
www.allitebooks.com

http://www.allitebooks.org

C++ Windows Programming

Develop real-world applications in Windows

Stefan Björnander

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

C++ Windows Programming

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2016

Production reference: 1020916

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.
ISBN 978-1-78646-422-4

www.packtpub.com

www.allitebooks.com

http://www.packtpub.com
http://www.allitebooks.org

Credits

Author

Stefan Björnander

Copy Editor

Pranjali Chury

Reviewer

Lou Mauget

Project Coordinator

Suzanne Coutinho

Commissioning Editor

Kunal Parikh

Proofreader

Safis Editing

Acquisition Editor

Chaitanya Nair

Indexer

Rekha Nair

Content Development Editor

Zeeyan Pinheiro

Graphics

Jason Monteiro
Disha Haria

Technical Editor

Pratish Shetty

Production Coordinator

Melwyn Dsa

www.allitebooks.com

http://www.allitebooks.org

About the Author
Stefan Björnander holds a master's degree in computer science, and has worked with
software development for many years. He has lectured on programming for the industry
and universities. He has also authored Microsoft Visual C++ Windows Applications by
Example for Packt Publishing, which gained great acclaim.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer
Lou Mauget learned to program long ago at Michigan State University as a physics major,
learning to use software to design a cyclotron. He worked at IBM for 34 years, and after
that, he went on to work for several consulting firms, including a long-term engagement
with the railroad industry. He is currently consulting for Keyhole Software of Leawood,
Kansas. Recently, he designed and coded MockOla, a drag-drop wire-frame prototyping
tool for Keyhole Software. Lou has coded in C++, Java, JavaScript, Python, and newer
languages, as each was conceived. His current interests include reactive functional
programming, containers, Node JS, NoSQL, geospatial systems, mobile, and any new
language or framework. Occasionally, Lou blogs about software technology for Keyhole
Software. He has coauthored three computer books and authored two IBM
DeveloperWorks XML tutorials and a WebSphere Journal LDAP tutorial. Lou coauthored
several J2EE certification tests for IBM. He has reviewed books for Packt Publishing, as well
as other publications.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com
eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

h t t p s : / / w w w 2 . p a c k t p u b . c o m / b o o k s / s u b s c r i p t i o n / p a c k t l i b

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

Free access for Packt account holders
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter or the Packt Enterprise Facebook page.

www.allitebooks.com

http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://cdp.packtpub.com/endtoendtesting/wp-content/uploads/sites/52/2015/12/image_10_002.png
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org

I dedicate this book to my parents Ralf and Gunilla, my sister Catharina, her husband Magnus,
and their sons Emil and Rasmus.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1

Chapter 1: Introduction 7

The library 8
Summary 17

Chapter 2: Hello, Small World! 18

Hello, Small Windows! 18
The circle application 21

The main window 22
The CircleDocument class 23
The Circle class 31

Summary 34

Chapter 3: Building a Tetris Application 35

The MainWindow function 36
The Tetris window 36

Keyboard input 40
Drawing 41
Input focus 42
The timer 42
New figures 42
Game over 43
New game 44
Deleting and flashing rows 44
Closing the window 46

The TetrisFigure class 47
The red figure 54
The brown figure 55
The turquoise figure 57
The green figure 57
The yellow figure 59
The blue figure 60
The purple figure 61

The GameGrid class 62
Invalidating and drawing squares 63

www.allitebooks.com

http://www.allitebooks.org

[ii]

Summary 65

Chapter 4: Working with Shapes and Figures 66

The MainWindow function 67
The DrawDocument class 67

The application modes 72
The DynamicList class 73
Initialization 74
Mouse input 76
Painting 82
The File menu 83
Cut, copy, and paste 84
The Modify menu 86
The Add menu 90
The cursor 91

Summary 92

Chapter 5: The Figure Hierarchy 93

The DrawFigure class 93
The LineFigure class 97
The ArrowFigure class 105
The RectangleFigure class 112
The EllipseFigure class 119
Summary 124

Chapter 6: Building a Word Processor 125

Auxiliary classes 125
Character information 126
Line information 129
The Paragraph class 131

The MainWindow class 135
The WordDocument class 135

The caret 144
Mouse input 146
Touchscreen 151
Page setup and calculation 152
Painting and drawing 154
File management 157
Cut, copy, and paste 160
Delete 166
Page break 168

www.allitebooks.com

http://www.allitebooks.org

[iii]

Font 169
Alignment 170

Summary 173

Chapter 7: Keyboard Input and Character Calculation 174

Keyboard handling 174
Arrow keys 179
Home and End 183
Shift arrow keys 184
Shift Page Up and Page Down 187
Shift Home and End 187
Control Home and End 188
Shift Control Home and End 189
Neutral keys 189
Visible characters 192

Character calculation 193
Character size and ascent line 194
Line generation 195
Regular and justified rectangle list generation 199
Invalidate rectangle set generation 202

Summary 203

Chapter 8: Building a Spreadsheet Application 204

The MainWindow class 204
The CalcDocument class 205

Mouse input 214
Scrolling and marking 215
Painting 218
Visibility 220
Marking and updating 222
Keyboard input 224
File management 234
Cut, copy, and paste 238
Font and color 245
Alignment 247

Source and target sets 252
Graph searching 254
Error handling 259
Summary 260

Chapter 9: Formula Interpretation 261

[iv]

Formula interpretation 261
The tokens 264
The tree node 266
The Scanner – Generating the list of tokens 268
The parser – Generating the syntax tree 272

Matrix and reference 286
The reference class 286
The Matrix class 291

The cell 292
Character input 299
Drawing 301
Caret rectangle list generation 302
Formula interpretation 304
File management 312

Further reading 315
Summary 315

Chapter 10: The Framework 316

An overview of Small Windows 316
“Hello” window for the Win32 API 318
The MainWindow function 322
The WinMain function 323
The Application class 324

The Win32 API Windows classes 325
The message loop 326

The Window class 328
Initialization 336
Header and visibility 339
The touch screen 340
Invalidation and window updates 341
Preparing the device context 342
Unit transformation 344
Window size and position 345
Text metrics 347
Closing the window 348
The MessageBox method 349

