
www.allitebooks.com

http://www.allitebooks.org

Building Web and Mobile
ArcGIS Server Applications
with JavaScript

Master the ArcGIS API for JavaScript, and build
exciting, custom web and mobile GIS applications
with the ArcGIS Server

Eric Pimpler

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Building Web and Mobile ArcGIS Server Applications
with JavaScript

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2014

Production Reference: 1120214

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-796-5

www.packtpub.com

Cover Image by Whitney Pimpler (wpimpler@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Eric Pimpler

Reviewers
Pouria Amirian

Ken Doman

Joseph Saltenberger

Acquisition Editor
Vinay Argekar

Content Development Editor
Susmita Panda Sabat

Technical Editors
Sharvari H. Baet

Pragnesh Bilimoria

Aparna Chand

Pooja Nair

Nikhil Potdukhe

Copy Editors
Kirti Pai

Stuti Srivastava

Project Coordinator
Joel Goveya

Proofreaders
Simran Bhogal

Ameesha Green

Indexers
Mehreen Deshmukh

Tejal Soni

Graphics
Sheetal Aute

Ronak Dhruv

Disha Haria

Yuvraj Mannari

Abhinash Sahu

Production Coordinator
Melwyn D'sa

Cover Work
Melwyn D'sa

www.allitebooks.com

http://www.allitebooks.org

About the Author

Eric Pimpler is the founder and owner of GeoSpatial Training Services
(geospatialtraining.com) and has over 20 years of experience in implementing
and teaching GIS solutions using Esri, Google Earth/Maps, and open source
technology. Currently, he focuses on ArcGIS scripting with Python and the
development of custom ArcGIS Server web and mobile applications using
JavaScript. He is the author of Programming ArcGIS 10.1 with Python Cookbook.

Eric has a bachelor's degree in Geography from Texas A&M University and
a master's degree in Applied Geography with a concentration in GIS from Texas
State University.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Pouria Amirian is a GIS/Computer Science lecturer, researcher, and developer
working with the National University of Ireland, Maynooth. In addition to his
collaboration with the University of Ireland, he has several scientific and academic
collaborations with world class universities in Germany, France, and the UK. He is the
author of the best-selling book on ArcGIS development, Beginning ArcGIS for Desktop
Development using .NET, published by Wiley in 2013. He has extensive experience in
the design and development of various kinds of small-scale to enterprise-distributed,
service-oriented (geospatial) information systems. Dr. Amirian is currently interested
in cutting-edge research and development projects on (geospatial) Big Data and
NoSQL databases and has recently been a technical editor of several books on the
mentioned topics. He can be contacted at pouriaamirian.arcobjects@gmail.com.

I would like to thank my friend, Dr. Majid Farahani, for his support,
understanding, and encouragement during my career. My thanks
also goes to the author and the technical review team for making this
book a fun project.

www.allitebooks.com

http://www.allitebooks.org

Ken Doman has worked with computers for most of his life and still likes to keep
himself occupied with them in his free time. He graduated with a bachelor's degree
in Biology from Rice University. From there, he moved from one field to another,
until he was asked to launch a GIS department for his hometown in Jacksonville,
Texas. He started with a shoebox full of notebook paper for an address database.
Before long, he published the first online map of his community. He's been hooked
on publishing web maps ever since.

Ken currently works as a GIS web developer at Bruce Harris and Associates, a private
company that provides GIS services and products for municipalities across the
United States. There, he works on an array of technologies, helping county and city
governments make their data available on web browsers.

This is the first book Ken has worked on, but he has high hopes that it won't be
his last.

I would first like to thank my wife, Luann, for her love and support.
Her love for words inspired me to take this responsibility seriously.
I'd also like to thank God, without whom nothing is possible. I
would also like to thank Bruce Harris and Associates, the City of
Plantation, Florida, and the City of Jacksonville, Texas, for giving me
the opportunity to learn more about GIS, which helped me grow in
my career.

Joseph Saltenberger works as a data analyst at a GIS software company that
specializes in spatial decision support systems for fire and EMS departments.
He graduated from the Humboldt State University with a B.S. in Natural Resources
(GIS and Remote Sensing emphasis), and the San Diego State University with an
M.S. in Geography (GIScience emphasis). His academic and professional career has
focused on using GIS for data management and analysis, and for developing custom
GIS applications.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers
and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Introduction to HTML, CSS, and JavaScript	 7

Basic HTML page concepts	 7
The HTML DOCTYPE declaration	 9
Primary tags	 9
Validating HTML code	 10

JavaScript fundamentals	 12
Commenting in code	 13
Variables	 14
JavaScript and case sensitivity	 15
Variable datatypes	 15
Decision-supporting statements	 17
Looping statements	 17
Functions	 18
Objects	 19

Basic CSS principles	 20
CSS syntax	 22
Inline styling	 25
Internal stylesheets	 25
External stylesheets	 25

Separating HTML, CSS, and JavaScript	 26
Summary	 28

Chapter 2: Creating Maps and Adding Layers	 29
Introduction	 30
The ArcGIS API for JavaScript Sandbox	 30
Basic steps for creating an application with the ArcGIS API
for JavaScript	 31

Creating HTML code for a web page	 32

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Referencing the ArcGIS API for JavaScript	 33
Loading modules	 34

Legacy or AMD Dojo?	 34
Making sure Document Object Model is available	 36
Creating the map	 36
Creating the page content	 37
Styling the page	 38
The complete code	 38

More about the map	 40
Working with map service layers	 41

Using layer classes	 43
Tiled map service layers	 44
Dynamic map service layers	 45
Adding layers to the map	 47
Setting visible layers from a map service	 47
Setting a definition expression	 48
Map navigation	 49

Map navigation widgets and toolbars	 49
Map navigation using the mouse and keyboard	 52
Getting and setting the map extent	 52

Map events	 53
Summary	 56

Chapter 3: Adding Graphics to the Map	 57
The four parts of a graphic	 59
Creating geometry for graphics	 60
Symbolizing graphics	 60
Assigning attributes to graphics	 62
Displaying graphic attributes in an info template	 63
Creating graphics	 64
Adding graphics to the graphics layer	 64

Multiple graphics layers	 65
Time to practice with graphics	 65
Summary	 73

Chapter 4: The Feature Layer	 75
Creating a FeatureLayer object	 76

Optional constructor parameters	 77
Defining display modes	 78

Snapshot mode	 79
The on-demand mode	 79
The selection-only mode	 80

Table of Contents

[iii]

Setting a definition expression	 80
Feature selection	 80
Rendering a feature layer	 82
Time to practice with FeatureLayer	 87
Summary	 92

Chapter 5: Using Widgets and Toolbars	 93
Adding toolbars to an application	 94

Steps for creating a toolbar	 94
Defining CSS styles	 95

Creating buttons	 96
Creating an instance of the Navigation toolbar	 96

User interface widgets	 98
The BasemapGallery widget	 98
The Bookmarks widget	 100
The Print widget	 101
The Geocoder widget	 102

Time to practice with the Geocoder widget	 102
The Gauge widget	 107
The Measurement widget	 108
The Popup widget	 109
The Legend widget	 110
The OverviewMap widget	 111
The Scalebar widget	 112
The Directions widget	 113
The HistogramTimeSlider dijit	 114
The HomeButton widget	 115
The LocateButton widget	 116
The TimeSlider widget	 117
The LayerSwipe widget	 118
Analysis widgets	 119

Feature editing	 119
Feature service	 120
The editing widgets	 121

The Editor widget	 121
The TemplatePicker widget	 122
The AttributeInspector widget	 124
The AttachmentEditor widget	 125
The Edit toolbar	 127

Summary	 128

Table of Contents

[iv]

Chapter 6: Performing Spatial and Attribute Queries	 129
Introducing tasks in ArcGIS Server	 129
An overview of attribute and spatial queries	 130

The Query object	 131
Defining the query properties	 131

Executing the query with QueryTask	 134
Getting query results	 136

Time to practice with spatial queries	 136
Summary	 145

Chapter 7: Identifying and Finding Features	 147
Using IdentifyTask to get feature attributes	 148

Introducing IdentifyTask	 148
The IdentifyParameters object	 148
The IdentifyTask attribute	 149

IdentifyResult	 150
Time to practice – implementing the identify functionality	 151

Using FindTask to get the feature attributes	 156
FindParameters	 157
FindTask	 158
FindResult	 158

Summary	 159
Chapter 8: Turning Addresses into Points and Points
into Addresses	 161

Introducing geocoding	 162
Geocoding with a Locator service in the ArcGIS API for JavaScript	 162

Input parameter objects	 163
Input JSON address object	 163
Input Point object	 164

The Locator object	 164
The AddressCandidate object	 164

The geocoding process	 165
The reverse geocoding process	 165

Time to practice with the Locator service	 166
Summary	 172

Chapter 9: Network Analyst Tasks	 173
RouteTask	 173
Time to practice routing	 176
The ClosestFacility task	 183
The ServiceArea task	 186
Summary	 188

Table of Contents

[v]

Chapter 10: Geoprocessing Tasks	 189
Models in ArcGIS Server	 190
Using Geoprocessor – what you need to know	 190
Understanding the service page for a geoprocessing task	 191

Input parameters	 192
The Geoprocessor task	 194

Running the task	 194
Synchronous tasks	 194
Asynchronous tasks	 195

Time to practice with geoprocessing tasks	 196
Summary	 205

Chapter 11: Integration with ArcGIS Online	 207
Adding ArcGIS Online maps to your applications with the webmap ID	 207
Adding ArcGIS Online maps to your applications with JSON	 210
Time to practice with ArcGIS Online	 212
Summary	 219

Chapter 12: Creating Mobile Applications	 221
ArcGIS API for JavaScript – a compact build	 222

Setting the viewport scale	 222
Time to practice with the compact build	 223

Integrating the Geolocation API	 228
Time to practice with the Geolocation API	 230

Summary	 234
Appendix: Application Design with ArcGIS Templates and Dojo	 235

The Dojo BorderContainer dijit	 235
Additional Dojo layout elements	 237
Time to practice with sample layouts	 238
Summary	 248

Index	 249

Preface
ArcGIS Server is the predominant platform used to develop GIS applications for
the Web. There are a number of programming languages you can use to develop
applications with ArcGIS Server, including JavaScript, Flex, and Silverlight.
JavaScript has become the preferred language for developing applications on this
platform, since it can be used for both web and mobile applications and doesn't
require the installation of a plugin for the application to be used in a browser.
Flex and Silverlight both fall short as languages for mobile development and
both require the use of a plugin for the application to run in a browser.

This book will teach you how to build web-based GIS applications using the ArcGIS
API for JavaScript. Using a practical, hands-on style of learning, you will learn how
to develop fully functional applications with ArcGIS Server and develop a skill set
that is in high demand.

You will learn how to create maps and add geographic layers from a variety of
sources, including tiled and dynamic map services. In addition, you'll learn how
to add graphics to the map and stream geographic features to the browser using
FeatureLayer. Most applications also include specific functionalities implemented
by ArcGIS Server as tasks. You'll learn how to use the various tasks provided by
ArcGIS Server, including queries, identification of features, finding features by
attributes, geoprocessing tasks, and more. Finally, you'll learn just how easy it is
to develop mobile applications with the ArcGIS API for JavaScript.

What this book covers
Chapter 1, Introduction to HTML, CSS, and JavaScript, covers fundamental HTML, CSS,
and JavaScript concepts before getting started with developing GIS applications with
the ArcGIS API for JavaScript.

Preface

[2]

Chapter 2, Creating Maps and Adding Layers, teaches you how to create a map and
add layers to the map. You will learn how to create an instance of the Map class,
add layers of data to the map, and display this information on a web page. The Map
class is the most fundamental class in the API as it provides the canvas for your data
layers and any subsequent activities that occur in your application. However, your
map is useless until you add layers of data. There are several types of data layers
that can be added to a map, including tiled, dynamic, and feature. Readers will learn
more about each of these layer types in this chapter.

Chapter 3, Adding Graphics to the Map, teaches the reader how to display temporary
points, lines, and polygons in GraphicsLayer on the map. GraphicsLayer is a
separate layer that always resides on top of other layers and stores all the graphics
associated with the map.

Chapter 4, The Feature Layer, offers additional capabilities, apart from inheriting
from GraphicsLayer, such as the ability to perform queries and selections. Feature
layers are also used for online editing of features. Feature layers differ from tiled
and dynamic map service layers, because feature layers bring geometry information
to the client computer to be drawn and stored by the web browser. Feature layers
potentially cut down on round trips to the server. A client can request the features
it needs, and perform selections and queries on those features without having to
request more information from the server.

Chapter 5, Using Widgets and Toolbars, covers out-of-the-box widgets that you
can drop into your application for enhanced productivity. The BasemapGallery,
Bookmarks, Print, Geocoding, Legend, Measurement, Scalebar, Gauge, and
Overview map widgets are included. In addition, the ArcGIS API for JavaScript also
includes helper classes for adding various toolbars to your applications, including
navigation and drawing toolbars.

Chapter 6, Performing Spatial and Attribute Queries, covers the ArcGIS Server Query
Task, which allows you to perform attribute and spatial queries against data layers
in a map service that have been exposed. You can also combine these query types to
perform a combination attribute and spatial query.

Chapter 7, Identifying and Finding Features, covers two common operations found in
any GIS application. These operations require that the user click a feature on the
map in the case of identification, or perform a query in the case of finding features.
In either case, information about particular features is returned. In this chapter,
the reader will learn how to use the IdentifyTask and FindTask objects to obtain
information about features.

Preface

[3]

Chapter 8, Turning Addresses into Points and Points into Addresses, covers the use of the
Locator task to perform geocoding and reverse geocoding. Geocoding is the process
of assigning a coordinate to an address, while reverse geocoding assigns an address
to a coordinate.

Chapter 9, Network Analyst Tasks, allows you to perform analyses on street networks,
such as finding the best route from one address to another, finding the closest school,
identifying a service area around a location, or responding to a set of orders with a
fleet of service vehicles.

Chapter 10, Geoprocessing Tasks, allows you to execute custom models built in ArcGIS
Desktop using ModelBuilder. Models are run in an automated fashion from either a
desktop environment or via a centralized server accessed through a web application.
Any tool found in ArcToolbox, whether that be a tool for your ArcGIS license level
or a custom tool that you've built, can be used in a model and chained together with
other tools. Once constructed, these models can be run on a centralized server and
accessed via web applications. In this chapter, we will examine how you can access
these geoprocessing tasks through the ArcGIS API for JavaScript.

Chapter 11, Integration with ArcGIS Online, details how you can use the ArcGIS API
for JavaScript to access the data and maps created with ArcGIS.com. The website
ArcGIS.com is for working with maps and other types of geographic information.
On this site, you will find applications for building and sharing maps. You will also
find useful basemaps, data, applications, and tools that you can view and use, plus
communities you can join. For application developers, the really exciting news is
that you can integrate ArcGIS.com content into your custom developed applications
using the ArcGIS API for JavaScript. In this chapter, you will explore how ArcGIS.
com maps can be added to your applications.

Chapter 12, Creating Mobile Applications, details how you can build mobile GIS
applications using the ArcGIS API for JavaScript. ArcGIS Server support is currently
provided for iOS, Android, and BlackBerry operating systems. The API is integrated
with dojox/mobile. In this chapter, you'll learn about the compact build of the API
that makes web mapping applications possible through web-kit browsers as well as
the built-in gesture support.

Appendix, Application Design with ArcGIS Templates and Dojo, covers one of the most
difficult tasks for many web developers which is designing and creating the user
interface. The ArcGIS API for JavaScript and Dojo greatly simplifies this task. Dojo's
layout dijits provide a simple, efficient way to create application layouts, and Esri
has provided a number of sample application layouts and templates that you can use
to get up and running quickly. In this appendix, the reader will learn techniques to
design an application quickly.

Preface

[4]

What you need for this book
To complete the exercises in this book, you will need access to a web
browser—preferably Google Chrome or Firefox. Each chapter contains exercises
designed to supplement the material presented. Exercises will be completed using
the ArcGIS API for JavaScript Sandbox to write and test your code. The Sandbox can
be found at http://developers.arcgis.com/en/javascript/sandbox/sandbox.
html. The exercises will access publicly available instances of ArcGIS Server, so it
will not be necessary for you to install ArcGIS Server.

Who this book is for
If you are an application developer who wants to develop web and mobile GIS
applications using ArcGIS Server and the API for JavaScript, this book is ideal
for you. It is primarily oriented towards beginners and intermediate-level GIS
developers or application developers who are more traditional and may not have
developed GIS applications in the past, but are now tasked with implementing
solutions on this platform. No prior experience with ArcGIS Server, JavaScript,
HTML, or CSS is expected, but it is certainly helpful.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Add the onorientationchange() event to the <body> tag."

A block of code is set as follows:

routeParams = new RouteParameters();
routeParams.stops = new FeatureSet();
routeParams.outSpatialReference = {wkid:4326};
routeParams.stops.features.push(stop1);
routeParams.stops.features.push(stop2);

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

function computeServiceArea(evt) {
 map.graphics.clear();
 var pointSymbol = new SimpleMarkerSymbol();

Preface

[5]

 pointSymbol.setOutline = new SimpleLineSymbol(SimpleLineSymbol.
STYLE_SOLID, new Color([255, 0, 0]), 1);
 pointSymbol.setSize(14);
 pointSymbol.setColor(new Color([0, 255, 0, 0.25]));
}

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"Click on the Run button."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Preface

[6]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Introduction to HTML, CSS,
and JavaScript

There are certain fundamental concepts that you need to understand before you can
get started with developing GIS applications with the ArcGIS API for JavaScript.
For those of you already familiar with HTML, JavaScript, and CSS, you may wish
to skip ahead to the next chapter. However, if you're new to any of these concepts,
read on. We are going to cover these topics at a very basic level, just enough to
get you started. For a more advanced treatment on any of these subjects, there are
many learning resources available, including books and online tutorials. You can
refer to Appendix, Application Design with ArcGIS Templates and Dojo, for a more
comprehensive list of these resources.

In this chapter, we will cover the following topics:

•	 Basic HTML page concepts
•	 JavaScript fundamentals
•	 Basic CSS principles

Basic HTML page concepts
Before we dive into the details of creating a map and adding layers of information,
you need to understand the context of where the code will be placed when you're
developing applications with the ArcGIS API for JavaScript. The code you write
will be placed inside an HTML page or a JavaScript file. HTML files typically have
an .html or .htm file extension and JavaScript files have a .js extension. Once you
have created a basic HTML page, you can go through the steps required to create a
basic map with the ArcGIS API for JavaScript.

Introduction to HTML, CSS, and JavaScript

[8]

The core of a web page is an HTML file. Coding this basic file is quite important
as it forms the basis for the rest of your application. Mistakes that you make in the
basic HTML coding can result in problems down the line when your JavaScript code
attempts to access these HTML tags.

The following is a code example for a very simple HTML page. This example is
about as simple as an HTML page can get. It contains only the primary HTML tags
<DOCTYPE>, <html>, <head>, <title>, and <body>. Use your favorite text or web
editor to enter the following code. I use Notepad++ but there are many other good
editors available. Save this example as helloworld.html:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">

<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html;
charset=utf-8">
 <title>Topographic Map</title>

 </head>
 <body>
 Hello World
 </body>
</html>

There are a different types of HTML currently in use. The new HTML5 is getting a
lot of press and you'll likely see this implementation being used almost exclusively
for the development of new applications; so, we'll focus on HTML5 throughout the
book. However, I do want to make you aware that there are other flavors of HTML
in use, the most common being HTML 4.01 (seen in the preceding code example) and
XHTML 1.0.

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Chapter 1

[9]

The HTML DOCTYPE declaration
The first line of your HTML page will contain the DOCTYPE declaration. This is
used to tell the browser how the HTML page should be interpreted. We'll focus on
HTML5 in this book, so the following example you see uses the HTML5 DOCTYPE
declaration. The two other common DOCTYPE declarations are HTML 4.01 Strict and
XHTML 1.0 Strict:

•	 HTML 5 uses the following code:
<!DOCTYPE html>

•	 HTML 4.01 Strict uses the following code:
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.
w3.org/TR/html4/strict.dtd">

•	 XHTML 1.0 Strict uses the following code:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://
www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

Primary tags
At a minimum, all your web pages will need to contain the <html>, <head>, and
<body> tags. The <html> tag defines the whole HTML document. All other tags
must be placed inside this tag. Tags that define how the web page will appear in the
browser are placed inside the <body> tag. For instance, your mapping applications
will contain a <div> tag inside the <body> tag that is used as a container for
displaying the map.

Loading the helloworld.html page in a browser will produce the content you see in
the following screenshot. Most of the ArcGIS API for JavaScript code that you write
will be placed between the <head></head> tags and within a <script> tag or inside
a separate JavaScript file. As you gain experience, you will likely begin placing your
JavaScript code inside one or more JavaScript files and then referencing them from
the JavaScript section. We'll explore this topic later. For now, just concentrate on
placing your code inside the <head> tags.

Introduction to HTML, CSS, and JavaScript

[10]

Validating HTML code
As mentioned earlier, it is very important that your HTML tags be coded correctly.
This is all well and good you say, but how do I know that my HTML has been coded
correctly? Well, there are a number of HTML code validators that you can use to
check your HTML. The W3C HTML validator (http://validator.w3.org/) shown
in the following screenshot can be used to validate HTML code through URI, file
upload, or direct input:

http://validator.w3.org/

Chapter 1

[11]

Assuming that your HTML code successfully validates itself, you will get a screen with
a message indicating a successful validation as shown in the following screenshot:

Introduction to HTML, CSS, and JavaScript

[12]

On the other hand, it will identify any problem with an error message displayed in red.
Errors are described in detail, which makes it easier to correct problems. Often a single
error can lead to many other errors, so it is not uncommon to see a long list of error
items. Don't panic if this is the case. Fixing one error often resolves many others.

To correct the errors in the preceding document, you would need to surround the
text Hello World with a paragraph tag similar to <p>Hello World</p>.

JavaScript fundamentals
As implied by the name, the ArcGIS API for JavaScript requires that you use the
JavaScript language when developing your application. There are some fundamental
JavaScript programming concepts that you will need to know before you start
building your application.

Chapter 1

[13]

JavaScript is a lightweight scripting language that is embedded in all modern
web browsers. Although JavaScript can certainly exist outside the web browser
environment in other applications, it is most commonly known for its integration
with web applications.

All modern web browsers, including Internet Explorer, Firefox, and Chrome, have
JavaScript embedded. The use of JavaScript in web applications gives us the ability
to create dynamic applications that do not require round trips to the server to fetch
data, and thus the applications are more responsive and user-friendly. However,
JavaScript does have the capability of submitting requests to the server, and is a core
technology in the Asynchronous JavaScript and XML (AJAX) stack.

One common misconception regarding JavaScript is that it is a
simplified version of Java. The two languages are actually unrelated
with the exception of the name.

Commenting in code
It is a best practice to always document your JavaScript code through the use of
comments. At a minimum, these should include the author of the code, the date
of last revision, and the general purpose of the code. In addition, at various points
throughout your code, you should include comment sections that define the purpose
of specific sections of the application. The purpose of this documentation is to make
it easier for you or any other programmer to quickly get up to speed in the event that
the code needs to be updated in some way.

Any comments that you include in your code are not executed. They are simply
ignored by the JavaScript interpreter. Commenting in JavaScript can be done in a
couple of ways including single line and multiline comments. Single line comments
start with // and any additional characters that you add to the line. The following
code example shows how single line comments are created:

//this is a single line comment. This line will not be executed

Multiline comments in JavaScript start with /* and end with */. Any lines in
between are treated as comments and are not executed. The following code example
shows an example of multiline comments:

/*
 Copyright 2012 Google Inc.

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

Introduction to HTML, CSS, and JavaScript

[14]

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied.
 See the License for the specific language governing permissions and
 limitations under the License.
*/

Variables
The concept of variables is a fundamental concept that you need to understand when
working with any programming language. Variables are simply names that we use
to associate with some type of data value. At a lower level, these variables are areas
of space carved out in a computer's memory that store data.

You can think of a variable as a box that has a name and contains some sort of data.
When we initially create the variable, it is empty until data is assigned. Basically,
variables give us the ability to store and manipulate data. In the following diagram,
we create a variable called ssn. Initially, this variable is empty but is then assigned a
value of 450-63-3567. The data value assigned to a variable can be of various types,
including numbers, strings, booleans, objects, and arrays.

ssn= ‘450-63-3567’;

‘450-63-3567’

var ssn;

In JavaScript, variables are declared with the var keyword. In general, the names
that you assign to your variables are completely up to you. However, there are
certain rules that you need to follow when creating a variable. Variables can
contain both text and numbers but should never start with a number. Always
start your variable name with a letter or an underscore. In addition, spaces are not
allowed within variable names nor are special characters such as percent signs and
ampersands. Other than that, you are free to create variable names as you wish but
you should try to assign variable names that describe the data that the variable will
be assigned to. It is also perfectly legal to declare multiple variables with the same
var keyword as seen in the following code example:

var i, j, k;

Chapter 1

[15]

You can also combine variable declaration with data assignment, as seen in the
following examples:

var i = 10;
var j = 20;
var k = 30;

You may have also noticed that each JavaScript statement ends with a semicolon.
The semicolon indicates the end of a statement in JavaScript and should always be
included in JavaScript.

JavaScript and case sensitivity
One very important point that I need to make is that JavaScript is a case-sensitive
language and you need to be very careful about this because it can introduce some
difficult-to-track-down bugs in your code. All variables, keywords, functions, and
identifiers must be typed with a consistent capitalization of the letters. This gets even
more confusing when you consider that HTML is not case sensitive. This tends to
be a stumbling block for new JavaScript developers. In the following code snippet,
I have created three variables, all with the same spelling. But, because they do not
follow the same capitalization pattern, you end up with three different variables:

Var myName = 'Eric';
var myname = 'John';
var MyName = 'Joe';

Variable datatypes
JavaScript supports various types of data that can be assigned to your variables.
Unlike other strongly-typed languages such as .NET or C++, JavaScript is a
loosely-typed language. What this means is that you don't have to specify the type
of data that will occupy your variable. The JavaScript interpreter does this for you on
the fly. You can assign strings of text, numbers, boolean true/false values, arrays, or
objects to your variables.

Numbers and strings are pretty straightforward for the most part. Strings are simply
text enclosed by either a single or double quote. For instance:

varbaseMapLayer = "Terrain";
varoperationalLayer = 'Parcels';

www.allitebooks.com

http://www.allitebooks.org

Introduction to HTML, CSS, and JavaScript

[16]

Numbers are not enclosed inside quote marks and can be integers or floating
point numbers:

var currentMonth = 12;
var layered = 3;
var speed = 34.35;

One thing I would point out to new programmers is that numeric values can be
assigned to string variables through the use of single or double quotes that enclose
the value. This can be confusing at times for some new programmers. For instance,
a value of 3.14 without single or double quotes is a numeric datatype while a value
of 3.14 with single or double quotes is assigned a string data type.

Other datatypes include booleans that are simply true or false values and arrays that
are a collection of data values. An array basically serves as a container for multiple
values. For instance, you could store a list of geographic data layer names within an
array and access them individually, as required.

Arrays allow you to store multiple values in a single variable. For example, you
might want to store the names of all the layers you want to add to a map. Instead
of creating individual variables for each layer, you could use an array to store all of
them in a single variable. You can then reference individual values from the array
using an index number by looping through them with a for loop. The following code
example shows one way to create an array in JavaScript:

var myLayers=new Array();
myLayers[0]="Parcels";
myLayers[1]="Streets";
myLayers[2]="Streams";

You could also simplify the creation of this array variable as seen in the following
code example, where the array has been created as a comma-separated list enclosed
in brackets:

var myLayers = ["Parcels", "Streets", "Streams"];

You can access elements in an array through the use of an index as seen in the
following code example. Array access is zero based, which means that the first
item in the array occupies the 0 position and each successive item in the array is
incremented by one:

var layerName = myLayers[0]; //returns Parcels

Chapter 1

[17]

Decision-supporting statements
An if/else statement in JavaScript and other programming languages is a control
statement that allows decision making in your code. This type of statement performs
a test at the top of the statement. If the test returns a value of true, then the
statements associated with the if block will run. If the test returns a value of false,
then the execution skips to the first else if block. This pattern will continue until a
value of true is returned in the test or the execution reaches the else statement. The
following code example shows how this statement works:

var layerName = 'streets';
if (layerName == 'aerial') {
 alert("An aerial map");
}
else if (layerName == "hybrid") {
 alert("A hybrid map");
}
else {
 alert("A street map");
}

Looping statements
Looping statements give you the ability to run the same block of code over and
over again. There are two fundamental looping mechanisms in JavaScript. The for
loop executes a code block a specified number of times and the while loop executes
a code block while a condition is true. Once the condition becomes false, the looping
mechanism stops.

The following code sample shows the syntax of a for loop. You'll note that it takes a
start value, which will be an integer and a condition statement. You can also supply
an increment. The code block inside the for loop will execute the given condition
while the value is less than the end value:

for (start value; condition statement; increment)
{
 the code block to be executed
 }

Introduction to HTML, CSS, and JavaScript

[18]

In the following example, the start value is set to 0 and is assigned to a variable
called i. The condition statement is when i is less than or equal to 10, and the value
of i is incremented by 1 for each loop, using the ++ operator. Each time we pass
through the loop, the value of i is printed:

var i = 0;
for (i = 0; i <= 10; i++) {
 document.write("The number is " + i);
 document.write("
");
}

The other basic looping mechanism in JavaScript is the while loop. This loop is used
when you want to execute a code block while a condition is true. Once the condition
is set to false, the execution stops. The while loops accept a single argument, which
is the condition that will be tested. In the following example, the code block will be
executed while i is less than or equal to 10. Initially, i is set to a value of 0. At the
end of the code block, you will notice that i is incremented by one (i = i + 1):

var i = 0;
while (i <= 10)
{
 document.write("The number is " + i);
 document.write("
");
 i = i + 1;
}

Functions
Now let's cover the very important topic of functions. Functions are simply named
blocks of code that are executed when called. The vast majority of the code that you
write in this book and in your development efforts will occur within the functions.

Best practice calls for you to split your code into functions that perform small,
discrete units of operation. These blocks of code are normally defined in the <head>
section of a web page inside a <script> tag, but can also be defined in the <body>
section. However, in most cases, you will want your functions defined within the
<head> section so that you can ensure that they are available once the page is loaded.

To create a function, you need to use the function keyword followed by a function
name that you define, and any variables necessary for the execution of the function
passed as parameter variables. In the event that you need your function to return a
value to the calling code, you will need to use the return keyword in conjunction
with the data that you want passed back.

Chapter 1

[19]

Functions can also accept parameters that are just variables used to pass information
into the function. In the following code example, the prod() function passes two
variables: a and b. This information, in the form of variables, can then be used inside
the function:

var x;
function multiplyValues(a,b)
{
 x = a * b;
 return x;
}

Objects
Now that we've gone through some basic JavaScript concepts, we'll tackle the
most important concept in this section. In order to effectively program mapping
applications with the ArcGIS API for JavaScript, you need to have a good
fundamental understanding of objects. So, this is a critical concept that you need
to grasp to understand how to develop web-mapping applications.

The ArcGIS API for JavaScript makes extensive use of objects. We'll cover the details
of this programming library in detail, but for now we'll hit the high-level concepts.
Objects are complex structures capable of aggregating multiple data values and
actions into a single structure. This differs greatly from our primitive datatypes, such
as numbers, strings, and booleans, which can hold only a single value. Objects are
much more complex structures.

Objects are composed of both data and actions. Data, in the form of properties,
contains information about an object. For example, with a Map object found in the
ArcGIS API for JavaScript, there are a number of properties, including the map extent,
graphics associated with a map, the height and width of the map, layer IDs associated
with the map, and others. These properties contain information about
the object.

Objects also have actions that we typically call methods, but we can also group
constructors and events into this category. Methods are actions that a map can
perform, such as adding a layer, setting the map extent, or getting the map scale.

Introduction to HTML, CSS, and JavaScript

[20]

Constructors are special-purpose functions that are used to create new instances
of an object. With some objects, it is also possible to pass parameters into the
constructor to give more control over the object that is created. The following code
example shows how a constructor is used to create a new instance of a Map object.
You can tell that this method is a constructor because of the use of the new keyword
that I've highlighted. The new keyword, followed by the name of the object and any
parameters used to control the new object, defines the constructor for the object. In
this case, we've created a new Map object and stored it in a variable called map. Three
parameters are passed into the constructor to control various aspects of the Map
object including basemap, center of the map, and the zoom scale level:

var map = new Map("mapDiv", {
 basemap: "streets",
 center:[-117.148, 32.706], //long, lat
 zoom: 12
});

Events are actions that take place on the object and are triggered by the end user or
the application. This would include events such as a map click, mouse move, or a
layer being added to the map.

Properties and methods are accessed via a dot notation wherein the object instance
name is separated from the property or method by a dot. For instance, to access the
current map extent you would enter map.extent in your code. A couple of code
examples showing how to access properties of an object are as follows:

var theExtent = map.extent;
var graphics = map.graphics;

The same is the case with methods, except that methods have parentheses at the
end of the method name. Data can be passed into a method through the use of
parameters. In the first line of the following code, we're passing a variable called pt
into the map.centerAt(pt) method:

map.centerAt(pt);
map.panRight();

Basic CSS principles
Cascading Style Sheets (CSS) is a language used to describe how HTML elements
should be displayed on a web page. For instance, CSS is often used to define
common styling elements for a page or set of pages, such as the font, background
color, font size, link colors, and many other things related to the visual design of a
web page. Take a look at the following code snippet:

Chapter 1

[21]

<style>
 html, body {
 height: 100%;
 width: 100%;
 margin: 0;
 padding: 0;
 }

 #map{

 padding:0;
 border:solid 2px #94C7BA;
 margin:5px;
 }
 #header {
 border: solid 2px #94C7BA;
 padding-top:5px;
 padding-left:10px;
 background-color:white;

 color:#594735;

 font-size:14pt;
 text-align:left;
 font-weight:bold;
 height:35px;
 margin:5px;
 overflow:hidden;
 }
 .roundedCorners{
 -webkit-border-radius: 4px;
 -moz-border-radius: 4px;
 border-radius: 4px;
 }
 .shadow{

 -webkit-box-shadow: 0px 4px 8px #adadad;
 -moz-box-shadow: 0px 4px 8px #adadad;
 -o-box-shadow: 0px 4px 8px #adadad;
 box-shadow: 0px 4px 8px #adadad;
 }
</style>

Introduction to HTML, CSS, and JavaScript

[22]

CSS syntax
CSS follows certain rules that define what HTML element to select along with
defining how that element should be styled. A CSS rule has two main parts: a
selector and one or more declarations. The selector is typically the HTML element
that you want to style. In the following diagram, the selector is p. A <p> element in
HTML represents a paragraph. The second part of a CSS rule comprises of one or
more declarations, each of which consists of a property and a value. The property
represents the style attribute that you want to change. In our example, we are setting
the color property to red. In effect, what we have done with this CSS rule is define
that all the text within our paragraph should be in red.

We have used p {color:red}, as shown in the following diagram:

You can include more than one declaration in a CSS rule as you see in the following
example. A declaration is always surrounded by curly brackets and each declaration
ends with a semicolon. In addition, a colon should be placed between the property
and the value. In this particular example, two declarations have been made: one
for the color of the paragraph and another for the text alignment of the paragraph.
Notice that the declarations are separated by a semicolon:

p {color:red;text-align:center}

Chapter 1

[23]

CSS comments are used to explain your code. You should get into the habit of
always commenting on your CSS code just as you would in any other programming
language. Comments are always ignored by the browser. Comments begin with
a slash followed by an asterisk and end with an asterisk followed by a slash.
Everything in between is assumed to be a comment and is ignored:

/*
h1 {font-size:200%;}
h2 {font-size:140%;}
h3 {font-size:110%;}
*/

In addition to specifying selectors for specific HTML elements, you can also use the
id selector to define styles for any HTML elements with an id value that matches the
id selector. An id selector is defined in CSS through the use of the pound sign (#),
followed by an id value.

For instance, in the following code example, you see three id selectors: rightPane,
leftPane, and map. In ArcGIS API for JavaScript applications, you almost always have
a map. When you define a <div> tag that will serve as the container for the map, you
define an id selector and assign it a value that is often the word map. In this case, we
are using CSS to define several styles for our map, including a margin of 5 pixels along
with a solid styled border of a specific color and a border radius:

#rightPane {
 background-color:white;
 color:#3f3f3f;
 border: solid 2px #224a54;
 width: 20%;
}
#leftPane {
 margin: 5px;
 padding: 2px;
 background-color:white;
 color:#3f3f3f;
 border: solid 2px #224a54;
 width: 20%;

Introduction to HTML, CSS, and JavaScript

[24]

}
#map {
 margin: 5px;
 border: solid 4px #224a54;
 -mox-border-radius: 4px;
}

Unlike id selectors that are used to assign styles to a single element, the class
selectors are used to specify styles for a group of elements, all of which have the
same HTML class attribute. A class selector is defined with a period, followed by the
class name. You may also specify that only specific HTML elements with a particular
class should be affected by the style. Examples of both are shown in the following
code example:

.center {text-align:center;}
p.center {text-align:center;}

Your HTML code would then reference the class selector as follows:

<p class="center">This is a paragraph</p>

There are three ways to insert CSS into your application: inline, internal stylesheets,
and external stylesheets.

Chapter 1

[25]

Inline styling
The first method of defining CSS rules for your HTML elements is through the
use of inline styles. This method is not recommended because it mixes style with
presentation and is difficult to maintain. It is an option in some cases where you need
to define a very limited set of CSS rules. To use inline styles, simply place the style
attribute inside the relevant HTML tag:

<p style="color:sienna;margin-left:20px">This is a paragraph.</p>

Internal stylesheets
An internal stylesheet moves all the CSS rules into a specific web page. Only HTML
elements within that particular page have access to the rules. All CSS rules are
defined inside the <head> tag and are enclosed inside a <style> tag, as seen in the
following code example:

<head>
 <style type="text/css">
 hr {color:sienna;}
 p {margin-left:20px;}
 body {background-image:url("images/back40.gif");}
 </style>
</head>

External stylesheets
An external stylesheet is simply a text file containing CSS rules and is saved with a
.css file extension. This file is then linked to all web pages that want to implement
the styles defined within the external stylesheet through the use of the HTML <link>
tag. This is a commonly used method to split the styling from the main web page
and gives you the ability to change the look of an entire website through the use of
a single external stylesheet.

Now let's put some emphasis on the cascading part of cascading stylesheets. As you
now know, styles can be defined in external stylesheets, internal stylesheets, or
inline. There is a fourth level that we didn't discuss, which is the browser default.
You don't have any control over that though. In CSS, an inline style has the highest
priority, which means that it will override a style defined in an internal stylesheet, an
external stylesheet, or the browser default. If an inline style is not defined, any style
rule defined in an internal stylesheet would take precedence over styles defined in an
external stylesheet. The caveat here is that if a link to an external stylesheet is placed
after the internal stylesheet in HTML <head>, the external stylesheet will override
the internal sheet!

Introduction to HTML, CSS, and JavaScript

[26]

That's a lot to remember! Just keep in mind that style rules defined further down
the hierarchy override style rules defined higher in the hierarchy, as shown in the
following diagram:

CSS Priority

Browser default

External style sheet

Internal style sheet

Inline style

These are the basic concepts that you need to understand with regard to CSS.
You can use CSS to define styles for pretty much anything on a web page, including
backgrounds, text, fonts, links, lists, images, tables, maps, and any other visible objects.

Separating HTML, CSS, and JavaScript
You may be wondering where all of this code is placed. Should you put all your
HTML, CSS, and JavaScript code in the same file or split them into separate files?
For very simple applications and examples, it is not uncommon for all the code to
be placed into a single file with an extension of .html or .htm. In this case, the CSS
and JavaScript code will reside in the <head> section of your HTML page. However,
the preferred way of creating an application using this code stack is to separate
the presentation from the content and behavior. The user interface items for your
application should reside in an HTML page that contains only tags used to define
the content of the application, along with references to any CSS (presentation) or
JavaScript (behavior) files that are part of the application. The end result is a single
HTML page and one or more CSS and JavaScript files. This would result in a folder
structure similar to that shown in the following screenshot, where we have a single file
called index.html and several folders that hold CSS, JavaScript, and other resources,
such as images. The css and js folders will contain one or more files.

