adding the SQLite 3 Library

	Creating the Bridge
	Creating the Bridge Header File
	Configuring the Swift Compiler

	Creating the Swift Wrapper Functions
	Add the DbMgrDAO Class
	Create the init() func
	Creating the SQLite Execute Function

	Summary

	Chapter 2: Creating SQLite Databases
	Creating Databases and Adding them to the Project
	Launching SQLite Manager
	The SQLite Manager Menu
	Create the Database
	Sqlite_master
	The sqlite_sequence

	Add Table and Columns
	Add an Index
	Add a View
	Add a Trigger

	Create an iOS Project
	Add Database to the Project

	Summary

	Chapter 3: Creating Databases During Runtime
	Building the DB Mgr App
	The Application UI
	Adding the Buttons
	Adding the detailSQLiteQueryField

	Creating the Data Model

	Creating the Controllers
	The DbMgrDAO Controller
	The populateIndexView Function
	The initViewIndex function
	The executeQuery function
	The openSQLiteDatabase Function

	The MasterViewController
	The viewDidLoad Function Implementation
	The Data Source Functions' Implementations

	The DetailViewController
	The createDbButton @IBAction
	The Create Database Schema @IBAction Buttons
	The detailSQLiteQueryField @IBOutlet
	Set Up the View
	The viewDidLoad Function Implementation
	The viewWillAppear Function Implementation

	Building the Winery Database
	Create the Winery.sqlite File
	Adding the Tables
	Adding the View

	Summary

	Chapter 4: Altering Databases and Other Features
	Modifying Tables
	Renaming a Table
	Simple Table Renaming
	Complex Table Renaming

	Adding Columns
	Re-indexing a Table

	Modifying Views
	Modifying Indexes
	Modifying Triggers
	Adding and Altering Collation Sequences
	Binary
	NoCase
	Rtrim
	sqlite3_create_collation

	The SQLite DELETE Statement
	Deleting Tables
	Deleting Views
	Deleting Indices
	Deleting Triggers
	Deleting Collation Sequences

	SQLite Functions
	The JSON Extension
	Creating Functions using Swift
	Using Functions in a SQLite Database using Swift

	Pragma Statements
	Foreign_key_check
	Foreign_key_list
	Integrity_check
	Automatic_index
	Busy_timeout
	Shrink_memory
	Auto-vacuum

	Corrupting a SQLite Database
	SQLite Limits
	Summary

	Chapter 5: Inserting Records
	The Data-Binding Functions
	The SQLite INSERT function
	Insert or Replace
	Insert or Rollback
	Insert or Ignore
	Insert or Abort
	Insert or Fail
	Inserting Blobs

	Creating the Winery App
	Create the Project
	Add the Bridge

	Creating the UI View for Inserting
	Creating the Data Model
	Add the Wineries Database
	Add the Wine Type
	Add the Wineries Type
	Add the Database Schema

	Creating the Controllers
	Add the WineryDAO Class
	The init() function init()
	The buildSchema Function
	The createOrOpenDatabase Function
	The insertWineRecord Function
	The insertWineryRecord Function
	The FirstViewController
	Add Photo Capture Functionality
	Add the Insert Function
	The viewDidLoad Function
	Add the Rating UISlider Functionality

	The SecondViewController

	Running the App
	Inserting Records
	Inserting Wineries
	Inserting Wines

	Summary

	Chapter 6: Selecting Records
	Column Data Types
	The SELECT Statement
	Selecting Data
	Using a Dynamic WHERE Clause
	Perform a SELECT using a Sub-Query
	Perform a SELECT using Joins
	Using an INNER Join
	Using a CROSS Join
	Using the OUTER Join

	Select and Display Images
	Select and Playback Audio Records
	Select and Display Video Records

	Adding SELECT Functionality to the Winery App
	Add the SelectWineries UIPicker
	The viewDidLoad Function
	The UIPickerView Functions
	The selectWineriesList Function
	The selectWineList Function
	The selectWineryByName Function

	Modifying the UI for Displaying Records
	Adding the UITableViewControllers
	Adding the Navigation Controllers
	Connect the TableViewControllers and TableViewCellController
	Adding the IBOutlets: WineList Controller
	Add the Business Logic
	The WineListTableViewController
	The WineryListTableViewController

	Running the App
	Summary

	Chapter 7: Updating Records
	SQLite Update Statement
	UPDATE Using a Where Clause
	UPDATE Using a Sub-query
	Updating Records Using a Join
	UPDATE Using a Sub-Query in FROM Clause
	Update On Conflict
	Update or Rollback Records
	Update or Abort Records
	Update or Replace Records
	Update or Fail Records
	Update or Ignore Records

	A Sample SQLite UPDATE Operation in Swift
	Adding the UPDATE Functionality to the Winery App
	Modifying the WineryDAO Controller
	Adding the wineUpdate Function
	Adding the wineryUpdate Function

	Modifying the UI for Updates
	Set Up the showWineDetail Segue
	WineListTableViewController
	WineryListTableViewController

	Running the App
	Updating Records

	Summary

	Chapter 8: Deleting Records
	The DELETE Statement in SQLite
	Using the WHERE Clause
	Restrictions and Triggers
	DELETE Limits
	A Swift SQLite Delete Example
	Adding the Delete Functionality to the Winery App
	Modifying the WineryDAO Class
	Add the deleteWineRecord Function
	Add the deleteWineryRecord Function

	Modifying the ViewControllers
	Modifying the TableViewControllers
	WineryListTableViewController
	WineListTableViewController

	Modifying the UI for Delete
	Modifying the UI

	Running the App
	Summary

	Chapter 9: Searching for Records in SQLite
	The Search App
	Create the SQLite Database
	Create the iOS/SQLite Project
	Set Up the Bridge
	The Controller Code
	The numberOfSectionsInTableView Function
	The tableView:numberOfRowsInSection Function
	The tableView:cellForRowAtIndexPath:indexPath Function
	The searchBarCancelButtonClicked Function
	The searchBarSearchButtonClicked Function
	The searchDatabase Function
	The searchResultCellTableViewCell Function

	Develop the Storyboard
	The UISearchBar & UITableView
	The IBOutlets
	The Prototype Cell

	Running the App
	Summary

	Chapter 10: Working with Multiple Databases
	The ATTACH Statement
	The DETACH Statement
	Multi-Database Limits
	Performing Joins
	Attach and Detach in Swift
	The Project
	The ViewController
	The Global Variables and Constants
	The IBActions and IBOutlets
	The viewDidLoad Function
	The getDbToAttach Function
	The setDbpath Function
	The createDatabase Function
	The attachDatabase Function
	The detachDatabase Function
	The UIPickerView Functions

	Building the UI

	Running the App
	Summary

	Chapter 11: Backing Up SQLite Databases
	Overview of the SQLite Backup Methods
	Make a Backup Copy
	Back Up In-Memory SQLite Databases
	Back Up On-Disk SQLite Databases

	The Backup App
	The ViewController
	The viewDidLoad and copyDatabaseIntoDocument Functions
	The getDatabasePath Function
	Back Up a Running Database
	Backup an In-Memory Database

	Building the UI

	Summary

	Chapter 12: Analyzing SQLite Databases
	The Analyze Statement
	The sqldiff Tool
	The sqlite3_analyzer tool
	Summary

	Index