The Graphics class 355
Summary 361

Chapter 11: The Document 362

[v]

The Document class 362
Initialization 366
The Document header 368
The caret 369
The mouse wheel 371
The menu bar 371
The scroll bar 373
The DocumentProc method 379

The Menu class 382
The Accelerator class 387
The StandardDocument class 390

Initialization 395
Standard menus 396
File management 398
Cut, copy, and paste 401
Drop files 407
Page size 408
Page setup 409
Printing 409

Summary 413

Chapter 12: The Auxiliary Classes 414

The Size class 414
The Point class 421
The Rect class 428
The Color class 436
The Font class 442
The Cursor class 446
The DynamicList class 447
The Tree class 460
The InfoList class 463
Strings 466
Summary 469

Chapter 13: The Registry, Clipboard, Standard Dialogs, and Print
Preview 470

The registry 470
The Clipboard class 474

ASCII and Unicode lines 475
Generic information 478

[vi]

Standard dialogs 480
The Save dialog 480
The Open dialog 483
The Color dialog 485
The Font dialog 487
The Print dialog 488

Print preview 490
Keyboard input 492
Scroll bar 493

Summary 494

Chapter 14: Dialogs, Controls, and Page Setup 495

Custom dialogs 495
Controls 507

The button controls 510
List controls 514
Combo box 518
Label 520
The TextField class 520

Converters 523
Signed integers 523
Unsigned integers 524
Double values 525
Strings 526
Rational numbers 526
Complex numbers 527

Page setup 528
Page setup information 528
The Page Setup dialog 532
The Template function 535

Summary 538

Appendix: Rational and Complex Numbers 539

Rational numbers 539
Complex numbers 545
Summary 558

Index 559

Preface
Application development has gained massive popularity because of the immense impact it
has on various sectors. In this booming market, it has become critical to have the right set of
tools to enable developers to build practical, user-friendly, and efficient applications. This
book is focused on the use and implementation of Small Windows, which is a C++ object-
oriented class library that eases the development of interactive Windows applications.

What this book covers
Chapter 1, Introduction, gives an introduction to Small Windows, which is a class library
that encapsulates a part of the Win32 API.

Chapter 2, Hello, Small World!, starts by building a (very) small application—the Small
Windows version of the famous Hello World program. Then, we will continue with a (still
rather small) application that handles circles in a window. The user can add and move
circles, change their colors, and save and load circles.

Chapter 3, Building a Tetris Application, explores a version of the classic Tetris game. Seven
different kinds of figure are falling down the screen and the user’s task is to move or rotate
them so that as many rows as possible can be completely filled and removed.

Chapter 4, Working with Shapes and Figures, teaches you how to build a drawing program,
which can be regarded as a more advanced version of the circle application. It is possible to
create and remove figures as well as mark and drag figures.

Chapter 5, The Figure Hierarchy, continues to build the drawing program. We can define a
class hierarchy with lines, arrows, rectangles, and ellipses.

Chapter 6, Building a Word Processor, describes a word processor capable of formatting
individual characters.

Chapter 7, Keyboard Input and Character Calculation, discusses how the word processor
handles many keyboard input combinations and calculates the size and position of each
individual character.

Chapter 8, Building a Spreadsheet Application, talks about the final application, which is a
spreadsheet program capable of calculating formulas with the four rules of arithmetic. It is
also possible to cut and paste blocks of cells.

Preface

[2]

Chapter 9, Formula Interpretation, explains that when the user inputs a formula, we need to
interpret it. The process is divided into scanning and parsing, which we will look into in
this chapter.

Chapter 10, The Framework, describes the most central part of Small Windows. This chapter
begins the description of Small Windows. The Application class handles the message loop
of the application and the registration of Windows classes. The Window class handles basic
window functionality.

Chapter 11, The Document, talks about the document-based Window subclasses, that is, the
Document class that provides basic document functionality, such as menus and
accelerators, and the Standard Document framework, which provides a document-based
framework.

Chapter 12, The Auxiliary Classes, explores a set of small auxiliary classes handling points
and sizes, rectangles, colors and fonts, dynamic lists, and tree structures.

Chapter 13, The Registry, Clipboard, Standard Dialogs, and Print Preview, explains the
implementation of the registry and clipboard, the standard dialogs to save and load files,
choosing color or font, or printing a document. The chapter also explains the
implementation a class for print previewing.

Chapter 14, Dialogs, Controls, and Print Setup, describes the possibility to design custom
dialogs with controls such as push buttons, check boxes, radio buttons, list boxes, combo
boxes, and text field. The input of a text field can be converted to any type. Finally, the Print
Setup dialog is a custom dialog annotated with suitable controls.

What you need for this book
First of all, you need to download Visual Studio on your computer. I suggest you download
and install Express for Desktop, which is free, and is available at h t t p s : / / w w w . v i s u a l s t u d

i o . c o m / e n - u s / p r o d u c t s / v i s u a l - s t u d i o - e x p r e s s - v s . a s p x.

Then, there are two ways to install Small Windows:

If you want to follow the chapter structure of this book you can download it from1.
h t t p s : / / g i t h u b . c o m / P a c k t P u b l i s h i n g / C p p - W i n d o w s - P r o g r a m m i n g. It is made
up by a set of Visual Studio projects holding the applications of this book.
If you want all the code in one Visual Studio solution you can download the C++2.
Windows Programming solution in the Cpp Windows Programming file.

https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-express-vs.aspx
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming

Preface

[3]

If you want to write code with Small Windows on your own, you can download3.
the Empty project in the Empty Project file. It is an application holding only the
Small Windows source code with a very simple application. You can change the
name of the project and add your own application-specific code.

Who this book is for
This book is for application developers who want a head-first approach into Windows
programming. It will teach you how to develop an object-oriented class library in C++ and
enhanced applications in Windows. Basic knowledge of C++ and the object-oriented
framework is assumed to get the most out of this book.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "The first
part of a Small Windows application is the MainWindow function."