Chapter 1

[27]

CSS files can be linked into an HTML page with the <link> tag. In the following
code sample, you will see a code example that shows you how to use the <link> tag
to import a CSS file. Links to CSS files should be defined in the <head> tag of your
HTML page:

<!DOCTYPE html>

<html>
 <head>
 <title>GeoRanch Client Portal</title>
 <meta name="viewport" content="initial-scale=1.0, user-
scalable=no">
 <link rel="stylesheet" href="bootstrap/css/bootstrap.css">
 </head>
 <body>
 </body>
</html>

JavaScript files are imported into your HTML page with the <script> tag as seen
in the following code example. These <script> tags can be placed in the <head>
tag of your web page, as seen in reference to the ArcGIS API for the following
JavaScript code, or near the end of the page just before the ending </body> tag, as
has been done with the creategeometries.js file. It is often recommended that you
import your JavaScript files close to the ending </body> tag because when browsers
download JavaScript files, they don't download anything else until the downloading
is done. This can make it look like the application is loading slowly.

Adding a <script> tag in the header is recommended for JavaScript libraries, such
as Dojo, which need to be parsed before they interact with HTML elements in the
body. That's why the ArcGIS API for JavaScript is loaded in the header:

<!DOCTYPE html>
<html>
 <head>
 <title>GeoRanch Client Portal</title>
 <meta name="viewport" content="initial-scale=1.0, user-
scalable=no">

Introduction to HTML, CSS, and JavaScript

[28]

 <script src="http://js.arcgis.com/3.7/"></script>
 </head>
 <body>
 <script src="js/creategeometries.js"></script>
 </body>
</html>

Splitting your code into several files allows for a clean separation of your code and it
should be much easier to maintain.

Summary
Before we can begin a detailed discussion of the ArcGIS API for JavaScript, you need
to have an understanding of some of the fundamental HTML, CSS, and JavaScript
concepts. This chapter has provided just that, but you will need to continue learning
many additional concepts related to these topics. Right now, you know just enough
to be dangerous.

How your application looks is defined through the HTML and CSS code that you
develop while the functionality provided by your application is controlled through
JavaScript. These are very different skill sets and many people are good at one but
not necessarily the other. Most application developers will focus on developing the
functionality of the application through JavaScript and will leave HTML and CSS to
the designers! Nevertheless, it is important that you have a good understanding of
at least the basic concepts of all these topics. In the next chapter, we'll dive into the
ArcGIS API for JavaScript and begin learning how to create the Map object and how
to add dynamic and tiled map service layers to the map.

Creating Maps and Adding
Layers

Now that we've got some of the basics of HTML, CSS, and JavaScript out of the
way, it's time to actually get to work and learn how to build some great GIS
web applications! The material in this chapter will introduce you to some of the
fundamental concepts that define how you create a map and add information to
it in the form of layers.

In this chapter, we'll cover the following topics:

•	 The ArcGIS API for JavaScript Sandbox
•	 Basic steps to create an application with the ArcGIS API for JavaScript
•	 More about the map
•	 Working with map service layers
•	 Tiled map service layers
•	 Dynamic map service layers
•	 Map navigation
•	 Working with the map extent

Creating Maps and Adding Layers

[30]

Introduction
We all have to start somewhere when learning a new programming language
or application programming interface (API). The same applies to creating web-
mapping applications with the ArcGIS API for JavaScript. Not only do you need
to understand some basic JavaScript concepts, but you also need to have a grasp of
HTML, CSS, and of course the ArcGIS API for JavaScript, which is actually built on
top of the Dojo JavaScript framework. That's a lot to put on your plate all at once,
so in this chapter, I'm going to have you create a very basic application, which will
serve as a foundation that you can build on in the coming chapters. Mimicry is an
excellent way to learn programming skills, so in this chapter, I'm just going to have
you type in the code that you see and I'll provide some explanation along the way.
I'll save the detailed descriptions of the code for later chapters.

To get your feet wet with the ArcGIS API for JavaScript, you're going to create a
simple mapping application in this chapter, which creates a map, adds a couple of
data layers, and provides some basic map navigation capabilities.

There are some basic steps that you must follow to create any web-mapping
application with the ArcGIS API for JavaScript. You'll see each of these steps for the
first time in this chapter, and we'll describe them in greater detail later in the book.
These basic steps will be followed each time you create a new application using the
API for JavaScript. The first few times that you create an application, these steps will
seem a little strange but you'll quickly gain an understanding of what they do and
why they are necessary. Pretty soon you can just think of these steps as a template
you use with every application.

Let's get started!

The ArcGIS API for JavaScript Sandbox
In this book, you're going to use the ArcGIS API for JavaScript Sandbox to write and
test your code. The Sandbox can be found at http://developers.arcgis.com/
en/javascript/sandbox/sandbox.html and will appear as seen in the following
screenshot, when loaded. You'll write your code in the left pane and click the Run
button to see the results in the right pane, as shown in the following screenshot:

Chapter 2

[31]

Basic steps for creating an application
with the ArcGIS API for JavaScript
There are several steps that you'll need to follow to create any GIS web application
with the ArcGIS API for JavaScript. These steps will always need to be performed if
you intend to have a map as part of your application. And I can't imagine that you
wouldn't want to do that, given that you're reading this book! In a nutshell, there are
several steps you need to follow:

1.	 Creating the HTML code for the page.
2.	 Referencing the ArcGIS API for JavaScript and stylesheets.
3.	 Loading modules.
4.	 Making sure the DOM is available.
5.	 Creating the map.
6.	 Defining the page content.
7.	 Styling the page.

This was just a brief description of what needs to be done. We'll examine each of
these steps in greater detail in the coming pages.

Creating Maps and Adding Layers

[32]

Creating HTML code for a web page
In the previous chapter, you learned the basic concepts of HTML, CSS, and
JavaScript. Now, you're going to start putting those skills to work. You first need to
create a simple HTML document that will ultimately serve as the container for your
map. Since we're using the ArcGIS API for JavaScript Sandbox, this step has already
been done for you. However, I do want you to spend some time examining the code
so that you have a good grasp of the concepts. In the left pane of the Sandbox, the
code you see highlighted in the following code example references the basic HTML
code for the web page. There's obviously some other HTML and JavaScript code in
there as well, but the following code forms the basic components of the web page.
This code includes several basic tags, including <html>, <head>, <title>, <body>,
and a few others:

<!DOCTYPE html>
<html>
<head>
 <title>Create a Map</title>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 <meta name="viewport" content="initial-scale=1, maximum-
scale=1,user-scalable=no">
 <link rel="stylesheet" href="http://js.arcgis.com/3.7/js/dojo/dijit/
themes/claro/claro.css">
 <link rel="stylesheet" href="http://js.arcgis.com/3.7/js/esri/css/
esri.css">
 <style>
 html, body, #mapDiv {
 padding: 0;
 margin: 0;
 height: 100%;
 }
 </style>

 <script src="http://js.arcgis.com/3.7/"></script>
 <script>
 dojo.require("esri.map");

 function init(){
 var map = new esri.Map("mapDiv", {
 center: [-56.049, 38.485],
 zoom: 3,
 basemap: "streets"
 });
 }
 dojo.ready(init);

Chapter 2

[33]

 </script>

</head>
<body class="claro">
 <div id="mapDiv"></div>
</body>
</html>

Referencing the ArcGIS API for JavaScript
To begin working with the ArcGIS API for JavaScript, you need to add references to
the stylesheet and API. In the Sandbox, the following lines of code have been added
inside the <head> tag:

 <link rel="stylesheet" href="http://js.arcgis.com/3.7/js/esri/css/
esri.css">

<script src="http://js.arcgis.com/3.7/"></script>

The <script> tag loads the ArcGIS API for JavaScript. At the time of writing this
chapter, the current version is 3.7. When new versions of the API are released,
you'll want to update this number accordingly. The <link> tag loads the esri.css
stylesheet, which contains styles specific to Esri widgets and components.

Optionally, you can include a reference to one of the stylesheets for a Dojo Dijit
theme. The ArcGIS API for JavaScript is built directly on the Dojo JavaScript
framework. Dojo comes with four predefined themes that control the look of user
interface widgets that are added to your application: Claro, Tundra, Soria, and
Nihilo. In the following code example, I'm referencing the Claro theme:

<link rel="stylesheet" href="http://js.arcgis.com/3.7/js/dojo/dijit/
themes/claro/claro.css">

The other available stylesheets can be referenced as seen in the following code
example. You don't have to reference any of the style sheets, but if you intend to
add Dojo user interface components (Dijits), then you'll want to load one of the
stylesheets to control the styling of the components:

<link rel="stylesheet" href="http://js.arcgis.com/3.7/js/dojo/dijit/
themes/tundra/tundra.css">
<link rel="stylesheet" href="http://js.arcgis.com/3.7/js/dojo/dijit/
themes/nihilo/nihilo.css">
<link rel="stylesheet" href="http://js.arcgis.com/3.7/js/dojo/dijit/
themes/soria/soria.css">

Creating Maps and Adding Layers

[34]

The website www.dojotoolkit.org provides a theme tester that you can use to get
a feel for how each of the themes affect the display of the user interface components.
The theme tester is located at http://archive.dojotoolkit.org/nightly/
dojotoolkit/dijit/themes/themeTester.html. The following screenshot shows
the Dijit Theme Tester interface:

Loading modules
Before you can create a Map object, you must first reference the resource that provides
the map. This is accomplished through the use of a require() function.

Legacy or AMD Dojo?
Whether to use the older legacy style of Dojo or the new AMD is currently a source
of frustration for many developers. Asynchronous Model Definition (AMD) was
introduced in Version 1.7 of Dojo. The Version 3.4 release of the ArcGIS Server API
for JavaScript was the first version to have all modules rewritten using the new AMD
style. For the time being, both the legacy and AMD style will work just fine, but it is
advised that any new applications be written using the new AMD style. We'll follow
that convention in this book but keep in mind that applications written prior to the
release of Version 3.4 of the API and some Esri samples still reflect the older style
of coding.

Chapter 2

[35]

The require() function is used to import resources into your web page. Various
resources are provided by the ArcGIS API for JavaScript, including the esri/
map resource, which must be provided before you can create a map or work
with geometry, graphics, and symbols. Once a reference to the resource has been
provided, you can use the Map constructor to create the Map. The following points
show how to run the code in Sandbox:

•	 Before you begin adding code to the Sandbox, remove the following
highlighted code, if necessary. The code I'm having you remove is from a
legacy style of coding the ArcGIS API for JavaScript. We're going to use the
new AMD style. In future versions of the Sandbox, it may not be necessary
to remove these lines of code. I expect that Esri will eventually migrate this
basic code block to the newer AMD style:
<script>
 dojo.require("esri.map");

 function init(){
 var map = new esri.Map("mapDiv", {
 center: [-56.049, 38.485],
 zoom: 3,
 basemap: "streets"
 });
 }
 dojo.ready(init);
 </script>

•	 The resources you import need to be contained within a new <script>
tag. Add the following highlighted lines of code to the Sandbox inside the
<script> tag. The argument names used inside the require() function can
be named anything you like. However, both Esri and Dojo provide a list of
preferred arguments. I recommend using the Esri list of preferred arguments
when naming arguments passed to the require callback function. Dojo also
does the same with their list of preferred argument aliases. For example, in
the following code you add, we provide a reference to the esri/map resource
and then inside the anonymous function, we provide a preferred argument
of Map. Each resource that you reference in the require() function will
have an associated argument, which will provide a hook into the object for
that resource:
<script>
require(["esri/map", "dojo/domReady!"], function(Map) {

 });

</script>

www.allitebooks.com

http://www.allitebooks.org

Creating Maps and Adding Layers

[36]

Making sure Document Object Model
is available
When a web page loads, all the HTML elements that compose the page are loaded
and interpreted. This is known as Document Object Model (DOM). It is imperative
that your JavaScript does not attempt to access any of these elements until all the
elements have loaded. Obviously, if your JavaScript code attempted to access an
element that hasn't been loaded yet, it would cause an error. To control this, Dojo
has a ready() function that you can include inside the require() function, which
will execute only after all the HTML elements and any modules have loaded.
Alternatively, you can use the dojo/domReady! plugin to ensure that all the HTML
elements have been loaded. We'll use the second method for this exercise.

In the previous code, we have used the plugin with dojo/domReady! having been
added to the require() function.

Although it is certainly possible to add JavaScript code directly
inside your basic HTML file, it is a better practice to create a
separate JavaScript file (.js). Most of the code that we write in this
book will be done inside an HTML file for simplicity, but as your
applications become more complex, you'll want to adhere to the
practice of writing your JavaScript code in a separate file.

Creating the map
The creation of a new map is done through esri/map, which is a reference to the
Map class found in the esri/map module you imported in a previous step. Inside
the require() function, you're going to create a new Map object using a constructor
function. This constructor for the Map object accepts two parameters, including a
reference to the <div> tag where the map will be placed on the web page as well
as an options parameter that can be used to define various map setup options. The
options parameter is defined as a JSON object that contains a set of key/value pairs.

Perhaps the most visible option is basemap, which allows you to select a predefined
basemap from ArcGIS.com and can include streets, satellite, hybrid, topo,
gray, oceans, national-geographic, or osm. The zoom option is used to define a
starting zoom level for the map and can be an integer value that corresponds to a
predefined zoom scale level. The minZoom and maxZoom options define the smallest
and largest-scale zoom levels for the map. The center option defines the center
point of the map that will initially be displayed and uses a Point object containing
a latitude/longitude coordinate pair. There are a number of additional options that
you pass in as parameters to the constructor for the Map object.

Chapter 2

[37]

First, we'll create a global variable called map as well as the require() function by
adding the highlighted line of the following code:

<script>
 var map;
 require(["esri/map", "dojo/domReady!"], function(Map) {
 });
 </script>

Add the following highlighted code block to the require() function. This line of
code is the constructor for the new Map object. The first parameter passed into the
constructor is a reference to the ID of the <div> tag where the map will be placed.
We haven't defined this <div> tag yet, but we'll do so in the next step. The second
parameter passed into the Map constructor is a JSON object that defines options
including the geographic coordinate that will serve as the center of the map,
a zoom level, and the topo basemap:

basemap.require(["esri/map", "dojo/domReady!"], function(Map) {
 map = new Map("mapDiv", {
 basemap: "topo",
 center: [-122.45,37.75], // long, lat
 zoom: 13,
 sliderStyle: "small"
 });
});

Creating the page content
One of the final steps is to create the HTML <div> tag that will serve as the container
for the map. You always want to assign a unique ID to the <div> tag so that your
JavaScript code can reference the location. In the Sandbox this <div> tag with a
unique identifier of mapDiv has already been created for you. You can see this in the
highlighted line of following code. In addition, you will also want to define the class
attribute for the <body> tag, which should reference the Dojo stylesheet that
you referenced.

In the following code, you can see the <body> tag that is already created in the
Sandbox accomplishes the preceding two tasks:

<body class="claro">
 <div id="mapDiv"></div>
</body>

Creating Maps and Adding Layers

[38]

Styling the page
You can add styling information to the <head> tag that will define various styling
aspects for the web page. In this case, the styling has already been created for you in
the Sandbox, as shown in the following code. In this case, the styling includes setting
the map so that it fills the entire browser window:

<style>
 html, body, #mapDiv {
 padding:0;
 margin:0;
 height:100%;
 }
</style>

The complete code
The code for this simple application should appear as follows:

<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=7, IE=9,
 IE=10">
 <meta name="viewport" content="initial-scale=1, maximum-
 scale=1,user-scalable=no"/>
 <title>Simple Map</title>
 <link rel="stylesheet"
 href="http://js.arcgis.com/3.7/js/esri/css/esri.css">
 <link rel="stylesheet"
 href="http://js.arcgis.com/3.7/js/dojo/dijit/themes/claro/
 claro.css">
 <style>
 html, body, #map {
 height: 100%;
 width: 100%;
 margin: 0;
 padding: 0;
 }
 </style>
 <script src="http://js.arcgis.com/3.7/"></script>
 <script>

Chapter 2

[39]

 var map;

 require(["esri/map", "dojo/domReady!"], function(Map) {
 map = new Map("map", {
 basemap: "topo",
 center: [-122.45,37.75], // long, lat
 zoom: 13,
 sliderStyle: "small"
 });
 });
 </script>
 </head>

 <body class="claro">
 <div id="map"></div>
 </body>
</html>

Execute the code by clicking on the Run button and you should see the following
output, if everything has been coded correctly:

Creating Maps and Adding Layers

[40]

More about the map
In the process described earlier, we introduced the process that you'll need to follow
for each application that you build with the ArcGIS API for JavaScript. You learned
how to create an initialization JavaScript function. The purpose of the initialization
script is to create your map, add layers, and perform any other setup routines
necessary to get your application started. Creating a map is invariably one of the first
things that you'll do and in this section, we'll take a closer look at the various options
you have to create an instance of the Map class.

In object-oriented programming, the creation of a class instance is often done
through the use of a constructor. A constructor is a function that is used to create or
initialize a new object. In this case, the constructor is used to create a new Map object.
Constructors frequently take one or more parameters that can be used to set the
initial state of an object.

The Map constructor can take two parameters including the container where the map
should reside and various options for the map. However, before you can call the
constructor for a map, you must first reference the resource that provides the map.
This is accomplished by importing the esri/map resource. Once a reference to the
resource has been provided, you can use the constructor to create the map. A <div>
ID is a required parameter for the constructor and is used to specify the container
for the map. In addition, you can also pass multiple options that control various
aspects of the map, including the basemap layer, the initial display of the map center,
display of navigation controls, graphic display during panning, control of the slider,
levels of detail, and many more.

Let's take a closer look at how options are specified in the map constructor. Options,
the second parameter in the constructor, are always enclosed with brackets. This
defines the contents of a JSON object. Inside the brackets, each option has a specific
name and is followed by a colon and then the data value that controls the option.
In the event that you need to submit multiple options to the constructor, each option
is separated by a comma. The following code example shows how options are
submitted to the Map constructor:

 var map = new Map("mapDiv", {
 center: [-56.049, 38.485],
 zoom: 3,
 basemap: "streets"
 });

In this case, we are defining options for the map coordinate that will serve as
the center of the map, along with a zoom level and a basemap layer of streets.
These options are enclosed with curly braces and are separated by commas.

Chapter 2

[41]

Working with map service layers
A map without data layers is sort of like an artist with a blank canvas. The data
layers that you add to your map give it meaning and set the stage for analysis.
There are two primary types of map services that provide data layers that can be
added to your map: dynamic map service layers and tiled map service layers.

Dynamic map service layers reference map services that create a map image on the
fly and then return the image to the application. This type of map service may be
composed of one or more layers of information. For example, the demographics map
service displayed in the following screenshot is composed of nine different layers,
representing demographic information at various levels of geography:

While they can take somewhat longer to display in a client application as they must
be generated on the fly, dynamic map service layers are more versatile than tiled map
service layers. In dynamic map service layers, you can control the features displayed
through layer definitions, set the visibility of various layers within the service, and
define temporal information for the layer. For example, in the Demographics map
service layer detailed in the preceding screenshot, you might choose to display only
Census Block Group in your application. This is the type of versatility provided by
dynamic map service layers that you don't get with tiled map service layers.

Creating Maps and Adding Layers

[42]

Tiled map service layers reference a predefined cache of map tiles instead of
dynamically rendered images. The easiest way to understand the concept of tiled
map services is to think about a grid that has been draped across the surface of a
map. Each cell within the grid has the same size and will be used to cut the map into
individual image files called tiles. The individual tiles are stored as image files on a
server and are retrieved as needed, depending upon the map extent and scale. This
same process is often repeated at various map scales. The end result is a cache of
tilesets that have been generated for various map scales. When the map is displayed
in the application, it will appear to be seamless even though it is composed of many
individual tiles.

These tiled or cached map layers are often used as basemaps that include imagery,
street maps, topographic maps, or for data layers that don't change often. Tiled map
services tend to display faster as they don't have the overhead of creating images on
the fly each time there is a request for a map.

Operational layers are then draped on top of the tiled basemaps and these are often
dynamic layers. While they can be somewhat slower in terms of performance,
dynamic map service layers have the advantage of being able to define their
appearance on the fly.

Chapter 2

[43]

Using layer classes
Using the layer classes from the API for JavaScript, you can reference map services
hosted by ArcGIS Server and other map servers. All layer classes inherit from the
Layer base class. The Layer class has no constructor, so you can't specifically create
an object from this class. This class simply defines properties, methods, and events
that are inherited by all classes that inherit from Layer.

As indicated in the following figure, DynamicMapServiceLayer,
TiledMapServiceLayer, and GraphicsLayer all inherit directly from the Layer
class. DynamicMapServiceLayer and TiledMapserviceLayer also act as base
classes. DynamicMapServiceLayer is the base class for dynamic map services
while TiledMapServiceLayer is the base class for tiled map services. Chapter 3,
Adding Graphics to the Map, is devoted entirely to graphics and the GraphicsLayer,
so we'll save our discussion on this type of layer for later on in the book. Layer,
DynamicMapServiceLayer, and TiledMapServiceLayer are all base classes, meaning
that you can't specifically create an object from these classes in your application.

Layer

DynamicMapServiceLayer TiledMapServiceLayer GraphicLayer

Creating Maps and Adding Layers

[44]

Tiled map service layers
As mentioned earlier, tiled map service layers reference a cache of predefined
images that are tiled together to create a seamless map display. These are often
used as base maps.

TiledMapServiceLayer

ArcGISTiledMapServiceLayer OpenStreetMapLayerVETiledLayer

The ArcGISTiledMapServiceLayer class is used when referencing a tiled (cached)
map service exposed by ArcGIS Server. As this type of object works against a tiled
set of maps that have been cached, performance is often improved. The constructor
for ArcGISTiledMapServiceLayer takes a URL pointer to the map service,
along with options that allow you to assign an ID to the map service and control
transparency and visibility.

In the following code example, notice that the constructor for
ArcGISTiledMapServiceLayer takes a parameter that references a map service.
After an instance of a layer has been created, it is added to the map using the Map.
addLayer() method that accepts a variable that contains a reference to the tiled map
service layer:

var basemap = new ArcGISTiledMapServiceLayer("http://server.
arcgisonline.com/ArcGIS/rest/services/World_Topo_Map/MapServer");
map.addLayer(basemap);

ArcGISTiledMapServiceLayer is used primarily for the fast display of cached map
data. You can also control the levels at which the data will be displayed. For instance,
you may want to display data from a generalized ArcGISTiledMapService, showing
interstates and highways while your users are zoomed out at levels 0-6 and then
switch to a more detailed ArcGISTiledMapService once the user zooms in further.
You can also control the transparency of each layer added to the map.

Chapter 2

[45]

Dynamic map service layers
As the name suggests, the ArcGISDynamicMapServiceLayer class is used to create
dynamic maps served by ArcGIS Server. Just as with ArcGISTiledMapServiceLayer,
the constructor for ArcGISDynamicMapServiceLayer takes a URL that points
to the map service along with optional parameters that are used to assign an
ID to the service, determine the transparency of the map image, and a visibility
option that sets the initial visibility of the layer to true or false. The class name
ArcGISDynamicMapServiceLayer can be somewhat misleading. Although it appears
to reference an individual data layer, this is in fact not the case. It refers to a map
service rather than a data layer. Individual layers inside the map service can be
turned on/off through the setVisibleLayers() method.

DynamicMapServiceLayer

ArcGISDynamicMapServiceLayer ArcGISImageServiceLayerWMSLayer

Creating an instance of ArcGISDynamicMapServiceLayer will look very similar
to ArcGISTiledMapServiceLayer. The following code example illustrates this.
The constructor accepts a URL that points to the map service. The second parameter
defines the optional parameters that you can supply to control transparency,
visibility, and image parameters:

var operationalLayer = new ArcGISDynamicMapServiceLayer("http://
sampleserver1.arcgisonline.com/ArcGIS/rest/services/Demographics/ESRI_
Population_World/MapServer",{"opacity":0.5});
map.addLayer(operationalLayer);

Creating Maps and Adding Layers

[46]

Add the preceding two lines of code to the ArcGIS API for JavaScript Sandbox as
shown in the following code:

 <script>
 var map;
 require(["esri/map", "esri/layers/ArcGISDynamicMapServiceLayer",
"dojo/domReady!"], function(Map, ArcGISDynamicMapServiceLayer) {
 map = new Map("mapDiv", {
 basemap: "topo",
 center: [-122.45,37.75], // long, lat
 zoom: 5,
 sliderStyle: "small"
 });
 var operationalLayer = new ArcGISDynamicMapServiceLayer("http://
sampleserver1.arcgisonline.com/ArcGIS/rest/services/Demographics/ESRI_
Population_World/MapServer",{"opacity":0.5});
 map.addLayer(operationalLayer);
 });
 </script>

Run the preceding code to see the dynamic layer added to the map, as seen in the
following screenshot:

Chapter 2

[47]

With an instance of ArcGISDynamicMapServiceLayer, you can perform a number of
operations. Obviously, you can create maps that display the data in the service, but
you can also query data from layers in the service, control feature display through
layer definitions, control individual layer visibility, set time-related information,
export maps as images, control background transparency, and much more.

Adding layers to the map
The addLayer() method takes an instance of a layer
(ArcGISDynamicMapServiceLayer or ArcGISTiledMapServiceLayer) as
the first parameter, and an optional index that specifies where it should be
placed. In the following code example, we have created a new instance of
ArcGISDynamicMapServiceLayer pointing to a URL for the service. We then
call Map.addLayer() to pass the new instance of the layer. The layers in the
service will now be visible on the map.

var operationalLayer = new ArcGISDynamicMapServiceLayer("http://
sampleserver1.arcgisonline.com/ArcGIS/rest/services/Demographics/ESRI_
Population_World/MapServer");
map.addLayer(operationalLayer);

The addLayers() method takes an array of layer objects and adds them all at once.

In addition to being able to add layers to a map, you can also remove layers from
a map using Map.removeLayer() or Map.removeAllLayers().

Setting visible layers from a map service
You can control the visibility of individual layers within a dynamic map service
layer using the setVisibleLayers() method. This applies only to dynamic map
service layers, not tiled map service layers. This method takes an array of integers,
corresponding to the data layers in the map service.

Creating Maps and Adding Layers

[48]

This array is zero based so the first layer in the map service occupies position
0. In the Demographics map service illustrated in the following screenshot,
Demographics/ESRI_Census_USA occupies index 0:

Therefore, in the event that we'd like to display only the Census Block Points and
Census Block Group features from this service, we can use setVisibleLayers()
as seen in the following code example:

var dynamicMapServiceLayer = new ArcGISDynamicMapServiceLayer("htt
ps://gis.sanantonio.gov/ArcGIS/rest/services/Demographics/MapServer");
dynamicMapServiceLayer.setVisibleLayers([1,2]);
map.addLayer(dynamicMapServiceLayer);

Setting a definition expression
In ArcGIS for Desktop, you can use a definition expression to limit the features
in a data layer that will be displayed. A definition expression is simply a SQL
query set against the columns and rows in a layer. Only the features whose
attributes meet the query are displayed. For example, if you only wanted to
display cities with a population greater than one million, the expression would be
something like POPULATION > 1000000. The ArcGIS API for JavaScript contains a
setLayerDefinitions() method that accepts an array of definitions that can be
applied against ArcGISDynamicMapServiceLayer to control the display of features
in the resulting map. The following code example shows how this is done:

Chapter 2

[49]

You first create an array that will hold multiple where clauses, which will serve
as the definition expressions for each layer. In this case, we are defining layer
definitions for the first and sixth layer. The array is zero based, so the first array
is at index 0. The where clauses are placed into the array and then passed into the
setLayerDefinitions() method. ArcGIS Server then renders the features that
match the where clauses for each layer.

Map navigation
Now that you know a little about maps and the layers that reside within those maps,
it's time to learn how to control map navigation in your application. In most cases,
your users will need to be able to navigate around the map using the panning and
zooming features. The ArcGIS API for JavaScript provides a number of user interface
widgets and toolbars that you can use in order to allow your user to change the
current map extent using the zooming and panning features. Map navigation can
also occur through keyboard navigation and mouse navigation. In addition to these
user interface components and hardware interfaces, map navigation can also be
controlled programmatically.

Map navigation widgets and toolbars
The simplest way to provide map navigation control to your application is through
the addition of various widgets and toolbars. When you create a new map and add
layers, a zoom slider is included with the map by default. This slider allows the
user to zoom in and out of the map. The zoom slider is illustrated in the following
screenshot. You don't have to do anything programmatically to have the zoom slider
appear on your map; it is present by default. However, you can remove the slider
for your application simply by setting the slider option to false when creating an
instance of the Map object, if necessary:

{"slider":false,"nav":true,"opacity":0.5,"imageParameters"
:imageParameters}

Creating Maps and Adding Layers

[50]

The following screenshot shows the map with the zoom slider:

You can also add pan buttons that will pan the map in the direction that the arrow
points towards, when clicked. By default, pan buttons will not appear on the map.
You must specifically set the nav option to true when creating your Map object:

{"nav":true,"opacity":0.5,"imageParameters":imageParameters}

Chapter 2

[51]

The following screenshot shows the pan options:

The ArcGIS API for JavaScript also gives you the ability to add several types of
toolbars to your application, including a navigation toolbar containing buttons to
zoom in and out, panning, full extent, next extent, and previous extent. Toolbar
creation is covered in detail in a later chapter, so we'll save that discussion for later.

Creating Maps and Adding Layers

[52]

Map navigation using the mouse and keyboard
Users can also control map navigation using the mouse and/or keyboard devices.
By default, users can do the following:

•	 Drag the mouse to pan
•	 Use the forward mouse scroll to zoom in
•	 Use the backward mouse scroll to zoom out
•	 Press Shift and drag the mouse to zoom in
•	 Press Shift + Ctrl and drag the mouse to zoom out
•	 Press Shift and click to restore to the center
•	 Double-click to center and zoom in
•	 Press Shift and double-click to center and zoom in
•	 Use the arrow keys to pan
•	 Use the + key to zoom in to a level
•	 Use the - key to zoom out of a level

The preceding options can be disabled using one of several Map methods.
For example, to disable scroll wheel zooming, you would use the Map.
disableScrollWheelZoom() method. These navigation features can also
be removed after the map has been loaded.

Getting and setting the map extent
One of the first things you'll want to master is getting and setting the map extent.
By default, the initial extent of a map within your application is the extent of the
map when it was last saved in the map document file (.mxd) used to create the map
service. In some cases, this may be exactly what you want, but in the event that you
need to set a map extent other than the default, you will have several options.

One of the optional parameters that can be defined in the constructor for the Map
object is the center parameter. You can use this optional parameter in conjunction
with the zoom object to set the initial map extent. You'll see this illustrated in the
following code example, where we define a coordinate pair for the center of the map,
along with a zoom level of 3:

var map = new Map("mapDiv", {
 center: [-56.049, 38.485],
 zoom: 3,
 basemap: "streets"
 });

Chapter 2

[53]

The initial extent of the map is not a required parameter, and thus if you leave out
this information, the map will simply use the default extent. This is shown in the
following code example, where only the ID of the container is specified:

var map = new Map("map");

After a Map object has been created, you can also use the Map.setExtent()
method to change the extent by passing in an Extent object as seen in the
following code example:

var extent = new Extent(-95.271, 38.933, -95.228, 38.976);
map.setExtent(extent);

Alternatively, you could set the Extent properties individually as seen in the
following code example:

var extent = new Extent();
extent.xmin = -95.271;
extent.ymin = 38.933;
extent.xmax = -95.228;
extent.ymax = 38.976;
map.setExtent(extent);

There may be times when you are using multiple map services in your application.
In this case, setting the initial map extent can be done either through the constructor
for your map or by using the Map.fullExtent method on one of the services. For
example, it is common to use a map service that provides base layer capabilities
containing aerial imagery along with a map service containing your own local
operational data sources. The following code example uses the fullExtent() method:

map = new Map("mapDiv", {extent:esri.geometry.geographicToWebMercator(
myService2.fullExtent) });

The current extent can be obtained either through the Map.extent property or the
onExtentChange event. Note that the Map.setExtent property is read only, so don't
attempt to set the map extent through this property.

Map events
In the world of programming, events are actions that take place within an
application. Normally, these events are triggered by the end user and can include
things such as mouse clicks, mouse drags, and keyboard actions, but it can also
include the sending and receiving of data, component modification, and others.

Creating Maps and Adding Layers

[54]

The ArcGIS API for JavaScript is an asynchronous API that follows a publish/
subscribe pattern wherein an application registers (publishes) events with
listeners (subscribers). The following diagram illustrates this process. Listeners are
responsible for monitoring the application for these events and then triggering a
handler function that responds to the event. Multiple events can be registered to
the same listener. The dojo on() method functions as an event to a handler.

Listener

Connects an

event to a

handler

Event

Occurs

Mouse

click

Keyboard

interaction

Runs in

response to

the event

Handler

As you may recall, the ArcGIS Server JavaScript API is built on top of Dojo. With
Dojo, events are registered to handlers through the dojo on() method. This method
takes three parameters. Take a look at the code example shown in the following
screenshot to get a better understanding of how events are registered:

We call the on() method with parameters including map, click, and
displayCoordinates. The first two parameters indicate the object and the event that
we would like to register. In this case, it means we are registering the click event
found on the Map object. This event is fired every time the user clicks the mouse within
the confines of the map. The final parameter, displayCoordinates, indicates the
listener for the event. Therefore, each time the click event on the Map object is fired, it
will trigger the displayCoordinates function, which will run and report the current
extent of the map. Although the events and the handlers they are registered to will
change depending upon your circumstance, the method of registration is the same.

Chapter 2

[55]

Each time an event occurs, an Event object is generated. This Event object contains
additional event information such as the mouse button that was clicked or perhaps
the key on the keyboard that was pressed. This object is automatically passed into the
event handler, where it can be examined. In the following code example, you can see
that the Event object is passed into the handler as a parameter. This is a dynamic object
whose properties will change depending upon the type of event that was triggered:

function addPoint(evt) {
 alert(evt.mapPoint.x, evt.mapPoint.y);
}

There are many different events that are available on a number of different objects
in the API. However, it is important to keep in mind that you do not have to register
every event with a listener. Only the events that are necessary for your application
should be registered. When an event that hasn't been registered with a listener
occurs, the event is simply ignored.

The Map object contains many different events that you can respond to, including
various mouse events, extent change events, basemap change events, keyboard
events, layer events, pan and zoom events, and more. Your application can respond
to any of these events. In coming chapters, we'll examine events that are available on
other objects.

It is a good programming practice to always disconnect your events from their
handler when no longer needed. This is normally done when the user navigates
away from the page or closes the browser window. The following code example
shows how this can be done by simply calling the remove() method:

var mapClickEvent = on(myMap, "click", displayCoordinates);
mapClickEvent.remove();

Creating Maps and Adding Layers

[56]

Summary
We covered a lot of ground in this chapter. All applications created with the ArcGIS
API for JavaScript require a certain set of steps. We refer to this as boilerplate code.
This includes defining references to the API and stylesheet, loading modules,
creating an initialization function, and some other steps. In the initialization
function, you will most likely create a map, add various layers, and perform other
setup operations that need to be performed before the application is used. In this
chapter, you learned how to perform these tasks.

In addition, we examined the various types of layers that can be added to a map,
including tiled map service layers and dynamic map service layers. Tiled map
service layers are precreated and cached on the server and are most often used as
basemaps in an application. Dynamic map service layers must be created on the
fly each time a request is made and thus may take longer to generate. However,
dynamic map service layers can be used to perform many types of operations,
including queries, setting definition expressions, and much more.

In addition, you learned how to programmatically control the map extent. Finally,
we introduced the topic of events and you learned how to connect an event to an
event handler, which is simply a JavaScript function that runs any time a particular
event is triggered. In the next chapter, we'll closely examine how you can add
graphics to your application.

Adding Graphics to the Map
Graphics are points, lines, or polygons that are drawn on top of your map in a layer
that is independent of any other data layer associated with a map service. Most
people associate a graphic object with the symbol that is displayed on a map to
represent the graphic. However, each graphic in ArcGIS Server can be composed of
up to four objects, including the geometry of the graphic, the symbology associated
with the graphic, attributes that describe the graphic, and an info template that
defines the format of the info window that appears when a graphic is clicked on.
Although a graphic can be composed of up to four objects, it is not always necessary
for this to happen. The objects you choose to associate with your graphic will be
dependent on the needs of the application that you are building. For example, in an
application that displays GPS coordinates on a map, you may not need to associate
attributes or display info window for the graphic. However, in most cases, you will
be defining the geometry and symbology for a graphic.

Graphics are temporary objects stored in a separate layer on the map. They are
displayed while an application is in use and are removed when the session is
complete. The separate layer, called the graphics layer, stores all the graphics
associated with your map. In Chapter 2, Creating Maps and Adding Layers, we
discussed the various types of layers, including dynamic map service layers and
tiled map service layers. Just as with the other types of layers, GraphicsLayer also
inherits from the Layer class. Therefore, all the properties, methods, and events
found in the Layer class will also be present in GraphicsLayer.

Graphics are displayed on top of any other layers that are present in your
application. An example of point and polygon graphics is provided in the following
screenshot. These graphics can be created by users or drawn by the application in
response to the tasks that have been submitted. For example, a business analysis
application might provide a tool that allows the user to draw a freehand polygon to
represent a potential trade area.

Adding Graphics to the Map

[58]

The polygon graphic would be displayed on top of the map, and could then be used
as an input to a geoprocessing task that pulls demographic information pertaining to
the potential trade area.

Many ArcGIS Server tasks return their results as graphics. The QueryTask object can
perform both attribute and spatial queries. The results of a query are then returned
to the application in the form of a FeatureSet object, which is simply an array of
features. You can then access each of these features as graphics and plot them on the
map using a looping structure. Perhaps you'd like to find and display all land parcels
that intersect the 100 year flood plain. A QueryTask object could perform the spatial
query and then return the results to your application, where they would then be
displayed as polygon graphics on the map.

In this chapter, we will cover the following topics:

•	 The four parts of a graphic
•	 Creating geometry for graphics
•	 Symbolizing graphics
•	 Assigning attributes to graphics
•	 Displaying graphic attributes in an info window
•	 Creating graphics
•	 Adding graphics to the graphics layer

Chapter 3

[59]

The four parts of a graphic
A graphic is composed of four items: Geometry, Symbol, Attributes, and
InfoTemplate, as shown in the following diagram:

GraphicsLayer

InfoTemplateGeometry

Graphic

Symbol Attributes

A graphic has a geometric representation that describes where it is located. The
geometry, along with a symbol, defines how the graphic is displayed. A graphic can
also have attributes that provide descriptive information about the graphic. Attributes
are defined as a set of name-value pairs. For example, a graphic depicting a wildfire
location could have attributes that describe the name of the fire along with the number
of acres burned. The info template defines what attributes should be displayed
in the info window that appears when the graphic appears, along with how they
should be displayed. After their creation, the graphic objects must be stored inside a
GraphicsLayer object, before they can be displayed on the map. This GraphicsLayer
object functions as a container for all the graphics that will be displayed.

All the elements of a graphic are optional. However, the geometry and symbology
of a graphic are almost always assigned. Without these two items, there would be
nothing to display on the map, and there isn't much point in having a graphic unless
you're going to display it.

The following figure shows the typical process of creating a graphic and adding it
to the graphics layer. In this case, we are applying the geometry of the graphic as
well as a symbol to depict the graphic. However, we haven't specifically assigned
attributes or an info template to this graphic.

Create geometry

Create symbol

Assign attributes

Create graphic

Add graphic to graphics layer map.graphics.add(pointGraphic);

var newpointGraphic = Graphic(pointESRI, markerSymbol);

var newpoint = Point(Number(theX), Number(theY), msr);

var newmarkerSymbol = SimpleMarkerSymbol();
markerSymbol SimpleMarkerSymbol);.setStyle(.STYLE_CIRCLE
markerSymbol.setSize();12
markerSymbol.setColor(Color([, , ,]) ;)new 255 0 0 0.5

Adding Graphics to the Map

[60]

Creating geometry for graphics
Graphics will almost always have a geometry component, which is necessary for their
placement on the map. These geometry objects can be points, multipoints, polylines,
polygons, or extents and can be created programmatically through a constructor for
these objects or can be returned as an output from a task such as a query.

Before creating any of these geometry types, the esri/geometry resource needs
to be imported. This geometry resource contains classes for Geometry, Point,
Multipoint, Polyline, Polygon, and Extent.

Geometry is the base class that is inherited by Point, MultiPoint, Polyline,
Polygon, and Extent.

As can be seen from the following code line, the Point class defines a location by
an X and Y coordinate, and can be defined in either map units or screen units:

new Point(-118.15, 33.80);

Symbolizing graphics
Each graphic that you create can be symbolized through one of the various symbol
classes found in the API. Point graphics are symbolized by the SimpleMarkerSymbol
class and the available shapes include circle, cross, diamond, square, and X. It is also
possible to symbolize your points through the PictureMarkerSymbol class, which
uses an image to display the graphic. Linear features are symbolized through the
SimpleLineSymbol class and can include solid lines, dashes, dots, or a combination.
Polygons are symbolized through the SimpleFillSymbol class and can be solid,
transparent, or crosshatch. In the event that you'd prefer to use an image in a repeated
pattern for your polygons, the PictureFillSymbol class is available. Text can also be
added to the graphics layer and is symbolized through the TextSymbol class.

