
www.allitebooks.com

http://www.allitebooks.org

Building an RPG with Unity 5.x

Unleash the full potential of Unity to build a fully playable,
high-quality multiplayer RPG

Vahé Karamian

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Building an RPG with Unity 5.x

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2016

Production reference: 1101015

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.
ISBN 978-1-78528-500-4

www.packtpub.com

www.allitebooks.com

http://www.packtpub.com
http://www.allitebooks.org

Credits

Author
Vahé Karamian

Copy Editor
Safis Editing

Reviewers
Spencer Grey

Project Coordinator
Sheejal Shah

Commissioning Editor
Ashwin Nair

Proofreader
Safis Editing

Acquisition Editor
Divya Poojari

Indexer
Mariammal Chettiyar

Content Development Editor
Deepti Thore

Graphics
Abhinash Sahu

Technical Editor
Anushree Arun Tendulkar

Production Coordinator
Nilesh Mohite

www.allitebooks.com

http://www.allitebooks.org

About the Author
Vahé Karamian is a software consultant and author based in Los Angeles, CA. He has been
providing software development services to some of the top pharmaceutical, biotech, and
medical device manufacturing companies in the world. His latest clients included
Department of Planning and Evox Imaging. Providing web, mobile, and virtual reality
experiences.

He came across Unity when he was searching for a game engine for his projects in 2010. The
rest is history. He is the founder of the Granada Hills Unity User Group and is actively
working with the user community to educate new developers.

He is the author of Introduction to Game Programming: Using C# and Unity 3D. The book
targets individuals with no programming background. The objective of the book is to give
the reader a good foundation on the fundamentals of programming concepts and the
essentials for Unity. It is available in both eBook and paperback editions. Visit
www.noorcon.com for more information.

Vahé holds a master's degree in computer science, and is currently lecturing the following
topics: Introduction to Computer Science, Data Structures and Algorithms, Operating
Systems, Game Design and Development.

In no particular order, I would like to acknowledge the following individuals who
have been working on the reparation and production of this title: Spencer Grey, Divya
Poojari, Sweta Basu, Divij Kotian, and Anushree Tendulkar. I am sure there are many
more involved in the process. These are the folks who I have had the pleasure to meet
during the process. Your comments and feedback were a valuable part of the final result of
this work. Last but not least,

I would like to acknowledge my wife Armineh and our two beautiful children Maximilian
and Makayla for their support through the long nights in the preparation of this book.
Thank you and love you.

www.allitebooks.com

http://www.noorcon.com
http://www.allitebooks.org

About the Reviewer
Spencer Grey is an award-winning designer-developer. He was creative director at Sesame
Street’s Interactive group then co-founded Electric FunStuff. For 15 years he was creative
and technical lead working with companies such as Sony, Lego, and Scholastic. And
developing products with ActionScript and C#. He was technical reviewer for David
Brackeen’s Developing Games in Java.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

h t t p s : / / w w w 2 . p a c k t p u b . c o m / b o o k s / s u b s c r i p t i o n / p a c k t l i b

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org

Table of Contents
Preface 1

Chapter 1: In the Beginning 6

A brief history 6
Characteristics of an RPG 8

Story and setting 8
A glimpse at our cRPG story 9

Exploration and quests 9
A glimpse at our exploration and quests 10

Inventory system 11
Character development 14
Experience and levelling 16
Combat system 18
User interface and graphics 19

Existing or upcoming RPG games 22
Dark Souls 3 23
Fallout 4 24
Divinity: Original Sin 25

Patterns in RPG 27
Terminology 28
Contest Tree 30
Last Man Standing 31
Negotiated Contest 32

Summary 33

Chapter 2: Setting the Atmosphere 34

Building our RPG 35
The story of the Zazar Dynasty 35

Plot 35
Exploration and quests 35

Awakening 36
The village 36
Broken forest – the horizon 37
The kingdom 38

Asset inventory 38
Environment assets 38
Character assets 39

www.allitebooks.com

http://www.allitebooks.org

[ii]

Level design 40
Setting the stage 41
Terrain toolkit in a nutshell 45
The awakening 46

Testing the level 57
Creating the Main Menu 57
Creating the Game Master 59
Summary 62

Chapter 3: Character Design 63

Character definitions 63
Base character class attributes 64
Character states 66
Character model 67

Rigging your model 70
Character motion 72

Animator Controller 72
Animation states 74

Character controller 78
Modification to animations 84

Inverse Kinematics 86
Summary 91

Chapter 4: Player Character and Non-Player Character Design 92

Customizing the Player Character 92
Customizable parts 95

User interface 95
The Code for character customization 98
Preserving our character state 110

Recap 111
Non-Player Characters 112

Non-Player Character basics 113
Setting up the Non-Player Character 113
NPC Animator Controller 119
NPC attack 121

NPC AI 124
PC and NPC interaction 133
Summary 142

Chapter 5: Game Master and Game Mechanics 143

The Game Master 144
Managing game settings and audio 145

www.allitebooks.com

http://www.allitebooks.org

[iii]

Managing scenes 149
Improving Game Master 154

Level controller 154
Audio controller 157

Player data management 160
PC class enhancements 160
Character customization class update 162

Changes to UI Controller 178
Testing 179
Summary 180

Chapter 6: Inventory System 182

Inventory system 183
Weighted Inventory 183
Determining item types 184

Creating inventory item 192
Creating the Prefab 193
Adding Inventory Item Agent 194
Inventory Items Defined as Prefabs 198

Inventory Interface 199
Creating the inventory UI framework 201
Designing a Dynamic Item Viewer 204

Adding a Scroll View 204
Adding Elements to PanelItem and Scroll View 206
Adding txtItemElement Dynamically 208

Building the Final Inventory Item UI 210
Integrating the UI with the actual inventory system 212

Hooking the category buttons and displaying the data 212
Testing the Inventory System 222

Inventory items and the Player Character 225
Applying inventory items 226
How It Looks 244

Summary 247

Chapter 7: User Interface and System Feedback 249

Designing a Heads Up Display 250
Basic information for a HUD 250
Our design 251
HUD framework 252

Completing HUD design 253
Panel character Info 253

www.allitebooks.com

http://www.allitebooks.org

[iv]

Panel active inventory items 259
Special items panel 262

Integrating the code 264
Enemy stats in the HUD 284

NPC stats user interface 284
Creating the NPC canvas 284
NPC health 288

Enhancing the code 292
Summary 299

Chapter 8: Multiplayer Setup 301

Challenges of a Multiplayer Game 302
Initial Multiplayer Game 303

Fundamental Networking Components 303
Networking Project 304
Adding Player Character 305

Variable Synchronization 309
Network Callbacks 309
Sending Commands 309
Client RPC Calls 310
Creating the Canon Ball for the Tank 312
Creating Tank Prefab and Configuring NetworkManager 314

Adding the Enemy Tank 318
Building and Testing 323

Network Enabling RPG Characters 325
Creating a Scene for RPG 325
Networked Player Character 325
Networked Non-Player Character 335
Synchronizing Player Customization and Items 344
Spawning NPC and Other Items 346

Testing Our Network-Enabled PC and NPC 347
What's Next 353
Summary 354

Index 355

Preface
Everyone wants to make a game, today this is possible more than ever due to the
democratization of the game industry and the tools that are used to design and develop
games. This books is written with several purposes in mind. Unity has come a long way
from its early and humble beginnings. As of the writing of this book, Unity stands at
version 5.4. Some games that have been developed using the Unity engine are: Republique
Remastered, The Room Three and Mevius Final Fantasy, to name a few.

This book is intended as a reference guide for individuals who want to learn Unity and
apply their skills for the creation of a role-playing game.

What this book covers
Chapter 1, In the Beginning, provides a good background of what a role-playing game is. It
covers some historical aspects and gives examples of existing role-playing games. It discuss
the main aspects of a role-playing game, covers some terminology and prepares the reader
for the rest of the chapters.

Chapter 2, Setting the Atmosphere, the chapter sets the theme and atmosphere of the game.
We discuss the different types of assets and resources we would need during the creation of
our game, introduce a third-person character controller and create our initial level and
scripts.

Chapter 3, Character Design, discusses how to define your character and character data.
Setup your character model for the mecanim, animator, state machines, blend trees, inverse
kinematics, and custom character controller scripts.

Chapter 4, Player Character and Non-Player Character Design, discusses the structure of your
character models, customization of your character model, defined the non-player character,
looked at pathfinding, animator controller, and the initial NPC A.I. script for the NPC.

Chapter 5, Game Master and Game Mechanics, enhanced the Game Master script, introduced
a Level Controller script, introduces an Audio Controller script, discuss the storage of
character data and character customization state and the initial user interface for the main
menu.

Chapter 6, Inventory System, covers the creation of a generic inventory system, create the
necessary scripts, assets/prefabs that represent the inventory items, design of the inventory
user interface and how to represent the inventory system and its items.

Preface

[2]

Chapter 7, User Interface and System Feedback, discusses the design and implementation of a
heads up display, player character information panel, active inventory items panel, special
inventory items panel are designed and implemented, non-player character health bar and
UI are also designed and developed.

Chapter 8, Multiplayer Setup, discusses multiplayer programming using the Unity’s Unet
architecture. The chapter illustrates the concepts using two sample projects, the initial
project is a tank game illustrating the concepts of server client and data synchronization.
The second project applies what we have learned to create a scene supporting our character
models.

What you need for this book
Required software: All chapters require Unity 5.4 or above. You will also need an IDE for
the editing of the C# code described in this book. This can be done using any text editor, but
it is recommended to use Visual Studio on the Windows platform or Mono Develop/Code
on Mac OS X.

Required OS: Windows 10 64-bit or above, or Mac OS X

Required hardware: Please see required hardware for running Unity

Who this book is for
This book is written for individuals who want to learn and apply their Unity skills for the
creation of an RPG. It is assumed that the reader has the basics understanding and concepts
of programming and is comfortable with the basics of Unity's IDE. The books gives a strong
and solid foundation of core concepts and topics that can be applied to build your own
game experience.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Drill-
down in the extracted folder to get to the Unity Package called
TerrainToolkit_1_0_2.unitypackage."

Preface

[3]

A block of code is set as follows:

 public void StartGame()
 {
 // NOTE: You should put in the name of the Scene
 // that respresents your level 1
 SceneManager.LoadScene("CH1_Awakening");
 }

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Go ahead and select a
location and a name you desire for your project and click the Create project button."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply e-
mail feedback@packtpub.com, and mention the book's title in the subject of your
message. If there is a topic that you have expertise in and you are interested in either
writing or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at h t t p : / / w w w . p

a c k t p u b . c o m. If you purchased this book elsewhere, you can visit h t t p : / / w w w . p a c k t p u b . c

o m / s u p p o r t and register to have the files e-mailed directly to you.

http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[4]

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at h t t p s : / / g i t h u b . c o m / P a c k t P u b l

i s h i n g / B u i l d i n g - a n - R P F - w i t h - U n i t y 5 x We also have other code bundles from our rich
catalog of books and videos available at h t t p s : / / g i t h u b . c o m / P a c k t P u b l i s h i n g /. Check
them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from h t t p : / / w w w . p a c k t p u b . c o m / s i t e s / d e f a u l t / f i l e s / d o w n l

o a d s / B u i l d i n g a n R P G w i t h U n i t y 5 x _ C o l o r I m a g e s . p d f.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting h t t p : / / w w w . p a c k t p u b . c o m / s u b m i t - e r r a t a, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/Building-an-RPF-with-Unity5x
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata

Preface

[5]

To view the previously submitted errata, go to h t t p s : / / w w w . p a c k t p u b . c o m / b o o k s / c o n t e n

t / s u p p o r t and enter the name of the book in the search field. The required information will
appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

1
In the Beginning

So you want to build a Role Playing Game, or RPG. Well, you might have just started one of
the most challenging undertakings you can attempt.

Brief history of the genre
Characteristics of an RPG

Story and setting
Exploration and quests
Inventory system
Character development
Experience and levelling
Combat system
User interaction and graphics

Existing or upcoming RPGs
Patterns in RPGs

Before we get started, it would be best to get a brief history of the genre and understand
some of the key elements you will need to consider throughout the design of your RPG.

A brief history
So what is an RPG? In short, it is a game in which players assume the roles of characters in a
fictional setting. Your game design will dictate how the player character will act, advance,
and so on…

In the Beginning

[7]

There are three varieties of RPGs:

Tabletop
Live Action
Computer RPG (cRPG)

Tabletop and pen-and-paper (PnP) RPGs are conducted through discussion in a small social
gathering. There is usually a Game Master (GM) who describes the game world and its
inhabitants. The other players describe the intended actions of their characters, and the GM
describes the outcomes. This is the format in which RPGs were first popularized, namely
through Dungeons & Dragons (D&D).

Live Action Role Playing (LARP) is played more like improvisational theatre. Participants
act out their character's actions instead of describing them, and the real environment is used
to represent the imaginary setting of the game world. Some live action LARPs use rock-
paper-scissors or comparison of attributes to resolve symbolically, while other LARPs use
physical combat with simulated arms. A movie can be considered as a simple LARP, the
difference would be that in a movie all actions are scripted, and the players do not have to
make decisions, whereas in a LARP, the characters can change the outcome of their actions
based on their decisions.

Computer RPG (cRPGs) are tabletop RPGs that have been translated into an electronic
format. The early cRPGs influenced all electronic gaming, as well as spanning the role-
playing video game genre. In short, a cRPG is a video game genre where the player controls
the actions of a main character immersed in a well-defined world.

Our book is going to concentrate on the design and development of a cRPG.

Going forward, when we state RPG in the book we are referring to cRPG.

Computer role-playing games take their roots from tabletop versions of the genre. Much of
the same terminology, settings, and game mechanics have carried over from the original
tabletop games. Some of these similarities include story-telling and narrative elements
where, throughout the story the player character will continuously develop in skills and
abilities to meet the objective of the game.

In the Beginning

[8]

Characteristics of an RPG
Role-playing video games typically rely on a highly developed story and setting, which is
divided into a number of quests or levels. Players typically control one or more characters
by issuing commands, which are then performed by player characters based on their
defined abilities and attributes. Throughout the game, these attributes increase or decrease
and set the personality of the character.

An RPG usually also has more complex and dynamic interaction mechanics defined and
developed between the player character and the world which they are immersed within.
These include the interaction with the world environment and also other non-character
players defined within the world. Due to these factors, there is usually more time allocated
to design and develop the code base which deals with the behavior and artificial-
intelligence (AI) handling such events throughout the game.

Key elements of an RPG:

Story and setting
Exploration and quests
Items and inventory
Character development
Experience and levels
Combat
User interface and graphics

Story and setting
The premise of most role-playing games tasks the player with saving the world, or
whichever level of society is threatened. There are often twists and turns as the story
progresses, such as the surprise appearance of estranged relatives, or enemies who become
friends or vice versa.

The game world tends to be set in a historical, fantasy, or science fiction universe, which
allows the players to do things they cannot do in real life and helps players suspend their
disbelief about the rapid character growth.

In the Beginning

[9]

As stated previously, RPGs are heavily invested in storytelling. This is one of the main, key
entertaining factors of the genre. Due to this fact, when you are developing your RPG, you
will need to pay close attention to how you develop your story, and the characters that are
within your story. This in turn translates into the kind of environments and settings you
will have for your game and characters within the game.

Traditionally, RPGs progress the plot based on decisions that the player character makes
during gameplay. This puts a great deal of pressure on the game designer who needs to be
able to integrate such forks in the gameplay with the main storyline of the game. This also
raises the issue of how to program the game to take into consideration all the different paths
within the story.

To make the game more interesting and attractive, the game designer can introduce special
triggers within the story to make it more interesting or challenging. This is usually done by
introducing new characters and/or areas to discover within the existing level.

The following is a simplified description of the storyline and the setting we are going to be
building for our cRPG.

A glimpse at our cRPG story
Once upon a time there was a great kingdom, ruled by the great King Zazar. The ruler of
the kingdom was a generous lord to his subjects. The kingdom under the rule of Zazar was
peaceful and prosperous, however, over time internal family rivalries and struggles have
caused cracks in the strong bond that keeps the kingdom intact.

Due to mysterious events, the great king has decided to move his family away from the
kingdom and leave his son with one of his trusted, wise elders. The kingdom was never the
same. Until now!

Exploration and quests
The whole idea behind an RPG is the ability for the player to have the freedom to explore
the world which they have been immersed into. The more well defined the world is, the
more interesting it will be for the player to explore, and in return retain their curiosity and
engagement throughout the gameplay.

In the Beginning

[10]

This is achieved by the narrative of the story developed for the RPG. Players will be
specifically given the opportunity to walk around the world and explore their surroundings
in order to meet their objectives.

In an open world RPG, the player is free to roam in the world after they have met their
objective set by the storyline. In such cases, the player can still explore any area which is no
longer needed for the continuation of the quest, but they can spend time exploring the area
and maybe meet some other non-player characters that they had not previously met while
completing their mission. But generally speaking this is not done by the player, once they
meet their objective they are eager to move on to the next quest, hence the question is; how
much time and effort do the game designers and developers apply to a region after the
main objective is met? The answer would be not much.

Historically, the player follows a linear-sequence of quests in order to realize their goals and
objectives within the game. To make the game more engaging, the developer can introduce
mini-quests within the main plot of the game at that particular location to give the player
the ability to explore and gain more skills and or abilities. Since these are not part of the
main storyline, they can be triggered any time a player enters a specific area.

For instance, assume the player has completed the main objective of the level, and is ready
to move on to the next objective. Now, imagine that we have created an open world
environment where the user can revisit the world anytime they choose. If the player decides
to go back and explore a certain area of the world they just completed, and they happen to
trigger the event to launch this mini-quest, wouldn't that be a great surprise for the player?
Keep in mind that these mini-quests should not affect the main storyline, but they can be
used to enhance the player's experience. These types of decisions are important when you
are developing your game. If they choose not to take on the challenge you should not
penalize them, except if you want to be really mean J.

Quests may involve defeating one or many enemies, rescuing a non-player character, item
fetch quests, or location puzzles such as mysteriously locked doors.

A glimpse at our exploration and quests
Our game will have a total of four quests. Each quest will have unique objectives that the
player will need to complete. The design and development of each quest will be discussed
throughout the book as we progress.

In the Beginning

[11]

Here is a list of the levels we will be designing:

Awakening
The Village
Broken Forest – The Horizon
The Kingdom

The game will start by immersing the player in the environment where our hero will be
given the basic training he will need to complete his mission.

Inventory system
One of the main functions and features of an RPG is the inventory system. Throughout the
game, the user will come across a vast number of collectable items that can be used for
different purposes within the game to help them progress through the journey. Therefore,
RPGs needs to provide mechanics to help the player store, retrieve, and organize the
content relevant to their journey.

In the Beginning

[12]

When the player is progressing through their journey in an RPG, they interact with the
world they are immersed in. The storyline of the game usually forces the player to interact
with the surrounding world and other non-player characters. These interactions are usually
in the form of some sort of an exchange. Whether this exchange is done through narration
to provide the player with a better sense of the quest, or real exchange in terms of items is
up to the game designers and developers.

The game needs a way to keep track of all the interactions between the player character and
everything and everyone else. One system that is used to keep track of this interaction is the
inventory system.

During the gameplay, players usually start off as a very simple character and part of the
gameplay is to elevate their character by exploring the world and collecting items that will
help them increase their skills and abilities.

For instance, a player can start their journey with very basic clothes. Throughout the quest,
they will either interact with a non-character player, such as a merchant who will provide
them with a better set of clothes, and or some sort of a weapon to get them started. These
items will be stored and managed by the inventory system.

In the Beginning

[13]

The simplicity or the complexity of the inventory system will be defined by the complexity
of the game and the complexity of the characters within the game. In our game we will be
designing and developing a generic inventory system that can be applied to many different
types of items.

Here are some items that are usually collected in a game:

Weapons
Armor
Clothing
Special Objects

Some of the items are collected or discovered by world exploration, and some of the items
are specifically traded through the game. If you are setting up a trade system in a game,
then you will need to provide the mechanics for the trade. A trade usually takes place while
interacting with a non-player character, usually a merchant, and it will use a special
window to enable the interaction of the trade to take place.

There is usually a cost associated with any trade. In general, there is a cost associated with
everything the player does within the game, and the cost is usually either increasing the
player-character's ability and/or experience, or decreasing it. This can get pretty complex if
you dig deep into it.

The main point to keep in mind is that everything that the player will need to collect and/or
manage will be done through the inventory system. Hence, this is one of the most critical
features that you will need to put effort into as a game designer and developer.

One other element that can be used to enhance the gameplay for the player, and push them
to strategize their quest, is to limit the number of items they can carry in their inventory.

For instance, in real life, a warrior will have limited ability to carry different types of
weapons. Let's assume, that in the real world, a warrior can carry a maximum of five
different types of weapon at any given time. Now, in the game world, there might be 20
different types of weapon. Do you allow the player to carry all 20 different types when they
discover them? Or are you going to limit them to five?

These are small things that make the gameplay more interesting when planned out
properly. There is more to an inventory system, and we will take a look at it in more detail
in later chapters.

In the Beginning

[14]

Character development
As with any other part of the RPG development, character attributes and actions are highly
defined by the storyline of the game. These actions in turn are performed indirectly within
the game, when the player commands the character to perform a specific task.

For instance, in a given RPG there is going to be at least a couple of character classes. The
following are some sample class types:

Barbarians
Orcs
Magicians/Wizards
Zombies
Humans

Each character class might even have subclasses of their own with its own uniquely defined
attributes. Again, this will be tightly coupled to your storyline for your RPG.

For instance, the player character is technically the hero of our story and of the game. The
hero is usually of a certain character class, let's assume the hero is part of the Human Class.

The Human Class or Race then will have some specific characteristics that will be inherited
by the player character or any other non-player character of the same type or class.

The character class and race usually determines the abilities of a character
within the game, which then define the types of actions the character can
perform.

The strength of a character within the game is defined by the character class it belongs to
and what type of actions it can perform. The performance of a character is defined by the
value of the attributes defined within the character's class and race.

In the Beginning

[15]

For instance, if we take two different character classes and compare them side-by-side such
as a Human and an Orc, the Orc will have far superior strength and brute force then the
human. However, the human, may have higher intelligence and problem-solving skills
which will out-rate the strength of the Orc if applied properly.

This is another key area where an RPG designer will have to spend a lot of time defining
and specifying the design and development of the characters within the game. The sky is
the limit when it comes to designing and defining your characters, but there are some key
attributes that you will need to consider for any RPG.

Most RPGs allow the player to modify their characters before the game starts or even
during gameplay. By default, every character class will have some default attributes and the
player is allowed to adjust the values based on some modifier. The basic fundamental
features allowed for modification are the sex, class, or race of a character.

In the Beginning

[16]

These days, character customization is one of the main features that players are looking for
in a given RPG. Some games, allow you to modify every aspect of the physical appearance
of the player-character, such as the skin color, the eye color, the hair style, and so forth.

It all comes down to the budget and the resources that are available to you during the
production of the game. In some games, you can also introduce ethical attributes into the
characteristics of the character. For instance, if you allow the ability to kill or rob innocents
by standards within the game, then the player will become less liked by the friendly non-
player characters and they may not be as friendly or helpful as needed to complete your
quest. In other words, you will live by the consequences of your actions!

As a final takeaway, character classes define your character attributes and hence define
your character's strength and weaknesses. These physical attributes can be simplified into
the following: dexterity and strength, which determine the performance of a character
during battle!

Experience and levelling
To engage the player and to get them hooked on the game, game designers use mechanics
to enhance the performance of the player-character. The progress is what is termed
Levelling or Experience in RPGs.

Levelling and experience are key elements of any role-playing game. A good levelling or
experience tree will be defined for any RPG. This allows the player to develop their avatar
through gameplay and become functionally more powerful by gaining more skills, points
and other resources necessary to complete their quest.

In the Beginning

[17]

To acquire new weapons, armor, clothing, and/or any other gameplay items defined in the
world, the player will need to meet some specific thresholds within the game. These
thresholds can be a combination of the player's acquired experience points, financial gains,
and or combat experience. There is no right or wrong when it comes to designing any of
these hierarchies and or systems. You will need to see which one works for your specific
needs and how to best apply them.

In RPGs, the progress of the character-player is measured by counting some defined
attributes specified by the game designer. Usually the advancements are defined by the
player completing a certain task to get experience points, and slowly the tasks and the point
rewards are increased throughout the game. The player then can use the experience points
to enhance his or her avatar within the game.

Again, this is highly integrated with the storyline, Character Classes and or Race the player
has selected. Some common ways to acquire points are by killing enemies, combating non-
player characters of no importance, and performing quests that have been defined within
the game.

In the Beginning

[18]

Just like in real-life, the more you play and apply your skills, the more experienced you
become. The accumulation of your experience then will allow you to acquire better
weapons and/or armor to strengthen your attack or defense for the next quest. Some games
might give the player 100+ points and allow the player to distribute the points across the
available character attributes for their avatar. Sometimes, the game automatically applies all
of the experience to a specific area such as strength.

Gaining experience will also allow the user to unlock more features and skills to be
acquired by the player in during gameplay. This is a great way to monetize your games. In
reality, most free games use this principal. They provide the basics of the world and the
character for free, and they monetize the game through what is called In-Game purchases to
increase either resources and/or character performance.

How is this implemented? Just like the inventory system, we need a way to keep track of
the progress of the player's skills. This is usually done through a Skill Tree. Learning or
acquiring a particular skill in the tree will unlock more powerful skills and give the player
the ability to utilize the skills in the game.

Combat system
Time for battle! This is the moment every player looks forward to during their journey; to
kill the boss, the bad guy, the evil war lord! Every RPG has some type of combat or battle
component built into the gameplay. This is when the player gets to use all of their acquired
skills and experience to destroy the opponent, or be destroyed by the opponent J depending
on how the day goes.

Traditionally there have been three basic types of RPG combat systems. What type of
combat system you choose to implement for your game is going to have a big impact on the
gameplay and also the implementation of the game.

The three types are:

Traditional turn based system
Real-time combat
Real-time with pause

Historically, role-playing games used to implement turn-based combat systems. This type
of combat system is as follows: only one character could have acted at a given time. During
this time, all other characters had to remain still. In other words, they could not have taken
any action. This type of combat system is designed to put more emphasis on rewarding
strategic planning.

In the Beginning

[19]

The next type would be Real-time with pause combat system. This type of combat system is
also strictly turn-based, but with a catch. If the player waits more than a certain period of
time to make a move or issue a command, the game will automatically pass on the
command to the other player. This in turn will allow the other player, such as the enemy to
take a turn and attack the player.

In this book we will be using a real-time combat system. Real-time combat imports features
from action games and creates a hybrid of action and RPG game genre. Action RPG combat
systems combine the RPG mechanics of role-playing with the direct, reflex-oriented, arcade-
style, real-time combat systems of action games, instead of the more traditional battle
systems of RPGs.

In action RPGs, the player has direct control over the character's movement and actions in
combat, and an attack button must be pressed to attack enemies in real-time. Action RPGs
most often use arcade-style hack & slash combat systems, though many also use fighting,
brawling, or shooting mechanics.

The action RPG genre was largely pioneered by Japanese developers during the early-mid
1980s. Nintendo's Shigeru Miyamoto adapted elements from several different types of
action RPGs for home consoles and in 1986 created The Legend of Zelda franchise, which is
responsible for popularizing the action RPG genre in the Western world since the late 1980s.

Shigeru Miyamoto is best known as the creator of many of Nintendo's
most beloved characters and franchises including Mario, Donkey Kong,
The Legend of Zelda, and many others. He was also the chief designer of
Nintendo's Touch! Generation console series, which includes the Nintendo
DS, Wii, and 3DS.

User interface and graphics
The question arises, how do we present our game world to the player? What kind of user
interface are we going to provide for our game? What kind of view are we going to allow
for our game? Are we going to design our world to be viewed as a top-down camera view?
Are we going to create an isometric view of the world? Or are we going to create a first-
person or a third-person perspective of our world?

Answering these questions is crucial, as when you are designing your game assets you will
need to understand how they will be viewed in the game world. For instance, when
designing your characters and or 3D models for the game, if you know that you are going to
be using isometric view, then you will approach your modeling differently to, for instance,
when you are designing for a first-person or third-person camera.

www.allitebooks.com

http://www.allitebooks.org

In the Beginning

[20]

In our game, we will be using third-person camera for the presentation of our world.

The next question would be how to provide critical information to the player in a simple
and meaningful fashion. Role playing games require the player to manage a large amount
of information, and frequently make use of windowed interfaces to arrange the data for the
player. This is usually designed and implemented through a Heads Up Display (HUD).

The HUD is frequently used to simultaneously display several pieces of information
including the main character's health, items, and indication of game progression. You can
think of the HUD as the access point for all the information the user will be required to have
access to and interact with during gameplay.

The design of the HUD is crucial for RPG games. Typically, there are a few key data
elements that you would like to continuously communicate with the player throughout the
gameplay, these data points are:

Health
Energy
Stamina

In the Beginning

[21]

Active weapon
Active shield
Special items
Number of lives
Access to main menu
Access to inventory
Access to skills

Once again, the design of your HUD is derived from the type of the game you are designing
and also the type of information that will be required to be available to the player during
gameplay.

In the Beginning

[22]

Since, most RPGs collect and store large amounts of data for the player-character, it is very
important to create an easy to use yet clean HUD.

A very important thing to remember when designing a HUD is it should never overpower
the screen or become a distraction. It usually takes a few stabs to come up with a great HUD
design for your game. From initial artistic concepts to the actual implementation and testing
by gamers to get some feedback before finalizing the design and internal workings.

At the end of the day, the HUD is supposed to simplify the gameplay for the player, and
not make it more confusing. Today, many games are moving away from the traditional
HUDs, and they are leaning more towards cinematic and extremely simplistic experiences
during the gameplay. This enables the game designer to immerse the player into the world
and not to distract them with a constant static HUD.

Creating a HUD that will fit into the gameplay and style of your game is essential. While a
feature-rich HUD may be great for some games, a simplistic HUD can be just as effective or
more. It all depends on the player experience you want. So when you're ready to create the
HUD for your next game, make sure you're designing the HUD to enhance the player's
experience and never give the player an overload of information.

Existing or upcoming RPG games
This section of the book will take a look at some of the existing or upcoming RPGs on the
market. The main idea behind this section is to provide you with a point of reference on
multiple RPGs and the game design implemented. It is also a good idea to research existing
or upcoming games to get ideas of your own!

In the Beginning

[23]

Dark Souls 3
Dark Souls 3 is an action role-playing game developed by FromSoftware and published by
Bandai Namco Entertainment for PlayStation 4, Xbox One and MS Windows. It was
released in Japan in March of 2016 and worldwide in April of 2016.

The game is set in the Kingdom of Lothric, an undead warrior known as the Ashen One is
tasked by a mysterious woman known as the Fire Keeper, to avert an oncoming apocalypse
brought about by the ongoing conflict between Light and Dark. But the only means to avert
this event is with the destruction of the Lords of Cinder, previous heroes who have linked
the First Flame across eons.

The game is set in a third-person perspective. Players are equipped with a variety of
weapons including bows, explosive fire bombs, great-swords, and dual-wielded swords to
fight against enemies. Shields are used to deflect an enemy's attack and protect the player
from suffering damage.

In the Beginning

[24]

Throughout the game, players encounter different types of enemies, each with different
behaviors. Some change their combat pattern during battles. New combat features are
introduced in the game, including weapon and shield skill, which are special abilities that
vary from weapon to weapon that enable unique attacks and features at the cost of focus
points. The game puts more focus on role-playing, in which the character builder is
expanded and weapons are improved to provide more tactical options to players.

Fallout 4
Fallout 4 is an action role-playing game developed by Bethesda Game Studios and
published by Bethesda Softworks. The game was released worldwide on November 10,
2015 for Microsoft Windows, PlayStation 4, and Xbox One.

In the Beginning

[25]

The game takes place in the year 2287, ten years after the events of Fallout 3 and 210 years
after a resource war over natural resources that ended in a nuclear holocaust in 2077. The
setting is a post-apocalyptic retro-future, covering a region that includes Boston,
Massachusetts and other parts of New England known as The Commonwealth.

The story begins on the day the bombs dropped: October 23, 2077. The player's character
takes shelter in Vault 111, emerging exactly 210 years later, on October 23, 2287.

The game takes place in an alternate version of history that sees the 1940's and 1950's
aesthetics, design and technology advance in the directions imagined at the time. The
resulting universe is thus a retro-futuristic one, where the technology has evolved enough
to produce laser weapons, manipulate genes and create nearly autonomous artificial
intelligence, but all within the confines of 1950's solutions like the widespread use of atomic
power and vacuum tubes, as well as having the integrated circuitry of the digital age.

The overall setting of the game is that of the 1950s, from the architecture, to the
advertisements and general living styles and so on.

Divinity: Original Sin
Divinity: Original Sin, is a single player and cooperative multiplayer fantasy role-playing
game, developed by Larian Studios. The game ships with the editor that created the game,
allowing players to create their own single-player and multiplayer adventures, and publish
them online.

In the Beginning

[26]

The customizable protagonists of the game are a pair of Source Hunters, members of an
organization dedicated to eradicating a dangerous magic named the Source and its adepts,
the Sourcerers.

In the single-player mode, the player controls them both, while in the multiplayer mode,
each player takes control over one of them. At the start of the game, the Source Hunters
receive orders to investigate the murder of a town councilor by a suspected Sourcerer in
Cyseal, a port town in southern Rivellon.

Upon arrival, they find Cyseal under siege by orcs and undead and soon discover that it
was orchestrated by a Sourcerer conspiracy linked to the Immaculates, a cult based in the
Luculla Forest further inland.

In the Beginning

[27]

Patterns in RPG
Just like any other technical project that might have patterns defined, an RPG can also
utilize similar patterns that have been documented by Whitson John Kirk III in his book
titled, Design Patterns for Successful Role-Playing Games.

Whitson was inspired by the book Design Patterns: Elements of Reusable
Object-Oriented Software. His objective was to see if there existed special
patterns in existing RPGs, and he approached this by examining specific
patterns in the successful games of the genre to detect and identify them.

In this section we will be looking at some of the design patterns that have been identified
and that can be utilized for your own games.

Anytime you start a new project, regardless of what type of a project, you need to have
some clear idea of what exactly it is that you are trying to accomplish. This is even truer for
designing a game. Since designing a game has many different components to it, you will
need to identify what your game is going to be about. Some questions to start the thinking
process are:

What are you trying to accomplish?1.
What mood are you trying to evoke?2.
What do the characters do?3.
What does the player or players, in a multiplayer environment, do?4.
What kind of activities do you want to reward and what kinds of rewards do you5.
want to provide?
What age group does your game target?6.
Is your game going to have cinematic sequences?7.
Will the game and the story extend with supplemental assets?8.

These are all important questions that will affect the design of your game. As you read this
chapter and the book in general, keep a pen and paper handy so that you can write down
all ideas that flash in your mind. This way you can keep track of all your thoughts and if
you need to expand on them you can at a later time.

In the Beginning

[28]

Terminology
Every discipline has its own terminology; the following is a list of terminology that is used
in RPG games. It is a good idea to take a moment and study them to expand your
vocabulary or to refresh your memory:

Attribute: A gauge that is a common characteristic, a commonality.
Character: A person in a game portrayed by a player, including possibly the
Game Master.
Characteristics: An aspect of a character. A character's name, height, age, beauty,
and strength are some possible characteristics.
Common Characteristics: A characteristic common to all characters of a given
type in a game. A character's name, height, age, beauty, and strength are
frequently common characteristics.
Conflict: Contention between characters, players, and/or game forces, especially
contention that shapes the game's plot. This includes oppositions between two or
more players concerning what facts should be introduced into a game world.
Contest: A conflict that is resolved through mechanical means.
Derived Attributes: An attribute whose value is determined by a formula.
Typically, the formula uses other attribute values to generate a number.
Drama: An outcome based purely on story consideration. Outcomes in a drama
are exclusively determined by what would be most entertaining for the
participants.
Flaw: A selected characteristic that is specifically not also a gauge. A character
either has a flaw or he does not. Flaws are structurally very similar to gifts. But,
flaws are generally considered detrimental to a character rather than beneficial.
Fortune: An outcome that is at least partly based on random factors. This may
include rolling dice, drawing cards, or some other random value generator.
Game Master: Traditionally, a player assigned responsibilities and who manages
the game flow. With computer RPGs, the Game Master (GM) is the glue that
holds everything together.
Gauge: A graduated value generally associated with a name. Commonly the
graduated values are numeric values.
Gift: A selected characteristic that is specifically not a gauge. A character either
has a gift or not. In general, gifts are considered beneficial to a character's well-
being.

In the Beginning

[29]

Karma: An outcome based on non-random value comparison. A karma-based
contest directly compares two values to determine an outcome.
Non-Player Character (NPC): Any character portrayed by the Game Master as
part of the role.
Optional Characteristics: A characteristic that is not common to all characters of
a given type.
Player: Any person participating in a role-playing game.
Player Character (PC): a character portrayed by any player while not assuming
the role of a Game Master.
Primary Attribute: An attribute whose value is set directly by a player rather
than being derived by a formula from other attributes. Commonly, primary
attributes are used in formulae to determine the values of Derived Attributes but
their own values are not determined by formulas. Typically, they are generated
by random numbers or set by spending some resources.
Rank: The specific value of a gauge skill, handicap, or ranked trait. Also used as
an adjective in place of gauge when describing such skills and traits.
Ranked Trait: A trait that is also a gauge.
Selected Characteristic: A characteristic selected from a predefined list of
choices.
Shared Gauge: A gauge that is shared by many characters.
Skill: a selected characteristic that is also a gauge and is generally considered
beneficial to a character.
Trait: A characteristic made up by a player without drawing it from a predefined
list of choices.

In the Beginning

[30]

To get a better understanding about the relationships between the attributes and
characteristics, we have put together a visual diagram to make it explainable:

Contest Tree
The intent of a Contest Tree is to provide a mechanical means to create rising tension within
a game. This is also known as Escalating Conflict.

Contest trees are high-level conflict resolution systems made up of many levels of contests
arranged in a hierarchical fashion. The way they work, is that lower level contests feed into
the higher level contests and therefore affect the outcome of the higher level contests.

In other words, the higher level contest could be to kill the big boss, but before you get to
the big boss, there could be other mini battles that you will have to complete, and the
outcome of the mini battles will drive the outcome of the big battle. To give a simple
example would be by the amount of experience points you have gained before reaching the
main boss.

In the Beginning

[31]

Since the higher level contests are somehow related to the lower level contest, players do
pay attention to the outcome of the higher level contests, therefore, tensions arise
concerning the eventual success or failure of a higher level contest as a lower level contest
succeeds or fails.

It is best to use a Contest Tree when you want to create a sense of rising tension in your
game. This can be achieved by applying different mechanics as the player progresses
through the levels. Creating suspense in a cRPG is very simple as you have a lot of control
in the way levels and gameplay are designed. Since we have the ability to create our 3D
worlds as we like, it would be easy to incorporate suspense into the game.

A few key points for creating tension in your game:

The hero and enemy should be evenly matched.
The hero and enemy should both periodically fail in their attempts, providing
they are worthy adversaries.
The hero and enemy successes and failures are never so great that all hope of
success of attaining the high level goals is eliminated from either side.
A highlight concerning Contest Trees is that it can only resolve high-level
conflicts dealing with the mechanical inputs by the system. That is, if damage and
remaining hit points are the only gauges used as an input into a conflict
resolution, then the mechanics can only resolve issues dealing with Damage and
Hit Points. When designing a flexible Contest Tree you will need to consider both
the inputs and also the outputs.

Last Man Standing
Last Man Standing conflict system provides a generalized Contest Tree to resolve which
side attains victory in battle.

The Last Man Standing is also one of the most traditional forms of generalized Contest
Trees. The basic idea behind the pattern is to identify who the winner is by the simple fact
of who manages to destroy the opponent. He who does is the winner. This is also one of the
simplest ways to implement a Contest Tree.

In the Beginning

[32]

It is used when there is a strong emphasis on tactical combat. Keep in mind that you are not
obligated to use one pattern or the other. You can very well combine several patterns
together, and you should to make it more interesting. For instance, if your game has a great
emphasis on combat, but you want to also introduce some negotiation into the conflict
resolution, you can certainly do so. Again, it all depends on you and your game design.

Something to keep in mind; if the only way to resolve a high-level contest is through battle,
then players will focus their efforts on being the best they possibly can at winning battles. In
other words, if a game only provides a single tool to resolve disputes, then you can be
assured that players will become very adept and focused on using that tool.

Negotiated Contest
A Negotiated Contest provides a mechanical means to resolve disputes where the set of
inputs and possible outcomes is negotiated by the player and non-player characters
specifically for the conflict.

Designing and developing a Negotiated Contest mechanism is pretty complex. In order for
the pattern to work properly, you will need to consider all of the inputs and outputs of the
negotiations. The challenge of developing such a system is not so much the actual technical
implementation, but the database that you will have to create and retain based on the
available selection by the player and the outcome of each input.

The implementation of the mechanics can be as simple as a few options and outcomes, and
as complex as a variety of options and their eventual outcomes down the line. The
important point is that you will have introduced a negotiation mechanism after a conflict
has been introduced but before any action has been taken! The outcome is obviously what a
win/lose is concerned with, based on the negotiation before the conflict.

The Negotiated Contest pattern requires that players be allowed to
negotiate the effects of success and failure before the conflict is
mechanically resolved.

Use the Negotiates Contest pattern when your design goals include one of more of the
following:

A desire to unambiguously decide whether the outcome of a contest means a1.
player wins or loses his stated goals rather than whether or not his character
succeeds in performing discrete actions.

In the Beginning

[33]

A need to scale the resolution of contests to levels of granularity different than2.
that of individual actions.
A willingness to allow players a great deal of narrative freedom in describing the3.
results of contests, both good and bad.

For computer role-playing games, the negotiated contest will have some restrictions as we
cannot afford to create an AI system to be open ended. But we can design a simpler means
to provide the player a sense of some control on the negotiations as part of the gameplay.

Negotiation can be a great mechanic for exchanging information with non-player characters
in your role playing game. There are three parts to a Negotiation pattern:

Initiation is the phase at which a character action is introduced into the game
world
Execution is the phase in which the success or failure of a character action is
determined
Effect is the phase in which the results of a character's actions are determined

Here are some questions to consider when designing a Negotiation system:

What does the winner get?1.
What does the loser get?2.
How do we know who's the winner and who's the loser?3.
What do we need to establish before resolution begins, and how?4.

Summary
In this chapter, we covered what a role-playing game is in great detail. We briefly covered
some of the historical aspects of the genre and looked at the different varieties. We
discussed the key elements for designing a role-playing game, and provided some examples
to demonstrate.

We looked into the characteristics of an RPG and discussed how to plan for your game such
as story and setting, exploration, and quests within your game, different types of inventory
systems, character development, user interaction, and some combat system patterns. We
also covered some basic terminology that is used in RPGs.

By the end of the chapter you should have a clear idea of what you will need to prepare for
and the kind of effort it would take for making a role-playing game.

In the next chapter, we will start developing our own RPG.

2
Setting the Atmosphere

The intention of Chapter 1, In the Beginning, was to give you a good footing on the topic
and spark your imagination. In this chapter, we are going to start laying the groundwork
for our own RPG. We will first define the story for our game, define the plot, and define the
quests that will make the game playable. We will look at the assets that will be required to
create our environment and characters and finally design the first level.

The following is a breakdown of the topics we will be covering in this chapter.

Building Our RPG
The Story of the Zazar Dynasty

Plot
Exploration and Quests

Awakening
The Village
Broken Forest
The Kingdom

Asset Inventory
Environment Assets
Character Assets

Level Design
Setting the Stage
Terrain Toolkit in a Nut-Shell

The Awakening
Testing the Level
Creating the Main Menu

Awaken your creativity and let your imagination go wild!

https://cdp.packtpub.com/4507buildinganrpgwithunity5x/wp-admin/post.php?post=173&action=edit

Setting the Atmosphere

[35]

Building our RPG
As discussed, building a role-playing game is no small task, but once you start down the
path, you will come to realize that it is not as difficult as it seems initially. The idea is to get
started and as you put your ideas down on paper and start the design process, more and
more ideas will come into perspective.

As we have learned, there are some key elements that we would need to establish for our
RPG. Let's recall them, and maybe even fine tune them as we go along.

Key Elements:

Story and setting
Exploration and quests
Inventory system
Character development
Experience and levelling
Combat system
User interface and graphics

The story of the Zazar Dynasty
The premise of most role-playing games tasks the player with saving the world. There are
often twists and turns as the story progresses, such as the surprise appearance of an
estranged relative, or enemies who become friends and vice versa. We will create our story
and game based on such a story.

Plot
Once upon a time there was a great kingdom. Ruled by the great King Zazar. The ruler of
the kingdom was a generous lord to his subjects. The kingdom under the rule of Zazar was
peaceful and prosperous, however, over time internal family rivalries and struggles caused
cracks in the strong bond that kept the kingdom intact.

Due to mysterious events, the great king decided to move his family away from the
kingdom and trust his son with one of his trusted, wise elders. The kingdom was never the
same. Until now!

Setting the Atmosphere

[36]

Exploration and quests
Now that we have defined our plot for the game. We can start working on developing the
story further and breaking it down into different levels. To keep things simple, we will
concentrate on basic quests and level design, the important point is to understand the
concepts and apply them to your own story.

Awakening
The game will start by immersing the player in the environment where our hero has been
raised and trained by the elder who was entrusted by the great King Zazar.

The main objectives of this level will be for the player to engage with the environment and
learn how to interact with his/her surroundings.

Objectives:

Introduce the player to the user interface
How to move the character
How to interact with Non-Player Characters
How to interact with the environment

Outcome:

Player gets points for completing in-game tasks.
Player gets his first weapon.
Player learns how to interact with the surrounding world.

The village
Our hero will start his journey of self-fulfillment. He will be traveling in the outskirts of the
Kingdom and arriving at one of the villages that has been terrorized by the thugs and
mercenaries hired by the Evil Overlord Shaquil.

Our hero, himself unaware of who he is and why he is on this journey, will find out about
the austerity that has been going on since the departure of his father. This will be mostly
accomplished through the interaction of the village peasants.

The primary objective of this level will be for the player to learn social skills and engage
with the village people and create relationships.

Setting the Atmosphere

[37]

Rumor has it, that there are spies in the village, and that everyone is suspicious of each
other and the unity that once was the strength of the village is crumbling.

Objectives:

Interact with the village peasants to acquire social skills
Create trust between the hero and the villagers
Seek out who the spy is among the villagers

Outcome:

Improved social skills
Establish relationships that can be tapped into at a later point
Learn some basic combat skills

Broken forest – the horizon
Our hero will be travelling along his quest into the horizon. The horizon is the initial
exposure to the main kingdom's borders, where the main castle and inner city is within
reach.

It is basically a vast lush forest that protects the main domain of the kingdom from outside
threats. It also has a few secrets and surprises for the uninitiated passer-by. The forest is
where the barbarians reside and cause havoc on the surrounding areas. What is not
apparent at the time, is the connection between the barbarians and the current Over Lord of
the Kingdom.

As far as the hero is concerned, he or she will need to be able to safely pass through the
forest.

The horizon is going to have several unexpected surprises for the hero, the outcome of the
quest will heavily rely on the way the player interacts with the surrounding environment
and also with the non-player characters.

Objective:

Ability to pass through the forest without getting killed

Outcomes:

Hero can be captured by the Barbarians.
Hero could face other life threatening scenarios and or non-player characters.

Setting the Atmosphere

[38]

Hero successfully passes through the forest and is ready to take on the next
challenge.
Hero can establish new relationships to enhance their skills and abilities.

The kingdom
The hero has progressed through the previous quests and now is ready to take down the
Evil Over Lord and retake what is inherently his. Our hero has progressed and acquired a
vast amount of skills and abilities throughout the quests, and now he is going to undertake
one of the most difficult and epic battles in the game.

Our hero is surprised by the vast army of the Over Lord. He will need to figure out a way to
pass through the city and into the main castle to defeat the enemy.

Objectives:

Kill the Overlord and retake his Kingdom.

Outcomes:

Call to action the relationships he has established throughout game-play.
Use his negotiation skills and wisdom to outwit more powerful enemies.
Destroy the enemy.

Ah, the pure joy of defeating your nemesis and taking over your Kingdom!

Asset inventory
It is a good time to discuss some of the basic assets that are going to be required for the
development of our RPG. Our game assets are defined by the scenes we describe for our
game. For our RPG, we have described four unique scenes. Each one has been described in
enough detail for us to get an idea of the types of assets we are going to require.