A block of code is set as follows:

void MainWindow(vector<String>argumentList,
 SmallWindows::WindowShow windowShow);

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "For instance, often, the
Open item in the File menu is annotated with the text Ctrl+O."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[4]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply e-
mail feedback@packtpub.com, and mention the book's title in the subject of your
message. If there is a topic that you have expertise in and you are interested in either
writing or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at h t t p : / / w w w . p

a c k t p u b . c o m. If you purchased this book elsewhere, you can visit h t t p : / / w w w . p a c k t p u b . c

o m / s u p p o r t and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[5]

The code bundle for the book is also hosted on GitHub at h t t p s : / / g i t h u b . c o m / P a c k t P u b l

i s h i n g / C p p - W i n d o w s - P r o g r a m m i n g. We also have other code bundles from our rich catalog
of books and videos available at h t t p s : / / g i t h u b . c o m / P a c k t P u b l i s h i n g /. Check them
out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from h t t p s : / / w w w . p a c k t p u b . c o m / s i t e s / d e f a u l t / f i l e s / d o w n

l o a d s / C p p W i n d o w s P r o g r a m m i n g _ C o l o r I m a g e s . p d f.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting h t t p : / / w w w . p a c k t p u b . c o m / s u b m i t - e r r a t a, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to h t t p s : / / w w w . p a c k t p u b . c o m / b o o k s / c o n t e n

t / s u p p o r t and enter the name of the book in the search field. The required information will
appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/Cpp-Windows-Programming
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CppWindowsProgramming_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[6]

Questions
If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

1
Introduction

The purpose of this book is to learn how to develop applications in Windows. In order to do
so, I have developed Small Windows, which is a C++ object-oriented class library for
graphical applications in Windows.

The idea is to guide you into Windows programming by introducing increasingly more
advanced applications written in C++ with Small Windows, thereby hiding the technical
details of the Windows 32-bit Applications Programming Interface (Win32 API), which is
the underlying library for Windows development. With this approach, we can focus on the
business logic without struggling with the underlying technical details. If you are interested
in knowing how the Win32 API works, the second part of this book gives a detailed
description of how Small Windows is implemented.

This book is made up of two parts, where the first part describes the applications developed
in C++ with Small Windows. While some books have many examples, this book only
includes six examples, among which the last four are rather advanced: the Tetris game, a
drawing program, a word processor, and a spreadsheet program. Note that this book is not
only a tutorial about Windows programming, but also a tutorial about how to develop
object-oriented graphical applications.

The second part holds a detailed description of the implementation of Small Windows in
the Win32 API. Note that the Win32 API is not introduced until the second part. Some of
you may be satisfied with the high level aspects of Small Windows and only want to study
application-specific problems, while others may want to read the second part in order to
understand how the classes, methods, and macros of Small Windows are implemented in
the Win32 API.

Introduction

[8]

Naturally, I am aware of the existence of modern object-oriented class libraries for
Windows. However, the purpose of those libraries is to make it easier for the developer by
hiding the details of the architecture, which also prevents the developer from using the
Windows architecture to its full extent. Even though the Win32 API has been around for a
while, I regard it as the best way to develop professional Windows applications and to
understand the Windows architecture.

All source code is given in this book; it is also available as a Visual Studio solution.

The library
This section gives an introduction to Small Windows. The first part of a Small Windows
application is the MainWindow function. It corresponds to main in regular C++. Its task is to
set the name of the application and create the main window of the application.

In this book we talk about definitions and declarations. A declaration is just a notification
for the compiler, while a definition is what defines the feature. Below is the declaration of
the MainWindow function. Its definition is left to the user of Small Windows.

void MainWindow(vector<String>argumentList,
 SmallWindows::WindowShow windowShow);

Simply put, in Windows the application does not take any initiative; rather, it waits for
messages and reacts when it receives them. Informally speaking, you do not call Windows,
Windows calls you.

The most central part of Small Windows is the Application class. In Windows, each event
generates a message that is sent to the window that has input focus at the moment. The
Application class implements the RunMessageLoop method, which makes sure that each
message is sent to the correct window. It also closes the application when a special quit
message is sent.

The creation of a window takes place in two steps. In the first step, the
RegisterWindowClasses method sets features such as style, color, and appearance. Note
that Windows classes are not C++ classes:

class Application {
 public:
 static int RunMessageLoop();
 static void RegisterWindowClasses(HINSTANCE instanceHandle);
};

Introduction

[9]

The next step is to create an individual window, which is done by the Window class. All
virtual methods are empty and are intended to be overridden by sub classes shown as
follows:

 class Window {
 public:

A window can be visible or invisible, enabled or disabled. When a window is enabled, it
accepts mouse, touch, and keyboard input:

 void ShowWindow(bool visible);
 void EnableWindow(bool enable);

The OnMove and the OnSize methods are called when the window is moved or resized. The
OnHelp method is called when the user presses the F1 key or the Help button in a message
box:

 virtual void OnMove(Point topLeft);
 virtual void OnSize(Size windowSize);
 virtual void OnHelp();

The client area is the part of the window that it is possible to paint in. Informally, the client
area is the window minus its frame. The contents of the client area can be zoomed. The
default zoom factor is 1.0:

 double GetZoom() const;
 void SetZoom(double zoom);

The timer can be set to an interval in milliseconds. The OnTimer method is called on every
interval. It is possible to set up several timers, as long as they have different identity
numbers:

 void SetTimer(int timerId, unsigned int interval);
 void DropTimer(int timerId);
 virtual void OnTimer(int timerId);

The OnMouseDown, OnMouseUp, and OnDoubleClick methods are called when the user
presses, releases, or double-clicks on a mouse button. The OnMouseMove method is called
when the user moves the mouse with at least one button pressed. The OnMouseWheel
method is called when the user moves the mouse wheel with one click:

 virtual void OnMouseDown(MouseButton mouseButtons,
 Point mousePoint, bool shiftPressed,
 bool controlPressed);