Points or multipoints can be symbolized through the SimpleMarkerSymbol class,
which has various properties that can be set, including style, size, outline, and color.
Style is set through the SimpleMarkerSymbol.setStyle() method that takes one
of the following constants, which corresponds to the type of symbol that is drawn
(circle, cross, diamond, and so on):

•	 STYLE_CIRCLE

•	 STYLE_CROSS

•	 STYLE_DIAMOND

•	 STYLE_PATH

•	 STYLE_SQUARE

•	 STYLE_X

Chapter 3

[61]

Point graphics can also have an outline color, which is created through the
SimpleLineSymbol class. The size and color of the graphics can also be set.
Examine the following code example to get an idea on how this is done:

var markerSymbol = new SimpleMarkerSymbol();
markerSymbol.setStyle(SimpleMarkerSymbol.STYLE_CIRCLE);
markerSymbol.setSize(12);
markerSymbol.setColor(new Color([255,0,0,0.5]));

Linear features are symbolized with the SimpleLineSymbol class and can be a solid
line or a combination of dots and dashes. Other properties include color, as defined
with dojo/Color, and a width property setWidth to set the thickness of your line.
The following code example explains the process in detail:

var polyline = new Polyline(msr);
//a path is an array of points
var path = [new Point(-123.123, 45.45, msr),…..];
polyline.addPath(path);
var lineSymbol = new SimpleLineSymbol().setWidth(5);

//create polyline graphic using polyline and line symbol
var polylineGraphic = new Graphic(polyline, lineSymbol);
map.graphics.add(polylineGraphic);

The following screenshot is obtained when the preceding code is run:

Adding Graphics to the Map

[62]

Polygons are symbolized through the SimpleFillSymbol class, which allows the
drawing of polygons in solid, transparent, or crosshatch patterns. Polygons can
also have an outline specified by a SimpleLineSymbol object. The following code
example explains the process in detail:

var polygon = new Polygon(msr);
//a polygon is composed of rings
var ring = [[-122.98, 45.55], [-122.21, 45.21], [-122.13, 45.53],……];
polygon.addRing(ring);
var fillSymbol = new SimpleFillSymbol().setColor(new
Color([255,0,0,0.25]));
//create polygon graphic using polygon and fill symbol
var polygonGraphic = new Graphic(polygon, fillSymbol);
//add graphics to map's graphics layer
map.graphics.add(polygonGraphic);

The following screenshot is obtained when the preceding code is run:

Assigning attributes to graphics
The attributes of a graphic are the name-value pairs that describe that object. In many
cases, graphics are generated as the result of a task operation such as QueryTask. In
such cases, each graphic is composed of both geometry and attributes, and you would
then need to symbolize each graphic accordingly. The field attributes associated with
the layer become the attributes for the graphic. In some cases, the attributes can be
limited through properties such as outFields. If your graphics are being created
programmatically, you will need to assign the attributes in your code using the
Graphic.setAttributes() method as seen in the following code example:

Graphic.setAttributes({"XCoord":evt.mapPoint.x, "YCoord".evt.
mapPoint.y,"Plant":"Mesa Mint"});

Chapter 3

[63]

Displaying graphic attributes in an
info template
In addition to attributes, a graphic can also have an info template that defines how the
attribute data is displayed in a pop-up window. A point attribute variable has been
defined in the following code example and contains key-value pairs. In this particular
case, we have keys that include the address, city, and state. Each of these names or
keys has a value. This variable is the third parameter in the constructor for a new point
graphic. An info template defines the format of the pop-up window that appears, and
contains a title and an optional content template string:

var pointESRI = new Point(Number(theX), Number(theY),msr);
var markerSymbol = new SimpleMarkerSymbol();
markerSymbol.setStyle(SimpleMarkerSymbol.STYLE_SQUARE);
markerSymbol.setSize(12);
markerSymbol.setColor(new Color([255,0,0]));
var pointAttributes = {address:"101 Main Street", city:"Portland",
state:"Oregon"};
var pointInfoTemplate = new InfoTemplate("Geocoding Results");
//create point graphic using point and marker symbol
var pointGraphic = new Graphic(pointESRI, markerSymbol,
pointAttributes).setInfoTemplate(pointInfoTemplate);
//add graphics to maps' graphics layer
map.graphics.add(pointGraphic);

The preceding code produces the following screenshot:

Adding Graphics to the Map

[64]

Creating graphics
Once you have defined the geometry, symbology, and attributes for your graphic,
a new graphic object can be created with these parameters used as an input to the
constructor for the Graphic object. In the following code example, we will create
variables for the geometry (pointESRI), symbology (markerSymbol), point attributes
(pointAttributes), and info template (pointInfoTemplate), and then apply these
variables as an input to the constructor for our new graphic called pointGraphic.
Finally, this graphic is added to the graphics layer.

var pointESRI = new Point(Number(theX), Number(theY, msr);
var markerSymbol = new SimpleMarkerSymbol();
markerSymbol.setStyle(SimpleMarkerSymbol.STYLE_SQUARE);
markerSymbol.setSize(12);
markerSymbol.setColor(new Color([255,0,0]));

var pointAttributes = {address:"101 Main Street", city:"Portland",
state:"Oregon"};
var pointInfoTemplate = new InfoTemplate("Geocoding Results");
//create the point graphic using point and marker symbol
var pointGraphic = new Graphic(pointESRI, markerSymbol,
pointAttributes).setInfoTemplate(pointTemplate);

//add graphics to maps' graphics layer
map.graphics.add(pointGraphic);

Adding graphics to the graphics layer
Before any of your graphics are displayed on the map, you must add them to the
graphics layer. Each map has a graphics layer, which contains an array of graphics
that is initially empty until you add the graphics. This layer can contain any type
of graphic object. This means that you can mix-in points, lines, and polygons at the
same time. Graphics are added to the layer through the add() method and can also
be removed individually through the remove() method. In the event that you need
to remove all the graphics simultaneously, the clear() method can be used. The
graphics layer also has a number of events that can be registered, including click,
mouse-down, and others.

Chapter 3

[65]

Multiple graphics layers
Multiple graphics layers are supported by the API, making it much easier to organize
different types of graphics. Layers can be easily removed or added, as required. For
example, you can put polygon graphics that represent counties in one graphics layer
and point graphics that represent traffic incidents in another graphics layer. Then
you can easily add or remove either layer as required.

Time to practice with graphics
In this exercise, you will learn how to create and display graphics on a map. We are
going to create a thematic map, that shows population density by county for the state
of Colorado. You will also be introduced to query tasks. As you will learn in a later
chapter, tasks can be executed in ArcGIS Server and include things such as spatial and
attribute queries, identification of features, and geocoding. Finally, you will learn how
to attach attributes to your graphic features and display them in an info window:

1.	 Open the JavaScript Sandbox at http://developers.arcgis.com/en/
javascript/sandbox/sandbox.html.

2.	 Remove the JavaScript content from the <script> tag that I have highlighted
in the following code block:
 <script>
 dojo.require("esri.map");

 function init(){
 var map = new esri.Map("mapDiv", {
 center: [-56.049, 38.485],
 zoom: 3,
 basemap: "streets"
 });
 }
 dojo.ready(init);
 </script>

3.	 Create the variables that you'll use in the application.
<script>

 var map, defPopSymbol, onePopSymbol, twoPopSymbol,
threePopSymbol, fourPopSymbol, fivePopSymbol;
</script>

4.	 Add the require() function as seen in the following highlighted code:
<script>
 var map, defPopSymbol, onePopSymbol, twoPopSymbol,
threePopSymbol, fourPopSymbol, fivePopSymbol;

http://developers.arcgis.com/en/javascript/sandbox/sandbox.html
http://developers.arcgis.com/en/javascript/sandbox/sandbox.html

Adding Graphics to the Map

[66]

 require(["esri/map", "esri/tasks/query", "esri/tasks/QueryTask",
"esri/symbols/SimpleFillSymbol", "esri/InfoTemplate", "dojo/
domReady!"],
 function(Map, Query, QueryTask, SimpleFillSymbol,
InfoTemplate) {

 });
</script>

We covered the esri/map resource in a past exercise, so no additional
explanation should be necessary. The esri/tasks/query and esri/
tasks/QueryTask resources are new and we won't cover them until a later
chapter. However, in order to complete this exercise, it is necessary for me to
introduce these to you at this point. These resources enable you to perform
spatial and attribute queries on a data layer.

5.	 Inside the require() function, you will need to create a Map object and add a
basemap: streets layer by adding the following highlighted code. You will
set the initial map extent to display the state of Colorado:
<script>
 var map, defPopSymbol, onePopSymbol, twoPopSymbol,
threePopSymbol, fourPopSymbol, fivePopSymbol;
 require(["esri/map", "esri/tasks/query", "esri/tasks/
QueryTask", "esri/symbols/SimpleFillSymbol", "esri/InfoTemplate",
"dojo/_base/Color", "dojo/domReady!"],
 function(Map, Query, QueryTask, SimpleFillSymbol,
InfoTemplate, Color) {
 map = new Map("map", {
 basemap: "streets",
 center: [-105.498,38.981], // long, lat
 zoom: 6,
 sliderStyle: "small"
 });
 });
</script>

6.	 Inside the require() function, just below the code block that creates the
Map object, add the highlighted line of code to create a new polygon symbol
that is transparent. This creates a new SimpleFillSymbol object and assigns
it to the defPopSymbol variable. We use RGB values of 255,255,255,and
0 to ensure that the filled color will be completely transparent. This is
accomplished through the value 0, which ensures that our coloring will be
fully transparent. Later, we will add additional symbol objects so that we can
display a color-coded map of county population density. For now though,
we simply want to create a symbol so that you can understand the basic
procedure of creating and displaying graphics on a map. The following code
explains the process in detail:

Chapter 3

[67]

map = new Map("mapDiv", {
 basemap: "streets",
 center: [-105.498,38.981], // long, lat
 zoom: 6,
 sliderStyle: "small"
});
defPopSymbol = new SimpleFillSymbol().setColor(new
Color([255,255,255, 0])); //transparent

In the next step, you are going to get a preview of how the Query task can be
used in an application. We'll cover this task in detail in a later chapter but for
now, here is an introduction. The Query task can be used to perform spatial
and attribute queries on a data layer in a map service. In this exercise, we
are going to use a Query task to perform an attribute query against a county
boundary layer provided through an ESRI service.

7.	 Let's first examine the map service and layer that we will use in our query.
Open a web browser and go to http://sampleserver1.arcgisonline.
com/ArcGIS/rest/services/Specialty/ESRI_StateCityHighway_USA/
MapServer. This map service provides census information for U.S. states and
counties and also includes a highway layer. In this exercise, we are interested
in the county layer that has an index number of two. Click on the counties
option to get detailed information about this layer. There are a lot of fields in
this layer, but we are really only interested in the field that will allow us to
query by state name and the field that gives us information on the population
density. The STATE_NAME field gives us the state name of each county and the
POP90_SQMI field gives us the population density of each county.

8.	 Return to the Sandbox. Below the line of code where we created our symbol,
initialize a new QueryTask object by adding the following line of code just
below the line that created the defPopSymbol variable. What this line does is
create a new QueryTask object that points to the ESRI_StateCityHighway_
USA map service that we just examined in our browser and specifically points
to layer index 2, which is our county layer. The following code explains the
process in detail:
var queryTask = new QueryTask("http://sampleserver1.arcgisonline.
com/ArcGIS/rest/services/Specialty/ESRI_StateCityHighway_USA/
MapServer/2");

9.	 All QueryTask objects need input parameters so that they know what
to execute against the layer. This is accomplished through a Query object.
Add the following line of code right below the line you just entered:
var query = new Query();

http://sampleserver1.arcgisonline.com/ArcGIS/rest/services/Specialty/ESRI_StateCityHighway_USA/MapServer
http://sampleserver1.arcgisonline.com/ArcGIS/rest/services/Specialty/ESRI_StateCityHighway_USA/MapServer

Adding Graphics to the Map

[68]

10.	 Now we will define some of the properties on our new Query object that will
enable us to perform an attribute query. Add the following three highlighted
lines of code just below the line that created the query variable:
var query = new Query();
query.where = "STATE_NAME = 'Colorado'";
query.returnGeometry = true;
query.outFields = ["POP90_SQMI"];

11.	 The where property is used to create a SQL statement that will be executed
against the layer. In this case, we're stating that we'd like to return only
those county records that have a state name of Colorado. Setting the
returnGeometry property to true indicates that we would like ArcGIS
Server to return the geometric definition of all the features that matched our
query. This is necessary because we need to plot these features as graphics on
top of the map. Finally, the outFields property is used to define which fields
we would like to be returned along with the geometry. This information
will be used later when we create the color-coded map of a county's
population density.

12.	 Finally, we will use the execute method on queryTask to perform the query
against the layer that we have indicated (counties), using the parameters
defined on our query object. Add the following line of code:
queryTask.execute(query, addPolysToMap);

In addition to passing the query object into ArcGIS Server, we have also
indicated that addPolysToMap will serve as the callback function. This
function will be executed after ArcGIS Server has performed the query
and returned the results. It is up to the addPolysToMap function to plot
the records using the featureSet object returned to it.

13.	 As I mentioned in the previous step, the callback function addPolysToMap
will be executed when ArcGIS Server returns the featureSet object, which
contains the records that matched our attribute query. Before creating the
callback function, let's first discuss what the code will accomplish. The
addPolysToMap function will take a single parameter featureSet. When a
queryTask object is executed, ArcGIS Server returns a featureSet object
to your code. A featureSet object contains the graphic objects returned
by the query. Inside the addPolysToMap function, you will see the line var
features = featureSet.features;. The features property returns an
array with all the graphics contained within it. After defining a new feature
variable, we create a for loop that we will use to loop through each of these
graphics and plot the graphics to the map. Create the callback function by
adding the following code block:

Chapter 3

[69]

function addPolysToMap(featureSet) {
 var features = featureSet.features;
 var feature;
 for (var i=0, il=features.length; i<il; i++) {
 feature = features[i];
 map.graphics.add(features[i].setSymbol(defPopSymbol));
 }
}

As I mentioned earlier, you have to add each graphic that you create to the
GraphicsLayer object. This is done through the add() method as you saw
in the preceding code block. You will also notice that we are attaching the
symbol we created earlier to each of the graphics (county boundaries).

14.	 Execute the code by clicking on the Run button and you should see the
following screenshot as the output if everything has been coded correctly.
Notice that each of the counties has been outlined with the symbol that
we defined.

Adding Graphics to the Map

[70]

Now we are going to add additional code to the application that will color-code each
of the counties based on population. Comment out the defPopSymbol variable inside
the require() function and add five new symbols as follows:

//defPopSymbol = new SimpleFillSymbol().setColor(new
Color([255,255,255, 0])); //transparent
onePopSymbol = new SimpleFillSymbol().setColor(new Color([255,255,128,
.85])); //yellow
twoPopSymbol = new SimpleFillSymbol().setColor(new Color([250,209,85,
.85]));
threePopSymbol = new SimpleFillSymbol().setColor(new
Color([242,167,46, .85])); //orange
fourPopSymbol = new SimpleFillSymbol().setColor(new Color([173,83,19,
.85]));
fivePopSymbol = new SimpleFillSymbol().setColor(new Color([107,0,0,
.85])); //dark maroon

What we're doing here is basically creating a color ramp of symbols that will be
assigned to each county, based on the population density. We are also applying a
transparency value of .85 to each symbol so that we will be able to see through each
of the counties. This will enable us to see the base map placed below the layer that
contains the city names.

Recall that earlier in the exercise, we created queryTask and Query objects and
defined an outFields property on Query to return the POP90_SQMI field. This will
now come into play as we will use the values returned in this field to determine
the symbol applied to each county based on the population density of that county.
Update the addPolysToMap function to appear as seen in the following code block,
and then we will discuss what we have done:

function addPolysToMap(featureSet) {
 var features = featureSet.features;
 var feature;
 for (var i=0, il=features.length; i<il; i++) {
 feature = features[i];
 attributes = feature.attributes;
 pop = attributes.POP90_SQMI;

 if (pop < 10)
 {
 map.graphics.add(features[i].
setSymbol(onePopSymbol));
 }
 else if (pop >= 10 && pop < 95)
 { map.graphics.add(features[i].
setSymbol(twoPopSymbol));
 }
 else if (pop >= 95 && pop < 365)

Chapter 3

[71]

 { map.graphics.add(features[i].
setSymbol(threePopSymbol));
 }
 else if (pop >= 365 && pop < 1100)
 { map.graphics.add(features[i].
setSymbol(fourPopSymbol));
 }
 else
 { map.graphics.add(features[i].
setSymbol(fivePopSymbol));
 }
 }
}

What we have done with the preceding code block is obtain the population density
information from each graphic and save it to a variable called pop. An if/else code
block is then used to assign a symbol to the graphic, based on the population density
of that county. For example, a county with a population density (as defined in the
POP90_SQMI field) of 400 would be assigned the symbol defined by fourPopSymbol.
Because we are in a for loop that examines every county in Colorado, each county
graphic will be assigned a symbol.

Execute the code by clicking on the Run button and you should see the following
screenshot as the output if everything has been coded correctly. Notice that each of
the counties has been color-coded with one of the symbols that we defined earlier.

Adding Graphics to the Map

[72]

Now you will learn how to attach attributes to a graphic and display them in an info
window when the graphic is clicked.

An info window is an HTML pop-up window that gets displayed when you click
on a graphic. Normally, it contains the attributes of the clicked graphic but it can
also contain custom content that you specify as a developer. The content of these
windows is specified through an InfoTemplate object that specifies a title for the
window and the content to be displayed in the window. The easiest way to create
an InfoTemplate object is to use a wildcard for the content that will automatically
insert all the fields of a dataset into the info window. We are going to add some
additional output fields so that more content can be displayed in the info window.
Alter the query.outFields line to include the fields highlighted in the following
code line:

query.outFields = ["NAME","POP90_SQMI","HOUSEHOLDS","MALES","FEMALES",
"WHITE","BLACK","HISPANIC"];

Then, add the following line of code just below the queryTask.execute line:

resultTemplate = InfoTemplate("County Attributes", "${*}");

The first parameter passed into the constructor ("County Attributes") is the
title for the window. The second parameter is a wildcard indicating that all the
name-value pairs of the attribute should be printed in the window. Therefore,
the new fields that we added to query.outFields should all be included in the
info window when a graphic is clicked.

Finally, we use the Graphic.setInfoTemplate() method to assign the newly
created InfoTemplate object to a graphic. Alter your if/else statement by adding
the following highlighted code:

if (pop < 10)
{
 map.graphics.add(features[i].
setSymbol(onePopSymbol).setInfoTemplate(resultTemplate));
}
else if (pop >= 10 && pop < 95)
{
 map.graphics.add(features[i].
setSymbol(twoPopSymbol).setInfoTemplate(resultTemplate));
}
else if (pop >= 95 && pop < 365)
{
 map.graphics.add(features[i].
setSymbol(threePopSymbol).setInfoTemplate(resultTemplate));
}

Chapter 3

[73]

else if (pop >= 365 && pop < 1100)
{
 map.graphics.add(features[i].
setSymbol(fourPopSymbol).setInfoTemplate(resultTemplate));
}
else
{
 map.graphics.add(features[i].
setSymbol(fivePopSymbol).setInfoTemplate(resultTemplate));
}

Execute the code by clicking on the Run button. Click on any of the counties in the
map and you should see an info window similar to the following screenshot:

You can view the solution code for this exercise in the graphicexercise.html file of
your ArcGISJavaScriptAPI folder to verify that your code has been written correctly.

Summary
In this chapter, you learned that graphics are often used to represent information
that is generated as the result of actions performed within a working application.
Frequently, these graphics are returned as the result of a task that has been
performed, such as an attribute or spatial query. This can include points, lines,
polygon, and text. These are temporary objects, only displayed during the current
browser session. Each graphic can be composed of geometry, symbology, attributes,
and an info template, and is added to the map through the use of a graphics layer,
which is always the topmost layer in an application. This ensures that the contents of
the layer will always be visible. In the next chapter, we'll introduce you to the feature
layer, which can do everything that a graphics layer can do and more!

The Feature Layer
The ArcGIS API for JavaScript offers a feature layer for working with client-side
graphic features. This FeatureLayer object inherits from the GraphicsLayer object,
but also offers additional capabilities, such as the ability to perform queries and
selections as well as support definition expressions. It can also be used for web editing.
You should already be familiar with the graphics layer from an earlier chapter.

A feature layer differs from tiled and dynamic map service layers in that it transports
geometry information for features from ArcGIS Server to the web browser, where
it is then drawn on the map. It can also be used to represent data from a nonspatial
table, in addition to a feature class that contains geometry.

Streaming data from ArcGIS Server to the browser potentially cuts down on the
round trips to the server and can improve the performance of your application.
A client can request the features it needs and perform selections and queries on
those features, without having to request any more information from the server.
The FeatureLayer object is especially appropriate for layers that respond to user
interactions such as mouse clicks or hovers. The tradeoff to this is that if you're
working with a feature layer that contains a lot of features, it can take a long time to
initially transport the features to the client. The feature layer supports several display
modes that can help ease this burden of working with a large number of features.
We'll examine each of these display modes in this chapter.

The Feature Layer

[76]

A feature layer honors any definition expressions, scale dependencies, and other
properties configured on the layer in a map service. Using a feature layer, you
can access related tables, perform queries, display time slices, work with feature
attachments, and do other useful things.

FeatureLayer

Selection

Query
related

Time

Editing

Definition
expression

Query

In this chapter, we will cover the following topics:

•	 Creating a FeatureLayer object
•	 Defining display modes
•	 Setting a definition expression
•	 Feature selection
•	 Rendering the feature layer
•	 Time to practice with FeatureLayer

Creating a FeatureLayer object
A feature layer must reference a layer from either a map service or a feature service.
Use a map service if you just want to retrieve geometries and attributes from the
server and symbolize them yourself. Use a feature service if you want to benefit from
symbols in the service's source map document. Also, use a feature service if you plan
to edit with the feature layer. Feature layers honor any feature-editing templates
configured in the source map document.

Chapter 4

[77]

In the following code example, you will get details on how to create a FeatureLayer
object using its constructor. With tiled and dynamic layers, you simply provide a
pointer to the rest endpoint but with feature layer, you need to point to a specific
layer in the service. In the following code example, we will create a FeatureLayer
object from the first layer in the service, which is indicated by the number 0. The
constructor for FeatureLayer also accepts options such as the display mode, output
fields, and info template. Here, the display mode is set to SNAPSHOT, which would
indicate that we are probably dealing with a fairly small dataset. We'll cover the
various types of display modes that can be defined for a feature layer as well as
when they should be used, in the next section:

var earthquakes = new FeatureLayer("http://servicesbeta.esri.com/
ArcGIS/rest/services/Earthquakes/Since_1970/MapServer/0",{ mode:
FeatureLayer.MODE_SNAPSHOT, outFields: ["Magnitude"]});

Optional constructor parameters
In addition to accepting a required layer from the map or feature service for the
FeatureLayer object as the first parameter, you can also pass a JSON object that
defines various options to the constructor. A wide variety of options can be passed
into the constructor. I'll discuss the most commonly used options.

The outFields property can be used to restrict the fields that are returned with the
FeatureLayer object. For performance reasons, it's best to only include the fields that
you need for the application rather than accepting the default of returning all fields.
Only return the fields that you absolutely need for your application. Doing this will
ensure that your application performs better. In the following highlighted code, we've
defined the outFields property to return only the Date and Magnitude fields:

var earthquakes = new FeatureLayer("http://servicesbeta.esri.com/
ArcGIS/rest/services/Earthquakes/Since_1970/MapServer/0",{ mode:
FeatureLayer.MODE_SNAPSHOT, outFields: ["Date", "Magnitude"]});

The refreshInterval property defines how often (in minutes) to refresh the
layer. This property can be used when you have a FeatureLayer object containing
data that changes often, including new records, or perhaps records that have
been updated or deleted. The following highlighted code sets a refresh interval
of 5 minutes:

var earthquakes = new FeatureLayer("http://servicesbeta.esri.com/
ArcGIS/rest/services/Earthquakes/Since_1970/MapServer/0",{ mode:
FeatureLayer.MODE_SNAPSHOT, outFields: ["Magnitude"], refreshInterval:
5});

The Feature Layer

[78]

To define the attributes and styling that should be displayed in an info window
when a feature is clicked on, you can set the infoTemplate property as explained in
the following code example:

function initOperationalLayer() {
 var infoTemplate = new InfoTemplate("${state_name}", "Population
(2000): ${pop2000:NumberFormat}");
 var featureLayer = new FeatureLayer("http://sampleserver6.
arcgisonline.com/arcgis/rest/services/USA/MapServer/2",{
 mode: FeatureLayer.MODE_ONDEMAND,
 outFields: ["*"],
 infoTemplate: infoTemplate
 });

 map.addLayer(featureLayer);
 map.infoWindow.resize(155,75);
 }

You may want to consider setting the displayOnPan property to false if you know
that Internet Explorer will be the primary browser for your application. By default,
this property is set to true but setting it to false will turn graphics off during pan
operations, thus improving the performance of the application on Internet Explorer.
The following code block explains this process in detail:

var earthquakes = new FeatureLayer("http://servicesbeta.esri.com/
ArcGIS/rest/services/Earthquakes/Since_1970/MapServer/0",{ mode:
FeatureLayer.MODE_SNAPSHOT, outFields: ["Magnitude"], displayOnPan:
false});

The display mode, defined with the mode parameter, is probably the most important
optional parameter. So, we'll cover this in more detail in the next few sections.

Defining display modes
When creating a feature layer, you need to specify a mode for retrieving features.
Because the mode determines when and how features are brought from the server
to the client, your choice can affect the speed and appearance of your application.
You have mode choices as shown in the following diagram:

Chapter 4

[79]

Display
modes

On-demand
mode

Snapshot
mode

Selection-
only mode

Snapshot mode
The snapshot mode retrieves all the features from the layer and streams them to the
client browser, where they are added to the map. So, you need to carefully consider
the size of your layer before using this mode. Generally, you will want to use this
mode only with small datasets. Large datasets in snapshot mode can significantly
degrade the performance of your application. The benefit of snapshot mode is that
since all features from the layer are returned to the client, there is no need to return
to the server for additional data. This raises the potential for a significant boost in
your application's performance.

ArcGIS imposes a limit of 1000 features that may be returned at any one time, though
this number is configurable through ArcGIS Server administration. In practical terms,
you will want to use this mode only when you're working with small datasets:

var earthquakes = new FeatureLayer("http://servicesbeta.esri.com/
ArcGIS/rest/services/Earthquakes/Since_1970/MapServer/0",{ mode:
FeatureLayer.MODE_SNAPSHOT, outFields: ["Magnitude"]});

The on-demand mode
The on-demand mode retrieves features only as and when needed. What this
amounts to is that all features within the current view extent are returned. Therefore,
each time a zoom or pan operation takes place, features are streamed to the client
from the server. This tends to work well with large datasets that won't operate
efficiently in snapshot mode. It does require a round trip to the server to fetch the
features each time the map extent changes but for large datasets, this is preferable.
The following code example shows you how to set a FeatureLayer object to the
ONDEMAND mode:

var earthquakes = new FeatureLayer("http://servicesbeta.esri.com/
ArcGIS/rest/services/Earthquakes/Since_1970/MapServer/0",{ mode:
FeatureLayer.MODE_ONDEMAND, outFields: ["Magnitude"]});

The Feature Layer

[80]

The selection-only mode
The selection-only mode does not request features initially. Instead, features are
returned only when a selection is made on the client. Selected features are streamed
to the client from the server. These selected features are then held on the client.
The following code example shows you how to set a FeatureLayer object to
SELECTION mode:

var earthquakes = new FeatureLayer("http://servicesbeta.esri.com/
ArcGIS/rest/services/Earthquakes/Since_1970/MapServer/0",{ mode:
FeatureLayer.MODE_SELECTION, outFields: ["Magnitude"]});

Setting a definition expression
Definition expressions are used to limit the features that are streamed to the client
to only those features that match the attribute constraints. FeatureLayer contains a
setDefinitionExpression() method that is used to create the definition expression.
All features that meet the specified criteria will be returned to be displayed on the
map. Expressions are built using traditional SQL expressions as seen in the following
code example:

FeatureLayer.setDefinitionExpression("PROD_GAS='Yes'");

You can retrieve the currently set definition expression by using the FeatureLayer.
getDefinitionExpression() method, which returns a string containing
the expression.

Feature selection
The feature layer also supports feature selection, which is simply a subset of features
in a layer that is used for viewing, editing, analysis, or input to other operations.
Features are added to or removed from a selection set using either spatial or attribute
criteria and can easily be drawn with a different symbol than those used in the
normal display of a layer. The selectFeatures(query) method on FeatureLayer
is used to create a selection set and takes a Query object as input. This has been
explained in the following code example:

var selectQuery = new Query();
selectQuery.geometry = geometry;
featureLayer.selectFeatures(selectQuery,FeatureLayer.SELECTION_NEW);

Chapter 4

[81]

We haven't discussed the Query object yet but as you can imagine, it is used to
define the input parameters for an attribute or a spatial query. In this particular
code example, a spatial query has been defined.

The following screenshot shows a feature that has been selected. A selection symbol
has been applied to the selected feature:

Any definition expression set on a layer either through the application or on the layer
inside the map document file will be honored. Setting a symbol that is to be used for
the selected features is quite easy and simply involves creating a symbol and then
using the setSelectionSymbol() method on FeatureLayer. Selected features will
automatically be assigned this symbol. You can opt to define a new selection set, add
features to an existing selection set, or remove features from a selection set through
various constants, including SELECTION_NEW, SELECTION_ADD, and SELECTION_
SUBTRACT. A new selection set is defined in the following code example:

featureLayer.selectFeatures(selectQuery,FeatureLayer.SELECTION_NEW);

In addition, you can define the callback and errback functions to process the returned
features or handle any errors.

The Feature Layer

[82]

Rendering a feature layer
A renderer can be used to define a set of symbols for a feature layer or a graphics
layer. These symbols can have different colors and/or sizes that are based on
an attribute. The five types of renderer in the ArcGIS Server API for JavaScript
include SimpleRenderer, ClassBreaksRenderer, UniqueValueRenderer,
DotDensityRenderer, and TemporalRenderer. We'll examine each of these
renderers in this section.

The rendering process will be the same, regardless of the type of renderer you use.
You first need to create an instance of the renderer, define the symbology for the
renderer, and finally apply the renderer to the feature layer. This rendering process
has been illustrated in the following diagram:

Create renderer

Define symbology

Apply to FeatureLayer

The following code example shows the basic programmatic structure to create
and apply a renderer to a FeatureLayer object:

var renderer = new ClassBreaksRenderer(symbol, "POPSQMI");
renderer.addBreak(0, 5, new SimpleFillSymbol().setColor(new
Color([255, 0, 0, 0.5])));
renderer.addBreak(5.01, 10, new SimpleFillSymbol().setColor(new
Color([255, 255, 0, 0.5])));
renderer.addBreak(10.01, 25, new SimpleFillSymbol().setColor(new
Color([0, 255, 0, 0.5])));
renderer.addBreak(25.01, Infinity, new SimpleFillSymbol().setColor(new
Color([255, 128, 0, 0.5])));
featureLayer.setRenderer(renderer);

Chapter 4

[83]

The simplest type of renderer is SimpleRenderer, which simply applies the same
symbol for all graphics.

UniqueValueRenderer can be used to symbolize graphics, based on a matching
attribute that is typically a field containing string data.

For example, if you have a state feature class, you might want to symbolize each
feature based on a region name. Each region would have a different symbol.
The following code example shows how you can programmatically create a
UniqueValueRenderer and add values and symbols to the structure:

var renderer = new UniqueValueRenderer(defaultSymbol, "REGIONNAME");
renderer.addValue("West", new SimpleLineSymbol().setColor(new
Color([255, 255, 0, 0.5])));
renderer.addValue("South", new SimpleLineSymbol().setColor(new
Color([128, 0, 128, 0.5])));
renderer.addValue("Mountain", new SimpleLineSymbol().setColor(new
Color([255, 0, 0, 0.5])));

The Feature Layer

[84]

A ClassBreaksRenderer works with data that is stored as a numeric attribute.
Each graphic will be symbolized according to the value of that particular attribute,
in accordance with breaks in the data. In the following screenshot, you see an example
of a ClassBreaksRenderer that has been applied to county-level data for Kansas:

The breaks define the values at which the symbol will change. For example,
with a Parcel feature class, you might want to symbolize parcels based on values
found in the PROPERTYVALUE field. You'd first want to create a new instance of
ClassBreaksRenderer and then define the breaks for the data. The Infinity and
–Infinity values can be used as the lower and upper boundaries for your data if
needed, as seen in the following code example, where we use the Infinity keyword
to signify a class break for any values greater than 250,000:

var renderer = new ClassBreaksRenderer(symbol, "PROPERTYVALUE");
renderer.addBreak(0, 50000, new SimpleFillSymbol().setColor(new
Color([255, 0, 0, 0.5])));
renderer.addBreak(50001, 100000, new SimpleFillSymbol().setColor(new
Color([255, 255, 0, 0.5])));
renderer.addBreak(100001, 250000, 50000, new SimpleFillSymbol().
setColor(new Color([0, 255, 0, 0.5])));
renderer.addBreak(250001, Infinity, new SimpleFillSymbol().
setColor(new Color([255, 128, 0, 0.5])));

A TemporalRenderer provides time-based rendering of features. This type of
renderer is often used to display historical information or near real-time data.
It allows you to define how observations and tracks are rendered.

Chapter 4

[85]

The following code example explains how to create a TemporalRenderer
using a ClassBreaksRenderer and applying it to a featureLayer object.
The ClassBreaksRenderer is used to define symbols by magnitude; the larger
the magnitude, the larger the symbol:

// temporal renderer
var observationRenderer = new ClassBreaksRenderer(new
SimpleMarkerSymbol(), "magnitude");

observationRenderer.addBreak(7, 12, new SimpleMarkerSymbol(S
impleMarkerSymbol.STYLE_SQUARE, 24, new SimpleLineSymbol().
setStyle(SimpleLineSymbol.STYLE_SOLID).setColor(new
Color([100,100,100])),new Color([0,0,0,0])));

observationRenderer.addBreak(6, 7, new SimpleMarkerSymbol(S
impleMarkerSymbol.STYLE_SQUARE, 21, new SimpleLineSymbol().
setStyle(SimpleLineSymbol.STYLE_SOLID).setColor(new
Color([100,100,100])),new Color([0,0,0,0])));

observationRenderer.addBreak(5, 6, new SimpleMarkerSymbol(
SimpleMarkerSymbol.STYLE_SQUARE, 18,new SimpleLineSymbol().
setStyle(SimpleLineSymbol.STYLE_SOLID).setColor(new
Color([100,100,100])),new Color([0,0,0,0])));

observationRenderer.addBreak(4, 5, new SimpleMarkerSymbol(
SimpleMarkerSymbol.STYLE_SQUARE, 15,new SimpleLineSymbol().
setStyle(SimpleLineSymbol.STYLE_SOLID).setColor(new
Color([100,100,100])),new Color([0,0,0,0])));

observationRenderer.addBreak(3, 4, new SimpleMarkerSymbol(
SimpleMarkerSymbol.STYLE_SQUARE, 12,new SimpleLineSymbol().
setStyle(SimpleLineSymbol.STYLE_SOLID).setColor(new
Color([100,100,100])),new Color([0,0,0,0])));

observationRenderer.addBreak(2, 3, new SimpleMarkerSymbol(
SimpleMarkerSymbol.STYLE_SQUARE, 9,new SimpleLineSymbol().
setStyle(SimpleLineSymbol.STYLE_SOLID).setColor(new
Color([100,100,100])),new Color([0,0,0,0])));

observationRenderer.addBreak(0, 2, new SimpleMarkerSymbol(
SimpleMarkerSymbol.STYLE_SQUARE, 6,new SimpleLineSymbol().
setStyle(SimpleLineSymbol.STYLE_SOLID).setColor(new
Color([100,100,100])),new Color([0,0,0,0])));

var infos = [
 { minAge: 0, maxAge: 1, color: new Color([255,0,0])},
 { minAge: 1, maxAge: 24, color: new Color([49,154,255])},
 { minAge: 24, maxAge: Infinity, color: new Color([255,255,8])}
];

www.allitebooks.com

http://www.allitebooks.org

The Feature Layer

[86]

var ager = new TimeClassBreaksAger(infos, TimeClassBreaksAger.UNIT_
HOURS);
var renderer = new TemporalRenderer(observationRenderer, null, null,
ager);
featureLayer.setRenderer(renderer);

An ager symbol has been defined here, which determines how the feature's symbol
changes as time progresses.

The final type of renderer that we'll discuss is the DotDensityRenderer.
The following screenshot depicts a map that has been created using a
DotDensityRenderer:

This type of renderer enables you to create dot density visualizations of data that
show spatial density of a discrete spatial phenomenon such as population density.

Chapter 4

[87]

The following code example explains the creation of a DotDensityRenderer based
on the pop field and defines a dotValue of 1000 and dotSize equal to 2. This will
create one dot per two pixels in size for a population of 1000:

var dotDensityRenderer = new DotDensityRenderer({
 fields: [{
 name: "pop",
 color: new Color([52, 114, 53])
 }],
 dotValue: 1000,
 dotSize: 2
});

layer.setRenderer(dotDensityRenderer);

Time to practice with FeatureLayer
In this exercise, you will use the FeatureLayer object to set a definition expression
on a layer, draw the features that match the definition expression as graphics, and
respond to a hover event over the features.

Perform the following steps to complete the exercise:

1.	 Open the JavaScript Sandbox at http://developers.arcgis.com/en/
javascript/sandbox/sandbox.html.

2.	 Remove the JavaScript content from the <script> tag that I have highlighted
in the following code block:
 <script>
 dojo.require("esri.map");

functioninit(){
var map = new esri.Map("mapDiv", {
 center: [-56.049, 38.485],
 zoom: 3,
 basemap: "streets"
 });
 }
 dojo.ready(init);
 </script>

The Feature Layer

[88]

3.	 Create the variables that you'll use in the application inside the
<script> tag:
<script>
 var map;
</script>

4.	 Create the require() function that defines the resources you'll use in
this application:
<script type="text/javascript" language="Javascript">
 var map;
 require(["esri/map", "esri/layers/FeatureLayer", "esri/
symbols/SimpleFillSymbol",
"esri/symbols/SimpleLineSymbol", "esri/renderers/SimpleRenderer",
"esri/InfoTemplate", "esri/graphic", "dojo/on",
"dojo/_base/Color", "dojo/domReady!"],
 function(Map,FeatureLayer, SimpleFillSymbol,
 SimpleLineSymbol, SimpleRenderer, InfoTemplate, Graphic,
on, Color) {

 });

</script>

5.	 In your web browser, navigate to http://sampleserver1.arcgisonline.
com/ArcGIS/rest/services/Demographics/ESRI_Census_USA/
MapServer/5.
We will be using the states layer for this exercise. What we want to do is
apply a definition expression to the states layer that will display only those
states that have a median age greater than 36. These states will be displayed
as graphics on the map, and an info window will be displayed containing
the median age, median age for males, and median age for females for that
state when the user hovers the mouse over the states that meet the definition
expression. In addition, the state will be outlined in red. The fields we will
use from the states layer include STATE_NAME, MED_AGE, MED_AGE_M, and
MED_AGE_F.

6.	 Create the Map object as seen in the following code example:
<script type="text/javascript" language="Javascript">
 var map;
 require(["esri/map", "esri/layers/FeatureLayer", "esri/
symbols/SimpleFillSymbol",
 "esri/symbols/SimpleLineSymbol", "esri/renderers/
SimpleRenderer", "esri/InfoTemplate", "esri/graphic", "dojo/on",
 "dojo/_base/Color", "dojo/domReady!"],

Chapter 4

[89]

 function(Map,FeatureLayer, SimpleFillSymbol,
 SimpleLineSymbol, SimpleRenderer, InfoTemplate,
Graphic, on, Color) {
 map = new Map("mapDiv", {
 basemap: "streets",
 center: [-96.095,39.726], // long, lat
 zoom: 4,
 sliderStyle: "small"
 });

 });

 </script>

7.	 Add a map.load event that triggers the creation of a map.graphics.
mouse-out event, which clears any existing graphics and info windows.
The following code example explains this in detail:
map = new Map("map", {
 basemap: "streets",
 center: [-96.095,39.726], // long, lat
 zoom: 4,
 sliderStyle: "small"
});

 map.on("load", function() {
 map.graphics.on("mouse-out", function(evt) {
 map.graphics.clear();
 map.infoWindow.hide();
 });
 });

8.	 Create a new FeatureLayer object that points to the states layer that you
had examined earlier. You will also specify that the SNAPSHOT mode be
used to return the features, define the output fields, and set the definition
expression. Add the following code to your application for this purpose:
map.on("load", function() {
 map.graphics.on("mouse-out", function(evt) {
 map.graphics.clear();
 map.infoWindow.hide();
 });
});

var olderStates = new FeatureLayer("http://sampleserver1.
arcgisonline.com/ArcGIS/rest/services/Demographics/ESRI_Census_

The Feature Layer

[90]

USA/MapServer/5", {
 mode: FeatureLayer.MODE_SNAPSHOT,
 outFields: ["STATE_NAME", "MED_AGE", "MED_AGE_M", "MED_AGE_F"]
});
olderStates.setDefinitionExpression("MED_AGE > 36");

Here, we have used the new keyword to define a new instance of
FeatureLayer that points to the states layer at the rest endpoint noted in
the code. When defining a new instance of FeatureLayer, we have included
a couple of properties including mode and outFields. The mode property
can be set to SNAPSHOT, ONDEMAND, or SELECTION. Since the states layer
contains a relatively small number of features, we can use the SNAPSHOT
mode in this case. This mode retrieves all the features from the layer when
it is added to the map, and therefore does not require any additional trips
to the server to retrieve additional features from the layer. We are also
specifying the outFields property, which is an array of fields that will be
returned. We will be displaying these fields in an info window when the user
hovers over the state. Finally, we set our definition expression on the layer to
display only those features (states) where the median age is greater than 36.