Environment assets
The general theme of our game is going to be medieval. There are several ways to go about
this. The first and preferred way would be to either create yourself the environment models
by yourself or a teammate, second to find a freely available model that has been created by
a third-party, or third to purchase the 3D Models that have been created by a third party.

Setting the Atmosphere

[39]

The Asset Store is a great place for you to start hunting for great content if you do not have
the ability to create your own 3D models. You can use the Asset Store to search for
medieval themed environments that can be used for the game.

One of my favorites is called Medieval Environment. You might want to consider searching
for a few more that are to your liking and taste.

Things to consider as part of your environment assets:

Buildings
Props and add-ons

Banners
Barrels
Windows
Boxes
Wagons

Rocks/plants/trees
Particle assets

Fire
Fog
Smoke
Water

Skyboxes

The preceding list is just a starting point, but it is a starting point for your environment
assets.

Character assets
RPGs are heavily based on characters. Therefore, the next important game asset is going to
be the characters themselves. The models that you need to define for your game are again
heavily related to your story line and setting. The Asset Store provides a wealth of character
models that you can download and use as a proof of concept for your game.

For our game, here are the characters that are required: humans, these will represent the
hero as well as the villagers and other non-player character types of human. We need a
Barbarian class, these are some of the characters that the hero must confront during the
game play. We have the Orc character class which are animals in their own right.

www.allitebooks.com

http://www.allitebooks.org

Setting the Atmosphere

[40]

You can either get the free models or the paid models to represent your characters. We will
get more into the character assets in future chapters.

Level design
Now that we have our game story on paper and have an idea of what we want to achieve, it
is time to apply our skills to actually making it happen.

Since this book is targeting an audience who is already familiar with the
basics of Unity, we are not going to cover the fundamental aspects of the
software.

To get started, we need to launch Unity. I am using the 64-bit edition of Unity 5.3.x Pro. You
do not need to have the Pro version of Unity for completing the project in this book.

Setting the Atmosphere

[41]

Go ahead and select a location and a name you desire for your project and select the Create
project button. At this point Unity will create an empty project for you, and display the
Unity IDE, it should look something like the following:

Your view might be a bit different, depending on how you have configured your Unity
layout. If this is the first time you have launched Unity, you will need to get up to speed
with the basics, since we are not going to be covering them in this book.

If you have not used Unity before, you should get familiar with the IDE
before you continue on reading.

Setting the stage
So the first things we would like to do is to create a landscape for our first level called
Awakening.

Unity itself has some good tools for creating terrains, but truth be told, it is not a practical
means of achieving nice beautiful terrains for the game. For this purpose, we are going to
use another set of tools called Terrain Toolkit and it was developed by Sander as part of the
Unity Summer of Code 2009.

Setting the Atmosphere

[42]

The toolkit is available on Google code repository:
https://code.google.com/archive/p/unityterraintoolkit/downloads

I have also included the library as part of the download provided by this book, just in case
the original link gets deprecated in the future.

Once you get the ZIP file containing the Terrain Toolkit, go ahead and unzip it to a desired
location on your computer. Drill-down in the extracted folder to get to the Unity Package
called TerrainToolkit_1_0_2.unitypackage.

At this point let's take a moment and go back into Unity and actually create a Terrain
GameObject and see the built-in tool for terrain modification. To create a Terrain, you will
need to select the following from the Main Menu: GameObject|3D Object|Terrain. This
will create a default terrain in your scene which should look something like the following:

When you select the Terrain GameObject in the Hierarchy Window, you will see the
Inspector Window displaying the properties and components that are accessible through
the designer for the Terrain GameObject. As you can see, there are a lot of attributes that
you can modify and by doing so create a nice looking terrain. When you start playing
around with the terrain tool you will soon realize that it is not practical for large terrain
models, or for natural looking terrains.

https://code.google.com/archive/p/unityterraintoolkit/downloads

Setting the Atmosphere

[43]

To enhance our terrain generation, we will use the Terrain Toolkit. The first thing we need
to do is to import the unity package into our project, and this is done by selecting from the
main menu: Assets | Import Package | Custom Package which will open up your file
explorer. Using the file explorer, you will need to navigate to the location where you
extracted the ZIP file, and select the unity package to import.

If all goes well you will see the following screen displaying the assets that are included in
the package we are trying to import. You can take a look at the content of the package
before importing it. In our case, we want to import everything, so we can just click the
Import button.

Sometimes when you import older Unity Assets, Unity will prompt you to
automatically upgrade it to the latest version. This is usually OK. So just
accept it and let Unity do what it needs to do.

Setting the Atmosphere

[44]

When Unity imports the Terrain Toolkit, you will notice a new folder under your Project
Window called TerrainToolkit. All the code will be listed under the folder if you want to
make any modifications to it. There is also a readme file which you can use to get started.

You will also notice that a new Unity Editor feature has been added under the Component
Menu called Terrain|Terrain Toolkit. All you need to do to apply the Terrain Toolkit to
your existing Terrain is to select that option and it will automatically attach the correct
component to the Terrain GameObject for you.

You will notice a few options that are now available to you through the Terrain Toolkit for
the generation of more natural and realistic terrains. You should take the time and get
familiar with each attribute and play around with the values to get an idea of how they
affect the terrain generation algorithm.

Setting the Atmosphere

[45]

Terrain toolkit in a nutshell
There are a number of predefined generators in the toolkit for the creation of the terrain.
These are Voronoi, Fractal, Perlin. The following is a brief explanation of each.

Voronoi generates a random height-map consisting of a series of mountain-like
peaks using a Voronoi diagram and applies it to the terrain object.
Fractal generates a random height-map using the cloud or plasma fractal algorithm
and applies it to the terrain object.
Perlin generates a random height-map using Perlin noise and applies it to the
terrain object.

There are also two filter types that can be applied after the generation of the terrain. These
are the Smooth and Normalize filters.

Smooth is a filter which applies smoothing to the terrain object repeatedly over a
number of iterations.
Normalize is a filter which normalizes the terrain object by setting the highest
point in the current terrain height-map to the maximum and the lowest point to
the minimum. All other points are interpolated between the maximum and
minimum.

The next step would be to apply some erosion to the terrain. There are three built in erosion
types in the toolkit: Thermal Erosion, Hydraulic Erosion, and Tidal Erosion. You can
apply these erosion types either by a brush, or by the actual erosion filters.

Thermal Erosion removes material from areas with a slope greater than the
minimum slope and deposits it further down the slope. This tends to smooth and
flatten inclines in the terrain.
Hydraulic Erosion removes material from areas with a slope less than the
maximum slope and deposits it further down the slope. This tends to steepen
inclines in the terrain and further smooth and flatten other areas.

Setting the Atmosphere

[46]

There are three different Hydraulic Erosion Types.

Tidal Erosion applies smoothing at the chosen sea level, except in areas where
the slope exceeds a given value. This simulates the erosive action of waves
around a shoreline and creates beaches.

Final step would be to apply texturing. This will give our terrain a more realistic look and
feel at runtime. The toolkit provides procedural terrain texturing, which automatically
textures the terrain object using the slope and altitude attributes of the terrain to determine
which texture will be used.

The awakening
The setting and the atmosphere of the level is going to be in a secluded area within the
jungle. We are now going to generate our terrain using the Terrain Toolkit discussed in the
previous section.

Let's create a new scene and call it Awakening. By default, the scene is just going to have a
camera and a directional light GameObject defined.

You can save your scenes and assets within the Asset folder without much
thought. However, it is usually a good idea to have some file structure in
place to make organization of your assets easier and be able to find them
faster.

A preferred folder structure would include: scenes, prefabs, textures, audio, models. Within
each folder you can then create subfolders and so forth for your own organizational
purposes.

Now we are ready to add a Terrain GameObject to the scene. Go ahead and select
GameObject | 3D Object|Terrain. This will place a Terrain GameObject in the scene,
double click on the Terrain GameObject in the Hierarchy Window to make it centered in
the Scene View.

Setting the Atmosphere

[47]

By default, the Terrain object will be very large, let's go ahead and make some adjustments
before we do anything else.

Setting the Atmosphere

[48]

To make the adjustments to the terrain size, select the Settings Icon as indicated in the
preceding screenshot. This will display the basic attributes of the terrain. As you can see
there are a bunch of properties that can be adjusted to make it behave to your liking. We are
mostly concerned with the size of the terrain and also the maximum height that the terrain
can raise to. Therefore, scroll down until you get to the Resolution section.

Change the Terrain Width and Terrain Length to 50. Change the Terrain Height to 50. This
will change the dimension so that we can handle our scene easier. Our original terrain size
was very large and it would have taken us a long time to decorate it.

Now, we have a good size terrain. Assuming you have already imported the Terrain
Toolkit, go ahead and select Component|Terrain|Terrain Toolkit from the main menu.

I have used the fractal terrain generator function with a Delta of 0.4 and Blend of 0.445.
This will generate a nice looking terrain with a good proportion of hills and valleys. Since
the terrain is randomly generated yours may not look exactly like mine, but it should look
something similar to the following screenshot:

Setting the Atmosphere

[49]

I usually apply the Smooth filter after my terrain generation to make things look even nicer.
After applying the Smooth filter, my terrain looks like the following:

You can see the difference of the filter once it has been applied. Let's go ahead and now
apply some textures to make it nice. Selecting the Texture tab within the Terrain Toolkit,
you will have several options. We would like to apply at least two textures to give our
terrain a more realistic look. You can apply up to four textures if you choose to!

Click the Add Texture button twice to create the texture placeholder.

Textures are very important in graphics and especially games. The better
and higher resolution your textures, the better your scene will look.
However, this is a catch-22. Usually higher resolution textures take up
more resources. So you have to find the right balance for your game.

Setting the Atmosphere

[50]

Once the placeholders have been added, you can click on the placeholder, a window will
pop-up and you will be able to select your desired texture.

Now is a good time to stop and discuss one of the main advantages of Unity, the Asset
Store. The Asset Store is a great online community that Unity Developers can either acquire
assets to be used in their games, or develop assets that will be used by other developers.
You can either get free assets from the Asset Store or you can get better quality ones for a
little bit of money.

For our game, I will be using some free assets and some paid assets. If you want to use the
same assets that I am using in the book you will need to purchase them:

Setting the Atmosphere

[51]

The next thing I like to do is locate a position on the terrain where I will be using to create
the scene objects necessary to play out the level. For this particular scene, I want to use an
asset that represents an old cottage in the woods, where the hero will be awakening in the
beginning of the game.

I have found this nice asset in the Asset Store that I would like to use for my starting point
of the game. The model itself does not have any interior. This fits in well, because I am not
planning on having any game play inside the shelter. It is just an eye catching object in the
scene and a point of reference.

In order for me to place the shack in the scene, I will need to first do some more adjustments
to the terrain. If you notice, our terrain does not have any level areas where we can properly
place the shack. We would need to use the terrain objects terrain components to make some
more changes.

Again select the Terrain GameObject in the Hierarchy View and use the Inspector Window
to select the Paint Height tab, shown as (1) in the preceding image, to enable the feature.

This is a great feature to sample the terrain height at a particular point, and apply the same
height using the brush to any other region. This will level the terrain to the same height that
was sampled. It's a great way to quickly level a region and place your items, if those items
need to be on a level ground, like a house or a shelter.

Setting the Atmosphere

[52]

The next step is to place some tree models on our terrain to create the jungle look and feel.
To achieve this, we are going to need to select the terrain object in the scene and use the
Inspector Window to select the Tree Placement feature. You will then need to select the
Edit Trees… button to add a Tree model.

Setting the Atmosphere

[53]

Using the Inspector Window, you will need to select the Tree Placement tab, select Edit
Tree… Add Tree feature, locate a Tree prefab and you are done!

Take a look at the settings, and change the brush size to meet your needs. In my case, I have
changed it to 9.9. I have left the rest of the attributes at the default value, you can certainly
change them as needed.

Now, when you move your mouse in the Scene View, you will notice a brush-like highlight.
This is where the trees will be placed during design time.

The following screenshot will display how my scene looks after I have made some of the
adjustments and placements of my trees and the building.

The next step of the process would be filling the level with other environment assets such as
rocks, vegetation, and other props to make the level come to life. The idea here is to make it
interesting and at the same time functional. It is a good idea to have some sort of a sketch of
your level design. This way you can have a good idea of how you will develop your level.

Setting the Atmosphere

[54]

Keep in mind that this can also be used as a means of communication with your team; the
level designers and artists, providing them a direction. The following diagram is a top-
down view of our intended level design.

I am going to now build my level based on the layout I have. Now is the time to get creative
and use your imagination to design your level. This part of the exercise is free form, you are
the designer, so you will decide how to go about placing and creating your level, as long as
it meets the requirements.

Setting the Atmosphere

[55]

Keep in mind the following important point, the player will be interacting with the
environment or non-player characters at the designated points of interest. So make sure
when you design your level, they have an easy way to access the areas where they need to
get to, so that they can perform the given task.

One thing to notice is the limitation of the terrain as we have it defined here. When the
player goes to the edge of the terrain they will fall through! Yes, they will freefall forever!
We don't want that to happen. So we will need to also incorporate some boundaries in the
level design that will prevent the player from basically going overboard.

It is very simple to create some restrictions and boundaries in such cases. We can use
wooden fences, or we can use the actual environment to restrict the level of access by the
player to the danger zones in the level. This method can be very time consuming if your
level is large.

Another way to solve this problem is to create four planes that will be used on each side of
the terrain. The plains will have a special texture giving them an atmospheric look, but they
will have colliders which will stop the player from moving forward upon contact. This is an
easier method and will take less time to place in the scene.

Setting the Atmosphere

[56]

Go ahead and create a plane by choosing Game Object|3D Object|Plane. When the plane
is placed in the scene, arrange it in a way that it will be the length of the terrain. The scale of
my plane is <4,1,4> at position <25,20,25>, I have also rotated the plane 90 degree on
the Z axis.

You will need to also attach a collider to the plane object. The collider component will be
used to detect collisions between the plane and other objects, in this case the player
character, and stop the player from going through.

To attach a collider, select the Plane object and from the Inspector Window, use the Add
Component button to select Physics|Box Collider. The plane now will have a box collider
that will be used for collision detection by the engine.

A plane object will only render on one side. Therefore, when you apply
your texture to the plane, make sure that the visible side is towards the
inside of the level.

Once you are satisfied with the look and feel, you will need to duplicate it and place it on all
the side edges to protect the player from falling.

Setting the Atmosphere

[57]

In the preceding screenshot, notice that the two planes on the far side are not visible. That is
how the player will see the environment during gameplay. The player will collide and not
be able to move forward, but they will see the skyline go far into the distance.

It is time to do a test run. We can use the 3rd person character controller provided in the
Standard Assets to quickly drop our character placeholder and roam around the level to get
a feel for it.

Testing the level
At some point you will want to test out the level and look at it through the eyes of the
camera. We can use the built-in 3rd person character controller that comes in the Standard
Assets, and do a quick walk-through of the level.

If you have not imported the Standard Assets when you created the
project. You will need to import them by selecting Assets, and select
Import Package | Characters.

In your Project Window, you will see a folder called Standard Assets, there is a subfolder
called Character Controllers. You will need to select the 3rd Person Controller Prefab and
drop it somewhere on the current scene. A good location will be next to the shack. Make
sure that the 3rd Person Controller (3rdPC) is above the terrain so it does not fall through!

In the ThirdPersonController.js component, you might have to
assign the Idle, Walk, Run and Jump animations.

You will have to attach a Rigidbody component to the 3rdPC GameObject. This is needed to
make sure that our player-character (PC) will use the built-in physics for collisions
detection.

Go ahead and run the level and walk-through the scene. Test and make sure that the PC is
behaving the way it is supposed to when you are navigating through the environment.
When I test run my PC, I realized I had not attached Box colliders to all of the Planes. I also
realized that there was no collider defined for my Shack. Take an inventory of such errors
and when you stop testing make the needed corrections.

Setting the Atmosphere

[58]

Creating the Main Menu
Now is a good time to create the starting point for our game. Go ahead and save the current
scene. We are going to make a new scene that will be used as the starting point of our game.
To create the new scene, you will need to select File | New Scene. Go ahead and save the
scene. I called my scene Main Menu.

Now we have a clear canvas that we can work with to create our Main Menu. In the
Hierarchy Window, right-click and select UI | Panel. This will create a Canvas GameObject
and an EventSystem GameObject and place them in your Hierarchy window. You will
notice that the Panel UI object is a child of the Canvas. All UI elements will be a child of a
Canvas.

Your Hierarchy should look something like the preceding .

There are several key aspects that we want to make sure are set properly. These are namely
on the Canvas GameObject. Select the Canvas GameObject and look at the Inspector
Window.

For this particular Canvas, make sure that the Render Mode is set to Screen Space –
Overlay. The next property you need to check is the UI Scale Mode. Change this to Scale
With Screen Size. This will make sure that the UI will always be scaled to the screen size of
the device that the game is being run in.

For best results, you will want to create multiple menus for different
device types.

So for now, let's go ahead and create a button that will basically load our level called
Awakening.

Setting the Atmosphere

[59]

Right click on the Panel Object in the Hierarchy Window and select UI | Button. This will
place a button on the Canvas as a child to the Panel object. The parent child relationships
are important to consider when you are building your user interface. When you place a UI
element as part of a child to another UI element, the child will be scaled and moved
according to the Parent's scale and location.

You can learn more about UI development in Chapter 5 of the book Introduction to Game
Programming: Using C# and Unity 3D.

We will spend time fine tuning our menu in the future chapters. Change the caption of the
button to Start Game. It is also a good idea to name your scene object appropriately just to
keep things nice and organized. I have changed the name of the button to butStartGame.
This can be done by selecting the Button object in the Hierarchy Window and changing the
name in the Inspector Window.

Creating the Game Master
As discussed in Chapter 1, In the Beginning, we are going to need a way to manage our
game. We are going to create a script that will be called GameMaster. This is going to be the
core of the game that glues everything together. As we progress with the book you will see
how we are going to modify the core to meet our needs.

For now, we are just going to create a simple C# script and name it GameMaster.cs. We
will then create the code that will be used to handle some of the basic events we want to
perform at this point namely navigating from scene to scene.

From your Project Window, under your scripts folder, right-click and select Create|C#
Script. Name it GameMaster.cs. Double-click your script to start your code editor and
place the following code in there:

using UnityEngine;
using UnityEngine.SceneManagement;
using System.Collections;

public class GameMaster : MonoBehaviour {

 // Use this for initialization
 void Start () {
 }
 // Update is called once per frame
 void Update () {
 }

Setting the Atmosphere

[60]

 public void StartGame()
 {
 // NOTE: You should put in the name of the Scene
 // that represents your level 1
 SceneManager.LoadScene("CH1_Awakening");
 }
}

In the Hierarchy window, you will need to create an Empty GameObject. The best way to do
this, is by right-clicking and selecting Create Empty. An empty GameObject will be created.
Select it and change the name to _GameMaster.

We need to attach our script to the _GameMaster GameObject in our scene. Select the
GameMaster.cs script and drag and drop it on the _GameMaster. This will attach the
script to the _GameMaster object and make it available in the scene.

The next step is creating the event call from the button. This can easily be achieved by
selecting the butStartGame button element and from the Inspector window adding a new
event call on the OnClick() component. Click the (+) button to create a new event.

Setting the Atmosphere

[61]

We need to call the function we created in the GameMaster.cs script. To do so, we would
need to somehow refer to it. This is done really easily. We can drag and drop the
_GameMaster GameObject into the slot as indicated in the screenshot by number 2.

Once you place your _GameMaster GameObject in the slot, you will need to select the script
from the drop-down menu as indicated in the screenshot by number 3.

That's all there is to it! We have now connected our button click event to the code that will
be responsible to load our first level.

Now is a good time to save your scene and test your application. When you run the
application for the first time, you will get an error. Don't be surprised, we have not done
anything wrong. But there is one more step that we need to do before we can actually run
our game successfully.

In order to be able to load scenes in the game, you will need to make sure they are listed in
the Build Settings. To do so, select File | Build Settings… and add the current scene to the
list by selecting Add Open Scenes. Your Build Setting should look like the following:

Load the MainMenu scene once more, and run the application. Nice! It is working as
expected. The only other item I would like to add to this chapter before we move on, is the
following code in the GameMaster.cs script.

using UnityEngine;
using UnityEngine.SceneManagement;
using System.Collections;

Setting the Atmosphere

[62]

public class GameMaster : MonoBehaviour {

 // Use this for initialization
 void Start () {
 DontDestroyOnLoad(this);
 }
 // Update is called once per frame
 void Update () {
 }

 public void StartGame()
 {
 // NOTE: You should put in the name of the Scene
 // that respresents your level 1
 SceneManager.LoadScene("CH1_Awakening");
 }
}

The single line of code in the Start() function will make sure that the _GameMaster
GameObject does not get destroyed when we move from one scene to the next. This is
important, because we will be storing all of our game configuration and stats and so on. in
this particular GameObject. When you run the game now from the MainMenu scene, you
will notice that when you load level 1, the _GameMaster GameObject comes over
automatically from the MainMenu. This is cool!

Summary
In this chapter, we established the atmosphere and the environment that is going to be
representing our RPG. We have defined our levels, the setting of each level, the objective of
each level and the outcome for each level.

We took the first level called Awakening and created the environment. We looked at how to
use our assets and the Asset Store to incorporate 3D models in our scene. We also looked at
how to plan the layout of the level. We introduced a third-person character controller into
the scene to help us visualize how the level looks from the player's perspective and help us
fine tune it as needed.

By the end of the chapter we also developed our MainMenu scene and our initial
GameMaster script that will be used to glue the core of the game together.

In the next chapter we will start creating our player character and enhancing our
GameMaster and MainMenu system.

3
Character Design

We are now at an interesting point in our development. In this chapter, we are going to
discuss the design of our RPG characters and look at some of the attributes and
characteristics that we need to design and implement.

Character definitions
To have a meaningful and interesting RPG, the game should usually have more than one
character class. In Chapter 1, In the Beginning, we had defined the following class types:

Barbarians
Orcs
Magician/Wizards
Zombies
Humans

We won't be able to implement all of the character types due to time. The demonstration of
the implementation of one or two character types should give you a good ground to
develop your own character classes. After all, that is the overall objective of this book.

One of the main characters is of course the PC. Let's go ahead and concentrate on the
implementation of the PC and then we can start defining and designing the Barbarian class,
the Human class, and perhaps the Orc class.

My character models are going to be from the Asset Store. You may either
download the same characters or design your own. You can also use
different type of character models. The point is to implement the character
based on the specifications which will be defined in this chapter and
beyond.

Character Design

[64]

Let's take a look at some of the attributes that our player will have in general.

Base character class attributes
Let's start laying down the foundation we are going to need for the implementation of our
character classes. The following is a list of attributes that are going to be part of the Base
character class:

Character class name
Character class description
List of attributes

Strength
Dexterity
Endurance
Intelligence
Social standing
Agility
Alertness
Vitality
Willpower

The attributes you define for your characters depend on the character type, but there are
going to be some similarities between all character attributes, we would like to implement
these similarities in a base class that will be shared with all character classes.

The list provided is just a sample, and you can add or subtract as you see
fit.

Let's keep things simple, we will use only the four primary statistics for now:

Strength: This is a measure of how physically strong a character is. Strength
controls the maximum weight the character can carry, melee attack and/or
damage, and sometimes hit points. Armor and weapons might also have a
Strength requirement.
Defense: This is a measure of how resilient a character is. Defense usually
decreases taken damage by either a percentage or a fixed amount per hit.

Character Design

[65]

Dexterity: This is a measure of how agile a character is. Dexterity controls attack
and movement speed and accuracy, as well as evading an opponent's attack.
Intelligence: This is a measure of a character's problem-solving ability.
Intelligence often controls a character's ability to comprehend foreign languages
and their skill in magic. In some cases, intelligence controls how many skill points
the character gets at “level up”. In some games, it controls the rate at which
experience points are earned, or the amount needed to level up. This is
sometimes combined with wisdom and/or willpower.
Health: This determines if the character is alive or dead.

The attributes listed will be inherited by all character classes. Now let's put this into code.
Create a new C# script and name it BaseCharacter.cs. Open the script and place the
following code in file:

using UnityEngine;
using System.Collections;

public class BaseCharacter
{
 private string name;
 private string description;

 private float strength;
 private float defense;
 private float dexterity;
 private float intelligence;
 private float health;

 public string NAME
 {
 get { return this.name; }
 set { this.name = value; }
 }

 public string DESCRIPTION
 {
 get { return this.description; }
 set { this.description = value; }
 }

 public float STRENGTH
 {
 get { return this.strength; }
 set { this.strength = value; }
 }

Character Design

[66]

 public float DEFENSE
 {
 get { return this.defense; }
 set { this.defense = value; }
 }

 public float DEXTERITY
 {
 get { return this.dexterity; }
 set { this.dexterity = value; }
 }

 public float INTELLIGENCE
 {
 get { return this.intelligence; }
 set { this.intelligence = value; }
 }

 public float HEALTH
 {
 get { return this.health; }
 set { this.health = value; }
 }
}

Character states
States are an important part of the character design. They will also drive the kind of actions
and movement you will need to create for each state. For instance, at a minimum our
character will need to have the following states implemented:

Idle
Walking
Running
Jumping
Attacking
Die

You character may have more states defined, this is something that you as the designer of
the game will need to identify and eventually implement. Each one of the states identified
will need to be implemented as an animation. The person creating the character models will
usually also develop the animations for the character.

Character Design

[67]

With the latest release of Unity 5, the Mecanim Animation System was introduced which is
used to create easy workflow and setup of animations on humanoid characters, retargeting
of animation from one character to the next, previewing of the animation clips, managing
complex interactions between animations with a visual tool and animating different body
parts with different logic.

You can download RawMocap Data for Mecanim 1.1 from the asset store.
The package contains several raw motion capture data files for your use.
Beware, that you might have to do some adjustments on your own.

When creating your character models, it is a good idea to follow the proper bone structure
setup for your characters. This will help make it easier controlling the states and the
animations of your character as well as re-using your Animation Controller on multiple
characters. This is also true if you are going to use a character from the Asset Store.

Character model
We should now consider how our player character is going to look. There are several
approaches that can be taken. An easy way would be to have a predefined hero where the
player does not have many options and choices when it comes to customization of the
character. The other way would be to provide the player the ability to change and modify
their character to an extent or fully. This all really depends on your budget!

We are going to do something in-between, to get the benefit of both worlds.

You may use the Asset Store to download predefined characters that can
be used as placeholders for your game while you create your own. You
can even use some of the characters that are freely available through the
Asset Store and modify them for your needs.

Once you have determined your character model, the next step is configuring it and
customizing it for your game. The character model I have, can be visually modified to
represent several unique characters.

You will need to study your character model carefully and understand how it is built so
that you can modify it during design time and also during runtime if necessary.

Character Design

[68]

For instance, this is how my character model looks like in its raw format:

This particular model has several visual elements attached for weapons, clothing and so
on… Your model may have been configured differently, if so, you will need to create your
own attachment points and instantiate the weapons and or other character related assets
accordingly:

Character Design

[69]

Select your model and investigate the structure of your model. You will notice that there is
a certain pattern and naming convention to the model hierarchy as show in the preceding
screenshot. Some models might have animations attached, to check them you will need to
select the model from the project window and select the Animation tab in the Inspector
window to get a list of the embedded animations for the model.

Character Design

[70]

In the Inspector Window select the Animations tab shown in the preceding screenshot, and
notice the Clips section for all animations developed for your character model, as indicated
in the following screenshot:

Notice that the animation clips have a start time and an end time. The actual character
model is visually displayed at the bottom of the Inspector Window.

Rigging your model
There might be times that you will need to Rig your model to make it suitable for your
game. This can be achieved by selecting your model source, and from the Inspector
Window selecting the Rig tab as shown in the following screenshot:

Character Design

[71]

In the Rig tab, there are several options that you can apply to your model. Assuming that
your character is of Humanoid type, you will need to select the Humanoid Animation
Type if not already selected. The Avatar Definition can also be either created from the
model or assigned if you have an avatar defined. Finally, you can click on the Configure…
button to see the configuration of the rigged model.

Notice from the preceding screenshot that your model has a mapping defined for its
skeleton. If your model is of Humanoid type and if your model structure has been named
properly, the system will automatically assign the correct bones and joints. If your naming
is not per Unity specification, you can navigate your model structure and manually assign
each point in the Body, Head, Left Hand, and Right Hand.

The Muscles & Settings tab will enable you to define and restrict the movement of the
joints for your model. These can be very useful and practical for creating more realistic
movements for your characters. You can study these topics further on your own as they will
require a whole chapter or two to cover them.

Character Design

[72]

Character motion
Traditionally, the motion and movement of the characters were done separately through
code. With the introduction of Mecanim, you are now able to apply what is called Root
motion. This in return modifies the character's in-game transform based on the data in the
root motion.

We are going to use root motion for our characters. Root motion works with the Animator
Controller and the Animation State Machine. The Body Transform and Orientation are
stored in the Animation Clip. This makes it easier for creating a state machine that plays the
appropriate animation clip through the Animator Controller.

Animator Controller
In this section we will use the new Animator Controller to create our character states and
determine the criteria for a change of states. To create an Animator Controller, in the project
window right-click and select Create | Animator Controller. Give it a name. I have called
mine CH3_Animator_Controller. Double-click the controller to open the Animator
window.

The Animator Controller is a very complex tool and it will take you some time to study the
different aspects and features that are available to you through it. The following diagram is
a snapshot of an empty controller. I have marked the main sections of the Animator
Window. There are two visible tabs, the Layers tab and the Parameters tab. In the Layers
tab you will be able to create different layers that hold your animation states and the
relevant Transitions from one state to the next. The Parameters tab is where you define your
parameters that will be accessed and modified by the Animator Controller as well as through
your code.

Character Design

[73]

There are a wide range of topics that you will need to know to fully appreciate the Mecanim
system. We won't be going through all of the aspects in this book, but we will touch on
some of the key aspects that are needed for our game.

Character Design

[74]

Animation states
To create a new state, you can simply drag and drop an animation from your project
window. This will name and assign the relevant animation to the state in the layer. You can
also create an empty state by right-clicking in the layer and selecting Create State | Empty.
When a state is created, you can click on the state and observe its properties in the Inspector
window:

Your model may or may not have animations attached to it. The whole
idea of the Mecanim system is to enable character modelers to work on
their models while animators can use the skeleton of a humanoid Avatar
to animate the character. This in turn makes it easier and better to have a
set of animations applied to different types of character models!

To identify the state, it is best to provide it with a unique name that can be easily recognized
in the state diagram. You will need to assign a Motion to it, this is the animation clip that
will be playing when the state is active. The next important property would be the
Transitions property. A transition will determine the condition of which state will be
moving to another state, if there is such a requirement.

Character Design

[75]

For instance, when the character is in an idle state, what the condition is for the character to
change its state to a walking state, to a running state and so forth.

In the preceding screenshot, you will see I have defined three different states: idle, Walking,
and Running. You also notice in the Parameters tab, I have defined some parameters. These
parameters are used to determine when to move from idle to walking to running and back.
The parameters are there to help you create the conditions for your state machine.

To create a Transition from one state to the next, right-click your state, and select Make
Transition, then select the state it will transition to. This will create the visual arrow from
the start state to the end state. Select the Transition arrow to get its properties and set the
conditions in the Inspector window.

Character Design

[76]

The Walking and Running states are actually Blend Tree in this instance. A Blend Tree is
used to make the transition from one animation state to the next more natural. In order for
the blended motion to make sense, the motions that are blended must be of a similar nature
and timing.

Blend Trees are used for allowing multiple animations to be blended
smoothly by incorporating parts of them all to varying degrees. The
amount that each of the motions contribute to the final effect is controlled
using a blending parameter, which is just one of the numeric animation
parameters associated with the Animator Controller.

For instance, the walking state could look something like the following screenshot:

Character Design

[77]

In our first Blend Tree node, we have five outputs: WalkLeftMedium, WalkLeftShort, Walk,
WalkRightMedium, WalkRightShort. These are the animation clips that will be playing
based on the value of the parameter called Horizontal. In the behavior region, you will
notice a few thresholds that have been set up for the parameter, these thresholds are what
determine which animation is to be played. The value of the Horizontal parameter is set
through our C# code by passing in the value of the Horizontal Axis which is defined in the
Input Manager.

When you select a Blend Tree node, your Inspector window will give you the ability to add
or remove the different animation states and also the parameter and the threshold of the
parameter that will determine which animation will be rendered.

The key to have a smooth looking blending in your animation, you will
need to pay attention to your animation data.

Character Design

[78]

Let's take a look at our final state diagram:

At this stage, I have gone ahead and implemented the state diagram for idle, Walking,
Running, Jump, Attack, and Walking backwards. There is also a state for when the
character dies.

The parameter that defines the transition from the Idle state to the Walking and Running
States is the Speed parameter. If the speed value is greater than 0.1 it will transition from
Idle to Walking, if it is greater than 0.6 it will transition from Walking to Running. The
opposite is true for going from Running to Walking, and from Walking to Running.

Notice however, that the character can only enter the Jump state from the Running state.
The parameter that controls this transition is the Jump parameter that is a Boolean value set
by pressing the spacebar button on the keyboard.

There are also three unique attack states that can be entered from the Idle state. And a Die
state that can be entered from any state. Well, because your character can die at any given
time if you are not careful!

Let's take a look at how we can control these parameters.

Character Design

[79]

Character controller
It is time to enable our character to move around the scene. This is generally handled by the
character controller. The character controller will be used to handle most of the interaction
the player will have with the character in the game.

Create a new C# script and call it CharacterController.cs. Enter the following code in
the CharacterController class. At the moment the code is very basic. Let's get a listing of
the code and we can start discussing the different parts of the code after the listing:

using UnityEngine;
using System.Collections;

public class CharacterController : MonoBehaviour
{

 public Animator animator;
 public float directionDampTime;

 public float speed = 6.0f;
 public float h = 0.0f;
 public float v = 0.0f;

 public bool attack1 = false;
 public bool attack2 = false;
 public bool attack3 = false;

 public bool jump = false;

 public bool die = false;

 // Use this for initialization
 void Start()
 {
 this.animator = GetComponent<Animator>() as Animator;
 }

 // Update is called once per frame
 private Vector3 moveDirection = Vector3.zero;

 void Update()
 {

 if (Input.GetKeyDown(KeyCode.C))
 {
 this.attack1 = true;
 this.GetComponent<IKHandle>().enabled = false;

Character Design

[80]

 }
 if (Input.GetKeyUp(KeyCode.C))
 {
 this.attack1 = false;
 this.GetComponent<IKHandle>().enabled = true;
 }
 animator.SetBool("Attack1", attack1);

 if (Input.GetKeyDown(KeyCode.Z))
 {
 this.attack2 = true;
 this.GetComponent<IKHandle>().enabled = false;
 }
 if (Input.GetKeyUp(KeyCode.Z))
 {
 this.attack2 = false;
 this.GetComponent<IKHandle>().enabled = true;
 }
 animator.SetBool("Attack2", attack2);

 if (Input.GetKeyDown(KeyCode.X))
 {
 this.attack3 = true;
 this.GetComponent<IKHandle>().enabled = false;
 }
 if (Input.GetKeyUp(KeyCode.X))
 {
 this.attack3 = false;
 this.GetComponent<IKHandle>().enabled = true;
 }
 animator.SetBool("Attack3", attack3);

 if (Input.GetKeyDown(KeyCode.Space))
 {
 this.jump = true;
 this.GetComponent<IKHandle>().enabled = false;
 }
 if (Input.GetKeyUp(KeyCode.Space))
 {
 this.jump = false;
 this.GetComponent<IKHandle>().enabled = true;
 }
 animator.SetBool("Jump", jump);

 if (Input.GetKeyDown(KeyCode.I))
 {
 this.die = true;
 SendMessage("Died");

Character Design

[81]

 }

 animator.SetBool("Die", die);
 }

 void FixedUpdate()
 {

 // The Inputs are defined in the Input Manager
 // get value for horizontal axis
 h = Input.GetAxis("Horizontal");
 // get value for vertical axis
 v = Input.GetAxis("Vertical");

 speed = new Vector2(h, v).sqrMagnitude;

 // Used to get values on console
 Debug.Log(string.Format("H:{0} - V:{1} - Speed:{2}", h, v, speed));

 animator.SetFloat("Speed", speed);
 animator.SetFloat("Horizontal", h);
 animator.SetFloat("Vertical", v);
 }
}

In the Start() function we are going to get a reference to the Animator Controller. We will
be using the FixedUpdate() function to perform our updates for the character movement.

What is the difference between the Update() function and the FixedUpdate()? The
Update() function is called every frame and is used regularly to update the moving of
non-physics object, simple timers, and input processing. The update interval time varies for
the Update() function. FixedUpdate() is called every physics step. The interval is
consistent and used for adjusting physics on Rigidbody.

In the FixedUpdate() function, we get the inputs for our Horizontal and Vertical axis, we
calculate the speed value, and set the parameters defined in the Animator Controller using
the animator.SetFloat() function. These parameters are then used by the animator
controller to decide which state the character is at.

Character Design

[82]

For instance, to go from an idle state to the walking state, the speed parameter needs to be
greater than 0.1, and from walking to running, the speed parameter will need to be greater
than 0.6. The opposite is true when you want to go back from the running state to the
walking state and from the walking state to the idle state. The Horizontal and Vertical
parameters control the movement for turning left or turning right. All these three
parameters combined control what state and what animation the character is rendering.

The next step is for us to enable the Jump, Die and Attack states. The Jump state can be only
entered while the character is running and the Jump Boolean variable is set to true. The
jump condition is set in the Update() function when the spacebar is pressed by the player.
This sets the variable to true and passes the variable to the animator controller.

The same mechanism is used for the three attack states: Attack1_Normal,
Attack2_Lower, and Attack3_Destroy. These are mapped to the following keys on the
keyboard: C, Z, and X respectively. Each one will set its Boolean value to true and pass it
into the animator controller. However, the player can only enter these three states from the
idle state. We will leave it as is for now.

Finally, the Die state is implemented and for now we are using the keyboard input I to test
it out. The main difference between the die state and the other states so far is that the die
state can be entered from any state.

We are not using Blend Trees for these states as there is only one type of
animation for the state. You will also notice that the states can only be
transitioned to from the idle state. This is due to how the animations and
model was set up initially. Yours could be different.

Character Design

[83]

The character can get into a die state from any state. That is, your character player can die at
any time in the game during whatever state he or she is at. However, for the attack and
jump states, we need to be at the idle state for us to be able to transition smoothly into the
proper state. You can improve these transitions and state based on the level of your
animation complexity, but for now, this should do.

Character Design

[84]

These states are controlled through Boolean parameters defined in the animator. At this
stage, you should be able to use your model to test the scene and also your character
animations and states.

Modification to animations
There might be times that you will need to make some changes and or modifications to the
existing modification that will make it work properly with your game and the state
machine.

The attack animations prepared for my character model need to be adjusted to make them
loop while the character is still in that particular state. For instance, if I use the existing
animation and the character state goes into attack mode, the animation will play only once.
This is not what I intend to do, I am building the attack input to perform the attack while
the attack key is pressed down. Changing the animation loop setting is easy, to do so, select
the animation from your project window and select the Edit… button from the Inspector
window as shown in the screenshot:

You will now be in the Edit mode of the animation as displayed in the next screenshot. I
have placed the Inspector window side by side to illustrate the Animation tab, selecting
each animation we want to modify, one at a time, and setting the Loop Time property to
true (checked).

Character Design

[85]

In this particular screenshot you will also notice several other important properties for the
animation such as: Root Transform Rotation, Mirror, Curves, Events, Mask, and Motion.
We are going to use the Curves property when we set out Inverse Kinematics for some of
our animations regarding our character. This basically sets the values of predefined
parameters that can be used to set or get them through Mecanim:

Character Design

[86]

If your animations are attached to your model and your animations and models are older,
you will most likely need to make some modifications to them. For instance, one of the
main properties that you might have to set for a particular animation clip would be the
Loop Time property as shown in the preceding screenshot. This will make sure that the
animation will loop as long as you are in the state which is running the animation. If
looping is not enabled, the animation will run once and stop, even if you are still in the state
representing the animation.

So make sure the Loop Time property is set for the idle, walking, running, and attacking
animations. At the same time, not all animation clips need to be looped, for instance, the
jump and die animations just need to be played once. So you will need to be diligent and
check all of these properties.

Other animation will need to be modified to enable baking the transform into the model.
For instance, the die and jump animations have the following properties checked: Root
Transform Rotation and Root Transform Position (Y), make sure that the Bake Into Pose
property is checked. This is important to make sure the animation and the skeletal
movement of the character are harmonized at the root transform position.

Your animation might seem funky if these properties are not set properly.
So if there is something weird going on, make sure to double check these
properties.

If you have not done so by now, you should attach your CharacterController.cs script
to your player character.

Inverse Kinematics
Inverse Kinematics (IK) are important in game programming. It is typically used to make
the character's movement more realistic in the world. One of the main uses of IK is the
calculation of the player's feet and how they relate to the ground they are standing on.

In short, IK, is used to determine the position and rotation of the joints in a character based
on a given position in space. For instance, to make sure the foot of a player is landing
properly on the terrain it is walking on.

Character Design

[87]

Unity has a built in IK system that can be used to do some basic calculation in this regard.
Let's go ahead and implement the foot IK for our character. There are a few things that you
will need to set up before we can enable IK for our humanoid character. The first thing to
do is check your layer in the Animator Controller and use the engine icon to enter the
settings window. Make sure that IK Pass is checked as shown in the following screenshot.
You will also need to provide a Mask if you have not done so already. The mask is used to
dictate which parts of the skeleton are affected by the IK.

Once you have set up this, the fun begins. We need to create a C# script that will handle our
IK. Create a C# script and call it IKHandle.cs. Type the following code into the script:

using UnityEngine;
using System.Collections;

public class IKHandle : MonoBehaviour
{
 Animator anim;

Character Design

[88]

 public Transform leftIKTarget;
 public Transform rightIKTarget;

 public Transform hintLeft;
 public Transform hintRight;

 public float ikWeight = 1f;

 // to make it dynamic
 Vector3 leftFootPosition;
 Vector3 rightFootPosition;

 Quaternion leftFootRotation;
 Quaternion rightFootRotation;

 float leftFootWeight;
 float rightFootWeight;

 Transform leftFoot;
 Transform rightFoot;

 public float offsetY;

 // Use this for initialization
 void Start()
 {
 anim = GetComponent<Animator>();

 leftFoot = anim.GetBoneTransform(HumanBodyBones.LeftFoot);
 rightFoot = anim.GetBoneTransform(HumanBodyBones.RightFoot);

 leftFootRotation = leftFoot.rotation;
 rightFootRotation = rightFoot.rotation;

 }

 // Update is called once per frame
 void Update()
 {
 RaycastHit leftHit;
 RaycastHit rightHit;

 Vector3 lpos = leftFoot.TransformPoint(Vector3.zero);
 Vector3 rpos = rightFoot.TransformPoint(Vector3.zero);

 if (Physics.Raycast(lpos, -Vector3.up, out leftHit, 1))
 {
 leftFootPosition = leftHit.point;

Character Design

[89]

 leftFootRotation = Quaternion.FromToRotation(transform.up,
 leftHit.normal) * transform.rotation;
 }

 if (Physics.Raycast(rpos, -Vector3.up, out rightHit, 1))
 {
 rightFootPosition = rightHit.point;
 rightFootRotation = Quaternion.FromToRotation(transform.up,
 rightHit.normal) * transform.rotation;
 }
 }

 public bool Die = false;
 public void Died()
 {

 Debug.Log("I AM DEAD!");
 this.Die = true;
 }

 void OnAnimatorIK()
 {
 leftFootWeight = anim.GetFloat("LeftFoot");
 rightFootWeight = anim.GetFloat("RightFoot");

 anim.SetIKPositionWeight(AvatarIKGoal.LeftFoot, leftFootWeight);
 anim.SetIKPositionWeight(AvatarIKGoal.RightFoot, rightFootWeight);
 anim.SetIKPosition(AvatarIKGoal.LeftFoot, leftFootPosition +
 new Vector3(0f, offsetY, 0f));
 anim.SetIKPosition(AvatarIKGoal.RightFoot, rightFootPosition +
 new Vector3(0f, offsetY, 0f));

 anim.SetIKRotationWeight(AvatarIKGoal.LeftFoot, leftFootWeight);
 anim.SetIKRotationWeight(AvatarIKGoal.RightFoot, rightFootWeight);
 anim.SetIKRotation(AvatarIKGoal.LeftFoot, leftFootRotation);
 anim.SetIKRotation(AvatarIKGoal.RightFoot, rightFootRotation);

 }
}

This script is a bit involved. In order for the IK to work properly, we need important points
in space. One of these points is the position of the target in space that we want our foot to
move to, and the second point in space is the hint. These two points in space are used to
control the movement and translations of the skeleton for a particular joint to be made in
order to successfully complete the IK for the target position.

www.allitebooks.com

http://www.allitebooks.org

Character Design

[90]

The variables leftFootPosition and rightFootPosition are used to represent the
target position for the left and right foot during runtime. leftFootRotation and
rightFootRotation is used to store the rotation of the left and right foot.

We also need two variables to actually reference our left and right foot in the model. These
are done by the leftFoot and rightFoot variables.

Some of these variables are initialized in the Start() function. Specifically speaking, we
get a reference to the left and right foot from the Animator Controller bone structure
defined for humanoids.

In the Update() function, we use Physics.Raycast() to perform some raycasting to
determine the position of our left and right foot. This data is then used and stored in the
variables leftFootPosition and rightFootPosition variables with their equivalent
rotation data in the leftFootRotation and right FootRotation variables:

The actual IK Animation is applied in the OnAnimatorIK() function. The leftFootWight
and rightFootWeight variables are used to get the parameter values set for the LeftFoot
and RightFoot in the Animator Controller through the animation clip Curve function.

Character Design

[91]

The key here is to properly define the curve of the animation clip that will
be used to drive the weight of the IK. The preceding screenshot only
shows the curve of the idle state, both feet are on the ground, therefore the
value is set to 1. For your walking and running clips, your curve will be
different.

Finally, the SetIKPositionWeight() and SetIKPosition() functions are used to
properly adjust the position and rotation of the feet relative to the ground! Notice that this
is performed for each foot separately.

Attach the IKHandle.cs script to your character and do a test run. Notice the difference of
your character and the way it is interacting with the floor or the terrain you have set up.

Summary
We covered a lot of topics in this chapter. We discussed the different character definitions
we are going to be using for our game, looked at the base character class attributes that will
be shared by all of our characters, created the BaseCharacter class to be used later in the
game, discussed the primary states our character will have in the game and how to
implement them using the Animator Controller.

We looked at how to rig our character model to be prepared for the Mecanim system and
how to use the Mecanim system to create animation and state diagrams that will determine
how the character is behaving during game play. Then we implemented our initial
character controller script that handles the state of our character. This gave us the
opportunity to look at the Blend Trees and transition from one state to the next using
parameters. Looked at how to modify animation clips if there is a need for it.

Finally looked at Inverse Kinematics that will help our character behave more realistically
in the game environment.

By the end of the chapter you should have a good grasp of all of the different components
that are working together to make your character look, behave, and move in the game
environment.

In the next chapter we will be introducing non-character behaviors.

4
Player Character and Non-

Player Character Design
In Chapter 3, Character Design, we covered a wide range of topics to prepare your character
model for the game. We looked at how to import and set up our character model, created
the BaseCharacter class, used the Animator Controller to set up the state diagram and
created the initial character controller to handle the motion and behavior of our character
model and finally looked at some basic inverse kinematics for the foot.

In this chapter we will expand on the character player and also the non-character player.

Customizing the Player Character
Customizable parts (Model)
C# Code for customization
Preserving character state
Recap

Non-Player Characters (NPCs)
Non-Player character basics
Setting up the Non-Player Character
Navmesh setup
NPC Animator Controller
NPC attack
NPC AI

PC and NPC Interaction

Player Character and Non-Player Character Design

[93]

Customizing the Player Character
One of the key features of an RPG is to be able to customize your character player. In this
section we will take a look at how we can provide a means to achieve this.

Once again, the approach and concept are universal, but the actual
implementation might be a little different based on your model structure.

Create a new scene and name it CharacterCustomization. Create a Cube prefab and set
it to the origin. Change the Scale of the cube to <5, 0.1, 5>, you can also change the
name of the GameObject to Base. This will be the platform that our character model stands
on while the player customizes his/her character before game play.