Introduction

[10]

 virtual void OnMouseUp(MouseButton mouseButtons,
 Point mousePoint, bool shiftPressed,
 bool controlPressed);
 virtual void OnDoubleClick(MouseButton mouseButtons,
 Point mousePoint, bool shiftPressed,
 bool controlPressed);
 virtual void OnMouseMove(MouseButton mouseButtons,
 Point mousePoint, bool shiftPressed,
 bool controlPressed);
 virtual void OnMouseWheel(WheelDirection direction,
 bool shiftPressed, bool controlPressed);

The OnTouchDown, OnTouchMove, and OnTouchDown methods work in the same way as the
mouse methods. However, as the user can touch several points at the same time, the
methods takes lists of points rather than an individual point:

 virtual void OnTouchDown(vector<Point> pointList);
 virtual void OnTouchMove(vector<Point> pointList);
 virtual void OnTouchUp(vector<Point> pointList);

The OnKeyDown and OnKeyUp methods are called when the user presses or releases a key. If
the user presses a graphical key (a key with an ASCII value between 32 and 127, inclusive),
the OnChar method is called in between:

 virtual bool OnKeyDown(WORD key, bool shiftPressed,
 bool controlPressed);
 virtual void OnChar(TCHAR tChar);
 virtual bool OnKeyUp(WORD key, bool shiftPressed,
 bool controlPressed);

The Invalidate method marks a part of the client area (or the whole client area) to be
repainted; the area becomes invalidated. The area is cleared before the painting if clear is
true. The UpdateWindow method forces a repainting of the invalidated area. It causes the
OnPaint method to be called eventually:

 void Invalidate(Rect areaRect, bool clear = true) const;
 void Invalidate(bool clear = true) const;
 void UpdateWindow();

The OnPaint method is called when some part of the client area needs to be repainted and
the OnPrint method is called when it is sent to a printer. Their default behavior is to call
the OnDraw method with Paint or Print as the value of the drawMode parameter:

Introduction

[11]

 virtual void OnPaint(Graphics& graphics) const;
 virtual void OnPrint(Graphics& graphics, int page,
 int copy, int totalPages) const;
 virtual void OnDraw(Graphics& graphics, DrawMode drawMode)
 const;

The OnClose method closes the window if TryClose returns true. The OnDestroy
method is called when the window is being closed:

 virtual void OnClose();
 virtual bool TryClose();
 virtual void OnDestroy();

The following methods inspect and modify the size and position of the window. Note that
we cannot set the size of the client area; it can only be set indirectly by resizing the window:

 Size GetWindowSize() const;
 void SetWindowSize(Size windowSize);
 Point GetWindowPosition() const;
 void SetWindowPosition(Point topLeft);
 Size GetClientSize() const;

In the word processor and spreadsheet programs in this book, we handle text and need to
calculate the size of individual characters. The following methods calculate the width of a
character with a given font. They also calculate the height, ascent, and average character
width of a font:

 int GetCharacterWidth(Font font, TCHAR tChar) const;
 int GetCharacterHeight(Font font) const;
 int GetCharacterAscent(Font font) const;
 int GetCharacterAverageWidth(Font font) const;

The ascent line separates the upper and lower part of a letter, shown as follows:

Finally, the MessageBox method displays a simple message box in the window:

 Answer MessageBox(String message,
 String caption = TEXT("Error"),
 ButtonGroup buttonGroup = Ok,
 Icon icon = NoIcon, bool help = false) const;
};

Introduction

[12]

The Window class also uses the Graphics class responsible for drawing text and
geometrical objects in the window. A reference to a Graphics object is sent to the OnPaint,
OnPrint, and OnDraw methods in the Window class. It can be used to draw lines, rectangles,
and ellipses and to write text:

 class Graphics {
 public:
 void DrawLine(Point startPoint, Point endPoint,
 Color penColor, PenStyle penStyle = Solid);
 void DrawRectangle(Rect rect, Color penColor,
 PenStyle = Solid);
 void FillRectangle(Rect rect, Color penColor,
 Color brushColor, PenStyle penStyle=Solid);
 void DrawEllipse(Rect rect, Color penColor,
 PenStyle = Solid);
 void FillEllipse(Rect rect, Color penColor,
 Color brushColor, PenStyle penStyle=Solid);
 void DrawText(Rect areaRect, String text, Font font,
 Color textColor, Color backColor,
 bool pointsToMeters = true);
 };

The Document class extends the Window class with some functionality common to
document-based applications. The scroll thumbs are automatically set to reflect the visible
part of the document. The mouse wheel moves the vertical scroll bar one line-height for
each click. The height of a line is set by the constructor. The code snippet for it is shown as
follows:

 class Document : public Window {
 public:

The dirty flag is true when the user has made a change in the document and it needs to be
saved. In Document, the dirty flag is set manually, but in the following StandardDocument
subclass it is handled by the framework:

 bool IsDirty() const;
 void SetDirty(bool dirty);

The caret is the blinking marker that indicates to the user where they should input the next
character. The keyboard can be set (with the Insert key) to insert or overwrite mode. The
caret is often a thin vertical bar in insert mode and a block with the width of an average
character in overwrite mode.

The caret can be set or cleared. For instance, in the word processor, the caret is visible when
the user writes text and invisible when the user marks text. When the window gains focus,
the caret becomes visible if it has earlier been set. When the window loses focus, the caret

Introduction

[13]

becomes invisible, regardless of whether it has earlier been set:

 void SetCaret(Rect caretRect);
 void ClearCaret();
 void OnGainFocus();
 void OnLoseFocus();

A document may hold a menu bar, which is set by the SetMenuBar method:

 void SetMenuBar(Menu& menuBar);

The OnDropFiles method is called when the user drops one or several files in the window.
Their paths are stored in the path list:

 virtual void OnDropFile(vector<String> pathList);

The keyboard mode of a document can be set to insert or overwrite as follows:

 KeyboardMode GetKeyboardMode() const;
 void SetKeyboardMode(KeyboardMode mode);

The OnHorizontalScroll and OnVerticalScroll methods are called when the user
scrolls the bar by clicking on the scroll bar arrows or the scroll bar fields, or dragging the
scroll thumbs. The code snippet for it is shown as follows:

 virtual void OnHorizontalScroll(WORD flags,WORD thumbPos=0);
 virtual void OnVerticalScroll(WORD flags, WORD thumbPos =0);