9.	 In this step, you will create a symbol and apply a renderer to the features
(states) that are returned from the definition expression. You will also add
the FeatureLayer to the map. Add the following lines of code just below the
code that you added in the previous step:
var olderStates = new FeatureLayer("http://sampleserver1.
arcgisonline.com/ArcGIS/rest/services/Demographics/ESRI_Census_
USA/MapServer/5", {
 mode: FeatureLayer.MODE_SNAPSHOT,
 outFields: ["STATE_NAME", "MED_AGE", "MED_AGE_M", "MED_AGE_F"]
 });
 olderStates.setDefinitionExpression("MED_AGE > 36");

var symbol = new SimpleFillSymbol(SimpleFillSymbol.STYLE_
SOLID, new SimpleLineSymbol(SimpleLineSymbol.STYLE_SOLID, new
Color([255,255,255,0.35]), 1),new Color([125,125,125,0.35]));
 olderStates.setRenderer(new
SimpleRenderer(symbol));
map.addLayer(olderStates);

Chapter 4

[91]

10.	 Using the output fields that you defined earlier, create an InfoTemplate
object. Add the following lines of code to your application just below the
lines that you added in the previous step. Note the inclusion of the output
fields that are embedded inside brackets and preceded by a dollar sign:
var infoTemplate = new InfoTemplate();
infoTemplate.setTitle("${STATE_NAME}");
infoTemplate.setContent("Median Age: ${MED_AGE_M}
"
 + "Median Age - Male: ${MED_AGE_M}
"
 + "Median Age - Female: ${MED_AGE_F}");
map.infoWindow.resize(245,125);

11.	 Then, add the following lines of code to create a graphic that will be
displayed when the user hovers the mouse over a state:
var highlightSymbol = new SimpleFillSymbol(SimpleFillSymbol.STYLE_
SOLID,
new SimpleLineSymbol(SimpleLineSymbol.STYLE_SOLID,
 new Color([255,0,0]), new Color([125,125,125,0.35])));

12.	 The final step is to display the highlight symbol and info template that we
created in the previous steps. This happens each time the user hovers the
mouse over a state. Add the following code block below the last lines of
code that you entered previously. Here, we are using on() to wire an event
(mouse over) to a function, which will respond each time the event occurs.
The mouse-over event handler in this case will clear any existing graphics
from the GraphicsLayer object, create the info template that you created in
a previous step, create a highlight symbol and add it to the GraphicsLayer,
and then show the InfoWindow object. This has been explained in the
following code block:

olderStates.on("mouse-over", function(evt) {
 map.graphics.clear();
 evt.graphic.setInfoTemplate(infoTemplate);
 var content = evt.graphic.getContent();
 map.infoWindow.setContent(content);
 var title = evt.graphic.getTitle();
 map.infoWindow.setTitle(title);
 var highlightGraphic = new Graphic(evt.graphic.
geometry,highlightSymbol);
 map.graphics.add(highlightGraphic);
 map.infoWindow.show(evt.screenPoint,map.getInfoWindowAnchor(evt.
screenPoint));
});

The Feature Layer

[92]

You may want to review the solution file (featurelayer.html) in your
ArcGISJavaScriptAPI folder to verify that your code has been written correctly.

Execute the code by clicking on the Run button and you should see the following
output if everything has been coded correctly. You should see a map similar to the
following screenshot. Mouse over one of the highlighted states to see an info window
as shown in the following screenshot:

Summary
The JavaScript API for ArcGIS Server offers a FeatureLayer object to work with
client-side graphic features. This inherits from the graphics layer, but also offers
additional capabilities, such as the ability to perform queries and selections and
support definition expressions. A feature layer can also be used for web editing.
It differs from tiled and dynamic map service layers because feature layers bring
geometry information across to the client computer, to be drawn by the web browser.
This potentially cuts down on the round trips to the server and can improve the
performance of your application on the server side. A client can request the features it
needs, and perform selections and queries on those features without having to request
more information from the server. The FeatureLayer object is especially appropriate
for layers that respond to user interactions such as mouse clicks or hovers.

Using Widgets and Toolbars
As a GIS web application developer, you want to focus on building a functionality
specific to the application you are constructing. Spending valuable time and effort
adding basic GIS functions such as zooming and panning to your application
detracts from what should be your primary focus. Many applications also need
to add an overview map, legend, or scale bar to be added to the user interface.
Fortunately, the API provides user interface widgets that you can drop directly
into your application and with a little configuration, they are ready to go.

The ArcGIS API for JavaScript also includes helper classes to add the navigation
and drawing toolbars to your application. In this chapter, you'll learn how easy
it is to add these user interface components to an application.

Let's start by examining a navigation sample that Esri has placed on their resource
center website. Open a web browser and go to http://developers.arcgis.com/
en/javascript/samples/toolbar_draw/. Take a look at the following screenshot:

Using Widgets and Toolbars

[94]

At first glance over the preceding screenshot, you'd think that the drawing toolbar
is simply a user interface component that you drop into your application, which is
not exactly the case. The ArcGIS API for JavaScript provides a toolbar helper class
called esri/toolbars/Draw to assist in accomplishing this task. In addition, the
API also provides a class to handle navigation tasks. What these helper classes do
is save you the work of drawing zoom boxes, capturing mouse clicks, and other
user-initiated events. As any experienced GIS web developer can tell you, this is no
small accomplishment. Adding these basic navigation capabilities into the helper
classes provided with the API can easily save hours of development work.

In this chapter, we'll cover the following topics:

•	 Adding toolbars to an application
•	 User interface widgets
•	 Feature editing

Adding toolbars to an application
There are two basic types of toolbars that you can add to your application using the
helper classes, Navigation and Draw, provided by the API. There is also an editing
toolbar that can be used to edit features or graphics through a web browser. We'll
discuss this toolbar in a later chapter.

Steps for creating a toolbar
The Navigation and Draw toolbars are not simply user interface components that
you can drop into your application. They are helper classes and there are several
steps that you need to take to actually create your toolbar with the appropriate
buttons. This to-do list for your toolbars may seem a little intimidating, but after you
do it once or twice, it becomes pretty simple. The following are the steps to do this,
and we'll discuss each item in detail:

1.	 Define the CSS styles for each button.
2.	 Create the buttons inside the toolbar.
3.	 Create an instance of esri/toolbars/Navigation or esri/toolbars/Draw.
4.	 Connect button events to handler functions.

Chapter 5

[95]

Defining CSS styles
The first thing you'll need to do is define the CSS styles for each button that you
intend to include on the toolbar. Each button on your toolbar will need an image,
text, or both, along with the width and height for the button. Each of these properties
are defined within the CSS inside a <style> tag as seen in the following code
snippet. In the code example shown in the following code snippet, a number of
buttons are being defined for the Navigation toolbar. Let's examine the Zoom
Out button and follow it through the entire process to make things a little simpler.
I've highlighted the Zoom Out button in the following code. As with all the other
buttons, we define an image to be used for the button (nav_zoomout.png) along with
the width and height of the button. In addition, the identifier for this style is defined
as .zoomoutIcon.

<style type="text/css">
 @import
 "http://js.arcgis.com/3.7/js/dojo/dijit/themes/claro/claro.css";
 .zoominIcon{ background-image:url(images/nav_zoomin.png);
 width:16px; height:16px; }
 .zoomoutIcon{ background-image:url(images/nav_zoomout.png);
 width:16px; height:16px; }
 .zoomfullextIcon{ background-
 image:url(images/nav_fullextent.png); width:16px;
 height:16px; }
 .zoomprevIcon{ background-
 image:url(images/nav_previous.png); width:16px;
 height:16px; }
 .zoomnextIcon{ background-image:url(images/nav_next.png);
 width:16px; height:16px; }
 .panIcon{ background-image:url(images/nav_pan.png);
 width:16px; height:16px; }
 .deactivateIcon{ background-
 image:url(images/nav_decline.png); width:16px;
 height:16px; }
</style>

Using Widgets and Toolbars

[96]

Creating buttons
The buttons can to be defined inside a <div> container with data-dojo-type of
the ContentPane dijit inside BorderContainer, as shown in the following code
example. When creating each button, you will need to define the CSS style it should
reference and what should happen when the button is clicked. The buttons use the
iconClass attribute to reference a CSS style. In the case of the Zoom Out button in
our example, the iconClass attribute references zoomoutIcon, which is a style we
defined earlier. The zoomoutIcon style defines an image to use for the button along
with a width and height for the button. Take a look at the following code snippet:

<div id="mainWindow" data-dojo-type="dijit/layout/BorderContainer"
 data-dojo-props="design:'headline'">
 <div id="header"data-dojo-type="dijit/layout/ContentPane"
 data-dojo-props="region:'top'">
 <button data-dojo-type="dijit/form/Button"
 iconClass="zoominIcon">Zoom In</button>
 <button data-dojo-type="dijit/form/Button"
 iconClass="zoomoutIcon" >Zoom Out</button>
 <button data-dojo-type="dijit/form/Button"
 iconClass="zoomfullextIcon" >Full Extent</button>
 <button data-dojo-type ="dijit/form/Button"
 iconClass="zoomprevIcon" >Prev Extent</button>
 <button data-dojo-type="dijit/form/Button"
 iconClass="zoomnextIcon" >Next Extent</button>
 <button data-dojo-type="dijit/form/Button"
 iconClass="panIcon">Pan</button>
 <button data-dojo-type="dijit/form/Button"
 iconClass="deactivateIcon" >Deactivate</button>
 </div>
</div>

The preceding code block defines the buttons on the toolbar. Each button is created
using a Button user interface control provided by Dijit (a subproject of Dojo). Each
control is enclosed within a <button> tag inside the <body> tag of the web page with
all the buttons being enclosed by the surrounding the <div> tag that contains the
ContentPane dijit.

Creating an instance of the Navigation toolbar
Now that the visual interface for the buttons is complete, we need to create an instance
of esri/toolbars/Navigation and wire up the events and event handlers. Creating
an instance of the Navigation class is as easy as calling the constructor and passing
in a reference to Map as you'll see shortly. However, you'll first want to make sure that
you add a reference to esri/toolbars/navigation. The following code example

Chapter 5

[97]

adds references to the Navigation toolbar, creates the toolbar, connects click events to
the buttons, and activates the tools. The relevant lines of code have been highlighted
and commented so that you understand each section:

<script>
 var map, toolbar, symbol, geomTask;

 require([
 "esri/map",
 "esri/toolbars/navigation",
 "dojo/parser", "dijit/registry",

 "dijit/layout/BorderContainer", "dijit/layout/ContentPane",
 "dijit/form/Button", "dojo/domReady!"
], function(
 Map, Navigation,
 parser, registry
) {
 parser.parse();

 map = new Map("map", {
 basemap: "streets",
 center: [-15.469, 36.428],
 zoom: 3
 });

 map.on("load", createToolbar);

 // loop through all dijits, connect onClick event
 // listeners for buttons to activate navigation tools
 registry.forEach(function(d) {
 // d is a reference to a dijit
 // could be a layout container or a button
 if (d.declaredClass === "dijit.form.Button") {
 d.on("click", activateTool);
 }
 });

 //activate tools
 function activateTool() {
 var tool = this.label.toUpperCase().replace(/ /g, "_");
 toolbar.activate(Navigation[tool]);
 }

Using Widgets and Toolbars

[98]

 //create the Navigation toolbar
 function createToolbar(themap) {
 toolbar = new Navigation(map);

 });
 </script>

Hopefully, the previous Navigation toolbar example has illustrated the steps to add
a navigation toolbar to your web mapping application through the JavaScript API.
You no longer have to be concerned with adding in JavaScript code to draw and
handle the extent rectangle or capture mouse coordinates for a pan operation. In
addition, the user interface components of the toolbar can be created easily through
various user interface controls supplied by the Dijit library. The Draw class makes it
equally easy to support the drawing of geometries such as points, lines, and polygons
within a similar toolbar.

User interface widgets
The API for JavaScript comes with many out of the box widgets that you can drop
into your application for enhanced productivity. Included are the BasemapGallery,
Bookmarks, Print, Geocoder, Gauge, Measurement, Popup, Legend, Scalebar,
OverviewMap, Editor, Directions, HistogramTimeSlider, HomeButton,
LayerSwipe, LocateButton, TimeSlider, and Analysis widgets. Widgets differ
from the buttons and tools you create as part of the Navigation or Draw toolbars we
discussed earlier. These widgets are out of the box functionalities that you can drop
into your application with just a few lines of code as opposed to the toolbars, which
were just helper classes that require a fair amount of HTML, CSS, and JavaScript code.

The BasemapGallery widget
The BasemapGallery widget displays a collection of basemaps from ArcGIS.com and/
or a user-defined set of map or image services. When a basemap is selected from the
collection, the current basemap is removed and the newly selected basemap appears.
When adding custom maps to the basemap gallery, they will need to have the same
spatial reference as the other layers in the gallery. When using layers from ArcGIS.
com, this would be the Web Mercator reference with wkids 102100, 102113, or 3857
(well known IDs or 'wkids' are unique identifiers for a spatial reference system).
It is also recommended that all basemaps be tiled layers for performance reasons.

Chapter 5

[99]

When creating a BasemapGallery widget, there are a number of parameters that you
can supply in the constructor as shown in the preceding screenshot, which include
the ability to show ArcGIS basemaps, define one or more custom basemaps for
inclusion in the gallery, supply a Bing maps key and a reference to the map where
the gallery will be placed, and so on. After creating the BasemapGallery widget, you
need to call the startup() method to prepare it for user interaction. Take a look at
the following code snippet:

require(["esri/dijit/Basemap", ...
], function(Basemap, ...) {
 var basemaps = [];
 var waterBasemap = new Basemap({
 layers: [waterTemplateLayer],
 title: "Water Template",
 thumbnailUrl: "images/waterThumb.png"
 });
 basemaps.push(waterBasemap);
...
});

Using Widgets and Toolbars

[100]

In the preceding code sample, a new Basemap object is created with a title, thumbnail
image, and an array containing a single layer. This Basemap object is then pushed
into an array of basemaps that will be added to the widget.

The Bookmarks widget
The Bookmarks widget is used to display a set of named geographic extents to the end
user. Clicking on a bookmark name from the widget will automatically set the extent
of the map to the extent provided for the bookmark. Using the widget, you can add
new bookmarks, delete existing bookmarks, and update bookmarks. Bookmarks are
defined in JavaScript code as JSON objects with properties that define the name, extent,
and bounding coordinates of the bookmark. To add a bookmark to the widget, you call
Bookmark.addBookmark(). Take a look at the following screenshot:

Then take a look at the following code snippet:

require([
"esri/map", "esri/dijit/Bookmarks", "dojo/dom", ...
], function(Map, Bookmarks, dom, ...) {
 var map = new Map(...);
 var bookmarks = new Bookmarks({
 map: map,
 bookmarks: bookmarks
 }, dom.byId('bookmarks'));
...
});

In the previous code example, a new Bookmarks object is created. It is attached to the
map and a list of bookmarks in the JSON format is added.

Chapter 5

[101]

The Print widget
The Print widget is a much-welcomed tool, which simplifies printing maps from
web applications. It uses a default or user-defined layout for the map. This widget
does require the use of an ArcGIS Server 10.1 or higher export web map task. Take a
look at the following figure:

Then take a look at the following code snippet:

require([
"esri/map", "esri/dijit/Print", "dojo/dom"...
], function(Map, Print, dom, ...) {
 var map = new Map(...);
 var printer = new Print({
 map: map,
 url: " http://servicesbeta4.esri.com/arcgis/rest/services/
Utilities/ExportWebMap/GPServer/Export%20Web%20Map%20Task"
 }, dom.byId("printButton"));
...
});

In the previous code example, a new Print widget is created. The URL property
is used to point the widget to a Print task and the widget is attached to a HTML
element on the page.

Using Widgets and Toolbars

[102]

The Geocoder widget
The Geocoder widget allows you to easily add geocoding functionality to your
application. This widget includes a single textbox that autofilters results as the end
user begins typing in an address. Autocompletion is enabled by setting the
autoComplete property to true. By default, the Geocoder widget uses the ESRI
World Locator service. You can change this by setting the geocoder property.
Take a look at the following screenshot:

You can also automatically append values to any string that the user enters. For
example, in a local application, you might want to always append a specific city and
state to any address entered. This is done through the suffix property. To enable
the map to display the location of the geocoded address, you can set autoNavigate
to true. It is certainly possible for more than one potential location to be returned
from Locator. You can set a maximum number of returned locations by setting the
maxLocations property. In the practice exercise coming up in the next section,
you'll learn how to add the Geocoder widget to your applications.

Time to practice with the Geocoder widget
In this exercise, you'll learn how to add the Geocoder widget to an application.

1.	 Open the ArcGIS API for JavaScript Sandbox available at http://
developers.arcgis.com/en/javascript/sandbox/sandbox.html.

2.	 Alter the <style> tag so that it appears as follows:
<style>
html, body, #mapDiv {
height:100%;

Chapter 5

[103]

width:100%;
margin:0;
padding:0;
}
body {
background-color:#FFF;
overflow:hidden;
font-family:"Trebuchet MS";
}
#search {
display: block;
position: absolute;
z-index: 2;
top: 20px;
left: 75px;
}
</style>

3.	 Remove the JavaScript content from the <script> tag, highlighted
as follows:
<script>
dojo.require("esri.map");

function init(){
var map = new esri.Map("mapDiv", {
center: [-56.049, 38.485],
zoom: 3,
basemap: "streets"
 });
 }
dojo.ready(init);
</script>

4.	 You already have a <div> container for the map. In this step, you'll create a
second <div> tag that will serve as the container for the Geocoding widget.
Add the container for the widget as shown in the following highlighted code.
Make sure you give the <div> tag a particular id of search. This corresponds
to the CSS styling we defined at the top of the file and highlighted in the
following code snippet. It connects the HTML <div> tag to the CSS:
<body class="tundra">
 <div id="search"></div>
 <div id="mapDiv"></div>
</body>

Using Widgets and Toolbars

[104]

5.	 Create variables to hold the map and the geocoder object as follows:
<script>
var map, geocoder;
</script>

6.	 In the <script> tag, add the require() function and create a Map object
as follows:
<script>
var map, geocoder;

require([
 "esri/map", "esri/dijit/Geocoder", "dojo/domReady!"
], function(Map, Geocoder) {
map = new Map("mapDiv",{
basemap: "streets",
center:[-98.496,29.430], //long, lat
zoom: 13
 });
 });
</script>

7.	 Create the geocoding widget as follows:
require([
 "esri/map", "esri/dijit/Geocoder", "dojo/domReady!"
], function(Map, Geocoder) {
 map = new Map("map",{
 basemap: "streets",
 center:[-98.496,29.430], //long, lat
 zoom: 13
 });

 var geocoder = new Geocoder({
 map: map,
 autoComplete: true,
 arcgisGeocoder: {
 name: "Esri World Geocoder",
 suffix: " San Antonio, TX"
 }
 },"search");
 geocoder.startup();

});

Chapter 5

[105]

The entire script should appear as follows:
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;
 charset=utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=7, IE=9,
 IE=10">
<meta name="viewport" content="initial-scale=1,
 maximum-scale=1,user-scalable=no"/>
<title>Geocoding Widget API for JavaScript | Simple
 Geocoding</title>
<link rel="stylesheet"
 href="http://js.arcgis.com/3.7/js/esri/css/esri.css">
<style>
html, body, #mapDiv {
height:100%;
width:100%;
margin:0;
padding:0;
 }
 #search {
display: block;
position: absolute;
z-index: 2;
top: 20px;
left: 74px;
 }
</style>
<script src="http://js.arcgis.com/3.7/"></script>
<script>
var map, geocoder;

require([
 "esri/map", "esri/dijit/Geocoder", "dojo/
domReady!"
], function(Map, Geocoder) {
map = new Map("mapDiv",{
basemap: "streets",
center:[-98.496,29.430], //long, lat
zoom: 13
 });

var geocoder = new Geocoder({

Using Widgets and Toolbars

[106]

map: map,
autoComplete: true,
arcgisGeocoder: {
name: "Esri World Geocoder",
suffix: " San Antonio, TX"
 }
 },"search");
geocoder.startup();

 });
</script>
</head>
<body>
<div id="search"></div>
<div id="mapDiv"></div>
</body>
</html>

8.	 Click on the Run button to execute the code. You should see something
similar to the following screenshot. Notice the Geocoder widget.

Chapter 5

[107]

9.	 Begin typing an address for San Antonio, TX. You can use 1202 Sand
Wedge as a sample. Autocompletion should kick in as you begin typing the
address. When you see the address, select it from the list. The widget will
geocode the address and positions the map so that the address is centered
on the map, as shown in the following screenshot:

The Gauge widget
The Gauge widget displays numeric data from FeatureLayer or GraphicsLayer in a
semicircular gauge interface. You can define the color for the gauge indicator, the field
to use for the numeric data that drives the gauge, a label field, a layer to reference, a
maximum data value, a title, and a lot more. Take a look at the following screenshot:

Using Widgets and Toolbars

[108]

Then take a look at the following code snippet:

require([
 "esri/dijit/Gauge", ...
], function(Gauge, ...) {
var gaugeParams = {
 "caption": "Hurricane windspeed.",
 "color": "#c0c",
 "dataField": "WINDSPEED",
 "dataFormat": "value",
 "dataLabelField": "EVENTID",
 "layer": fl, //fl previously defined as FeatureLayer
 "maxDataValue": 120,
 "noFeatureLabel": "No name",
 "title": "Atlantic Hurricanes(2000)",
 "unitLabel": "MPH"
 };
var gauge = new Gauge(gaugeParams, "gaugeDiv");
 ...
});

The previous code example shows the creation of a Gauge widget. A number of
parameters are being passed into the constructor for the gauge, including a caption,
color, data field, layer, max data value, and more.

The Measurement widget
The Measurement widget provides three tools that enable the end user to measure
the length and area as well as obtain the coordinates of the mouse. Take a look at the
following screenshot:

Chapter 5

[109]

The Measurement widget also allows you to change the units of measurement
as follows:

var measurement = new Measurement({
 map: map
}, dom.byId("measurementDiv"));
measurement.startup();

The previous code example shows how to create an instance of the Measurement
widget and add it to the application.

The Popup widget
The Popup widget is functionally similar to the default info window in that it is
used to display attribute information about features or graphics. In fact, starting
with Version 3.4 of the API, this widget is now the default window for displaying
attributes instead of the infoWindow parameter. However, it also contains additional
functionalities such as the ability to zoom and highlight features, handling of
multiple selections, and a button to maximize the window. The interface can also
be styled using CSS. Please refer to the following screenshot as an example of the
content that can be displayed in the Popup widget.

Starting with version 3.4, the Popup widget supports rendering text in a right-to-left
(RTL) orientation to support RTL languages such as Hebrew and Arabic. RTL support
will automatically apply if the page direction is set to RTL using the dir attribute. The
default value is left-to-right (LTR). Take a look at the following code snippet:

//define custom popup options
var popupOptions = {
 markerSymbol: new SimpleMarkerSymbol("circle", 32, null, new
Color([0, 0, 0, 0.25])),

Using Widgets and Toolbars

[110]

 marginLeft: "20",
 marginTop: "20"
};
//create a popup to replace the map's info window
var popup = new Popup(popupOptions, dojo.create("div"));

map = new Map("map", {
 basemap: "topo",
 center: [-122.448, 37.788],
 zoom: 17,
 infoWindow: popup
});

In the previous code example, a JSON popupOptions object is created to define
the symbol and margin of the pop up. This popupOptions object is then passed
into the constructor for the Popup object. Finally, the Popup object is passed into
the infoWindow parameter, which specifies that the Popup object should be used
as the info window.

The Legend widget
The Legend widget displays a label and symbols for some or all the layers in the
map. It does have the ability to respect scale dependencies so that the legend values
updates to reflect layer visibility at various scale ranges as you zoom in or out of
the application. The Legend widget supports ArcGISDynamicMapServiceLayer,
ArcGISTiledMapServiceLayer, and FeatureLayer.

Chapter 5

[111]

When creating a new instance of the Legend widget, you can specify the various
parameters that control the contents and display characteristics of the legend.
The arrangement parameter can be used to specify the alignment of the legend
within its container HTML element and can be defined as alignment left or right.
The autoUpdate property can be set to true or false and if true, the legend will
automatically update its parameters when the map scale changes or layers are added
or removed from the map. The layerInfos parameter is used to specify a subset
of layers to use in the legend, and respectCurrentMapScale can be set to true to
trigger automatic legend updates based on the scale ranges for each layer. Finally,
you need to call the startup() method to display the newly created legend:

var layerInfo = dojo.map(results, function(layer,index){
 return {
 layer: layer.layer,
 title: layer.layer.name
 };
});
if(layerInfo.length > 0){
 var legendDijit = new Legend({
 map: map,
 layerInfos: layerInfo
 },"legendDiv");
 legendDijit.startup();
}

The previous code example shows how to create a Legend widget and add it to
an application.

The OverviewMap widget
The OverviewMap widget is used to display the current extent of the main map
within the context of a larger area. This overview map gets updated each time the
main map extent changes. The extent of the main map is represented as a rectangle in
the overview map. This extent rectangle can also be dragged to change the extent of
the main map.

Using Widgets and Toolbars

[112]

An overview map can be displayed in a corner of the main map and also hidden
from display when not in use. It can also be placed inside a <div> element outside
the main map window or temporarily maximized for easy access to far away areas
of interest. Take a look at the following screenshot:

The OverviewMap widget takes a number of optional parameters in the constructor
for the object. These parameters allow you to control features such as where the
overview map is placed in relation to the main map, the base layer to use for the
overview map, the fill color for the extent rectangle, the appearance of a maximize
button, and the initial visibility of the overview map. Take a look at the following
code snippet:

var overviewMapDijit = new OverviewMap({map:map, visible:true});
overviewMapDijit.startup();

The previous code example illustrates the creation of an OverviewMap widget.

The Scalebar widget
The Scalebar widget is used to add a scalebar to the map or a specific HTML node.
The Scalebar widget displays units in either English or metric values. As of Version
3.4 of the API, it can show both English and metric values at the same time if you
set the scalebarUnits property to dual. You can also control scalebar positioning
through the attachTo parameter. By default, the scalebar is positioned in the
bottom-left-hand corner of the map. Take a look at the following screenshot:

Chapter 5

[113]

Then take a look at the following code snippet:

var scalebar = new esri.dijit.Scalebar({map:map,
 scalebarUnit:'english'});

The previous code sample illustrates the creation of a Scalebar widget with the
units in English.

The Directions widget
The Directions widget makes it easy to calculate directions between two or more
input locations. The resulting directions, displayed in the following screenshot, are
displayed with detailed turn-by-turn instructions and an optional map. If a map is
associated with the widget, the direction's route and stops are displayed on the map.
The stops displayed on the map are interactive, so you can click on them to display
a pop up with stop details or drag the stop to a new location to recalculate the route.
Take a look at the following screenshot:

Using Widgets and Toolbars

[114]

Take a look at the following code snippet:

var directions = new Directions({
map: map
},"dir");

directions.startup();

The previous code example shows the creation of a Directions object.

The HistogramTimeSlider dijit
The HistogramTimeSlider dijit provides a histogram chart representation of data
for time-enabled layers on a map. Through the UI, users can temporally control the
display of data with an extension to the TimeSlider widget.

Take a look at the following code snippet:

require(["esri/dijit/HistogramTimeSlider", ...],
function(HistogramTimeSlider, ...){
 var slider = new HistogramTimeSlider({
 dateFormat: "DateFormat(selector: 'date', fullYear: true)",
 layers : [layer],
 mode: "show_all",
 timeInterval: "esriTimeUnitsYears"
 }, dojo.byId("histogram"));
 map.setTimeSlider(slider);
});

Chapter 5

[115]

In the previous code example, a HistogramTimeSlider object is created and
associated with a map.

The HomeButton widget
The HomeButton widget is simply a button that you can add to your application,
which returns the map to the initial extent. Take a look at the following screeshot:

Then take a look at the following code snippet:

require([
 "esri/map",
"esri/dijit/HomeButton",
 "dojo/domReady!"
], function(
 Map, HomeButton
) {

var map = new Map("map", {
center: [-56.049, 38.485],
zoom: 3,
basemap: "streets"
 });

var home = new HomeButton({
map: map
 }, "HomeButton");
home.startup();

 });

The previous code example shows the creation of a HomeButton widget.

Using Widgets and Toolbars

[116]

The LocateButton widget
The LocateButton widget can be used to find and zoom to the current location of
the user. This widget uses the Geolocation API to find the user's current location.
Once the location is found, the map zooms to that location. The widget provides
options that allow the developer to define the following:

•	 The HTML5 geolocation position provides options for finding a location such
as maximumAge and timeout. The timeout property defines the maximum
amount of time that can be used to determine the location of a device, while
the maximumAge property defines the maximum amount of time before a new
location for the device is found.

•	 The ability to define a custom symbol that will be used to highlight the user's
current location on the map.

•	 The scale to zoom to when a location has been found.

Take a look at the following code snippet:

geoLocate = new LocateButton({
map: map,
highlightLocation: false
}, "LocateButton");
geoLocate.startup();

Chapter 5

[117]

The previous code example shows how to create an instance of the LocateButton
widget and add it to the map.

The TimeSlider widget
The TimeSlider widget is used for visualizing time-enabled layers. The TimeSlider
widget is configured to have two thumbs, so only the data within the time frame of
the two thumb locations is displayed. The setThumbIndexes() method determines
the initial location of each thumb. In this case, a thumb is added at the initial start
time and another thumb is positioned one time step higher up. Take a look at the
following screenshot:

Take a look at the following code snippet:

var timeSlider = new TimeSlider({
style: "width: 100%;"
}, dom.byId("timeSliderDiv"));
map.setTimeSlider(timeSlider);

var timeExtent = new TimeExtent();
timeExtent.startTime = new Date("1/1/1921 UTC");
timeExtent.endTime = new Date("12/31/2009 UTC");
timeSlider.setThumbCount(2);
timeSlider.createTimeStopsByTimeInterval(timeExtent, 2,
"esriTimeUnitsYears");
timeSlider.setThumbIndexes([0,1]);
timeSlider.setThumbMovingRate(2000);
timeSlider.startup

Using Widgets and Toolbars

[118]

The previous code example illustrates how you can create an instance of the
TimeSlider object and set various properties, including the start and end time.

The LayerSwipe widget
The LayerSwipe widget provides a simple tool to show a portion of a layer or layers
at the top of a map. You can easily compare the content of multiple layers in a map,
using this widget to reveal the contents of layer(s) on the map. The widget provides
horizontal, vertical, and scope viewing modes.

Take a look at the following code snippet:

varswipeWidget = new LayerSwipe({
type: "vertical",
map: map,
layers: [swipeLayer]
}, "swipeDiv");
swipeWidget.startup();

The previous code example shows how to create an instance of LayerSwipe and add
it to the map.

Chapter 5

[119]

Analysis widgets
A number of new analysis widgets have been introduced with the Version 3.7
release of the ArcGIS API for JavaScript. The analysis widgets provide access to
the ArcGIS Spatial Analysis Service, which allows you to perform common spatial
analyses on your hosted data via the API. The previous screenshot shows part of
the SummarizeNearby widget, which is one of the 12 Analysis widgets. The analysis
widgets include the following 12 widgets:

•	 AnalysisBase

•	 AggregatePoints

•	 CreateBuffers

•	 CreateDriveTimeAreas

•	 DissolveBoundaries

•	 EnrichLayer

•	 ExtractData

•	 FindHotSpots

•	 FindNearest

•	 MergeLayers

•	 OverlayLayers

•	 SummarizeNearby

•	 SummarizeWithin

An ArcGIS.com subscription is required for the widgets. Not only will you need to
store data using your ArcGIS.com account, but will also need to sign in to run an
analysis job as a credit-based service. Executing analysis tasks and hosting feature
services are not available to personal account users.

Feature editing
Simple feature editing is supported by the ArcGIS API for JavaScript when working
against data stored in an enterprise geodatabase format. What this means is that your
data needs to be stored in an enterprise geodatabase managed by ArcSDE.

Editing works on the concept of "last in wins." For example, if two people are editing
the same feature in a layer and both submit modifications, the last editor to submit
changes will overwrite any changes made by the first editor. Obviously, this could
pose a problem in some cases, so before implementing editing in your application,
you will need to examine how your data could be affected.

Using Widgets and Toolbars

[120]

Other characteristics of editing include support for domains and subtypes, template
style editing, and the ability to edit standalone tables and attachments. To use editing
options, you will need to use FeatureService and FeatureLayer. Editing requests
are submitted to the server using a HTTP post request, which in most cases will
require the use of a proxy.

Editing support includes feature editing, including the creation and deletion of
simple features, along with the ability to modify features through moves, cuts, union,
or reshaping. In addition, feature attributes can be edited, documents can be attached
to features, and comments can be added to features.

Feature service
Web editing requires a feature service to provide the symbology and feature geometry
of your data. The feature service is just a map service with the feature access capability
enabled. This capability allows the map service to expose feature geometries and their
symbols in a way that is easy for web applications to use and update.

Before you build a web editing application, you need to do some work to create a
feature service exposing the layers that you want to be edited. This involves setting
up a map document and optionally defining some templates for editing. Templates
allow you to preconfigure the symbology and attributes for some commonly
used feature types. For example, to prepare editing streams, you might configure
templates for "major rivers", "minor rivers", "streams", and "tributaries." Templates
are optional, but they make it easy for the end user of the application to create
common features.

Once your map is completed, you need to publish it to ArcGIS Server with the
Feature Access capability enabled. This creates REST URLs or endpoints to both
a map service and a feature service. You will use these URLs to reference the services
in your application.

Feature services are accessible in the web APIs through a FeatureLayer object,
which we examined earlier in a previous chapter. Feature layers can do a variety of
things and can reference either map services or feature services. However, when you
use FeatureLayer for editing purposes, you need to reference a feature service.

With the editing functionality, your web application tells the FeatureLayer which
attributes have changed and, if applicable, how the geometry has changed. The
FeatureLayer object also displays the updated features after editing. You can
call the applyEdits() method on the feature layer to apply the edits, which then
commits them to the database.

Chapter 5

[121]

The editing widgets
The ArcGIS API for JavaScript provides widgets to make it easier for you to
add editing function to your Web applications. These widgets include Editor,
TemplatePicker, AttributeInspector, and AttachmentEditor widgets. The
Editor widget is the default editing interface and includes everything you need to
edit a layer, and also allows you to choose the number and types of tools available.
TemplatePicker displays a preconfigured template containing symbols for each of
the layers in your map document. This template style editing allows your users to
simply pick a layer and begin editing. The AttributeInspector widget provides an
interface for editing the attributes of features and ensures valid data entry. Finally,
AttachmentEditor associates a downloadable file with a feature. We'll examine each
of these widgets in more detail.

The Editor widget
The Editor widget, shown in the following screenshot, provides the default editing
interface included with API. It combines the functionality of the other widgets to
provide everything that you need for editing a layer. You can choose the number
and types of tools that are available on the widget.

The Editor widget saves your edits immediately after they are made, for example,
as soon as you finish drawing a point. If you decide not to use the Editor widget,
you must determine when and how often you want to apply edits. Take a look at the
following screenshot:

Using Widgets and Toolbars

[122]

In the following code example, a new Editor object is created by passing a params
object into the constructor. The input params object is where the developer defines
the functionality that the editing application will include. In this case, only the
required options are defined. The required options are the map, the feature layers to
edit, and the URL to a geometry service. Take a look at the following code snippet:

var settings = {
 map: map,
 geometryService: new GeometryService("http://servicesbeta.esri.com/
arcgis/rest/services/Geometry/GeometryServer"),
 layerInfos:featureLayerInfos
 };

var params = {settings: settings};
var editorWidget = new Editor(params);
 editorWidget.startup();

The Editor widget provides out of the box editing capabilities using an editable
layer in a Feature Service. It combines the out of the box TemplatePicker,
AttachmentEditor, AttributeInspector, and GeometryService to provide feature
and attribute editing. For most editing applications, you should take advantage of the
Editor widget. This widget allows you to perform all the functions you see listed in
the following diagram:

Creature
Features

Move
Features

Delete
Features

Edit
Features

Edit
Vertices

Edit
Attributes

Attach
Documents

To use the Editor widget in your code, you'll need to first load the widget using
dojo.require. Required parameters for creating a new instance of Editor include
a reference to the Map object and a geometry service.

The TemplatePicker widget
The TemplatePicker widget displays a preconfigured set of features to the user,
with each feature symbolizing a layer in the service. Editing is initiated very simply
by selecting a symbol from the template and then clicking on the map to add
features. The symbols displayed in the template come from the editing templates
you defined in the feature service's source map or the symbols defined in the
application. TemplatePicker can also be used as a simple legend. Take a look
at the following screenshot:

Chapter 5

[123]

Take a look at the following code snippet:

function initEditing(results) {
 var templateLayers = dojo.map(results,function(result){
 return result.layer;
 });
 var templatePicker = new TemplatePicker({
 featureLayers: templateLayers,
 grouping: false,
 rows: 'auto',
 columns: 3
 },'editorDiv');
 templatePicker.startup();
 var layerInfos = dojo.map(results, function(result) {
 return {'featureLayer':result.layer};
 });
 var settings = {
 map: map,
 templatePicker: templatePicker,
 layerInfos:layerInfos
 };
 var params = {settings: settings};
 var editorWidget = new Editor(params);
 editorWidget.startup();
 }

In the previous code example, a new TemplatePicker object is created and attached
to the Editor widget.

Using Widgets and Toolbars

[124]

The AttributeInspector widget
The AttributeInspector widget, as shown in the following screenshot, provides
an interface for editing feature attributes over the web. It also ensures that the data
they enter is valid by matching the input to the expected data type. Domains are also
supported. For example, if a coded value domain is applied to a field, the permitted
values appear in a drop-down list, restricting the possibility of other values being
entered. If a field requires a date value, a calendar appears, helping the user to
supply a valid date. Take a look at the following screenshot:

The AttributeInspector widget exposes all the available attributes on the layer
for editing. If you want to restrict the available attributes, you must code your own
interface for entering and validating values. Take a look at the following code snippet:

var layerInfos = [{
 'featureLayer': petroFieldsFL,
 'showAttachments': false,
 'isEditable': true,
 'fieldInfos': [
 {'fieldName': 'activeprod', 'isEditable':true, 'tooltip': 'Current
Status', 'label':'Status:'},
 {'fieldName': 'field_name', 'isEditable':true, 'tooltip': 'The name
of this oil field', 'label':'Field Name:'},
 {'fieldName': 'approxacre', 'isEditable':false,'label':'Acreage:'},
 {'fieldName': 'avgdepth', 'isEditable':false,
 'label':'Average Depth:'},
 {'fieldName': 'cumm_oil', 'isEditable':false,
 'label':'Cummulative Oil:'},
 {'fieldName': 'cumm_gas', 'isEditable':false,
 'label':'Cummulative Gas:'}
]

Chapter 5

[125]

 }];

 var attInspector = new AttributeInspector({
 layerInfos:layerInfos
 }, domConstruct.create("div"));

 //add a save button next to the delete button
 var saveButton = new Button({ label: "Save", "class":
 "saveButton"});
 domConstruct.place(saveButton.domNode,
 attInspector.deleteBtn.domNode, "after");

saveButton.on("click", function(){
 updateFeature.getLayer().applyEdits(null, [updateFeature], null);
});

attInspector.on("attribute-change", function(evt) {
 //store the updates to apply when the save button is clicked
 updateFeature.attributes[evt.fieldName] = evt.fieldValue;
});

attInspector.on("next", function(evt) {
 updateFeature = evt.feature;
 console.log("Next " + updateFeature.attributes.objectid);
});

attInspector.on("delete", function(evt){
 evt.feature.getLayer().applyEdits(null,null,[feature]);
 map.infoWindow.hide();
});

map.infoWindow.setContent(attInspector.domNode);
map.infoWindow.resize(350, 240);

In the previous code example, an AttributeInspector widget is created and
added to the application. In addition, several event handlers including the attributes
change, next, and delete are set up to handle various attribute changes.