Drag and drop the fbx file representing your character model into the Scene View. The
next few steps will entirely depend on your model hierarchy and structure as designed by
the modeler.

To illustrate the point, I have placed the same model in the scene twice. The one on the left
is the model that has been configured to display only the basics, the model on the right is
the model in its original state as shown in the following screenshot:

Player Character and Non-Player Character Design

[94]

Notice that this particular model I am using has everything attached. These include the
different types of weapons, shoes, helmets, and armour. The instantiated prefab on the left
hand side has turned off all of the extras from the GameObject's hierarchy. Here is how the
hierarchy looks in the Hierarchy View:

Player Character and Non-Player Character Design

[95]

The model has a very extensive hierarchy in its structure, the preceding screenshot is a
small snippet to demonstrate that you will need to navigate the structure and manually
identify and enable or disable the mesh representing a particular part of the model.

Customizable parts
Based on my model, I can customize a few things on my 3D model. I can customize the
shoulder pads, I can customize the body type, I can customize the weapons and armor it
has, I can customize the helmet and shoes, and finally I can also customize the skin texture
to give it different looks.

Let's get a listing of all the different customizable items we have for our character:

Shoulder Shields: there are four types
Body Type: there are three body types; skinny, buff, and chubby
Armor: knee pad, leg plate
Shields: there are two types of shields
Boots: there are two types of boots
Helmet: there are four types of helmets
Weapons: there are 13 different types of weapons
Skins: there are 13 different types of skins

User interface
Now that we know what our options are for customizing our player character, we can start
thinking about the User Interface (UI) that will be used to enable the customization of the
character.

To design our UI, we will need to create a Canvas GameObject, this is done by right-
clicking in the Hierarchy View and selecting Create|UI|Canvas. This will place a Canvas
GameObject and an EventSystem GameObject in the Hierarchy View.

It is assumed that you already know how to create a UI in Unity. If you do
not, please refer to Chapter 5, Introduction to Game Programming: Using C#
and Unity 3D.

Player Character and Non-Player Character Design

[96]

I am going to use a Panel to group the customizable items. For the moment I will be using
checkboxes for some items and scroll bars for the weapons and skin texture. The following
screenshot will illustrate how my UI for customization looks:

These UI elements will need to be integrated with Event Handlers that will perform the
necessary actions for enabling or disabling certain parts of the character model.

For instance, using the UI I can select Shoulder Pad 4, Buff Body Type, move the scroll bar
until the Hammer weapon shows up, selecting the second Helmet checkbox, selecting
Shield 1 and Boot 2, my character will look like the following screenshot:

Player Character and Non-Player Character Design

[97]

We need a way to refer to each one of the meshes representing the different types of
customizable objects on the model. This will be done through a C# script. The script will
need to keep track of all the parts we are going to be managing for customization.

Some models will not have the extra meshes attached. You can always
create empty GameObjects at a particular location on the model, and you
can dynamically instantiate the prefab representing your custom object at
the given point. This can also be done for our current model, for instance,
if we have a special space weapon that somehow gets dropped by the
aliens in the game world, we can attach the weapon to our model through
C# code. The important thing is to understand the concept, and the rest is
up to you!

Player Character and Non-Player Character Design

[98]

The Code for character customization
Things don't happen automatically. So we need to create some C# code that will handle the
customization of our character model. The script we create here will handle the UI events
that will drive the enabling and disabling of different parts of the model mesh.

Create a new C# script and call it CharacterCustomization.cs. This script will be
attached to the Base GameObject in the scene. Here is a listing of the script:

using UnityEngine;
using UnityEngine.UI;
using System.Collections;
using UnityEngine.SceneManagement;

public class CharacterCustomization : MonoBehaviour
{

 public GameObject PLAYER_CHARACTER;

 public Material[] PLAYER_SKIN;

 public GameObject CLOTH_01LOD0;
 public GameObject CLOTH_01LOD0_SKIN;
 public GameObject CLOTH_02LOD0;
 public GameObject CLOTH_02LOD0_SKIN;
 public GameObject CLOTH_03LOD0;
 public GameObject CLOTH_03LOD0_SKIN;
 public GameObject CLOTH_03LOD0_FAT;

 public GameObject BELT_LOD0;

 public GameObject SKN_LOD0;
 public GameObject FAT_LOD0;
 public GameObject RGL_LOD0;

 public GameObject HAIR_LOD0;

 public GameObject BOW_LOD0;

 // Head Equipment
 public GameObject GLADIATOR_01LOD0;
 public GameObject HELMET_01LOD0;
 public GameObject HELMET_02LOD0;
 public GameObject HELMET_03LOD0;
 public GameObject HELMET_04LOD0;

 // Shoulder Pad - Right Arm / Left Arm

Player Character and Non-Player Character Design

[99]

 public GameObject SHOULDER_PAD_R_01LOD0;
 public GameObject SHOULDER_PAD_R_02LOD0;
 public GameObject SHOULDER_PAD_R_03LOD0;
 public GameObject SHOULDER_PAD_R_04LOD0;

 public GameObject SHOULDER_PAD_L_01LOD0;
 public GameObject SHOULDER_PAD_L_02LOD0;
 public GameObject SHOULDER_PAD_L_03LOD0;
 public GameObject SHOULDER_PAD_L_04LOD0;

 // Fore Arm - Right / Left Plates
 public GameObject ARM_PLATE_R_1LOD0;
 public GameObject ARM_PLATE_R_2LOD0;

 public GameObject ARM_PLATE_L_1LOD0;
 public GameObject ARM_PLATE_L_2LOD0;

 // Player Character Weapons
 public GameObject AXE_01LOD0;
 public GameObject AXE_02LOD0;
 public GameObject CLUB_01LOD0;
 public GameObject CLUB_02LOD0;
 public GameObject FALCHION_LOD0;
 public GameObject GLADIUS_LOD0;
 public GameObject MACE_LOD0;
 public GameObject MAUL_LOD0;
 public GameObject SCIMITAR_LOD0;
 public GameObject SPEAR_LOD0;
 public GameObject SWORD_BASTARD_LOD0;
 public GameObject SWORD_BOARD_01LOD0;
 public GameObject SWORD_SHORT_LOD0;

 // Player Character Defense Weapons
 public GameObject SHIELD_01LOD0;
 public GameObject SHIELD_02LOD0;

 public GameObject QUIVER_LOD0;
 public GameObject BOW_01_LOD0;

 // Player Character Calf - Right / Left
 public GameObject KNEE_PAD_R_LOD0;
 public GameObject LEG_PLATE_R_LOD0;

 public GameObject KNEE_PAD_L_LOD0;
 public GameObject LEG_PLATE_L_LOD0;

 public GameObject BOOT_01LOD0;
 public GameObject BOOT_02LOD0;

Player Character and Non-Player Character Design

[100]

 // Use this for initialization
 void Start()
 {

 }

 public bool ROTATE_MODEL = false;
 // Update is called once per frame
 void Update()
 {
 if (Input.GetKeyUp(KeyCode.R))
 {
 this.ROTATE_MODEL = !this.ROTATE_MODEL;
 }

 if (this.ROTATE_MODEL)
 {
 this.PLAYER_CHARACTER.transform.Rotate(new Vector3(0, 1, 0), 33.0f
* Time.deltaTime);
 }

 if (Input.GetKeyUp(KeyCode.L))
 {

 Debug.Log(PlayerPrefs.GetString("NAME"));
 }

 }

 public void SetShoulderPad(Toggle id)
 {
 switch (id.name)
 {
 case "SP-01":
 {
 this.SHOULDER_PAD_R_01LOD0.SetActive(id.isOn);
 this.SHOULDER_PAD_R_02LOD0.SetActive(false);
 this.SHOULDER_PAD_R_03LOD0.SetActive(false);
 this.SHOULDER_PAD_R_04LOD0.SetActive(false);

 this.SHOULDER_PAD_L_01LOD0.SetActive(id.isOn);
 this.SHOULDER_PAD_L_02LOD0.SetActive(false);
 this.SHOULDER_PAD_L_03LOD0.SetActive(false);
 this.SHOULDER_PAD_L_04LOD0.SetActive(false);

 PlayerPrefs.SetInt("SP-01", 1);
 PlayerPrefs.SetInt("SP-02", 0);

Player Character and Non-Player Character Design

[101]

 PlayerPrefs.SetInt("SP-03", 0);
 PlayerPrefs.SetInt("SP-04", 0);
 break;
 }
 case "SP-02":
 {
 this.SHOULDER_PAD_R_01LOD0.SetActive(false);
 this.SHOULDER_PAD_R_02LOD0.SetActive(id.isOn);
 this.SHOULDER_PAD_R_03LOD0.SetActive(false);
 this.SHOULDER_PAD_R_04LOD0.SetActive(false);

 this.SHOULDER_PAD_L_01LOD0.SetActive(false);
 this.SHOULDER_PAD_L_02LOD0.SetActive(id.isOn);
 this.SHOULDER_PAD_L_03LOD0.SetActive(false);
 this.SHOULDER_PAD_L_04LOD0.SetActive(false);

 PlayerPrefs.SetInt("SP-01", 0);
 PlayerPrefs.SetInt("SP-02", 1);
 PlayerPrefs.SetInt("SP-03", 0);
 PlayerPrefs.SetInt("SP-04", 0);
 break;
 }
 case "SP-03":
 {
 this.SHOULDER_PAD_R_01LOD0.SetActive(false);
 this.SHOULDER_PAD_R_02LOD0.SetActive(false);
 this.SHOULDER_PAD_R_03LOD0.SetActive(id.isOn);
 this.SHOULDER_PAD_R_04LOD0.SetActive(false);

 this.SHOULDER_PAD_L_01LOD0.SetActive(false);
 this.SHOULDER_PAD_L_02LOD0.SetActive(false);
 this.SHOULDER_PAD_L_03LOD0.SetActive(id.isOn);
 this.SHOULDER_PAD_L_04LOD0.SetActive(false);

 PlayerPrefs.SetInt("SP-01", 0);
 PlayerPrefs.SetInt("SP-02", 0);
 PlayerPrefs.SetInt("SP-03", 1);
 PlayerPrefs.SetInt("SP-04", 0);
 break;
 }
 case "SP-04":
 {
 this.SHOULDER_PAD_R_01LOD0.SetActive(false);
 this.SHOULDER_PAD_R_02LOD0.SetActive(false);
 this.SHOULDER_PAD_R_03LOD0.SetActive(false);
 this.SHOULDER_PAD_R_04LOD0.SetActive(id.isOn);

 this.SHOULDER_PAD_L_01LOD0.SetActive(false);

Player Character and Non-Player Character Design

[102]

 this.SHOULDER_PAD_L_02LOD0.SetActive(false);
 this.SHOULDER_PAD_L_03LOD0.SetActive(false);
 this.SHOULDER_PAD_L_04LOD0.SetActive(id.isOn);

 PlayerPrefs.SetInt("SP-01", 0);
 PlayerPrefs.SetInt("SP-02", 0);
 PlayerPrefs.SetInt("SP-03", 0);
 PlayerPrefs.SetInt("SP-04", 1);

 break;
 }
 }
 }

 public void SetBodyType(Toggle id)
 {
 switch (id.name)
 {
 case "BT-01":
 {
 this.RGL_LOD0.SetActive(id.isOn);
 this.FAT_LOD0.SetActive(false);
 break;
 }
 case "BT-02":
 {
 this.RGL_LOD0.SetActive(false);
 this.FAT_LOD0.SetActive(id.isOn);
 break;
 }
 }
 }

 public void SetKneePad(Toggle id)
 {
 this.KNEE_PAD_R_LOD0.SetActive(id.isOn);
 this.KNEE_PAD_L_LOD0.SetActive(id.isOn);
 }

 public void SetLegPlate(Toggle id)
 {
 this.LEG_PLATE_R_LOD0.SetActive(id.isOn);
 this.LEG_PLATE_L_LOD0.SetActive(id.isOn);
 }

 public void SetWeaponType(Slider id)
 {
 switch (System.Convert.ToInt32(id.value))

Player Character and Non-Player Character Design

[103]

 {
 case 0:
 {
 this.AXE_01LOD0.SetActive(false);
 this.AXE_02LOD0.SetActive(false);
 this.CLUB_01LOD0.SetActive(false);
 this.CLUB_02LOD0.SetActive(false);
 this.FALCHION_LOD0.SetActive(false);
 this.GLADIUS_LOD0.SetActive(false);
 this.MACE_LOD0.SetActive(false);
 this.MAUL_LOD0.SetActive(false);
 this.SCIMITAR_LOD0.SetActive(false);
 this.SPEAR_LOD0.SetActive(false);
 this.SWORD_BASTARD_LOD0.SetActive(false);
 this.SWORD_BOARD_01LOD0.SetActive(false);
 this.SWORD_SHORT_LOD0.SetActive(false);
 break;
 }
 case 1:
 {
 this.AXE_01LOD0.SetActive(true);
 this.AXE_02LOD0.SetActive(false);
 this.CLUB_01LOD0.SetActive(false);
 this.CLUB_02LOD0.SetActive(false);
 this.FALCHION_LOD0.SetActive(false);
 this.GLADIUS_LOD0.SetActive(false);
 this.MACE_LOD0.SetActive(false);
 this.MAUL_LOD0.SetActive(false);
 this.SCIMITAR_LOD0.SetActive(false);
 this.SPEAR_LOD0.SetActive(false);
 this.SWORD_BASTARD_LOD0.SetActive(false);
 this.SWORD_BOARD_01LOD0.SetActive(false);
 this.SWORD_SHORT_LOD0.SetActive(false);
 break;
 }
 case 2:
 {
 this.AXE_01LOD0.SetActive(false);
 this.AXE_02LOD0.SetActive(true);
 this.CLUB_01LOD0.SetActive(false);
 this.CLUB_02LOD0.SetActive(false);
 this.FALCHION_LOD0.SetActive(false);
 this.GLADIUS_LOD0.SetActive(false);
 this.MACE_LOD0.SetActive(false);
 this.MAUL_LOD0.SetActive(false);
 this.SCIMITAR_LOD0.SetActive(false);
 this.SPEAR_LOD0.SetActive(false);
 this.SWORD_BASTARD_LOD0.SetActive(false);

Player Character and Non-Player Character Design

[104]

 this.SWORD_BOARD_01LOD0.SetActive(false);
 this.SWORD_SHORT_LOD0.SetActive(false);
 break;
 }
 case 3:
 {
 this.AXE_01LOD0.SetActive(false);
 this.AXE_02LOD0.SetActive(false);
 this.CLUB_01LOD0.SetActive(true);
 this.CLUB_02LOD0.SetActive(false);
 this.FALCHION_LOD0.SetActive(false);
 this.GLADIUS_LOD0.SetActive(false);
 this.MACE_LOD0.SetActive(false);
 this.MAUL_LOD0.SetActive(false);
 this.SCIMITAR_LOD0.SetActive(false);
 this.SPEAR_LOD0.SetActive(false);
 this.SWORD_BASTARD_LOD0.SetActive(false);
 this.SWORD_BOARD_01LOD0.SetActive(false);
 this.SWORD_SHORT_LOD0.SetActive(false);
 break;
 }
 case 4:
 {
 this.AXE_01LOD0.SetActive(false);
 this.AXE_02LOD0.SetActive(false);
 this.CLUB_01LOD0.SetActive(false);
 this.CLUB_02LOD0.SetActive(true);
 this.FALCHION_LOD0.SetActive(false);
 this.GLADIUS_LOD0.SetActive(false);
 this.MACE_LOD0.SetActive(false);
 this.MAUL_LOD0.SetActive(false);
 this.SCIMITAR_LOD0.SetActive(false);
 this.SPEAR_LOD0.SetActive(false);
 this.SWORD_BASTARD_LOD0.SetActive(false);
 this.SWORD_BOARD_01LOD0.SetActive(false);
 this.SWORD_SHORT_LOD0.SetActive(false);
 break;
 }
 case 5:
 {
 this.AXE_01LOD0.SetActive(false);
 this.AXE_02LOD0.SetActive(false);
 this.CLUB_01LOD0.SetActive(false);
 this.CLUB_02LOD0.SetActive(false);
 this.FALCHION_LOD0.SetActive(true);
 this.GLADIUS_LOD0.SetActive(false);
 this.MACE_LOD0.SetActive(false);
 this.MAUL_LOD0.SetActive(false);

Player Character and Non-Player Character Design

[105]

 this.SCIMITAR_LOD0.SetActive(false);
 this.SPEAR_LOD0.SetActive(false);
 this.SWORD_BASTARD_LOD0.SetActive(false);
 this.SWORD_BOARD_01LOD0.SetActive(false);
 this.SWORD_SHORT_LOD0.SetActive(false);
 break;
 }
 case 6:
 {
 this.AXE_01LOD0.SetActive(false);
 this.AXE_02LOD0.SetActive(false);
 this.CLUB_01LOD0.SetActive(false);
 this.CLUB_02LOD0.SetActive(false);
 this.FALCHION_LOD0.SetActive(false);
 this.GLADIUS_LOD0.SetActive(true);
 this.MACE_LOD0.SetActive(false);
 this.MAUL_LOD0.SetActive(false);
 this.SCIMITAR_LOD0.SetActive(false);
 this.SPEAR_LOD0.SetActive(false);
 this.SWORD_BASTARD_LOD0.SetActive(false);
 this.SWORD_BOARD_01LOD0.SetActive(false);
 this.SWORD_SHORT_LOD0.SetActive(false);
 break;
 }
 case 7:
 {
 this.AXE_01LOD0.SetActive(false);
 this.AXE_02LOD0.SetActive(false);
 this.CLUB_01LOD0.SetActive(false);
 this.CLUB_02LOD0.SetActive(false);
 this.FALCHION_LOD0.SetActive(false);
 this.GLADIUS_LOD0.SetActive(false);
 this.MACE_LOD0.SetActive(true);
 this.MAUL_LOD0.SetActive(false);
 this.SCIMITAR_LOD0.SetActive(false);
 this.SPEAR_LOD0.SetActive(false);
 this.SWORD_BASTARD_LOD0.SetActive(false);
 this.SWORD_BOARD_01LOD0.SetActive(false);
 this.SWORD_SHORT_LOD0.SetActive(false);
 break;
 }
 case 8:
 {
 this.AXE_01LOD0.SetActive(false);
 this.AXE_02LOD0.SetActive(false);
 this.CLUB_01LOD0.SetActive(false);
 this.CLUB_02LOD0.SetActive(false);
 this.FALCHION_LOD0.SetActive(false);

Player Character and Non-Player Character Design

[106]

 this.GLADIUS_LOD0.SetActive(false);
 this.MACE_LOD0.SetActive(false);
 this.MAUL_LOD0.SetActive(true);
 this.SCIMITAR_LOD0.SetActive(false);
 this.SPEAR_LOD0.SetActive(false);
 this.SWORD_BASTARD_LOD0.SetActive(false);
 this.SWORD_BOARD_01LOD0.SetActive(false);
 this.SWORD_SHORT_LOD0.SetActive(false);
 break;
 }
 case 9:
 {
 this.AXE_01LOD0.SetActive(false);
 this.AXE_02LOD0.SetActive(false);
 this.CLUB_01LOD0.SetActive(false);
 this.CLUB_02LOD0.SetActive(false);
 this.FALCHION_LOD0.SetActive(false);
 this.GLADIUS_LOD0.SetActive(false);
 this.MACE_LOD0.SetActive(false);
 this.MAUL_LOD0.SetActive(false);
 this.SCIMITAR_LOD0.SetActive(true);
 this.SPEAR_LOD0.SetActive(false);
 this.SWORD_BASTARD_LOD0.SetActive(false);
 this.SWORD_BOARD_01LOD0.SetActive(false);
 this.SWORD_SHORT_LOD0.SetActive(false);
 break;
 }
 case 10:
 {
 this.AXE_01LOD0.SetActive(false);
 this.AXE_02LOD0.SetActive(false);
 this.CLUB_01LOD0.SetActive(false);
 this.CLUB_02LOD0.SetActive(false);
 this.FALCHION_LOD0.SetActive(false);
 this.GLADIUS_LOD0.SetActive(false);
 this.MACE_LOD0.SetActive(false);
 this.MAUL_LOD0.SetActive(false);
 this.SCIMITAR_LOD0.SetActive(false);
 this.SPEAR_LOD0.SetActive(true);
 this.SWORD_BASTARD_LOD0.SetActive(false);
 this.SWORD_BOARD_01LOD0.SetActive(false);
 this.SWORD_SHORT_LOD0.SetActive(false);
 break;
 }
 case 11:
 {
 this.AXE_01LOD0.SetActive(false);
 this.AXE_02LOD0.SetActive(false);

Player Character and Non-Player Character Design

[107]

 this.CLUB_01LOD0.SetActive(false);
 this.CLUB_02LOD0.SetActive(false);
 this.FALCHION_LOD0.SetActive(false);
 this.GLADIUS_LOD0.SetActive(false);
 this.MACE_LOD0.SetActive(false);
 this.MAUL_LOD0.SetActive(false);
 this.SCIMITAR_LOD0.SetActive(false);
 this.SPEAR_LOD0.SetActive(false);
 this.SWORD_BASTARD_LOD0.SetActive(true);
 this.SWORD_BOARD_01LOD0.SetActive(false);
 this.SWORD_SHORT_LOD0.SetActive(false);
 break;
 }
 case 12:
 {
 this.AXE_01LOD0.SetActive(false);
 this.AXE_02LOD0.SetActive(false);
 this.CLUB_01LOD0.SetActive(false);
 this.CLUB_02LOD0.SetActive(false);
 this.FALCHION_LOD0.SetActive(false);
 this.GLADIUS_LOD0.SetActive(false);
 this.MACE_LOD0.SetActive(false);
 this.MAUL_LOD0.SetActive(false);
 this.SCIMITAR_LOD0.SetActive(false);
 this.SPEAR_LOD0.SetActive(false);
 this.SWORD_BASTARD_LOD0.SetActive(false);
 this.SWORD_BOARD_01LOD0.SetActive(true);
 this.SWORD_SHORT_LOD0.SetActive(false);
 break;
 }
 case 13:
 {
 this.AXE_01LOD0.SetActive(false);
 this.AXE_02LOD0.SetActive(false);
 this.CLUB_01LOD0.SetActive(false);
 this.CLUB_02LOD0.SetActive(false);
 this.FALCHION_LOD0.SetActive(false);
 this.GLADIUS_LOD0.SetActive(false);
 this.MACE_LOD0.SetActive(false);
 this.MAUL_LOD0.SetActive(false);
 this.SCIMITAR_LOD0.SetActive(false);
 this.SPEAR_LOD0.SetActive(false);
 this.SWORD_BASTARD_LOD0.SetActive(false);
 this.SWORD_BOARD_01LOD0.SetActive(false);
 this.SWORD_SHORT_LOD0.SetActive(true);
 break;
 }

Player Character and Non-Player Character Design

[108]

 }
 }

 public void SetHelmetType(Toggle id)
 {
 switch (id.name)
 {
 case "HL-01":
 {
 this.HELMET_01LOD0.SetActive(id.isOn);
 this.HELMET_02LOD0.SetActive(false);
 this.HELMET_03LOD0.SetActive(false);
 this.HELMET_04LOD0.SetActive(false);
 break;
 }
 case "HL-02":
 {
 this.HELMET_01LOD0.SetActive(false);
 this.HELMET_02LOD0.SetActive(id.isOn);
 this.HELMET_03LOD0.SetActive(false);
 this.HELMET_04LOD0.SetActive(false);
 break;
 }
 case "HL-03":
 {
 this.HELMET_01LOD0.SetActive(false);
 this.HELMET_02LOD0.SetActive(false);
 this.HELMET_03LOD0.SetActive(id.isOn);
 this.HELMET_04LOD0.SetActive(false);
 break;
 }
 case "HL-04":
 {
 this.HELMET_01LOD0.SetActive(false);
 this.HELMET_02LOD0.SetActive(false);
 this.HELMET_03LOD0.SetActive(false);
 this.HELMET_04LOD0.SetActive(id.isOn);
 break;
 }
 }
 }

 public void SetShieldType(Toggle id)
 {
 switch (id.name)
 {
 case "SL-01":
 {

Player Character and Non-Player Character Design

[109]

 this.SHIELD_01LOD0.SetActive(id.isOn);
 this.SHIELD_02LOD0.SetActive(false);
 break;
 }
 case "SL-02":
 {
 this.SHIELD_01LOD0.SetActive(false);
 this.SHIELD_02LOD0.SetActive(id.isOn);
 break;
 }
 }
 }

 public void SetSkinType(Slider id)
 {
 this.SKN_LOD0.GetComponent<Renderer>().material =
this.PLAYER_SKIN[System.Convert.ToInt32(id.value)];
 this.FAT_LOD0.GetComponent<Renderer>().material =
this.PLAYER_SKIN[System.Convert.ToInt32(id.value)];
 this.RGL_LOD0.GetComponent<Renderer>().material =
this.PLAYER_SKIN[System.Convert.ToInt32(id.value)];
 }

 public void SetBootType(Toggle id)
 {
 switch (id.name)
 {
 case "BT-01":
 {
 this.BOOT_01LOD0.SetActive(id.isOn);
 this.BOOT_02LOD0.SetActive(false);
 break;
 }
 case "BT-02":
 {
 this.BOOT_01LOD0.SetActive(false);
 this.BOOT_02LOD0.SetActive(id.isOn);
 break;
 }
 }
 }
}

Player Character and Non-Player Character Design

[110]

This is a long script but it is straightforward. At the top of the script we have defined all of
the variables that will be referencing the different meshes in our model character. All
variables are of type GameObject with the exception of the PLAYER_SKIN variable which is
an array of Material data type. The array is used to store the different types of texture
created for the character model.

There are a few functions defined that are called by the UI event handler. These functions
are: SetShoulderPad(Toggle id); SetBodyType(Toggle id); SetKneePad(Toggle
id); SetLegPlate(Toggle id); SetWeaponType(Slider id);
SetHelmetType(Toggle id); SetShieldType(Toggle id); SetSkinType(Slider

id);

All of the functions take a parameter that identifies which specific type is should enable or
disable.

A BIG NOTE HERE!

You can also use the system we just built to create all of the different variations of your
Non-Character Player models and store them as prefabs! Wow! This will save you so much
time and effort in creating your characters representing different barbarians!!!

Preserving our character state
Now that we have spent the time to customize our character, we need to preserve our
character and use it in our game. In Unity, there is a function called
DontDestroyOnLoad(). This is a great function that can be utilized at this time. What does
it do? It keeps the specified GameObject in memory going from one scene to the next. We
can use these mechanisms for now, eventually though, you will want to create a system that
can save and load your user data.

Go ahead and create a new C# script and call it DoNotDestroy.cs. This script is going to
be very simple. Here is the listing:

using UnityEngine;
using System.Collections;

public class DoNotDestroy : MonoBehaviour
{

 // Use this for initialization
 void Start()
 {
 DontDestroyOnLoad(this);
 }

Player Character and Non-Player Character Design

[111]

 // Update is called once per frame
 void Update()
 {

 }
}

After you create the script go ahead and attach it to your character model prefab in the
scene. Not bad, let's do a quick recap of what we have done so far.

Recap
By now you should have three scenes that are functional. We have our scene that represents
the main menu, we have our scene that represents our initial level, and we just created a
scene that is used for character customization. Here is the flow of our game thus far:

We start the game, see the main menu, select the Start Game button to enter the character
customization scene, do our customization, and when we click the Save button we load
level 1.

For this to work, we have created the following C# scripts:

GameMaster.cs: used as the main script to keep track of our game state
CharacterCustomization.cs: used exclusively for customizing our character
DoNotDestroy.cs: used to save the state of a given object
CharacterController.cs: used to control the motion of our character
IKHandle.cs: used to implement inverse kinematics for the foot

When you combine all of this together you now have a good framework and flow that can
be extended and improved as we go along.

Player Character and Non-Player Character Design

[112]

Non-Player Characters
So far we have concentrated on the player character, in this section we will start thinking
about our non-player characters. Let's start with our Barbarians. We can use our Character
Customization scene to quickly create a few prefabs that will represent our unique
Barbarians.

Using the tools we have just developed, you can make your adjustments, and when
satisfied with your model, drag and drop the GameObject representing your character-
player into the Prefabs folder. This will create a copy of the instance of the GameObject as
you see it and save it into a prefab. The following screenshot will demonstrate the two
characters I have created and stored as a prefab:

Player Character and Non-Player Character Design

[113]

What I have shown you, if done properly, could save you hours of tedious work of
manually going down the model structure and individually enabling and disabling the
different meshes. In other words, we not only create a scene that allows us to customize our
in-game player character, we have also created a tool that can help us customize our own
character models quickly for use in the game!

Another point to emphasize here is the power of prefabs. Think of a prefab as a storage
object that can be used to save the state of a given GameObject and used over and over
again within your game environment. When you update your prefab, all instances of the
prefab will automatically get updated!!! This is great, but at the same time you have to be
careful not to break anything for the same reason. When you update code logic on a script
that is attached to a prefab, all instances of the prefab will use the updated script, so a bit of
planning on your part can save a lot of time and headache in the long run.

Non-Player Character basics
We are going to be using the newly created prefabs to implement our non-player characters.
Since there are some similarities in the character models, we can re-use some of the assets
we have created so far.

For instance, all characters will be inheriting the BaseCharacter class defined in Chapter
3, Character Design. They will also incorporate the same states we have already created for
the player character and extend a few more states specifically for the NPC, for instance
searching and seeking.

We have used our character customization tool to create and save our non-player character,
hence we are OK with the modelling part. What we need to concentrate on is the motion of
our non-player characters! We would need to create a new Animator Controller that will
handle the states of our NPCs.

Setting up the Non-Player Character
One of the main difficulties for implementing a NPC is the ability to give it realistic
intelligence. This can be achieved easily by identifying and implementing several key areas
for our NPCs.

There are a few new components we would need to attach to our NPCs. Using the prefab
we have saved, we will need to add the following components:

New Sphere Collider, this will be used to implement the range of sight for our
NPC.

Player Character and Non-Player Character Design

[114]

We already have an Animator component attached, but we will need to create a
new Animator Controller to capture new states for the NPC.
We would also need to add a Nav Mesh Agent component. We are going to use
the built-in navigation and pathfinding system for our NPC.

To add the Sphere Collider, you will need to select the prefab defined for the NCP, and
in the Inspector Window, select Add Component | Physics | Sphere Collider. This will
attach a Sphere Collider to our prefab.

Next we need to add the Nav Mesh Agent, again from the Inspector Window, select Add
Component | Navigation | Nav Mesh Agent. Ok so now we have set up our main built-in
components that are going to be used for the NPC.

Since, our prefab is an instance of our player character, we will need to remove some of the
script components that have been carried over. If your NPC prefab contains any scripts
attached to it, go ahead and remove them now.

Make sure you also change the Tag property to Untagged, if you have not
done so already.

The following screenshot will illustrate the components that we have so far on the NPC.
This will include both the existing components, including the scripts we have brought over
from the player character, and the newly added components that will be used for the NPC.

Player Character and Non-Player Character Design

[115]

The next step is to set up our Navmesh. To create a Navmesh, we need to get into the
Navigation Window, to do so, select Window | Navigation.

In order for the navmesh to work properly, we will need to mark all GameObjects in the
scene as Navigation Static. This will create a navmesh based on the static objects in the
scene, that is, GameObjects that are not going to be moving throughout the lifespan of the
scene.

Player Character and Non-Player Character Design

[116]

In your active scene, select the GameObjects that are going to be set as Navigation Static as
shown in the preceding screenshot (1) and use the Static drop-down menu as shown in (2)
and select the Navigation Static option as in (3). If your GameObject is a parent
GameObject with children, Unity will ask if you want to apply the property change to all
children.

Notice that I have placed all of my environment GameObjects under a
GameObject called Environment. This way if I have many static objects, I
can apply the property change to the parent and the children will
automatically inherit the change as well. But make sure, everything in the
group will be static!

Once this is complete, we need to go back to the Navigation Window and make some
adjustments. In the Navigation tab, select Terrains and make sure it is set to Navigation
Static, and the Navigation Area is set to Walkable.

Player Character and Non-Player Character Design

[117]

In the Bake tab, change the Agent Radius to 0.3 and Agent Height to 1. This will give the
NPC more freedom to pass through tight corners.

When you are ready, you can select the Bake button at the bottom of the
NavigationWindow.

Unity will take some time to generate the Navmesh for your scene. This will depend on the
complexity of your level. If all is done correctly, you will see something similar to the
following screenshot displaying your Navmesh:

Player Character and Non-Player Character Design

[118]

The blue areas you see are all the regions that the NPC can actually navigate to.

Player Character and Non-Player Character Design

[119]

NPC Animator Controller
We now need to create the Animator Controller (AC) for our NPC. The Animator Controller
will use input from the MeshAgent to control and change the state of our NPC. We also
need to define a few parameters for our NPC AC. These are going to be:

AngularSpeed: will be used for directional movement
Speed: will be used to determine how fast the NPC will be moving
Attack: will be used to determine if it needs to attack
AttackWeight: used to determine damage of the attack
PlayerInSight: will be used to determine if the PC is in sight

Go ahead and create a new Animator Controller in your project and name it
NPC_Animator_Controller. Open the AnimatorWindow. Create a new Blend Tree by
right-clicking in the Animator Window and selecting Create State | From New Blend Tree.
Change the name to NPC_Locomotion. Double-click it so that you can edit the blend tree.
Change the node name to NPC_Locomotion as well. From the Inspector Window, change
the Blend Type to 2D Freeform Cartesian.

Player Character and Non-Player Character Design

[120]

The x-axis will be represented by the AngularSpeed, and the y-axis will be represented by
the Speed parameters.

The Blend Tree is going to hold all of the different locomotion animation states. These are
going to be the idle, walking and running states.

I have set up 11 different animation states for the locomotion of my NPC. The following
screenshot will give you an overview of the Blend Tree.

Player Character and Non-Player Character Design

[121]

Once you include all of the animations states in the Blend Tree, you will need to compute
the positions of your animations, an easy way to do this, is to select the Compute Positions
drop-down menu and select the AngularSpeed and Speed. This will place the animation
position based on the root motion as illustrated in the following screenshot

You can use your mouse to drag the red point on the diagram to preview
your animation states in action.

NPC attack
In order to implement our attack mode, we will need to create a new layer in the Animator
Controller. Go ahead and create a new layer and call it NPC_Attack. This layer will be
responsible for animating our character when we enter attack mode.

Player Character and Non-Player Character Design

[122]

We need to create a new Mask for the layer. The mask will be used to determine which
parts of the humanoid body will be affected by the layer animation. To create a Mask, right-
click in your Project Window and select Create | Avatar Mask. Name the new mask,
NPC_Attack. Use the Inspector Window to disable the body parts that we don't want to be
affected by the layer animation. See following screenshot:

Player Character and Non-Player Character Design

[123]

Your layer setup should look like the following screenshot:

Make sure you change the Weight property to 1, the Mask property assigned to the Avatar
Mask we created, and also that the IK property is checked. Now we are ready to create our
attack state machine.

Right-click in the Animator Window and select Create State | Empty. Drag and drop your
attack animation(s). The empty state is used to have a nice transition between the main
layer and back.

After you have dropped your attack animation(s) into the Animator, you will need to
connect them using the transition conditions. I have added three more parameters to the
parameter list named: Attack1, Attack2 and Attack3. These parameters in connection with
the Attack parameter will determine which attack state our NPC will transition to.

Player Character and Non-Player Character Design

[124]

The following screenshot shows the NPC_Attack layer as configured up-to this point.

Finally, you want to assign the new NPC_Animator_Controller to the NPC prefab(s).

NPC AI
Now it is time to give some intelligence to our NPCs. One of the scripts we will need to
create is the ability for the NPC to detect the player. This script will be called
NPC_Sight.cs. The script will be used to detect if the player is in sight, calculate the field
of view for the NPC, and calculate the path from the NPC to the player character.

Here is a listing of the source code:

using UnityEngine;
using System.Collections;

Player Character and Non-Player Character Design

[125]

public class NPC_Movement : MonoBehaviour
{
 // reference to the animator
 public Animator animator;

 // these variables are used for the speed
 // horizontal and vertical movement of the NPC
 public float speed = 0.0f;
 public float h = 0.0f;
 public float v = 0.0f;

 public bool attack1 = false; // used for attack mode 1
 public bool attack2 = false; // used for attack mode 2
 public bool attack3 = false; // used for attack mode 3

 public bool jump = false; // used for jumping
 public bool die = false; // are we alive?

 // used for debugging
 public bool DEBUG = false;
 public bool DEBUG_DRAW = false;

 // Reference to the NavMeshAgent component.
 private NavMeshAgent nav;
 // Reference to the sphere collider trigger component.
 private SphereCollider col;

 // where is the player character in relation to NPC
 public Vector3 direction;
 // how far away is the player character from NPC
 public float distance = 0.0f;
 // what is the angle between the PC and NPC
 public float angle = 0.0f;
 // a reference to the player character
 public GameObject player;
 // is the PC in sight?
 public bool playerInSight;

 // what is the field of view for our NPC?
 // currently set to 110 degrees
 public float fieldOfViewAngle = 110.0f;

 // calculate the angle between PC and NPC
 public float calculatedAngle;

 void Awake()
 {
 // get reference to the animator component

Player Character and Non-Player Character Design

[126]

 this.animator = GetComponent<Animator>() as Animator;

 // get reference to nav mesh agent
 this.nav = GetComponent<NavMeshAgent>() as NavMeshAgent;

 // get reference to the sphere collider
 this.col = GetComponent<SphereCollider>() as SphereCollider;

 // get reference to the player
 player = GameObject.FindGameObjectWithTag("Player") as GameObject;

 // we don't see the player by default
 this.playerInSight = false;
 }

 // Use this for initialization
 void Start()
 {
 }

 void Update()
 {
 // if player is in sight let's lerp towards the player
 if (playerInSight)
 {
 this.transform.rotation =
 Quaternion.Slerp(this.transform.rotation,
 Quaternion.LookRotation(direction), 0.1f);
 }
 }

 // let's update our scene using fixed update
 void FixedUpdate()
 {
 h = angle; // assign horizontal axis
 v = distance; // assign vertical axis

 // calculate speed based on distance and delta time
 speed = distance / Time.deltaTime;

 if (DEBUG)
 Debug.Log(string.Format("H:{0} - V:{1} - Speed:{2}", h, v,
speed));

 // set the parameters defined in the animator controller
 animator.SetFloat("Speed", speed);
 animator.SetFloat("AngularSpeed", v);
 animator.SetBool("Attack", attack1);

Player Character and Non-Player Character Design

[127]

 animator.SetBool("Attack1", attack1);
 }

 // if the PC is in our collider, we want to examine the location of the
player
 // calculate the direction based on our position and the player's
position
 // use the DOT product to get the angle between the two vectors
 // calculate the angle between the NPC forward vector and the PC
 // if it falls within the field of view, we have the player in in sight
 // if the player is in sight, we will set the nav agent desitation
 // if we are within a certain distance from the PC, the NPC has the
ability to attack
 void OnTriggerStay(Collider other)
 {
 if (other.transform.tag.Equals("Player"))
 {
 // Create a vector from the enemy to the player and store the
angle between it and forward.
 direction = other.transform.position - transform.position;

 distance = Vector3.Distance(other.transform.position,
transform.position) - 1.0f;

 float DotResult = Vector3.Dot(transform.forward,
player.transform.position);
 angle = DotResult;

 if (DEBUG_DRAW)
 {
 Debug.DrawLine(transform.position + Vector3.up, direction *
50, Color.gray);
 Debug.DrawLine(other.transform.position,
transform.position, Color.cyan);
 }

 this.playerInSight = false;

 this.calculatedAngle = Vector3.Angle(direction,
transform.forward);

 if (calculatedAngle < fieldOfViewAngle * 0.5f)
 {
 RaycastHit hit;

 if (DEBUG_DRAW)
 Debug.DrawRay(transform.position + transform.up,
direction.normalized, Color.magenta);

Player Character and Non-Player Character Design

[128]

 // ... and if a raycast towards the player hits
something...
 if (Physics.Raycast(transform.position + transform.up,
direction.normalized, out hit, col.radius))
 {
 // ... and if the raycast hits the player...
 if (hit.collider.gameObject == player)
 {
 // ... the player is in sight.
 this.playerInSight = true;

 if (DEBUG)
 Debug.Log("PlayerInSight: " + playerInSight);
 }
 }
 }

 if (this.playerInSight)
 {
 this.nav.SetDestination(other.transform.position);
 this.CalculatePathLength(other.transform.position);

 if (distance < 1.1f)
 {
 this.attack1 = true;
 }
 else
 {
 this.attack1 = false;
 }
 }
 }
 }

 void OnTriggerExit(Collider other)
 {
 if (other.transform.tag.Equals("Player"))
 {
 distance = 0.0f;
 angle = 0.0f;
 this.attack1 = false;
 this.playerInSight = false;
 }
 }

 // this is a helper function at this point
 // in the future we will use it to calculate distance around the
corners

Player Character and Non-Player Character Design

[129]

 // it currently is also used to draw the path of the nav mesh agent in
the
 // editor
 float CalculatePathLength(Vector3 targetPosition)
 {
 // Create a path and set it based on a target position.
 NavMeshPath path = new NavMeshPath();
 if (nav.enabled)
 nav.CalculatePath(targetPosition, path);

 // Create an array of points which is the length of the number of
corners in the path + 2.
 Vector3[] allWayPoints = new Vector3[path.corners.Length + 2];

 // The first point is the enemy's position.
 allWayPoints[0] = transform.position;

 // The last point is the target position.
 allWayPoints[allWayPoints.Length - 1] = targetPosition;

 // The points in between are the corners of the path.
 for (int i = 0; i < path.corners.Length; i++)
 {
 allWayPoints[i + 1] = path.corners[i];
 }

 // Create a float to store the path length that is by default 0.
 float pathLength = 0;

 // Increment the path length by an amount equal to the distance
between each waypoint and the next.
 for (int i = 0; i < allWayPoints.Length - 1; i++)
 {
 pathLength += Vector3.Distance(allWayPoints[i], allWayPoints[i
+ 1]);

 if (DEBUG_DRAW)
 Debug.DrawLine(allWayPoints[i], allWayPoints[i + 1],
Color.red);
 }

 return pathLength;
 }
}

Player Character and Non-Player Character Design

[130]

Ok, so let's actually take a look and see what this code is trying to do. In the Awake()
function we are initializing our variables that will be used in the script. We have a reference
to the NavMeshAgent, the SphereCollider and the Animator components attached to the
NPC, these are stored in the nav, col and anim variables respectively.

We also need to get a reference to the player and the player animator component. This is
done through the player variable. We are also setting the playerInSight variable to false
by default.

The Update() function is not performing anything major at this point, it is just checking to
see if the player character is in sight, and if so, it makes sure that the NPC is orienting itself
to look at the player.

Most of the meat of our code is in the OnTriggerStay() function. The first thing we need
to do is make sure the object that has entered our collider is the player object. This is done
by checking the tag attribute on the other collider.

If the player is within our collider, then we go ahead and calculate the direction, the
distance and the angle of the player relative to the NPC. This is done with the following
lines:

direction = other.transform.position - transform.position;

distance = Vector3.Distance(other.transform.position, transform.position) -
1.0f;

float DotResult = Vector3.Dot(transform.forward,player.transform.position);

angle = DotResult;

Player Character and Non-Player Character Design

[131]

Then, if the angle is smaller than the fieldOfViewAngle variable we can use ray casting to
determine if we can hit the player. If that is the case, the player is in NPC's sight.

There is one more critical calculation the NPC needs to perform. That is how to get to the
player once it is in range! Once we have established that the player is in range and that we
are facing the player, we need to make the NPC find its way to the player. This is where the
NavMesh and the NavMeshAgent come into play.

The CalculatePathLength() is a function that takes the position of the player and using
the mesh data, calculates the best path to navigate from the NPC's location to the player's
location.

Player Character and Non-Player Character Design

[132]

However, there's one more additional calculation we are performing, and that is, we are
calculating the length of the path between the two points. This length calculation will be
used in the future to perform the following:

If the length of the path is larger than a threshold we have set, then we won't make the NPC
attack, if it is, then we can make the NPC move towards the player to engage in battle.

In the last function OnTriggerExit(), we set the playerInSight variable to false. This
will stop the NPC from pursuing the player.

The preceding screenshot illustrates the path between the NPC and the Player based on
real-time calculation.

Player Character and Non-Player Character Design

[133]

Go ahead and attach the script to the NPC prefab if you have not done so already, and run
the application to test it out. If all things are good, then you will be able to move the player
character around the level, and once the player character enters the NPC's field of view, the
NPC will start moving toward the player, and when close enough it will attack.

At this point your NPC should have the following components attached to its prefab:

Animator
Rigidbody
Capsule and Sphere Colliders
Nav Mesh Agent
NPC_Movement script

We have covered a lot of information. I would encourage you to take the time to read
through it one more time and understand the concepts before moving forward.

PC and NPC interaction
Thus far we have created the basic movement for both our PC and NPC. The next item I
would like to complete is the attack mechanism for the PC and the NPC characters. Let's
start by implementing the hit for the NPC.

Our NPC detects the player character based on the code we just created in the previous
section. When the player character is in sight, the NPC will find the shortest path to the
player character, and at a given range, it will attack the player character. So we have the
movement and animation mechanics completed. The next objective is to keep track of the
hit points when the NPC is attacking.

Player Character and Non-Player Character Design

[134]

There are a few adjustments we need to make in the NPC_Animator_Controller. Open, the
AnimatorWindow, and select the NPC_Attack layer.

Double-click on the attack1 state, or the attack state you have defined in your state machine.
This will open the related animation in the Inspector Window.

In the Inspector Window, scroll down to the Curves section. We are going to create a new
curve by selecting the (+) sign under the Curves section. We are also going to create a new
parameter called Attack1C to represent the value of the curve, this parameter should be of
type float.

Player Character and Non-Player Character Design

[135]

The curve displayed in the preceding screenshot, will be based on your animation.

In the preceding screenshot, I have marked the important parts of the interface you will
need to work with to configure the curve of an animation. The first step would be to actual
preview your animation and get a feeling for it. The next step for my particular animation
sequence, was determining when the right arm of the model starts moving along and I set a
marker in the curve. I make another marker a bit more into the animation where the right
arm has crossed a good deal from the right side to the left side. These markers will indicate
a hit point during the animation when the NPC is in attack mode.

Player Character and Non-Player Character Design

[136]

Ok, so why do we do this? Simple. This will help us only generate a hit based on the curve
of the animation. This way we don't hit the player and reduce the health of the player while
the weapon is away from the player's body.

Next, we need to update out NPC_Movement.cs code to program the NPC attack.

I have only listed the portions that have been updated.

Here is an updated listing of the code:

using UnityEngine;
using System.Collections;

public class NPC_Movement : MonoBehaviour
{
...
 void Update()
 {
 // if player is in sight let's slerp towards the player
 if (playerInSight)
 {
 this.transform.rotation =
 Quaternion.Slerp(this.transform.rotation,

Player Character and Non-Player Character Design

[137]

 Quaternion.LookRotation(direction), 0.1f);
 }

 if(this.player.transform.GetComponent<CharacterController>().die)
 {
 animator.SetBool("Attack", false);
 animator.SetFloat("Speed", 0.0f);
 animator.SetFloat("AngularSpeed", 0.0f);
 }
 }

 // let's update our scene using fixed update
 void FixedUpdate()
 {
 h = angle; // assign horizontal axis
 v = distance; // assign vertical axis

 // calculate speed based on distance and delta time
 speed = distance / Time.deltaTime;

 if (DEBUG)
 Debug.Log(string.Format("H:{0} - V:{1} - Speed:{2}", h, v,
speed));

 // set the parameters defined in the animator controller
 animator.SetFloat("Speed", speed);
 animator.SetFloat("AngularSpeed", v);
 animator.SetBool("Attack", attack1);
 animator.SetBool("Attack1", attack1);

 if(playerInSight)
 {
 if (animator.GetFloat("Attack1C") == 1.0f)
 {
this.player.GetComponent<PlayerAgent>().playerCharacterData.HEALTH -= 1.0f;
 }
 }
 }
...
}

The new addition to the code checks to see if the player is in sight, and if that is the case, we
check to see if we are in range to be able to attack, if that is the case we enter the attack
mode, if we are in the attack mode, the attack animation is played. In the code we check to
get the value of the newly created parameter called Attack1C, and if it happens to be of
value 1.0f, then we go ahead and reduce the health of the player character.

Player Character and Non-Player Character Design

[138]

If the player dies while the NPC is attacking it will stop attacking and go back into the idle
state.