There is a large set of methods for inspecting or changing scroll bar settings. The size of a
line or page is set by the constructor:

 void SetHorizontalScrollPosition(int scrollPos);
 int GetHorizontalScrollPosition() const;
 void SetVerticalScrollPosition(int scrollPos);
 int GetVerticalScrollPosition() const;

 void SetHorizontalScrollLineWidth(int lineWidth);
 int GetHorizontalScrollLineHeight() const;
 void SetVerticalScrollLineHeight(int lineHeight);
 int GetVerticalScrollLineHeight() const;

 void SetHorizontalScrollPageWidth(int pageWidth);
 int GetHorizontalScrollPageWidth() const;
 void SetVerticalScrollPageHeight(int pageHeight);
 int GetVerticalScrollPageHeight() const;

Introduction

[14]

 void SetHorizontalScrollTotalWidth(int scrollWidth);
 int GetHorizontalScrollTotalWidth() const;
 void SetVerticalScrollTotalHeight(int scrollHeight);
 int GetVerticalScrollTotalHeight() const;
 };

The Menu class handles the menu bar, a menu, a menu item, or a menu item separator (a
horizontal bar) in the document. The selection listener is called when the user selects the
menu item. The enable, check, and radio listeners are called (unless they are null) when
the item is about to become visible. If they return true, the item is enabled or annotated
with a check box or radio button:

 class Menu {
 public:
 void AddMenu(Menu& menu);
 void AddSeparator();
 void AddItem(String text, VoidListener selection,
 BoolListener enable = nullptr,
 BoolListener check = nullptr,
 BoolListener radio = nullptr);
 };

An accelerator is a shortcut command. For instance, often, the Open item in the File menu
is annotated with the text Ctrl+O. This means that you can obtain the same result by
pressing the Ctrl key and the O key at the same time, just as if you selected the Open menu
item. In both cases, the Open dialog is displayed.

The Accelerator class holds only the TextToAccelerator method. It interprets the
menu item text and adds the accelerator, if present, to the accelerator set:

class Accelerator {
 public:
 static void TextToAccelerator(String& text, int idemId,
 list<ACCEL>& acceleratorSet);
 };

The StandardDocument class extends the Document class and sets up a framework that
takes care of all traditional tasks, such as load and save, and cut, copy, and paste, in a
document-based application:

 class StandardDocument : public Document {
 public:

The StandardDocument class comes equipped with the common File, Edit, and Help
menus. The File menu can optionally (if the print parameter is true) be equipped with
menu items for printing and print previewing:

Introduction

[15]

 Menu StandardFileMenu(bool print);
 Menu StandardEditMenu();
 Menu StandardHelpMenu();

The ClearDocument method is called when the user selects the New menu item; its task is
to clear the document. The WriteDocumentToStream method is called when the user
selects the Save or Save As menu item and the ReadDocumentFromStream method is
called when the user selects the Open menu item:

 virtual void ClearDocument();
 virtual bool WriteDocumentToStream(String name,
 ostream& outStream)const;
 virtual bool ReadDocumentFromStream(String name,
 istream& inStream);

The CopyAscii, CopyUnicode, and CopyGeneric methods are called when the user
selects the Cut or Copy menu item and the corresponding ready method returns true. The
code snippet for it is shown as follows:

 virtual void CopyAscii(vector<String>& textList) const;
 virtual bool IsCopyAsciiReady() const;
 virtual void CopyUnicode(vector<String>& textList) const;
 virtual bool IsCopyUnicodeReady() const;
 virtual void CopyGeneric(int format, InfoList& infoList)
 const;
 virtual bool IsCopyGenericReady(int format) const;

In the same way, the PasteAscii, PasteUnicode, and PasteGeneric methods are called
when the user selects the Paste menu item and the corresponding ready method returns
true:

 virtual void PasteAscii(const vector<String>& textList);
 virtual bool IsPasteAsciiReady
 (const vector<String>& textList) const;
 virtual void PasteUnicode(const vector<String>& textList);
 virtual bool IsPasteUnicodeReady
 (const vector<String>& textList) const;
 virtual void PasteGeneric(int format, InfoList& infoList);
 virtual bool IsPasteGenericReady(int format,
 InfoList& infoList) const;

The OnDropFile method checks the path list and accepts the drop if exactly one file has the
suffix of the document type of the application (set by the constructor):

 void OnDropFile(vector<String> pathList);
 };

Introduction

[16]

In Small Windows, we do not care about the pixel size. Instead, we use logical units that
stay the same, regardless of the physical resolution of the screen. We can choose from the
following three coordinate systems:

LogicalWithScroll: A logical unit is one hundredth of a millimeter, with the
current scroll bar settings taken into account. The drawing program and word
processor use this system.
LogicalWithoutScroll: A logical unit is one hundredth of a millimeter also in
this case, but the current scroll bar settings are ignored. The spreadsheet program
uses this system.
PreviewCoordinate: The client area of the window is set to a fixed logical size
when the window is created. This means that the size of the logical units changes
when the user changes the window size. The Tetris game and the
PreviewDocument class uses this system.

Besides the StandardDocument class, there is also the PrintPreviewDocument, which
class that also extends the Document class. It displays one of the pages of a standard
document. It is possible for the user to change the page by using the arrow keys and the
Page Up and Page Down keys or by using the vertical scroll bar:

 class PrintPreviewDocument : Document {
 public:
 PrintPreviewDocument(StandardDocument* parentDocument,
 int page = 1, Size pageSize = USLetterPortrait);
 bool OnKeyDown(WORD key, bool shiftPressed,
 bool controlPressed);
 void OnVerticalScroll(WORD flags, WORD thumbPos = 0);
 void OnPaint(Graphics& graphics) const;
 };

There are also the simple auxiliary classes:

Point: It holds a two-dimensional point (x and y)
Size: It holds two-dimensional width and height
Rect: It holds the four corners of a rectangle
DynamicList: It holds a dynamic list
Tree: It holds a tree structure
InfoList: It holds a list of generic information that can be transformed into a
memory block

The Registry class holds an interface to the Windows Registry, the database in the
Windows system that we can use to store values in between the execution of our

www.allitebooks.com

http://www.allitebooks.org

Introduction

[17]

applications. The Clipboard class holds an interface to the Windows Clipboard, an area in
Windows intended for short-term data storage that we can use to store information cut,
copied, and pasted between applications.