The AttachmentEditor widget
In some situations, you may want to associate a downloadable file with a feature.
For example, you might want users to be able to click on a feature representing a
water meter and see a link to an image of the meter. In the ArcGIS Web APIs, such
an associated downloadable file is known as a feature attachment.

Using Widgets and Toolbars

[126]

The AttachmentEditor widget, as seen in the following screenshot, is a widget that
helps users upload and view feature attachments. The AttachmentEditor widget
includes a list of current attachments (with a Remove button), as well as a Browse
button that can be used to upload more attachments. The AttachmentEditor widget
works well inside an info window, but can be placed elsewhere on the page.

In order to use feature attachments, attachments must be enabled on the source feature
class. You can enable attachments for a feature class in ArcCatalog or the Catalog
window in ArcMap. If the Editor widget detects that attachments are enabled,
it will include AttachmentEditor. Take a look at the following code snippet:

 var map;

 require([
 "esri/map",
 "esri/layers/FeatureLayer",
 "esri/dijit/editing/AttachmentEditor",
 "esri/config",

 "dojo/parser", "dojo/dom",

 "dijit/layout/BorderContainer", "dijit/layout/ContentPane",
"dojo/domReady!"
], function(
 Map, FeatureLayer, AttachmentEditor, esriConfig,
 parser, dom
) {
 parser.parse();
 // a proxy page is required to upload attachments
 // refer to "Using the Proxy Page" for more information:
 https://developers.arcgis.com/en/javascript/jshelp/ags_proxy.html
 esriConfig.defaults.io.proxyUrl = "/proxy";

Chapter 5

[127]

 map = new Map("map", {
 basemap: "streets",
 center: [-122.427, 37.769],
 zoom: 17
 });
 map.on("load", mapLoaded);

 function mapLoaded() {
 var featureLayer = new FeatureLayer("http://sampleserver3.
arcgisonline.com/ArcGIS/rest/services/SanFrancisco/311Incidents/
FeatureServer/0",{
 mode: FeatureLayer.MODE_ONDEMAND
 });

 map.infoWindow.setContent("<div id='content'
style='width:100%'></div>");
 map.infoWindow.resize(350,200);
 var attachmentEditor = new AttachmentEditor({}, dom.byId("content"));
 attachmentEditor.startup();

 featureLayer.on("click", function(evt) {
 var objectId = evt.graphic.attributes[featureLayer.
objectIdField];
 map.infoWindow.setTitle(objectId);
 attachmentEditor.showAttachments(evt.graphic,featureLayer);
 map.infoWindow.show(evt.screenPoint, map.
getInfoWindowAnchor(evt.screenPoint));
 });
 map.addLayer(featureLayer);
 }
 });

The previous code shows how to create an AttachmentEditor object and add it to
the application.

The Edit toolbar
There may be times when you don't want to use the default Editor widget shown in
the following screenshot:

Using Widgets and Toolbars

[128]

These situations would include times where you want to code your own editing
logic, particularly with regards to the client side display of features and graphics.
You can use the Edit toolbar in these cases. The Edit toolbar is simply a JavaScript
helper class that is part of the API. It helps with placing and moving vertices and
graphics. This toolbar is similar to the Navigation and Draw toolbars that we
examined earlier in the book.

Summary
Widgets and toolbars provide an easy way to add prebuilt functionalities to your
application without having to write a lot of code. The wide array of available
widgets has increased throughout the various releases of the API, and it is expected
that many new widgets will be available in future releases. Toolbars, though similar
to widgets, are helper classes that provide the functionality for adding navigation,
drawing functionality, and editing tools to your application. However, it is up to the
developer to define the appearance of the toolbars and buttons. In the next chapter,
you will learn how to create spatial and attribute queries using the Query and
QueryTask classes.

Performing Spatial and
Attribute Queries

Using ArcGIS Server Query tasks, you can perform attribute and spatial queries
against data layers in a map service that has been exposed. You can also combine
these query types to perform combined attribute and spatial queries. For example,
you might need to find all land parcels with an appraised value greater than $100,000
and that intersect the 100-year floodplain. This would be an example of a combined
query that includes both spatial and attribute components. In this chapter, you will
learn how to perform attribute and spatial queries using the Query, QueryTask, and
FeatureSet objects in the ArcGIS API for JavaScript.

We will cover the following topics in this chapter:

•	 Introducing tasks in ArcGIS Server
•	 An overview of attribute and spatial queries
•	 The Query object
•	 Executing the query with QueryTask
•	 Time to practice with spatial queries

Introducing tasks in ArcGIS Server
In the next few chapters of the book, we will discuss the many types of tasks that
can be performed with the ArcGIS API for JavaScript. Tasks give you the ability to
perform spatial and attribute queries, find features based on text searches, geocode
addresses, identify features, and perform various geometry operations including
buffering and distance measurements. All tasks are accessed through the esri/
tasks resource.

Performing Spatial and Attribute Queries

[130]

All tasks in the ArcGIS API for JavaScript follow the same pattern. This pattern is
easily recognizable once you've worked with one or more tasks for any length of
time. An input object is used to supply input parameters to the task. Using these
input parameters, the task performs its specific function and then an output object
is returned containing the results of the task.The following diagram illustrates how
each task accepts an input parameter object and returns an output object that can be
used in your application.

An overview of attribute and spatial
queries
As you'll see with other tasks, queries are performed using a sequence of objects that
typically include the input to the task, execution of the task, and a result set returned
from the task. The input parameters for an attribute or spatial query are stored in a
Query object which contains various parameters that can be set for the query. The
QueryTask object executes the task using the input provided in the Query object, and
a result set is returned in the form of a FeatureSet object, which contains an array of
Graphic features that you can then plot on the map.

The Query object, used as input to a QueryTask, is defined by properties that include
geometry, where, and text. The geometry property is used to input a geometry that
will be used in a spatial query and will be a point, line, or polygon geometry. The
where property is used to define an attribute query, while the text property is used
to perform a where clause containing a like operator. The Query object can also
contain a number of optional properties including the ability to define the fields that
will be returned as a result of the query, the output spatial reference for the returned
geometry, and the actual geometry of the features that meet the query conditions.

Chapter 6

[131]

The preceding diagram defines the object sequence you will use when creating
attribute and spatial queries.

The Query object
In order for the QueryTask object to execute a query against a layer in a map service,
it needs input parameters that are defined with a Query object. Input parameters
define whether the query will be spatial, attribute, or a combination of the two.
Attribute queries can be defined by either the where or text properties. These
properties are used to define a SQL attribute query. We'll look at the difference
between Query.where and Query.text in a later section.

Spatial queries require that you set the Query.geometry property to define the input
geometric shape to be used in a spatial query.

A new instance of the Query object can be created through the use of a constructor
as seen in the following code example:

var query = new Query();

Defining the query properties
As I mentioned in the introduction to this section, you can set various parameters on
the Query object. It is required that you either define the properties for an attribute
query (Query.where or Query.text) or the Query.geometry property for a spatial
query. You can also use a combination of attribute and spatial query properties.

Attribute queries
The Query object provides two properties that can be used in an attribute query:
Query.where and Query.text. In the following code example, I'm setting the
Query.where property so that only records where the STATE_NAME field equal to
'Texas' are returned. This is just a standard SQL query. Notice that I've enclosed the
word Texas with quotes. When performing an attribute query against a text column,
you need to enclose the text being evaluated with either single or double quotes. This
isn't needed if you are performing an attribute query against a column containing
other data types such as numbers or Booleans:

query.where = "STATE_NAME = 'Texas'";

Performing Spatial and Attribute Queries

[132]

You can also use the Query.text property to perform an attribute query. This is a
shorthand way for creating a where clause using like. The field used in the query is
the display field for the layer defined in the map document. You can determine the
display field for a layer in the services directory. This is illustrated in the following
screenshot where ZONING_NAME is the display field. It is this display field that is
queried using the Query.text property.

//Query.text uses the Display Name for the layer
query.text= stateName;

In the following code example, we use query.text to perform an attribute query
that returns all fields where the state name is entered by the user in a form field on
the web page:

query = new Query();
query.returnGeometry = false;
query.outFields = ['*'];
query.text = dom.byId("stateName").value;
queryTask.execute(query, showResults);

Chapter 6

[133]

Spatial queries
To perform a spatial query against a layer, you'll need to pass in a valid geometry
object to be used in the spatial filter along with a spatial relationship. Valid
geometries include instances of Extent, Point, Polyline, and Polygon. The
spatial relationship is set through the Query.spatialRelationship property and
is applied during the query. The spatial relationship is defined through the use of
one of the following constant values: SPATIAL_REL_INTERESECTS, SPATIAL_REL_
CONTAINS, SPATIAL_REL_CROSSES, SPATIAL_REL_ENVELOPE_INTERSECTS, SPATIAL_
REL_OVERLAPS, SPATIAL_REL_TOUCHES, SPATIAL_REL_WITHIN, and SPATIAL_
REL_RELATION. The table in the following screenshot describes each of the spatial
relationship values:

SPATIAL_REL_CONTAINS

SPATIAL_REL_CROSSES

SPATIAL_REL_ENVELOPEINTERSECTS

SPATIAL_REL_INDEXINTERSECTS

SPATIAL_REL_INTERSECTS

SPATIAL_REL_OVERLAPS

SPATIAL_REL_RELATION

SPATIAL_REL_TOUCHES

SPATIAL_REL_WITHIN

Part or all of a feature from feature class 1 is contained within a feature from feature class 2.

The feature from feature class 1 crosses a feature from feature class 2.

The envelope of feature class 1 intersects with the envelope of feature class 2.

The envelope of the query feature class intersects the index entry for the target feature class.

Part of a feature from feature class 1 is contained in a feature from feature class 2.

Features from feature class 1 overlap feature in feature class 2.

Allows specification of any relationship defined using Shape Comparison Language.

The feature from feature class 1 touches the border of a feature from feature class 2.

The feature from feature class 1 is completely enclosed by the feature from feature class 2

The following code example sets a Point object as the geometry passed into the
spatial filter in addition to setting the spatial relationship:

query.geometry = evt.mapPoint;
query.spatialRelationship = SPATIAL_REL_INTERSECTS;

Limiting the fields returned
For performance reasons, you should limit the fields that are returned in the
FeatureSet object to only those fields that are needed in your application. Every
column of information attached to the FeatureSet object is additional data that must
be passed from the server to the browser, which can cause your application to perform
slower than it should. To limit the returned fields, you assign an array containing a
list of fields that should be returned to the Query.outFields property as seen in the
following code example. To return all fields you can use outFields = ['*'].

Performing Spatial and Attribute Queries

[134]

In addition, you can control the return of the geometry for each feature through the
Query.returnGeometry property. By default, the geometry will be returned; however,
in some cases, your application may not need the geometry. For example, if you need
to populate a table with the attribute information from a layer, you don't necessarily
need the geometry. In this case, you can set Query.returnGeometry = false:

query.outFields =
 ["NAME", "POP2000", "POP2007", "POP00_SQMI", "POP07_SQMI"];
query.returnGeometry = false;

Executing the query with QueryTask
Once you've defined the input properties in a Query object, you can use QueryTask
to execute the query. Before the query can be executed, you must first create an
instance of the QueryTask object. A QueryTask object is created by passing a URL
to the layer against which the query will be executed inside the constructor for the
object. The following code example shows how a QueryTask object is created. Notice
that it includes an index number at the end of the URL that references a specific layer
in the map service to be queried:

myQueryTask = new QueryTask("http://sampleserver1.arcgisonline.com/
ArcGIS/rest/services/Demographics/ESRI_CENSUS_USA/MapServer/5");

After creation, the QueryTask object can be used to execute a query against the layer
with an input Query object using the QueryTask.execute() method. QueryTask.
execute() accepts three parameters including an input Query object along with
success and error callback functions. The syntax for QueryTask.execute() is
provided in the following code. The input Query object is passed as the first parameter:

QueryTask.execute(parameters,callback?,errback?)

Assuming that the query executes without any error, the success callback function
will be called and a FeatureSet object is passed into the function. If an error occurs
during the execution of the query, then an error callback function is executed. Both
the success and error callback functions are optional; however, you should always
define functions to handle both cases.

At this point, you may be wondering about these callback and errback functions.
Most tasks in ArcGIS Server return an instance of dojo/Deferred. A Deferred
object is a class that is used as the foundation for managing asynchronous threads
in Dojo. Tasks in ArcGIS Server can be either synchronous or asynchronous.

Chapter 6

[135]

Asynchronous and synchronous define how the client (the application using the task)
interacts with the server and gets the result from the task. When a service is set to
synchronous, the client waits for the task to complete. Typically, a synchronous task
executes quickly (several seconds or lesser). An asynchronous task typically takes
longer to execute, and the client doesn't wait for the task to complete. The end user is
free to continue using the application while the task executes. When a task completes
on the server, it calls the callback function and passes the results into this function
where they can then be used in some way. They are often displayed on the map.

Let's take a look at a more complete code example. In the following code example,
notice that we first create a new variable called myQueryTask, which points to layer
6 (the index numbers are 0 based) in the ESRI_CENSUS_USA map service. We then
create the Query object containing the input properties of the query and finally, we
use the execute() method on QueryTask to perform the query. The execute()
method returns a FeatureSet object that contains the results of the query and these
features are processed through a callback function called showResults, which is
specified in the execute() method. If an error occurs during the execution of the
task, the errorCallback() function will be called:

myQueryTask = new QueryTask("http://sampleserver1.arcgisonline.com/
ArcGIS/rest/services/Demographics/ESRI_CENSUS_USA/MapServer/5");
//build query filter
myQuery = new Query();
myQuery.returnGeometry = false;
myQuery.outFields = ["STATE_NAME", "POP2007", "MALES", "FEMALES"];
myQuery.text = 'Oregon';
//execute query
myQueryTask.execute(myQuery, showResults, errorCallback);
function showResults(fs) {
 //do something with the results
	 //they are returned as a featureset object
}

function errorCallback() {
 alert("An error occurred during task execution");
}

Performing Spatial and Attribute Queries

[136]

Getting query results
As I mentioned earlier, the results of a query are stored in a FeatureSet object that
includes an array of graphics, which you can then plot on your map if you wish.

Each feature (graphic) in the array can contain geometry, attributes, symbology,
and an InfoTemplate as described in Chapter 3, Adding Graphics to the Map. Typically,
these features are plotted on the map as graphics. The following code example
shows a callback function that is executed when a query has completed execution.
A FeatureSet object is passed into the callback function and the graphics are drawn
on the map:

function addPolysToMap(featureSet) {
 var features = featureSet.features;
 var feature;
 for (i=0, il=features.length; i<il; i++) {
 feature = features[i];
 attributes = feature.attributes;
 pop = attributes.POP90_SQMI;
 map.graphics.add(features[i].setSymbol(sym));
 }
}

Time to practice with spatial queries
In this exercise, you will learn how to perform spatial queries using the Query,
QueryTask, and FeatureSet objects in the ArcGIS API for JavaScript. Using a
Zoning layer from the City of Portland, you will query parcel records and display
the results on a map.

Perform the following steps to complete the exercise:

1.	 Open the JavaScript Sandbox at http://developers.arcgis.com/en/
javascript/sandbox/sandbox.html.

2.	 Remove the JavaScript content from the <script> tag that I have highlighted
in the following code snippet:
<script>
dojo.require("esri.map");

function init(){
var map = new esri.Map("mapDiv", {
center: [-56.049, 38.485],
zoom: 3,

Chapter 6

[137]

basemap: "streets"
 });
 }
dojo.ready(init);
</script>

3.	 Create the variables that you'll use in the application.
<script>
var map, query, queryTask;
var symbol, infoTemplate;
</script>

4.	 Add the require() function as seen in the following highlighted code:
<script>
 var map, query, queryTask;
 var symbol, infoTemplate;

 require([
 "esri/map", "esri/tasks/query", "esri/tasks/QueryTask",
 "esri/tasks/FeatureSet",
 "esri/symbols/SimpleFillSymbol",
 "esri/symbols/SimpleLineSymbol", "esri/InfoTemplate",
 "dojo/_base/Color", "dojo/on", "dojo/domReady!"
], function(Map, Query, QueryTask, FeatureSet,
 SimpleFillSymbol, SimpleLineSymbol, InfoTemplate, Color,
 on) {

 });

</script>

5.	 Inside the require() function, create the Map object that you'll use in the
application. The map will be centered on the Louisville, KY, area:
require([
 "esri/map", "esri/tasks/query", "esri/tasks/QueryTask",
 "esri/tasks/FeatureSet",
 "esri/symbols/SimpleFillSymbol",
 "esri/symbols/SimpleLineSymbol", "esri/InfoTemplate",
 "dojo/_base/Color", "dojo/on", "dojo/domReady!"
], function(Map, Query, QueryTask, FeatureSet,
 SimpleFillSymbol, SimpleLineSymbol, InfoTemplate,
 Color, on) {

Performing Spatial and Attribute Queries

[138]

 map = new Map("mapDiv",{
 basemap: "streets",
 center:[-85.748, 38.249], //long, lat
 zoom: 13
 });

})

6.	 Create the symbol that will be used to display the results of the query:
require([
 "esri/map", "esri/tasks/query", "esri/tasks/QueryTask",
 "esri/tasks/FeatureSet",
 "esri/symbols/SimpleFillSymbol",
 "esri/symbols/SimpleLineSymbol", "esri/InfoTemplate",
 "dojo/_base/Color", "dojo/on", "dojo/domReady!"
], function(Map, Query, QueryTask, FeatureSet,
 SimpleFillSymbol, SimpleLineSymbol, InfoTemplate,
 Color, on) {
 map = new Map("map",{
 basemap: "streets",
 center:[-85.748, 38.249], //long, lat
 zoom: 13
 });

 symbol = new SimpleFillSymbol(SimpleFillSymbol.STYLE_SOLID,
 new SimpleLineSymbol(SimpleLineSymbol.STYLE_SOLID, new
 Color([111, 0, 255]), 2), new Color([255,255,0,0.25]));
 infoTemplate = new InfoTemplate("${OBJECTID}", "${*}");

});

7.	 Now, inside the require() function, we are going to initialize the
queryTask variable and then register the QueryTask.complete event.
Add the following highlighted lines of code:
require([
 "esri/map", "esri/tasks/query", "esri/tasks/QueryTask",
 "esri/tasks/FeatureSet",
 "esri/symbols/SimpleFillSymbol",
 "esri/symbols/SimpleLineSymbol", "esri/InfoTemplate",
 "dojo/_base/Color", "dojo/on", "dojo/domReady!"
], function(Map, Query, QueryTask, FeatureSet,
 SimpleFillSymbol, SimpleLineSymbol, InfoTemplate,
 Color, on) {

Chapter 6

[139]

 map = new Map("mapDiv",{
 basemap: "streets",
 center:[-85.748, 38.249], //long, lat
 zoom: 13
 });

 symbol = new SimpleFillSymbol(SimpleFillSymbol.STYLE_SOLID,
 new SimpleLineSymbol(SimpleLineSymbol.STYLE_SOLID, new
 Color([111, 0, 255]), 2), new
 Color([255,255,0,0.25]));
 infoTemplate = new InfoTemplate("${OBJECTID}", "${*}");

 queryTask = new QueryTask("http://sampleserver1.arcgisonline.
com/ArcGIS/rest/services/Louisville/LOJIC_LandRecords_Louisville/
MapServer/2");
 queryTask.on("complete", addToMap);

});

The constructor for QueryTask must be a valid URL pointer to a data layer
exposed through a map service. In this case, we are creating a reference to
the Zoning layer in the LOJIC_LandRecords_Louisville map service. What
this indicates is that we are going to perform a query against this layer. If you
will remember from a previous chapter, dojo.on() is used to register events.
In this case, we are registering the complete event for our new QueryTask
object. This event fires when the query has been completed, and in this case
will call the addToMap() function specified as a parameter to on().

8.	 Now we'll define the input parameters for the task by creating a Query
object. In the first line, we create a new Query instance, and then we set the
Query.returnGeometry and Query.outFields properties. Setting Query.
returnGeometry equal to true indicates that ArcGIS Server should return
the geometric definition of the features that matched the query, while in
Query.outFields we've specified a wildcard indicating that all fields
associated with the Zoning layer should be returned for the features returned
as a result of the query. Add the following highlighted lines of code just
below the code you entered in the previous step:

require([
"esri/map", "esri/tasks/query", "esri/tasks/QueryTask",
 "esri/tasks/FeatureSet", "esri/symbols/SimpleFillSymbol",
"esri/symbols/SimpleLineSymbol", "esri/InfoTemplate",
 "dojo/_base/Color", "dojo/on", "dojo/domReady!"
], function(Map, Query, QueryTask, FeatureSet,
 SimpleFillSymbol, SimpleLineSymbol, InfoTemplate, Color,
 on) {

Performing Spatial and Attribute Queries

[140]

 map = new Map("mapDiv",{
 basemap: "streets",
 center:[-85.748, 38.249], //long, lat
 zoom: 13
 });

 symbol = new
 SimpleFillSymbol(SimpleFillSymbol.STYLE_SOLID,
 new SimpleLineSymbol(SimpleLineSymbol.STYLE_SOLID, new
 Color([111, 0, 255]), 2), new Color([255,255,0,0.25]));
 infoTemplate = new InfoTemplate("${OBJECTID}", "${*}");

 queryTask = new QueryTask("http://sampleserver1.arcgisonline.
com/ArcGIS/rest/services/Louisville/LOJIC_LandRecords_Louisville/
MapServer/2");
 queryTask.on("complete", addToMap);

 query = new Query();
 query.returnGeometry = true;
 query.outFields = ["*"];

});

9.	 Add a line of code that registers the Map.click event to a doQuery function.
The doQuery function will be passed the point on the map that was clicked
by the user. This map point will be used as the geometry in the spatial query.
In the next step, we will create the doQuery function that will accept the point
clicked on the map:
require([
 "esri/map", "esri/tasks/query", "esri/tasks/QueryTask",
"esri/tasks/FeatureSet", "esri/symbols/SimpleFillSymbol",
 "esri/symbols/SimpleLineSymbol", "esri/InfoTemplate",
"dojo/_base/Color", "dojo/on", "dojo/domReady!"
], function(Map, Query, QueryTask, FeatureSet,
SimpleFillSymbol, SimpleLineSymbol, InfoTemplate, Color, on) {

map = new Map("mapDiv",{
 basemap: "streets",
 center:[-85.748, 38.249], //long, lat
 zoom: 13
});

Chapter 6

[141]

symbol = new SimpleFillSymbol(SimpleFillSymbol.STYLE_SOLID,
 new SimpleLineSymbol(SimpleLineSymbol.STYLE_SOLID, new
 Color([111, 0, 255]), 2), new Color([255,255,0,0.25]));
infoTemplate = new InfoTemplate("${OBJECTID}", "${*}");

map.on("click", doQuery);

queryTask = new QueryTask("http://sampleserver1.arcgisonline.com/
ArcGIS/rest/services/Louisville/LOJIC_LandRecords_Louisville/
MapServer/2");
queryTask.on("complete", addToMap);

query = new Query();
query.returnGeometry = true;
query.outFields = ["*"];

});

10.	 Now we'll create the doQuery function that executes the QueryTask using
the Query properties we set in the require() function along with the map
point clicked by the user, which is used in the Query.geometry function.
The doQuery function accepts a point that was clicked on the map, which can
be retrieved using the mapPoint property. The mapPoint property returns
a Point object, which is then used to set the Query.geometry property
that will be used to find the zoning parcel the user has clicked on the map.
Finally, the QueryTask.execute() method is executed. After the task has
executed, a FeatureSet object containing the records that match the query
will be returned. The question now is where are the results returned? Add the
following code block just below the closing brace for the require() function:
function doQuery(evt) {
 //clear currently displayed results
 map.graphics.clear();

 query.geometry = evt.mapPoint;
 query.outSpatialReference = map.spatialReference;
 queryTask.execute(query);
}

Performing Spatial and Attribute Queries

[142]

11.	 Remember that we registered the QueryTask.complete event to run
the addToMap() function. We haven't created this function yet. Add the
following code to create the addToMap() function. This function will accept a
FeatureSet object returned as a result of the query and plot the features on
the map. Also notice that an info template is defined for the feature. This will
create an InfoWindow object to display the attributes of the returned feature:
function addToMap(results) {
 var featureArray = results.featureSet.features;
 var feature = featureArray[0];
 map.graphics.add(feature.setSymbol(symbol).
 setInfoTemplate(infoTemplate));
}

You can view the solution code for this exercise in the
spatialquery.html file.

12.	 Click on the Run button to execute the code. You should see the map in the
following screenshot. If not, you may need to recheck your code for accuracy.

Chapter 6

[143]

Click anywhere on the map to run the query. You should see the highlighted zoning
polygon there, similar to what you can see in the following screenshot:

Performing Spatial and Attribute Queries

[144]

Now, click on the highlighted zoning polygon to display an Info Window that details
the attributes associated with the polygon.

In the task just completed, you learned how to use the Query and QueryTask objects
to create a spatial query that locates the zoning polygon that intersects the point the
user has clicked on the map.

Chapter 6

[145]

Summary
In this chapter, we introduced the concept of tasks in ArcGIS Server. ArcGIS Server
provides a number of tasks for commonly used operations in a web mapping
application. Attribute and spatial queries are common operations in web mapping
applications. To support these queries, the ArcGIS API for JavaScript provides a
QueryTask object that can be used to execute these queries on the server. When
created, the QueryTask object accepts a URL that points to a layer that will be
queried in a map server. Various input parameters to the QueryTask are provided
through the Query object. Input parameters can include a where property to perform
attribute queries, a geometry property to perform spatial queries, an outFields
property to define the set of fields that should be returned, and several other
supporting properties. After the query has completed on the server, a FeatureSet
object is returned to a callback function defined in the application. The callback
function can then display the FeatureSet (which is just an array of Graphic objects)
on the map. In the next chapter, you will learn how to use two additional tasks:
IdentifyTask and FindTask. Both can be used to return the attributes of features.

Identifying and Finding
Features

In this chapter, we're going to cover two ArcGIS Server tasks related to returning
feature attributes: IdentifyTask and FindTask. Identifying features is another
common operation found in GIS applications. This task returns the attributes
of features that have been clicked on a map. The attribute information is often
presented in a pop-up window. This functionality is accomplished through the
ArcGIS API for JavaScript with the IdentifyTask class. As with the other task
processes that we have seen, the IdentifyTask object uses an input parameter
object, which in this case is called IdentifyParameters. The IdentifyParameters
object contains various parameters that control the results of the identify operation.
These parameters give you the ability to perform an identification on individual
layers, the topmost layer in a service, all visible layers in a service, or all layers in a
service along with a search tolerance. An instance of IdentifyResult is used to hold
the results of the task.

The tasks that you can execute with the ArcGIS API for JavaScript replicate some of
the most commonly used functions in ArcGIS Desktop. FindTask is one such tool.
Just as in the desktop version of ArcGIS, this task can be used to find features in a
layer that match a string value. Before executing a Find operation with a FindTask
object, you will need to set various parameters of the operation in an instance of
FindParameters. FindParameters gives you the ability to set various options,
including the search text, fields to search, and others. Using a FindParameters
object, FindTask then executes its tasks against one or more layers and fields then
returns a FindResult object that contains layerID, layerName, and feature that
matched the search string.

Identifying and Finding Features

[148]

In this chapter, we will deal with the following topics:

•	 Using IdentifyTask to get feature attributes
•	 Using FindTask to get feature attributes

Using IdentifyTask to get feature
attributes
Attributes from the fields in a layer can be returned to your application using
IdentifyTask. In this section, you will learn how to use the various objects
associated with IdentifyTask to return this information.

Introducing IdentifyTask
As with the other tasks in ArcGIS Server, the IdentifyTask functionality is
separated into three distinct classes in the API including IdentifyParameters,
IdentifyTask, and IdentifyResult. These three classes are illustrated in the
following figure:

IdentifyParameters IdentifyTask IdentifyResult

The IdentifyParameters object
The input parameter object for IdentifyTask is IdentifyParameters.
A number of properties can be set for your identification operation using
the IdentifyParameters class. Parameters include the geometry used to
select features (IdentifyParameters.geometry), the layer IDs on which to
perform the identification (IdentifyParameters.layerIds), and the tolerance
(IdentifyParameters.tolerance) from the specified geometry within which the
identification should be performed.

Chapter 7

[149]

You'll need to import the identify resource shown as follows before you can use the
identify functionality provided by ArcGIS Server:

require(["esri/tasks/IdentifyTask", ...], function(IdentifyTask,
 ...){ ... });

Before setting the various parameters on the IdentifyParameters object, you need
to first create an instance of this object. This can be done with code shown as follows.
The code for this constructor doesn't accept any parameters:

var identifyParams = new IdentifyParameters();

Now that you've created a new instance of IdentifyParameters, you can set
various properties shown as follows:

identifyParams.geometry = evt.MapPoint;
identifyParams.layerIds[0,1,2];
identifyParams.returnGeometry = true;
identifyParams.tolerance = 3;

In most cases, an identification operation is performed using a point that the user
has clicked on the map. You can obtain this using the point returned from the
map-click event as seen in the preceding code example. The layers that should
be searched can be defined using an array of layer IDs, which are passed into the
IdentifyParameters.layerIds property. The array should contain numeric values
that reference the layers to be searched. You can obtain the layer index numbers by
consulting the services directory. The tolerance property is especially important. It
sets the distance in pixels around the geometry. Remember that most of the time the
geometry will be a point so you can think of this as a circle that is placed around the
point at whatever tolerance value you have set. The value will be in screen pixels.
When the IdentifyTask attribute is executed, any features from the layers to be
identified (that are within or intersect the circle) will be returned.

It's likely that you'll need to experiment with this tolerance value to obtain a value that
is best for your application. If the value is set too low, you run the risk of the identify
operation not identifying any features and conversely, if the value is set too high, you
may get too many features returned. It can be difficult to find the right balance, and the
tolerance value that works for one application may not work for another.

The IdentifyTask attribute
IdentifyTask performs the identify operation on one or more layers using the
parameters specified in IdentifyParameters. As with the other tasks that we've
examined, IdentifyTask needs a pointer to a URL that identifies the map service
to be used in the identify operation.

Identifying and Finding Features

[150]

A new instance of IdentifyTask can be created with the following code example.
The constructor for this task simply accepts a URL that points to the map service
containing the layer against which an identify operation can be executed.

var identify =
 new IdentifyTask
 ("http://sampleserver1.arcgisonline.com
 /ArcGIS/rest/services/Specialty/ESRI_StatesCitiesRivers_USA/
 MapServer");

Once you've created a new instance of the IdentifyTask object, you can initiate the
execution of this task through the IdentifyTask.execute() method, which accepts
an IdentifyParameters object along with optional success callback and error
callback functions. In the following code example, the IdentifyTask.execute()
method is called. An instance of IdentifyParameters is passed as a parameter into
the method, along with a reference to an addToMap() method, which will process the
results that are returned to the method.

identifyParams = new IdentifyParameters();
identifyParams.tolerance = 3;
identifyParams.returnGeometry = true;
identifyParams.layerIds = [0,2];
identifyParams.geometry = evt.mapPoint;

identifyTask.execute(identifyParams, function(idResults) {
addToMap(idResults, evt); });

function addToMap(idResults, evt) {
 //add the results to the map
}

The results of an identify operation performed with IdentifyTask are stored in an
instance of IdentifyResult. We'll examine this result object in the next section.

IdentifyResult
The result returned by the IdentifyTask operation is an array of IdentifyResult
objects. Each IdentifyResult object contains the feature returned from the identify
operation, along with the layer ID and layer name where the feature was found. The
following code illustrates how an array of IdentifyResult objects is processed by a
callback function:

function addToMap(idResults, evt) {
 bldgResults = {displayFieldName:null,features:[]};
 parcelResults = {displayFieldName:null,features:[]};
 for (vari=0, i<idResults.length; i++) {

Chapter 7

[151]

 var idResult = idResults[i];
 if (idResult.layerId === 0) {
 if (!bldgResults.displayFieldName)
 {bldgResults.displayFieldName = idResult.displayFieldName};
 bldgResults.features.push(idResult.feature);
 }
 else if (idResult.layerId === 2) {
 if (!parcelResults.displayFieldName)
 {parcelResults.displayFieldName = idResult.displayFieldName};
 parcelResults.features.push(idResult.feature);
 }
 }
dijit.byId("bldgTab").setContent(layerTabContent(bldgResults,"bldgRes
ults"));
dijit.byId("parcelTab").setContent(layerTabContent(parcelResults,"par
celResults"));
map.infoWindow.show(evt.screenPoint,
map.getInfoWindowAnchor(evt.screenPoint));
}

Time to practice – implementing the identify
functionality
In this exercise, you will learn how to implement the identify functionality in an
application. You are going to create a simple application that will display attribute
information from buildings and land parcels in an info window when the user clicks
the map. We have prewritten some of the code for you so that you can focus on the
functionality directly related to the identification of features. Before we begin, I'll
have you copy and paste the prewritten code into the sandbox.

Perform the following steps to complete the exercise:

1.	 Open the JavaScript Sandbox at http://developers.arcgis.com/en/
javascript/sandbox/sandbox.html.

2.	 Remove the JavaScript content from the <script> tag that I have highlighted
in the following code snippet:
<script>
dojo.require("esri.map");

function init(){
var map = new esri.Map("mapDiv", {
center: [-56.049, 38.485],
zoom: 3,

Identifying and Finding Features

[152]

basemap: "streets"
 });
 }
dojo.ready(init);
</script>

3.	 Create the variables that you'll use in the application:
<script>
var map;
var identifyTask, identifyParams;
</script>

4.	 Create the require() function that defines the resources you'll use in
this application:
<script>
 var map;
var identifyTask, identifyParams;
require([
 "esri/map", "esri/dijit/Popup",
 "esri/layers/ArcGISDynamicMapServiceLayer",
 "esri/tasks/IdentifyTask",
 "esri/tasks/IdentifyResult",
 "esri/tasks/IdentifyParameters",
 "esri/dijit/InfoWindow",
 "esri/symbols/SimpleFillSymbol",
 "esri/symbols/SimpleLineSymbol",
 "esri/InfoTemplate", "dojo/_base/Color" ,
 "dojo/on",
 "dojo/domReady!"
], function(Map, Popup, ArcGISDynamicMapServiceLayer,
 IdentifyTask, IdentifyResult, IdentifyParameters,
 InfoWindow,
 SimpleFillSymbol, SimpleLineSymbol, InfoTemplate,
 Color, on) {

 });
</script>

5.	 Create a new instance of the Map object:
<script>
 var map;
var identifyTask, identifyParams;
require([
 "esri/map", "esri/dijit/Popup",
 "esri/layers/ArcGISDynamicMapServiceLayer",
 "esri/tasks/IdentifyTask",

Chapter 7

[153]

 "esri/tasks/IdentifyResult",
 "esri/tasks/IdentifyParameters",
 "esri/dijit/InfoWindow",
 "esri/symbols/SimpleFillSymbol",
 "esri/symbols/SimpleLineSymbol", "esri/InfoTemplate"
 , "dojo/_base/Color" ,"dojo/on",
 "dojo/domReady!"
], function(Map, Popup, ArcGISDynamicMapServiceLayer,
 IdentifyTask, IdentifyResult, IdentifyParameters,
 InfoWindow,
 SimpleFillSymbol, SimpleLineSymbol, InfoTemplate, Color,
 on) {
 //setup the popup window
var popup = new Popup({
fillSymbol: new SimpleFillSymbol(SimpleFillSymbol.STYLE_SOLID,
 new SimpleLineSymbol(SimpleLineSymbol.STYLE_SOLID,
 new Color([255,0,0]), 2), new Color([255,255,0,0.25]))
 }, dojo.create("div"));

map = new Map("map", {
 basemap: "streets",
 center: [-83.275, 42.573],
 zoom: 18,
 infoWindow: popup
});

 });
</script>

6.	 Create a new dynamic map service layer and add it to the map:
map = new Map("map", {
 basemap: "streets",
 center: [-83.275, 42.573],
 zoom: 18,
 infoWindow: popup
});

var landBaseLayer = new ArcGISDynamicMapServiceLayer
 ("http://sampleserver3.arcgisonline.com/
 ArcGIS/rest/services/BloomfieldHillsMichigan/
 Parcels/MapServer",{opacity:.55});
map.addLayer(landBaseLayer);

Identifying and Finding Features

[154]

7.	 Add a Map.click event that will trigger the execution of a function, which
will respond when the map is clicked on:
map = new Map("map", {
 basemap: "streets",
 center: [-83.275, 42.573],
 zoom: 18,
 infoWindow: popup
});

varlandBaseLayer = new ArcGISDynamicMapServiceLayer
 ("http://sampleserver3.arcgisonline.com/ArcGIS/
 rest/services/BloomfieldHillsMichigan/Parcels/
 MapServer",{opacity:.55});
map.addLayer(landBaseLayer);

map.on("click", executeIdentifyTask);

8.	 Create an IdentifyTask object:
 identifyTask = new
 IdentifyTask("http://sampleserver3.arcgisonline.com/
 ArcGIS/rest/services/BloomfieldHillsMichigan/
 Parcels/MapServer");

9.	 Create an IdentifyParameters object and set various properties:
identifyTask = new
 IdentifyTask("http://sampleserver3.arcgisonline.com/
 ArcGIS/rest/services/BloomfieldHillsMichigan/Parcels/
 MapServer");

identifyParams = new IdentifyParameters();
identifyParams.tolerance = 3;
identifyParams.returnGeometry = true;
identifyParams.layerIds = [0,2];
identifyParams.layerOption = IdentifyParameters.LAYER_OPTION_ALL;
identifyParams.width = map.width;
identifyParams.height = map.height;

10.	 Create the executeIdentifyTask() function, which is the function that
responds to the Map.click event. In a previous step, you had set up the
event handler for the Map.click event. The executeIdentifyTask()
function was specified as the JavaScript function that will handle this event
when it occurs. In this step, you'll create this function by adding the code
shown as follows. The executeIdentifyTask() function accepts one
parameter, which is an instance of the Event object. Each event generates an
Event object, which has various properties. In the case of a Map.click event,

Chapter 7

[155]

this Event object has a property that contains the point that was clicked.
This can be retrieved with the Event.mapPoint property and is used when
setting the IdentifyParameters.geometry property. The IdentifyTask.
execute() method also returns a Deferred object. You then add a callback
function to this Deferred object, which parses the results. Add the following
code to create the executeIdentifyTask() function. This function should be
created outside the require() function:
function executeIdentifyTask(evt) {
 identifyParams.geometry = evt.mapPoint;
 identifyParams.mapExtent = map.extent;

 var deferred = identifyTask.execute(identifyParams);

 deferred.addCallback(function(response) {
 // response is an array of identify result objects
 // Let's return an array of features.
 return dojo.map(response, function(result) {
 var feature = result.feature;
 feature.attributes.layerName = result.layerName;
 if(result.layerName === 'Tax Parcels'){
 console.log(feature.attributes.PARCELID);
 var template = new esri.InfoTemplate("", "${Postal
 Address}
 Owner of record: ${First Owner
 Name}");
 feature.setInfoTemplate(template);
 }
 else if (result.layerName === 'Building Footprints'){
 var template = new esri.InfoTemplate("", "Parcel ID:
 ${PARCELID}");
 feature.setInfoTemplate(template);
 }
 return feature;
 });
 });

// InfoWindow expects an array of features from each deferred
// object that you pass. If the response from the task execution
// above is not an array of features, then you need to add a
 callback
// like the one above to post-process the response and return an
 // array of features.
 map.infoWindow.setFeatures([deferred]);
 map.infoWindow.show(evt.mapPoint);
 }

Identifying and Finding Features

[156]

11.	 You may want to review the solution file (identify.html) in your
ArcGISJavaScriptAPI folder to verify that your code has been
written correctly.

12.	 Execute the code by clicking on the Run button and you should see the
following output if everything has been coded correctly:

Using FindTask to get the feature
attributes
You can use FindTask to search a map service exposed by the ArcGIS Server
REST API, based on a string value. The search can be conducted on a single field
of a single layer, on many fields of a layer, or on many fields of many layers. As
with the other tasks that we've examined, the Find operation is composed of three
complementary objects including FindParameters, FindTask, and FindResult.
The FindParameters object serves as the input parameter object, which is used by

Chapter 7

[157]

FindTask to accomplish its work, and FindResult contains the results returned by
the task. Take a look at the following figure:

FindParameters FindTask FindResult

FindParameters
The FindParameters object is used to specify the search criteria for a Find operation
and includes a searchText property that includes the text that will be searched
for along with properties that specify the fields and layers that will be searched.
In addition to this, setting the returnGeometry property to true indicates that you
want to return the geometry of the features that matched the Find operation, and can
be used to highlight the results.