Ok, you might be wondering how we get the ability to get the information from the player
character. This is because we need to make some more additional C# scripts. Let's go ahead
and do so now. Create the following C# scripts:

PC.cs, this is going to be our player character class which inherits from the
BaseCharacter class we have defined previously
PlayerAgent.cs, this is going to be used to store the PC data and also inherit
MonoBehaviour
NPC.cs, this is going to be our non-player character class which inherits from the
BaseCharacter class as well
NPC_Agent.cs, is going to be used to store the NPC data and also inherit
MonoBehaviour

I have made some modifications to the BaseCharacter.cs script to make it more
accessible through the editor. Here is the new listing:

using UnityEngine;
using System;
using System.Collections;

[Serializable]
public class BaseCharacter
{
 [SerializeField]
 private string name;
 [SerializeField]
 private string description;

 [SerializeField]
 private float strength;
 [SerializeField]
 private float defense;
 [SerializeField]
 private float dexterity;
 [SerializeField]
 private float intelligence;
 [SerializeField]
 private float health;

 public string NAME

Player Character and Non-Player Character Design

[139]

 {
 get { return this.name; }
 set { this.name = value; }
 }

 public string DESCRIPTION
 {
 get { return this.description; }
 set { this.description = value; }
 }

 public float STRENGTH
 {
 get { return this.strength; }
 set { this.strength = value; }
 }

 public float DEFENSE
 {
 get { return this.defense; }
 set { this.defense = value; }
 }

 public float DEXTERITY
 {
 get { return this.dexterity; }
 set { this.dexterity = value; }
 }

 public float INTELLIGENCE
 {
 get { return this.intelligence; }
 set { this.intelligence = value; }
 }

 public float HEALTH
 {
 get { return this.health; }
 set { this.health = value; }
 }
}

I have gone ahead and made the class and the fields serializable.

Let's take a look at the listing for PC.cs:

using UnityEngine;
using System;

Player Character and Non-Player Character Design

[140]

using System.Collections;

[Serializable]
public class PC : BaseCharacter {

}

Nothing much going on there at this point. Now let's take a look at the PlayerAgent.cs:

using UnityEngine;
using System;
using System.Collections;

[Serializable]
public class PlayerAgent : MonoBehaviour {

 //[SerializeField]
 public PC playerCharacterData;

 void Awake()
 {
 PC tmp = new PC();
 tmp.NAME = "Maximilian";
 tmp.HEALTH = 100.0f;
 tmp.DEFENSE = 50.0f;
 tmp.DESCRIPTION = "Our Hero";
 tmp.DEXTERITY = 33.0f;
 tmp.INTELLIGENCE = 80.0f;
 tmp.STRENGTH = 60.0f;

 this.playerCharacterData = tmp;
 }

 // Use this for initialization
 void Start () {
 }
 // Update is called once per frame
 void Update () {
 if(this.playerCharacterData.HEALTH<0.0f)
 {
 this.playerCharacterData.HEALTH = 0.0f;

 this.transform.GetComponent<CharacterController>().die = true;
 }
 }
}

Player Character and Non-Player Character Design

[141]

In the player agent code, we are initializing some default values for our PC data in the
Awake() function. Since the class has been serialized, we can actually see the data during
runtime for debugging purposes!

In the Update() function, we check to see if the health of our PC is less than 0.0f, and if it is,
then this indicates the player has died. Which we then use the CharacterController
component we have created to set the die property to true. The CharacterController
then will use the new value and communicate with the animator controller for the player
character to get into the die state.

Notice that our NPC_Movement.cs script is accessing the exact same PC
data through the reference we have created in the script.

You will need to attach the PlayerAgent.cs script to your player character in the scene.

Player Character and Non-Player Character Design

[142]

In the preceding screenshot you can see the additions we have done to the scripts and how
they look during runtime. We will have a listing for the NPC.cs and NPC_Agent.cs in
future chapters. At this point, they are not used.

Summary
Chapter 4 was very involved. We covered some very important topics and concepts in the
chapter that can be used and enhanced for your games. We started the chapter by looking
into how to customize your player character. The concepts you take away from the section
can be applied to a wide variety of scenarios.

We look at how to understand the structure of your character model so that you can better
determine the customization methods. These are the different types of weapons, clothing,
armour, shields and so on…

We then looked at how to create a user interface to help enable us with the customization of
our player character during gameplay. We also learned that the tool we developed can be
used to quickly create several different character models (customized) and store them as
Prefabs for later use! Great time saver!!! We also learned how to preserve the state of our
player character after customization for gameplay.

We looked at the Non-Player Characters next. We went through the basics of setting up the
NPC with the different necessary components. We then looked at how to create a Navmesh
and how to work with Navmesh Agent and Pathfinding using the Navmesh.

We created a new Animator Controller for the NPC. We created a 2D Freeform Cartesian
blend tree that was used for the animation of the NPC. We saw how to create multiple
layers in the animation controller and enabling IK for difference regions of the humanoid
skeleton. We created the initial NPC AI script to detect and determine if the player is close
enough for it to make a move and/or attack. Finally, we created new scripts to make
interaction between the NPC and the player character possible.

By the end of the chapter you should have a good grasp of how everything is inter-related
and have an idea of how to approach your project.

In the next chapter we will create a better way to manage our game state.

5
Game Master and Game

Mechanics
In chapters 1 to 4, you learned how to make some of the necessary components needed for
the design and implementation of our RPG. For instance, you should have a good
understanding of how to organize and arrange your player character and non-player
character assets and components.

Here is a breakdown of the chapter:

The Game Master
Managing game settings and scenes
Managing scenes

Improving Game Master
Level controller
Audio controller

Player Data Management
PC class enhancements
Character customization class update

Changes to UI Controller
Testing

In this chapter, we are going to make more adjustments and updates to everything we have
done so far.

Game Master and Game Mechanics

[144]

The Game Master
Even though we created a GameMaster.cs scripts, we have not really utilized it to manage
our game. We created bits and pieces of our game assets and used them to perform quick
testing. In this chapter, we will start looking at how to create a better game manager for our
RPG.

There are a few things that I want the GameMaster.cs to perform. These are as follows:

Having a reference to the UI Controller for each particular scene
Having a reference to the Player Character in the scene
Having a reference to the Non-Player Character(s) in the scene
Having a reference to the Audio Source for control
There should always be one instance of the GameMaster class available

As we create our GameMaster, we will add or subtract some of the elements as we see fit.
Let's start by integrating the User Interface with the GameMaster.

Open up your Main Menu scene. It should look something like the following figure:

Game Master and Game Mechanics

[145]

In the preceding figure, I added a few UI elements. There is a button that is a place holder
for game settings indicated by the (*). When the button is pressed, you will get a panel that
will give you the ability to control the master volume of the game.

Here is a screenshot of the Hierarchy Window for the main menu scene:

Managing game settings and audio
Create an Empty Game Object and name it uiController. We now need to create a UI
Controller script that will handle the user interaction. Create a new C# script and name it
UIController.cs.

Note that the scripts in this chapter will be updated and modified as we
progress.

Here is a listing of the UI Controller:

using UnityEngine;
using UnityEngine.UI;
using System.Collections;

Game Master and Game Mechanics

[146]

public class UIController : MonoBehaviour
{
 public Canvas SettingsCanvas;
 public Slider ControlMainVolume;

 public void Update()
 {
 }

 public void DisplaySettings()
 {
 GameMaster.instance.DISPLAY_SETTINGS =
!GameMaster.instance.DISPLAY_SETTINGS;
this.SettingsCanvas.gameObject.SetActive(GameMaster.instance.DISPLAY_SETTIN
GS);
 }

 public void MainVolume()
 {
 GameMaster.instance.MasterVolume(ControlMainVolume.value);
 }

}

Currently, we have just a few functions defined: DisplaySettings() and MainVolume().
The functions are really simple, they are referencing the UI components needed to display
the settings panel, and also to retrieve the value of the volume control slider. The
information is then passed to the GameMaster.cs script for further processing.

We need to make several changes to the GameMaster.cs script. Here is a listing of the
code:

using UnityEngine;
using UnityEngine.UI;
using UnityEngine.SceneManagement;

using System.Collections;

public class GameMaster : MonoBehaviour
{

 public static GameMaster instance;

 // let's have a reference to the player character
 // and start position of player character
 public GameObject PC;
 public GameObject START_POSITION;

Game Master and Game Mechanics

[147]

 public GameObject CHARACTER_CUSTOMIZATION;

 // let's have a reference to the current scene/level
 public Scene CURRENT_SCENE;

 // Ref to UI Elements ...
 public bool DISPLAY_SETTINGS = false;
 public UIController UI;

 public int LEVEL = 0;

 // initial audio levels for background and
 // sound FX
 public float AUDIO_LEVEL = 0.33f;
 public float FX_LEVEL = 0.33f;

 void Awake()
 {
 // simple singleton
 if (instance == null)
 {
 instance = this;
 }
 else if (instance != this)
 {
 Destroy(this);
 }

 // keep the game object when moving from
 // one scene to the next scene
 DontDestroyOnLoad(this);

 }

 // Use this for initialization
 void Start()
 {
 // let's find a reference to the UI controller of the loaded scene
 if (GameObject.FindGameObjectWithTag("UI") != null)
 {
 GameMaster.instance.UI =
GameObject.FindGameObjectWithTag("UI").GetComponent<UIController>();
 }

GameMaster.instance.UI.SettingsCanvas.gameObject.SetActive(GameMaster.insta
nce.DISPLAY_SETTINGS);
 }

Game Master and Game Mechanics

[148]

 // Update is called once per frame
 void Update()
 {

 }

 public void MasterVolume(float volume)
 {
 GameMaster.instance.AUDIO_LEVEL = volume;
 GameMaster.instance.GetComponent<AudioSource>().volume =
GameMaster.instance.AUDIO_LEVEL;
 }

 public void StartGame()
 {
 // NOTE: Start the game, load the scene that allows the player
 // to customize their character
 SceneManager.LoadScene(SceneName.CharacterCustomization);
 }

}

This code needs a bit of explanation. The first and most important concept to take away is
the concept of a Singleton. This is done by first defining a static variable, which will be used
to hold our GameMaster instance:

public static GameMaster instance;
Then in our Awake() function, we need the following code:
void Awake()
{
// simple singleton
if (instance == null)
{
instance = this;
}
else if (instance != this)
{
Destroy(this);
}
// keep the game object when moving from
// one scene to the next scene
DontDestroyOnLoad(this);
}

Game Master and Game Mechanics

[149]

In the Awake() function, we are checking to see if the instance variable has been initialized. It
sets the instance variable once. The next check ensures that we are always having one
instance; in other words, if the GameMaster object gets instantiated a second time by
mistake, it will destroy it. The last line of code DotDestroyOnLoad() will ensure that the
GameObject does not get destroyed when we move from one scene to the next.

In the Start() function, we are checking to see if there is a uiController present, and if one
exists, we are getting a reference to it. Once we have a reference to the uiController, we
make sure that the Settings Panel by default is disabled, hidden.

The MasterVolume() function gets called from the UIController.cs script, which then passes
the actual value from the slider defined to control the volume of the background music.

Managing scenes
The next item I want to make is to have the GameMaster control loading the different
scenes for the game. Let's look at how the GameMaster.cs will look like with the new
addition of scene management.

using UnityEngine;
using UnityEngine.UI;
using UnityEngine.SceneManagement;

using System.Collections;

/// <summary>
/// This class is used to make referencing easier in the code
/// </summary>
public static class SceneName
{
 public const string MainMenu = "MainMenu";
 public const string CharacterCustomization = "CH4_CC";
 public const string Level_1 = "CH5";
}

public class GameMaster : MonoBehaviour
{

 public static GameMaster instance;

 // let's have a reference to the player character
 // and start position of player character
 public GameObject PC;
 public GameObject START_POSITION;
 public GameObject CHARACTER_CUSTOMIZATION;

Game Master and Game Mechanics

[150]

 // let's have a reference to the current scene/level
 public Scene CURRENT_SCENE;

 // Ref to UI Elements ...
 public bool DISPLAY_SETTINGS = false;
 public UIController UI;

 public int LEVEL = 0;

 // initial audio levels for background and
 // sound FX
 public float AUDIO_LEVEL = 0.33f;
 public float FX_LEVEL = 0.33f;

 void Awake()
 {
 // simple singleton
 if (instance == null)
 {
 instance = this;
 }
 else if (instance != this)
 {
 Destroy(this);
 }

 // keep the game object when moving from
 // one scene to the next scene
 DontDestroyOnLoad(this);
 }

 // for each level/scene that has been loaded
 // do some of the preparation work
 void OnLevelWasLoaded()
 {
 GameMaster.instance.CURRENT_SCENE = SceneManager.GetActiveScene();

 if
(GameMaster.instance.CURRENT_SCENE.name.Equals(SceneName.CharacterCustomiza
tion))
 {
 if (GameObject.FindGameObjectWithTag("BASE") != null)
 {
 GameMaster.instance.CHARACTER_CUSTOMIZATION =
GameObject.FindGameObjectWithTag("BASE") as GameObject;
 }
 }

Game Master and Game Mechanics

[151]

 // If we are at any other scene except character customization
 // let's go ahead and get reference to player and player
 // stat position
 if (!this.CURRENT_SCENE.name.Equals(SceneName.CharacterCustomization))
 {
 // let's get a reference to our player character
 if (GameMaster.instance.PC == null)
 {
 if (GameObject.FindGameObjectWithTag("Player") != null)
 {
 GameMaster.instance.PC =
GameObject.FindGameObjectWithTag("Player") as GameObject;
 }
 }

 if (GameObject.FindGameObjectWithTag("START_POSITION") != null)
 {
 GameMaster.instance.START_POSITION =
GameObject.FindGameObjectWithTag("START_POSITION") as GameObject;
 }

 if (GameMaster.instance.START_POSITION != null &&
GameMaster.instance.PC != null)
 {
 GameMaster.instance.PC.transform.position =
GameMaster.instance.START_POSITION.transform.position;
 GameMaster.instance.PC.transform.rotation =
GameMaster.instance.START_POSITION.transform.rotation;
 }
 }

 DetermineLevel();

 }

 private void DetermineLevel()
 {
 switch(GameMaster.instance.CURRENT_SCENE.name)
 {
 case SceneName.MainMenu:
 case SceneName.CharacterCustomization:
 {
 GameMaster.instance.LEVEL = 0;
 break;
 }

 case SceneName.Level_1:
 {

Game Master and Game Mechanics

[152]

 GameMaster.instance.LEVEL = 1;
 GameMaster.instance.PC.GetComponent<IKHandle>().enabled = true;
 break;
 }
 default:
 {
 GameMaster.instance.LEVEL = 0;
 break;
 }
 }
 }

 // Use this for initialization
 void Start()
 {
 // let's find a reference to the UI controller of the loaded scene
 if (GameObject.FindGameObjectWithTag("UI") != null)
 {
 GameMaster.instance.UI =
GameObject.FindGameObjectWithTag("UI").GetComponent<UIController>();
 }

GameMaster.instance.UI.SettingsCanvas.gameObject.SetActive(GameMaster.insta
nce.DISPLAY_SETTINGS);
 }

 // Update is called once per frame
 void Update()
 {

 }

 public void MasterVolume(float volume)
 {
 GameMaster.instance.AUDIO_LEVEL = volume;
 GameMaster.instance.GetComponent<AudioSource>().volume =
GameMaster.instance.AUDIO_LEVEL;
 }

 public void StartGame()
 {
 // NOTE: Start the game, load the scene that allows the player
 // to customize their character
 SceneManager.LoadScene(SceneName.CharacterCustomization);
 }

 public void LoadLevel()
 {

Game Master and Game Mechanics

[153]

 switch(GameMaster.instance.LEVEL)
 {
 // load level 1
 case 1:
 {
 GameMaster.instance.PC =
GameObject.FindGameObjectWithTag("Player") as GameObject;
 SceneManager.LoadScene(SceneName.Level_1);
 break;
 }
 }
 }
}

We have already discussed what the Awake() function is doing; let's take a look at the next
important function, OnLevelWasLoaded().

The OnLevelWasLoaded() function is called by Unity after the scene had been loaded. We are
using this function in the GameMaster script to perform a few tasks. The first thing we do is
get the current scene we are in. This information will be used later to determine what the
GameMaster will do.

We check to see if we are in the character customization scene. This is where the player can
customize the PC before they start playing the game. If we are in the character
customization scene, we want to get a reference to the Base GameObject in the scene. If you
recall, the Base GameObject has the CharacterCutomization.cs script attached to it, which is
used to well customize the character.

If we are in any other scene, then we want to get a reference to the Player Character, and
also the starting position of the player character at the beginning of the scene, if there is one.

We then use the DetermineLevel() function to determine the level we are currently on to
make some more configuration.

The two function currently implemented for starting the game and loading the levels are
handled by the StartGame() function and the LoadLevel() function.

/// <summary>
/// This class is used to make referencing easier in the code
/// </summary>
public static class SceneName
{
public const string MainMenu = "MainMenu";
public const string CharacterCustomization = "CH4_CC";
public const string Level_1 = "CH5";
}

Game Master and Game Mechanics

[154]

The SceneName class is designed to make it easier to refer to the scene names in the C# code.
This makes it easier to chance the actual scene name within the project, but have a
consistent call name in the code.

This is all good so far, but we can try to make it better.

Improving Game Master
The code we have so far works, but it is not very clean. Let's go ahead and structure the
code a little better. Let's go ahead and create a new script called LevelController.cs.
This new script will be handling the logic for our level management.

Level controller
Here is a listing of LevelController.cs:

using UnityEngine;
using UnityEngine.SceneManagement;
using System.Collections;

/// <summary>
/// This class is used to make referencing easier in the code
/// </summary>
public static class SceneName
{
 public const string MainMenu = "MainMenu";
 public const string CharacterCustomization = "CH4_CC";
 public const string Level_1 = "CH5";
}

public class LevelController
{
 // let's have a reference to the current scene/level
 public Scene CURRENT_SCENE
 {
 get { return SceneManager.GetActiveScene(); }
 }

 // keep the numerical level value
 public int LEVEL = 0;

 public void OnLevelWasLoaded()
 {

Game Master and Game Mechanics

[155]

 // if we are in the character customization scene,
 // let's get a reference to the base game object for future use.
 if (this.CURRENT_SCENE.Equals(SceneName.CharacterCustomization))
 {
 if (GameObject.FindGameObjectWithTag("BASE") != null)
 {
 GameMaster.instance.CHARACTER_CUSTOMIZATION =
GameObject.FindGameObjectWithTag("BASE") as GameObject;
 }
 }

 // If we are at any other scene except character customization
 // let's go ahead and get reference to player and player
 // stat position
 if (this.CURRENT_SCENE.name.Equals(SceneName.CharacterCustomization))
 {
 // let's get a reference to our player character
 if (GameMaster.instance.PC == null)
 {
 if (GameObject.FindGameObjectWithTag("Player") != null)
 {
 GameMaster.instance.PC =
GameObject.FindGameObjectWithTag("Player") as GameObject;
 }
 }

 if (GameObject.FindGameObjectWithTag("START_POSITION") != null)
 {
 GameMaster.instance.START_POSITION =
GameObject.FindGameObjectWithTag("START_POSITION") as GameObject;
 }

 if (GameMaster.instance.START_POSITION != null &&
GameMaster.instance.PC != null)
 {
 GameMaster.instance.PC.transform.position =
GameMaster.instance.START_POSITION.transform.position;
 GameMaster.instance.PC.transform.rotation =
GameMaster.instance.START_POSITION.transform.rotation;
 }
 }

 // determine what level we are on
 this.DetermineLevel();
 }

 // this function will set a numerical value for our levels
 private void DetermineLevel()

Game Master and Game Mechanics

[156]

 {
 switch (this.CURRENT_SCENE.name)
 {
 case SceneName.MainMenu:
 case SceneName.CharacterCustomization:
 {
 this.LEVEL = 0;
 break;
 }

 case SceneName.Level_1:
 {
 this.LEVEL = 1;
 GameMaster.instance.PC.GetComponent<IKHandle>().enabled = true;
 break;
 }
 default:
 {
 this.LEVEL = 0;
 break;
 }
 }
 }

 // this function will be used to load our scenes
 public void LoadLevel()
 {
 switch (GameMaster.instance.LEVEL_CONTROLLER.LEVEL)
 {
 case 0:
 {
 SceneManager.LoadScene(SceneName.CharacterCustomization);
 break;
 }

 // load level 1
 case 1:
 {
 GameMaster.instance.PC =
GameObject.FindGameObjectWithTag("Player") as GameObject;
 SceneManager.LoadScene(SceneName.Level_1);
 break;
 }
 }
 }
}

Game Master and Game Mechanics

[157]

So, what I have done is basically move all of the code that deals with level management into
LevelController.cs. Our GameMaster drives the LevelController class. We will see this
a bit later.

Audio controller
The next code clean up I want to do is for the audio. Let's create a new script called
AudioController.cs. Here is the code for the new script:

using UnityEngine;
using System.Collections;

public class AudioController
{
 // initial audio levels for background and
 // sound FX
 public float AUDIO_LEVEL = 0.33f;
 public float FX_LEVEL = 0.33f;

 public AudioSource AUDIO_SOURCE;

 public void SetDefaultVolume()
 {
 this.AUDIO_SOURCE.volume = AUDIO_LEVEL;
 }

 public void MasterVolume(float volume)
 {
 this.AUDIO_LEVEL = volume;
 this.AUDIO_SOURCE.volume = AUDIO_LEVEL;
 }
}

The code is pretty straight forward. Now, let's take a look at what our GameMaster.cs
looks like.

using UnityEngine;
using UnityEngine.UI;
using UnityEngine.SceneManagement;

using System.Collections;

public class GameMaster : MonoBehaviour
{
 public static GameMaster instance;

Game Master and Game Mechanics

[158]

 // let's have a reference to the player character
 // and start position of player character
 public GameObject PC;
 public GameObject START_POSITION;

 public GameObject CHARACTER_CUSTOMIZATION;

 public LevelController LEVEL_CONTROLLER;
 public AudioController AUDIO_CONTROLLER;

 // Ref to UI Elements ...
 public bool DISPLAY_SETTINGS = false;
 public UIController UI;

 void Awake()
 {
 // simple singleton
 if (instance == null)
 {
 instance = this;

 // initialize Level Controller
 instance.LEVEL_CONTROLLER = new LevelController();

 // initialize Audio Controller
 instance.AUDIO_CONTROLLER = new AudioController();
 instance.AUDIO_CONTROLLER.AUDIO_SOURCE =
GameMaster.instance.GetComponent<AudioSource>();
 instance.AUDIO_CONTROLLER.SetDefaultVolume();
 }
 else if (instance != this)
 {
 Destroy(this);
 }

 // keep the game object when moving from
 // one scene to the next scene
 DontDestroyOnLoad(this);
 }

 // for each level/scene that has been loaded
 // do some of the preparation work
 void OnLevelWasLoaded()
 {
 GameMaster.instance.LEVEL_CONTROLLER.OnLevelWasLoaded();
 }

 // Use this for initialization

Game Master and Game Mechanics

[159]

 void Start()
 {
 // let's find a reference to the UI controller of the loaded scene
 if (GameObject.FindGameObjectWithTag("UI") != null)
 {
 GameMaster.instance.UI =
GameObject.FindGameObjectWithTag("UI").GetComponent<UIController>();
 }

GameMaster.instance.UI.SettingsCanvas.gameObject.SetActive(GameMaster.insta
nce.DISPLAY_SETTINGS);
 }

 // Update is called once per frame
 void Update()
 {

 }

 public void MasterVolume(float volume)
 {
 GameMaster.instance.AUDIO_CONTROLLER.MasterVolume(volume);
 }

 public void StartGame()
 {
 GameMaster.instance.LoadLevel();
 }

 public void LoadLevel()
 {
 GameMaster.instance.LEVEL_CONTROLLER.LoadLevel();
 }
}

As you can see, the code is easier to read and also it is better structured. The GameMaster
is using the controllers for performing each specific task. This also makes it easier to
maintain code for different tasks within our game. For instance, all of the audio-related code
can be now implemented in the controller and so on.

Game Master and Game Mechanics

[160]

Player data management
We have not saved the actual data representing the customization of our player. The next
step is to enhance our PC.cs and CharacterCustomization.cs scripts to actually save
the selected data in our PC object.

PC class enhancements
To do this, we need to modify our PC.cs code; here is the new code listing:

using System;

[Serializable]
public class PC : BaseCharacter
{

 public enum SHOULDER_PAD
 {
 none = 0,
 SP01 = 1,
 SP02 = 2,
 SP03 = 3,
 SP04 = 4
 };

 public enum BODY_TYPE { normal = 1, BT01 = 2, BT02 = 3 };

 // Shoulder Pad
 public SHOULDER_PAD selectedShoulderPad = SHOULDER_PAD.none;
 public BODY_TYPE selectedBodyType = BODY_TYPE.normal;

 public bool kneePad = false;
 public bool legPlate = false;

 public enum WEAPON_TYPE
 {
 none = 0,
 axe1 = 1,
 axe2 = 2,
 club1 = 3,
 club2 = 4,
 falchion = 5,
 gladius = 6,
 mace = 7,
 maul = 8,

Game Master and Game Mechanics

[161]

 scimitar = 9,
 spear = 10,
 sword1 = 11,
 sword2 = 12,
 sword3 = 13
 };

 public WEAPON_TYPE selectedWeapon = WEAPON_TYPE.none;

 public enum HELMET_TYPE { none = 0, HL01 = 1, HL02 = 2, HL03 = 3, HL04 =
4 };

 public HELMET_TYPE selectedHelmet = HELMET_TYPE.none;

 public enum SHIELD_TYPE { none = 0, SL01 = 1, SL02 = 2 };

 public SHIELD_TYPE selectedShield = SHIELD_TYPE.none;

 public int SKIN_ID = 1;

 public enum BOOT_TYPE { none = 0, BT01 = 1, BT02 = 2 };
 public BOOT_TYPE selectedBoot = BOOT_TYPE.none;
}

We defined several enumeration types that describe the different parts of the player
character's customization. There are several advantages in using enumeration in our code, a
few of them being named constants, the name describes what they are for, type safety and
easier to change the value of the enumeration without having to check a hundred different
places within your code.

As stated in the previous chapters, the character customization code is heavily related to
your character model and how you have rigged up your character model to be used in the
game.

Game Master and Game Mechanics

[162]

Note that you will need to modify the name of your UI elements to match
the new code.

There are a few things you will need to configure to make sure the code works properly.
First, you will need to name your UI elements properly to match the enumeration. The
preceding figure illustrates for one of the UI elements representing a shoulder pad.

Character customization class update
The events that drive the character customization are attached to the Base prefab, which has
the CharacterCustomization.cs script as a component. The
CharacterCustomization.cs script is listed here:

using UnityEngine;
using UnityEngine.UI;
using System.Collections;

Game Master and Game Mechanics

[163]

using UnityEngine.SceneManagement;
using System;

public class CharacterCustomization : MonoBehaviour
{
 // reference to PC Game Object
 public GameObject PLAYER_CHARACTER;

 // variable used to hold the PC Customization
 public PC PC_CC;

 public Material[] PLAYER_SKIN;

 public GameObject CLOTH_01LOD0;
 public GameObject CLOTH_01LOD0_SKIN;
 public GameObject CLOTH_02LOD0;
 public GameObject CLOTH_02LOD0_SKIN;
 public GameObject CLOTH_03LOD0;
 public GameObject CLOTH_03LOD0_SKIN;
 public GameObject CLOTH_03LOD0_FAT;

 public GameObject BELT_LOD0;

 public GameObject SKN_LOD0;
 public GameObject FAT_LOD0;
 public GameObject RGL_LOD0;

 public GameObject HAIR_LOD0;

 public GameObject BOW_LOD0;

 // Head Equipment
 public GameObject GLADIATOR_01LOD0;
 public GameObject HELMET_01LOD0;
 public GameObject HELMET_02LOD0;
 public GameObject HELMET_03LOD0;
 public GameObject HELMET_04LOD0;

 // Shoulder Pad - Right Arm / Left Arm
 public GameObject SHOULDER_PAD_R_01LOD0;
 public GameObject SHOULDER_PAD_R_02LOD0;
 public GameObject SHOULDER_PAD_R_03LOD0;
 public GameObject SHOULDER_PAD_R_04LOD0;

 public GameObject SHOULDER_PAD_L_01LOD0;
 public GameObject SHOULDER_PAD_L_02LOD0;
 public GameObject SHOULDER_PAD_L_03LOD0;
 public GameObject SHOULDER_PAD_L_04LOD0;

Game Master and Game Mechanics

[164]

 // Fore Arm - Right / Left Plates
 public GameObject ARM_PLATE_R_1LOD0;
 public GameObject ARM_PLATE_R_2LOD0;

 public GameObject ARM_PLATE_L_1LOD0;
 public GameObject ARM_PLATE_L_2LOD0;

 // Player Character Weapons
 public GameObject AXE_01LOD0;
 public GameObject AXE_02LOD0;
 public GameObject CLUB_01LOD0;
 public GameObject CLUB_02LOD0;
 public GameObject FALCHION_LOD0;
 public GameObject GLADIUS_LOD0;
 public GameObject MACE_LOD0;
 public GameObject MAUL_LOD0;
 public GameObject SCIMITAR_LOD0;
 public GameObject SPEAR_LOD0;
 public GameObject SWORD_BASTARD_LOD0;
 public GameObject SWORD_BOARD_01LOD0;
 public GameObject SWORD_SHORT_LOD0;

 // Player Character Defense Weapons
 public GameObject SHIELD_01LOD0;
 public GameObject SHIELD_02LOD0;

 public GameObject QUIVER_LOD0;
 public GameObject BOW_01_LOD0;

 // Player Character Calf - Right / Left
 public GameObject KNEE_PAD_R_LOD0;
 public GameObject LEG_PLATE_R_LOD0;

 public GameObject KNEE_PAD_L_LOD0;
 public GameObject LEG_PLATE_L_LOD0;

 public GameObject BOOT_01LOD0;
 public GameObject BOOT_02LOD0;

 // Use this for initialization
 void Start()
 {
 this.PC_CC =
this.PLAYER_CHARACTER.GetComponent<PlayerAgent>().playerCharacterData;
 }

 public bool ROTATE_MODEL = false;
 // Update is called once per frame

Game Master and Game Mechanics

[165]

 void Update()
 {
 if (Input.GetKeyUp(KeyCode.R))
 {
 this.ROTATE_MODEL = !this.ROTATE_MODEL;
 }

 if (this.ROTATE_MODEL)
 {
 this.PLAYER_CHARACTER.transform.Rotate(new Vector3(0, 1, 0), 33.0f *
Time.deltaTime);
 }

 if (Input.GetKeyUp(KeyCode.L))
 {

 Debug.Log(PlayerPrefs.GetString("NAME"));
 }

 }

 public void SetShoulderPad(Toggle id)
 {

 try
 {
 PC.SHOULDER_PAD name =
(PC.SHOULDER_PAD)Enum.Parse(typeof(PC.SHOULDER_PAD), id.name, true);
 if(id.isOn)
 {
 this.PC_CC.selectedShoulderPad = name;
 Debug.Log(string.Format("{0} was turned on", name));
 }
 else
 {
 this.PC_CC.selectedShoulderPad = PC.SHOULDER_PAD.none;
 Debug.Log(string.Format("{0} was turned off", name));
 }
 }
 catch
 {
 // if the value passed is not in the enumeration set it to none
 this.PC_CC.selectedShoulderPad = PC.SHOULDER_PAD.none;
 Debug.Log("Shoulder Pad Enumeration Not Found!");
 }

 switch (id.name)
 {

Game Master and Game Mechanics

[166]

 case "SP01":
 {
 this.SHOULDER_PAD_R_01LOD0.SetActive(id.isOn);
 this.SHOULDER_PAD_R_02LOD0.SetActive(false);
 this.SHOULDER_PAD_R_03LOD0.SetActive(false);
 this.SHOULDER_PAD_R_04LOD0.SetActive(false);

 this.SHOULDER_PAD_L_01LOD0.SetActive(id.isOn);
 this.SHOULDER_PAD_L_02LOD0.SetActive(false);
 this.SHOULDER_PAD_L_03LOD0.SetActive(false);
 this.SHOULDER_PAD_L_04LOD0.SetActive(false);
 break;
 }
 case "SP02":
 {
 this.SHOULDER_PAD_R_01LOD0.SetActive(false);
 this.SHOULDER_PAD_R_02LOD0.SetActive(id.isOn);
 this.SHOULDER_PAD_R_03LOD0.SetActive(false);
 this.SHOULDER_PAD_R_04LOD0.SetActive(false);

 this.SHOULDER_PAD_L_01LOD0.SetActive(false);
 this.SHOULDER_PAD_L_02LOD0.SetActive(id.isOn);
 this.SHOULDER_PAD_L_03LOD0.SetActive(false);
 this.SHOULDER_PAD_L_04LOD0.SetActive(false);
 break;
 }
 case "SP03":
 {
 this.SHOULDER_PAD_R_01LOD0.SetActive(false);
 this.SHOULDER_PAD_R_02LOD0.SetActive(false);
 this.SHOULDER_PAD_R_03LOD0.SetActive(id.isOn);
 this.SHOULDER_PAD_R_04LOD0.SetActive(false);

 this.SHOULDER_PAD_L_01LOD0.SetActive(false);
 this.SHOULDER_PAD_L_02LOD0.SetActive(false);
 this.SHOULDER_PAD_L_03LOD0.SetActive(id.isOn);
 this.SHOULDER_PAD_L_04LOD0.SetActive(false);
 break;
 }
 case "SP04":
 {
 this.SHOULDER_PAD_R_01LOD0.SetActive(false);
 this.SHOULDER_PAD_R_02LOD0.SetActive(false);
 this.SHOULDER_PAD_R_03LOD0.SetActive(false);
 this.SHOULDER_PAD_R_04LOD0.SetActive(id.isOn);

 this.SHOULDER_PAD_L_01LOD0.SetActive(false);
 this.SHOULDER_PAD_L_02LOD0.SetActive(false);

Game Master and Game Mechanics

[167]

 this.SHOULDER_PAD_L_03LOD0.SetActive(false);
 this.SHOULDER_PAD_L_04LOD0.SetActive(id.isOn);
 break;
 }
 default:
 {
 this.SHOULDER_PAD_R_01LOD0.SetActive(false);
 this.SHOULDER_PAD_R_02LOD0.SetActive(false);
 this.SHOULDER_PAD_R_03LOD0.SetActive(false);
 this.SHOULDER_PAD_R_04LOD0.SetActive(false);

 this.SHOULDER_PAD_L_01LOD0.SetActive(false);
 this.SHOULDER_PAD_L_02LOD0.SetActive(false);
 this.SHOULDER_PAD_L_03LOD0.SetActive(false);
 this.SHOULDER_PAD_L_04LOD0.SetActive(false);
 break;
 }
 }
 }

 public void SetBodyType(Toggle id)
 {
 try
 {
 PC.BODY_TYPE name = (PC.BODY_TYPE)Enum.Parse(typeof(PC.BODY_TYPE),
id.name, true);
 if(id.isOn)
 {
 this.PC_CC.selectedBodyType = name;
 Debug.Log(string.Format("{0} was turned on", name));
 }
 else
 {
 this.PC_CC.selectedBodyType = PC.BODY_TYPE.normal;
 Debug.Log(string.Format("{0} was turned off", name));
 }
 }
 catch
 {
 // if the value passed is not in the enumeration set it to none
 this.PC_CC.selectedBodyType= PC.BODY_TYPE.normal;
 Debug.Log("Body Type Enumeration Not Found!");
 }

 switch (id.name)
 {
 case "BT01":
 {

Game Master and Game Mechanics

[168]

 this.RGL_LOD0.SetActive(id.isOn);
 this.FAT_LOD0.SetActive(false);
 break;
 }
 case "BT02":
 {
 this.RGL_LOD0.SetActive(false);
 this.FAT_LOD0.SetActive(id.isOn);
 break;
 }
 default:
 {
 this.RGL_LOD0.SetActive(false);
 this.FAT_LOD0.SetActive(false);
 break;
 }
 }
 }

 public void SetKneePad(Toggle id)
 {
 this.KNEE_PAD_R_LOD0.SetActive(id.isOn);
 this.KNEE_PAD_L_LOD0.SetActive(id.isOn);
 }

 public void SetLegPlate(Toggle id)
 {
 this.LEG_PLATE_R_LOD0.SetActive(id.isOn);
 this.LEG_PLATE_L_LOD0.SetActive(id.isOn);
 }

 public void SetWeaponType(Slider id)
 {
 try
 {
 PC.WEAPON_TYPE weapon =
(PC.WEAPON_TYPE)System.Convert.ToInt32(id.value);
 this.PC_CC.selectedWeapon = weapon;
 Debug.Log(string.Format("Weapon selected: {0}", weapon.ToString()));
 }
 catch
 {
 this.PC_CC.selectedWeapon = PC.WEAPON_TYPE.none;
 }

 switch (System.Convert.ToInt32(id.value))
 {
 case 0:

Game Master and Game Mechanics

[169]

 {
 this.AXE_01LOD0.SetActive(false);
 this.AXE_02LOD0.SetActive(false);
 this.CLUB_01LOD0.SetActive(false);
 this.CLUB_02LOD0.SetActive(false);
 this.FALCHION_LOD0.SetActive(false);
 this.GLADIUS_LOD0.SetActive(false);
 this.MACE_LOD0.SetActive(false);
 this.MAUL_LOD0.SetActive(false);
 this.SCIMITAR_LOD0.SetActive(false);
 this.SPEAR_LOD0.SetActive(false);
 this.SWORD_BASTARD_LOD0.SetActive(false);
 this.SWORD_BOARD_01LOD0.SetActive(false);
 this.SWORD_SHORT_LOD0.SetActive(false);
 break;
 }
 case 1:
 {
 this.AXE_01LOD0.SetActive(true);
 this.AXE_02LOD0.SetActive(false);
 this.CLUB_01LOD0.SetActive(false);
 this.CLUB_02LOD0.SetActive(false);
 this.FALCHION_LOD0.SetActive(false);
 this.GLADIUS_LOD0.SetActive(false);
 this.MACE_LOD0.SetActive(false);
 this.MAUL_LOD0.SetActive(false);
 this.SCIMITAR_LOD0.SetActive(false);
 this.SPEAR_LOD0.SetActive(false);
 this.SWORD_BASTARD_LOD0.SetActive(false);
 this.SWORD_BOARD_01LOD0.SetActive(false);
 this.SWORD_SHORT_LOD0.SetActive(false);
 break;
 }
 case 2:
 {
 this.AXE_01LOD0.SetActive(false);
 this.AXE_02LOD0.SetActive(true);
 this.CLUB_01LOD0.SetActive(false);
 this.CLUB_02LOD0.SetActive(false);
 this.FALCHION_LOD0.SetActive(false);
 this.GLADIUS_LOD0.SetActive(false);
 this.MACE_LOD0.SetActive(false);
 this.MAUL_LOD0.SetActive(false);
 this.SCIMITAR_LOD0.SetActive(false);
 this.SPEAR_LOD0.SetActive(false);
 this.SWORD_BASTARD_LOD0.SetActive(false);
 this.SWORD_BOARD_01LOD0.SetActive(false);
 this.SWORD_SHORT_LOD0.SetActive(false);

Game Master and Game Mechanics

[170]

 break;
 }
 case 3:
 {
 this.AXE_01LOD0.SetActive(false);
 this.AXE_02LOD0.SetActive(false);
 this.CLUB_01LOD0.SetActive(true);
 this.CLUB_02LOD0.SetActive(false);
 this.FALCHION_LOD0.SetActive(false);
 this.GLADIUS_LOD0.SetActive(false);
 this.MACE_LOD0.SetActive(false);
 this.MAUL_LOD0.SetActive(false);
 this.SCIMITAR_LOD0.SetActive(false);
 this.SPEAR_LOD0.SetActive(false);
 this.SWORD_BASTARD_LOD0.SetActive(false);
 this.SWORD_BOARD_01LOD0.SetActive(false);
 this.SWORD_SHORT_LOD0.SetActive(false);
 break;
 }
 case 4:
 {
 this.AXE_01LOD0.SetActive(false);
 this.AXE_02LOD0.SetActive(false);
 this.CLUB_01LOD0.SetActive(false);
 this.CLUB_02LOD0.SetActive(true);
 this.FALCHION_LOD0.SetActive(false);
 this.GLADIUS_LOD0.SetActive(false);
 this.MACE_LOD0.SetActive(false);
 this.MAUL_LOD0.SetActive(false);
 this.SCIMITAR_LOD0.SetActive(false);
 this.SPEAR_LOD0.SetActive(false);
 this.SWORD_BASTARD_LOD0.SetActive(false);
 this.SWORD_BOARD_01LOD0.SetActive(false);
 this.SWORD_SHORT_LOD0.SetActive(false);
 break;
 }
 case 5:
 {
 this.AXE_01LOD0.SetActive(false);
 this.AXE_02LOD0.SetActive(false);
 this.CLUB_01LOD0.SetActive(false);
 this.CLUB_02LOD0.SetActive(false);
 this.FALCHION_LOD0.SetActive(true);
 this.GLADIUS_LOD0.SetActive(false);
 this.MACE_LOD0.SetActive(false);
 this.MAUL_LOD0.SetActive(false);
 this.SCIMITAR_LOD0.SetActive(false);
 this.SPEAR_LOD0.SetActive(false);

Game Master and Game Mechanics

[171]

 this.SWORD_BASTARD_LOD0.SetActive(false);
 this.SWORD_BOARD_01LOD0.SetActive(false);
 this.SWORD_SHORT_LOD0.SetActive(false);
 break;
 }
 case 6:
 {
 this.AXE_01LOD0.SetActive(false);
 this.AXE_02LOD0.SetActive(false);
 this.CLUB_01LOD0.SetActive(false);
 this.CLUB_02LOD0.SetActive(false);
 this.FALCHION_LOD0.SetActive(false);
 this.GLADIUS_LOD0.SetActive(true);
 this.MACE_LOD0.SetActive(false);
 this.MAUL_LOD0.SetActive(false);
 this.SCIMITAR_LOD0.SetActive(false);
 this.SPEAR_LOD0.SetActive(false);
 this.SWORD_BASTARD_LOD0.SetActive(false);
 this.SWORD_BOARD_01LOD0.SetActive(false);
 this.SWORD_SHORT_LOD0.SetActive(false);
 break;
 }
 case 7:
 {
 this.AXE_01LOD0.SetActive(false);
 this.AXE_02LOD0.SetActive(false);
 this.CLUB_01LOD0.SetActive(false);
 this.CLUB_02LOD0.SetActive(false);
 this.FALCHION_LOD0.SetActive(false);
 this.GLADIUS_LOD0.SetActive(false);
 this.MACE_LOD0.SetActive(true);
 this.MAUL_LOD0.SetActive(false);
 this.SCIMITAR_LOD0.SetActive(false);
 this.SPEAR_LOD0.SetActive(false);
 this.SWORD_BASTARD_LOD0.SetActive(false);
 this.SWORD_BOARD_01LOD0.SetActive(false);
 this.SWORD_SHORT_LOD0.SetActive(false);
 break;
 }
 case 8:
 {
 this.AXE_01LOD0.SetActive(false);
 this.AXE_02LOD0.SetActive(false);
 this.CLUB_01LOD0.SetActive(false);
 this.CLUB_02LOD0.SetActive(false);
 this.FALCHION_LOD0.SetActive(false);
 this.GLADIUS_LOD0.SetActive(false);
 this.MACE_LOD0.SetActive(false);

Game Master and Game Mechanics

[172]

 this.MAUL_LOD0.SetActive(true);
 this.SCIMITAR_LOD0.SetActive(false);
 this.SPEAR_LOD0.SetActive(false);
 this.SWORD_BASTARD_LOD0.SetActive(false);
 this.SWORD_BOARD_01LOD0.SetActive(false);
 this.SWORD_SHORT_LOD0.SetActive(false);
 break;
 }
 case 9:
 {
 this.AXE_01LOD0.SetActive(false);
 this.AXE_02LOD0.SetActive(false);
 this.CLUB_01LOD0.SetActive(false);
 this.CLUB_02LOD0.SetActive(false);
 this.FALCHION_LOD0.SetActive(false);
 this.GLADIUS_LOD0.SetActive(false);
 this.MACE_LOD0.SetActive(false);
 this.MAUL_LOD0.SetActive(false);
 this.SCIMITAR_LOD0.SetActive(true);
 this.SPEAR_LOD0.SetActive(false);
 this.SWORD_BASTARD_LOD0.SetActive(false);
 this.SWORD_BOARD_01LOD0.SetActive(false);
 this.SWORD_SHORT_LOD0.SetActive(false);
 break;
 }
 case 10:
 {
 this.AXE_01LOD0.SetActive(false);
 this.AXE_02LOD0.SetActive(false);
 this.CLUB_01LOD0.SetActive(false);
 this.CLUB_02LOD0.SetActive(false);
 this.FALCHION_LOD0.SetActive(false);
 this.GLADIUS_LOD0.SetActive(false);
 this.MACE_LOD0.SetActive(false);
 this.MAUL_LOD0.SetActive(false);
 this.SCIMITAR_LOD0.SetActive(false);
 this.SPEAR_LOD0.SetActive(true);
 this.SWORD_BASTARD_LOD0.SetActive(false);
 this.SWORD_BOARD_01LOD0.SetActive(false);
 this.SWORD_SHORT_LOD0.SetActive(false);
 break;
 }
 case 11:
 {
 this.AXE_01LOD0.SetActive(false);
 this.AXE_02LOD0.SetActive(false);
 this.CLUB_01LOD0.SetActive(false);
 this.CLUB_02LOD0.SetActive(false);

Game Master and Game Mechanics

[173]

 this.FALCHION_LOD0.SetActive(false);
 this.GLADIUS_LOD0.SetActive(false);
 this.MACE_LOD0.SetActive(false);
 this.MAUL_LOD0.SetActive(false);
 this.SCIMITAR_LOD0.SetActive(false);
 this.SPEAR_LOD0.SetActive(false);
 this.SWORD_BASTARD_LOD0.SetActive(true);
 this.SWORD_BOARD_01LOD0.SetActive(false);
 this.SWORD_SHORT_LOD0.SetActive(false);
 break;
 }
 case 12:
 {
 this.AXE_01LOD0.SetActive(false);
 this.AXE_02LOD0.SetActive(false);
 this.CLUB_01LOD0.SetActive(false);
 this.CLUB_02LOD0.SetActive(false);
 this.FALCHION_LOD0.SetActive(false);
 this.GLADIUS_LOD0.SetActive(false);
 this.MACE_LOD0.SetActive(false);
 this.MAUL_LOD0.SetActive(false);
 this.SCIMITAR_LOD0.SetActive(false);
 this.SPEAR_LOD0.SetActive(false);
 this.SWORD_BASTARD_LOD0.SetActive(false);
 this.SWORD_BOARD_01LOD0.SetActive(true);
 this.SWORD_SHORT_LOD0.SetActive(false);
 break;
 }
 case 13:
 {
 this.AXE_01LOD0.SetActive(false);
 this.AXE_02LOD0.SetActive(false);
 this.CLUB_01LOD0.SetActive(false);
 this.CLUB_02LOD0.SetActive(false);
 this.FALCHION_LOD0.SetActive(false);
 this.GLADIUS_LOD0.SetActive(false);
 this.MACE_LOD0.SetActive(false);
 this.MAUL_LOD0.SetActive(false);
 this.SCIMITAR_LOD0.SetActive(false);
 this.SPEAR_LOD0.SetActive(false);
 this.SWORD_BASTARD_LOD0.SetActive(false);
 this.SWORD_BOARD_01LOD0.SetActive(false);
 this.SWORD_SHORT_LOD0.SetActive(true);
 break;
 }

 }
 }

Game Master and Game Mechanics

[174]

 public void SetHelmetType(Toggle id)
 {
 try
 {
 PC.HELMET_TYPE name =
(PC.HELMET_TYPE)Enum.Parse(typeof(PC.HELMET_TYPE), id.name, true);
 if (id.isOn)
 {
 this.PC_CC.selectedHelmet = name;
 Debug.Log(string.Format("{0} was turned on", name));
 }
 else
 {
 this.PC_CC.selectedHelmet = PC.HELMET_TYPE.none;
 Debug.Log(string.Format("{0} was turned off", name));
 }
 }
 catch
 {
 // if the value passed is not in the enumeration set it to none
 this.PC_CC.selectedHelmet = PC.HELMET_TYPE.none;
 Debug.Log("Helmet Type Enumeration Not Found!");
 }

 switch (id.name)
 {
 case "HL01":
 {
 this.HELMET_01LOD0.SetActive(id.isOn);
 this.HELMET_02LOD0.SetActive(false);
 this.HELMET_03LOD0.SetActive(false);
 this.HELMET_04LOD0.SetActive(false);
 break;
 }
 case "HL02":
 {
 this.HELMET_01LOD0.SetActive(false);
 this.HELMET_02LOD0.SetActive(id.isOn);
 this.HELMET_03LOD0.SetActive(false);
 this.HELMET_04LOD0.SetActive(false);
 break;
 }
 case "HL03":
 {
 this.HELMET_01LOD0.SetActive(false);
 this.HELMET_02LOD0.SetActive(false);
 this.HELMET_03LOD0.SetActive(id.isOn);
 this.HELMET_04LOD0.SetActive(false);

Game Master and Game Mechanics

[175]

 break;
 }
 case "HL04":
 {
 this.HELMET_01LOD0.SetActive(false);
 this.HELMET_02LOD0.SetActive(false);
 this.HELMET_03LOD0.SetActive(false);
 this.HELMET_04LOD0.SetActive(id.isOn);
 break;
 }
 default:
 {
 this.HELMET_01LOD0.SetActive(false);
 this.HELMET_02LOD0.SetActive(false);
 this.HELMET_03LOD0.SetActive(false);
 this.HELMET_04LOD0.SetActive(false);
 break;
 }
 }
 }

 public void SetShieldType(Toggle id)
 {
 try
 {
 PC.SHIELD_TYPE name =
(PC.SHIELD_TYPE)Enum.Parse(typeof(PC.SHIELD_TYPE), id.name, true);
 if (id.isOn)
 {
 this.PC_CC.selectedShield = name;
 Debug.Log(string.Format("{0} was turned on", name));
 }
 else
 {
 this.PC_CC.selectedShield = PC.SHIELD_TYPE.none;
 Debug.Log(string.Format("{0} was turned off", name));
 }
 }
 catch
 {
 // if the value passed is not in the enumeration set it to none
 this.PC_CC.selectedShield = PC.SHIELD_TYPE.none;
 Debug.Log("Shield Type Enumeration Not Found!");
 }

 switch (id.name)
 {
 case "SL01":

Game Master and Game Mechanics

[176]

 {
 this.SHIELD_01LOD0.SetActive(id.isOn);
 this.SHIELD_02LOD0.SetActive(false);
 break;
 }
 case "SL02":
 {
 this.SHIELD_01LOD0.SetActive(false);
 this.SHIELD_02LOD0.SetActive(id.isOn);
 break;
 }
 default:
 {
 this.SHIELD_01LOD0.SetActive(false);
 this.SHIELD_02LOD0.SetActive(false);
 break;
 }
 }
 }

 public void SetSkinType(Slider id)
 {
 this.PC_CC.SKIN_ID = System.Convert.ToInt32(id.value);
 Debug.Log(string.Format("Skin ID is {0}", this.PC_CC.SKIN_ID));

 this.SKN_LOD0.GetComponent<Renderer>().material =
this.PLAYER_SKIN[System.Convert.ToInt32(id.value)];
 this.FAT_LOD0.GetComponent<Renderer>().material =
this.PLAYER_SKIN[System.Convert.ToInt32(id.value)];
 this.RGL_LOD0.GetComponent<Renderer>().material =
this.PLAYER_SKIN[System.Convert.ToInt32(id.value)];
 }

 public void SetBootType(Toggle id)
 {
 try
 {
 PC.BOOT_TYPE name = (PC.BOOT_TYPE)Enum.Parse(typeof(PC.BOOT_TYPE),
id.name, true);
 if (id.isOn)
 {
 this.PC_CC.selectedBoot = name;
 Debug.Log(string.Format("{0} was turned on", name));
 }
 else
 {
 this.PC_CC.selectedBoot = PC.BOOT_TYPE.none;
 Debug.Log(string.Format("{0} was turned off", name));

Game Master and Game Mechanics

[177]

 }
 }
 catch
 {
 // if the value passed is not in the enumeration set it to none
 this.PC_CC.selectedBoot = PC.BOOT_TYPE.none;
 Debug.Log("Boot Type Enumeration Not Found!");
 }

 switch (id.name)
 {
 case "BT01":
 {
 this.BOOT_01LOD0.SetActive(id.isOn);
 this.BOOT_02LOD0.SetActive(false);
 break;
 }
 case "BT02":
 {
 this.BOOT_01LOD0.SetActive(false);
 this.BOOT_02LOD0.SetActive(id.isOn);
 break;
 }
 default:
 {
 this.BOOT_01LOD0.SetActive(false);
 this.BOOT_02LOD0.SetActive(false);
 break;
 }
 }
 }
}

In the preceding code, what we have done is added a new variable of type PC named
PC_CC. The PC class is the player character class we defined an enhanced to contain the
data for our player character.