The Dialog class is designed for customized dialogs. The Control class is the root class for
the controls of the dialog. The CheckBox, RadioButton, PushButton, ListBox, and
ComboBox classes are classes for the specific controls. The TextField class holds a text field
that can be translated to different types by the Converter class. Finally, the
PageSetupDialog class extends the Dialog class and implements a dialog with controls
and converters.

Summary
This chapter has given an introduction to Small Windows. In Chapter 2, Hello, Small World,
we will start to develop applications with Small Windows.

2
Hello, Small World!

This chapter introduces Small Windows by presenting the following two small applications:

The first application writes “Hello, Small Windows!” in a window
The second application handles circles of different colors in a document window

Hello, Small Windows!
In The C Programming Language by Brian Kernighan and Dennis Richie, the hello-world
example was introduced. It was a small program that wrote “hello, world” on the screen. In
this section, we shall write a similar program for Small Windows.

In regular C++, the execution of the application starts with the main function. In Small
Windows, however, main is hidden in the framework and has been replaced by
MainWindow, whose task is to define the application name and create the main window
object. The following argumentList parameter corresponds to argc and argv in main.
The commandShow parameter forwards the system's request regarding the window's
appearance:

Hello, Small World!

[19]

MainWindow.cpp

#include "..\\SmallWindows\\SmallWindows.h"
#include "HelloWindow.h"

void MainWindow(vector<String> /* argumentList */, WindowShow windowShow) {
 Application::ApplicationName() = TEXT("Hello");
 Application::MainWindowPtr() =
 new HelloWindow(windowShow);
}

In C++, there are to two character types, char and wchar_t, where char holds a regular
character of 1 byte and wchar_t holds a wide character of larger size, usually 2 bytes. There
is also the string class, which holds a string of char values, and the wstring class, which
holds a string of wchar_t values.

However, in Windows, there is also the generic character type TCHAR, which is char or
wchar_t, depending on system settings. There is also the String class, which holds a
string of TCHAR values. Moreover, TEXT is a macro that translates a character value to TCHAR
and a text value to an array of TCHAR values.

To sum it up, the following table shows character types and string classes:

Regular character Wide character Generic character

char wchar_t TCHAR

string wstring String

In the applications of this book, we always use the TCHAR type, the String class, and the
TEXT macro. The only exception to that rule is clipboard handling in Chapter 13, The
Registry, Clipboard, Standard Dialogs, and Print Preview.

Our version of the hello-world program writes “Hello, Small Windows!” in the center of the
client area. The client area of the window is that part of the window where it is possible to
draw graphical objects. In the following window, the client area is the white area:

Hello, Small World!

[20]

The HelloWindow class extends the Small Windows Window class. It holds a constructor
and the Draw method. The constructor calls the Window constructor with suitable
information regarding the appearance of the window. The Draw method is called every time
the client area of the window needs to be redrawn:

HelloWindow.h

class HelloWindow : public Window {
 public:
 HelloWindow(WindowShow windowShow);
 void OnDraw(Graphics& graphics, DrawMode drawMode) const;
};

The constructor of HelloWindow calls the constructor of Window with the following
parameters:

The first parameter of the HelloWindow constructor is the coordinate system.
LogicalWithScroll indicates that each logical unit is one hundredth of a
millimeter, regardless of the physical resolution of the screen. The current scroll
bar settings are taken into consideration.
The second parameter of the Window constructor is the preferred size of the
window. It indicates that a default size should be used.
The third parameter is a pointer to the parent window. It is null since the window
has no parent window.
The fourth and fifth parameters set the window's style, in this case overlapped
windows.
The last parameter is windowShow, given by the surrounding system to
MainWindow, which decides the window's initial appearance (minimized,
normal, or maximized).
Finally, the constructor sets the header of the window by calling the Window
class's SetHeader method.

Hello, Small World!

[21]

HelloWindow.cpp

#include "..\\SmallWindows\\SmallWindows.h"
#include "HelloWindow.h"

HelloWindow::HelloWindow(WindowShow windowShow)
 :Window(LogicalWithScroll, ZeroSize, nullptr,
 OverlappedWindow, NoStyle, windowShow) {
 SetHeader(TEXT("Hello Window"));
}

The OnDraw method is called every time the client area of the window needs to be redrawn.
It obtains the size of the client area and draws the text in its center with black text on a
white background. The SystemFont parameter will make the text appear in the default
system font.

The Small WindowsColor class holds the constants Black and White. The Point class
holds a two-dimensional point. The Size class holds width and height. The Rect class
holds a rectangle; more specifically, it holds the four corners of a rectangle:

void HelloWindow::OnDraw(Graphics& graphics,
 DrawMode /* drawMode */) const {
 Size clientSize = GetClientSize();
 Rect clientRect(Point(0, 0), clientSize);
 graphics.DrawText(clientRect, TEXT("Hello, Small Windows!"),
 SystemFont, Black, White);
}

The circle application
In this section, we look into a simple circle application. As the name implies, it enables the
user to handle circles in a graphical application. The user can add a new circle by pressing
the left mouse button. The user can also move an existing circle by dragging it. Moreover,
the user can change the color of a circle as well as save and open the document:

Hello, Small World!

[22]

The main window
As we will see throughout this book, the MainWindow function always does the same thing:
it sets the application name and creates the main window of the application. The name is
used by the Save and Open standard dialogs, the About menu item, and the registry.

The difference between the main window and other windows of the application is that,
when the user closes the main window, the application exits. Moreover, when the user
selects the Exit menu item, the main window is closed, and its destructor is called:

MainWindow.cpp

#include "..\\SmallWindows\\SmallWindows.h"
#include "Circle.h"
#include "CircleDocument.h"

void MainWindow(vector<String> /* argumentList */,
 WindowShow windowShow) {
 Application::ApplicationName() = TEXT("Circle");
 Application::MainWindowPtr() =
 new CircleDocument(windowShow);
}

Hello, Small World!