The following code example shows how to create a new instance of FindParameters
and assign various attributes. Before using any of the objects associated with a Find
operation, you'll need to import the esri/tasks/find resource. The searchText
property defines the string value that will be used in the search across fields, defined
in the searchFields property. The layers that will be searched are defined through
an array of index numbers assigned to the layerIds property. The index numbers
correspond to the layers in the map service. The geometry property defines whether
the geometric definition of a feature should be returned in the results. There may be
times when you don't need the feature geometry, such as when the attributes simply
need to be populated inside a table. In such a case, you would set the geometry
property to false.

var findParams = new FindParameters();
findParams.searchText = dom.byId("ownerName").value;
findParams.searchFields = ["LEGALDESC","ADDRESS"]; //
 fields to search
findParams.returnGeometry = true;
findParams.layerIds = [0]; //layers to use in the find
findParams.outSpatialReference = map.spatialReference;

Identifying and Finding Features

[158]

You can use the contains property to determine whether to look for an exact match
of the search text or not. If it is set to true, it searches for a value that contains the
searchText property. This is a case-insensitive search. If it is set to false, it searches
for an exact match of the searchText string. The exact match is case-sensitive.

FindTask
FindTask, illustrated in the preceding figure, executes a Find operation against the
layers and fields specified in FindParameters and returns a FindResult object, which
contains the records that were found. Take a look at the following code snippet:

findTask = new FindTask("http://sampleserver1.arcgisonline.com/ArcGIS/
rest/services/TaxParcel/TaxParcelQuery/MapServer/");
findTask.execute(findParams,showResults);

function showResults(results) {
 //This function processes the results
}

Just as with QueryTask, you must specify a URL pointer to the map service that
will be used in the Find operation, but you do not need to include an integer value
specifying the exact data layer to be used. This is not necessary because the layers
and fields to be used in the Find operation are defined in the FindParameters object.
Once created, you can then call the FindTask.execute() method to initiate the
Find operation. The FindParameters object is passed into this method as the first
parameter, and you can also define optional success and error callback functions.
This is shown in the preceding code example. The success callback function passes
an instance of FindResults, which contains the results of the Find operation.

FindResult
FindResult contains the results of a FindTask operation and also contains features
that can be represented as graphics, layer IDs and names where the feature was
found, and the field name that contains the search string. Take a look at the following
code snippet:

function showResults(results) {
//This function works with an array of FindResult that the task
 returns
 map.graphics.clear();
 var symbol = new SimpleFillSymbol(SimpleFillSymbol.STYLE_SOLID,
 new SimpleLineSymbol(SimpleLineSymbol.STYLE_SOLID,
 new Color([98,194,204]), 2), new Color([98,194,204,0.5]));
 //create array of attributes

Chapter 7

[159]

 var items = array.map(results,function(result){
 var graphic = result.feature;
 graphic.setSymbol(symbol);
 map.graphics.add(graphic);
 return result.feature.attributes;
 });
 //Create data object to be used in store
 var data = {
 identifier: "PARCELID", //This field needs to have unique values
 label: "PARCELID", //Name field for display. Not pertinent to
 agrid but may be used elsewhere.
 items: items
 };
 //Create data store and bind to grid.
 store = new ItemFileReadStore({ data:data });
 var grid = dijit.byId('grid');
 grid.setStore(store);
 //Zoom back to the initial map extent
 map.centerAndZoom(center, zoom);
}

Summary
The return of attributes associated with features is one of the most common operations
in GIS. ArcGIS Server has two tasks that can return attributes: IdentifyTask and
FindTask. The IdentifyTask attribute is used to return the attributes of a feature that
has been clicked on the map. FindTask also returns attributes of a feature but uses a
simple attribute query to return the attributes. In this chapter, you learned how to use
both tasks using the ArcGIS API for JavaScript. In the next chapter, you will learn how
to perform geocoding and reverse geocoding using a Locator task.

Turning Addresses into
Points and Points

into Addresses
Plotting addresses or points of interest on a map is one of the most commonly used
functions in web mapping applications. To plot an address as a point on a map, you'll
first need to get the latitude and longitude coordinates. Geocoding is the process of
converting physical addresses into geographic coordinates. In order for your addresses
to be added to the map, they must go through a geocoding process that assigns
coordinates to the address. Geocoding is accomplished in ArcGIS Server through the
use of a Locator service and is executed through the ArcGIS Server JavaScript API
with the Locator class, which accesses these services to provide address-matching
capabilities as well as reverse geocoding. As with the other tasks provided by ArcGIS
Server, geocoding requires various input parameters, including an Address object to
match addresses or a Point object in the case of reverse geocoding. This information is
then submitted to the geocoding service and an AddressCandidate object containing
the address matches is returned and can then be plotted on the map.

In this chapter, we will cover the following topics:

•	 Introducing geocoding
•	 Geocoding with a Locator service in the ArcGIS API for JavaScript
•	 The geocoding process
•	 The reverse geocoding process
•	 Time to practice with the Locator service

Turning Addresses into Points and Points into Addresses

[162]

Introducing geocoding
We'll first take a look at a geocoding example to give you a better feel of the process.
If you have an address located at 150 Main St, you must first geocode the address
before it can be plotted as a point on a map. If 150 Main St lies on a street segment
with an address range of 100 to 200 Main St, the geocoding process would interpolate
the location of 150 Main St. to be exactly halfway along this street segment. The
geocoding software would then assign 150 Main St. to the geographic location that
corresponds to the halfway point between 100 and 200 Main St. Now that you have
the coordinates for the address, you can plot it on the map. This process is described
in the following diagram:

Main St.
100 200

Longitude: -96.3462, Latitude: 20.4521

150

The most common geocoding level is the street segment geocode, which assigns
latitude/longitude coordinates based on known geocodes at the intersection of the
block or street segment containing an address. This method of geocoding uses an
interpolation process as described earlier. This method is the most accurate in urban
areas with regularly spaced addresses. However, it does have problems accurately
geocoding irregularly spaced addresses and addresses located in a cul de sac.
The coordinates of rural areas are also notoriously less complete and this results
in lower geocoding rates in those areas.

Geocoding with a Locator service in the
ArcGIS API for JavaScript
An ArcGIS Server Locator service can perform geocoding and reverse geocoding.
Using the ArcGIS Server API for JavaScript, you can submit an address to the Locator
service and retrieve geographic coordinates for the address, which can then be plotted
on the map. The following figure illustrates this process. An address, defined by a
JSON object in JavaScript, is an input to a Locator object, which geocodes the address
and returns the results in an AddressCandidate object, which can then be displayed
as a point on your map. This pattern is the same as the other tasks we saw in previous
chapters, where an input object (the Address object) provides input parameters
to the task (Locator), which submits the job to ArcGIS Server. A result object
(AddressCandidate) is then returned to a callback function, which processes
the returned data.

Chapter 8

[163]

380 New York St.
Redlands, CA 92373

AddressCandidateObject/Point Locator =

Input parameter objects
The input parameter object for the Locator task will take the form of either
a JSON address object for geocoding or a Point object for reverse geocoding.
From a programmatic standpoint, the creation of these objects differs. We'll
discuss each of the objects in the next section.

Input JSON address object
A Locator service can accept either a Point (for reverse geocoding) or a JSON object
that represents an address. The JSON object defines an address that is formatted in
the form of an object, as seen in the following code example. The address is defined
as a series of name/value pairs defined within brackets, which are defined within
your JavaScript code. Individual name/value pairs are defined for the street, city,
state, and zip code in this case, but the name/value pairs will vary depending upon
the type of geocoding service you've defined in your locator.

var address = {
 street: "380 New York",
 city: "Redlands",
 state: "CA",
 zip: "92373"
}

Turning Addresses into Points and Points into Addresses

[164]

Input Point object
For reverse geocoding, the input to a Locator service takes the form of a esri/
geometry/Point object, which is often defined through a user click on the map or
perhaps through application logic. The Point object is returned through a Map.click
event, which can be retrieved and used as the input object to the Locator service.

The Locator object
The Locator class contains methods and events that can be used to execute a
geocode or reverse geocode operation using the input Point or Address object.
Locator needs a URL pointer to your geocoding service, as defined within ArcGIS
Server. A code example showing how to create a new instance of a Locator object is
presented as follows:

var locator = new Locator
 ("http://sampleserver1.arcgisonline.com/ArcGIS/rest/
 services/Locators/ESRI_Geocode_USA/GeocodeServer")

Once a new instance of a Locator class has been created, you can call
the addressToLocations() method to geocode an address or the
locationToAddress() method to perform a reverse geocode. These methods
result in an event that is fired at the completion of the operation. In the case of an
address geocode, the address-to-locations-complete() event fires, and the
on-location-to-address-complete() event fires on the completion of a reverse
geocode operation. In either case, an AddressCandidate object is then returned to
the event.

The AddressCandidate object
An AddressCandidate object is returned as a result of a Locator operation. Various
properties are stored in this object, including the address, attributes, location, and
score. The attributes property contains name/value pairs of field names and values.
The location is, as the name would suggest, the x and y coordinate of the candidate
address. The score property is a numeric value between 0 and 100 that indicates the
quality of the address returned with a higher score, representing a better match.
Multiple addresses can be stored in this object as an array of candidates.

Now, we're going to take a closer look at the Locator methods used to submit
addresses and points. The Locator.addressToLocations() method sends a
request to geocode a single address. An input address object is created and used
as a parameter in the addressToLocations() method found on a Locator object.
The results of the geocoding operation are returned in an AddressCandidate object.
The address can then be plotted on the map as a graphic.

Chapter 8

[165]

Reverse geocoding can also be performed by a Locator object through the
locationToAddress() method. A Point object, created either by an end user
click on the map or through application logic, is created and passed as a parameter
into the locationToAddress() method. A second parameter is also passed into
the method, indicating a distance in meters from the point where a matching
address should be found. As with the addressToLocations() method, an
AddressCandidate object is returned from the locator and contains an address,
if one was found.

The geocoding process
We can summarize the geocoding process with the ArcGIS API for JavaScript. A
Locator object is created through a reference to a geocoding service on an ArcGIS
Server instance. An input address in the form of a JSON object is then created and
submitted to the Locator object using the addressToLocations() method. This
returns one or more AddressCandidate objects, which can then be plotted on the
map. Take a look at the following diagram:

AddressCandidateAddress Locator

var address - (
street: “380 New York”,
city “Redlands”,
state: “CA”
zip: “92373”

),
Address

Street: 4205 W 24TH PL
CITY: LAWRENCE
State: KS
Zip: 66047

Input Address
addressToLocations(address)

The reverse geocoding process
Let's review the reverse geocoding process as well. This process also uses a Locator
object, which references a URL to a geocoding service. A Point geometry object is
created as a result of either a location that has been clicked on the map or some other
application-generated event. This Point object is then submitted to Locator through
the locationToAddress() method, along with a distance value. The distance
property, supplied in meters, determines the radius in which Locator will attempt
to find an address.

Turning Addresses into Points and Points into Addresses

[166]

If an address is found within the radius, an AddressCandidate object is created and
can be decoded as an address. Take a look at the following diagram:

AddressCandidatePoint Locator

Address

Street: 4205 W 24TH PL
CITY: LAWRENCE
State: KS
Zip: 66047

User Clicks a Point locationToAddress(point . 150)

Time to practice with the Locator service
In this exercise, you will learn how to use the Locator class to geocode addresses
and overlay the results on top of a basemap provided by ArcGIS Online. Open the
JavaScript Sandbox at http://developers.arcgis.com/en/javascript/sandbox/
sandbox.html and perform the following steps:

1.	 In your ArcGISJavaScriptAPI folder, open the file called geocode_begin.
html in a text editor. I use Notepad++, but you can use whatever text editor
you are most comfortable with. Some of the code for this exercise has already
been written for you so that you can focus on the geocoding functionality.

2.	 Copy and paste the code in the file so that it completely replaces the code
currently in Sandbox.

3.	 Add the following references for the objects that we'll use in this exercise:
var map, locator;
require([
 "esri/map", "esri/tasks/locator", "esri/graphic",
 "esri/InfoTemplate", "esri/symbols/SimpleMarkerSymbol",
 "esri/symbols/Font", "esri/symbols/TextSymbol",
 "dojo/_base/array", "dojo/_base/Color",
 "dojo/number", "dojo/parser", "dojo/dom", "dijit/
registry","dijit/form/Button", "dijit/form/Textarea",
 "dijit/layout/BorderContainer",
 "dijit/layout/ContentPane", "dojo/domReady!"
], function(
 Map, Locator, Graphic,
 InfoTemplate, SimpleMarkerSymbol,
 Font, TextSymbol,
 arrayUtils, Color,
 number, parser, dom, registry
) {
 parser.parse();

Chapter 8

[167]

4.	 Now inside the require() function, we are going to initialize the locator
variable and then register it to Locator.address-to-locations-complete.
Add the following two lines of code just after the code block used to create
the Map object:
locator = new
 Locator("http://geocode.arcgis.com/arcgis/rest/
 services/World/GeocodeServer");
locator.on("address-to-locations-complete", showResults);

The constructor for Locator must be a valid URL pointer to a locator service.
In this case, we are using the World Geocoding Service. We've also registered
the Locator.address-to-locations-complete event for the Locator
object. This event fires when the geocoding has been completed and in this
case, will call the showResults() function specified as a parameter to on().

5.	 Let's also register the click event for the button that will trigger the
geocoding by adding the following line of code just after the two lines that
you just created. This will trigger the execution of a JavaScript function called
locate(), which we'll create in the next step:
registry.byId("locate").on("click", locate);

6.	 In this step, you're going to create a locate() function, which will perform
several tasks, including clearing any existing graphics, creating an Address
JSON object from the input textbox on the web page, defining several options,
and calling the Locator.addressToLocations() method. Add the code block
just after the last line of code you entered, shown as follows:
function locate() {
 map.graphics.clear();
 var address = {
 "SingleLine": dom.byId("address").value
 };
locator.outSpatialReference = map.spatialReference;
var options = {
 address: address,
 outFields: ["Loc_name"]
}
locator.addressToLocations(options);
}

Turning Addresses into Points and Points into Addresses

[168]

The first line of code in this function clears any existing graphics for the
map. This is needed when the user is entering more than one address
in a session. Next, we will create a variable called address, which is a
JSON object that contains the address entered by the user. We then set the
output spatial reference and create an options variable that contains the
address and output fields as a JSON object. Finally, we call the Locator.
addressToLocations() method and pass in the options variable.

7.	 The showResults() function will take the results returned by the Locator
service and plot them on the map. In this case, we're going to display only
an address with a score of greater than 80 on a scale of 0 to 100. Part of the
showResults() function has already been written for you. Create a new
variable to hold the AddressCandidate object by adding the highlighted
line of code as follows:
function showResults(evt) {
 var candidate;
 var symbol = new SimpleMarkerSymbol();
 var infoTemplate = new InfoTemplate(
 "Location",
 "Address: ${address}
Score: ${score}
Source
 locator: ${locatorName}"
);
 symbol.setStyle(SimpleMarkerSymbol.STYLE_SQUARE);
 symbol.setColor(new Color([153,0,51,0.75]));

8.	 Just after the line of code that creates the geom variable, start a loop that will
loop through each of the addresses that are returned from Locator:
arrayUtils.every(evt.addresses, function(candidate) {

 });

9.	 Start an if statement that checks the AddressCandidate.score property
for a value greater than 80. We only want to display addresses with a high
match value:
arrayUtils.every(evt.addresses, function(candidate) {
 if (candidate.score > 80) {

 }
});

Chapter 8

[169]

10.	 Inside the if block, create a JSON variable with new attributes, which contain
the address, score, and field values from the AddressCandidate object. In
addition to this, the location property will be saved to the geom variable:
arrayUtils.every(evt.addresses, function(candidate) {
 if (candidate.score > 80) {
 var attributes = {
 address: candidate.address,
 score: candidate.score,
 locatorName: candidate.attributes.Loc_name
 };
 geom = candidate.location;

 }
});

11.	 Create a new Graphic object using the geometry, symbol, attributes, and
infoTemplate variables that you either created earlier or were created for
you and add them to the GraphicsLayer:
arrayUtils.every(evt.addresses, function(candidate) {
 if (candidate.score > 80) {
 var attributes = {
 address: candidate.address,
 score: candidate.score,
 locatorName: candidate.attributes.Loc_name
 };
 geom = candidate.location;
 var graphic = new Graphic(geom, symbol, attributes,
infoTemplate);
 //add a graphic to the map at the geocoded location
 map.graphics.add(graphic);

 }
 });

12.	 Add a text symbol for the location(s):
arrayUtils.every(evt.addresses, function(candidate) {
 if (candidate.score > 80) {
 var attributes = {
 address: candidate.address,
 score: candidate.score,
 locatorName: candidate.attributes.Loc_name
 };
 geom = candidate.location;
var graphic = new Graphic(geom, symbol, attributes, infoTemplate);

Turning Addresses into Points and Points into Addresses

[170]

 //add a graphic to the map at the geocoded location
 map.graphics.add(graphic);
//add a text symbol to the map listing the location of the matched
 address.
 var displayText = candidate.address;
 var font = new Font(
 "16pt",
 Font.STYLE_NORMAL,
 Font.VARIANT_NORMAL,
 Font.WEIGHT_BOLD,
 "Helvetica"
);

 var textSymbol = new TextSymbol(
 displayText,
 font,
 new Color("#666633")
);
 textSymbol.setOffset(0,8);
 map.graphics.add(new Graphic(geom, textSymbol));

 }
 });

13.	 Break out of the loop after one address with a score of greater than 80
has been found. Many addresses will have more than one match, which
can be confusing. Take a look at the following code snippet:
arrayUtils.every(evt.addresses, function(candidate) {
 if (candidate.score > 80) {
 var attributes = {
 address: candidate.address,
 score: candidate.score,
 locatorName: candidate.attributes.Loc_name
 };
 geom = candidate.location;
var graphic = new Graphic(geom, symbol, attributes,
 infoTemplate);
 //add a graphic to the map at the geocoded location
 map.graphics.add(graphic);
//add a text symbol to the map listing the location of the
 matched address.
 var displayText = candidate.address;
 var font = new Font(
 "16pt",

Chapter 8

[171]

 Font.STYLE_NORMAL,
 Font.VARIANT_NORMAL,
 Font.WEIGHT_BOLD,
 "Helvetica"
);

 var textSymbol = new TextSymbol(
 displayText,
 font,
 new Color("#666633")
);
 textSymbol.setOffset(0,8);
 map.graphics.add(new Graphic(geom, textSymbol));
 return false; //break out of loop after one candidate
with score greater than 80 is found.
 }
 });

14.	 You may want to double check your code by examining the solution file
geocode_end.html located in your ArcGISJavaScriptAPI/solution
folder.

15.	 When you click on the Run button, you should see the following map.
If not, you may need to recheck your code for accuracy.

Turning Addresses into Points and Points into Addresses

[172]

16.	 Enter an address or accept the default and click on Locate, as shown in the
following screenshot:

Summary
An ArcGIS Server Locator service can perform geocoding and reverse geocoding.
Using the ArcGIS API for JavaScript, you can submit an address to the Locator service
and retrieve geographic coordinates for the address, which can then be plotted on
a map. An address, defined by a JSON object in JavaScript, is an input to a Locator
object, which geocodes the address and returns the results in an AddressCandidate
object that can then be displayed as a point on your map. This pattern is the same as
the other tasks we've seen in previous chapters, where an input object (the Address
object) provides input parameters to the task (Locator), which submits the job to
ArcGIS Server. A result object (AddressCandidate) is then returned to a callback
function, which processes the returned data. In the next chapter, you will learn how
to use various Network Analyst tasks.

Network Analyst Tasks
Network analysis services allow you to perform analyses on street networks such
as finding the best route from one address to another, finding the closest school,
identifying a service area around a location, or responding to a set of orders with
a fleet of service vehicles. The services can be accessed using their REST endpoints.
There are three types of analysis that can perform the services: routing, closest
facility, and service area. We'll examine each of the service types in this chapter.
All network analysis services require you to have the network analyst plugin for
ArcGIS Server.

In this chapter, we will cover the following topics:

•	 RouteTask
•	 Time to practice routing
•	 The ClosestFacility task
•	 The ServiceArea task

RouteTask
Routing in the API for JavaScript allows you to use a RouteTask object to find routes
between two or more locations and optionally get driving directions. The RouteTask
object uses network analysis services to calculate the routes and can include both
simple and complex routes such as multiple stops, barriers, and time windows.

Network Analyst Tasks

[174]

The RouteTask object uses a least-cost path between multiple locations in a network.
Impedance on the network can include time and distance variables. The following
screenshot shows the output of a RouteTask implementation:

As with the other tasks we have examined in this class, routing is accomplished
through a series of objects including RouteParameters, RouteTask, and
RouteResult. The following diagram illustrates the three route objects:

RouteParameters RouteTask RouteResult

The RouteParameters object provides the input parameters to RouteTask, which
submits a routing request to ArcGIS Server using the input parameters. Results are
returned from ArcGIS Server in the form of a RouteResult object.

The RouteParameters object serves as an input to the RouteTask object and
can include stop and barrier locations, impedance, whether or not to return
driving directions and routes, and many others. You can obtain a full list of all

Chapter 9

[175]

the parameters at https://developers.arcgis.com/en/javascript/jsapi/
routeparameters-amd.html for the JavaScript API. A brief code example is also
provided showing how to create an instance of RouteParameters, add stops, and
define the output spatial reference:

routeParams = new RouteParameters();
routeParams.stops = new FeatureSet();
routeParams.outSpatialReference = {wkid:4326};
routeParams.stops.features.push(stop1);
routeParams.stops.features.push(stop2);

The RouteTask object executes a routing operation using the input parameters
supplied by RouteParameters. The constructor for RouteTask takes a pointer to a
URL that identifies the network service to use for the analysis. Calling the solve()
method on RouteTask executes a routing task against the network analysis service
using the input parameters supplied:

routeParams = new RouteParameters();
routeParams.stops = new FeatureSet();
routeParams.outSpatialReference = {wkid:4326};
routeParams.stops.features.push(stop1);
routeParams.stops.features.push(stop2);
routeTask.solve(routeParams);

A RouteResult object is returned from the network analysis service to a callback
function provided by RouteTask. The callback function then handles the data by
displaying it to the user. The data returned is largely dependent upon the input
supplied to the RouteParameters object. One of the most important properties on
RouteParameters is the stops property. These are the points to be included in the
analysis of the best route between points. Stops is defined as either an instance of
DataLayer or FeatureSet and is a set of stops are to be included in the analysis.

The concept of barriers is also important in routing operations. Barriers restrict
movement when planning a route. Barriers can include a car accident, construction
work on a street segment, or other delays such as railroad crossings. Barriers
are defined as either FeatureSet or DataLayer and specified through the
RouteParameters.barriers property. The following code shows an example
of how barriers are created in your code:

var routeParameters = new RouteParameters();
//Add barriers as a FeatureSet
routeParameters.barriers = new FeatureSet();
routeParameters.barriers.features.push(map.graphics.add(new
 Graphic(evt.mapPoint, barrierSymbol)));

Network Analyst Tasks

[176]

Directions are returned only if RouteParameters.returnDirections is set
to true. When you elect to have directions returned, you can also use various
properties to control the returned directions. You have control over the language
for the directions (RouteParameters.directionsLanguage), length units
(RouteParameters.directionsLengthUnits), output type (RouteParameters.
directionsOutputType), style name (RouteParameters.StyleName), and time
attribute (RouteParameters.directionsTimeAttribute). The data returned in
addition to directions can include the route between points, the route name, and an
array of stops.

It is also possible to specify that the task should fail if one of the stops is unreachable.
This is accomplished through RouteParameters.ignoreInvalidLocations
property. This property can be set to true or false. You can also introduce time
into the analysis through properties such as RouteParameters.startTime, which
specifies the time the route begins, and RouteParameters.useTimeWindows, which
defines that a time range should be used in the analysis.

Time to practice routing
In this exercise, you will learn how to implement routing in your applications.
You'll create an instance of RouteParameters, add stops by allowing the user to
click points on a map, and solve the route. The returned route will be displayed as a
line symbol on the map. Follow the following directions to create an application that
includes routing:

1.	 Open the JavaScript Sandbox at http://developers.arcgis.com/en/
javascript/sandbox/sandbox.html.

2.	 Remove the JavaScript content from the <script> tag that I have highlighted
in the following code snippet:
 <script>
 dojo.require("esri.map");

 function init(){
 var map = new esri.Map("mapDiv", {
 center: [-56.049, 38.485],
 zoom: 3,
 basemap: "streets"
 });
 }
 dojo.ready(init);
 </script>

Chapter 9

[177]

3.	 Add the following references for the objects that we'll use in this exercise:
 <script>
 require([
 "esri/map",
 "esri/tasks/RouteParameters",
 "esri/tasks/RouteTask",

 "esri/tasks/FeatureSet",
 "esri/symbols/SimpleMarkerSymbol",
 "esri/symbols/SimpleLineSymbol",
 "esri/graphic",
 "dojo/_base/Color"
],
 function(Map, RouteParameters, RouteTask,
 FeatureSet, SimpleMarkerSymbol, SimpleLineSymbol,
 Graphic, Color){

 });
 </script>

4.	 Inside the require() function, create the Map object as seen in the following
code snippet and define variables to hold the route objects and symbols for
display purposes:
 <script>
 require([
 "esri/map",
 "esri/tasks/RouteParameters",
 "esri/tasks/RouteTask",
 "esri/tasks/RouteResult",
 "esri/tasks/FeatureSet",
 "esri/symbols/SimpleMarkerSymbol",
 "esri/symbols/SimpleLineSymbol",
 "esri/graphic",
 "dojo/_base/Color"
],
 function(Map, RouteParameters, RouteTask, RouteResult,
 FeatureSet, SimpleMarkerSymbol, SimpleLineSymbol,
 Graphic, Color){
 var map, routeTask, routeParams;
 var stopSymbol, routeSymbol, lastStop;

 map = new Map("mapDiv", {
 basemap: "streets",
 center:[-123.379, 48.418], //long, lat

Network Analyst Tasks

[178]

 zoom: 14
 });
 });
 </script>

5.	 Just below the code block that created the Map object, add an event handler for
the Map.click() event. This action should trigger the addStop() function:
map = new Map("mapDiv", {
 basemap: "streets",
 center:[-123.379, 48.418], //long, lat
 zoom: 14
});
map.on("click", addStop);

6.	 Create the RouteTask and RouteParameters objects. Set the
RouteParameters.stops property equal to a new FeatureSet object.
Also, set the RouteParameters.outSpatialReference property:
map = new Map("mapDiv", {
 basemap: "streets",
 center:[-123.379, 48.418], //long, lat
 zoom: 14
});
map.on("click", addStop);
routeTask = new RouteTask
 ("http://tasks.arcgisonline.com/ArcGIS/rest/services/
NetworkAnalysis/ESRI_Route_NA/NAServer/Route");
routeParams = new RouteParameters();
routeParams.stops = new FeatureSet();
routeParams.outSpatialReference = {"wkid":4326};

The following is a screenshot of the services directory that contains this
network analysis service:

Chapter 9

[179]

7.	 Add event handlers for the completion of the RouteTask.solve-complete()
event and the RouteTask.error() event. The successful completion of a
routing task should trigger the execution of a function called showRoute().
Any errors should trigger the execution of a function called errorHandler():
 routeParams = new RouteParameters();
 routeParams.stops = new FeatureSet();
 routeParams.outSpatialReference = {"wkid":4326};

 routeTask.on("solve-complete", showRoute);
 routeTask.on("error", errorHandler);

8.	 Create symbol objects for the beginning and ending points of the route as
well as the line that defines the route between those points. The following
lines of code should be added just below the two lines of code you added in
the previous step:
stopSymbol = new
 SimpleMarkerSymbol().setStyle
 (SimpleMarkerSymbol.STYLE_CROSS).setSize(15);
stopSymbol.outline.setWidth(4);
routeSymbol = new SimpleLineSymbol().setColor(new
 Color([0,0,255,0.5])).setWidth(5);

Network Analyst Tasks

[180]

9.	 Create the addStop() function that will be triggered when the user clicks
on the map. This function will accept an Event object as its only parameter.
The point clicked on the map can be extracted from this object. This
function will add a point graphic to the map and add the graphic to the
RouteParameters.stops property; on the second map click, it will call the
RouteTask.solve() method, passing in an instance of RouteParameters:
function addStop(evt) {
 var stop = map.graphics.add(new Graphic(evt.mapPoint,
 stopSymbol));
 routeParams.stops.features.push(stop);

 if (routeParams.stops.features.length >= 2) {
 routeTask.solve(routeParams);
 lastStop = routeParams.stops.features.splice(0,
 1)[0];
 }
 }

10.	 Create the showRoute() function, which accepts an instance of RouteResult.
The only thing you need to do in this function is add the route as a line to
GraphicsLayer:
function showRoute(solveResult) {
 map.graphics.add(solveResult.result.routeResults[0]
 .route.setSymbol(routeSymbol));
 }

11.	 Finally, add the error callback function in case there is a problem with the
routing. This function should display an error message to the user and
remove any leftover graphics:
function errorHandler(err) {
 alert("An error occurred\n" + err.message + "\n" +
 err.details.join("\n"));

 routeParams.stops.features.splice(0, 0, lastStop);
 map.graphics.remove
 (routeParams.stops.features.splice(1, 1)[0]);
}

Chapter 9

[181]

12.	 You may want to review the solution file (routing.html) in your
ArcGISJavaScriptAPI folder to verify that your code has been
written correctly.

13.	 Click on the Run button. You should see the map as in the following
screenshot. If not, you may need to recheck your code for accuracy.

Network Analyst Tasks

[182]

14.	 Click somewhere on the map. You should see a point marker as shown in the
following screenshot:

Chapter 9

[183]

15.	 Click on another point somewhere on the map. This should display a second
marker along with the best route between the two points, as seen in the
following screenshot:

The ClosestFacility task
The ClosestFacility task measures the cost of traveling between incidents and
facilities and determines which are nearest to one other. When looking for the closest
facilities, you can specify how many to find and whether the direction of travel is
towards or away from them. The closest facility solver displays the best routes between
incidents and facilities, reports their travel costs, and returns driving directions.

Network Analyst Tasks

[184]

The classes involved in solving closest facility operations include
ClosestFacilityParameters, ClosestFacilityTask, and
ClosestFacilitySolveResults, shown as follows:

ClosestFacilityParameters ClosestFacilityTask ClosestFacilitySolveResults

The ClosestFacilityParameters class includes input parameters such as the
default cutoff, whether or not to return incidents, routes, and directions, and more.
These parameters are used as inputs to the ClosestFacilityTask class, which
contains a solve() method. Finally, results are passed from ArcGIS Server back to
the client in the form of a ClosestFacilitySolveResults object.

The ClosestFacilityParameters object is used as an input to
ClosestFacilityTask. Some of the more commonly used properties on this object
will now be discussed. The incidents and facilities properties are used to set the
locations for the analysis. The data returned by the task can be controlled through
the returnIncidents, returnRoutes, and returnDirections properties, which are
simply true or false values indicating whether the information should be returned
in the results. The travelDirection parameter specifies whether travel should be to
or from the facility and defaultCutoff is the cutoff value beyond which the analysis
will stop traversing. The following code example shows how to create an instance of
ClosestFacilityParameters and apply the various properties:

params = new ClosestFacilityParameters();
params.defaultCutoff = 3.0;
params.returnIncidents = false;
params.returnRoutes = true;
params.returnDirections = true;

Chapter 9

[185]

When you create a new instance of ClosestFacilityTask, you will need to
point to a REST resource representing a network analysis service. Once created,
the ClosestFacilityTask class accepts the input parameters provided by
ClosestFacilityParameters and submits them to a network analysis service
using the solve() method.

This is illustrated by the following code example. The solve() method also accepts
callback and error callback functions:

cfTask = new
 ClosestFacilityTask("http://<domain>/arcgis/rest/services/network/
ClosestFacility");
params = new ClosestFacilityParameters();
params.defaultCutoff = 3.0;
params.returnIncidents = false;
params.returnRoutes = true;
params.returnDirections = true;
cfTask.solve(params, processResults);

The result returned from a ClosestFacilityTask operation is a
ClosestFacilitySolveResult object. This object can contain various properties
including a DirectionsFeatureSet object, which is an array of directions. This
DirectionsFeatureSet object contains the turn-by-turn directions text and
geometry of the route. The attributes for each feature provide the information
associated with the corresponding route segment. The returned attributes include
the direction text, the length of the route segment, the time to travel along the route
segment, and the estimated time of arrival at the route segment. Other properties
contained within ClosestFacilitySolveResults include an array containing the
facilities and incidents, an array of polylines representing the routes returned, any
messages returned, and arrays containing barriers.

Network Analyst Tasks

[186]

The ServiceArea task
The new ServiceArea task, illustrated in the following screenshot, calculates the
service area around an input location. This service area is defined in minutes and
is a region that encompasses all the accessible streets within that time range.

The classes involved in service area operations include ServiceAreaParameters,
ServiceAreaTask, and ServiceAreaSolveResults. These objects are illustrated in
the following diagram:

ServiceAreaSolveResultsServiceAreaParameters ServiceAreaTask

Chapter 9

[187]

The ServiceAreaParameters class includes input parameters such as the default
break, facilities involved, barriers and restrictions, travel direction, and more. These
parameters are used as inputs to the ServiceAreaTask class, which calls solve().
Parameters defined in ServiceAreaParameters are passed in to ServiceAreaTask.
Finally, results are passed from ArcGIS Server back to the client in the form of a
ServiceAreaSolveResults object. The ServiceAreaParameters object is used
as an input to ServiceAreaTask. Some of the more commonly used properties on
this object are discussed in this section of the chapter. The defaultBreaks property
is an array of numbers defining the service area. For instance, in the following
code example, a single value of 2 is provided to indicate that we'd like to return a
2-minute service area around the facility. The returnFacilities property, when
set to true, indicates that the facilities should be returned with the results. Various
point, polyline, and polygon barriers can be set as well through the barriers property.
Travel direction for the analysis can be to or from the facility and is set with the
travelDirection property. There are many other properties that can be set on
ServiceAreaParameters. A code example is provided as follows:

params = new ServiceAreaParameters();
params.defaultBreaks = [2];
params.outSpatialReference = map.spatialReference;
params.returnFacilities = false;

The ServiceAreaTask class finds service areas around a location using a street
network. The constructor for ServiceAreaTask should point to a REST resource
representing a network analysis service. To submit a request to solve a service area
task, you will need to call the solve() method on ServiceAreaTask.

The result returned from a ServiceAreaTask operation is a
ServiceAreaSolveResult object. This object can contain various properties
including a ServiceAreaPolygons property, which is an array of service area
polygons returned from the analysis. In addition, other properties include facilities,
messages, and barriers.

Network Analyst Tasks

[188]

Summary
Routing enables you to add the functionality that finds routes between two or
more locations to your application. In addition, you can generate driving directions
between the locations. This is accomplished through a RouteTask object that
performs network analysis. This functionality, along with the other network
analysis services, requires the use of the network analysis plugin for ArcGIS Server.
Other network analyst tasks include the closest facility task, which allows you to
measure the cost of traveling between incidents and facilities and determines which
are nearest to one other, and the service area task, which calculates the service
area around an input location. In the next chapter, you will learn how to execute
geoprocessing tasks from your applications.

Geoprocessing Tasks
Geoprocessing refers to the automation and chaining of GIS operations in a logical
fashion to accomplish some sort of GIS task. For example, you may want to buffer a
stream layer and then clip a vegetation layer to this newly created buffer. A model
can be built in ArcGIS for Desktop and run in an automated fashion from either a
desktop environment or via a centralized server accessed through a web application.
Any tool found in ArcToolbox, whether a built-in tool for your ArcGIS license level
or a custom tool that you've built, can be used in a model and chained together with
other tools. This chapter examines how you can access these geoprocessing tasks
through the ArcGIS API for JavaScript.

In this chapter, we will cover the following topics:

•	 Models in ArcGIS Server
•	 Using Geoprocessor – what you need to know
•	 Understanding the service page for a geoprocessing task
•	 The Geoprocessor task
•	 Running the task
•	 Time to practice with the geoprocessing tasks

Input Output 1

Clip
Final

output

Clip

features

Buffer

Geoprocessing Tasks

[190]

The preceding diagram shows us the components of a model that is built using
ModelBuilder. These models can be published to ArcGIS Server as geoprocessing
tasks and then accessed through your applications.

Models in ArcGIS Server
Models are built in ArcGIS for Desktop using ModelBuilder. Once built, these
models can be published to ArcGIS Server as geoprocessing tasks. Web applications
then use the Geoprocessor object found in the ArcGIS API for JavaScript to access
these tasks and retrieve information. These models and tools are run on ArcGIS
Server due to their computationally intensive nature and the need for ArcGIS
software. Jobs are submitted to the server through your application and the results
are picked up after the service is complete. Submitting jobs and retrieving the results
can be accomplished through the Geoprocessor object. This process is illustrated in
the following diagram:

Published to ArcGIS Server as Geoprocessing Task

API for JavaScript

Model built in ArcGIS Desktopfor

AGIS

Web pplicationa

GP Geoprocessor
bjecto

Using Geoprocessor – what you need
to know
There are three things that you need to know when using a geoprocessing service:

•	 First, you need to know the URL where the model or tool is located. An
example URL is http://sampleserver1.arcgisonline.com/ArcGIS/
rest/services/Demographics/ESRI_Population_World/GPServer/
PopulationSummary.

Chapter 10

[191]

•	 When you go to this link, you can also find information about the input and
output parameters, whether the task is asynchronous or synchronous, and
much more. Speaking of input and output parameters, you need to know the
data types associated with these parameters and whether or not each of these
parameters is required.

•	 Finally, you need to know whether the task is asynchronous or synchronous
and how your code should be configured based on that knowledge. All of
this information can be found on the service page for the geoprocessing task.

Need to know

3 things

URL of the

geoprocessing

model

Input and

output

parameters

Whether task is

asynchronous

or synchronous

Understanding the service page for a
geoprocessing task
The service page for a geoprocessing service includes metadata information about
the service. This includes the execution type that can be either synchronous or
asynchronous. In the case of the service seen in the following screenshot, the
PopulationSummary service is a synchronous task, which indicates that the
application will wait for the results to be returned. This type of execution is typically
used with tasks that execute quickly. Asynchronous tasks are submitted as a job
and then the application can continue to function while the geoprocessing service
is doing its work. When the task is complete, it notifies your application that the
processing is complete and the results are ready.

Geoprocessing Tasks

[192]

Other information includes the parameter names, parameter data type, whether the
parameter is an input or output type, whether the parameter is required or optional,
the geometry type, spatial reference, and fields.

Input parameters
There are a number of details you must remember regarding input parameters that
are submitted to the geoprocessing task. Almost all geoprocessing tasks will require
one or more parameters. These parameters can be either required or optional and are
created as JSON objects. In this section, you'll see a code example showing you how
to create these JSON objects. When creating parameters as JSON objects, you must
remember to create them in the exact order that they appear on the service page.
The parameter names must also be named exactly as they are named on the service
page. Please see the following screenshot for an example of how to read the input
parameters of a service:

Chapter 10

[193]

The following code example is correct because the parameter names are spelled
exactly as seen in the service page (also notice that the casing is the same) and are
provided in the correct order:

var params = {
 Input_Observation_Point: featureSetPoints,
 Viewshed_Distance: 250
};

In comparison, the following code example would be incorrect since the parameters
are provided in reverse order:

var params = {
 Viewshed_Distance: 250,
 Input_Observation_Point: featureSetPoints
};

The previous screenshot shows the input parameters supplied to a geoprocessing
task. When coding your JSON input parameters object, it is critical that you provide
the exact parameter name as given on the service page and that you provide the
parameters in the order they appear on the page. Notice in our code example that
we are providing two parameters: Input_Observation_Point and Viewshed_
Distance. Both parameters are required and we have named them exactly as they
appear on the service page and they are in the correct order.