The next logic we need to implement is to detect which option the player has selected
through the character customization UI and appropriately set the data in the PC object. The
implementation concept is the same for all the different parts of the player character that
can be customized. I will be listing one of them here.

public void SetBodyType(Toggle id)
{
try
{
PC.BODY_TYPE name = (PC.BODY_TYPE)Enum.Parse(typeof(PC.BODY_TYPE), id.name,

Game Master and Game Mechanics

[178]

true);
if(id.isOn)
{
this.PC_CC.selectedBodyType = name;
Debug.Log(string.Format("{0} was turned on", name));
}
else
{
this.PC_CC.selectedBodyType = PC.BODY_TYPE.normal;
Debug.Log(string.Format("{0} was turned off", name));
}
}
catch
{
// if the value passed is not in the enumeration set it to none
this.PC_CC.selectedBodyType= PC.BODY_TYPE.normal;
Debug.Log("Body Type Enumeration Not Found!");
}
...
}

The preceding code is for the customization of the body type of the player character. The
first thing it tries to do is to parse and convert the value passed to the function by the UI
component. Next, it sets the selectedBodyType variable in the PC object. If for some
reason, the value passed does not exist in the enumeration, we will assign the default value
to the selectedBodyType variable. There is also debug statements to give you feedback
about the current value.

Changes to UI Controller
The UI Controller will also need to be updated now to make the necessary changes to the
GameMaster object. We would need to update the LoadLevel() function to the following:

public void LoadLevel()
{
if(GameObject.FindGameObjectWithTag("BASE"))
{
GameMaster.instance.PC_CC =
GameObject.FindGameObjectWithTag("BASE").GetComponent<CharacterCustomizatio
n>().PC_CC;
}
GameMaster.instance.LEVEL_CONTROLLER.LEVEL = 1;
GameMaster.instance.LoadLevel();
}

Game Master and Game Mechanics

[179]

This will make sure that GameMaster is updated with the proper player character data.
Let's go ahead and test the code.

Testing
Starting from the Main Menu scene, make sure that you have the following GameObjects in
the scene: uiController and _GameMaster. The uiController game object should have
UIController.cs attached and _GameMaster should have the following components
attached: GameMaster.cs and an AudioSource component that will be used for the
background music.

Have the _GameMaster GameObject selected in the Hierarchy Window; run the game.
Select the Start Game button. This will load the character customization scene. The
_GameMaster GameObject should still be selected, if not, go ahead and select it from the
Hierarchy Window, do some of the character customization and click on the Save button.

Game Master and Game Mechanics

[180]

The first level should have been loaded with your character and the customization you have
made to your character in the previous step. So visually, your character has retained all of
the customization you have done, and from a data point of view, when you look at the
_GameMaster GameObject in the Inspector Window, you will notice that the data has been
saved properly as shown in the preceding figure.

Summary
Chapter 5 was mostly code. We enhanced the GameMaster Class to handle the game settings
and scene management. We began the chapter by making the GameMaster handle the user
interface, the player character data, and the game settings, which currently is just the
volume for the background music.

We added a new UI element that displays the settings panel for the game. At the moment, it
only contains the main volume control. Next, we added the necessary code in the
UIController class and the GameMaster class to handle the display of the settings
window and also the slider value passed from the UI component to the UIController to
the GameMaster class.

We also made the GameMaster class into a singleton. A singleton in software engineering is
a design pattern that restricts the instantiation of a class to one object. This pattern fits
perfectly for the GameMaster as we only need to have one instance of it active at any given
time throughout the lifespan of the game.

We also looked how to perform scene management. We defined a static class named
SceneName that contains constant string variables identifying the scene references in our
game.

We then took the next step to improve our GameMaster and the internal structure for our
code. We created a new class called LevelController.cs that handles the scene
management who in turn is driven by the GameMaster. We practically took the logic for
level handling from within the GameMaster class and reworked and improved it in the
LevelController class.

Next, we developed an AudioController class that basically manages the audio for our
game. This class also is driven by the GameMaster. By this time, our GameMaster is a lean
script that manages all of the other components.

Game Master and Game Mechanics

[181]

The next big challenge was how to handle the player character data. Specifically speaking,
how to save the character customization data for the player character internally after the
player had customized the character. In order to save the data, we had to modify the PC.cs
class.

We created several enumerations representing each part of the character that could be
customized, such as the shoulder pad, the body type, the weapon type, the helmet type and
so on. We used enumeration to make it easier to reference them within the code.

This approached forced us to make some modifications to the existing character
customization setup that we have had implemented previously. So we had to update the UI
components, to reflect the enumeration defined for each customizable type and we also had
to modify the CharacterCustomization.cs class to handle the new changes.

The CharacterCustomization class implemented a PC type variable to keep track of the
customizations and finally pass the data along to the GameMaster. During the process, we
also improved the case handling of the CharacterCustomization class for default values
and so on.

Finally, we had a test run of the game to double check that everything worked as designed
and implemented.

We created a lot of code in this chapter. In the next chapter, we are going to start building
our inventory system, and yes, that is going to involve more code!

6
Inventory System

The inventory system is one of the most critical components of an RPG. It will be used to
store all important game elements that the player will need in your game environment. This
chapter will guide you on how to create a simple generic Inventory System that can be
utilized and extended as you see fit.

Here is a breakdown of the chapter:

Inventory system
Weighted inventory
Determining item types

Creating inventory items
Creating the prefab
Adding Inventory Item Agent
Inventory items defined as prefabs

Inventory interface
Creating the inventory UI framework
Designing a dynamic item viewer

Adding a Scroll View
Adding elements to PanelItem and Scroll View
Adding txtItemElement dynamically

Building the final inventory item UI
Integrating the UI with the actual inventory system

Hooking the category buttons and displaying the data
Testing the inventory system

Inventory System

[183]

Inventory items and the player character
Applying inventory items
How it looks

There is a lot of work ahead of us in this chapter. Let's get started!

Inventory system
As with everything else we have discussed thus far, designing your Inventory System is
also going to be heavily dependent on your game. There are many different types of
Inventory System mechanics that you can study and choose based on the relevance of it to
your game.

Weighted Inventory
I am going to be leaning towards implementing what is called the Weighted Inventory. In
this type of inventory system, each item or piece of equipment is assigned a numerical
value that represents the weight of the item. This in turn is used to determine how much
inventory the player can carry at any given time during game play. This makes sense for
our RPG, if you think about it.

Consider the following as an example: assume you are a hiker who wants to climb Mount
Ararat. The climb itself is going to require some time and during the journey you will need
to carry with you the necessary equipment to be able to complete the journey. Realistically,
there are several crucial items that you as the hiker will need to carry with you. Here is a
simplified list:

Clothing
Tents
Sleeping bags
Boots
Icebreakers
Food
Light source
Personal items

Inventory System

[184]

Each one of the categories listed has a specific weight associated to it in real life. Therefore,
when you are planning your hike, you will need to plan ahead and see how you can meet
your climbing needs while in the meantime also reducing the number of items and the total
weight of the items you will need to carry on your back during the journey. The actual
logistics are a little more involved, but you get the picture.

It is no different in our RPG. The player character can only carry certain number of items
and or equipment with them for their journey. For instance, the player character cannot be
carrying 20 different types of weapons at any given time! It would be just impossible,
realistically speaking. So it would be a nice touch to put in some realism in the gameplay.

Also, just like in real life, the heavier the equipment one has to carry, the more energy it will
use. So we can also incorporate such a system for our game. For instance, carrying too many
weapons will have a major effect on the player character over a long period of time. First of
all, it will reduce its speed and movement drastically, and secondly, it can have a major
impact on the health of the player. This is where your creativity and design skills will come
into play. You are the master of the game, and you determine how you want to implement
it!

I am going to keep it simple for demonstration's sake!

Determining item types
For starters, we are going to concentrate on some of the basic item types that we would like
to define in our game. These are going to be weapons, armour, and clothing. On top of this,
we can also add the following: health packets, potions, and collectables.

We are going to create three new scripts named BaseItem.cs, InventoryItem.cs and
InventorySystem.cs. The BaseItem class will hold the generic properties for all items,
just like the BaseCharacter class we defined previously. The InventoryItem class will
inherit the BaseItem class and define the item type.

Here is a listing of BaseItem.cs:

using System;
using UnityEngine;
using System.Collections;

[Serializable]
public class BaseItem
{
 public enum ItemCategory

Inventory System

[185]

 {
 WEAPON = 0,
 ARMOUR = 1,
 CLOTHING = 2,
 HEALTH = 3,
 POTION = 4
 }

 [SerializeField]
 private string name;
 [SerializeField]
 private string description;

 public string NAME
 {
 get { return this.name; }
 set { this.name = value; }
 }

 public string DESCRIPTION
 {
 get { return this.description; }
 set { this.description = value; }
 }

}

The main idea in the preceding code is the ItemCategory. At the moment, I have kept it to
only five different types of categories that the Inventory would keep track of.

A category could have multiple item types. For instance, there are
different types of weapons, such as swords, hammers, and spears.

Here is the listing of InventoryItem.cs:

using System;
using UnityEngine;
using System.Collections;

[Serializable]
public class InventoryItem : BaseItem
{
 [SerializeField]
 private ItemCategory category;

Inventory System

[186]

 [SerializeField]
 private float strength;
 [SerializeField]
 private float weight;

 public ItemCategory CATEGORY
 {
 get { return this.category; }
 set { this.category = value; }
 }

 public float STRENGTH
 {
 get { return this.strength; }
 set { this.strength = value; }
 }

 public float WEIGHT
 {
 get { return this.weight; }
 set { this.weight = value; }
 }
}

The preceding code implements more properties or attributes for the items to be used in the
inventory. For now, let's just keep it the way it is. We can always change it in the future.

The next important script is the actual script that will be used to manage the inventory.
There are many ways to implement the logic for the inventory system. Again keeping
things simple, the current script will have five List datatypes of type InventoryItem, one
for each item category.

Here is the listing of InventorySystem.cs:

 using System;
using UnityEngine;
using System.Collections.Generic;

[Serializable]
public class InventorySystem
{
 [SerializeField]
 private List<InventoryItem> weapons = new List<InventoryItem>();
 [SerializeField]
 private List<InventoryItem> armour = new List<InventoryItem>();
 [SerializeField]
 private List<InventoryItem> clothing = new List<InventoryItem>();

Inventory System

[187]

 [SerializeField]
 private List<InventoryItem> health = new List<InventoryItem>();
 [SerializeField]
 private List<InventoryItem> potion = new List<InventoryItem>();

 private InventoryItem selectedWeapon;
 private InventoryItem selectedArmour;

 public InventoryItem SELECTED_WEAPON
 {
 get { return this.selectedWeapon; }
 set { this.selectedWeapon = value; }
 }
 public InventoryItem SELECTED_ARMOUR
 {
 get { return this.selectedArmour; }
 set { this.selectedArmour = value; }
 }

 public InventorySystem()
 {
 this.ClearInventory();
 }

 public void ClearInventory()
 {
 this.weapons.Clear();
 this.armour.Clear();
 this.clothing.Clear();
 this.health.Clear();
 this.potion.Clear();
 }

 // this function will add an inventory item
 public void AddItem(InventoryItem item)
 {
 switch(item.CATEGORY)
 {
 case BaseItem.ItemCategory.ARMOUR:
 {
 this.armour.Add(item);
 break;
 }
 case BaseItem.ItemCategory.CLOTHING:
 {
 this.clothing.Add(item);
 break;
 }

Inventory System

[188]

 case BaseItem.ItemCategory.HEALTH:
 {
 this.health.Add(item);
 break;
 }
 case BaseItem.ItemCategory.POTION:
 {
 this.potion.Add(item);
 break;
 }
 case BaseItem.ItemCategory.WEAPON:
 {
 this.weapons.Add(item);
 break;
 }
 }
 }

 // this function will remove an inventory item
 public void DeleteItem(InventoryItem item)
 {
 switch (item.CATEGORY)
 {
 case BaseItem.ItemCategory.ARMOUR:
 {
 this.armour.Remove(item);
 break;
 }
 case BaseItem.ItemCategory.CLOTHING:
 {
 this.clothing.Remove(item);
 break;
 }
 case BaseItem.ItemCategory.HEALTH:
 {
 this.health.Remove(item);
 break;
 }
 case BaseItem.ItemCategory.POTION:
 {
 this.potion.Remove(item);
 break;
 }
 case BaseItem.ItemCategory.WEAPON:
 {
 this.weapons.Remove(item);
 break;
 }

Inventory System

[189]

 }
 }
}

We won't have direct access to the lists that will be used to contain the inventory items. For
now, we have implemented two functions, AddItem() and DeleteItem(), which will
handle the two basic features of the inventory, adding an item to it and removing an item
from it. These two functions will take an InventoryItem object and, based on the
ItemCategory, be added or removed from the appropriate list within the inventory.

The basics are in place. Now we will need to integrate this with the GameMaster.cs script.
To do so, we will need to create a new variable of type InventorySystem named
INVENTORY and initialized in the Awake() function of the GameMaster.cs script.

The following listing will illustrate just the new addition:

 // reference to player Character Customization
 public PC PC_CC;
 public InventorySystem INVENTORY;

 public GameObject START_POSITION;

 public GameObject CHARACTER_CUSTOMIZATION;

 public LevelController LEVEL_CONTROLLER;
 public AudioController AUDIO_CONTROLLER;

 // Ref to UI Elements ...
 public bool DISPLAY_SETTINGS = false;
 public UIController UI;

 void Awake()
 {
 // simple singleton
 if (instance == null)
 {
 instance = this;

 // initialize Level Controller
 instance.LEVEL_CONTROLLER = new LevelController();

 // initialize Audio Controller
 instance.AUDIO_CONTROLLER = new AudioController();
 instance.AUDIO_CONTROLLER.AUDIO_SOURCE =
GameMaster.instance.GetComponent<AudioSource>();
 instance.AUDIO_CONTROLLER.SetDefaultVolume();

Inventory System

[190]

 // initialize Inventory System
 instance.INVENTORY = new InventorySystem();
 InventoryItem tmp = new InventoryItem();
 tmp.CATEGORY = BaseItem.ItemCategory.CLOTHING;
 tmp.NAME = "Testing";
 tmp.DESCRIPTION = "Testing the item type";
 tmp.STRENGTH = 0.5f;
 tmp.WEIGHT = 0.2f;
 instance.INVENTORY.AddItem(tmp);
 }
 else if (instance != this)
 {
 Destroy(this);
 }

 // keep the game object when moving from
 // one scene to the next scene
 DontDestroyOnLoad(this);
 }

Notice that we are actually creating an InventoryItem and inserting it into the
InventorySystem for testing purposes. Another great feature is the fact that you can see
the InventorySystem within the designer, in the Inspector Window, since we have
serialized the classes and the fields:

Inventory System

[191]

The preceding screenshot displays the Inventory System as seen in the Inspector Window
when you select the GameMaster object. When you run the game to test it, you will see the
following update:

Notice in the preceding screenshot how the data reflects appropriately in the Inventory
System as expected! The Clothing list has now increased its size to 1, and the
InventoryItem within the list is properly stored and displayed for testing and debugging.
We have one Clothing item named Testing, with the given description and a Strength of 0.5
and a Weight of 0.2.

So far so good, now we need to actually create the items that will be used to visually
represent our Inventory Items! This is discussed in the next section.

Inventory System

[192]

Creating inventory item
It is now time to actually create the items we are going to use for our inventory system. I
will be creating one item type from each item category to keep things simple. This section
will really be again highly dependent on how you have modeled your character models. In
my particular model, as discussed earlier in the book, all of the character's essential parts
are embedded within the fbx. In this case, you will need to navigate down your model's
hierarchy and extract the mesh for the specific armour or weapon or anything else that you
are going to be using for the inventory:

You can also use independent models representing your inventory items
that may or may not be related to your character model's mesh. These
items are just used for visual representation within the world, so that the
player can pick them up.

If you recall from the character customization scene, we have already gone through the
model and identified the parts we want to have the player be able to enable or disable based
on the selection they make through the interface.

Inventory System

[193]

Creating the Prefab
If you have not already done so, go ahead and create a folder in your Project Window
named Prefabs. Within this folder, go ahead and create a new folder and name it
InventoryItems, and then a subfolder named ShoulderPads. You are welcome to use a
different naming and folder structure if you choose, as long as you are comfortable with it
and it is organized for you to work with.

To create a prefab, you simply need to take an existing GameObject that is present in the
Scene Window and drag it into the Project Window. To keep things organized, we will be
using the structure defined in the previous paragraph. So you will need to navigate to the
ShoulderPads folder in the Project Window and then perform the following: simply drag
one of the shoulder pad meshes from your model and drop it into the ShoulderPads folder:

Inventory System

[194]

Observe, when you create a prefab, the prefab will be an exact copy of the GameObject in
the active scene! In this case, my mesh is disabled in the scene, therefore when I create a
prefab of the mesh, it will also be disabled! Since it is disabled, when you drag the newly
created prefab into the scene as a new GameObject, it will be invisible; you will need to
enable it.

Adding Inventory Item Agent
We need a means to interact with our inventory items. In order to do this, we will need to
create a new script that will handle our interaction with the inventory items during game
play. This will be coded in the InventoryItemAgent.cs script. At the moment, the script
will just enable us to interact with the InventoryItem object through the IDE.

Here is the listing of the script:

using UnityEngine;
using System.Collections;

public class InventoryItemAgent : MonoBehaviour
{
 public InventoryItem ItemDescription;
}

Inventory System

[195]

Very simply, in order for us to be able to interact with the GameObject, we would need to
use a script that inherits MonoBehaviour. Go ahead and attach this script to your prefab.
Now you can easily set up your inventory items visually:

In the preceding screenshot, you can see that we have created a GameObject from the
prefab and using the InventoryItemAgent component, we have access to the properties of
the InventoryItem object. Utilizing this concept, you can now create your prefabs for the
different types of inventory items.

If you are applying your changes in the scene window, make sure you
apply them to the original prefab so that it keeps it in memory.
Caution: When you apply changes to a prefab, all instances of the prefab
get updated with the new attributes.

Inventory System

[196]

At the moment, we have implemented an easy way to define our inventory items, but we
still need to implement use interaction with the items. The logic for the interaction will be
implemented in the InventoryItemAgent.cs script. First, we need to identify who we are
colliding with; in this case, we want to make sure it is the player that is going to collect the
item. Second, we need to store the data into the GameMaster and also remove the
GameObject from the active scene. The last two parts will be handled by the GameMaster,
as you will see.

Here is the new code listing for InventoryItemAgent.cs:

using UnityEngine;
using System.Collections;

public class InventoryItemAgent : MonoBehaviour
{
 public InventoryItem ItemDescription;

 public void OnTriggerEnter(Collider c)
 {
 // make sure we are colliding with the player
 if(c.gameObject.tag.Equals("Player"))
 {
 // Make a copy of the Inventory Item Object
 InventoryItem myItem = new InventoryItem();
 myItem.CopyInventoryItem(this.ItemDescription);

 // Add the item to our inventory
 GameMaster.instance.INVENTORY.AddItem(myItem);

 // Destroy the GameObject from the scene
 GameMaster.instance.RPG_Destroy(this.gameObject);
 }
 }

}

I have created a new function in the InventoryItem.cs script called
CoptInventoryItem(). This function is used to make a copy of one InventoryItem
object into another one. Here is the code for the newly added function in the
InventoryItem class:

 public void CopyInventoryItem(InventoryItem item)
 {
 this.CATEGORY = item.CATEGORY;
 this.DESCRIPTION = item.DESCRIPTION;
 this.NAME = item.NAME;

Inventory System

[197]

 this.STRENGTH = item.STRENGTH;
 this.WEIGHT = item.WEIGHT;
 }

We already saw how to add an item to the inventory using the GameMaster. However, we
needed to add a new function that would handle the destruction of GameObjects in our
game. This is done by the RPG_Destroy() function.

You cannot use Destroy(), DestroyImmediate(), or
DestroyObject() since they are part of all GameObjects in Unity.
Therefore, be cautious with your naming convention within your own
classes.

Here is the listing of the new function:

 public void RPG_Destroy(GameObject obj)
 {
 Destroy(obj);
 }

One final component that needs to be added to your prefabs representing the inventory
items is a Collider:

Inventory System

[198]

I used a Box Collider to keep things simple. A collider can be added by selecting Add
Component | Physics | Box Collider from the Inspector Window.

Inventory Items Defined as Prefabs
The following screenshot will demonstrate some of the inventory item prefabs I have
created for demonstration:

The key for all of this to work is to make sure that your prefabs have the
InventoryItemAgent.cs script as well as a Collider component attached to the prefabs.
Then you will need to provide the Inventory Item data through the IDE, uniquely
identifying each one.

Inventory System

[199]

The following table lists the data for each inventory item defined:

Prefab Name Description Category Strength Weight

Helmet HL01 Brass Helmet with Two Horns ARMOUR 0.2 0.2

HL02 Brass Helmet Face Protection ARMOUR 0.3 0.25

HL03 Bronze Helmet Protecting Face ARMOUR 0.3 0.3

HL04 Bronze Helmet ARMOUR 0.2 0.25

Shield SL01 Iron Shield ARMOUR 0.3 0.3

SL02 Wooden Shield ARMOUR 0.2 0.2

Shoulder Pads SP01 Shoulder Pad 01 ARMOUR 0.1 0.2

SP02 Shoulder Pad 02 ARMOUR 0.1 0.2

SP03 Shoulder Pad 03 ARMOUR 0.15 0.25

SP04 Shoulder Pad 04 ARMOUR 0.2 0.25

Weapons Axe1 Single Head WEAPON 0.2 0.1

Axe2 Double Head WEAPON 0.25 0.2

Club1 Wooden Club WEAPON 0.2 0.1

The data again is arbitrary; you decide what best suits your game and game design.

Inventory Interface
It is now time to think about how we are going to visualize our inventory during game
play. Creating a user interface (UI) for any game is a challenging task. You need to have a
balanced approach about the amount of information you want to display on the screen at
playtime without interfering with the game play. In the meantime, you want to make sure
that the player has the most crucial and important information necessary to complete their
mission at hand.

With that said, let's see how we can design a simple user interface to enable the player with
the basics of interacting with the inventory system. Here is a list of minimum features that
the player should be able to perform:

Display the Inventory at any time during game play
Navigate based on category

Inventory System

[200]

See what items are listed under each category
Be able to remove an item from the inventory
Be able to consume an item from the inventory
See what inventory items are already in use by the player

This list will give us a good start for implementing our inventory interface. Let's start by
identifying the categories that will need to be displayed. The categories are defined as an
enum named ItemCategory in the BaseItem class.

We have the following: weapons, armour, clothing, health, and potions:

The preceding diagram is a concept I am leaning towards for the implementation of the
inventory interface. The interface can be constructed by utilizing the following UI elements:

Buttons
Panels
Text
Images

Inventory System

[201]

Each category will have a button and there will be one main panel that will contain the list
of items per category as illustrated in the preceding diagram. Each item will be contained in
its own panel that will contain an image of the inventory item, the item description, and
two buttons that can be used to add or remove the item from the inventory system.

Creating the inventory UI framework
Let's start by first implementing the initial framework for our inventory system graphical
interface. In the main scene of your project, go ahead and create a new Canvas GameObject
if you have not done so already.

To do so, right-click on the Hierarchy Window and select UI | Panel. This will automatically
create a Canvas GameObject and a Panel UI Element as a child to the canvas.

Rename this panel PanelInventory. This will be the main panel that will contain everything
else. Now, let's go ahead and start building the buttons that will represent our main
categories.

Similarly, right-click on the PanelInventory GameObject and select UI | Button. This will
make sure that the newly created button becomes a child of the PanelInventory. If, for
whatever reason, this is not the case in the Hierarchy Window after the creation of the
button(s), simply drag the newly created button(s) under the PanelInventory panel. Do this
for all the five categories. Rename the buttons appropriately, for example,
butWeaponsCategory and so on.

Change the caption of the button so that it reflects the function of the button. Also, rename
the Text element to something like the following: txtWeaponsCategory and so on.

Finally, add a new Panel element to the PanelInventory again by selecting the
PanelInventory GameObject and right-clicking and selecting UI | Panel. Rename the newly
created panel PanelCategory:

Inventory System

[202]

Your inventory user interface should look something like the screenshot shown. Before we
get more involved, let's go ahead and hook up some of the basics for showing and hiding
the inventory interface for the player. To do this, we will need to modify the
UIController.cs, LevelController.cs, and also the GameMaster.cs scripts.

I will not be listing the whole source file, as we will do that later on in the chapter. These are
the changes for each script for now:

UIController.cs: Added a new function named DisplayInventory() and a
new variable to reference the inventory canvas named InventoryCanvas:

 public void DisplayInventory()
 {
this.InventoryCanvas.gameObject.SetActive(GameMaster.instance.DISPLAY_INVEN
TORY);
 Debug.Log("Display Inventory Function");
 }

Inventory System

[203]

LevelController.cs: Updated the OnlevelWasLoaded() function to assign
the uiController GameObject to the GameMaster instance if one is present:

 if(GameObject.FindGameObjectWithTag("UI"))
 {
 GameMaster.instance.UI =
GameObject.FindGameObjectWithTag("UI").GetComponent<UIController>();
 }

GameMaster.cs: Modified the Update() function to check and see if the J key
was pressed and released. This in turn toggled a Boolean variable to see if we are
supposed to show or hide the inventory interface:

 void Update()
 {
 // only when we are in the game level
 if(instance.LEVEL_CONTROLLER.CURRENT_SCENE.name==SceneName.Level_1)
 {
 if (Input.GetKeyUp(KeyCode.J))
 {
 Debug.Log("Pressing J");
 instance.DISPLAY_INVENTORY = !instance.DISPLAY_INVENTORY;
 instance.UI.DisplayInventory();
 }
 }
 }

If you test your scene from the main menu, you will be able to test out the interface and
toggle it on and off.

Don't forget that you will need to disable the Canvas for the Inventory
System at design time or at runtime when the game loads initially.

Inventory System

[204]

Designing a Dynamic Item Viewer
The next challenge for us is to create a method to dynamically populate the inventory items
and displaying them properly on the user interface. We are going to use two new UI
elements that we have not used before. We will be using a ScrollView to give us the ability to
scroll through the items when needed. We are also going to take a look at some of the
Layout UI elements that are available out of the box in Unity 5.x.

Let's first get the scroll view set up and also be able to add a simple UI prefab to the scroll
view. Once this is done, we can go ahead and enhance the UI prefab to handle what we
have outlined in the previous section.

Adding a Scroll View
We need to make a way to display multiple inventory items on the screen. We now need to
learn how to create a scrollable view for the Inventory UI:

Inventory System

[205]

Go to the scene where you have created your Inventory UI, and select PanelCategory in the
Canvas. Right-click and select UI | Scroll View to add a scroll view UI element. You should
now have a scroll view UI element with the associated children under your PanelCategory
panel. The children are going to be Viewport, Scrollbar Horizontal, and Scrollbar Vertical.

Make your adjustment to the Scroll View UI element before you delete the
children.

We are going to make some modifications to the default Scroll View. Go ahead and delete
the following from the Scroll View: the Scrollbar Horizontal, Scrollbar Vertical, and Viewport
child elements. After you are done, your screen should look something like in the
screenshot shown.

Inventory System

[206]

Next, we need to add a Panel element as a child to our Scroll View. Go ahead and select the
scroll view and right-click and select UI | Panel. Rename the newly added panel
PanelItem. We need to add two Layout components to our PanelItem. To do this, select the
PanelItem, and from the Inspector Window, select Add Component | Layout | Vertical
Layout Group and once more select Add Component | Layout | Content Size Filter.

Go ahead and modify the following attributes under the Vertical Layout Group
components. Set the Left, Right, Top and Bottom Padding to 3. Set the Spacing to , change
the Child Alignment to Upper Left, and check the Child Force Expand to True for both
Width and Height.

For the Content Size Filter component, set the Horizontal Fit to Unconstrained and the
Vertical Fit to Min Size.

Finally, in the Rect Transform component, change the Anchor Point to Top Center, and
modify the Pos Y to -10.

At this point, we have the basic framework in place. The next step it to populate our newly
created ScrollView!

Adding Elements to PanelItem and Scroll View
For starters, let's go ahead and add a Text element under the PanelItem panel. Again, select
the PanelItem element and right-click and select UI | Text. Next, select the text element and
rename it txtItemElement. We need to add a new component to the Text element; from the
Inspector Window, go ahead and select Add Component | Layout | Layout Element.

Inventory System

[207]

Modify the Min Height attribute of the Layout Element component to 20:

We need a means to access and modify the Text attribute of the new Text UI element. In
order to do this, we need to create a new script called InventoryItemUI.cs. The code will
just have a public variable that will reference the Text element. Here is the listing:

using UnityEngine;
using UnityEngine.UI;

public class InventoryItemUI : MonoBehaviour {
 public Text txtItemElement;
}

Finally, drag and drop the Text element from the Hierarchy Window into the
TextItemElement attribute of the InventoryItemUI component attached to the
txtItemElement object. Refer to the preceding screenshot.

Inventory System

[208]

The script is used to self-reference. We will use it to modify the text
component of the Text UI element.

Now we will need to create a Prefab of the txtItemElement by dragging and dropping it
into a designated folder. I have created a new folder under my Prefabs folder, named it UI,
and created the prefab in that folder. Refer to the previous screenshot.

You can now delete the txtItemElement from the Hierarchy Window under the PanelItem
object. We will be adding them dynamically during runtime.

There is one last configuration you will need to do before we move forward. You will need
to add a Mask component to the Scroll View UI element. Select the Scroll View from the
Hierarchy Window and from the Inspector Window, select Add Component | UI | Mask.
After the addition of the Mask component, make sure that the Show Mask Graphics
attribute is unchecked.

Adding txtItemElement Dynamically
Now it is time to add our inventory item placeholder dynamically to the PanelItem UI
element. To do so, we will use the UIController.cs scrip. Go ahead and open up the
scrip and add the following variable to the class:

 public Transform PanelItem;
 public GameObject InventoryItemElement;

In the designer, you will need to assign the PanelItem UI element from the Canvas
GameObject and the txtItemElement prefab from the prefab folder.

Next, we are going to modify the Update() function so that when we press the H key on
the keyboard, it will go ahead and instantiate a new InventoryItemElement and make it
a child element of the PanelItem object.

Here is the listing of the code:

 public void Update()
 {
 if(Input.GetKeyUp(KeyCode.H))
 {
 GameObject newButton =
GameObject.Instantiate(this.InventoryItemElement) as GameObject;
 InventoryItemUI txtItem = newButton.GetComponent<InventoryItemUI>();
 txtItem.txtItemElement.text = string.Format("Adding New Item {0}",

Inventory System

[209]

Time.deltaTime);
 newButton.transform.SetParent(this.PanelItem);
 }
 }

The preceding code listing simply instantiates the prefab and makes it a child of the
PanelItem element. We are also changing the caption of the element and placing it with a
timestamp to see the uniqueness of each UI element.

The outcome is shown in the following screenshot:

At this point, we have put together the main elements to have our inventory interface list
items dynamically and be able to scroll through them.

Inventory System

[210]

Building the Final Inventory Item UI
To create the actual Inventory Item user interface, we are going to need to use several UI
elements. We will need a panel to be the container of the item. Within the Panel, we are
going to need to use an Image, a Text, and two Button UI elements:

I will not be going through the steps of how to put the Panel together. You
should know how to create user interfaces by now.
Just make sure that you add the Layout Element component and Inventory
Item UI script to the Panel that will be the base for the Inventory Item.

The preceding screenshot illustrates the UI component that has been developed for
displaying the Inventory Item. Since the UI component has been modified, we also have to
update the InventoryItemUI.cs script to contain a reference to all of the new UI elements
in the Panel.

Inventory System

[211]

Here is the listing of the new InventoryItemUI.cs:

using UnityEngine;
using UnityEngine.UI;

public class InventoryItemUI : MonoBehaviour {
 public Image imgItem;
 public Text txtItemElement;
 public Button butAdd;
 public Button butDelete;
}

We also need to update the UIController.cs script to handle the new prefab accordingly.

Here is the listing for the new UI prefab in UIController.cs:

 public void Update()
 {
 if(Input.GetKeyUp(KeyCode.H))
 {
 GameObject newItem =
GameObject.Instantiate(this.InventoryItemElement) as GameObject;
 InventoryItemUI txtItem = newItem.GetComponent<InventoryItemUI>();
 txtItem.txtItemElement.text = string.Format("Adding New Item {0}",
Time.deltaTime);

 // button triggers
txtItem.butAdd.GetComponent<Button>().onClick.AddListener(() => {
 Debug.Log(string.Format("You have clicked button add for {0}",
txtItem.txtItemElement.text));
 });

 txtItem.butDelete.GetComponent<Button>().onClick.AddListener(() =>
 {
 Debug.Log(string.Format("You have clicked button delete for {0}",
txtItem.txtItemElement.text));
 Destroy(newItem);
 Debug.Log("Item removed from inventory ...");
 });

 newItem.transform.SetParent(this.PanelItem);
 }
 }

In the preceding listing, the main concept I want to point out is the implementation of the
onClick() event handler for the buttons within the prefab.

Inventory System

[212]

Since we are dynamically generating our UI and hence the buttons, we need to be able to
trigger the onClick() function somewhere; this is done by adding a listener as shown in
the code.

For now, when you click the butAdd button, you will get an output on the Console
Window with the appropriate caption. When you click the butDelete button, you will get
another output on the Console Window with the appropriate caption. Then the item will be
destroyed, in other words, removed from the inventory.

Integrating the UI with the actual inventory
system
We have seen and implemented the concepts necessary to make our Inventory System UI
work properly. Now it is time to actually fill the user interface with the actual data that is
stored in the GameMaster.

Hooking the category buttons and displaying the
data
Using the UIController.cs script, we are going to create five new methods that will
handle the proper visualization of our Inventory System. We are going to add the following
five functions:

DisplayWeaponsCategory()

DisplayArmourCategory()

DisplayClothingCategory()

DisplayHealthCategory()

DisplayPotionsCategory()

We also need to clear the existing inventory items from the panel when the user switches
from one category to the next. This will require a private function named
ClearInventoryItemPanel() that will just do that.

Inventory System

[213]

Here is the listing for the new UIController.cs script:

using UnityEngine;
using UnityEngine.UI;
using System.Collections;
using System.Collections.Generic;

public class UIController : MonoBehaviour
{
 public Canvas SettingsCanvas;
 public Slider ControlMainVolume;

 // the canvas object for inventory system
 public Canvas InventoryCanvas;

 public Transform PanelItem;
 public GameObject InventoryItemElement;

 public void Update()
 {
 }

 public void DisplaySettings()
 {
 GameMaster.instance.DISPLAY_SETTINGS =
!GameMaster.instance.DISPLAY_SETTINGS;
this.SettingsCanvas.gameObject.SetActive(GameMaster.instance.DISPLAY_SETTIN
GS);
 }

 public void MainVolume()
 {
 GameMaster.instance.MasterVolume(ControlMainVolume.value);
 }

 public void StartGame()
 {
 GameMaster.instance.StartGame();
 }

 public void LoadLevel()
 {
 if (GameObject.FindGameObjectWithTag("BASE"))
 {
 GameMaster.instance.PC_CC =
GameObject.FindGameObjectWithTag("BASE").GetComponent<CharacterCustomizatio
n>().PC_CC;
 }

Inventory System

[214]

 GameMaster.instance.LEVEL_CONTROLLER.LEVEL = 1;
 GameMaster.instance.LoadLevel();
 }

 public void DisplayInventory()
 {
this.InventoryCanvas.gameObject.SetActive(GameMaster.instance.DISPLAY_INVEN
TORY);
 Debug.Log("Display Inventory Function");
 }

 private void ClearInventoryItemsPanel()
 {
 while(this.PanelItem.childCount>0)
 {
 Transform t = this.PanelItem.GetChild(0).transform;
 t.parent = null;
 Destroy(t.gameObject);
 }
 }

 public void DisplayWeaponsCategory()
 {
 if(GameMaster.instance.DISPLAY_INVENTORY)
 {
 this.ClearInventoryItemsPanel();

 foreach (InventoryItem item in GameMaster.instance.INVENTORY.WEAPONS)
 {
 GameObject newItem =
GameObject.Instantiate(this.InventoryItemElement) as GameObject;
 InventoryItemUI txtItem = newItem.GetComponent<InventoryItemUI>();
 txtItem.txtItemElement.text =
 string.Format("Name: {0}, Description: {1}, Strength: {2},
Weight: {3}",
 item.NAME,
 item.DESCRIPTION,
 item.STRENGTH,
 item.WEIGHT);

 // button triggers
 txtItem.butAdd.GetComponent<Button>().onClick.AddListener(() =>
 {
 Debug.Log(string.Format("You have clicked button add for {0}",
txtItem.txtItemElement.text));
 });

 txtItem.butDelete.GetComponent<Button>().onClick.AddListener(() =>

Inventory System

[215]

 {
 Debug.Log(string.Format("You have clicked button delete for {0}",
txtItem.txtItemElement.text));
 Destroy(newItem);
 });

 newItem.transform.SetParent(this.PanelItem);
 }

 }
 }

 public void DisplayArmourCategory()
 {
 if (GameMaster.instance.DISPLAY_INVENTORY)
 {
 this.ClearInventoryItemsPanel();

 foreach (InventoryItem item in GameMaster.instance.INVENTORY.ARMOUR)
 {
 GameObject newItem =
GameObject.Instantiate(this.InventoryItemElement) as GameObject;
 InventoryItemUI txtItem = newItem.GetComponent<InventoryItemUI>();
 txtItem.txtItemElement.text =
 string.Format("Name: {0}, Description: {1}, Strength: {2},
Weight: {3}",
 item.NAME,
 item.DESCRIPTION,
 item.STRENGTH,
 item.WEIGHT);

 // button triggers
 txtItem.butAdd.GetComponent<Button>().onClick.AddListener(() =>
 {
 Debug.Log(string.Format("You have clicked button add for {0}",
txtItem.txtItemElement.text));
 });

 txtItem.butDelete.GetComponent<Button>().onClick.AddListener(() =>
 {
 Debug.Log(string.Format("You have clicked button delete for {0}",
txtItem.txtItemElement.text));
 Destroy(newItem);
 });

 newItem.transform.SetParent(this.PanelItem);
 }
 }

Inventory System

[216]

 }

 public void DisplayClothingCategory()
 {
 if (GameMaster.instance.DISPLAY_INVENTORY)
 {
 this.ClearInventoryItemsPanel();

 foreach (InventoryItem item in
GameMaster.instance.INVENTORY.CLOTHING)
 {
 GameObject newItem =
GameObject.Instantiate(this.InventoryItemElement) as GameObject;
 InventoryItemUI txtItem = newItem.GetComponent<InventoryItemUI>();
 txtItem.txtItemElement.text =
 string.Format("Name: {0}, Description: {1}, Strength: {2},
Weight: {3}",
 item.NAME,
 item.DESCRIPTION,
 item.STRENGTH,
 item.WEIGHT);

 // button triggers
 txtItem.butAdd.GetComponent<Button>().onClick.AddListener(() =>
 {
 Debug.Log(string.Format("You have clicked button add for {0}",
txtItem.txtItemElement.text));
 });

 txtItem.butDelete.GetComponent<Button>().onClick.AddListener(() =>
 {
 Debug.Log(string.Format("You have clicked button delete for {0}",
txtItem.txtItemElement.text));
 Destroy(newItem);
 });

 newItem.transform.SetParent(this.PanelItem);
 }
 }
 }

 public void DisplayHealthCategory()
 {
 if (GameMaster.instance.DISPLAY_INVENTORY)
 {
 this.ClearInventoryItemsPanel();

 foreach (InventoryItem item in GameMaster.instance.INVENTORY.HEALTH)

Inventory System

[217]

 {
 GameObject newItem =
GameObject.Instantiate(this.InventoryItemElement) as GameObject;
 InventoryItemUI txtItem = newItem.GetComponent<InventoryItemUI>();
 txtItem.txtItemElement.text =
 string.Format("Name: {0}, Description: {1}, Strength: {2},
Weight: {3}",
 item.NAME,
 item.DESCRIPTION,
 item.STRENGTH,
 item.WEIGHT);

 // button triggers
 txtItem.butAdd.GetComponent<Button>().onClick.AddListener(() =>
 {
 Debug.Log(string.Format("You have clicked button add for {0}",
txtItem.txtItemElement.text));
 });

 txtItem.butDelete.GetComponent<Button>().onClick.AddListener(() =>
 {
 Debug.Log(string.Format("You have clicked button delete for {0}",
txtItem.txtItemElement.text));
 Destroy(newItem);
 });

 newItem.transform.SetParent(this.PanelItem);
 }

 }
 }

 public void DisplayPotionsCategory()
 {
 if (GameMaster.instance.DISPLAY_INVENTORY)
 {
 this.ClearInventoryItemsPanel();

 foreach (InventoryItem item in GameMaster.instance.INVENTORY.POTIONS)
 {
 GameObject newItem =
GameObject.Instantiate(this.InventoryItemElement) as GameObject;
 InventoryItemUI txtItem = newItem.GetComponent<InventoryItemUI>();
 txtItem.txtItemElement.text =
 string.Format("Name: {0}, Description: {1}, Strength: {2},
Weight: {3}",
 item.NAME,
 item.DESCRIPTION,

Inventory System

[218]

 item.STRENGTH,
 item.WEIGHT);

 // button triggers
 txtItem.butAdd.GetComponent<Button>().onClick.AddListener(() =>
 {
 Debug.Log(string.Format("You have clicked button add for {0}",
txtItem.txtItemElement.text));
 });

 txtItem.butDelete.GetComponent<Button>().onClick.AddListener(() =>
 {
 Debug.Log(string.Format("You have clicked button delete for {0}",
txtItem.txtItemElement.text));
 Destroy(newItem);
 });

 newItem.transform.SetParent(this.PanelItem);
 }

 }
 }

}

We had to also make some modifications to the InventorySystem.cs script to make it
possible for us to access properties storing the data easier.

Here is the new listing of the script:

using System;
using UnityEngine;
using System.Collections.Generic;

[Serializable]
public class InventorySystem
{
 [SerializeField]
 private List<InventoryItem> weapons = new List<InventoryItem>();
 [SerializeField]
 private List<InventoryItem> armour = new List<InventoryItem>();
 [SerializeField]
 private List<InventoryItem> clothing = new List<InventoryItem>();
 [SerializeField]
 private List<InventoryItem> health = new List<InventoryItem>();
 [SerializeField]
 private List<InventoryItem> potion = new List<InventoryItem>();

Inventory System

[219]

 public List<InventoryItem> WEAPONS
 {
 get { return this.weapons; }
 }

 public List<InventoryItem> ARMOUR
 {
 get { return this.armour; }
 }

 public List<InventoryItem> CLOTHING
 {
 get { return this.clothing; }
 }

 public List<InventoryItem> HEALTH
 {
 get { return this.health; }
 }

 public List<InventoryItem> POTIONS
 {
 get { return this.potion; }
 }

 //[SerializeField]
 private InventoryItem selectedWeapon;
 //[SerializeField]
 private InventoryItem selectedArmour;

 public InventoryItem SELECTED_WEAPON
 {
 get { return this.selectedWeapon; }
 set { this.selectedWeapon = value; }
 }
 public InventoryItem SELECTED_ARMOUR
 {
 get { return this.selectedArmour; }
 set { this.selectedArmour = value; }
 }

 public InventorySystem()
 {
 this.ClearInventory();
 }

 public void ClearInventory()
 {

Inventory System

[220]

 this.weapons.Clear();
 this.armour.Clear();
 this.clothing.Clear();
 this.health.Clear();
 this.potion.Clear();
 }

 // this function will add an inventory item
 public void AddItem(InventoryItem item)
 {
 switch(item.CATEGORY)
 {
 case BaseItem.ItemCategory.ARMOUR:
 {
 this.armour.Add(item);
 break;
 }
 case BaseItem.ItemCategory.CLOTHING:
 {
 this.clothing.Add(item);
 break;
 }
 case BaseItem.ItemCategory.HEALTH:
 {
 this.health.Add(item);
 break;
 }
 case BaseItem.ItemCategory.POTION:
 {
 this.potion.Add(item);
 break;
 }
 case BaseItem.ItemCategory.WEAPON:
 {
 this.weapons.Add(item);
 break;
 }
 }
 }

 // this function will remove an inventory item
 public void DeleteItem(InventoryItem item)
 {
 switch (item.CATEGORY)
 {
 case BaseItem.ItemCategory.ARMOUR:
 {
 this.armour.Remove(item);

Inventory System

[221]

 break;
 }
 case BaseItem.ItemCategory.CLOTHING:
 {
 this.clothing.Remove(item);
 break;
 }
 case BaseItem.ItemCategory.HEALTH:
 {
 this.health.Remove(item);
 break;
 }
 case BaseItem.ItemCategory.POTION:
 {
 this.potion.Remove(item);
 break;
 }
 case BaseItem.ItemCategory.WEAPON:
 {
 this.weapons.Remove(item);
 break;
 }
 }
 }

}

Notice that I have removed the code from the Update() function in the UIController.cs script
as it was only for testing reasons.