[23]

The CircleDocument class
The CircleDocument class extends the Small Windows StandardDocument class, which,
in turn, extends the Document and Window classes. In fact, the StandardDocument class
constitutes a framework, that is, a base class with a set of virtual methods with functionality
that we can override and further specify.

The OnMouseDown and OnMouseUp methods are overridden from the Window class and are
called when the user presses or releases one of the mouse buttons. The OnMouseMove
method is called when the user moves the mouse. The OnDraw method is also overridden
from the Window class and is called every time the window needs to be redrawn.

The ClearDocument, ReadDocumentFromStream, and WriteDocumentToStream
methods are overridden from the StandardDocument class and are called when the user
creates a new file, opens a file, or saves a file:

CircleDocument.h

class CircleDocument : public StandardDocument {
 public:
 CircleDocument(WindowShow windowShow);
 ~CircleDocument();

 void OnMouseDown(MouseButton mouseButtons,
 Point mousePoint,
 bool shiftPressed,
 bool controlPressed);
 void OnMouseUp(MouseButton mouseButtons,
 Point mousePoint,
 bool shiftPressed,
 bool controlPressed);
 void OnMouseMove(MouseButton mouseButtons,
 Point mousePoint,
 bool shiftPressed,
 bool controlPressed);

 void OnDraw(Graphics& graphics, DrawMode drawMode) const;

 bool ReadDocumentFromStream(String name,
 istream& inStream);
 bool WriteDocumentToStream(String name,
 ostream& outStream) const;
 void ClearDocument();

Hello, Small World!

[24]

The DEFINE_BOOL_LISTENER and DEFINE_VOID_LISTENER macros define listeners which
are methods without parameters that are called when the user selects a menu item. The only
difference between the macros is the return type of the defined methods: bool or void.

In the applications of this book, we use the common standard whereby listeners called in
response to user actions are prefixed with On, for instance, OnRed, as shown in the following
code snippet. The methods that decide whether the menu item should be enabled are
suffixed with Enable, and the methods that decide whether the menu item should be
marked with a check mark or a radio button are suffixed with Check or Radio.

In the following application, we define menu items for the red, green, and blue colors. We
also define a menu item for the color standard dialog:

 DEFINE_VOID_LISTENER(CircleDocument,OnRed);
 DEFINE_VOID_LISTENER(CircleDocument,OnGreen);
 DEFINE_VOID_LISTENER(CircleDocument,OnBlue);
 DEFINE_VOID_LISTENER(CircleDocument,OnColorDialog);

When the user has chosen one of the colors, red, green, or blue, its corresponding menu
item is checked with a radio button. The RedRadio, GreenRadio, and BlueRadio
parameters are called before the menu items become visible and return a Boolean value
indicating whether the menu item should be marked with a radio button:

 DEFINE_BOOL_LISTENER(CircleDocument, RedRadio);
 DEFINE_BOOL_LISTENER(CircleDocument, GreenRadio);
 DEFINE_BOOL_LISTENER(CircleDocument, BlueRadio);

The circle radius is always 500 units, which corresponds to 5 mm:

 static const int CircleRadius = 500;

The circleList field holds the circles, where the topmost circle is located at the beginning
of the list. The nextColor field holds the color of the next circle to be added by the user. It
is initialized to minus 0ne to indicate that no circle is being moved at the beginning. The
moveIndex and movePoint fields are used by the OnMouseDown and OnMouseMove
methods to keep track of the circle being moved by the user:

 private:
 vector<Circle> circleList;
 Color nextColor;
 int moveIndex = -1;
 Point movePoint;
};

Hello, Small World!

[25]

In the StandardDocument constructor call, the first two parameters are
LogicalWithScroll and USLetterPortrait. They indicate that the logical size is
hundredths of millimeters and that the client area holds the logical size of a US letter:
215.9*279.4 millimeters (8.5*11 inches). If the window is resized so that the client area
becomes smaller than a US letter, scroll bars are added to the window.

The third parameter sets the file information used by the standard save and open dialogs;
the text description is set to Circle Files and the file suffix is set to cle. The nullptr
parameter indicates that the window does not have a parent window. The
OverlappedWindow constant parameter indicates that the window should overlap other
windows, and the windowShow parameter is the window's initial appearance passed on
from the surrounding system by the MainWindow class:

CircleDocument.cpp

#include "..\\SmallWindows\\SmallWindows.h"
#include "Circle.h"
#include "CircleDocument.h"

CircleDocument::CircleDocument(WindowShow windowShow)
 :StandardDocument(LogicalWithScroll, USLetterPortrait,
 TEXT("Circle Files, cle"), nullptr,
 OverlappedWindow, windowShow) {

The StandardDocument class adds the standard File, Edit, and Help menus to the window
menu bar. The File menu holds the New, Open, Save, Save As, Page Setup, Print Preview,
and Exit items. Page Setup and Print Preview are optional. The seventh parameter of the
StandardDocument constructor (the default value is false) indicates their presence. The
Edit menu holds the Cut, Copy, Paste, and Delete items. They are disabled by default; we
will not use them in this application. The Help menu holds the About item, and the
application name set in MainWindow is used to display a message box with a standard
message Circle, version 1.0.

We add the standard File and Edit menus to the menu bar. Then we add the Color menu,
which is the application-specific menu of this application. Finally, we add the standard
Help menu and set the menu bar of the document.

Hello, Small World!

[26]

The Color menu holds the menu items used to set the circle colors. The OnRed, OnGreen,
and OnBlue methods are called when the user selects the menu item, and the RedRadio,
GreenRadio, and BlueRadio methods are called before the user selects the Color menu in
order to decide if the items should be marked with a radio button. The OnColorDialog
method opens a standard color dialog.