Geoprocessing Tasks

[194]

The Geoprocessor task
The Geoprocessor class in the ArcGIS API for JavaScript represents a GP task
resource, which is a single task in a geoprocessing service. Input parameters
are passed into the Geoprocessor class through a call to either Geoprocessor.
execute() or Geoprocessor.submitJob(). We'll discuss the difference between
these two calls later. After executing the geoprocessing task, the results are returned
to the Geoprocessor object, where they are processed by a callback function.
Creating an instance of the Geoprocessor class simply requires you to pass in the
URL that points to the geoprocessing service exposed by ArcGIS Server. It does
require you to import esri/tasks/gp. The following code example shows you how
to create an instance of the Geoprocessor object:

gp = new Geoprocessor(url);

Running the task
Once you have an understanding of the geoprocessing models and tools available
to you for an ArcGIS Server instance as well as the input and output parameters,
you can begin writing the code that will execute the task. Geoprocessing jobs are
submitted to ArcGIS Server for either synchronous or asynchronous execution.
A synchronous execution implies that the client calls for execution of the task
and then waits for the result before continuing with the application code. In an
asynchronous execution, the client submits a job, continues to run other functions,
and checks back later for completion of the job. By default, the client checks back for
completion every second until the job is finished. The service page tells you how to
submit your job for each geoprocessing task. Simply look for the execution type on
the service page. The execution type is set when the model is published as a service.
As a developer, you don't have any control over the type after it has been published.

Synchronous tasks
Synchronous tasks require your application code to submit a job and wait for a
response before continuing. Because your end users must wait for the results to be
returned before continuing to interact with your application, this type of task should
only be used with tasks that return data very quickly. If a task takes more than just
a few seconds, it should be defined as asynchronous instead of synchronous. Users
quickly become frustrated with applications when data is returned within a very
short period of time.

You will need to use the Geoprocessor.execute() method with the property input
parameters and supplied callback function. The callback function is executed when
the geoprocessing task returns the results of the job that was submitted. These results
are stored in an array of ParameterValue.

Chapter 10

[195]

Asynchronous tasks
Asynchronous tasks require you to submit a job, continue working on other
functions while waiting for the process to finish, and then check back in with ArcGIS
Server on a periodic basis to retrieve the results after completion. The advantage of
an asynchronous task is that it doesn't force your end users to wait for the results.
Instead, the task is submitted and your end users continue to interact with the
application until the task has finished processing. When processing is complete,
a callback function is triggered in your application and you can handle the results
that are returned.

The Geoprocessor.submitJob() method is used to submit a job to the
geoprocessing task. You will need to supply input parameters, a callback function,
and a status callback function. The status callback function executes each time
your application checks back for the results. By default, the status is checked once
per second. However, this interval can be changed using the Geoprocessor.
setUpdateDelay() method. Each time the status is checked, a JobInfo object is
returned and contains information indicating the status of the job. When JobInfo.
jobStatus is set to STATUS_SUCCEEDED, the complete callback function is called.

A visual diagram of the process flow that occurs on asynchronous tasks is provided
in the following figure and might help reinforce how these types of tasks operate.
Input parameters are created and input to the Geoprocessor object, which uses
these parameters to submit a geoprocessing job to ArcGIS Server. The Geoprocessor
object then executes the statusCallback() function at regular intervals. This
function checks with the geoprocessing service to see if the job is finished. A JobInfo
object is returned and contains a status indicator, indicating its completion status.
This process continues until the job is completed, at which time a complete callback
function is called and which passes the results of the job.

completeCallback()

ArcGIS Server

InputParameters

statusCallback()

Geoprocessor Job nfoI Complete Results

submitJob()

No

Yes

Geoprocessing Tasks

[196]

Time to practice with geoprocessing
tasks
In this exercise, you will code a simple application that displays drive time polygons
on a map by accessing the CreateDriveTimePolygons model provided by Esri.
The application will create 1-, 2-, and 3-minute drive time polygons around a point
clicked on the map.

1.	 Open the JavaScript Sandbox at http://developers.arcgis.com/en/
javascript/sandbox/sandbox.html.

2.	 Remove the JavaScript content from the <script> tag that I have highlighted
in the following code snippet:
<script>
dojo.require("esri.map");

function init(){
var map = new esri.Map("mapDiv", {
center: [-56.049, 38.485],
zoom: 3,
basemap: "streets"
 });
 }
dojo.ready(init);
</script>

3.	 Add the following references for the objects that we'll use in this exercise:
<script>
require([
 "esri/map",
 "esri/graphic",
 "esri/graphicsUtils",
 "esri/tasks/Geoprocessor",
 "esri/tasks/FeatureSet",
 "esri/symbols/SimpleMarkerSymbol",
 "esri/symbols/SimpleLineSymbol",
 "esri/symbols/SimpleFillSymbol",
"dojo/_base/Color"],
function(Map, Graphic, graphicsUtils, Geoprocessor, FeatureSet,
 SimpleMarkerSymbol, SimpleLineSymbol, SimpleFillSymbol,
 Color){

 });
</script>

Chapter 10

[197]

4.	 Create the Map object as seen in the following code snippet and define
variables to hold the Geoprocessor object and drive times:
<script>
require([
 "esri/map",
 "esri/graphic",
 "esri/graphicsUtils",
 "esri/tasks/Geoprocessor",
 "esri/tasks/FeatureSet",
 "esri/symbols/SimpleMarkerSymbol",
 "esri/symbols/SimpleLineSymbol",
 "esri/symbols/SimpleFillSymbol",
"dojo/_base/Color"],
function(Map, Graphic, graphicsUtils, Geoprocessor,
 FeatureSet, SimpleMarkerSymbol, SimpleLineSymbol,
 SimpleFillSymbol, Color){
var map, gp;
var driveTimes = "1 2 3";

// Initialize map, GP and image params
map = new Map("mapDiv", {
 basemap: "streets",
 center:[-117.148, 32.706], //long, lat
 zoom: 12
}); });
</script>

5.	 Inside the require() function, create the new Geoprocessor object and set
the output spatial reference:
// Initialize map, GP and image params
map = new Map("mapDiv", {
 basemap: "streets",
 center:[-117.148, 32.706], //long, lat
 zoom: 12
});

gp = new
 Geoprocessor("http://sampleserver1.arcgisonline.com/
ArcGIS/rest/services/Network/ESRI_DriveTime_US/GPServer/
CreateDriveTimePolygons");
gp.setOutputSpatialReference({wkid:102100});

Geoprocessing Tasks

[198]

6.	 Set up an event listener for the Map.click() event. Each time the user
clicks on the map, it will trigger the execution of the geoprocessing task that
calculates drive times:
gp = new Geoprocessor("http://sampleserver1.arcgisonline.
com/ArcGIS/rest/services/Network/ESRI_DriveTime_US/GPServer/
CreateDriveTimePolygons");
gp.setOutputSpatialReference({wkid:102100});
map.on("click", computeServiceArea);

7.	 Now you'll create the computeServiceArea() function that serves as the
handler for the Map.click() event. This function will clear any existing
graphics, create a new point graphic that represents the point where the user
clicked on the map, and execute the geoprocessing task. First, create the stub
for the computeServiceArea() function just below the line of code that
defined the handler:
gp = new Geoprocessor("http://sampleserver1.arcgisonline.
com/ArcGIS/rest/services/Network/ESRI_DriveTime_US/GPServer/
CreateDriveTimePolygons");
gp.setOutputSpatialReference({wkid:102100});
map.on("click", computeServiceArea);

function computeServiceArea(evt) {

}

8.	 Clear any existing graphics and create the new SimpleMarkerSymbol that
will represent the point that is clicked on the map:
function computeServiceArea(evt) {
 map.graphics.clear();
 var pointSymbol = new SimpleMarkerSymbol();
 pointSymbol.setOutline = new
 SimpleLineSymbol(SimpleLineSymbol.STYLE_SOLID, new
 Color([255, 0, 0]), 1);
 pointSymbol.setSize(14);
 pointSymbol.setColor(new Color([0, 255, 0, 0.25]));
}

9.	 When the Map.click() event is triggered, an Event object is created and
passed to the computeServiceArea() function. This object is represented
in our code by the evt variable. In this step, you're going to create a new
Graphic object by passing in the Event.mapPoint property, which contains
the Point geometry returned from the map click as well as the instance of
SimpleMarkerSymbol that you created in the last step. You'll then add this
new graphic to GraphicsLayer so that it can be displayed on the map:

Chapter 10

[199]

function computeServiceArea(evt) {
 map.graphics.clear();
 varpointSymbol = new SimpleMarkerSymbol();
 pointSymbol.setOutline = new
 SimpleLineSymbol(SimpleLineSymbol.STYLE_SOLID, new
 Color([255, 0, 0]), 1);
 pointSymbol.setSize(14);
 pointSymbol.setColor(new Color([0, 255, 0, 0.25]));

 var graphic = new Graphic(evt.mapPoint,pointSymbol);
 map.graphics.add(graphic);
}

10.	 Now, create an array called features and place the graphic object into the
array. This array of graphics will eventually be passed into a FeatureSet
object that will be passed to the geoprocessing task:
functioncomputeServiceArea(evt) {
 map.graphics.clear();
 var pointSymbol = new SimpleMarkerSymbol();
 pointSymbol.setOutline = new
 SimpleLineSymbol(SimpleLineSymbol.STYLE_SOLID, new
 Color([255, 0, 0]), 1);
 pointSymbol.setSize(14);
 pointSymbol.setColor(new Color([0, 255, 0, 0.25]));

 var graphic = new Graphic(evt.mapPoint,pointSymbol);
 map.graphics.add(graphic);

 var features= [];
 features.push(graphic);
}

11.	 Create a new FeatureSet object and add the array of graphics to the
FeatureSet.features property:
function computeServiceArea(evt) {
 map.graphics.clear();
 var pointSymbol = new SimpleMarkerSymbol();
 pointSymbol.setOutline = new
 SimpleLineSymbol(SimpleLineSymbol.STYLE_SOLID, new
 Color([255, 0, 0]), 1);
 pointSymbol.setSize(14);
 pointSymbol.setColor(new Color([0, 255, 0, 0.25]));

 var graphic = new Graphic(evt.mapPoint,pointSymbol);
 map.graphics.add(graphic);

Geoprocessing Tasks

[200]

 var features= [];
 features.push(graphic);
 var featureSet = new FeatureSet();
 featureSet.features = features;
}

12.	 Create a JSON object that will hold the input parameters to be passed to the
geoprocessing task and call the Geoprocessor.execute() method. The
input parameters include Input_Location and Drive_Times. Remember
that each input parameter must be spelled exactly as it is seen in the service
page, including casing. The order of the parameters is also very important
and is also defined on the service page. We define the Input_Location
parameter to be a FeatureSet object. The FeatureSet object contains
an array of graphics which in this case is only a single graphic point. The
Drive_Times object has been hard coded with values of 1, 2, and 3 and
set in the driveTimes variable we created earlier. Finally, we called the
Geoprocessor.execute() method, passing in the input parameters as well
as a callback function that will process the results. We'll create this callback
function next:
function computeServiceArea(evt) {
map.graphics.clear();
varpointSymbol = new SimpleMarkerSymbol();
pointSymbol.setOutline = new
 SimpleLineSymbol(SimpleLineSymbol.STYLE_SOLID, new
 Color([255, 0, 0]), 1);
pointSymbol.setSize(14);
pointSymbol.setColor(new Color([0, 255, 0, 0.25]));

var graphic = new Graphic(evt.mapPoint,pointSymbol);
map.graphics.add(graphic);

var features= [];
features.push(graphic);
varfeatureSet = new FeatureSet();
featureSet.features = features;
var params = { "Input_Location":featureSet,
 "Drive_Times":driveTimes };
gp.execute(params, getDriveTimePolys);
}

Chapter 10

[201]

13.	 In the last step, we defined a callback function called getDriveTimePolys(),
which will be triggered when the geoprocessing task has finished with the
analysis of drive times. Let's create this getDriveTimePolys() function. Just
below the closing brace of the computeServiceArea() function, start the
stub for getDriveTimePolys():
function getDriveTimePolys(results, messages) {

}

14.	 The getDriveTimePolys() function accepts two parameters including the
result object and any messages that are returned. Define a new features
variable that holds the FeatureSet object returned by the geoprocessing task:
function getDriveTimePolys(results, messages) {
 var features = results[0].value.features;
}

15.	 The geoprocessing task will return three Polygon graphics. Each Polygon
graphic represents a drive time that we hardcoded as an input parameter
(1, 2, and 3 minutes). Create a for loop to process each of the polygons:
function getDriveTimePolys(results, messages) {
 var features = results[0].value.features;

 for (var f=0, fl=features.length; f<fl; f++) {

 }
}

16.	 Inside the for loop, symbolize each of the polygons with a different color.
The first graphic will be red, the second green, and the third blue. There
will be three polygons in the FeatureSet object. Define a different polygon
symbol for each using the following code block and add the graphic to the
GraphicsLayer:
function getDriveTimePolys(results, messages) {
var features = results[0].value.features;

for (var f=0, fl=features.length; f<fl; f++) {
 var feature = features[f];
 if(f == 0) {
 var polySymbolRed = new SimpleFillSymbol();
 polySymbolRed.setOutline(new
 SimpleLineSymbol(SimpleLineSymbol.STYLE_SOLID, new
 Color([0,0,0,0.5]), 1));
 polySymbolRed.setColor(new Color([255,0,0,0.7]));
 feature.setSymbol(polySymbolRed);

Geoprocessing Tasks

[202]

 }
 else if(f == 1) {
 var polySymbolGreen = new SimpleFillSymbol();
 polySymbolGreen.setOutline(new
 SimpleLineSymbol(SimpleLineSymbol.STYLE_SOLID, new
 Color([0,0,0,0.5]), 1));
 polySymbolGreen.setColor(new Color([0,255,0,0.7]));
 feature.setSymbol(polySymbolGreen);
 }
 else if(f == 2) {
 var polySymbolBlue = new SimpleFillSymbol();
 polySymbolBlue.setOutline(new
 SimpleLineSymbol(SimpleLineSymbol.STYLE_SOLID, new
 Color([0,0,0,0.5]), 1));
 polySymbolBlue.setColor(new Color([0,0,255,0.7]));
 feature.setSymbol(polySymbolBlue);
 }
 map.graphics.add(feature);
}

17.	 Set the map extent to be the extent of GraphicsLayer, which now contains
the three polygons you just created:
function getDriveTimePolys(results, messages) {
 var features = results[0].value.features;

 for (var f=0, fl=features.length; f<fl; f++) {
 var feature = features[f];
 if(f === 0) {
 var polySymbolRed = new SimpleFillSymbol();
 polySymbolRed.setOutline(new
 SimpleLineSymbol(SimpleLineSymbol.STYLE_SOLID, new
 Color([0,0,0,0.5]), 1));
 polySymbolRed.setColor(new Color([255,0,0,0.7]));
 feature.setSymbol(polySymbolRed);
 }
 else if(f == 1) {
 var polySymbolGreen = new SimpleFillSymbol();
 polySymbolGreen.setOutline(new
 SimpleLineSymbol(SimpleLineSymbol.STYLE_SOLID, new
 Color([0,0,0,0.5]), 1));
 polySymbolGreen.setColor(new Color([0,255,0,0.7]));
 feature.setSymbol(polySymbolGreen);
 }
 else if(f == 2) {
 var polySymbolBlue = new SimpleFillSymbol();

Chapter 10

[203]

 polySymbolBlue.setOutline(new
 SimpleLineSymbol(SimpleLineSymbol.STYLE_SOLID, new
 Color([0,0,0,0.5]), 1));
 polySymbolBlue.setColor(new Color([0,0,255,0.7]));
 feature.setSymbol(polySymbolBlue);
 }
 map.graphics.add(feature);
 }
 map.setExtent(graphicsUtils.graphicsExtent
 (map.graphics.graphics), true);
}

18.	 Add a <div> tag that will hold the instructions for the application:
<body>
<div id="mapDiv"></div>
<div id="info" class="esriSimpleSlider">
 Click on the map to use a Geoprocessing(GP) task to
 generate and zoom to drive time polygons. The drive time
 polygons are 1, 2, and 3 minutes.
</div>
</body>

19.	 Alter the <style> tag at the top of the code, as seen in the highlighted part of
the following code:
<style>
html, body, #mapDiv {
height: 100%;
margin: 0;
padding: 0;
width: 100%;
 }
 #info {
bottom: 20px;
color: #444;
height: auto;
font-family: arial;
left: 20px;
margin: 5px;
padding: 10px;
position: absolute;
text-align: left;
width: 200px;
z-index: 40;
 }
</style>

Geoprocessing Tasks

[204]

20.	 You may want to review the solution file (drivetimes.html) in
your ArcGISJavaScriptAPI folder to verify that your code has been
written correctly.

21.	 Click on the Run button. You should see the map in the following screenshot.
If not, you may need to recheck your code for accuracy.

22.	 Click somewhere on the map. In just a few moments, you should see the drive
time polygons displayed. Be patient. Sometimes this can take a little while.

Chapter 10

[205]

Summary
ArcGIS Server can expose geoprocessing services such as models and tools, which
your application can access. These tools are run on ArcGIS Server due to their
computationally intensive nature and need for ArcGIS software. Jobs are submitted
to the server through your application and the results are returned after the task
is complete. Geoprocessing tasks can be synchronous or asynchronous and are
configured to run as one of these types by an ArcGIS Server administrator. As
an application programmer, it is important for you to understand what type of
geoprocessing service you are accessing as the method call that you make to the
service depends upon this information. In addition, to know whether a task is
synchronous or asynchronous, you also need to know the URL of the geoprocessing
model or tool as well as the input and output parameters. In the next chapter, you
will learn how to add data and maps from ArcGIS Online to your application.

Integration with
ArcGIS Online

ArcGIS Online is a website designed for working with maps and other types
of geographic information. On this site, you will find applications for building
and sharing maps. You will also find useful basemaps, data, applications, and
tools that you can view and use, plus the communities that you can join. For
application developers, the really exciting news is that you can integrate ArcGIS
Online content into your custom developed applications using the ArcGIS Server
API for JavaScript. In this chapter, you'll explore how ArcGIS Online maps can be
added to your applications.

In this chapter, we will cover the following topics:

•	 Adding ArcGIS Online maps to your applications with the webmap ID
•	 Adding ArcGIS Online maps to your applications with JSON
•	 Time to practice with ArcGIS Online

Adding ArcGIS Online maps to your
applications with the webmap ID
The ArcGIS Server API for JavaScript includes two utility methods for working with
maps from ArcGIS Online. Both methods are found on the esri/arcgis/utils
resource. The createMap() method is used to create a map from an ArcGIS
Online item.

Integration with ArcGIS Online

[208]

Each map in the ArcGIS Online gallery has a unique ID. This unique ID, called
webmap, will be important when you begin creating custom applications that
integrate maps from ArcGIS Online. To get the webmap ID for a map that you'd like
to add to your JavaScript API application, simply click on a map shared in ArcGIS
Online that you've found. The address bar will contain the webmap ID for the map.
You'll want to make note of this ID. The following screenshot shows how you can
obtain the webmap ID from the address bar of a browser for a particular map:

Once you have obtained the webmap ID for the ArcGIS Online map that you'd
like to integrate into your custom JavaScript API application, you'll need to call the
getItem() method, passing in the webmap ID. The getItem() method returns a
dojo/Deferred object. The Deferred object is built specifically for tasks that may not
complete immediately. It allows you to define success and failure callback functions
that will be executed when the task is completed. In this case, a successful completion
will pass in an itemInfo object to the success function.

This itemInfo object will be used to create the map from ArcGIS Online inside
your custom application. You'll see a code example illustrating some of these topics
as follows:

var agoId = "fc160a96a98d4052ae191cc486961b61";
var itemDeferred = arcgisUtils.getItem(agoId);

itemDeferred.addCallback(function(itemInfo) {
var mapDeferred = arcgisUtils.createMap(itemInfo, "map", {
mapOptions: {
 slider: true

Chapter 11

[209]

 },
 geometryServiceURL: "http://sampleserver3.arcgisonline.com/ArcGIS/
rest/
 services/Geometry/GeometryServer"
 });
mapDeferred.addCallback(function(response) {
map = response.map;
 map.on("resize", resizeMap);
 });
mapDeferred.addErrback(function(error) {
console.log("Map creation failed: " , json.stringify(error));
 });
itemDeferred.addErrback(function(error) {
console.log("getItem failed: ", json.stringify(error));
 });
}

We'll cover this entire function in two separate examples. For now we'll examine the
use of the getItem() method along with setting up callback functions for success or
failure. These lines of code are highlighted in the preceding code example. In the first
line of code, we create a variable called agoId and assign it the webmap ID that we'd
like to use. Next we call getItem(), passing in the agoId variable containing our
webmap ID. This creates a new dojo/Deferred object, which we assign to a variable
called itemDeferred. Using this object, we can then create success and error
callback functions. The success function, called addCallback is passed an itemInfo
object that we'll use to create our map. We'll cover the actual creation of the map
in the next section. In the event of some type of error condition, the addErrback
function would be called. Now let's see how the map is created. The highlighted lines
of the following code snippet illustrate the creation of the map:

var agoId = "fc160a96a98d4052ae191cc486961b61";
var itemDeferred = arcgisUtils.getItem(agoId);

itemDeferred.addCallback(function(itemInfo) {
varmapDeferred = arcgisUtils.createMap(itemInfo, "map", {
mapOptions: {
 slider: true
 },
 geometryServiceURL: "http://sampleserver3.arcgisonline.com/ArcGIS/
rest/services/
 Geometry/GeometryServer"
 });
mapDeferred.addCallback(function(response) {
map = response.map;
 map.on("resize", resizeMap);

Integration with ArcGIS Online

[210]

 });
mapDeferred.addErrback(function(error) {
console.log("Map creation failed: " , json.stringify(error));
 });
itemDeferred.addErrback(function(error) {
console.log("getItem failed: ", json.stringify(error));
 });
}

The createMap() method is used to actually create the map from ArcGIS Online.
This method takes an instance of itemInfo, which is returned from a successful call
to getItem(); or, you can simply provide the webmap ID. As with any map that
you create with the ArcGIS Server API for JavaScript, you also need to provide a
reference to a <div> container that will hold the map and any optional map options
that you'd like to provide. Just as with the getItem() method we examined earlier,
createMap() also returns a dojo/Deferred object that you can use to assign success
and error callback functions. The success function accepts a response object, which
contains the map property that we use to retrieve the actual map. The error function
runs when an error that would prevent the creation of the map occurs.

Adding ArcGIS Online maps to your
applications with JSON
An alternative to creating a map using the webmap ID is to create a map using a
JSON object that is a representation of the web map. This can be useful in situations
where the application will not have access to ArcGIS Online. Take a look at the
following code snippet:

var webmap = {};
webmap.item = {
 "title":"Census Map of USA",
 "snippet": "Detailed description of data",
 "extent": [[-139.4916, 10.7191],[-52.392, 59.5199]]
};

Chapter 11

[211]

Next, specify the layers that make up the map. In the preceding snippet, the World
Terrain basemap from ArcGIS Online is added along with an overlay layer that adds
additional information to the map such as boundaries, cities, water features and
landmarks, and roads. An operational layer is added that displays U.S. census data:

webmap.itemData = {
"operationalLayers": [{
 "url": " http://sampleserver1.arcgisonline.com/ArcGIS/rest/
 services/Demographics/ESRI_Census_USA/MapServer",
 "visibility": true,
 "opacity": 0.75,
 "title": "US Census Map",
 "itemId": "204d94c9b1374de9a21574c9efa31164"
}],
"baseMap": {
 "baseMapLayers": [{
 "opacity": 1,
 "visibility": true,
 "url": "http://services.arcgisonline.com/ArcGIS/rest/services/
 World_Terrain_Base/MapServer"
 },{
 "isReference": true,
 "opacity": 1,
 "visibility": true,
 "url": "http://services.arcgisonline.com/ArcGIS/rest/services/
 Reference/World_Reference_Overlay/MapServer"
 }],
 "title": "World_Terrain_Base"
},
"version": "1.1"
};

Once webmap is defined, use createMap() to build a map from the definition:

var mapDeferred = arcgisUtils.createMap(webmap, "map", {
mapOptions: {
slider: true
 }
});

Integration with ArcGIS Online

[212]

Time to practice with ArcGIS Online
In this exercise, you will learn how to integrate ArcGIS Online maps into your
applications. This simple application will display a public map of supermarket access
in the U.S., pulled from ArcGIS Online. This map shows data for the entire U.S. The
following screenshot illustrates this map. The supermarkets included in the analysis
have annual sales of $1 million or more. The population in poverty is represented by
taking the block group poverty rate (for example, 10 percent) from the census and
symbolizing each block in that block group based on that percentage. Take a look at
the following screenshot:

The green dots represent populations in poverty who live within one mile of a
supermarket. The red dots represent the population in poverty that live beyond a
one mile walk to a supermarket, but may live within a 10 minute drive, assuming
they have access to a car. The grey dots represent the total population in a given area.
Perform the following steps:

Chapter 11

[213]

1.	 Before you begin coding the application, let's explore ArcGIS Online and see
how you can find maps and retrieve their unique identifiers. Open a web
browser and go to http://arcgis.com.

2.	 In the search box, type Supermarket as shown in the following screenshot:

3.	 This will return a list of results. We're going to add the Supermarket Access
Map result to our application:

Integration with ArcGIS Online

[214]

4.	 Click on the Open link under the thumbnail image of the map.

5.	 This will open the map in the ArcGIS Online viewer. You'll want to copy
the web map number as shown in the following screenshot. I would suggest
either writing the number down somewhere or copying and pasting to the
Notepad. This is a unique ID for the map:

6.	 Open the JavaScript Sandbox at http://developers.arcgis.com/en/
javascript/sandbox/sandbox.html.

Chapter 11

[215]

7.	 Remove the JavaScript content from the <script> tag that I have highlighted
as follows:
<script>
dojo.require("esri.map");

function init(){
var map = new esri.Map("mapDiv", {
center: [-56.049, 38.485],
zoom: 3,
basemap: "streets"
 });
 }
dojo.ready(init);
</script>

8.	 Add the following references for the objects that we'll use in this exercise:
<script>
require([
 "dojo/parser",
 "dojo/ready",
 "dojo/dom",
 "esri/map",
 "esri/arcgis/utils",
 "esri/dijit/Scalebar",
 "dojo/domReady!"
], function(
parser,ready,dom,Map,arcgisUtils,Scalebar) {
 });
</script>

9.	 In this simple example, we're going to hardcode the webmap ID into the
application. Inside the require() function, create a new variable called
agoId and assign it the webmap ID you obtained as follows:
<script>
require([
 "dojo/parser",
 "dojo/ready",
 "dojo/dom",
 "esri/map",
 "esri/arcgis/utils",
 "esri/dijit/Scalebar",
 "dojo/domReady!"
], function(
parser,ready,dom,Map,arcgisUtils,Scalebar) {

Integration with ArcGIS Online

[216]

 var agoId = "153c17de00914039bb28f6f6efe6d322";

 });

</script>

10.	 In the last two steps in this exercise, we will deal with the arcgisUtils.
getItem() and arcgisUtils.createMap() methods. Both these methods
return what is known as a Dojo/Deferred object. You need to have a
basic understanding of Deferred objects, or the code won't make a lot of
sense. The dojo/Deferred object is built specifically for tasks that may not
complete immediately. It allows you to define success and failure callback
functions that will execute when the task does complete. A success callback
function will be called by Deferred.addCallback(), while a failure function
will take the form Deferred.errCallback(). In the case of getItem(), a
successful completion will pass in an itemInfo object to the success function.
This itemInfo object will be used to create the map from ArcGIS Online
inside your custom application. A failure to complete due to some reason
will result in the generation of an error being passed to the Deferred.
addErrback() function. Add the following code block to your application
and then we'll discuss its details further:
<script>
require([
 "dojo/parser",
 "dojo/ready",
 "dojo/dom",
 "esri/map",
 "esri/arcgis/utils",
 "esri/dijit/Scalebar",
 "dojo/domReady!"
], function(
parser,ready,dom,Map,arcgisUtils,Scalebar) {

 var agoId = "153c17de00914039bb28f6f6efe6d322";
 var itemDeferred = arcgisUtils.getItem(agoId);

 itemDeferred.addCallback(function(itemInfo) {
 var mapDeferred = arcgisUtils.createMap(itemInfo,
 "mapDiv", {
 mapOptions: {
 slider: true,
 nav:true
 }

Chapter 11

[217]

 });

 });
 itemDeferred.addErrback(function(error) {
 console.log("getItem failed: ",
 json.stringify(error));
 });

 });

</script>

In the first line of code, we call the getItem() function, passing in the
agoId variable, which references the Supermarket Access Map from
ArcGIS Online. This method returns a Dojo/Deferred object, which
is stored in a variable called itemDeferred.
The getItem() function gets details about the ArcGIS Online item
(webmap). The object passed back to the callback is a generic object
with the following specification:
{
item: <Object>,
itemData: <Object>
}

Assuming that the call to getItem() was successful, this generic item object
is then passed into the addCallback() function. Inside the callback function,
we then make a call to the getMap() method, passing in the itemInfo object,
a reference to the map container, and any optional parameters that define the
map functionality. The map parameters in this case include the presence of a
navigation slider and navigation buttons. The getMap() method then returns
another Dojo/Deferred object, which is stored in the mapDeferred variable.
In the next step, you'll define the code blocks that handle the Deferred object
that will be passed back.

11.	 The object returned to the mapDeferred.addCallback() function will take
the following form:
{
 Map: <esri/Map>,
itemInfo: {
item: <Object>,
itemData: <Object>
 }
}

Integration with ArcGIS Online

[218]

12.	 Add the following code to handle the information returned:
<script>
require([
 "dojo/parser",
 "dojo/ready",
 "dojo/dom",
 "esri/map",
 "esri/arcgis/utils",
 "esri/dijit/Scalebar",
 "dojo/domReady!"
], function(
parser,ready,dom,Map,arcgisUtils,Scalebar) {

 var agoId = "153c17de00914039bb28f6f6efe6d322";
 var itemDeferred = arcgisUtils.getItem(agoId);

 itemDeferred.addCallback(function(itemInfo) {
 var mapDeferred = arcgisUtils.createMap(itemInfo,
 "mapDiv", {
 mapOptions: {
 slider: true,
 nav:true
 }
 });
 mapDeferred.addCallback(function(response) {
 map = response.map;
 });
 mapDeferred.addErrback(function(error) {
 console.log("Map creation failed: ", json.
 stringify(error));
 });

 });
 itemDeferred.addErrback(function(error) {
 console.log("getItem failed: ",
 json.stringify(error));
 });

 });

</script>

The success function (mapDeferred.addCallback) pulls the map from the
response and assigns it to the map container.

Chapter 11

[219]

13.	 You may want to review the solution file (arcgisdotcom.html) in
your ArcGISJavaScriptAPI folder to verify that your code has been
written correctly.

14.	 After clicking on the Run button, you should see the following map.
If not, you may need to recheck your code for accuracy:

Summary
ArcGIS Online is becoming increasingly important as a platform for creating and
sharing maps and other resources. As a developer, you can integrate these maps
into your custom applications. Each map has a unique identifier that you can use
to pull the map into your custom application developed with ArcGIS Server and
the JavaScript API. Because it can take some time to return these maps from ArcGIS
Online, the getItem() and createMap() methods return Dojo/Deferred objects,
which provide callback functions for both success and failure. Once the maps have
been successfully obtained from ArcGIS Online, they can then be presented in your
application just like any other map service. In the next chapter, you will learn how to
use the ArcGIS API in JavaScript for mobile applications.

Creating Mobile Applications
The ArcGIS Server API for JavaScript provides support for mobile platforms. Support
is currently provided for iOS, Android, and BlackBerry operating systems. The API is
integrated with dojox/mobile. In this chapter, you'll learn about the compact build
of the API that makes web mapping applications possible through WebKit browsers
as well as the built-in gesture support. Keep in mind that this is not the same as the
ArcGIS API for iOS or Android, which is what you'd use to build native applications
that can be made available through an app store. JavaScript API applications are
rendered through the WebKit browser that is part of the mobile device.

We'll also cover the Geolocation API and how it can be integrated into your ArcGIS
Server applications. The Geolocation API is a part of HTML5 and is used to get the
location of a mobile device. Most mobile browsers support the Geolocation API
specification that provides scripted access to geographical location information
associated with a hosting device.

In this chapter, we will cover the following topics:

•	 ArcGIS API for JavaScript – a compact build
•	 Setting the viewport scale
•	 Time to practice with the compact build
•	 Integrating the Geolocation API
•	 Time to practice with the Geolocation API

Creating Mobile Applications

[222]

ArcGIS API for JavaScript – a compact
build
The ArcGIS API for JavaScript has a compact build that can be used to limit the
footprint of the API, resulting in quicker downloads for mobile devices. This smaller
footprint is a great choice for mobile applications, including the iPhone and iPad.
There are two primary differences between the standard and compact builds of
the API:

•	 The first difference is that the compact build only loads objects that are
needed for your application. For example, if you don't need a Calendar
widget, then it's not loaded.

•	 The second difference is that the compact build only loads 32 code modules
instead of the 80 modules loaded with the standard build. If you need to use
a code module that is not downloaded as part of the compact build, then you
can use the require() function to load the specific module that you use.

Referencing the compact build is as simple as adding the word compact to the end of
your reference to the API. You will see an example later. Using the API in a mobile
application isn't any different from the techniques you've learned for creating web
applications. However, you will need to learn some new techniques for creating the
user interface for mobile applications. There are a number of good JavaScript mobile
frameworks available for accomplishing this task, including Dojox Mobile and
jQuery Mobile. The mobile frameworks style the web content to make it look like
a mobile application. Safari browsers look like an iPhone application and Android
browsers look like an Android application. Creating mobile user interfaces is beyond
the scope of this text but there are many good resources available in print and online.
In the following code example, you will see how to add a reference to the compact
build of the ArcGIS API for JavaScript. Note the inclusion of the compact keyword at
the end of the API.

<script src="http://js.arcgis.com/3.7compact/"></script>

Setting the viewport scale
You will want to use the viewport <meta> tag to set some initial display
characteristics for your application. The <meta> tag should be included in the <head>
section of your web page. A value of 1.0 for the initial scale is recommended and
will fill the entire viewport of the screen. Values can be set between 0 and 1.0. If
you don't set a width, your mobile browser will use device-width when in portrait
mode. If you don't set a height, the browser will use device-height when in
landscape mode:

Chapter 12

[223]

<meta name="viewport" content="width=device-width, initial-
 scale=1" maximum-scale=1.0 user-scalable=0>

Time to practice with the compact build
In this exercise, you will build the most basic mobile mapping application possible.
We're simply going to use the compact build of the ArcGIS Server API for JavaScript
to create a mapping application centered on the town of Banff, Alberta, Canada. The
application won't be able to do anything other than zoom and pan. There won't be
any sort of user interface beyond just the map. The goal is just to illustrate the basic
structure of a mobile application built with the API for JavaScript.

This exercise will be a little different from the exercises you've worked on in previous
chapters. You won't use the ArcGIS API for JavaScript Sandbox. Instead, you'll write
your code in a text editor (I recommend Notepad++) and test using a mobile emulator.

1.	 Before starting this exercise, you'll want to make sure you have access to a
web server. If you don't have access to a web server or one that isn't already
installed on your computer, you can download and install the open source
web server, Apache (http://httpd.apache.org/download.cgi). Microsoft
IIS is another commonly used web server and there are many others that you
can use as well. For the purposes of this exercise, I will assume that you are
using the Apache web server.

2.	 A web server installed on your local computer will be referred to through
the URL http://localhost, which is used to access the web server. This
points to the htdocs folder under C:\Program Files\Apache Software
Foundation\Apache2.2 if you've installed Apache on a Windows platform.

3.	 In your ArcGISJavaScriptAPI folder, you'll find a file called mobile_map.
html. I have prewritten some of the code that you will use in this step, so that
you can focus on adding referencing to the compact build as well as some
other items related to mobile development. Use this file as your starting point
and copy it to the root directory of your web server (C:\Program Files\
Apache Software Foundation\Apache2.2\htdocs if you're using Apache
on Windows).

4.	 Open mobile_map.html in your favorite text editor. I recommend
Notepad++, but you can use any text editor.

5.	 Add a reference to the compact version of the API as well as the Esri
stylesheet. Add the following highlighted lines of code to your application:
<head>

 <meta http-equiv="Content-Type" content="text/html;
 charset-utf-8">

Creating Mobile Applications

[224]

 <meta http-equiv="X-UA-Compatible" content="IE=7,IE=9,
 IE=10" />

 <title>Simple Map</title>

 <link rel="stylesheet"
 href="http://js.arcgis.com/3.7/js/esri/css/esri.css">
 <link rel="stylesheet"
 href="http://code.jquery.com/mobile/1.1.0-
 rc.1/jquery.mobile-1.1.0-rc.1.min.css" />
 <script src="http://code.jquery.com/jquery-
 1.7.1.min.js"></script>
 <script src="http://code.jquery.com/mobile/1.1.0-
 rc.1/jquery.mobile-1.1.0-rc.1.min.js"></script>
 <script src="http://js.arcgis.com/3.7compact/"></script>

6.	 You will want to use the viewport <meta> tag attribute to set some initial
display characteristics for your application. A value of 1.0 for the initial scale
is recommended and will fill the entire viewport of the screen. Values can
be set between 0 and 1.0. If you don't set a width, mobile browsers will use
device-width when in portrait mode, and if you don't set a height, they will
use device-height when in landscape mode. Add the following line of code
under the <head> tag at the start of the code:
<meta name="viewport" content="width=device-width, initial-
 scale=1">

7.	 In the <script> tag, add the require() function seen highlighted in the
following code snippet as well as the references that we'll use in this exercise:
<script>
 require([
 "esri/map",
 "dojo/domReady!"
], function(Map) {
 });
 </script>

8.	 As is the case with a traditional web mapping application built with the
API for JavaScript, you will create a <div> tag to hold the map for your
mobile application. With a mobile application, you will want to style the
map so that it takes up the entire viewport of the mobile application. This is
accomplished by setting the width and height to 100%, respectively. Add the
<div> map container to your application. Make sure that you set the style of
the width and height to 100%:
<div data-role="page">
 <div data-role="header">
 <h1>Simple Map</h1>
 </div><!-- /header -->

Chapter 12

[225]

 <div data-role="content">
 <div id="mapDiv" style="width:100%;
 height:100%;"></div>
 </div><!-- /content -->

 <div data-role="footer">
 <h4>Page Footer</h4>
 </div><!-- /footer -->
</div><!-- /page -->

9.	 Mobile devices can display their viewport in the standard or landscape mode
simply by rotating the device. Your application will need to deal with these
events as and when they occur. Add the onorientationchange() event to
the <body> tag. The onorientationchange() event references a JavaScript
function called orientationChanged(), which we have not yet defined.
We'll do that in the next step:
<body onorientationchange="orientationChanged();">

10.	 Create a new Map object, set the basemap, and center the map as well as the
zoom scale level:
<script type="text/javascript">
 require([
 "esri/map",
 "dojo/domReady!"
], function(Map) {
 map = new Map("mapDiv", {
 basemap: "streets",
 center:[-115.570, 51.178], //long, lat
 zoom: 12
 });
});
</script>

11.	 Create the orientationChanged() JavaScript function, as seen in the
following code. This function can be added anywhere inside the <script> tag:
<script type="text/javascript">
 require([
 "esri/map",
 "dojo/domReady!"
], function(Map) {

 map = new Map("mapDiv", {
 basemap: "streets",
 center:[-115.570, 51.178], //long, lat
 zoom: 12
 });

 function orientationChanged() {

Creating Mobile Applications

[226]

 if(map) {
 map.reposition();
 map.resize();
 }
 }
 });
 </script>

12.	 Save the file.
13.	 Open a web browser and load an emulator. I recommend iphone4simulator.

com but there are many others that you can use. These sites emulate how a
website or application will look and behave.

You are also welcome to upload these exercise files to a web
server that is outside the firewall if you'd prefer to view
them on an actual mobile device rather than an emulator.

14.	 If you are using Apache, then you've most likely saved the file to the root
location of the web server, which is C:\Program Files\Apache Software
Foundation\Apache2.2\htdocs. The file can then be accessed through a
web browser using the URL http://localhost/mobile_map.html. Type
http://localhost/mobile_map.html in the emulator address bar, as seen
in the following screenshot. You should see a map appear.

Chapter 12

[227]

The compact version of the API for JavaScript creates a minified version of
the zoom scale slider. This is about as simple as a mapping application can
get but hopefully it illustrates the basic characteristics of building a mobile
mapping application.

15.	 You can use the zoom slider to zoom in and out and keep in mind that
the ArcGIS Server API for JavaScript also supports gestures, so you can
use a pinch gesture to zoom in and out as well. However, keep in mind
that this will not work in the emulator. Use the zoom in and zoom out
buttons on the interface for the application to zoom in and out as seen
in the following screenshot:

16.	 You may want to review the solution file (mobile_map_solution.html)
in your ArcGISJavaScriptAPI folder to verify that your code has been
written correctly.

Creating Mobile Applications

[228]

Integrating the Geolocation API
The Geolocation API can be integrated with your ArcGIS Server applications
to get the location of a mobile device. It can also be used to get the location from
a web-based application, but this isn't nearly as accurate as it uses the IP address
rather than a GPS or cell tower triangulation.