Inventory System

[222]

Testing the Inventory System
For testing purposes, I have placed a number of Inventory Item Prefabs I have created
earlier in this chapter:

Inventory System

[223]

Start the game from the Main Menu and go through the Character Customization scene to
save the character player and start the game. Once you are in the playable scene, go ahead
and collect a few of the items that have been placed over the scene:

Notice in the preceding screenshot that I have selected the _GameMaster GameObject to
display the INVENTORY data in the Inspector Window.

We have picked up two weapon types and two armour types. The weapon items we have
picked up are axe1 and club1. The armour items we have picked up are HL02 and SP01 as
indicated in the Inspector Window.

Notice that in the Game Window, when we bring up the Inventory Window for display and
click the weapons button, we get two listings. The listing displays the proper data for each
inventory item in the category.

To list the armour items in the inventory, we will click the armour button. The following
screenshot will display the items in the armour category in the inventory based on our data:

Inventory System

[224]

To illustrate the onClick() event for the add button, please see the following screenshot
from the Console Window:

Inventory System

[225]

We have come a long way. Let's take a moment to put things in perspective.

We first created the following scripts to lay the foundation for our
Inventory System in the game:

BaseItem.cs
InventoryItem.cs
InventoryItemAgent.cs
InventorySystem.cs

The next step was to create the prefab for each inventory item and add to
it the InventoryItemAgent.cs script. This would in turn allow us to
assign the necessary data to identify the prefab as an inventory item
during game play.

Next, we started work on the design and development of the user interface
for the inventory system. We created a sketch of how we would like the
inventory window to look, and implemented the framework using the
build in UI architecture.
Slowly adding to the UI and applying different concepts and new
elements, we built the final user interface for the inventory system.

Finally, we used the prefabs to test the complete addition and removal of
the inventory items from the user interface.

The next challenge we face is how to actually apply the inventory items to the player
character.

Inventory items and the Player Character
Now that we have seen how to create the Inventory System, we need to be able to utilize it
during game play to apply changes to our player character. In this section, we are going to
examine how to do just that!

Here are some of the new features we need to work on:

Applying selected inventory items to the player character
Performing accounting on both the player character and the inventory system
Updating the game state accordingly

Inventory System

[226]

Applying inventory items
We need to make some design decisions about how we are going to handle applying the
inventory items to the player character, and in turn how the system will handle the event.
For instance, let's assume the player character has acquired several weapons, let's say
weapons A, B, and C.

Let's also assume that, initially, the player does not have any active weapons. Now, the
player selects to activate weapon A. For this scenario, we would just use the inventory item
data and activate weapon A for the player, taking into consideration all of the accounting
that comes with the weapon.

Now, the player wants to change his/her weapon to B because it is more powerful and they
would need it to defeat the boss. Since the player already has Weapon A active, what are we
going to do with it before we activate Weapon B? Do we put it back into the game world, or
do we put it back into our inventory for later consumption?

In our case, once you have an item in the inventory, it will stay with you until you actually
delete it from the inventory, in which case it will be destroyed. We need to make a few code
modifications and also some prefab modifications to have everything working together.

Let's start with the InventoryItem.cs script. We are going to add new data to store the type of
the Inventory Item. This is necessary because we have a category and within the category
we have different types of items. This is specifically true for the Armour category! For
instance, we have a Helmet, a Shield, a Shoulder Pad, and so on.

Here is the code listing:

using System;
using UnityEngine;
using System.Collections;

[Serializable]
public class InventoryItem : BaseItem
{
 public enum ItemType
 {
 HELMET = 0,
 SHIELD = 1,
 SHOULDER_PAD = 2,
 KNEE_PAD = 3,
 BOOTS = 4,
 WEAPON = 5
 }

Inventory System

[227]

 [SerializeField]
 private ItemCategory category;
 [SerializeField]
 private ItemType type;
 [SerializeField]
 private float strength;
 [SerializeField]
 private float weight;

 public ItemCategory CATEGORY
 {
 get { return this.category; }
 set { this.category = value; }
 }

 public ItemType TYPE
 {
 get { return this.type; }
 set { this.type = value; }
 }

 public float STRENGTH
 {
 get { return this.strength; }
 set { this.strength = value; }
 }

 public float WEIGHT
 {
 get { return this.weight; }
 set { this.weight = value; }
 }

 public void CopyInventoryItem(InventoryItem item)
 {
 this.CATEGORY = item.CATEGORY;
 this.TYPE = item.TYPE;
 this.DESCRIPTION = item.DESCRIPTION;
 this.NAME = item.NAME;
 this.STRENGTH = item.STRENGTH;
 this.WEIGHT = item.WEIGHT;
 }
}

Inventory System

[228]

When you make the update to your script, make sure to go back into the IDE and select the
proper type for each prefab we have created, to represent your inventory items:

You will need to update the Type field for each prefab you have created for your inventory
items.

We would also need to update the PC.cs script. We are going to make private the original
data variables and create public properties to access them. This way, if we need to perform
any extra work prior to or after setting or getting the property value, we can do so easily.

Here is the listing for the PC.cs script:

using System;
using UnityEngine;

public delegate void WeaponChangedEventHandler(PC.WEAPON_TYPE weapon);

[Serializable]
public class PC : BaseCharacter
{

Inventory System

[229]

 //public event WeaponChangedEventHandler PlayerWeaponChanged;

 public enum SHOULDER_PAD
 {
 none = 0,
 SP01 = 1,
 SP02 = 2,
 SP03 = 3,
 SP04 = 4
 };

 public enum BODY_TYPE { normal = 1, BT01 = 2, BT02 = 3 };

 // Shoulder Pad
 [SerializeField]
 private SHOULDER_PAD selectedShoulderPad = SHOULDER_PAD.none;
 public SHOULDER_PAD SELECTED_SHOULDER_PAD
 {
 get { return this.selectedShoulderPad; }
 set { this.selectedShoulderPad = value; }
 }

 [SerializeField]
 private BODY_TYPE selectedBodyType = BODY_TYPE.normal;
 public BODY_TYPE SELECTED_BODY_TYPE
 {
 get { return this.selectedBodyType; }
 set { this.selectedBodyType = value; }
 }

 // Do we have a knee pad?
 private bool kneePad = false;
 public bool KNEE_PAD
 {
 get { return this.kneePad; }
 set { this.kneePad = value; }
 }

 // Do we have a leg plate?
 private bool legPlate = false;
 public bool LEG_PLATE
 {
 get { return this.legPlate; }
 set { this.legPlate = value; }
 }

 public enum WEAPON_TYPE
 {

Inventory System

[230]

 none = 0,
 axe1 = 1,
 axe2 = 2,
 club1 = 3,
 club2 = 4,
 falchion = 5,
 gladius = 6,
 mace = 7,
 maul = 8,
 scimitar = 9,
 spear = 10,
 sword1 = 11,
 sword2 = 12,
 sword3 = 13
 };

 // Store the selected weapon. In the future we might want to create a
 // event handler to raise an even when the weapon is being changed in the
setter
 [SerializeField]
 private WEAPON_TYPE selectedWeapon = WEAPON_TYPE.none;
 public WEAPON_TYPE SELECTED_WEAPON
 {
 get { return this.selectedWeapon; }
 set
 {
 this.selectedWeapon = value;
 //if (PlayerWeaponChanged != null)
 //{
 // // All listeners will be invoked
 // PlayerWeaponChanged(this.selectedWeapon);
 //}
 }
 }

 public enum HELMET_TYPE { none = 0, HL01 = 1, HL02 = 2, HL03 = 3, HL04 =
4 };

 // do we have any helmet? Which one is selected if any?
 [SerializeField]
 private HELMET_TYPE selectedHelmet = HELMET_TYPE.none;
 public HELMET_TYPE SELECTED_HELMET
 {
 get { return this.selectedHelmet; }
 set { this.selectedHelmet = value; }
 }

Inventory System

[231]

 public enum SHIELD_TYPE { none = 0, SL01 = 1, SL02 = 2 };

 // Do we have a shield on? Which shiled is active?
 [SerializeField]
 private SHIELD_TYPE selectedShield = SHIELD_TYPE.none;
 public SHIELD_TYPE SELECTED_SHIELD
 {
 get { return this.selectedShield; }
 set { this.selectedShield = value; }
 }

 public int SKIN_ID = 1;

 public enum BOOT_TYPE { none = 0, BT01 = 1, BT02 = 2 };

 [SerializeField]
 private BOOT_TYPE selectedBoot = BOOT_TYPE.none;
 public BOOT_TYPE SELECTED_BOOT
 {
 get { return this.selectedBoot; }
 set { this.selectedBoot = value; }
 }

 [SerializeField]
 private InventoryItem selectedArmour;
 public InventoryItem SELECTED_ARMOUR
 {
 get { return this.selectedArmour; }
 set { this.selectedArmour = value; }
 }
}

The next code modification will be on the CharacterCustomization.cs script. Since this
script has been used in the character customization scene, we can utilize the same script and
expand it to apply the visual changes to our player character. But before we can utilize this
script, we will need to copy the actual component from the Base GameObject defined in
our Character Customization scene, and paste it into the PC_CC GameObject representing
our player character!

Inventory System

[232]

When you copy a component using the gear menu in the Inspector Window,
all the configurations, links, and references stay intact! When you paste the
component using again the gear menu in the Inspector Window, you will
have an exact copy of the component. This will eliminate the need for us to
rewire all of the GameObjects to their references in the script.

The following two screenshots will illustrate the copy of the component from the Base
GameObject to the PC_CC GameObject:

Inventory System

[233]

This works because the script is actually referencing the different parts of the PC_CC
GameObject hierarchy in the first place. The difference was that it used to be attached to the
Base GameObject for the customization.

Can they both be active at the same time in the same scene, at this point?
Yes! However, if you have the time, you might want to redo your UI event
triggers to use the PC_CC GameObject and then you can remove the
CharacterCustomization.cs script from the Base GameObject.

Now we actually need to modify the CharacterCustomization.cs script to activate the
different parts of the player character model using the data it will receive from the
GameMaster.cs script.

Inventory System

[234]

Here is a partial listing of the CharacterCustomization.cs script:

public void SetWeaponType(PC.WEAPON_TYPE id)
 {
 switch (System.Convert.ToInt32(id))
 {
 case 0:
 {
 this.AXE_01LOD0.SetActive(false);
 this.AXE_02LOD0.SetActive(false);
 this.CLUB_01LOD0.SetActive(false);
 this.CLUB_02LOD0.SetActive(false);
 this.FALCHION_LOD0.SetActive(false);
 this.GLADIUS_LOD0.SetActive(false);
 this.MACE_LOD0.SetActive(false);
 this.MAUL_LOD0.SetActive(false);
 this.SCIMITAR_LOD0.SetActive(false);
 this.SPEAR_LOD0.SetActive(false);
 this.SWORD_BASTARD_LOD0.SetActive(false);
 this.SWORD_BOARD_01LOD0.SetActive(false);
 this.SWORD_SHORT_LOD0.SetActive(false);
 break;
 }
 case 1:
 {
 this.AXE_01LOD0.SetActive(true);
 this.AXE_02LOD0.SetActive(false);
 this.CLUB_01LOD0.SetActive(false);
 this.CLUB_02LOD0.SetActive(false);
 this.FALCHION_LOD0.SetActive(false);
 this.GLADIUS_LOD0.SetActive(false);
 this.MACE_LOD0.SetActive(false);
 this.MAUL_LOD0.SetActive(false);
 this.SCIMITAR_LOD0.SetActive(false);
 this.SPEAR_LOD0.SetActive(false);
 this.SWORD_BASTARD_LOD0.SetActive(false);
 this.SWORD_BOARD_01LOD0.SetActive(false);
 this.SWORD_SHORT_LOD0.SetActive(false);
 break;
 }
 case 2:
 {
 this.AXE_01LOD0.SetActive(false);
 this.AXE_02LOD0.SetActive(true);
 this.CLUB_01LOD0.SetActive(false);
 this.CLUB_02LOD0.SetActive(false);
 this.FALCHION_LOD0.SetActive(false);
 this.GLADIUS_LOD0.SetActive(false);

Inventory System

[235]

 this.MACE_LOD0.SetActive(false);
 this.MAUL_LOD0.SetActive(false);
 this.SCIMITAR_LOD0.SetActive(false);
 this.SPEAR_LOD0.SetActive(false);
 this.SWORD_BASTARD_LOD0.SetActive(false);
 this.SWORD_BOARD_01LOD0.SetActive(false);
 this.SWORD_SHORT_LOD0.SetActive(false);
 break;
 }
 case 3:
 {
 this.AXE_01LOD0.SetActive(false);
 this.AXE_02LOD0.SetActive(false);
 this.CLUB_01LOD0.SetActive(true);
 this.CLUB_02LOD0.SetActive(false);
 this.FALCHION_LOD0.SetActive(false);
 this.GLADIUS_LOD0.SetActive(false);
 this.MACE_LOD0.SetActive(false);
 this.MAUL_LOD0.SetActive(false);
 this.SCIMITAR_LOD0.SetActive(false);
 this.SPEAR_LOD0.SetActive(false);
 this.SWORD_BASTARD_LOD0.SetActive(false);
 this.SWORD_BOARD_01LOD0.SetActive(false);
 this.SWORD_SHORT_LOD0.SetActive(false);
 break;
 }
 case 4:
 {
 this.AXE_01LOD0.SetActive(false);
 this.AXE_02LOD0.SetActive(false);
 this.CLUB_01LOD0.SetActive(false);
 this.CLUB_02LOD0.SetActive(true);
 this.FALCHION_LOD0.SetActive(false);
 this.GLADIUS_LOD0.SetActive(false);
 this.MACE_LOD0.SetActive(false);
 this.MAUL_LOD0.SetActive(false);
 this.SCIMITAR_LOD0.SetActive(false);
 this.SPEAR_LOD0.SetActive(false);
 this.SWORD_BASTARD_LOD0.SetActive(false);
 this.SWORD_BOARD_01LOD0.SetActive(false);
 this.SWORD_SHORT_LOD0.SetActive(false);
 break;
 }
 case 5:
 {
 this.AXE_01LOD0.SetActive(false);
 this.AXE_02LOD0.SetActive(false);
 this.CLUB_01LOD0.SetActive(false);

Inventory System

[236]

 this.CLUB_02LOD0.SetActive(false);
 this.FALCHION_LOD0.SetActive(true);
 this.GLADIUS_LOD0.SetActive(false);
 this.MACE_LOD0.SetActive(false);
 this.MAUL_LOD0.SetActive(false);
 this.SCIMITAR_LOD0.SetActive(false);
 this.SPEAR_LOD0.SetActive(false);
 this.SWORD_BASTARD_LOD0.SetActive(false);
 this.SWORD_BOARD_01LOD0.SetActive(false);
 this.SWORD_SHORT_LOD0.SetActive(false);
 break;
 }
 case 6:
 {
 this.AXE_01LOD0.SetActive(false);
 this.AXE_02LOD0.SetActive(false);
 this.CLUB_01LOD0.SetActive(false);
 this.CLUB_02LOD0.SetActive(false);
 this.FALCHION_LOD0.SetActive(false);
 this.GLADIUS_LOD0.SetActive(true);
 this.MACE_LOD0.SetActive(false);
 this.MAUL_LOD0.SetActive(false);
 this.SCIMITAR_LOD0.SetActive(false);
 this.SPEAR_LOD0.SetActive(false);
 this.SWORD_BASTARD_LOD0.SetActive(false);
 this.SWORD_BOARD_01LOD0.SetActive(false);
 this.SWORD_SHORT_LOD0.SetActive(false);
 break;
 }
 case 7:
 {
 this.AXE_01LOD0.SetActive(false);
 this.AXE_02LOD0.SetActive(false);
 this.CLUB_01LOD0.SetActive(false);
 this.CLUB_02LOD0.SetActive(false);
 this.FALCHION_LOD0.SetActive(false);
 this.GLADIUS_LOD0.SetActive(false);
 this.MACE_LOD0.SetActive(true);
 this.MAUL_LOD0.SetActive(false);
 this.SCIMITAR_LOD0.SetActive(false);
 this.SPEAR_LOD0.SetActive(false);
 this.SWORD_BASTARD_LOD0.SetActive(false);
 this.SWORD_BOARD_01LOD0.SetActive(false);
 this.SWORD_SHORT_LOD0.SetActive(false);
 break;
 }
 case 8:
 {

Inventory System

[237]

 this.AXE_01LOD0.SetActive(false);
 this.AXE_02LOD0.SetActive(false);
 this.CLUB_01LOD0.SetActive(false);
 this.CLUB_02LOD0.SetActive(false);
 this.FALCHION_LOD0.SetActive(false);
 this.GLADIUS_LOD0.SetActive(false);
 this.MACE_LOD0.SetActive(false);
 this.MAUL_LOD0.SetActive(true);
 this.SCIMITAR_LOD0.SetActive(false);
 this.SPEAR_LOD0.SetActive(false);
 this.SWORD_BASTARD_LOD0.SetActive(false);
 this.SWORD_BOARD_01LOD0.SetActive(false);
 this.SWORD_SHORT_LOD0.SetActive(false);
 break;
 }
 case 9:
 {
 this.AXE_01LOD0.SetActive(false);
 this.AXE_02LOD0.SetActive(false);
 this.CLUB_01LOD0.SetActive(false);
 this.CLUB_02LOD0.SetActive(false);
 this.FALCHION_LOD0.SetActive(false);
 this.GLADIUS_LOD0.SetActive(false);
 this.MACE_LOD0.SetActive(false);
 this.MAUL_LOD0.SetActive(false);
 this.SCIMITAR_LOD0.SetActive(true);
 this.SPEAR_LOD0.SetActive(false);
 this.SWORD_BASTARD_LOD0.SetActive(false);
 this.SWORD_BOARD_01LOD0.SetActive(false);
 this.SWORD_SHORT_LOD0.SetActive(false);
 break;
 }
 case 10:
 {
 this.AXE_01LOD0.SetActive(false);
 this.AXE_02LOD0.SetActive(false);
 this.CLUB_01LOD0.SetActive(false);
 this.CLUB_02LOD0.SetActive(false);
 this.FALCHION_LOD0.SetActive(false);
 this.GLADIUS_LOD0.SetActive(false);
 this.MACE_LOD0.SetActive(false);
 this.MAUL_LOD0.SetActive(false);
 this.SCIMITAR_LOD0.SetActive(false);
 this.SPEAR_LOD0.SetActive(true);
 this.SWORD_BASTARD_LOD0.SetActive(false);
 this.SWORD_BOARD_01LOD0.SetActive(false);
 this.SWORD_SHORT_LOD0.SetActive(false);
 break;

Inventory System

[238]

 }
 case 11:
 {
 this.AXE_01LOD0.SetActive(false);
 this.AXE_02LOD0.SetActive(false);
 this.CLUB_01LOD0.SetActive(false);
 this.CLUB_02LOD0.SetActive(false);
 this.FALCHION_LOD0.SetActive(false);
 this.GLADIUS_LOD0.SetActive(false);
 this.MACE_LOD0.SetActive(false);
 this.MAUL_LOD0.SetActive(false);
 this.SCIMITAR_LOD0.SetActive(false);
 this.SPEAR_LOD0.SetActive(false);
 this.SWORD_BASTARD_LOD0.SetActive(true);
 this.SWORD_BOARD_01LOD0.SetActive(false);
 this.SWORD_SHORT_LOD0.SetActive(false);
 break;
 }
 case 12:
 {
 this.AXE_01LOD0.SetActive(false);
 this.AXE_02LOD0.SetActive(false);
 this.CLUB_01LOD0.SetActive(false);
 this.CLUB_02LOD0.SetActive(false);
 this.FALCHION_LOD0.SetActive(false);
 this.GLADIUS_LOD0.SetActive(false);
 this.MACE_LOD0.SetActive(false);
 this.MAUL_LOD0.SetActive(false);
 this.SCIMITAR_LOD0.SetActive(false);
 this.SPEAR_LOD0.SetActive(false);
 this.SWORD_BASTARD_LOD0.SetActive(false);
 this.SWORD_BOARD_01LOD0.SetActive(true);
 this.SWORD_SHORT_LOD0.SetActive(false);
 break;
 }
 case 13:
 {
 this.AXE_01LOD0.SetActive(false);
 this.AXE_02LOD0.SetActive(false);
 this.CLUB_01LOD0.SetActive(false);
 this.CLUB_02LOD0.SetActive(false);
 this.FALCHION_LOD0.SetActive(false);
 this.GLADIUS_LOD0.SetActive(false);
 this.MACE_LOD0.SetActive(false);
 this.MAUL_LOD0.SetActive(false);
 this.SCIMITAR_LOD0.SetActive(false);
 this.SPEAR_LOD0.SetActive(false);
 this.SWORD_BASTARD_LOD0.SetActive(false);

Inventory System

[239]

 this.SWORD_BOARD_01LOD0.SetActive(false);
 this.SWORD_SHORT_LOD0.SetActive(true);
 break;
 }

 }
 }

I have not listed the whole script as it will take a lot of pages. But the basic concept is to
overload the SetXXXXX() functions so that they will perform the necessary tasks based on
the parameters coming in, such as, for the previous example, PC.WEAPON_TYPE.

The next scrip that needs to be modified is the UIController.cs script. This is where we
are going to modify the five functions we created previously to actually apply the changes
to the player character. Let's look at one of the functions that have been modified without
listing the whole code:

 public void DisplayWeaponsCategory()
 {
 if(GameMaster.instance.DISPLAY_INVENTORY)
 {
 this.ClearInventoryItemsPanel();

 foreach (InventoryItem item in GameMaster.instance.INVENTORY.WEAPONS)
 {
 GameObject objItem =
GameObject.Instantiate(this.InventoryItemElement) as GameObject;
 InventoryItemUI invItem = objItem.GetComponent<InventoryItemUI>();
 invItem.txtItemElement.text =
 string.Format("Name: {0}, Description: {1}, Strength: {2},
Weight: {3}",
 item.NAME,
 item.DESCRIPTION,
 item.STRENGTH,
 item.WEIGHT);

 invItem.item = item;

 // add button triggers
 invItem.butAdd.GetComponent<Button>().onClick.AddListener(() =>
 {
 Debug.Log(string.Format("You have clicked button add for {0},
{1}", invItem.txtItemElement.text, invItem.item.NAME));

 // let's apply the selected item to the player character
 GameMaster.instance.PC_CC.SELECTED_WEAPON =

Inventory System

[240]

(PC.WEAPON_TYPE)Enum.Parse(typeof(PC.WEAPON_TYPE), invItem.item.NAME);
 GameMaster.instance.PlayerWeaponChanged();
 });

 // delete button triggers
 invItem.butDelete.GetComponent<Button>().onClick.AddListener(() =>
 {
 Debug.Log(string.Format("You have clicked button delete for {0}",
invItem.txtItemElement.text));
 Destroy(objItem);
 });

 objItem.transform.SetParent(this.PanelItem);
 }

 }
 }

If you notice, we are also saving the item from the foreach loop into the invItem.item
variable. This is important to make sure the OnClick() listener is picking up the current
InventoryItem from the list.

The bulk of the work is being done in the onClick.AddListener() for each button. We
are basically setting the selected weapon using the GameMaster.instance to store and
then we are calling the PlayerWeaponChanged() function to handle some more features.
You will see that in the next code listing.

You will need to handle each add button listener in similar fashion, based
on how you have designed and implemented your code and your prefabs.

Finally, we are going to make some modifications to the GameMaster.cs script. Here is the
listing:

using UnityEngine;
using UnityEngine.UI;
using UnityEngine.SceneManagement;

using System.Collections;
using System;

public class GameMaster : MonoBehaviour
{
 public static GameMaster instance;

Inventory System

[241]

 // let's have a reference to the player character GameObject
 public GameObject PC_GO;

 // reference to player Character Customization
 public PC PC_CC;
 public InventorySystem INVENTORY;

 public GameObject START_POSITION;

 public GameObject CHARACTER_CUSTOMIZATION;

 public LevelController LEVEL_CONTROLLER;
 public AudioController AUDIO_CONTROLLER;

 // Ref to UI Elements ...
 public bool DISPLAY_SETTINGS = false;
 public bool DISPLAY_INVENTORY = false;

 public UIController UI;

 void Awake()
 {
 // simple singleton
 if (instance == null)
 {
 instance = this;

 instance.DISPLAY_INVENTORY = false;
 instance.DISPLAY_SETTINGS = false;

 // initialize Level Controller
 instance.LEVEL_CONTROLLER = new LevelController();

 // initialize Audio Controller
 instance.AUDIO_CONTROLLER = new AudioController();
 instance.AUDIO_CONTROLLER.AUDIO_SOURCE =
GameMaster.instance.GetComponent<AudioSource>();
 instance.AUDIO_CONTROLLER.SetDefaultVolume();

 // initialize Inventory System
 instance.INVENTORY = new InventorySystem();

 }
 else if (instance != this)
 {
 Destroy(this);
 }

Inventory System

[242]

 // keep the game object when moving from
 // one scene to the next scene
 DontDestroyOnLoad(this);
 }

 #region Player Inventory Items Applied
 public void PlayerWeaponChanged()
 {
 Debug.Log(string.Format("Weapon changed to: {0}",
instance.PC_CC.SELECTED_WEAPON.ToString()));
GameMaster.instance.PC_GO.GetComponent<CharacterCustomization>().SetWeaponT
ype(GameMaster.instance.PC_CC.SELECTED_WEAPON);
 }

 public void PlayerArmourChanged(InventoryItem item)
 {
 Debug.Log(string.Format("Armour changed to: {0} {1}",
instance.PC_CC.SELECTED_ARMOUR.NAME, instance.PC_CC.SELECTED_ARMOUR.TYPE));
 switch (item.TYPE.ToString())
 {
 case "HELMET":
 {
 GameMaster.instance.PC_CC.SELECTED_HELMET =
(PC.HELMET_TYPE)Enum.Parse(typeof(PC.HELMET_TYPE),
instance.PC_CC.SELECTED_ARMOUR.NAME);
GameMaster.instance.PC_GO.GetComponent<CharacterCustomization>().SetHelmetT
ype(GameMaster.instance.PC_CC.SELECTED_HELMET);
 break;
 }
 case "SHIELD":
 {
 GameMaster.instance.PC_CC.SELECTED_SHIELD =
(PC.SHIELD_TYPE)Enum.Parse(typeof(PC.SHIELD_TYPE),
instance.PC_CC.SELECTED_ARMOUR.NAME);
GameMaster.instance.PC_GO.GetComponent<CharacterCustomization>().SetShieldT
ype(GameMaster.instance.PC_CC.SELECTED_SHIELD);
 break;
 }
 case "SHOULDER_PAD":
 {
 GameMaster.instance.PC_CC.SELECTED_SHOULDER_PAD =
(PC.SHOULDER_PAD)Enum.Parse(typeof(PC.SHOULDER_PAD),
instance.PC_CC.SELECTED_ARMOUR.NAME);
GameMaster.instance.PC_GO.GetComponent<CharacterCustomization>().SetShoulde
rPad(GameMaster.instance.PC_CC.SELECTED_SHOULDER_PAD);
 break;
 }
 case "KNEE_PAD":

Inventory System

[243]

 {
 break;
 }
 case "BOOTS":
 {
 break;
 }

 }
 }

 #endregion

 // for each level/scene that has been loaded
 // do some of the preparation work
 void OnLevelWasLoaded()
 {
 GameMaster.instance.LEVEL_CONTROLLER.OnLevelWasLoaded();
 }

 // Use this for initialization
 void Start()
 {
 // let's find a reference to the UI controller of the loaded scene
 if (GameObject.FindGameObjectWithTag("UI") != null)
 {
 GameMaster.instance.UI =
GameObject.FindGameObjectWithTag("UI").GetComponent<UIController>();
 }

GameMaster.instance.UI.SettingsCanvas.gameObject.SetActive(GameMaster.insta
nce.DISPLAY_SETTINGS);
 }

 // Update is called once per frame
 void Update()
 {
 // only when we are in the game level
 if(instance.LEVEL_CONTROLLER.CURRENT_SCENE.name==SceneName.Level_1)
 {
 if (Input.GetKeyUp(KeyCode.J))
 {
 //Debug.Log("Pressing J");
 instance.DISPLAY_INVENTORY = !instance.DISPLAY_INVENTORY;
 instance.UI.DisplayInventory();
 }
 }
 }

Inventory System

[244]

 public void MasterVolume(float volume)
 {
 GameMaster.instance.AUDIO_CONTROLLER.MasterVolume(volume);
 }

 public void StartGame()
 {
 GameMaster.instance.LoadLevel();
 }

 public void LoadLevel()
 {
 GameMaster.instance.LEVEL_CONTROLLER.LoadLevel();
 }

 public void RPG_Destroy(GameObject obj)
 {
 Destroy(obj);
 }
}

The only function I want to have you take note of is the PlayerArmourChanged()
function. It was because of this function that we have to add the new Type data variable and
datatype to the InventoryItem class. We have a lot of different types of armour, and we
needed a way to distinguish between them. Based on the armour type, we would then call
the appropriate function to active them on the player character.

How It Looks
This chapter was a bit involved in regard to configuring your GameObjects and prefabs,
and more importantly the code that went along to glue everything together. I have tried to
keep things as simple as possible.

Inventory System

[245]

Here is a screenshot illustrating the player character prior to picking up the inventory items
placed on the level. Notice that the INVENTORY is empty in the GameMaster object and also
there are no selected items in the PC_CC object:

Inventory System

[246]

After I move the player character to pick up the inventory items, I will use the hot key
programmed to bring up the Inventory Window, in my case, the J key. The following
screenshot captures the interaction:

Inventory System

[247]

And now let's see how things change when we apply a few of the inventory items to the
player character:

Summary
There is a lot covered in this chapter. The core of the chapter was to create a usable
Inventory System. We began the chapter by discussing the Weighted Inventory and gave a
brief overview of its concept. Then we determined the item types we are going to be using
for our game.

We created the scripts BaseItem.cs, InventoryItem.cs, and InventorySystem.cs.
These scripts were then utilized as a starting point to design and develop our inventory. We
then updated the GameMaster.cs script to test the basics of the newly created scripts and
be able to view the data within the Unity IDE by serializing the attributes. We did this by
instantiating an InventoryItem and inserting it into the InventorySystem and validated
the operation visually through the IDE.

Inventory System

[248]

The next step was to actually create the inventory item prefabs. This section covered how to
navigate and find your customizable inventory items if your model included everything on
the actual fbx model, how to extract it from the model and convert into a Prefab for later
use. Then we created a new script called InventoryItemAgent.cs which was attached to
every prefab created to represent an inventory item. This script basically gives us the ability
to set the data for each Inventory Item from within the IDE. Very useful! We also had to
attach a collider to each prefab to handle collision and trigger a pick-up call when the player
collided with the object.

Once we had the basics in place, we started looking at how to design and implement the
user interface for our inventory system. We discussed the categories that we want to
represent and how the items within each category will be listed / displayed for the player
during game play. We implemented the initial framework for the Inventory Window and
integrated it with the game.

Now we were ready to discuss how to create a dynamic item viewer that can be populated
during runtime and represent the inventory items we have collected correctly. We
introduced some new user interface concepts such as scroll view and how to utilize layouts
in our interface. We did a quick test with a simple placeholder to just display the name of
the item. Once we got the mechanics working, we implemented the main inventory item
control panel and converted it into a prefab to be used instantiated at runtime when
needed.

At the end, we worked on the integration of the Inventory System with the Inventory UI
with the GameMaster and Player Character to have the final implementation. This required
that we update and modify more scripts.

By the end of the chapter, you have a fully functional Inventory System that can be
expanded as needed. In the next two chapters, we are going to see how to enhance our user
interface by adding an HUD and finally cover the concepts of multiplayer programming.

7
User Interface and System

Feedback
Have you ever seen the tip of an iceberg? Well, so far that's what we have done throughout
the previous six chapters. In this chapter we are going to keep on improving on our game's
user interface and feedback system. We are going to create a Heads Up Display that will be
responsible for managing the user interaction with the system menus and also the system
giving feedback to the player.

Here is a breakdown of the chapter:

Heads Up Display
Basic information for a HUD
Our design
HUD framework
Completing HUD design
Panel character info
Panel active items
Panel special items
Integrating the code
Enemy stats in the HUD
NPC stats user interface
Creating the NPC canvas
NPC taking a hit
Enhancing the code

Let's get started!

User Interface and System Feedback

[250]

Designing a Heads Up Display
Designing a Heads Up Display (HUD) is going to be a very challenging task. The HUD is
the interface through which your players can interact with the virtual world and also
receive feedback from the virtual world environment. As with everything else that we have
designed so far, the HUD design is also heavily related to the type and the needs of the
game you are trying to make.

For instance, an RTS (Real Time Strategy) will have a very different type of HUD design
then an FPS (First Person Shooter), and than an RPG (Role Playing Game). They will have
some things in common, but the way they are designed is going to be very distinct, as well
as some of the features and functionality.

We could have a whole book just on the design and development of user interfaces and
how to approach them in a scientific manner. But that is outside the scope of this book, and
we are concerned with the theories.

Basic information for a HUD
Any simple heads up display will have, at a minimum, a way to display the following
information:

Basics information about the player character
Health
Mana
Strength
Level, etc
Current inventory items consumed by the player character
Current weapon used by the player
Current armour used by the player
Available potions and/or health
Feedback from the game environment
Anything useful pertaining to the game
Power ups
Level ups, etc

Let's go ahead and design our HUD. Once again we will start with a simple framework and
slowly build on top of it, as we need to.

User Interface and System Feedback

[251]

Our design
Taking everything into consideration, let's go ahead and design a HUD that will be useful
for our game, and at the same time we will keep it simple but useful. We should have a
HUD that will display the basic player character information in a manner in which it does
not block the gameplay, but at the same time gives critical information to the player
regarding their character's state.

We should also design a way to display the current inventory items that the player has
activated to be used, such as the weapon, or the armour. Finally, we should also have a
simple way for the player to use any health packets and or potions they might have during
gameplay.

Here is a quick sketch of what I want my HUD to look like. Again, you are free and in fact I
encourage you to come up with your own design.

User Interface and System Feedback

[252]

I have roughly marked what I would like my HUD to look like during gameplay.

Notice that I have kept it simple. In the top left corner, I have placed the immediate
information that the player will need to have, such as their health and perhaps their
strength.

In the bottom left corner, I have placed a scrollable panel that will list all of the active
inventory items that the player may have active on their player character, and on the right
side of the screen I have three slots that will be used for immediate access to things such as
health packets and or potions that the player might need to use during their gameplay.

HUD framework
Now that we have an understanding of what we want our UI to look like, let's actually start
implementing it in Unity. We need to create a new canvas to hold our HUD. To create this,
right-click in the Hierarchy Window and select UI | Canvas. Rename the new Canvas
GameObject to CanvasHUD.

Go ahead and implement the necessary UI sections as outlined. We will need three main
panels for each section indicated in the preceding diagram.

These are the three main panels for each section, as indicated in the design:

Character information in the top left screen corner
Active inventory items in the bottom left corner of the screen
A special items panel in the right mid-section of the screen

Create each panel by right-clicking the Hierarchy Window and selecting UI | Panel. Make
sure the panels are a child of the CanvasHUD GameObject. Rename each panel accordingly.
I have named mine PanelCharacterInfo, PanelActiveItems, and PanelSpecialItems.

User Interface and System Feedback

[253]

Take a look at the preceding screenshot to get a feeling for the HUD framework.

Completing HUD design
Now that we have the framework in place, let's go ahead and complete each section
individually. I would like to start with the PanelCharacterInfo.

Panel character Info
From a design point of view, the panel that will contain the visual components for the
character is not going to be very complex. The panel will consist of five images.

The main image will be used to hold an avatar of the character. The other four images will
be used to display the health and mana of the character. Since these values are going to be
displayed in a bar format, we are using two images for each item. One of the images is
going to host the border, and the other the representation of the actual value.

User Interface and System Feedback

[254]

To come up with the images, I am going to use external tools such as Photoshop. Microsoft
Expression Design is a good tool for creating frames and so on.

In the preceding screenshot, I have made a nice image portraying the avatar of the player
character. You should take into consideration the actual size of the image you will be
placing inside the PanelCharacterInfo panel. The image size I have generated is 301 x 301
pixels.

To create the graphics for the bars representing the health and the mana for our character
player, we will actually need to have three images. One image will represent the negative
value of the bar, one image will represent the positive value of the bar and the third will be
the border image for the bar. They will be overlaid on top of each other to create the illusion
of our graphic bars.

User Interface and System Feedback

[255]

Creating the three distinct sprites and overlaying them will give you a good illusion of what
are looking for.

After exporting our images, we need to import them into Unity. Use your file system to
move your images from their original location to the Assets folder under your Unity project.

I have placed my textures in the following directory: Assets | Textures | CH7.

User Interface and System Feedback

[256]

Once you have moved them into the desired location within your Unity project, you will
need to convert the images to sprites. Select all of the images that will be used for the GUI
and from the Inspector Window, change the Texture Type to Sprite (2D and UI).

It's time to apply our textures to the actual UI elements we have defined under the
PanelCharacterInfo panel within the Canvas object.

There are a few steps that need to be performed before we can fully apply
the UI elements to the HUD.

The first thing you should do, if you have not done so already, is create three new UI image
elements under the PanelCharacterInfo panel by right-clicking the panel and selecting UI |
Image.

User Interface and System Feedback

[257]

I have named my three images: imgHealthRebBackground, imgHealthGreenBackground and
imgHealthBorder. The order of the images does matter, and you should take a note of it when
you are designing the UI. Generally speaking, if a UI element is lower in the hierarchy, it
will be rendered on top of the other elements.

See the following screenshot for details:

Notice the order of the images representing the health bar. The image that is representing
the green bar will need to be modified using the Inspector Window. Select it, and change the
Image Type to Filled, change the Fill Method to Horizontal and the Fill Origin to Left. We are
going to be using the Fill Amount to control the visual part of our health bar. Notice that I
have set it to 0.77 for demonstration purposes.

By default, when the game starts, we will be starting at a Fill Amount of 1, which is
equivalent to 100 percent, for the player character's health. 0.77 is equivalent to 77 percent
and so on.

User Interface and System Feedback

[258]

We are going to apply the same technique to our mana bar. Go ahead and create two more
images that will represent the two backgrounds for our mana bar.

We will be using the same border image for both bars.

Again, don't forget you will need to make the appropriate changes to the imported textures
within Unity. Convert them to Sprite (2D and UI) Texture Type.

Create the necessary image UI elements under the panel, and apply the textures to the
image element within the canvas. You should have something like the following screenshot:

That's all there is to it! Not bad for a person with no artistic background!

User Interface and System Feedback

[259]

Panel active inventory items
Creating the UI for active inventory items is going to be similar to what we have done in
Chapter 6, Inventory System. The difference will be that we are only going to be listing the
items that have been consumed by the player character using the inventory system.

In other words, the Active Inventory Items display is a visual indication of the items that
have been activated within the inventory. It is important to keep in mind that we are more
interested in learning the concepts and applying them in a simple example that you can
expand upon and improve on your own.

The basic idea is to create a scrollable panel that will be used to add items as needed. We
have already seen how to set up the scrollable view and how to configure the UI
components to support what we are trying to achieve. I won't be getting into the details
here again, please refer to Chapter 6, Inventory System, for the necessary steps if needed.

From the Hierarchy Window, right-click on PanelActiveInventoryItems and select UI | Scroll
View. Go ahead and remove the Viewport, Scrollbar Horizontal and Scrollbar Vertical children
that have been created with the Scroll View element.

User Interface and System Feedback

[260]

You just need to make sure that the layout configuration you are applying is for horizontal
and not vertical, as we did in Chapter 6, Inventory System.

User Interface and System Feedback

[261]

And finally, the following:

The three preceding screenshots illustrate the different parts of the configuration for the
Active Inventory Items panel. If you are unsure about how to put this together, please go
back to Chapter 6, Inventory System and read Designing a Dynamic Item Viewer section.

Don't forget to make a prefab of the UI element that will be representing your active
inventory item in the panel.

You will also need a script to reference the UI elements designated for your items. I have
called this script ActiveInventoryItemUI.cs, and currently there are two attributes: one is a
reference to the Image element and the other a reference to the Text element.

Here is the listing for the script:

using UnityEngine;
using UnityEngine.UI;
using System.Collections;

public class ActiveInventoryItemUI : MonoBehaviour {

User Interface and System Feedback

[262]

 public Image imgActiveItem;
 public Text txtActiveItem;
}

We will need to eventually integrate all of these scripts together to make things work
properly.

Special items panel
Now we are going to look at the design of our last panel. The main difference between this
panel and the last one that we developed is the orientation. Everything else will be exactly
the same. However, for this panel our orientation is going to be vertical instead of
horizontal.

Here is a screenshot capturing everything at once:

User Interface and System Feedback

[263]

The procedure to create the panel has already been discussed several times, and you should
not have any trouble creating it.

I have let you make your own textures and images to be applied to the UI
elements.

As I was designing the special items panel, I came up with a better idea for how to improve
the panel UI. You might want to have a static icon representing each special item, and have
a counter attached to the UI representing how many you have of each item. Each time you
collect one it will increase, and each time you consume one it will decrease.

Here is what the current HUD looks like based on our design:

We need to now start thinking about integrating the HUD user interface with the code base
we have developed so far.

User Interface and System Feedback

[264]

Integrating the code
Now that we have our HUD design up and running, we will need to integrate the UI
elements with the actual code that will be deriving them. There are a few scripts that are
going to be created to support the new UI features, and a few that will be updated to glue
everything together.

The following scripts have been created: ActiveInventoryItemUI.cs, ActiveSpecialItemUI.cs and
HUDElementsUI.cs.

The listing of these scripts is as follows:

using UnityEngine;
using UnityEngine.UI;
using System.Collections;

public class ActiveInventoryItemUI : MonoBehaviour
{
 public InventoryItem item;

 public Image imgActiveItem;
 public Text txtActiveItem;

}

using UnityEngine;
using UnityEngine.UI;
using System.Collections;
using UnityEngine.EventSystems;

public class ActiveSpecialItemUI : EventTrigger
{

 public override void OnPointerClick(PointerEventData data)
 {
 InventoryItem iia =
this.gameObject.GetComponent<ActiveInventoryItemUI>().item;

 switch(iia.CATEGORY)
 {
 case BaseItem.ItemCategory.HEALTH:
 {
 // add the item to the special items panel
 GameMaster.instance.UI.ApplySpecialInventoryItem(iia);
 Destroy(this.gameObject);

 break;

User Interface and System Feedback

[265]

 }
 case BaseItem.ItemCategory.POTION:
 {
 break;
 }
 }

 }

}
using UnityEngine;
using UnityEngine.UI;
using System.Collections;

public class HUDElementsUI : MonoBehaviour
{
 public Image imgHealthBar;
 public Image imgManaBar;

 public GameObject activeInventoryItem;
 public GameObject activeSpecialItem;

 public Transform panelActiveInventoryItems;
 public Transform panelActiveSpecialItems;

}

User Interface and System Feedback

[266]

These scripts are going to be used in the HUD user interface to give us access to the
elements. For instance, you will need to attach the HUDElementsUI.cs script to the
CanvasHUD GameObject.

The preceding screenshot illustrates how the HUD Canvas is configured with the
HUDElementsUI.cs script.

Now let's take a look at the prefabs we have created to represent the UI elements to be used
for the panels. There are two; I have named them PanelActiveItem and PanelSpecialItem.

I will discuss PanelSpecialItem, as it contains everything PanelActiveItem contains plus an
additional script that is attached to it for event handling.

User Interface and System Feedback

[267]

What we have just covered was the implementation of the scripts that are used to get access
to the proper UI elements within the HUD canvas.

You will notice that for the PanelSpecialItem prefab there are two new and very important
components that we have attached to it. One is the Event Trigger within Unity, and the other
is the ActiveSpecialItemUI.cs script, which is used to handle the PointerClick event for the
special item.

What this means is that we are basically making the item clickable, and when the player
clicks on the item, something happens. In this case, it applies the special item to the player
character.

Now we are ready to update the other scripts we have already developed to incorporate the
HUD functionality. The scripts that will need to be modified are InventorySystem.cs and
UIController.cs.

Here is a listing of InventorySystem.cs:

using System;
using UnityEngine;

User Interface and System Feedback

[268]

using System.Collections.Generic;

[Serializable]
public class InventorySystem
{
 [SerializeField]
 private List<InventoryItem> weapons = new List<InventoryItem>();
 [SerializeField]
 private List<InventoryItem> armour = new List<InventoryItem>();
 [SerializeField]
 private List<InventoryItem> clothing = new List<InventoryItem>();
 [SerializeField]
 private List<InventoryItem> health = new List<InventoryItem>();
 [SerializeField]
 private List<InventoryItem> potion = new List<InventoryItem>();

 public List<InventoryItem> WEAPONS
 {
 get { return this.weapons; }
 }

 public List<InventoryItem> ARMOUR
 {
 get { return this.armour; }
 }

 public List<InventoryItem> CLOTHING
 {
 get { return this.clothing; }
 }

 public List<InventoryItem> HEALTH
 {
 get { return this.health; }
 }

 public List<InventoryItem> POTIONS
 {
 get { return this.potion; }
 }

 private InventoryItem selectedWeapon;
 private InventoryItem selectedArmour;

 public InventoryItem SELECTED_WEAPON
 {
 get { return this.selectedWeapon; }
 set { this.selectedWeapon = value; }

User Interface and System Feedback

[269]

 }
 public InventoryItem SELECTED_ARMOUR
 {
 get { return this.selectedArmour; }
 set { this.selectedArmour = value; }
 }

 public InventorySystem()
 {
 this.ClearInventory();
 }

 public void ClearInventory()
 {
 this.weapons.Clear();
 this.armour.Clear();
 this.clothing.Clear();
 this.health.Clear();
 this.potion.Clear();
 }

 // this function will add an inventory item
 public void AddItem(InventoryItem item)
 {
 switch(item.CATEGORY)
 {
 case BaseItem.ItemCategory.ARMOUR:
 {
 this.armour.Add(item);
 break;
 }
 case BaseItem.ItemCategory.CLOTHING:
 {
 this.clothing.Add(item);
 break;
 }
 case BaseItem.ItemCategory.HEALTH:
 {
 this.health.Add(item);

 // add the item to the special items panel
 GameMaster.instance.UI.AddSpecialInventoryItem(item);

 break;
 }
 case BaseItem.ItemCategory.POTION:
 {
 this.potion.Add(item);

User Interface and System Feedback

[270]

 break;
 }
 case BaseItem.ItemCategory.WEAPON:
 {
 this.weapons.Add(item);
 break;
 }
 }
 }

 // this function will remove an inventory item
 public void DeleteItem(InventoryItem item)
 {
 switch (item.CATEGORY)
 {
 case BaseItem.ItemCategory.ARMOUR:
 {
 this.armour.Remove(item);
 break;
 }
 case BaseItem.ItemCategory.CLOTHING:
 {
 this.clothing.Remove(item);
 break;
 }
 case BaseItem.ItemCategory.HEALTH:
 {
 // let's find the item and mark it for removal
 InventoryItem tmp = null;
 foreach(InventoryItem i in this.health)
 {
if(item.CATEGORY.Equals(i.CATEGORY)&&item.NAME.Equals(i.NAME)&&item.STRENGT
H.Equals(i.STRENGTH))
 {
 tmp = i;
 }
 }

 this.health.Remove(tmp);

 break;
 }
 case BaseItem.ItemCategory.POTION:
 {
 // let's find the item and mark it for removal
 InventoryItem tmp = null;
 foreach (InventoryItem i in this.health)
 {

User Interface and System Feedback

[271]

 if (item.CATEGORY.Equals(i.CATEGORY) &&
item.NAME.Equals(i.NAME) && item.STRENGTH.Equals(i.STRENGTH))
 {
 tmp = i;
 }
 }

 this.potion.Remove(item);
 break;
 }
 case BaseItem.ItemCategory.WEAPON:
 {
 this.weapons.Remove(item);
 break;
 }
 }
 }

}

using UnityEngine;
using UnityEngine.UI;
using System;

public class UIController : MonoBehaviour
{
 public Canvas SettingsCanvas;
 public Slider ControlMainVolume;

 // the canvas object for inventory system
 public Canvas InventoryCanvas;

 public Transform PanelItem;
 public GameObject InventoryItemElement;

 public HUDElementsUI hudUI;

 public void Update()
 {

 }

 public void DisplaySettings()
 {
 GameMaster.instance.DISPLAY_SETTINGS =
!GameMaster.instance.DISPLAY_SETTINGS;
this.SettingsCanvas.gameObject.SetActive(GameMaster.instance.DISPLAY_SETTIN
GS);

User Interface and System Feedback

[272]

 }

 public void MainVolume()
 {
 GameMaster.instance.MasterVolume(ControlMainVolume.value);
 }

 public void StartGame()
 {
 GameMaster.instance.StartGame();
 }

 public void LoadLevel()
 {
 if (GameObject.FindGameObjectWithTag("BASE"))
 {
 GameMaster.instance.PC_CC =
GameObject.FindGameObjectWithTag("BASE").GetComponent<CharacterCustomizatio
n>().PC_CC;
 }
 GameMaster.instance.LEVEL_CONTROLLER.LEVEL = 1;
 GameMaster.instance.LoadLevel();
 }

 public void DisplayInventory()
 {
this.InventoryCanvas.gameObject.SetActive(GameMaster.instance.DISPLAY_INVEN
TORY);
 }

 private void ClearInventoryItemsPanel()
 {
 while(this.PanelItem.childCount>0)
 {
 Transform t = this.PanelItem.GetChild(0).transform;
 t.parent = null;
 Destroy(t.gameObject);
 }
 }

 public void DisplayWeaponsCategory()
 {
 if(GameMaster.instance.DISPLAY_INVENTORY)
 {
 this.ClearInventoryItemsPanel();

 foreach (InventoryItem item in GameMaster.instance.INVENTORY.WEAPONS)

User Interface and System Feedback

[273]

 {
 GameObject objItem =
GameObject.Instantiate(this.InventoryItemElement) as GameObject;
 InventoryItemUI invItem = objItem.GetComponent<InventoryItemUI>();
 invItem.txtItemElement.text =
 string.Format("Name: {0}, Description: {1}, Strength: {2},
Weight: {3}",
 item.NAME,
 item.DESCRIPTION,
 item.STRENGTH,
 item.WEIGHT);

 invItem.item = item;

 // add button triggers
 invItem.butAdd.GetComponent<Button>().onClick.AddListener(() =>
 {
 Debug.Log(string.Format("You have clicked button add for {0},
{1}", invItem.txtItemElement.text, invItem.item.NAME));

 // let's apply the selected item to the player character
 GameMaster.instance.PC_CC.SELECTED_WEAPON =
(PC.WEAPON_TYPE)Enum.Parse(typeof(PC.WEAPON_TYPE), invItem.item.NAME);
 GameMaster.instance.PlayerWeaponChanged(invItem.item);
 this.AddActiveInventoryItem(invItem.item);
 });

 // delete button triggers
 invItem.butDelete.GetComponent<Button>().onClick.AddListener(() =>
 {
 Debug.Log(string.Format("You have clicked button delete for {0}",
invItem.txtItemElement.text));
 Destroy(objItem);
 });

 objItem.transform.SetParent(this.PanelItem);
 }

 }
 }

 public void DisplayArmourCategory()
 {
 if (GameMaster.instance.DISPLAY_INVENTORY)
 {
 this.ClearInventoryItemsPanel();

User Interface and System Feedback

[274]

 foreach (InventoryItem item in GameMaster.instance.INVENTORY.ARMOUR)
 {
 GameObject objItem =
GameObject.Instantiate(this.InventoryItemElement) as GameObject;
 InventoryItemUI invItem = objItem.GetComponent<InventoryItemUI>();
 invItem.txtItemElement.text =
 string.Format("Name: {0}, Description: {1}, Strength: {2},
Weight: {3}",
 item.NAME,
 item.DESCRIPTION,
 item.STRENGTH,
 item.WEIGHT);

 invItem.item = item;

 // add button triggers
 invItem.butAdd.GetComponent<Button>().onClick.AddListener(() =>
 {
 Debug.Log(string.Format("You have clicked button add for {0},
{1}", invItem.txtItemElement.text, invItem.item.NAME));

 // let's apply the selected item to the player character
 GameMaster.instance.PC_CC.SELECTED_ARMOUR = invItem.item;
 GameMaster.instance.PlayerArmourChanged(invItem.item);
 this.AddActiveInventoryItem(invItem.item);
 });

 // delete button triggers
 invItem.butDelete.GetComponent<Button>().onClick.AddListener(() =>
 {
 Debug.Log(string.Format("You have clicked button delete for {0}",
invItem.txtItemElement.text));
 Destroy(objItem);
 });

 objItem.transform.SetParent(this.PanelItem);
 }
 }
 }

 public void DisplayClothingCategory()
 {
 if (GameMaster.instance.DISPLAY_INVENTORY)
 {
 this.ClearInventoryItemsPanel();

 foreach (InventoryItem item in
GameMaster.instance.INVENTORY.CLOTHING)

User Interface and System Feedback

[275]

 {
 GameObject objItem =
GameObject.Instantiate(this.InventoryItemElement) as GameObject;
 InventoryItemUI invItem = objItem.GetComponent<InventoryItemUI>();
 invItem.txtItemElement.text =
 string.Format("Name: {0}, Description: {1}, Strength: {2},
Weight: {3}",
 item.NAME,
 item.DESCRIPTION,
 item.STRENGTH,
 item.WEIGHT);

 invItem.item = item;

 // add button triggers
 invItem.butAdd.GetComponent<Button>().onClick.AddListener(() =>
 {
 Debug.Log(string.Format("You have clicked button add for {0}",
invItem.txtItemElement.text));

 });

 // delete button triggers
 invItem.butDelete.GetComponent<Button>().onClick.AddListener(() =>
 {
 Debug.Log(string.Format("You have clicked button delete for {0}",
invItem.txtItemElement.text));
 Destroy(objItem);
 });

 objItem.transform.SetParent(this.PanelItem);
 }
 }
 }

 public void DisplayHealthCategory()
 {
 if (GameMaster.instance.DISPLAY_INVENTORY)
 {
 this.ClearInventoryItemsPanel();

 foreach (InventoryItem item in GameMaster.instance.INVENTORY.HEALTH)
 {
 GameObject objItem =
GameObject.Instantiate(this.InventoryItemElement) as GameObject;
 InventoryItemUI invItem = objItem.GetComponent<InventoryItemUI>();
 invItem.txtItemElement.text =
 string.Format("Name: {0}, Description: {1}, Strength: {2},

User Interface and System Feedback

[276]

Weight: {3}",
 item.NAME,
 item.DESCRIPTION,
 item.STRENGTH,
 item.WEIGHT);

 invItem.item = item;

 // add button triggers
 invItem.butAdd.GetComponent<Button>().onClick.AddListener(() =>
 {
 Debug.Log(string.Format("You have clicked button add for {0}",
invItem.txtItemElement.text));

 // let's apply the selected item to the player character
 GameMaster.instance.PC_CC.HEALTH += invItem.item.STRENGTH * 100;
//(PC.WEAPON_TYPE)Enum.Parse(typeof(PC.WEAPON_TYPE), invItem.item.NAME);
 if(GameMaster.instance.PC_CC.HEALTH>100f)
 {
 GameMaster.instance.PC_CC.HEALTH = 100f;
 }

 GameMaster.instance.INVENTORY.DeleteItem(invItem.item);

 Destroy(objItem);
 //GameMaster.instance.PlayerWeaponChanged(invItem.item);
 //this.AddActiveInventoryItem(invItem.item);

 });

 // delete button triggers
 invItem.butDelete.GetComponent<Button>().onClick.AddListener(() =>
 {
 Debug.Log(string.Format("You have clicked button delete for {0}",
invItem.txtItemElement.text));
 Destroy(objItem);
 });

 objItem.transform.SetParent(this.PanelItem);
 }

 }
 }

 public void DisplayPotionsCategory()
 {
 if (GameMaster.instance.DISPLAY_INVENTORY)
 {

User Interface and System Feedback

[277]

 this.ClearInventoryItemsPanel();

 foreach (InventoryItem item in GameMaster.instance.INVENTORY.POTIONS)
 {
 GameObject objItem =
GameObject.Instantiate(this.InventoryItemElement) as GameObject;
 InventoryItemUI invItem = objItem.GetComponent<InventoryItemUI>();
 invItem.txtItemElement.text =
 string.Format("Name: {0}, Description: {1}, Strength: {2},
Weight: {3}",
 item.NAME,
 item.DESCRIPTION,
 item.STRENGTH,
 item.WEIGHT);

 invItem.item = item;

 // add button triggers
 invItem.butAdd.GetComponent<Button>().onClick.AddListener(() =>
 {
 Debug.Log(string.Format("You have clicked button add for {0}",
invItem.txtItemElement.text));
 });

 // delete button triggers
 invItem.butDelete.GetComponent<Button>().onClick.AddListener(() =>
 {
 Debug.Log(string.Format("You have clicked button delete for {0}",
invItem.txtItemElement.text));
 Destroy(objItem);
 });

 objItem.transform.SetParent(this.PanelItem);
 }

 }
 }

 #region Adding Active Inventory Item to the UI
 public void AddActiveInventoryItem(InventoryItem item)
 {
 // Make a copy of the Inventory Item Object
 InventoryItem myItem = new InventoryItem();
 myItem.CopyInventoryItem(item);

 GameObject objItem =
GameObject.Instantiate(this.hudUI.activeInventoryItem) as GameObject;
 ActiveInventoryItemUI aeUI =

User Interface and System Feedback

[278]

objItem.GetComponent<ActiveInventoryItemUI>();
 aeUI.txtActiveItem.text = myItem.NAME.ToString();

 aeUI.item = myItem;

 objItem.transform.SetParent(this.hudUI.panelActiveInventoryItems);

LayoutRebuilder.MarkLayoutForRebuild(this.hudUI.panelActiveInventoryItems
as RectTransform);
 }

 public void AddSpecialInventoryItem(InventoryItem item)
 {
 // Make a copy of the Inventory Item Object
 InventoryItem myItem = new InventoryItem();
 myItem.CopyInventoryItem(item);

 GameObject objItem =
GameObject.Instantiate(this.hudUI.activeSpecialItem) as GameObject;
 ActiveInventoryItemUI aeUI =
objItem.GetComponent<ActiveInventoryItemUI>();
 aeUI.txtActiveItem.text = myItem.NAME.ToString();
 aeUI.item = myItem;

 objItem.transform.SetParent(this.hudUI.panelActiveSpecialItems);

 LayoutRebuilder.MarkLayoutForRebuild(this.hudUI.panelActiveSpecialItems
as RectTransform);
 }

 public void ApplySpecialInventoryItem(InventoryItem item)
 {
 GameMaster.instance.PC_CC.HEALTH += item.STRENGTH * 100;
//(PC.WEAPON_TYPE)Enum.Parse(typeof(PC.WEAPON_TYPE), invItem.item.NAME);
 if (GameMaster.instance.PC_CC.HEALTH > 100f)
 {
 GameMaster.instance.PC_CC.HEALTH = 100f;
 }

 GameMaster.instance.INVENTORY.DeleteItem(item);
 }
 #endregion

}

User Interface and System Feedback

[279]

Now that you have everything in place, you can go ahead and test run the game to make
sure everything is working as expected. This is also a good time to test/debug your code
and your project settings if you have not done so already.

I have to make the following point once again; the idea is to grasp the concept. We are
looking at one way to implement what we want to achieve; you might come up with a
better way along the way, or decide to do something totally different. I encourage that!

The preceding screenshot illustrates the state of the player character and that of the
inventory when the level initially loads. I have indicated the critical parts that we are testing
and that we are going to track to make sure our code is working properly.

In the next screenshot, the player character has picked up a few of the inventory items we
have placed in the level. When you bring up the inventory window and click on any one of
the categories defined, i.e., weapons, you will get a listing of all the weapons that we have
in our inventory and so forth.

User Interface and System Feedback

[280]

We have collected one weapon type, one health packet, and a couple of defensive items.
Notice that our special items panel is displaying an item. This is the health packet we have
picked up.

The next screenshot will illustrate how the HUD updates itself when the player starts
consuming some of the inventory items by adding them using the inventory window
during gameplay.

Notice that we have activated three inventory items: a weapon named axe2 and two
armours of type helmet and shield named HL02 and SL01 respectively.

User Interface and System Feedback

[281]

You can see them on the player character as well as in the panel holding the active
inventory items. Pretty cool.

It's time to go and meet the enemy. We have not discussed the interaction between the
player character and the non-player characters (NPCs) much. We will do this shortly.

We have applied some of the inventory items from our inventory to the player character,
and now we can actually go and face the enemy. We are going to allow the enemy to attack
us to see how our health reduces. Then we will use the health packet from our special items
panel to increase our health once more.

User Interface and System Feedback

[282]

The next two screenshots will illustrate this scenario:

We are going to run away and apply our health packet!

User Interface and System Feedback

[283]

Notice how, when we apply the health packet, it removes itself from the inventory system
as well as the special items panel. You might take note and say, but hold on, if we have
applied the health packet, then how come our health bar is actually less then when we
started? Well, unfortunately, when I resumed gameplay and started running away, the
enemy got the opportunity to give my player character a few more hard blows! Therefore,
by the time I had applied the health packet, and the initial screenshot, my health had
dropped another 20 points!

How do I know this? Well, the health packet has a strength and weight of 0.2, translating to
20 points on a scale from 0 to 100, which is the representation of our health.

User Interface and System Feedback

[284]

Enemy stats in the HUD
We have not really discussed how to handle and manage the statistics and the visual
representation of the NPC with the player. It is now time to do just that! So we need to
decide what it is that we want to display as information to the player. For the moment, let's
keep it simple and just display the basic health and strength of the enemy.

The question is, what is the best way to display this information? Should we display the
information based on a distance threshold between the player character and the NPC, or
should we display it when the player requests it at some time during gameplay?

Let's go ahead and take the first scenario. We will display the information for the NPC upon
reaching a certain distance between the player character and the NPC. We can even make
this distance the same as the line of sight we have set for the NPC! This is good because, if
they can see us, then they are close enough for us to see their stats! Let's get to work!

NPC stats user interface
We are going to be using some of the existing textures that we have created for our player
character. Like the textures for the health bar and strength bar, we just need to create a
canvas that is going to be in the World Space and attached to the NPC character.

Creating the NPC canvas
The main difference between the canvas we are going to create for the NPC and the one we
have been creating for the player is some of the configurations.

One of the main differences is going to be the Render Mode of the canvas. The NPC canvas is
going to have a World Space Render Mode. This will allow us to position the canvas as
another GameObject within the scene. The next important difference will be the Rect
Transform attributes, and more importantly the Scale and Rotation attributes.

User Interface and System Feedback

[285]

To make life easier, all you need to do is create the canvas and change its properties as
shown in the preceding screenshot. For the next step, you can copy the whole
PanelCharacterInfo we have developed in the previous sections, and paste it as a child of the
new canvas.

This way, you will not have to re-create each UI element one by one and this will help save
a lot of time. However, you will need to change the Scale and the Transform properties in the
PanelCharacterInfo panel, the new one, to arrange it so that it renders above the NPC's head!

User Interface and System Feedback

[286]

The next step is for us to be able to control the values of the stat bars from the code. For this,
we are going to create a new script called NPCStatUI.cs and attach it to the canvas object we
just created for the NPC stats.

I have renamed the canvas to CanvasNPCStats.

Here is a listing of the script:

using UnityEngine;
using UnityEngine.UI;
using System.Collections;

public class NPCStatUI : MonoBehaviour
{
 public Image imgHealthBar;
 public Image imgManaBar;
}

The script we just created will only give us a reference to the image elements. We still need
to be able to have a method to update the values.

We need to find a way to reference all of the NPC characters in a given scene. Once that is
determined, we will need to set the initial values of the health and strength bar. Then,
during gameplay, we will need to be able to update each NPC's stats according to the state
of the game.

In order for us to identify the NPCs in a given scene, we are going to use the Tag element
defined in each GameObject. We need to create a new Tag named ENEMY, and every NPC
that is of enemy type will need to be tagged as such. This is an easy way to do a quick
search and get a list of GameObjects based on their Tag value.

You should also start thinking about how are you going to dynamically attach the NPC stat
canvas to the NPC on runtime. At the moment, for testing purposes, I am going to leave it
attached to the model. But the question is, where do you actually attach it? Well, we have an
empty GameObject named Follow attached to our model prefab. Since this is driven from
our player character model, we have embedded the Follow as a placeholder for the main
camera during gameplay. For the NPC, we are going to use it to attach the NPC canvas as a
child GameObject to the Follow GameObject in the model hierarchy. You can see these in the
preceding screenshots.

User Interface and System Feedback

[287]

We are going to use the NPC_Agent.cs script to initialize the NPC Status canvas prefab and
the appropriate values of the UI elements. This is the best place to place the initialization
because it will be self-contained. Here is the new listing for the script:

using UnityEngine;
using UnityEngine.UI;

using System;
using System.Collections;

[Serializable]
public class NPC_Agent : MonoBehaviour
{

 [SerializeField]
 public NPC npcData;

 [SerializeField]
 public Transform canvasNPCStatsAttachment;

 [SerializeField]
 public Canvas canvasNPCStats;

 [SerializeField]
 public GameObject canvasNPCStatsPrefab;

 public void SetHealthValue(float value)
 {
 this.canvasNPCStats.GetComponent<NPCStatUI>().imgHealthBar.fillAmount -
= value;
 }

 public void SetStrengthValue(float value)
 {
 this.canvasNPCStats.GetComponent<NPCStatUI>().imgManaBar.fillAmount -=
value;
 }

 //// Use this for initialization
 void Start()
 {
 // let's go ahead and instantiate our stats
 GameObject tmpCanvasGO = GameObject.Instantiate(
 this.canvasNPCStatsPrefab,
 this.canvasNPCStatsAttachment.transform.position +
this.canvasNPCStatsPrefab.transform.position,
 this.canvasNPCStatsPrefab.transform.rotation) as GameObject;

User Interface and System Feedback

[288]

 tmpCanvasGO.transform.SetParent(this.canvasNPCStatsAttachment);

 this.canvasNPCStats = tmpCanvasGO.GetComponent<Canvas>();
 this.canvasNPCStats.GetComponent<NPCStatUI>().imgHealthBar.fillAmount =
1f;
 this.canvasNPCStats.GetComponent<NPCStatUI>().imgManaBar.fillAmount =
1f;

 }
}

Note that you will need to assign canvasNPCStatsAttachment, which will be used to store a
reference to the GameObject we are going to attach to the NCP canvas, and
canvasNPCStatsPrefab will be used to assign the prefab representing the NPC status canvas
at design time. If you run the game now, you will have the prefab instantiated dynamically
and attached to the Follow GameObject in the hierarchy, with the fill values set to 1f, that is,
100 percent.

NPC health
We need to take a moment and go back to some of the initial scripts and configurations we
created in the early chapters, where we defined the player character's Animator Controller
and CharacterController.cs script.

Please refer to Chapter 3, Character Design, to refresh your memory about
Animator Controller and Curves.

Open the Animator Controller we created in Chapter 3, Character Design, named
CH3_Animator_Controller. Select the Parameters tab and create a new parameter called
Attack1C of float datatype.

User Interface and System Feedback

[289]

For a refresher, go back to the Chapter 4, Player Character and Non-Player Character Design,
section, PC and NPC Interaction, and you will recall how we defined and configured the
Curve to assign the parameter based on the animation.

We have defined the Curve only for one of the attack animations.

Once you have configured the parameter in the Animator Controller for the player character,
we have to update the CharacterController.cs script to trigger an attack based on the
parameter value.

The following listing is a partial listing of the script displaying just the modified portion:

 void FixedUpdate()
 {
 // The Inputs are defined in the Input Manager
 h = Input.GetAxis("Horizontal"); // get value for horizontal axis

User Interface and System Feedback

[290]

 v = Input.GetAxis("Vertical"); // get value for vertical axis

 speed = new Vector2(h, v).sqrMagnitude;

 animator.SetFloat("Speed", speed);
 animator.SetFloat("Horizontal", h);
 animator.SetFloat("Vertical", v);

 // We have three different attack modes, we have only implemented the
curve parameter for attack1
 // therefore, during game play if you use attack2/attack3 you will see
the visual attack happening
 // but the data will not reflect
 if (this.attack1 || this.attack2 || this.attack3)
 {
 if (animator.GetFloat("Attack1C") == 1.0f)
 {
 GameMaster.instance.PlayerAttackEnemy();

 // reset the timer
 this.attackTimer = Time.timeSinceLevelLoad + this.attackThreashold;
 }
 }
 }

In the code, we check to see if any of the attack modes are active, and if so we check to see
what the curve parameter Attack1C is at the moment of the animation. If we are at 1.0f, then
we call the GameMaster object to perform the rest.

Now, we need to take a look at a few functions we have defined/modified in the
GameMaster.cs script:

// for each level/scene that has been loaded
// do some of the preparation work
void OnLevelWasLoaded()
{
GameMaster.instance.LEVEL_CONTROLLER.OnLevelWasLoaded();
// find all NPC GameObjects of Enemy type
if(GameObject.FindGameObjectsWithTag("ENEMY").Length>0)
{
var tmpGONPCEnemy = GameObject.FindGameObjectsWithTag("ENEMY");
GameMaster.instance.goListNPCEnemy.Clear();
foreach(GameObject goTmpNPCEnemy in tmpGONPCEnemy)
{
instance.goListNPCEnemy.Add(goTmpNPCEnemy);
instance.closestNPCEnemy = goTmpNPCEnemy;
}
}

User Interface and System Feedback

[291]

}
public void PlayerAttackEnemy()
{
NPC npc = instance.closestNPCEnemy.GetComponent<NPC_Agent>().npcData;
npc.HEALTH -= 1;
}

Some explanation is needed here. The function OnLevelWasLoaded() is called each time a
new scene is being loaded at runtime. This is where we query all GameObjects that are
tagged ENEMY. We then store them internally for further processing down the line.

For testing purposes and due to the simplicity of the scene, there is only
one enemy present for testing, I am also setting the closestNPCEnemy object
to the last GameObject tagged ENEMY. This variable is later used in the
PlayerAttachEnemy() function to set the NPCs HEALTH property.

When the PlayerAttackEnemy() function is called, we get a reference to the NPC component
of the NPC character, and reduce the health based on the attack.

Now, this also forces us to update the BaseCharacter.cs script; here is a listing of the
modification:

public float HEALTH
{
get { return this.health; }
set
{
this.health = value;
if(this.tag.Equals("Player"))
{
if (GameMaster.instance.UI.hudUI != null)
{
GameMaster.instance.UI.hudUI.imgHealthBar.fillAmount = this.health /
100.0f;
}
}
else
{
this.characterGO.GetComponent<NPC_Agent>().SetHealthValue(this.health /
100.0f);
}
}
}

In the HEALTH property, we check to see if we are the player or an NPC. If we are the
player, we need to use the GameMaster to update our Stats UI, if we are going to update
our own NPC Stats UI.

User Interface and System Feedback

[292]

This mean that when you are creating your player character and/or NPC, you will need to
make sure you are assigning the data elements properly, see here:

void Awake()
{
PC tmp = new PC();
tmp.TAG = this.transform.gameObject.tag;
tmp.characterGO = this.transform.gameObject;
tmp.NAME = "Maximilian";
tmp.HEALTH = 100.0f;
tmp.DEFENSE = 50.0f;
tmp.DESCRIPTION = "Our Hero";
tmp.DEXTERITY = 33.0f;
tmp.INTELLIGENCE = 80.0f;
tmp.STRENGTH = 60.0f;
this.playerCharacterData = tmp;
}

The preceding code snippet is the Awake() from the PlayerAgent.cs script. You will need to
perform the same for the NPC_Agent.cs script.

The code and scripts we have looked at have been used to test the ideas we have put
forward. The results are positive. You might have noticed that when the player character is
attacking, we are not taking into consideration its position relative to that of the enemy. We
are also automatically assigning the closest NPC character in the GameMaster to eventually
be the last element of the query we do each time a level loads.

Enhancing the code
One last code implementation I would like to make, before I close out the chapter, is to
make sure that when we are in attack mode for the player character, the hit points are going
to affect the NPC that it is intended for automatically. In other words, determine which
NPC is closest to us based on distance and also our view angle toward the NPC.

We have already created the logic to determine these quantities for the NPC character, and
we need to implement something similar for the player character. Let's take a look at a
partial listing of the code changes we need to make for the CharacterMovement.cs script:

using UnityEngine;
using System.Collections;

public class CharacterController : MonoBehaviour
{

User Interface and System Feedback

[293]

 public Animator animator;

 public float speed = 6.0f;
 public float h = 0.0f;
 public float v = 0.0f;

 public bool attack1 = false; // used for attack mode 1
 public bool attack2 = false; // used for attack mode 2
 public bool attack3 = false; // used for attack mode 3

 public bool jump = false; // used for jumping
 public bool die = false; // are we alive?

 public bool DEBUG = false;

 // Reference to the sphere collider trigger component.
 private SphereCollider col;

 // where is the player character in relation to NPC
 public Vector3 direction;

 // how far away is the player character from NPC
 public float distance = 0.0f;

 // what is the angle between the PC and NPC
 public float angle = 0.0f;

 // is the PC in sight?
 public bool enemyInSight;

 // what is the field of view for our NPC?
 // currently set to 110 degrees
 public float fieldOfViewAngle = 110.0f;

 // calculate the angle between PC and NPC
 public float calculatedAngle;

 // Use this for initialization
 void Start()
 {
 this.animator = GetComponent<Animator>() as Animator;
 //this.attackTimer = 0.0f;

 // we don't see the player by default
 this.enemyInSight = false;
 }

 // Update is called once per frame

User Interface and System Feedback

[294]

 private Vector3 moveDirection = Vector3.zero;

 Quaternion startingAngle = Quaternion.AngleAxis(-60, Vector3.up);
 Quaternion stepAngle = Quaternion.AngleAxis(5, Vector3.up);
 Vector3 viewDistance = new Vector3(0, 0, 30);

 Quaternion startingAttackAngle = Quaternion.AngleAxis(-25, Vector3.up);
 Quaternion stepAttackAngle = Quaternion.AngleAxis(5, Vector3.up);
 Vector3 attackDistance = new Vector3(0, 0, 2);

 void Update()
 {
 ...

 if (Input.GetKeyDown(KeyCode.I))
 {
 this.die = true;
 SendMessage("Died");
 }
 animator.SetBool("Die", die);

 }

 void FixedUpdate()
 {
 // The Inputs are defined in the Input Manager
 // get value for horizontal axis
 h = Input.GetAxis("Horizontal");
 // get value for vertical axis
 v = Input.GetAxis("Vertical");

 speed = new Vector2(h, v).sqrMagnitude;

 if (DEBUG)
 Debug.Log(string.Format("H:{0} - V:{1} - Speed:{2}", h, v, speed));

 animator.SetFloat("Speed", speed);
 animator.SetFloat("Horizontal", h);
 animator.SetFloat("Vertical", v);

 // We have three different attack modes, we have only implemented the
curve parameter for attack1
 // therefore, during game play if you use attack2/attack3 you will see
the visual attack happening
 // but the data will not reflect
 if (this.attack1 || this.attack2 || this.attack3)
 {
 #region used for attack range

User Interface and System Feedback

[295]

 RaycastHit hitAttack;
 var angleAttack = transform.rotation * startingAttackAngle;
 var directionAttack = angleAttack * attackDistance;
 var posAttack = transform.position + Vector3.up;
 for (var i = 0; i < 10; i++)
 {
 Debug.DrawRay(posAttack, directionAttack, Color.yellow);
 if (Physics.Raycast(posAttack, directionAttack, out hitAttack,
1.0f))
 {
 var enemy = hitAttack.collider.GetComponent<NPC_Agent>();
 if (enemy)
 {
 //Enemy was seen
 if(DEBUG)
 Debug.Log(string.Format("Detected: {0}",
enemy.npcData.NAME));
 this.enemyInSight = true;
 GameMaster.instance.closestNPCEnemy =
hitAttack.collider.gameObject;
 }
 else
 {
 this.enemyInSight = false;
 }
 }
 directionAttack = stepAngle * directionAttack;
 }
 #endregion

 if (enemyInSight)
 {
 if (animator.GetFloat("Attack1C") == 1.0f)
 {
 PC pc =
this.gameObject.GetComponent<PlayerAgent>().playerCharacterData;
 float impact = (pc.STRENGTH + pc.HEALTH) / 100.0f;
 GameMaster.instance.PlayerAttackEnemy(impact);
 }
 }

 }

 }

User Interface and System Feedback

[296]

The way we calculate the sighting and distance of the enemy NPCs is through raycasting.
This is done only when we are in attack mode: we check to see if the NPC is in front of us,
and if so, we set the closestNPCEnemy object in the GameMaster and set the flag
enemyInSight, where we then perform the necessary subtraction from the health of the NPC.

Notice that I have also changed the way we are computing the impact of the hit based on a
simple equation:

Where pc is the object reference to our Player Character. The same equation is used on the
NPC objects. This is just a simple demonstration that the impact of the hit point of the
player or the NPC is based on the strength and the health of the actors in the scene.

The preceding screenshot illustrates how we detect if an NPC is in attack range or not.

User Interface and System Feedback

[297]

In turn you can derive the strength value from the components that the play or the NPC has
activated throughout the gameplay.

Here is partial listing of BaseCharacter.cs illustrating the HEALTH property:

public float HEALTH
{
get { return this.health; }
set
{
this.health = value;
if(this.tag.Equals("Player"))
{
if (GameMaster.instance.UI.hudUI != null)
{
GameMaster.instance.UI.hudUI.imgHealthBar.fillAmount = this.health /
100.0f;
}
}
else
{
this.characterGO.GetComponent<NPC_Agent>().SetHealthValue(this.health /
100.0f);
}
}
}

There are more code changes and updates, please refer to the associated
files provided.

User Interface and System Feedback

[298]

During the process of implementation I have modified a few other code locations that are
not listed within the book due to physical limitations. Here are the scripts that have been
modified: BaseCharacter.cs, CharacterController.cs, GameMaster.cs, NPC_Agent.cs,
PlayerAgent.cs and NPC_Movement.cs.

You are encouraged to do some research and try different types of mechanics and
implementation to enhance your skills.

User Interface and System Feedback

[299]

Summary
In this chapter we have expanded on our idea and seen how to integrate all of the major
pieces together. The main objective of the chapter was to create a Heads Up Display (HUD)
for our game.

We started out with a design concept that was of interest to us, and created a layout for our
HUD before the actual implementation. Once we concluded what the HUD should look
like, we started building the framework for it. We designed the three main sections of the
HUD and referred to them as the following: PanelCharacterInfo, PanelActiveItems and
PanelSpecialItems.

Next, we started building the UI elements and the code necessary to make the panels work
with our code. We started with the PanelCharacterInfo, which represented the stats for our
character player, which is a reference to the player's avatar, to the health and to the strength
of the character. In the process, we had to create or update several of the scripts to work
with the new UI.

Next we designed and developed the PanelActiveItems panel. The implementation and
approach to this specific panel was a little more involved. The purpose of this panel is to
display all of the current active inventory items that the player has consumed. We had to
make the panel scrollable, since we don't know how many items at any given time the
player will be consuming. We created the necessary prefabs to be placeholders for the
inventory items, and also the scripts that would make them work together.

The design for PanelSpecialItems was very similar to that of the PanelActiveItems, with two
main differences. First, we had to make sure that the panel was vertical instead of
horizontal, so we had to make sure that the proper configuration was applied. Secondly, the
main functionality was different for this panel. The items displayed were supposed to be
intractable, which meant that we had to create custom event handlers, apply the necessary
values to the player character, and update the whole game state.

User Interface and System Feedback

[300]

Once we were satisfied with the design of our HUD, we starting building the necessary
scripts to integrate the UI elements with the GameMaster and other scripts. This was
basically making sure that our UI was always reflecting the state of the object that was of
interest to us. The health, stamina and inventory are the main items we used to
communicate the concepts.

In the last section of the chapter, we concentrated on implementing the player's character
movement and detecting the NPC's, and how to track the hit points between the player
character and the NPC, which we had not done in previous chapters.

We also had to do some backtracking and make some adjustments to the Animation
Controller we had defined for our player character, to have curves defined for our attack
animation values based on the motion.

During the process, we had to solve the following challenges: How do we know if we are in
close enough range that we can actually attack and hit the NPC character? How are we
going to detect which NPC is closer to us? More importantly, how is the data going to be
passed along from the action of attacking to the actual hit on the NPC?

We have done a lot in a short period of time, and in a small number of pages. Some of the
functions have been left for the reader to solve on their own. For instance, we have not
discussed how to delete an inventory item and so on. I felt that this was trivial, and that the
reader will be sufficiently comfortable to implement the function on their own once they see
the bigger scope and how to connect everything together.

With that said, let's move on to the next chapter.

8
Multiplayer Setup

The desire of every indie-game developer is to make a multiplayer game. The reality is that
creating multiplayer games are difficult. There are a lot of scenarios that you need to take
into consideration as a game designer/developer. Besides the technical complexities that are
involved in the nature of creating online multiplayer games, there are also game play
elements that you will need to consider.

The purpose of this chapter is to give you a good overview of the out of the box networking
functionality using Unity 5. This is a complex topic and as such, we cannot cover everything
in this chapter. A whole new book will be required to really dive into the details.

Having said that, I structured this chapter to include a simple project that will be used to
illustrate the fundamentals of networking; I will then show you how to network enable our
own game objects.

Here is a breakdown of the chapter:

Heads Up Display
Completing HUD Design
Integrating the Code

Here we go!

Multiplayer Setup

[302]

Challenges of a Multiplayer Game
General rule of thumb is, if you don't need to enable your game to be multiplayer, don't! It
just adds a whole lot of complexity and extra requirements and specifications that you will
need to start worrying about. But if you must, then you must!

You probably know by now that creating even the simplest multiplayer game will have its
own challenges that you will need to address as the game designer. There are different
types of online multiplayer game design:

Real-time multiplayer games
Turn-based multiplayer games
Asynchronous multiplayer games
Local multiplayer games

The most challenging out of all the different types of multiplayer games is Real-time
multiplayer gaming. This is because all players have to be synchronized in a proper and
effective way with the latest game state at any given time.

That is, if we have Player A perform a specific action, Player B will see the action at the
same time on his or her screen. Now, consider we have another player join, say Player C,
Player A and B will need to synchronize with Player C and in turn Player C will need to
synchronize its own environment with Player A's and Player B's state.

Not just the actual position/rotation of the players has to be synchronized, but also all of the
player data will need to be synchronized. Now, imagine what happens when you multiply
this by 100 or 1000 or 1,000,000 connected players.

For a real-world multiplayer game, what we are going to cover here is not enough, and
what Unity provides out of the box is not enough either. Chances are that you will need to
write your own server-side code to handle the player data.

Now, you can see the challenge involved in designing and developing multiplayer games,
we can start by building our first multiplayer game.

Multiplayer Setup

[303]

Initial Multiplayer Game
The best way to learn about multiplayer games is by doing a simple example. The following
project is based on the Unity networking tutorial but has been extended to have some other
features implemented that will be helpful in the implementation of networking in our RPG.

Fundamental Networking Components
We need to get familiar with some networking components that will be used for the
creation of our network-enabled games. These components are:

Network Manager: The NetworkManager is a higher level class that allows you
to control the state of a networked game. It provides an interface in the editor to
control the configuration of the network, the prefabs used for spawning, and the
scenes to use for different network game states.
Network Manager HUD: This provides a default user interface for controlling
the network state of the game. It also shows information about the current state of
the NetworkManager in the editor.
Network Identity: The NetworkIdentity component is at the heart of the new
networking system. This component controls an object's network identity and it
makes the networking system aware of it.
Network Transform: The NetworkTransform component synchronizes
movement of game objects across the network. This component takes authority
into account, so LocalPlayer objects synchronize their position from the client to
server, then out to other clients. Other objects (with server authority) synchronize
their position from the server to clients.

Multiplayer Setup

[304]

Networking Project
The following project is used to demonstrate the concepts of a multiplayer game. The
concepts can then be applied to more complex scenarios.

We will start by creating a new Unity project. All multiplayer games need to have a
NetworkManager implemented. To do this, we are going to create an Empty GameObject
and rename it to Network Manager; now attach the NetworkManager component to the
newly created object using the Inspector Window and navigating to Add Component |
Network | NetworkManager. We are also going to add the Network Manager HUD
component to the selected GameObject. Again, from the InspectorWindow navigate to Add
Component | Network | NetworkManagerHUD.

Multiplayer Setup

[305]

Adding Player Character
We are now going to be adding a simple character player. You can really use any primitive
GameObject to represent your PC, I am going to create my player to take the shape of a
simple tank. See the following figure:

Multiplayer Setup

[306]

The following image will illustrate the hierarchy of the Tank GameObject:

I am not going to cover how to create the GameObject, as you should be able to do that very
easily by now. What I will cover, is how to enable the new Tank GameObject network
enabled.

We are going to attach two network components to the Tank GameObject. The first one is
going to be NetworkIdentity, which can be added by selecting the Tank GameObject and
from within the Inspector Window navigating to Add Component | Network | Network
Identity.

When you are done adding the component, make sure to check the Local Player Authority
property checkbox.

The Local Player Authority allows the object to be controlled by the client that owns it.

Multiplayer Setup

[307]

Next, we need to add the NetworkTransform component to the Tank GameObject. Again,
selecting the Tank GameObject, from the Inspector Window and navigate to Add
Component | Network | NetworkTransform to add the component:

We are going to keep the default values for the NetworkTransform component. You can
read more on the different properties on your own using the online documentation. The
main attribute you may want to adjust is the Network Send Rate.

Next, we want to create a script that will allow us to control the movement of the Tank. Go
ahead and create a new C# script and name it PlayerController.cs.

Here is a listing of the script:

using UnityEngine;
using UnityEngine.Networking;
using System.Collections;

public class PlayerController : NetworkBehaviour
{

 public GameObject bulletPrefab;
 public Transform bulletSpawn;

 public override void OnStartLocalPlayer()
 {
 GetComponent<MeshRenderer>().material.color = Color.blue;
 }

Multiplayer Setup

[308]

 void Update()
 {
 // only execute the following code if local player ...
 if (!isLocalPlayer)
 return;

 var x = Input.GetAxis("Horizontal") * Time.deltaTime * 150.0f;
 var z = Input.GetAxis("Vertical") * Time.deltaTime * 3.0f;

 transform.Rotate(0, x, 0);
 transform.Translate(0, 0, z);

 if (Input.GetKeyDown(KeyCode.Space))
 {
 CmdFire();
 }
 }

 [Command]
 void CmdFire()
 {
 // Create the Bullet from the Bullet Prefab
 var bullet = (GameObject)Instantiate(
 bulletPrefab,
 bulletSpawn.position,
 bulletSpawn.rotation);

 // Add velocity to the bullet
 bullet.GetComponent<Rigidbody>().velocity = bullet.transform.forward *
6;

 if(isLocalPlayer)
 bullet.GetComponent<MeshRenderer>().material.color = Color.blue;

 // Spawn the bullet on the Clients
 NetworkServer.Spawn(bullet);

 // Destroy the bullet after 2 seconds
 Destroy(bullet, 2.0f);
 }

}

The code is straightforward, but there are some important concepts that we need to discuss.
First and foremost, you will note that we are inheriting from NetworkBehaviour, instead
of MonoBehaviour.

Multiplayer Setup

[309]

NetworkBehaviour is used to work with objects with the NetworkIdentiy component. This
allows you to perform network-related functions such as Commands, ClientRPCs,
SyncEvents, and SyncVars.

Variable Synchronization
Synchronizing variables is one of the important aspects of a multiplayer game. If you recall,
one of the challenges of multiplayer games was the ability to make sure all of the key data
for the game is synchronized across the server and the clients. This is accomplished by the
SyncVarattribute. You will see how this is applied in the next script we are going to create
for the health of the unity.

Network Callbacks
These are functions that are invoked on NetworkBehaviour script for various network
events. Here is a list:

OnStartServer(): This is called when an object is spawned on the server or
when the server is started for objects in the scene.
OnStartClient(): This is called when the object is spawned on the client or
when the client connects to a server for objects in the scene.
OnSerialize(): This is called to gather state to send from the server to clients.
OnDeSerialize(): This is called to apply a state to objects on clients.
OnNetworkDestroy(): This is called on clients when server told the object to be
destroyed.
OnStartLocalPlayer(): This is called on clients for player objects for the local
client only.
OnRebuildObservers(): This is called on the server when the set of observers
for an object is rebuild.
OnSetLocalVisibility(): This is called on a host when the visibility of an
object changed for the local client.
OnCheckObserver(): This is called on the server to check visibility state for a
new client.

In the PlayerController.cs script, you will note that we are using the
OnStartClient() to highlight the local player by changing its material color to blue.

Multiplayer Setup

[310]

Sending Commands
Commands are the way for clients to request a function to be performed on the server. In a
server authoritative system, clients can only do things through commands. Commands are
run on the player object on the server that corresponds to the client that sent the command.
This routing happens automatically, so it is impossible for a client to send a command for a
different player.

A command must begin with the prefix “Cmd” and have the [Command] custom attribute
on them.

In our PlayerController.cs script, when the player fires, it send a command to the
server using the CmdFire() function.

Client RPC Calls
Client RPC calls are a way for server objects to cause things to happen on client objects. This
is the reverse direction to how commands send messages, but the concepts are the same.
Client RPC calls, however, are not only invoked on player objects, they can be invoked on
any NetworkIdentity object. They must begin with the prefix “Rpc” and have the
[ClientRPC] custom attribute.

You will see an example of this on the Health.cs script, which we will be creating next.

We would need a way to also keep track of our player character's health. This will be done
using a new script called Health.cs.

Here is a listing of the script:

using UnityEngine;
using UnityEngine.Networking;

public class Health : NetworkBehaviour {
 public const int maxHealth = 100;

 [SyncVar(hook = "OnChangeHealth")]
 public int currentHealth = maxHealth;

 public RectTransform healthBar;

 public bool destroyOnDeath;

 public override void OnStartClient()
 {

Multiplayer Setup

[311]

 healthBar.sizeDelta = new Vector2(currentHealth,
healthBar.sizeDelta.y);
 }

 public void TakeDamage(int amount)
 {
 currentHealth -= amount;
 if (currentHealth <= 0)
 {
 if (destroyOnDeath)
 {
 Destroy(gameObject);
 }
 else
 {
 currentHealth = maxHealth;

 // called on the Server, will be invoked on the Clients
 RpcRespawn();
 }
 }

 }

 void OnChangeHealth(int health)
 {
 healthBar.sizeDelta = new Vector2(health, healthBar.sizeDelta.y);
 }

 [ClientRpc]
 void RpcRespawn()
 {
 if (isLocalPlayer)
 {
 // move back to zero location
 transform.position = Vector3.zero;
 }
 }
}

Notice, in this script we are also inheriting from NetworkBehaviour. The two main items I
want to bring to your attention are the SyncVar, the ClientRpc, and the
OnStartClient() functions.

We want to synchronize the player's health across the network, to do this, we use the
SyncVar NetworkBehaviour. SyncVar can be any basic type, not, classes, lists, or other
collections.

Multiplayer Setup

[312]

When the value of a SyncVar is changed on the server, it will be sent to all of the ready
clients in the game. When objects are spawned, they are created on the client with the latest
state of all SyncVars from the server.

The OnStartClient() function makes sure that each object with the Health.cs script
attached to it, will have the most up-to-date value to display on the health bar UI.

I want to take a moment and make sure I give you a crucial pointer here. Assume, we are
running a networked game session, and we have the Host, PlayerA, and Player B connected
and going about their business. During the gameplay, Player A and Player B have their
health value changed. Now, we have a third player connect to the game, Player C. If the
OnStartClient() is not implemented, the client for PlayerC will have the correct data
synchronized for all of the GameObjects with the Health.cs script; however, the data will
not reflect correctly on the UI because, we need to have a trigger for that to happen. This
can be handled in the OnStartClient() function as shown in the code.

The next function is the RpcRespawn() function. In the TakeDamage() function, we check
the health of the current GameObject; if the health drops below zero, we check to see if the
destroyOnDeath Boolean variable is set. If it is not set, we go ahead and reset the
currentHealth value to maxHealth value, and we use the RpcRespawn() method to
respawn the player at the origin. Remember this function is executed on all clients!

Within the function, we check to see if the caller is the local player by checking the variable
isLocalPlayer. Yes, creating a multiplayer game does get confusing! This will become
apparent more, as you start experimenting with it more.

Creating the Canon Ball for the Tank
Ok, so we need to create a prefab that will represent our Canon Balls! Very simple, create a
sphere, and make it the same size as the nozzle of your Tank Gun.

We are going to need to attach the following components to the Canon Ball GameObject:
NetworkIdentity, NetworkTransform, Rigidbody, and a Bullet.cs scripts.

Make sure that you set the Use Gravity property is False on the Rigidbody component.
Also, make sure that both Server Only and Local Player Authority properties are
False on the NetworkIdentity component. On the NetworkTransform component,
change the Network Send Rate to . Once we generate the object on the server, the physics
will take care of the motion on each client.

Create a new C# script called Bullet.cs.

Multiplayer Setup

[313]

Here is the listing for the script:

using UnityEngine;

public class Bullet : MonoBehaviour {

 void OnCollisionEnter(Collision collision)
 {
 var hit = collision.gameObject;
 var health = hit.GetComponent<Health>();
 if (health != null)
 {
 health.TakeDamage(10);
 }

 Destroy(gameObject);
 }
}

All we are doing here is detecting a collision. If there is a collision, we get the Health
component. If the Health component is not null, we call the TakeDamage() function and
pass is a value.

If you recall from the Health.cs script, the TakeDamage() function reduces the
currentHealth of the player, which in return is a SyncVar that it gets updated on all
active clients.

One item we did not discuss is the idea of a hook. A SyncVar can have a hook. Think of a
hook as an event handler. The hook attribute can be used to specify a function to be called
when the SyncVar changes value on the client.

 [SyncVar(hook = "OnChangeHealth")]
 public int currentHealth = maxHealth;

The OnChangeHealth() function is responsible to update the UI canvas for displaying our
health value.

 void OnChangeHealth(int health)
 {
 healthBar.sizeDelta = new Vector2(health, healthBar.sizeDelta.y);
 }

Go ahead and also make a prefab of the Canon Ball and delete the instance from the scene.

Multiplayer Setup

[314]

Make sure you have assigned the proper prefab association that are required on each script.
For instance, the Tank GameObject's PlayerController.cs script needs a reference to the
Canon Ball prefab and also the Canon Spawn Location. The Health.cs script needs a
reference to the HealthBar foreground image and so on.

Creating Tank Prefab and Configuring NetworkManager
Now that we created our Tank GameObject and attached all of the necessary components
and scripts to it. We need to make a Prefab of it. This is because we are going to let the
NetworkManger spawn our Player Character, and in order for it to be able to do so, it needs
to refer to a prefab that is a representation of your player character.

The NetworkManager has a Spawn Info section that you can assign the Player Prefab,
determine if the NetworkManager can Auto Create Player and the Player Spawn Method.

There is also a section for Registered Spawnable Prefabs. We need to register all of the
GameObjects that will be spawned by the NetworkServer. For instance, the Canon Ball
prefab will need to be registered here so that we can spawn it across the network on
different clients.

Select the Network Manager GameObject in the scene, and in the Inspector Window assign
the appropriate prefabs as needed.

Here is a screenshot of how the NetworkManager should look like at this point:

Multiplayer Setup

[315]

At this point, you are ready to test out what we have built so far. Go ahead and create a
standalone version of your game using the Build Settings window. Once you have your
build ready, launch two instances of the application. We are going to use one instance to
host the game and the other to connect as a client.