This API has built-in security that requires explicit permission from the end user before
this functionality can be used in an application. Mobile and web applications will both
display a prompt that requests permission to obtain the current location of a device.
This prompt will appear similar to what is shown in the following screenshot:

Most browsers support the Geolocation API specification, which provides scripted
access to geographical location information associated with a hosting device.
The primary purpose of the Geolocation API is to identify the location of a mobile
device. There are various ways in which a mobile device can be located, including
cell tower triangulation, IP address, and GPS location. The Geolocation.
getCurrentPosition() method returns the current location of the mobile device.
You could easily use this API to place a point on the mapping application that
corresponds to the current user location. The Geolocation.watchPosition()
method can be used to track a location as it changes with a callback method being
fired each time the position changes. So, if your application needs to be able to track
the location of a device over time, then you'll want to use watchPosition() instead
of getCurrentPosition(), which simply gets the location at a single point in time.

Chapter 12

[229]

The following code snippet contains a simple example detailing the basic use of a
Geolocation API. The first thing we do is check whether the browser supports the
Geolocation API. This is done with the navigator.geolocation property, which
returns a value of true or false. Generally, this will prompt the user to allow
the application to collect the current location and also make sure that the browser
supports Geolocation.

To see if your browser supports Geolocation or any other HTML5
feature, go to http://caniuse.com/.

If the browser supports the Geolocation API and the end user gives it permission
to collect the location, then we call the geolocation.getCurrentPosition()
method. The first parameter passed to this method indicates a success callback
function, which will be executed if the device is located successfully. Similarly, an
error callback function can also be provided (locationError). A Position object is
passed to the success callback function. This Position object can then be examined
to obtain the latitude/longitude coordinates of the location. That's what we've done
in the zoomToLocation() function which accepts a Position object as the only
parameter. This function then obtains the latitude/longitude coordinates and plots
the point on the map:

if (navigator.geolocation){
 navigator.geolocation.getCurrentPosition(zoomToLocation,
locationError);
}

function zoomToLocation(location) {
 var symbol = new SimpleMarkerSymbol();

 symbol.setStyle(SimpleMarkerSymbol.STYLE_SQUARE);
 symbol.setColor(new Color([153,0,51,0.75]));

 var pt = esri.geometry.geographicToWebMercator(new
 Point(location.coords.longitude, location.coords.latitude));
 var graphic = new Graphic(pt, symbol);
 map.graphics.add(graphic);
 map.centerAndZoom(pt, 16);
}

function locationError(error) {
 switch (error.code) {
 case error.PERMISSION_DENIED:
 alert("Location not provided");

Creating Mobile Applications

[230]

 break;
 case error.POSITION_UNAVAILABLE:
 alert("Current location not available");
 break;
 case error.TIMEOUT:
 alert("Timeout");
 break;
 default:
 alert("unknown error");
 break;
 }
}

Time to practice with the Geolocation API
In this exercise, you will learn how to integrate the Geolocation API into an ArcGIS
Server API for JavaScript application.

1.	 Open the JavaScript Sandbox at http://developers.ArcGIS.com/en/
javascript/sandbox/sandbox.html.

2.	 Remove the JavaScript content from the <script> tag that I have highlighted
in the following code snippet:
 <script>
 dojo.require("esri.map");

 function init(){
 var map = new esri.Map("mapDiv", {
 center: [-56.049, 38.485],
 zoom: 3,
 basemap: "streets"
 });
 }
 dojo.ready(init);
 </script>

3.	 Add the following references for the objects that we'll use in this exercise:
<script>
 require([
 "dojo/dom",
 "esri/map",
 "esri/geometry/Point",
 "esri/symbols/SimpleMarkerSymbol",
 "esri/graphic",

Chapter 12

[231]

 "esri/geometry/webMercatorUtils",
 "dojo/_base/Color",
 "dojo/domReady!"
], function(dom, Map, Point, SimpleMarkerSymbol, Graphic,
 webMercatorUtils, Color) {
 });
</script>

4.	 Create a new Map object centered on San Diego, CA, with a basemap layer of
the streets. This will serve as the default map and zoom extent if the browser
you are using doesn't support the Geolocation API or if permission to access
the current device location is not provided:
<script>

 require([
 "dojo/dom",
 "esri/map",
 "esri/geometry/Point",
 "esri/symbols/SimpleMarkerSymbol",
 "esri/graphic",
 "esri/geometry/webMercatorUtils",
 "dojo/_base/Color",
 "dojo/domReady!"
], function(dom, Map, Point, SimpleMarkerSymbol,
 Graphic, webMercatorUtils, Color) {

 map = new Map("mapDiv", {
 basemap: "streets",
 center:[-117.148, 32.706], //long, lat
 zoom: 12
 });
 });
</script>

5.	 Create an if statement that checks for browser support of the Geolocation
API and gains permission to access the current device location. The
Navigator.geolocation property will return a true or false value. If the
browser supports the Geolocation API and permission is given by the end
user, then this property will contain a true value:
map = new Map("mapDiv", {
 basemap: "streets",
 center:[-117.148, 32.706], //long, lat
 zoom: 12
});
if (navigator.geolocation){

Creating Mobile Applications

[232]

 navigator.geolocation.getCurrentPosition(zoomToLocation,
locationError);
}

6.	 As you can see from the code you've added in the previous step, the
Geolocation.getCurrentPosition() function defines two callback
functions—one for success (zoomToLocation) and one for failure
(locationError). In this step, you'll create the success callback function
by adding the following code block. The success callback function, called
zoomToLocation, will zoom to the location of the mobile device:
if (navigator.geolocation){
 navigator.geolocation.getCurrentPosition(zoomToLocation,
 locationError);
 }

 function zoomToLocation(location) {
 var symbol = new SimpleMarkerSymbol();

 symbol.setStyle(SimpleMarkerSymbol.STYLE_SQUARE);
 symbol.setColor(new dojo.Color([153,0,51,0.75]));

 var pt = webMercatorUtils.geographicToWebMercator(new
 Point(location.coords.longitude,
 location.coords.latitude));
 var graphic = new Graphic(pt, symbol);
 map.graphics.add(graphic);
 map.centerAndZoom(pt, 16);
 }

7.	 Now, let's add the error callback function called locationError().
This function will test for various types of errors related to not being able
to find the current location of the device. Add the following function just
below the success callback function that you created in the previous step:
function locationError(error) {
 switch (error.code) {
 case error.PERMISSION_DENIED:
 alert("Location not provided");
 break;
 case error.POSITION_UNAVAILABLE:
 alert("Current location not available");
 break;

Chapter 12

[233]

 case error.TIMEOUT:
 alert("Timeout");
 break;
 default:
 alert("unknown error");
 break;
 }
}

8.	 You may want to review the solution file (geolocation.html) in
your ArcGISJavaScriptAPI folder to verify that your code has been
written correctly.

9.	 Click on the Run button. Initially, you should see a message similar
to that displayed in the following screenshot:

Creating Mobile Applications

[234]

10.	 Click on Share Location and if the browser you are using supports the
Geolocation API, then a new map should be displayed with your current
location, represented by a symbol. Your location will obviously differ
from mine.

Summary
Mobile GIS applications are becoming very popular and the ArcGIS Server API
for JavaScript can be used to quickly develop applications that are supported in
both web and mobile applications. The API comes with built-in gesture support
and supports iOS, Android, and BlackBerry platforms. The compact version of the
API provides a smaller footprint that downloads quickly on mobile platforms. In
addition, you can combine the Geolocation API into your applications, in order
to locate the device and update the map to show the current location. In the next
chapter, you will learn basic techniques used for designing and creating the layout
of your application.

Application Design with
ArcGIS Templates and Dojo

One of the most difficult tasks for many web developers when building GIS
applications is designing and creating the user interface. The ArcGIS API for JavaScript
and Dojo greatly simplifies this task. Dojo's layout dijits provide a simple, efficient way
to create application layouts, and Esri provides a number of sample application layouts
and templates that you can use to get up and running quickly. In this appendix, the
reader will learn techniques to quickly design the layout of an application.

The Dojo BorderContainer dijit
Since the AGIS API for JavaScript is built directly on top of the Dojo JavaScript
framework, you automatically have access to the user interface Dojo libraries,
including layout dijits such as BorderContainer. The layout dijits are a set of user
interface elements you can add to an application that give you control over the
layout of the application. The BorderContainer dijit serves primarily as a container
for other child containers and can be one of these two design types: headline or
sidebar. You define the design type using the design attribute. The design type
can be either headline or sidebar and both can be split into as many as 5 different
regions: top, bottom, right, left, and center. Each region is normally filled by a
Dojo layout element. It is also possible to nest regions for greater control over the
layout of an application. For example, you might include a second BorderContainer
within the center region of a master BorderContainer. Using this second
BorderContainer, you could then further divide the center region.

top

left center

bottom

right

Application Design with ArcGIS Templates and Dojo

[236]

In the following code example, we are defining design to be of type headline. This
results in the general configuration that you see in the code, with the top and bottom
regions stretching across the entire width of the screen space. In this case, you only
need to set the height property for the top and bottom regions:

<div id="main-pane" dojoType="dijit.layout.BorderContainer"
 design="headline">

In the following code example, we define design as sidebar. With the sidebar
design, the left and right regions expand to take up 100% of the height of the
window, sacrificing the area available to the top and bottom regions. In this case,
you need to define only the width style property as the height will always be 100%.

<div id="main-pane" dojoType="dijit.layout.BorderContainer"
 design="sidebar">

In either case, the center region will conform to fit the amount of space available,
based on the sizing of the other regions. The following screenshots that you will
see depict both of the design types available for BorderContainer. The first shows
a headline style while the second shows a sidebar style.

Appendix

[237]

Additional Dojo layout elements
Each region of BorderContainer (top, bottom, left, right, and center) can be filled by
a Dojo layout element. These elements are AccordionContainer, SplitContainer,
StackContainer, and TabContainer. You can also create a nested set of
BorderContainer objects to further divide the available layout space.

Child elements are placed inside a region through the use of the region attribute,
as seen in the following code example. Notice that in the highlighted section, the
region attribute is set to left. This will create ContentPane in the left region.
ContentPane is a very basic layout element and is used as a container for other
widgets. In this case, it is going to hold TabContainer (highlighted), which contains
additional ContentPane objects.

<div dojotype="dijit.layout.ContentPane" id="leftPane"
 region="left">
 <div dojotype = "dijit.layout.TabContainer">
 <div dojotype="dijit.layout.ContentPane" title = "Tab 1"
 selected="true">
 Content for the first tab
 </div>
 <div dojotype="dijit.layout.ContentPane" title = "Tab 2" >
 Content for the second tab
 </div>
 </div>
</div>

Application Design with ArcGIS Templates and Dojo

[238]

The following screenshot illustrates the location and content that was generated
using ContentPane and TabContainer:

AccordionContainer holds a set of panes whose titles are visible, but only one
pane's content is visible at a time. As the user clicks on a title, the pane contents
become visible. These are excellent user interface containers that can hold a lot of
information in a small area.

Esri has provided a number of sample layouts that you can use to get started with
the layout of your application. The help page for the ArcGIS API for JavaScript
includes a Samples tab containing dozens of sample scripts you can use in your
application including various layout samples. In the next section, you'll learn how
to integrate one of these sample layouts into your application.

Time to practice with sample layouts
In this exercise, you will download a sample layout provided by Esri. You'll then
examine the layout to get a feel of the basic layout elements provided by Dojo.
Finally, you'll make some changes to the layout.

1.	 Before starting this exercise, you'll want to make sure that you have access
to a web server. If you don't have access to a web server or if a web server
isn't already installed on your computer, you can download and install the
open source web server Apache (http://httpd.apache.org/download.
cgi). Microsoft IIS is another commonly used web server and there are many

Appendix

[239]

others that you can use as well. For the purpose of this exercise, I will assume
that you are using the Apache web server.

2.	 A web server installed on your local computer will be referred to through
URL as http://localhost. This points to the htdocs folder under C:\
Program Files\Apache Software Foundation\Apache2.2\ if you've
installed Apache on a Windows platform.

3.	 On the Samples tab of the ArcGIS API for JavaScript site
(https://developers.arcgis.com/en/javascript/jssamples/),
search for Layouts in the search box to generate a list of available
layout samples.

4.	 Scroll down the list of search results until you see the Layout with left pane
sample seen in the following screenshot. Click on this item:

5.	 Click on the Download as a zip file link to download the sample.
6.	 Create a new folder in your htdocs folder under C:\Program Files\Apache

Software Foundation\Apache2.2\ and name it layout. Unzip the file that
you downloaded into this folder. This will create a file called index.html,
along with the css and images folders.

Application Design with ArcGIS Templates and Dojo

[240]

7.	 Open a web browser and go to the URL http://localhost/layout/index.
html so you can see the current layout. You should see something similar to
the following screenshot:

8.	 Open index.html in your favorite text or web editor.
9.	 Scroll to the bottom of the file until you see the <body> tag.
10.	 The highest level layout container is BorderContainer. A <div> tag will

contain BorderContainer and all other child layout elements need to be
located inside this <div> tag. Examine the following code. The highlighted
section is the code used to define our top level BorderContainer. Notice that
the design has been set to headline, which means that the top and bottom
regions will be scrolled across the entire width of the screen:
<body class="claro">
 <div id="mainWindow"
 data-dojo-type="dijit.layout.BorderContainer"
 data-dojo-props="design:'headline'"
 style="width:100%; height:100%;">

 <div id="header"
 data-dojo-type="dijit.layout.ContentPane"
 data-dojo-props="region:'top'">
 <div id="title">
 </div>

Appendix

[241]

 </div>

 <div data-dojo-type="dijit.layout.ContentPane"
 id="leftPane" data-dojo-props="region:'left'">
 <div data-dojo-type="dijit.layout.TabContainer">
 <div data-dojo-type="dijit.layout.ContentPane"
 data-dojo-props="title:'Tab 1', selected:'true'">
 Content for the first tab
 </div>
 <div data-dojo-type="dijit.layout.ContentPane"
 data-dojo-props="title:'Tab 2'">
 Content for the second tab
 </div>
 </div>
 </div>

 <div id="map" data-dojo-type="dijit.layout.ContentPane"
 data-dojo-props="region:'center'"></div>

 <div id="footer"
 data-dojo-type="dijit.layout.ContentPane"
 data-dojo-props="region:'bottom'">

 </div>

 </div>
</body>

11.	 Inside BorderContainer, you will find several child layout elements
defined with the ContentPane dijit. ContentPane is a very generic layout
element that simply holds either text or additional layout elements, such as
TabContainer or AccordionContainer.
<body class="claro">
 <div id="mainWindow"
 data-dojo-type="dijit.layout.BorderContainer"
 data-dojo-props="design:'headline'"
 style="width:100%; height:100%;">

 <div id="header" data-dojo-type="dijit.layout.ContentPane"
 data-dojo-props="region:'top'">
 <div id="title">
 </div>
 </div>

Application Design with ArcGIS Templates and Dojo

[242]

 <div data-dojo-type="dijit.layout.ContentPane"
 id="leftPane" data-dojo-props="region:'left'">
 <div data-dojo-type="dijit.layout.TabContainer">
 <div data-dojo-type="dijit.layout.ContentPane"
 data-dojo-props="title:'Tab 1', selected:'true'">
 Content for the first tab
 </div>
 <div data-dojo-type="dijit.layout.ContentPane"
 data-dojo-props="title:'Tab 2'">
 Content for the second tab
 </div>
 </div>
 </div>

 <div id="map" data-dojo-type="dijit.layout.ContentPane"
 data-dojo-props="region:'center'"></div>

 <div id="footer" data-dojo-type="dijit.layout.ContentPane"
 data-dojo-props="region:'bottom'">

 </div>

 </div>
</body>

Notice that in the previous code example, each ContentPane layout
element has a region that has been designed for each layout element. In
this case, we have defined all of the available regions, with the exception
of the right region. This is illustrated in the following screenshot:

top

left center

bottom

right

12.	 Next, examine the following highlighted code. The highlighted code defines
the content for the left region. A simple ContentPane layout element is
defined, which as I mentioned previously is a very simple container for
other layout elements or text. Inside this ContentPane, we have created a
TabContainer layout element and assigned two tabs. Each tab is created as
ContentPane.

Appendix

[243]

<body class="claro">
 <div id="mainWindow"
 data-dojo-type="dijit.layout.BorderContainer"
 data-dojo-props="design:'headline'"
 style="width:100%; height:100%;">

 <div id="header"
 data-dojo-type="dijit.layout.ContentPane"
 data-dojo-props="region:'top'">
 <div id="title">
 </div>
 </div>

 <div data-dojo-type="dijit.layout.ContentPane"
 id="leftPane" data-dojo-props="region:'left'">
 <div data-dojo-type="dijit.layout.TabContainer">
 <div data-dojo-type="dijit.layout.ContentPane"
 data-dojo-props="title:'Tab 1', selected:'true'">
 Content for the first tab
 </div>
 <div data-dojo-type="dijit.layout.ContentPane"
 data-dojo-props="title:'Tab 2'">
 Content for the second tab
 </div>
 </div>
 </div>

 <div id="map"
 data-dojo-type="dijit.layout.ContentPane"
 data-dojo-props="region:'center'"></div>

 <div id="footer"
 data-dojo-type="dijit.layout.ContentPane"
 data-dojo-props="region:'bottom'">

 </div>

 </div>
</body>

Application Design with ArcGIS Templates and Dojo

[244]

13.	 A common scenario would be to create a tab container that holds a legend for
the map, as seen in the following screenshot:

14.	 Now that you understand the basic concepts of creating layout elements, you
can add content for the right region. Add the following highlighted code:
<body class="claro">
 <div id="mainWindow"
 data-dojo-type="dijit.layout.BorderContainer"
 data-dojo-props="design:'headline'"
 style="width:100%; height:100%;">

 <div id="header"
 data-dojo-type="dijit.layout.ContentPane"
 data-dojo-props="region:'top'">
 <div id="title">
 </div>
 </div>

 <div data-dojo-type="dijit.layout.ContentPane"
 id="leftPane" data-dojo-props="region:'left'">
 <div data-dojo-type="dijit.layout.TabContainer">
 <div data-dojo-type="dijit.layout.ContentPane"
 data-dojo-props="title:'Tab 1', selected:'true'">
 Content for the first tab
 </div>
 <div data-dojo-type="dijit.layout.ContentPane"

Appendix

[245]

 data-dojo-props="title:'Tab 2'">
 Content for the second tab
 </div>
 </div>
 </div>

 <div data-dojo-type="dijit.layout.ContentPane"
 id="rightPane" data-dojo-props="region:'right'">
 Content for right pane
 </div>

 <div id="map" data-dojo-type="dijit.layout.ContentPane"
 data-dojo-props="region:'center'"></div>

 <div id="footer"
 data-dojo-type="dijit.layout.ContentPane"
 data-dojo-props="region:'bottom'">

 </div>

 </div>
</body>

15.	 In the css folder that you extracted earlier in the exercise, there is a file called
layout.css. This contains the styling information for our application.
Open this file in your text editor.

16.	 Find the text #rightPane as seen in the following code example. Properties
are defined for the background color, foreground color, border styling, and
width of the region:
#rightPane {
 background-color:#FFF;
 color:#3f3f3f;
 border:solid 2px #224a54;
 width:20%;
}

17.	 Recall that in the previous code block that you added, we gave id of
rightPane to the right region. The CSS section will style our pane by
giving it a background color (white), foreground color, width, and border.

18.	 Save the file.

Application Design with ArcGIS Templates and Dojo

[246]

19.	 If necessary, open your web browser and reload http://localhost/
layout/index.html, or simply refresh the page if you already have it
opened. Now you should see new content for the right region of the
application. Currently, it only holds some text as the content, but you could
easily add additional content, including user interface widgets (dijits). We'll
do that in the next step when we add AccordionContainer.

20.	 Next, we'll add AccordionContainer to the right region.
21.	 First, add a reference to the AccordionContainer resource, as seen in the

following highlighted code:
dojo.require("dijit.layout.BorderContainer");
dojo.require("dijit.layout.ContentPane");
dojo.require("dijit.layout.TabContainer");
dojo.require("esri.map");
dojo.require("esri.arcgis.utils");
dojo.require("esri.IdentityManager");
dojo.require("dijit.layout.AccordionContainer");

Appendix

[247]

22.	 Now, add AccordionContainer inside ContentPane for the right region as
well as the content for each of the panes. The highlighted code below should
be added to the ContentPane you created in step 14:
<div data-dojo-type="dijit.layout.ContentPane"
 id="rightPane" data-dojo-props="region:'right'">
 <div data-dojo-type="dijit.layout.AccordionContainer" >
 <div data-dojo-type="dijit.layout.ContentPane"
 title="Pane 1">
 Content for Pane 1
 </div>
 <div data-dojo-type="dijit.layout.ContentPane" title="Pane
 2">
 Content for Pane 2
 </div>
 <div data-dojo-type="dijit.layout.ContentPane" title="Pane
 3">
 Content for Pane 3
 </div>
 </div>
</div>

23.	 Save the file.
24.	 Refresh your browser to see the new AccordionContainer layout element as

seen in the following screenshot. In this exercise, you learned how to quickly
create an application layout using Esri sample layouts.

Application Design with ArcGIS Templates and Dojo

[248]

Summary
Designing and implementing the appearance of a GIS web mapping application is
often a difficult task for developers. Design and development are two very different
skill sets. Most people aren't good at both. However, Dojo's layout widgets and Esri
sample templates make it much easier to build complex designs with very little
coding. In this appendix, you learned how to use an Esri sample to quickly define
and build the layout of an application.

Index
A
AccordionContainer layout element 247
addCallback() function 217
addErrback function 209
addLayers() method 47
add() method 64
addPolysToMap function 68, 70
AddressCandidate object 161
AddressCandidate.score property 168
Address object 161
addressToLocations() method 164
address variable 168
addStop() function 178, 180
addToMap() function 139, 142
agoId variable 209, 217
AJAX 13
AMD 34, 35
analysis widgets

about 119
AggregatePoints 119
AnalysisBase 119
CreateBuffers 119
CreateDriveTimeAreas 119
DissolveBoundaries 119
EnrichLayer 119
ExtractData 119
FindHotSpots 119
FindNearest 119
MergeLayers 119
OverlayLayers 119
SummarizeNearby 119
SummarizeWithin 119

API 30
application

toolbar, adding to 94

application programming interface. See API
ArcGIS API for JavaScript 93
ArcGIS API for JavaScript renderers

ClassBreaksRenderer 84, 86
DotDensityRenderer 86, 87
SimpleRenderer 83
TemporalRenderer 84
UniqueValueRenderer 83

ArcGIS API for JavaScript Sandbox
about 30
compact build 222
DOM availability, checking 36
final code 38, 39
geocoding, Locator Service used 162-165
HTML code, creating for web page 32, 33
map, creating 36, 37
modules, loading 34, 35
page content, creating 37
page, styling 38
referencing 33, 34
routing task 173-176
URL 30
used, for application creating 31

ArcGISDynamicMapServiceLayer class 45
ArcGIS for Desktop

definition expression, setting 48
ArcGIS Online maps

adding, to applications with JSON 210, 211
adding, to applications with webmap ID

207-210
integrating, in applications 212-219

ArcGIS Server
models 190
tasks, performed in 129, 130

ArcGISTiledMapServiceLayer class 44
arcgisUtils.createMap() method 216

[250]

arcgisUtils.getItem() method 216
Asynchronous JavaScript and XML. See

AJAX
Asynchronous Model Definition. See AMD
AttachmentEditor widget 125, 127
AttributeInspector widget 124, 125
attribute queries

about 130
properties, defining 131-133

attributes
assigning, to graphics 62

B
BasemapGallery widget 98, 99
Bookmarks widget 100
BorderContainer dijit

about 235
Dojo layout elements 237, 238
working 236, 237

C
Cascading Style Sheets. See CSS
clear() method 64
click event 54
ClosestFacilityParameters class 184
ClosestFacilityParameters object 184
ClosestFacilitySolveResult object 185
ClosestFacilitySolveResults object 184
ClosestFacility task

about 183
classes involved 184
working 184, 185

ClosestFacilityTask class 184, 185
compact build

using 223-227
viewport scale, setting 222

computeServiceArea() function 198, 201
ContentPane dijit 241, 242
CreateDriveTimePolygons model 196
createMap() method 207, 210
CSS

about 20
inserting, external stylesheet used 25
inserting, inline styling used 25
inserting, internal stylesheet used 25

principles 20-26
seperating, from HTML and JavaScript

26, 27
syntax 22

CSS principles
CSS syntax 22-24
external stylesheet 25, 26
inline styling 25
internal stylesheet 25

CSS syntax
class selectors, using 24
comments, used for code explaining 23
selectors, specifying 23

D
decision-supporting statements 17
defaultBreaks property 187
Deferred.addErrback() function 216
Deferred object 134
definition expression

setting, in ArcGIS for Desktop 48
defPopSymbol variable 67, 70
Demographics map service 48
design attribute 235
DirectionsFeatureSet object 185
Directions widget 113, 114
displayCoordinates function 54
display mode

defining 78
on-demand mode 79
selection-only mode 80
snapshot mode 79

distance property 165
Document Object Model. See DOM
Dojo

additional layout elements 237, 238
BorderContainer dijit 235-237
sample layouts, working with 238-247

dojo/Deferred object 208, 210
dojo/domReady! plugin 36
dojo on() method 54
DOM 36
doQuery function 140
dynamic map service layers

about 45
using 46, 47

[251]

E
editing widgets

about 121
AttachmentEditor 125, 127
AttributeInspector 124, 125
Editor 121, 122
Edit toolbar 127
TemplatePicker 122, 123

Editor widget 121, 122
Edit toolbar 127
errorCallback() function 135
errorHandler() function 179
Event.mapPoint property 155, 198
Event object 55
executeIdentifyTask() function 154
execute method 68
execute() method 135
external stylesheet

used, for inserting CSS in application 25

F
facilities property 184
feature editing

about 119
feature service 120

feature layer
about 75
definition expression, setting 80
display mode, defining 78
feature, selecting 80, 81
rendering 82-86
snapshot mode 79, 80

featureLayer.getDefinitionExpression()
method 80

FeatureLayer object
about 75
creating 76, 77
optional constructor parameters 77, 78
using 87-92

feature service 120
FeatureSet.features property 199
FeatureSet object 58, 130, 178, 199
FindParameters object 147
FindTask

about 158
FindParameters object 157, 158

FindResult 158
used, for feature attributes getting 156-158

FindTask.execute() method 158
FindTask object 147
fullExtent() method 53
function keyword 18
functions 18

G
Gauge widget 107, 108
Geocoder widget

about 102
adding, to application 102-107

geocoding
about 162
example 162
Locator Service used 162-166

Geolocation API
integrating 228-234
practicing with 230-234

geolocation.getCurrentPosition() method
229, 232

Geolocation.getCurrentPosition() method
228

Geolocation.watchPosition() method 228
geometry

creating, for graphics 60
geometry property 130
geom variable 168
geoprocessing task

about 194
asynchronous tasks 195
input parameters 192, 193
running 194
synchronous tasks 194
working with 196-204

geoprocessor
service page, understanding 191
using 190

Geoprocessor class 194
Geoprocessor.execute() method 194, 200
Geoprocessor.setUpdateDelay() method 195
Geoprocessor.submitJob() method 195
getDriveTimePolys() function 201
getItem() method 208, 209
getMap() method 217

[252]

graphic
adding, to graphics layer 64
attributes, assigning to 62
composition 59
creating 59, 64
creating, on map 65-73
displaying, on map 65-73
geometry, creating for 60
symbolizing 60-62

graphic attributes
displaying, in info template 63

Graphic.setInfoTemplate() method 72
graphics layer

graphics, adding to 64
multiple graphics layers 65

GraphicsLayer object 91

H
handler function 54
HistogramTimeSlider dijit 114
HomeButton widget 115
HTML

seperating, from CSS and JavaScript 26, 28
HTML code

creating, for web page 32, 33
validating, W3C HTML validator used

10-12
HTML DOCTYPE declaration

about 9
HTML 4.01 Strict 9
XHTML 1.0 Strict 9

HTML page concepts
about 7, 8
DOCTYPE declaration 9
HTML code, validating 10-12
primary tags 9

I
identify functionality

implementing 151-156
IdentifyParameters class 148
IdentifyParameters.layerIds property 149
IdentifyParameters object

about 147, 148
using 149

IdentifyTask
about 148
IdentifyParameters object 148, 149
IdentifyTask attribute 149, 150
used, for feature attributes getting 148

IdentifyTask attribute
about 149, 150
IdentifyResult 150, 151

IdentifyTask.execute() method 150, 155
incidents property 184
info template

graphic attributes, displaying in 63
InfoTemplate object 72, 91
inline styling

used, for inserting CSS in application 25
input parameter objects

about 163
Input JSON address object 163
Input Point object 164

input parameters
about 192
Input_Observation_Point 193
Viewshed_Distance 193

instance
creating, of Navigation toolbar 96

internal stylesheet
used, for inserting CSS in application 25

itemDeferred variable 209
itemInfo object 208

J
JavaScript

case sensitivity 15
code, commenting in 13
constructors 20
decision-supporting statements 17
events 20
functions 18
fundamentals 13
looping statements 17
methods 19, 20
objects 19
properties 20
seperating, from HTML and CSS 26, 27
variable datatypes 15, 16
variables 14

[253]

JobInfo object 195
JSON

used, for ArcGIS Online maps adding to
applications 210, 211

L
layer classes

using 43
layerIds property 157
LayerSwipe widget 118
left-to-right (LTR) orientation 109
Legend widget 110, 111
LocateButton widget 116, 117
locationError() function 232
locationToAddress() method 164, 165
Locator.addressToLocations() method 164,

167
Locator class 161, 164
Locator object

about 164
AddressCandidate object 164, 165

Locator Service
practicing with 166-172
used, for geocoding in ArcGIS API for

JavaScript 162
Locator Service, used for geocoding

geocoding process 165
input parameter objects 163, 164
Locator object 164, 165
reverse geocoding process 165

locator variable 167
looping statements 17

M
map

about 40
creating 36, 37
events 53-55
layers, adding to 47
service layers 41-53

Map.addLayer() method 44
map.centerAt(pt) method 20
Map.click event 154, 164, 178
mapDeferred.addCallback() function 217
mapDeferred variable 217
Map.disableScrollWheelZoom() method 52

map events
about 53, 55
types 55

map extent
getting 52, 53
setting 52, 53

Map.extent property 53
Map.fullExtent method 53
map navigation

about 49
controlling, keyboard used 52
controlling, mouse used 52
toolbars 49, 51
widgets 49, 50

Map object 34, 37
mapPoint property 141
map service layers

definition expression, setting 48
dynamic map service layers 45-47
individual layers, visibility setting 47, 48
layer classes, using 43
layers, adding to map 47
map extent, setting 52, 53
map navigation 49-52
tiled map service layers 44
working with 41, 42

Map.setExtent() method 53
Map.setExtent property 53
Measurement widget 108
modules

loading 34, 35

N
Navigation toolbar

instance, creating of 96
Navigator.geolocation property 231

O
objects

about 19
actions 19, 20

onExtentChange event 53
on() method 54
onorientationchange() event 225
options parameter 36
options variable 168

[254]

orientationChanged() function 225
outFields property 68, 70, 90
OverviewMap widget 111, 112

P
page

styling 38
page content

creating 37
Point object 36
PopulationSummary service 191
Popup widget 109, 110
Position object 229
primary tags 9
Print widget 101
prod() function 19

Q
query

attribute queries 130, 131
executing, QueryTask object used 134-136
results, getting 136
spatial queries 130, 131

Query.geometry property 131
Query object 130
Query.outFields property 133
query properties

defining 131-134
returned fields, limiting 133

Query.returnGeometry property 134
QueryTask.complete event 138
QueryTask.execute() method 134, 141
QueryTask object

about 58, 67
used, for query executing 131-136

queryTask variable 138

R
ready() function 36
region attribute 237
remove() method 55, 64
require() function 35, 167, 177, 224
returnFacilities property 187
returnGeometry property 68, 157
return keyword 18

right-to-left (RTL) orientation 109
RouteParameters.barriers property 175
RouteParameters.ignoreInvalidLocations

property 176
RouteParameters object 174
RouteParameters.outSpatialReference

property 178
RouteParameters.stops property 178, 180
RouteResult object 175
RouteTask.error() event 179
RouteTask object 173
RouteTask.solve-complete() event 179
RouteTask.solve() method 180
routing task

about 173-176
implementing, in applications 176-183

S
Scalebar widget 112
searchFields property 157
searchText property 158
selectFeatures(query) method 80
ServiceAreaParameters class 187
ServiceAreaParameters object 187
ServiceAreaPolygons property 187
ServiceAreaSolveResults object 187
ServiceArea task

about 186
classes involved 186
working 187

ServiceAreaTask class 187
setDefinitionExpression() method 80
setLayerDefinitions() method 49
setSelectionSymbol() method 81
setVisibleLayers() method 45, 47
showResults() function 167
showRoute() function 179, 180
SimpleFillSymbol object 66
solve() method 184, 185
spatial queries

about 130
performing 136-144
properties, defining 133

statusCallback() function 195
stops property 175
style attribute 25

[255]

success function 208
SummarizeNearby widget 119

T
TabContainer layout element 242
TemplatePicker widget 122, 123
text property 130
tiled map service layers

about 44
using 44

TimeSlider widget 117, 118
toolbar creation steps

about 94
buttons, creating 96
CSS styles, defining 95
instance, creating of Navigation toolbar 96

toolbars
adding, to application 94
creating, steps 94

travelDirection parameter 184
travelDirection property 187

U
user interface widgets

about 98
BasemapGallery 98, 99
Bookmarks 100
Directions 113, 114
Gauge 107, 108
Geocoder 102
HistogramTimeSlider dijit 114
HomeButton 115

LayerSwipe 118
Legend 110, 111
LocateButton 116, 117
Measurement 108
OverviewMap 111, 112
Popup 109, 110
Print 101
Scalebar 112
TimeSlider 117, 118

V
variable datatypes 15, 16
variables

about 14
declaring 14

viewport <meta> tag attribute 224
viewport scale

setting 222

W
W3C HTML validator

URL 10
webmap ID

used, for ArcGIS Online maps adding to
applications 208-210

web page
HTML code, creating for 32, 33

where property 130

Z
zoomToLocation() function 229, 232

Thank you for buying
Building Web and Mobile
ArcGIS Server Applications
with JavaScript

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Programming ArcGIS 10.1 with
Python Cookbook
ISBN: 978-1-84969-444-5 Paperback: 304 pages

Over 75 recipes to help you automate geoprocessing
tasks, create solutions, and solve problems for ArcGIS
with Python

1.	 Learn how to create geoprocessing scripts with
ArcPy

2.	 Customize and modify ArcGIS with Python

3.	 Create time-saving tools and scripts for ArcGIS

Google Maps JavaScript API
Cookbook
ISBN: 978-1-84969-882-5 Paperback: 316 pages

Over 50 recipes to help you create web maps and GIS
web applications using the Google Maps JavaScript
API

1.	 Add to your website's functionality by utilizing
Google Maps' power

2.	 Full of code examples and screenshots for
practical and efficient learning

3.	 Empowers you to build your own mapping
application from the ground up

Please check www.PacktPub.com for information on our titles

Object-Oriented JavaScript
Second Edition
ISBN: 978-1-84969-312-7 Paperback: 382 pages

Learn everything you need to know about OOJS in
this comprehensive guide

1.	 Think in JavaScript

2.	 Make object-oriented programming accessible
and understandable to web developers

3.	 Apply design patterns to solve JavaScript
coding problems

4.	 Learn coding patterns that unleash the unique
power of the language

Jasmine JavaScript Testing
ISBN: 978-1-78216-720-4 Paperback: 146 pages

Leverage the power of unit testing to create bigger
and better JavaScript applications

1.	 Learn the power of test-driven development
while creating a fully-featured web application

2.	 Understand the best practices for
modularization and code organization while
putting your application to scale

3.	 Leverage the power of frameworks such as
BackboneJS and jQuery while maintaining the
code quality

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction to HTML, CSS, and JavaScript
	Basic HTML page concepts
	The HTML DOCTYPE declaration
	Primary tags
	Validating HTML code

	JavaScript fundamentals
	Commenting in code
	Variables
	JavaScript and case sensitivity
	Variable datatypes
	Decision-supporting statements
	Looping statements
	Functions
	Objects

	Basic CSS principles
	CSS syntax
	Inline styling
	Internal stylesheets
	External stylesheets

	Separating HTML, CSS, and JavaScript
	Summary

	Chapter 2: Creating Maps and Adding Layers
	Introduction
	The ArcGIS API for JavaScript Sandbox
	Basic steps for creating an application with the ArcGIS API for JavaScript
	Creating HTML code for a web page
	Referencing the ArcGIS API for JavaScript
	Loading modules
	Legacy or AMD Dojo?

	Making sure Document Object Model
is available
	Creating the map
	Creating the page content
	Styling the page
	The complete code

	More about the map
	Working with map service layers
	Using layer classes
	Tiled map service layers
	Dynamic map service layers
	Adding layers to the map
	Setting visible layers from a map service
	Setting a definition expression
	Map navigation
	Map navigation widgets and toolbars
	Map navigation using the mouse and keyboard
	Getting and setting the map extent

	Map events
	Summary

	Chapter 3: Adding Graphics to the Map
	The four parts of a graphic
	Creating geometry for graphics
	Symbolizing graphics
	Assigning attributes to graphics
	Displaying graphic attributes in an info template
	Creating graphics
	Adding graphics to the graphics layer
	Multiple graphics layers

	Time to practice with graphics
	Summary

	Chapter 4: The Feature Layer
	Creating a FeatureLayer object
	Optional constructor parameters

	Defining display modes
	Snapshot mode
	The on-demand mode
	The selection-only mode

	Setting a definition expression
	Feature selection
	Rendering a feature layer
	Time to practice with FeatureLayer
	Summary

	Chapter 5: Using Widgets and Toolbars
	Adding toolbars to an application
	Steps for creating a toolbar
	Defining CSS styles

	Creating buttons
	Creating an instance of the Navigation toolbar

	User interface widgets
	The BasemapGallery widget
	The Bookmarks widget
	The Print widget
	The Geocoder widget
	Time to practice with the Geocoder widget

	The Gauge widget
	The Measurement widget
	The Popup widget
	The Legend widget
	The OverviewMap widget
	The Scalebar widget
	The Directions widget
	The HistogramTimeSlider dijit
	The HomeButton widget
	The LocateButton widget
	The TimeSlider widget
	The LayerSwipe widget
	Analysis widgets

	Feature editing
	Feature service
	The editing widgets
	The Editor widget
	The TemplatePicker widget
	The AttributeInspector widget
	The AttachmentEditor widget
	The Edit toolbar

	Summary

	Chapter 6: Performing Spatial and Attribute Queries
	Introducing tasks in ArcGIS Server
	An overview of attribute and spatial queries
	The Query object
	Defining the query properties

	Executing the query with QueryTask
	Getting query results

	Time to practice with spatial queries
	Summary

	Chapter 7: Identifying and Finding Features
	Using IdentifyTask to get feature attributes
	Introducing IdentifyTask
	The IdentifyParameters object
	The IdentifyTask attribute
	IdentifyResult

	Time to practice – implementing the identify functionality

	Using FindTask to get the feature attributes
	FindParameters
	FindTask
	FindResult

	Summary

	Chapter 8: Turning Addresses into Points and Points into Addresses
	Introducing geocoding
	Geocoding with a Locator service in the ArcGIS API for JavaScript
	Input parameter objects
	Input JSON address object
	Input Point object

	The Locator object
	The AddressCandidate object

	The geocoding process
	The reverse geocoding process

	Time to practice with the Locator service
	Summary

	Chapter 9: Network Analyst Tasks
	RouteTask
	Time to practice routing
	The ClosestFacility task
	The ServiceArea task
	Summary

	Chapter 10: Geoprocessing Tasks
	Models in ArcGIS Server
	Using Geoprocessor – what you need to know
	Understanding the service page for a geoprocessing task
	Input parameters

	The Geoprocessor task
	Running the task
	Synchronous tasks
	Asynchronous tasks

	Time to practice with geoprocessing tasks
	Summary

	Chapter 11: Integration with
ArcGIS Online
	Adding ArcGIS Online maps to your applications with the webmap ID
	Adding ArcGIS Online maps to your applications with JSON
	Time to practice with ArcGIS Online
	Summary

	Chapter 12: Creating Mobile Applications
	ArcGIS API for JavaScript – a compact build
	Setting the viewport scale
	Time to practice with the compact build

	Integrating the Geolocation API
	Time to practice with the Geolocation API

	Summary

	Appendix: Application Design with ArcGIS Templates and Dojo
	The Dojo BorderContainer dijit
	Additional Dojo layout elements
	Time to practice with sample layouts
	Summary

	Index