Multiplayer Setup

[316]

The following figure illustrates how your game instance will look like when you run it.

The following figure will illustrate how your screen will look after you click on the LAN
Host (H) button. I moved the Tank (player character around).

Multiplayer Setup

[317]

The following figure illustrates host/client with three clients:

Notice in the preceding figure, each client has highlighted the player character it controls,
that is, the Tank it controls. It is going to be difficult to capture the fire command, but you
can go ahead and use the Space Bar to fire the Canon and it will be triggered accordingly on
all active clients.

You will also notice that the health of each Tank will be reflected accurately if they do get a
hit. Now, we are ready to create an enemy to illustrate the non-player character in the game.

Multiplayer Setup

[318]

Adding the Enemy Tank
Now it is time to add some of the non-player characters to our multiplayer demo. Adding
the Enemy Tank is going to be simple as we are going to use our Tank prefab as a base. Go
ahead and drop the Tank prefab into the scene and change the name to TankEnemy.

Remove the PlayerCharacter.cs script from the GameObject. We are going to create a
separate script as the controller for the Enemy Tank. I have also gone ahead and applied
different material to the Enemy Tank, so visually we can distinguish which tanks are going
to be controlled by players and which ones are going to be non-player.

The preceding figure illustrates how your Tank and TankEnemy prefabs should look like.
The main difference between the two is the controller script. Tank has the
PlayerController.cs script and TankEnemy has EnemyController.cs script.

Here is a listing of the EnemyController.cs script:

using UnityEngine;
using UnityEngine.Networking;

Multiplayer Setup

[319]

public class EnemyController : NetworkBehaviour
{

 public GameObject bulletPrefab;
 public Transform bulletSpawn;
 public float distance = 1000;

 public GameObject[] listOfPlayers;

 [SyncVar(hook = "OnChangePlayerToAttack")]
 public GameObject playerToAttack;

 float coolOffTime = 0.0f;

 void Update()
 {
 // only execute the following code if local player ...
 if (!isServer)
 return;

 listOfPlayers = GameObject.FindGameObjectsWithTag("Player");
 if (listOfPlayers.Length > 0)
 {

 float distance = 100f;
 foreach (var player in listOfPlayers)
 {
 float d = Vector3.Distance(transform.position,
player.transform.position);
 if (d < distance)
 {
 distance = d;
 this.playerToAttack = player;
 }
 }

 if (this.playerToAttack != null)
 {
 Vector3 direction = playerToAttack.transform.position -
transform.position;

 this.transform.rotation =
 Quaternion.Slerp(this.transform.rotation,
 Quaternion.LookRotation(direction), 0.1f);

 float d = Vector3.Distance(transform.position,
playerToAttack.transform.position);

Multiplayer Setup

[320]

 if (d < 15.0f)
 {
 if(this.coolOffTime<Time.time)
 {
 CmdFire();
 this.coolOffTime = Time.time + 1.0f;
 }
 }
 }
 }
 }

 void OnChangePlayerToAttack(GameObject player)
 {
 this.playerToAttack = player;
 }

 [Command]
 void CmdFire()
 {
 // Create the Bullet from the Bullet Prefab
 var bullet = (GameObject)Instantiate(
 bulletPrefab,
 bulletSpawn.position,
 bulletSpawn.rotation);

 // Add velocity to the bullet
 bullet.GetComponent<Rigidbody>().velocity = bullet.transform.forward *
6;

 // Spawn the bullet on the Clients
 NetworkServer.Spawn(bullet);

 // Destroy the bullet after 2 seconds
 Destroy(bullet, 2.0f);
 }

}

The script does the following. It continuously searches for all players that are active in the
scene and makes a list of them. Then, it finds the closest one to itself. Once it determines
which player is closest, it rotates to face the player.

Then, it calculates the distance between itself and the selected player, if the distance is
shorter than the acceptable threshold, then it starts firing at the player. Each time the Enemy
Tank fires, it actually calls a [Command] named CmdFire().

Multiplayer Setup

[321]

This function is run on the server, it instantiates a Canon Ball prefab and spawns it on the
network.

The EnemyController.cs script also has a SyncVar for the playertoAttack variable,
with a hook attached as OnChangePlayerToAttack() function. This in turn makes sure
that all clients get updated with the latest data on each Enemy Tank GameObject.

The Health.cs script works the same as it does on the Tank GameObject.

There is one more item we need to cover, the spawning of the Enemy Tanks by the server.
We can do this easily by creating another Empty GameObject, and naming it Enemy
Spawner. We need to attach a NetworkIdentity component and make sure we set the Server
Only property, to True. This will make sure that only the server can instantiate the enemy
objects.

The next step is to create the EnemySpawner.cs scripts. Here is the listing:

using UnityEngine;
using UnityEngine.Networking;

public class EnemySpawner : NetworkBehaviour {

 public GameObject enemyPrefab;
 public int numberOfEnemies;

 public override void OnStartServer()
 {
 for (int i = 0; i < numberOfEnemies; i++)
 {
 var spawnPosition = new Vector3(
 Random.Range(-8.0f, 8.0f),
 0.0f,
 Random.Range(-8.0f, 8.0f));

 var spawnRotation = Quaternion.Euler(
 0.0f,
 Random.Range(0, 180),
 0.0f);

 var enemy = (GameObject)Instantiate(enemyPrefab, spawnPosition,
spawnRotation);
 NetworkServer.Spawn(enemy);
 }
 }
}

Multiplayer Setup

[322]

This code technically takes the prefab provided as the Enemy Tank and randomly spawns
each enemy tank within a range over the network.

Make sure all of your prefabs have been assigned in the Inspector Window for both the
Enemy Spawner GameObject and the TankEnemy GameObject. Create a Prefab of your
TankEnemy if you have not done so already and delete it from the scene. Do not delete the
Enemy Spawner.

We need to register the TankEnemy prefab with the NetworkManager. Go ahead and select
the Network Manager GameObject and from the Inspector Window, add a new Prefab to the
Registered Spawnable Prefabs option.

Your Network Manager should look like the following now:

Multiplayer Setup

[323]

Building and Testing
We are ready to do our final test. Go ahead and build the standalone version of the project
and launch a new instance of the game. Click on the LAN Host (H) button to start hosting a
game.

In the new implementation, you will note that not only the player character tank gets
spawned, but also the non-player character enemy tanks.

You will also note that right after initialization, all of the enemy tanks are going to rotate
toward the player character tank and if within range, they are going to start firing at it.

The following figure illustrates the initial scene:

Note that while I was trying to capture the screen, the enemy tank were merciless and fired
at my tank continuously. You can see that my health bar has reduced drastically. You can
also note that one of the enemy tank has also received some damage.

Multiplayer Setup

[324]

I assure you that I had nothing to do with the damage taken by the enemy tank, it was
actually caused by friendly fire. Yes, at the moment, the enemy tanks are not smart enough
to hold fire if another team member is in the line of fire!

I will let you handle the implementation of that on your own. It shouldn't be too complex.

Use Raycasting to make sure there is no object between the enemy tank
and the player prior to firing.

Congratulations! You just created your first multiplayer game! As mentioned earlier,
creating, maintaining, and hosting a multiplayer game is no small task, and covering every
single aspect on how to do it is simply impossible in a few pages.

Multiplayer Setup

[325]

The idea here is to give you the foundation and the fundamentals that you can take and
expand upon. I would encourage you to take some time and study what we have just
covered and do some more reading on the material, even though, not much exists. The truth
is that you will need to do a lot of experimentation and trial and error on your own.

Now that we know the basics, let's go ahead and apply what you learned to our RPG assets.

Network Enabling RPG Characters
In order to make life easier, I decided to create a new scene that will be used to test and
implement our network-enabled characters. This example will show you how to network
enable the player character and also how to synchronize the player character data such as
inventory item across the network and also the ability to network enable the non-player
character and make it synchronize its data across the clients.

Creating a Scene for RPG
Create a new scene and save it as CH8_Networking. Place a Terrain in the scene; modify it so
that it has a TerrainWidth and Terrain Length of 30. Modify the Position Transform so that
it is at <-15,0,-15>; this will make the center of the terrain at the origin.

Next, we are going to create an Empty GameObject and name it NetworkManager. We are
also going to create another Empty GameObject and name is SpawnEnemy.

Select the NetworkManager GameObject and attach the following components to it:
NetworkManager and NetworkManager HUD using the Inspector Windows, select Add
Component | Network | NetworkManager and Add Component | Network |
NetworkManagerHUD.

We will come back to these GameObjects later. We need to make our Player Character
network enabled.

Networked Player Character
Go ahead and drag the player prefab you created into the scene. We are going to use it as a
base to create a new prefab that will be used for the networked version of the game.

Multiplayer Setup

[326]

Go ahead and remove the existing CharacterController.cs and
CharacterCustomization.cs components from the instance. We are going to create new scripts
that are networked enabled and use them. Rename the PC GameObject instance to PC-CC-
Network. Now, make a prefab of the instance. You should now have a new prefab named
PC-CC-Network.

Go ahead and attach the following components to the prefab: NetworkIdentiy,
NetworkTransform, and NetworkAnimatorusing the Inspector Window and navigating to
Add Components | Network | <component name>.

On NetworkIdentity component, set the Local Player Authority to True. On
NetworkTransform component change the Transform Sync Mode to Sync Transform. On the
NetworkAnimator component, you will need to drag the Animator components attached to
the GameObject into the Animator slot.

You will need to select the Animator component and drag it right down
into the Animator slot on the NetworkAnimator components.

Next, we need to create a new character controller so that it is network compatible.

Create a new C# script and call it CharacterController_Network.cs. Attach the script
to the PC-CC-Network prefab. The new character controller is a stripped down version of the
original character controller.

Here is the listing for it:

using System;

using UnityEngine;
using UnityEngine.Networking;
using System.Collections;

public class CharacterController_Network : NetworkBehaviour {

 public Animator animator;

 public float speed = 6.0f;
 public float h = 0.0f;
 public float v = 0.0f;

 public bool attack1 = false; // used for attack mode 1
 public bool attack2 = false; // used for attack mode 2
 public bool attack3 = false; // used for attack mode 3

Multiplayer Setup

[327]

 public bool jump = false; // used for jumping
 public bool die = false; // are we alive?

 public bool DEBUG = false;

 // Reference to the sphere collider trigger component.
 private SphereCollider col;

 // where is the player character in relation to NPC
 public Vector3 direction;

 // how far away is the player character from NPC
 public float distance = 0.0f;

 // what is the angle between the PC and NPC
 public float angle = 0.0f;

 // is the PC in sight?
 public bool enemyInSight;

 // what is the field of view for our NPC?
 // currently set to 110 degrees
 public float fieldOfViewAngle = 110.0f;

 // calculate the angle between PC and NPC
 public float calculatedAngle;

 [SyncVar(hook ="OnChangeEnemyToAttack")]
 public GameObject enemyToAttack;

 [SyncVar(hook = "OnChangePlayerHealth")]
 public float Health = 100.0f;

 [SyncVar]
 public string Shield="";
 [SyncVar]
 public string Helmet="";

 public override void OnStartClient()
 {
 if(!String.IsNullOrEmpty(Shield))
 PlayerSetShield(Shield);

 if(!String.IsNullOrEmpty(Helmet))
 PlayerSetHelmet(Helmet);
 }

 // Use this for initialization

Multiplayer Setup

[328]

 void Start()
 {
 this.animator = GetComponent<Animator>() as Animator;

 // we don't see the player by default
 this.enemyInSight = false;
 }

 // Update is called once per frame
 private Vector3 moveDirection = Vector3.zero;

 Quaternion startingAttackAngle = Quaternion.AngleAxis(-25, Vector3.up);
 Quaternion stepAttackAngle = Quaternion.AngleAxis(5, Vector3.up);
 Vector3 attackDistance = new Vector3(0, 0, 2);

 void Update()
 {
 if (!isLocalPlayer)
 return;

 if (enemyInSight)
 {
 // Create a vector from the enemy to the player and store the angle
between it and forward.
 direction = enemyToAttack.transform.position - transform.position;

 this.transform.rotation =
 Quaternion.Slerp(this.transform.rotation,
 Quaternion.LookRotation(direction), 0.1f);
 }

 if (this.attack1 || this.attack2 || this.attack3)
 {
 #region used for attack range
 RaycastHit hitAttack;
 var angleAttack = transform.rotation * startingAttackAngle;
 var directionAttack = angleAttack * attackDistance;
 var posAttack = transform.position + Vector3.up;
 for (var i = 0; i < 10; i++)
 {
 Debug.DrawRay(posAttack, directionAttack, Color.yellow);
 if (Physics.Raycast(posAttack, directionAttack, out hitAttack,
1.0f))
 {
 if (hitAttack.collider.gameObject.tag.Equals("ENEMY"))
 {
 enemyInSight = true;
 enemyToAttack = hitAttack.collider.gameObject;

Multiplayer Setup

[329]

 CmdEnemyToAttack(hitAttack.collider.gameObject);
 }
 }
 directionAttack = stepAttackAngle * directionAttack;
 }
 #endregion

 if (enemyInSight && !die)
 {
 if (animator.GetFloat("Attack1C") == 1.0f)
 {
 CmdEnemyTakeDamage(1.0f);
 }
 }

 if(this.enemyToAttack!=null)
 {
 if (this.enemyToAttack.GetComponent<NPC_Movement_Network>().Health
<= 0.0f)
 {
 enemyInSight = false;
 enemyToAttack = null;
 }
 }

 }

 if (Input.GetKeyDown(KeyCode.C))
 {
 attack1 = true;
 GetComponent<IKHandle>().enabled = false;
 }
 if (Input.GetKeyUp(KeyCode.C))
 {
 attack1 = false;
 GetComponent<IKHandle>().enabled = true;
 }
 animator.SetBool("Attack1", attack1);

 if (Input.GetKeyDown(KeyCode.Z))
 {
 attack2 = true;
 GetComponent<IKHandle>().enabled = false;
 }
 if (Input.GetKeyUp(KeyCode.Z))
 {
 attack2 = false;
 GetComponent<IKHandle>().enabled = true;

Multiplayer Setup

[330]

 }
 animator.SetBool("Attack2", attack2);

 if (Input.GetKeyDown(KeyCode.X))
 {
 attack3 = true;
 GetComponent<IKHandle>().enabled = false;
 }
 if (Input.GetKeyUp(KeyCode.X))
 {
 attack3 = false;
 GetComponent<IKHandle>().enabled = true;
 }
 animator.SetBool("Attack3", attack3);

 if (Input.GetKeyDown(KeyCode.Space))
 {
 jump = true;
 GetComponent<IKHandle>().enabled = false;
 }
 if (Input.GetKeyUp(KeyCode.Space))
 {
 jump = false;
 GetComponent<IKHandle>().enabled = true;
 }
 animator.SetBool("Jump", jump);

 if (Input.GetKeyDown(KeyCode.I))
 {
 die = true;
 SendMessage("Died");
 }
 animator.SetBool("Die", die);

 if(this.Health<=0)
 {
 die = true;
 CmdPlayerCharacterIsDead();
 }

 }

 [Command]
 void CmdEnemyToAttack(GameObject go)
 {
 enemyInSight = true;
 enemyToAttack = go;
 }

Multiplayer Setup

[331]

 [Command]
 void CmdPlayerCharacterIsDead()
 {
 RpcPlayerCharacterIsDead();
 }

 [ClientRpc]
 void RpcPlayerCharacterIsDead()
 {
 this.die = true;
 Destroy(this.gameObject, 2.0f);
 }

 [Command]
 void CmdEnemyTakeDamage(float value)
 {
 RpcEnemyTakeDamage(value);
 }

 [ClientRpc]
 void RpcEnemyTakeDamage(float value)
 {
 if(this.enemyToAttack != null)
this.enemyToAttack.GetComponent<NPC_Movement_Network>().Damage(value);
 }

 void FixedUpdate()
 {
 if (!isLocalPlayer)
 return;

 // The Inputs are defined in the Input Manager
 h = Input.GetAxis("Horizontal");
 v = Input.GetAxis("Vertical");

 speed = new Vector2(h, v).sqrMagnitude;

 if (DEBUG)
 Debug.Log(string.Format("H:{0} - V:{1} - Speed:{2}", h, v, speed));

 animator.SetFloat("Speed", speed);
 animator.SetFloat("Horizontal", h);
 animator.SetFloat("Vertical", v);

 }

 // Var Sync hook function ...
 void OnChangePlayerHealth(float health)

Multiplayer Setup

[332]

 {
 this.Health = health;
 }

 // Var Sync hook function
 void OnChangeEnemyToAttack(GameObject enemy)
 {
 this.enemyToAttack = enemy;
 }

 public void PlayerArmourChanged(InventoryItem item)
 {
 switch (item.TYPE.ToString())
 {
 case "HELMET":
 {
 this.Helmet = item.NAME;
this.GetComponent<CharacterCustomization_Network>().SetHelmetType((PC.HELME
T_TYPE)Enum.Parse(typeof(PC.HELMET_TYPE), item.NAME));
 break;
 }
 case "SHIELD":
 {
 this.Shield = item.NAME;
this.GetComponent<CharacterCustomization_Network>().SetShieldType((PC.SHIEL
D_TYPE)Enum.Parse(typeof(PC.SHIELD_TYPE), item.NAME));
 break;
 }
 case "SHOULDER_PAD":
 {
this.GetComponent<CharacterCustomization_Network>().SetShoulderPad((PC.SHOU
LDER_PAD)Enum.Parse(typeof(PC.SHOULDER_PAD), item.NAME));
 break;
 }
 case "KNEE_PAD":
 {
 break;
 }
 case "BOOTS":
 {
 break;
 }
 }
 }

 private void PlayerSetHelmet(string item)
 {
 Debug.Log("Helmet: " + item);

Multiplayer Setup

[333]

this.GetComponent<CharacterCustomization_Network>().SetHelmetType((PC.HELME
T_TYPE)Enum.Parse(typeof(PC.HELMET_TYPE), item));
 }

 private void PlayerSetShield(string item)
 {
this.GetComponent<CharacterCustomization_Network>().SetShieldType((PC.SHIEL
D_TYPE)Enum.Parse(typeof(PC.SHIELD_TYPE), item));
 }

}

The first thing you should notice is that we are inheriting from NetworkBehaviour instead
of MonoBehaviour. This is needed if we want to enable certain network behaviors on the
GameObject.

Next, let's look at some of the variables that need to be synchronized across the network for
each player character that is connected. These variables are: enemyToAttack and Health.
There are two more variables, Shield and Helmet, which we will discuss later.

Multiplayer Setup

[334]

In the Update() function, we need a way to check and make sure that it is the local player
before giving the controller the chance to execute the player. This is done by having the
following code check to see if the current client is the local player:

 if (!isLocalPlayer)
 return;

This will make sure that the code runs only for the current client (player). The rest of the
code in the Update() function check to see if the enemy is in sight and make sure the
player charter is facing the enemy to attack.

If the player is in attack mode, and the enemy is in our view, we set the enemyInSight to
True and enemyToAttack to the enemy GameObject which is stored in the hitAttack
variable of type RacastHit. The important element here is the CmdEnemyToAttack()
function. The client needs to send a command to the server telling the server who the target
of attack is.

 [Command]
 void CmdEnemyToAttack(GameObject go)
 {
 this.enemyInSight = true;
 this.enemyToAttack = go;
 }

This will make sure that the data is registered correctly on the server, and it is synchronized
to other clients. We also have another function called CmdEnemyTakeDamage() that is used
to reduce the health of the enemy character on the server. The server then calls the
RpcEnemyTakeDamage() function to synchronize across all clients the health value of the
enemy.

 [Command]
 void CmdEnemyTakeDamage(float value)
 {
 RpcEnemyTakeDamage(value);
 }

 [ClientRpc]
 void RpcEnemyTakeDamage(float value)
 {
 if(this.enemyToAttack != null)
this.enemyToAttack.GetComponent<NPC_Movement_Network>().Damage(value);
 }

This idea is a bit confusing at first, but it will be clearer as you start to study it more
carefully.

Multiplayer Setup

[335]

We also have the following function to send commands to the server when the player dies:

 [Command]
 void CmdPlayerCharacterIsDead()
 {
 RpcPlayerCharacterIsDead();
 }

 [ClientRpc]
 void RpcPlayerCharacterIsDead()
 {
 this.die = true;
 Destroy(this.gameObject, 2.0f);
 }

The preceding functions make sure that the player character is dead and destroyed on all
connected clients at the moment of the game.

And finally, the following hook functions that are used by the SyncVar on Health and
enemyToAttack variables:

 // Var Sync hook function ...
 void OnChangePlayerHealth(float health)
 {
 this.Health = health;
 }

 // Var Sync hook function
 void OnChangeEnemyToAttack(GameObject enemy)
 {
 this.enemyToAttack = enemy;
 }

This idea is a bit confusing at first, but it will be clearer as you start to study it more
carefully.

If you have not done so already, apply and save all of your changes to your PC-CC-Network
prefab.

At this stage, your character is ready to be integrated with the NetworkManager, you can
drag and drop the prefab into the Player Prefab slot and build a standalone version to test
out your character movement and synchronization.

Multiplayer Setup

[336]

Networked Non-Player Character
Just like the player character network-enabled prefab, we will use the non-player character
prefab as our base to get started. Go ahead and create an instance of your NPC in the scene.

Go ahead and remove the existing NPC_Movement.cs component from the prefab. Rename
the Prefab to B1-Network and attach the following components to it: NetworkIdentity,
NetworkTransform, and NetworkAnimator by navigating to Add Component | Network |
<component name> from the Inspector Window.

On the NetworkIdentity component, set the Local Player Authority to True; in the
NetworkTransform component, set the Transform Sync Mode to Sync Transform; and for the
NetworkAnimator component, set the Animator slot to the Animator controller attached to the
prefab, by dragging it and dropping into the slot.

Multiplayer Setup

[337]

We not need to create a new script for out NPC movement that is network enabled. Go
ahead and create a new C# script and name it NPC_Movement_Network.cs. Here is a
listing of the scripts:

using UnityEngine;
using UnityEngine.Networking;
using System.Collections;
public class NPC_Movement_Network : NetworkBehaviour {

 // reference to the animator
 public Animator animator;
 // these variables are used for the speed
 // horizontal and vertical movement of the NPC
 public float speed = 0.0f;
 public float h = 0.0f;
 public float v = 0.0f;

 public bool attack1 = false; // used for attack mode 1
 public bool attack2 = false; // used for attack mode 2
 public bool attack3 = false; // used for attack mode 3
 public bool jump = false; // used for jumping
 [SyncVar(hook ="OnNPCIsDead")]
 public bool die = false; // are we alive?
 // used for debugging
 public bool DEBUG = false;
 public bool DEBUG_DRAW = false;
 // Reference to the NavMeshAgent component.
 private NavMeshAgent nav;
 // Reference to the sphere collider trigger component.
 private SphereCollider col;
 // where is the player character in relation to NPC
 [SyncVar]
 public Vector3 direction;
 // how far away is the player character from NPC
 [SyncVar]
 public float distance = 0.0f;
 // what is the angle between the PC and NPC
 [SyncVar]
 public float angle = 0.0f;

 // is the PC in sight?
 [SyncVar(hook = "OnChangePlayerPlayerInSight")]
 public bool playerInSight;
 // what is the field of view for our NPC?
 // currently set to 110 degrees
 [SyncVar]
 public float fieldOfViewAngle = 110.0f;
 // calculate the angle between PC and NPC

Multiplayer Setup

[338]

 [SyncVar]
 public float calculatedAngle;
 [SyncVar(hook = "OnChangePlayerToAttackInNPC")]
 public GameObject playerToAttack;
 [SyncVar(hook = "OnChangeNPCHealth")]
 public float Health = 100.0f;

 void Awake()
 {
 // get reference to the animator component
 this.animator = GetComponent<Animator>() as Animator;
 // get reference to nav mesh agent
 this.nav = GetComponent<NavMeshAgent>() as NavMeshAgent;
 // get reference to the sphere collider
 this.col = GetComponent<SphereCollider>() as SphereCollider;
 // we don't see the player by default
 this.playerInSight = false;
 }

 void Update()
 {
 // only execute the following code if local player ...
 if (!isServer)
 return;
 this.CmdUpdateNetwork();
 }
 [Command]
 void CmdUpdateNetwork()
 {
 this.RpcUpdateNetwork();
 }

 [ClientRpc]
 void RpcUpdateNetwork()
 {
 // if player is in sight let's slerp towards the player
 if(this.playerToAttack!=null)
 {
 if (playerInSight)
 {
 this.transform.rotation =
 Quaternion.Slerp(this.transform.rotation,
 Quaternion.LookRotation(direction), 0.1f);
 if (this.playerToAttack.transform.GetComponent
 <CharacterController_Network>().die)
 {
 animator.SetBool("Attack", false);
 animator.SetFloat("Speed", 0.0f);

Multiplayer Setup

[339]

 animator.SetFloat("AngularSpeed", 0.0f);
 this.playerInSight = false;
 this.playerToAttack = null;
 }
 }
 }
 if(this.Health<=0.0f)
 {
 this.die = true;
 this.Health = 0.0f;
 animator.SetBool("Attack", false);
 animator.SetFloat("Speed", 0.0f);
 animator.SetFloat("AngularSpeed", 0.0f);
 this.playerInSight = false;
 this.playerToAttack = null;
 }
 animator.SetBool("Die", die);
 }
 // let's update our scene using fixed update
 void FixedUpdate()
 {
 // only execute the following code if local player ...
 if (!isServer)
 return;
 this.RpcFixedUpdateNetwork();
 }

 [ClientRpc]
 void RpcFixedUpdateNetwork()
 {
 if (playerInSight)
 {
 h = angle; // assign horizontal axis
 v = distance; // assign vertical axis
 // calculate speed based on distance and delta time
 speed = distance / Time.deltaTime;
 if (DEBUG)
 Debug.Log(string.Format("H:{0} - V:{1} - Speed:{2}",
 h, v, speed));
 // set the parameters defined in the animator controller
 animator.SetFloat("Speed", speed);
 animator.SetFloat("AngularSpeed", v);
 animator.SetBool("Attack", attack1);
 animator.SetBool("Attack1", attack1);
 if (animator.GetFloat("Attack1C") == 1.0f)
 {
 this.playerToAttack.GetComponent
 <CharacterController_Network>().Health -= 1.0f;

Multiplayer Setup

[340]

 if(this.playerToAttack.GetComponent
 <CharacterController_Network>().Health<=0)
 {
 this.playerInSight = false;
 this.playerToAttack = null;
 }
 }
 }
 else
 {
 animator.SetBool("Attack", false);
 animator.SetFloat("Speed", 0.0f);
 animator.SetFloat("AngularSpeed", 0.0f);
 }
 }

 public void OnChangePlayerPlayerInSight(bool value)
 {
 this.playerInSight = value;
 }

 // Var Sync hook function ...
 void OnChangeNPCHealth(float health)
 {
 this.Health = health;
 }
 void OnNPCIsDead(bool value)
 {
 die = true;
 }
 public void Damage(float value)
 {
 this.Health -= value;
 }
 void OnTriggerStay(Collider other)
 {
 if (die)
 return;
 if (other.transform.tag.Equals("Player"))
 {
 // Create a vector from the enemy to the player
 //and store the angle between it and forward.
 direction = other.transform.position - transform.position;
 distance = Vector3.Distance(other.transform.position,
 transform.position) - 1.0f;
 float DotResult = Vector3.Dot(transform.forward,
 other.transform.position); //player.transform.position);
 angle = DotResult;

Multiplayer Setup

[341]

 if (DEBUG_DRAW)
 {
 Debug.DrawLine(transform.position + Vector3.up,
 direction * 50, Color.gray);
 Debug.DrawLine(other.transform.position, transform.position,
 Color.cyan);
 }
 this.playerInSight = false;
 this.calculatedAngle = Vector3.Angle(direction,
 transform.forward);
 if (calculatedAngle < fieldOfViewAngle * 0.5f)
 {
 RaycastHit hit;
 if (DEBUG_DRAW)
 Debug.DrawRay(transform.position + transform.up,
 direction.normalized, Color.magenta);
 // ... and if a raycast towards the player hits something...
 if (Physics.Raycast(transform.position + transform.up,
 direction.normalized, out hit, col.radius))
 {
 // ... and if the raycast hits the player...
 if (hit.collider.gameObject == other.gameObject) //player)
 {
 if(other.gameObject.GetComponent
 <CharacterController_Network>().Health>0)
 {
 // ... the player is in sight.
 this.playerInSight = true;
 this.playerToAttack = hit.collider.gameObject;
 if (DEBUG)
 Debug.Log("PlayerInSight: " + playerInSight);
 }
 }
 }
 }
 if (this.playerInSight)
 {
 this.nav.SetDestination(other.transform.position);
 this.CalculatePathLength(other.transform.position);
 if (distance < 1.1f)
 {
 this.attack1 = true;
 }
 else
 {
 this.attack1 = false;
 }
 }

Multiplayer Setup

[342]

 else
 {
 this.nav.SetDestination(this.transform.position);
 if (distance < 1.1f)
 {
 this.attack1 = true;
 }
 else
 {
 this.attack1 = false;
 }
 }
 }
 }

 void OnChangePlayerToAttackInNPC(GameObject player)
 {
 this.playerToAttack = player;
 }
 void OnTriggerExit(Collider other)
 {
 if (other.transform.tag.Equals("Player"))
 {
 distance = 0.0f;
 angle = 0.0f;
 this.attack1 = false;
 this.playerInSight = false;
 this.playerToAttack = null;
 }
 }
 // this is a helper function at this point
 // in the future we will use it to calculate distance
 // around the corners
 // it currently is also used to draw the path of the
 // nav mesh agent in the editor
 float CalculatePathLength(Vector3 targetPosition)
 {
 // Create a path and set it based on a target position.
 NavMeshPath path = new NavMeshPath();
 if (nav.enabled)
 nav.CalculatePath(targetPosition, path);
 // Create an array of points which is the length of the
 number of corners in the path + 2.
 Vector3[] allWayPoints = new Vector3[path.corners.Length + 2];
 // The first point is the enemy's position.
 allWayPoints[0] = transform.position;
 // The last point is the target position.
 allWayPoints[allWayPoints.Length - 1] = targetPosition;

Multiplayer Setup

[343]

 // The points inbetween are the corners of the path.
 for (int i = 0; i < path.corners.Length; i++)
 {
 allWayPoints[i + 1] = path.corners[i];
 }
 // Create a float to store the path length that is
 // by default 0.
 float pathLength = 0;

 // Increment the path length by an amount equal to the
 // distance between each waypoint and the next.
 for (int i = 0; i < allWayPoints.Length - 1; i++)
 {
 pathLength += Vector3.Distance(allWayPoints[i],
 allWayPoints[i + 1]);
 if (DEBUG_DRAW)
 Debug.DrawLine(allWayPoints[i], allWayPoints[i + 1],
 Color.red);
 }
 return pathLength;
 }
}

There are a few variables that have been indicated as SyncVars, these are: die, distance,
direction, angle, playerInSight, fieldOfViewAngle, calculatedAngle,
playerToAttack, and Health.

Some of the SyncVars have a hook, these are Health, playerToAttack, playerInSight,
and die.

In the Update()function, we check to make sure we are the server by the following line:

 // only execute the following code if server ...
 if (!isServer)
 return;

Multiplayer Setup

[344]

If we are the server, we use CmdUpdateNetwork() and RpcUpdateNetwork() functions to
perform our duties. These are just for the movement and action for the NPC. The key here
are the SyncVars and hook functions that are used to synchronize the NPC data to all
clients.

 public void OnChangePlayerPlayerInSight(bool value)
 {
 this.playerInSight = value;
 }

 // Var Sync hook function ...
 void OnChangeNPCHealth(float health)
 {
 this.Health = health;
 }

 void OnNPCIsDead(bool value)
 {
 die = true;
 }
 void OnChangePlayerToAttackInNPC(GameObject player)
 {
 this.playerToAttack = player;
 }

That is all we need for the NPC. Go ahead and add the script to the prefab and apply the
changes. Save it!

Your new NPC prefab should have the following components attached:

Synchronizing Player Customization and Items
In order for this to work, we need to perform several other configuration and creation of
new inventory item prefabs. I am going to use two inventory items to demonstrate this
particular point.

Multiplayer Setup

[345]

I am going to use one of the Helmet prefabs from my inventory items, duplicate it, and
remove the InventoryItemAgent.cs component. We are going to create a new script that is
network enabled as we did for our PC and NPC.

Attach the following components to the instance: NetworkIdentity and NetworkTransform
using Add Component | Network | <component name> from the Inspector Window.

Multiplayer Setup

[346]

Create a new script named InventoryItemAgent_Network.cs. Here is the listing:

using UnityEngine;
using UnityEngine.Networking;
using System.Collections;

public class InventoryItemAgent_Network : NetworkBehaviour {

 public InventoryItem ItemDescription;

 public void OnTriggerEnter(Collider c)
 {
 // make sure we are colliding with the player
 if (c.gameObject.tag.Equals("Player"))
 {
 // Make a copy of the Inventory Item Object
 InventoryItem myItem = new InventoryItem();
 myItem.CopyInventoryItem(this.ItemDescription);

c.gameObject.GetComponent<CharacterController_Network>().PlayerArmourChange
d(myItem);
 }
 }
}

All this script is doing is assigning the inventory item to the player character using the
PlayerArmourChanged() function in the CharacterController_Network.cs script.

The PlayerArmourChanged() function uses another script we need to create that is
network enabled, and that is the CharacterCustomization_Network.cs script. I will not list the
script here as it is very long. You can look at the script in the code supplied by the book.

Spawning NPC and Other Items
We need a way to spawn our NPC and also the inventory items we are going to be using for
the next demonstration.

In the Hierarchy Window, right-click on and select Create Empty. This will create an
Empty GameObject. Rename it to SpawnEnemy and add a NetworkIdentity component to it
by navigating to Add Component | Network | NetworkIdentity from the Inspector
Window.

Multiplayer Setup

[347]

We are going to create a new script called EnemySpawn_Network.cs. Here is the listing:

using UnityEngine;
using UnityEngine.Networking; // used for chapter 8

using System.Collections;

public class EnemySpawn_Network : NetworkBehaviour
{
 public GameObject enemyPrefab;
 public Transform spawnLocation;

 public GameObject inventoryItemPrefab;
 public GameObject inventoryItemShield;

 public override void OnStartServer()
 {
 GameObject go = GameObject.Instantiate(enemyPrefab,
spawnLocation.position, Quaternion.identity) as GameObject;
 NetworkServer.Spawn(go);

 GameObject goInventoryItem1 =
GameObject.Instantiate(inventoryItemPrefab, new Vector3(2, 1, 2),
Quaternion.identity) as GameObject;
 NetworkServer.Spawn(goInventoryItem1);

 GameObject goInventoryItem2 =
GameObject.Instantiate(inventoryItemShield, new Vector3(3, 1, 2),
Quaternion.identity) as GameObject;
 NetworkServer.Spawn(goInventoryItem2);

 }
}

The script is very simple as you can see. We are just referencing the GameObjects that are
representing the prefabs for the NPC and also inventory items prefab.

Attach the new script to the SpawnEnemy prefab in the Hierarchy Window.

Testing Our Network-Enabled PC and NPC
At this point, we have all of the assets needed to test out our network-enabled PRG
characters. There is one final step that you need to perform, if you have not done so already.

Multiplayer Setup

[348]

Select the NetworkManager GameObject in the Hierarchy Window, and from the Inspector
Window, you will need to make sure the following have been assigned in the Spawn Info
section:

Player Prefab should be assigned to your player character prefab, mine is named PC-CC-
Network-1. Make sure Auto Create Player is set True.

You will also register your NPC prefabs and other network-enabled non-character prefabs
in the Registered Spawnable Prefabs. I have the barbarian prefab named B1-Network-1
assigned, barbarian_helmet_01_LOD0_Network and shield_01_LOD0_Network.

Multiplayer Setup

[349]

Alright, at last we can do a build. Let's go ahead and make a standalone build of our game.
Make sure that the current scene is in the build configuration.

Multiplayer Setup

[350]

Go ahead and launch two instances of the build. Make one of them the host and the other
the client.

Multiplayer Setup

[351]

In the preceding figure, we have started a client as a server and the player character has
picked up one of the inventory items, a shield. When we connect the second client, it should
correctly take into consideration the current state of all PC and NPC active in the game.

Multiplayer Setup

[352]

Keeping both of the instances running, use the Unity IDE to connect the third client. You
can use the client to perform debugging on the client end and also seeing what is going on.

In the preceding figure, you can see all of the player characters and how they have been
accurately synchronized with one another. Select B1-Network-1 GameObject from the
Hierarchy Window, and use one of the client instances to take the player character and
attack the NPC.

Multiplayer Setup

[353]

We are going to pause the editor and inspect the variables and how they have been
properly synchronized.

What's Next
As you witnessed, network programming is simple but at the same time, it can be difficult.
The difficulty is going to be on managing and understanding the synchronization of the
data between all players in an efficient and meaningful way.

It can actually get a bit more involved if you are truly considering creating a game with
large numbers of clients. Unity networking will not be able to handle that; you will need to
create your own backend server managers and messaging systems.

What we have covered in this chapter will give you a good understanding to take it to the
next level. Keep coding until we meet again!

Multiplayer Setup

[354]

Summary
In Chapter 8, we looked at network programming using the Unity networking components.
The main objective of the chapter was to introduce you to the fundamental of networking in
Unity by implementing two samples.

We start the chapter by giving some of the challenges that you will face as a game designer
and developer for a multiplayer game. One of the main questions raised is whether you
really need to invest the time and energy to create a multiplayer mode for your game.
Assuming you really do want or need to create a multiplayer game, we start looking at the
different types of multiplayer games popular today.

We start with our first example of a simplified multiplayer game. The multiplayer game we
develop are real time, that is, all clients are synchronized with one another based on the
activity on each active player's state. That is, the position, rotation, movement, and other
important data needs to be synchronized with all clients connected to the game session.

We look at the fundamentals of Unity's networking components such as the Network
Manager, Network Manager HUD, Network Identity, and Network Transform. These are
the base components that are used to illustrate multiplayer programming in Unity. Once we
understand what these components are used for, we start with a simple sample.

We create a simple tank game that demonstrating how to put together all of the essential
components for a multiplayer game. We create the necessary player character prefab with
the appropriate network enabled scripts and components. We also create the non-player
character prefab with its own network-enabled scripts. The game demonstrates how to
spawn, synchronize between the player characters and non-player characters.

During the construction of the tank game, we cover how to synchronize variables and use
network callbacks that are crucial for the development of a multiplayer game. We also cover
what Commands and ClientRPC calls are and how to use them properly.

Next, we apply what you have learned to the RPG characters we developed in previous
chapters. We used the existing prefabs as a base and extended them to include the
networking components and create new network-enabled scripts to handle the character
movement, character customization, and NPC movement scripts.

One of the crucial elements that is covered is the synchronization of each player character's
inventory items visually with the rest of the players. We close the chapter by the testing and
discussing how to debug your code on the client and the server while developing your
multiplayer game.

Index

3
3rd Person Controller (3rdPC) 57

A
Animator Controller
 about 72, 73
 animation states 74, 75, 76, 77, 78
 creating 120, 121
 creating, for NPC 119
asset inventory
 about 38
 character assets 39, 40
 environment assets 38
Asset Store 50

B
Base character class
 attributes 64, 65
Blend Tree 76

C
character controller
 about 79, 82, 84
 animations, modifying 84, 85, 86
character model 68, 70
 about 67
 rigging 70, 71
character motion
 about 72
 Animator Controller 72, 73
character
 defining 63
 states 66
combat system 18
Computer RPG (cRPG) 7, 9
Contest Tree 30

D
Dark Souls 3 23
Divinity with Original Sin 25
Dungeons & Dragons (D&D) 7
Dynamic Item Viewer
 designing 204
 elements, adding to PanelItem 206
 elements, adding to Scroll View 206
 Scroll View, adding 204
 txtItemElement, adding dynamically 208

E
enemy stats
 in HUD 284
 NPC canvas, creating 284, 286, 287
 NPC health, defining 288, 289, 292
 NPC stats, user interface 284
Escalating Conflict 30

F
Fallout 4 24
fbx 192

G
Game Master (GM)
 about 7, 144, 145
 Audio Controller, handling 157
 audio, managing 145, 149
 Game Settings, managing 145, 149
 improving 154
 Level Controller, handling 154, 157
 scenes, managing 149
 testing 179, 180
 UI Controller, modifying 178

[356]

H
Heads Up Display (HUD)
 about 20, 250
 code, integrating 264, 266, 279, 280, 281, 282
 designing 250, 251
 enemy stats 284
 framework 252
Horizontal parameter 77
HUD design
 completing 253
 panel active inventory item, creating 259, 260,

261

 panel character 253, 256, 257, 258
 special items panel, designing 262, 263
Hydraulic Erosion 45

I
Inventory Interface
 about 199, 201
 Dynamic Item Viewer, designing 204
 final Inventory Item UI, building 210
 Inventory UI Framework, creating 201
Inventory Item
 Agent, adding 194
 applying 226
 creating 192
 defining, as Prefabs 198
 Prefabs, creating 193, 194
 using, with player character 225
inventory system
 about 11, 183
 item types, determining 184, 189, 191
 testing 222
 UI, integrating with 212
 Weighted Inventory 183, 184
Inverse Kinematics (IK) 86, 87, 90, 91

L
Last Man Standing 31
level design, Zazar Dynasty
 about 40, 41
 awakening 46, 47, 48, 49, 50, 51, 52, 53, 54,

55, 56, 57
 stage, setting 41, 42, 43, 44

Live Action Role Playing (LARP) 7

M
Mecanim Animation System 67
multiplayer game
 about 303
 building 323
 challenges 302
 networking components 303
 player character (PC), adding 305
 project, networking 304
 testing 323

N
Negotiated Contest
 about 32
 using 32
network-enabled NPC
 testing 347
network-enabled PC
 testing 347
networking components, multiplayer game
 Network Identity 303
 Network Manager 303
 Network Manager HUD 303
 Network Transform 303
non-player characters
 about 112, 113
 Animator Controller 119, 120, 121
 basics 113
 code, enhancing 292, 296, 297, 298
 NPC AI 124, 130, 131, 132, 133
 NPC_Attack, creating 121, 122, 123, 124
 player-character (PC), interaction 133, 134, 136,

138, 141, 142
 setting up 113, 115, 116, 117

P
patterns, RPG
 about 27
 contest tree 30, 31
 Last Man Standing 31
 Negotiated Contest 32
 terminology 28, 30
player character (PC)

[357]

 about 57
 adding 305
 Canon Ball, creating for Tank 312
 character state, preserving 110
 client RPC calls 310
 code, customization 98, 110
 commands, sending 310
 customizing 93, 95
 Enemy Tank, adding 318
 network callbacks 309
 NetworkManager, configuring 314
 non-player characters, interaction 133, 134,

136, 138, 141, 142
 summarizing 111
 Tank Prefab, creating 314
 user interface 95, 96, 97
 using, with Inventory Items 225, 244
 variable, synchronizing 309
player data management
 about 160
 character customization class, updating 162
 PC class, enhancements 160, 162

R
Root motion 72
RPG games
 Dark Souls 3 23
 Divinity with Original Sin 25
 Fallout 4 24
RPG
 Base character class, attributes 64, 65
 building 35
 character definitions 63
 character model 67, 68, 70
 character states 66
 character, developing 14
 characteristics 8
 characters, network-enabling 325
 combat system 18
 existing games 22
 experience 16
 exploration 9
 graphics 19
 history 6
 inventory items, spawning 346

 inventory system 11
 items, synchronizing 344
 levelling 16
 networked non-player character 336
 networked player character 325
 NPC, spawning 346
 player customization, synchronizing 344
 quests 10
 scene, creating 325
 setting 9
 story 8
 upcoming games 22
 user interface 19

T
Tank Prefab
 creating 314
terminology list, RPG
 attribute 28
 character 28
 characteristics 28
 common characteristic 28
 conflict 28
 contest 28
 derived attribute 28
 drama 28
 flaw 28
 fortune 28
 Game Master (GM) 28
 gauge 28
 gift 28
 karma 29
 non-player character (NPC) 29
 optional characteristics 29
 player 29
 player character (PC) 29
 primary attribute 29
 rank 29
 ranked trait 29
 selected characteristic 29
 shared gauge 29
 skill 29
 trait 29
terrain toolkit
 creating 45

 filters 45
 Fractal 45
 Hydraulic Erosion 45
 Perlin 45
 Thermal Erosion 45
 Tidal Erosion 46
 URL 42
 voronoi 45
The Commonwealth 25

U
UI and Inventory System integration
 about 212
 Category Buttons, hooking 212
 data, displaying 212
UI Controller

 modifying 178

Z
Zazar Dynasty
 about 35
 asset inventory 38
 character motion 72
 exploration 36
 game master, creating 59, 61
 horizon 37
 Kingdom 38
 level, testing 57
 Main Menu, creating 58, 59
 objectives 36
 plot 35
 quests 36
 village 36

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: In the Beginning
	A brief history
	Characteristics of an RPG
	Story and setting
	A glimpse at our cRPG story

	Exploration and quests
	A glimpse at our exploration and quests

	Inventory system
	Character development
	Experience and levelling
	Combat system
	User interface and graphics

	Existing or upcoming RPG games
	Dark Souls 3
	Fallout 4
	Divinity: Original Sin

	Patterns in RPG
	Terminology
	Contest Tree
	Last Man Standing
	Negotiated Contest

	Summary

	Chapter 2: Setting the Atmosphere
	Building our RPG
	The story of the Zazar Dynasty
	Plot
	Exploration and quests
	Awakening
	The village
	Broken forest – the horizon
	The kingdom

	Asset inventory
	Environment assets
	Character assets

	Level design
	Setting the stage
	Terrain toolkit in a nutshell
	The awakening

	Testing the level
	Creating the Main Menu
	Creating the Game Master
	Summary

	Chapter 3: Character Design
	Character definitions
	Base character class attributes
	Character states
	Character model
	[Rigging your model]
	Rigging your model

	Character motion
	Animator Controller
	Animation states

	Character controller
	Modification to animations

	Inverse Kinematics
	Summary

	Chapter 4: Player Character and Non-Player Character Design
	Customizing the Player Character
	Customizable parts
	User interface
	The Code for character customization
	Preserving our character state

	Recap

	Non-Player Characters
	Non-Player Character basics
	Setting up the Non-Player Character
	NPC Animator Controller
	NPC attack

	NPC AI

	PC and NPC interaction
	Summary

	Chapter 5: Game Master and Game Mechanics
	The Game Master
	Managing game settings and audio
	Managing scenes

	Improving Game Master
	Level controller
	Audio controller

	Player data management
	PC class enhancements
	Character customization class update

	Changes to UI Controller
	Testing
	Summary

	Chapter 6: Inventory System
	Inventory system
	Weighted Inventory
	Determining item types

	Creating inventory item
	Creating the Prefab
	Adding Inventory Item Agent
	Inventory Items Defined as Prefabs

	Inventory Interface
	Creating the inventory UI framework
	Designing a Dynamic Item Viewer
	Adding a Scroll View
	Adding Elements to PanelItem and Scroll View
	Adding txtItemElement Dynamically

	Building the Final Inventory Item UI

	Integrating the UI with the actual inventory system
	Hooking the category buttons and displaying the data
	Testing the Inventory System

	Inventory items and the Player Character
	Applying inventory items
	How It Looks

	Summary

	Chapter 7: User Interface and System Feedback
	Designing a Heads Up Display
	Basic information for a HUD
	Our design
	HUD framework

	Completing HUD design
	Panel character Info
	Panel active inventory items
	Special items panel

	Integrating the code
	Enemy stats in the HUD
	NPC stats user interface
	Creating the NPC canvas
	NPC health

	Enhancing the code
	Summary

	Chapter 8: Multiplayer Setup
	Challenges of a Multiplayer Game
	Initial Multiplayer Game
	Fundamental Networking Components
	Networking Project
	Adding Player Character
	Variable Synchronization
	Network Callbacks
	Sending Commands
	Client RPC Calls
	Creating the Canon Ball for the Tank
	Creating Tank Prefab and Configuring NetworkManager

	Adding the Enemy Tank
	Building and Testing

	Network Enabling RPG Characters
	Creating a Scene for RPG
	Networked Player Character
	Networked Non-Player Character
	Synchronizing Player Customization and Items
	Spawning NPC and Other Items

	Testing Our Network-Enabled PC and NPC
	What's Next
	Summary

	Index