In the &Red\tCtrl+R text in the following code snippet, the ampersand (&) indicates that
the menu item has a mnemonic; that is, the letter R will be underlined and it is possible to
select the menu item by pressing R after the menu has been opened. The tabulator character
(\t) indicates that the second part of the text defines an accelerator; that is, the text Ctrl+R
will occur right-justified in the menu item and the item can be selected by pressing Ctrl+R:

 Menu menuBar(this);

The false parameter to StandardFileMenu indicates that we do not want to include the
file menu items.

 menuBar.AddMenu(StandardFileMenu(false));

The AddItem method in the Menu class also takes two more parameters for enabling the
menu item and setting a checkbox. However, we do not use them in this application.
Therefore, we send null pointers:

 Menu colorMenu(this, TEXT("&Color"));
 colorMenu.AddItem(TEXT("&Red\tCtrl+R"), OnRed,
 nullptr, nullptr, RedRadio);
 colorMenu.AddItem(TEXT("&Green\tCtrl+G"), OnGreen,
 nullptr, nullptr, GreenRadio);
 colorMenu.AddItem(TEXT("&Blue\tCtrl+B"), OnBlue,
 nullptr, nullptr, BlueRadio);
 colorMenu.AddSeparator();
 colorMenu.AddItem(TEXT("&Dialog ..."), OnColorDialog);
 menuBar.AddMenu(colorMenu);

 menuBar.AddMenu(StandardHelpMenu());
 SetMenuBar(menuBar);

Finally, we read the current color (the color of the next circle to be added) from the registry;
red is the default color in case there is no color stored in the registry:

 nextColor.ReadColorFromRegistry(TEXT("NextColor"), Red);
}

Hello, Small World!

[27]

The destructor saves the current color in the registry. In this application, we do not need to
perform the destructor's normal tasks such as deallocating memory or closing files:

CircleDocument::~CircleDocument() {
 nextColor.WriteColorToRegistry(TEXT("NextColor"));
}

The ClearDocument method is called when the user selects the New menu item. In this
case, we just clear the circle list. Every other action, such as redrawing the window or
changing its title, is taken care of by the StandardDocument class:

void CircleDocument::ClearDocument() {
 circleList.clear();
}

The WriteDocumentToStream method is called by the StandardDocument class when the
user saves a file (by selecting Save or Save As). It writes the number of circles (the size of
the circle list) to the output stream and calls the WriteCircle method for each circle in
order to write their states to the stream:

bool CircleDocument::WriteDocumentToStream(String name,
 ostream& outStream) const {
 int size = circleList.size();
 outStream.write((char*) &size, sizeof size);

 for (Circle circle : circleList) {
 circle.WriteCircle(outStream);
 }

 return ((bool) outStream);
}

The ReadDocumentFromStream method is called by the StandardDocument method
when the user opens a file by selecting the Open menu item. It reads the number of circles
(the size of the circle list) and for each circle it creates a new object of the Circle class, calls
the ReadCircle method in order to read the state of the circle, and adds the circle object to
the circleList method:

bool CircleDocument::ReadDocumentFromStream(String name,
 istream& inStream) {
 int size;
 inStream.read((char*) &size, sizeof size);

Hello, Small World!

[28]

 for (int count = 0; count < size; ++count) {
 Circle circle;
 circle.ReadCircle(inStream);
 circleList.push_back(circle);
 }

 return ((bool) inStream);
}

The OnMouseDown method is called when the user presses one of the mouse buttons. First
we need to check that they have pressed the left mouse button. If they have, we loop
through the circle list and call the IsClick method for each circle in order to decide
whether they have clicked on a circle. Note that the topmost circle is located at the
beginning of the list; therefore, we loop from the beginning of the list. If we find a clicked
circle, we break the loop.

If the user has clicked on a circle, we store its index moveIndex and the current mouse
position in movePoint. Both values are needed by that OnMouseMove method that will be
called when the user moves the mouse:

void CircleDocument::OnMouseDown
 (MouseButton mouseButtons, Point mousePoint,
 bool shiftPressed /* = false */,
 bool controlPressed /* = false */) {
 if (mouseButtons == LeftButton) {
 moveIndex = -1;
 int size = circleList.size();

 for (int index = 0; index < size; ++index) {
 if (circleList[index].IsClick(mousePoint)) {
 moveIndex = index;
 movePoint = mousePoint;
 break;
 }
 }

However, if the user has not clicked on a circle, we add a new circle. A circle is defined by
its center position (mousePoint), radius (CircleRadius), and color (nextColor).

An invalidated area is a part of the client area that needs to be redrawn. Remember that in
Windows, we normally do not draw figures directly. Instead, we call the Invalidate
method to tell the system that an area needs to be redrawn and force the actual redrawing
by calling the UpdateWindow method, which eventually results in a call to the OnDraw
method. The invalidated area is always a rectangle. The Invalidate method has a second
parameter (the default value is true) indicating that the invalidated area should be cleared.

Hello, Small World!

[29]

Technically, it is painted in the window's client color, which in this case is white. In this
way, the previous location of the circle is cleared and the circle is drawn at its new location.

The SetDirty method tells the framework that the document has been altered (the
document has become dirty), which causes the Save menu item to be enabled and the user
to be warned if he/she tries to close the window without saving it:

 if (moveIndex == -1) {
 Circle newCircle(mousePoint, CircleRadius,
 nextColor);
 circleList.push_back(newCircle);
 Invalidate(newCircle.Area());
 UpdateWindow();
 SetDirty(true);
 }
 }
}

The OnMouseMove method is called every time the user moves the mouse with at least one
mouse button pressed. We first need to check whether the user is pressing the left mouse
button and is clicking on a circle (whether the moveIndex method does not equal -1). If the
user is, we calculate the distance from the previous mouse event (OnMouseDown or
OnMouseMove) by comparing the previous and the current mouse position using the
mousePoint method. We update the circle position, invalidate both the old and new area,
forcing a redrawing of the invalidated areas with the UpdateWindow method, and set the
dirty flag:

void CircleDocument::OnMouseMove
 (MouseButton mouseButtons, Point mousePoint,
 bool shiftPressed /* = false */,
 bool controlPressed /* = false */) {
 if ((mouseButtons == LeftButton)&&(moveIndex != -1)) {
 Size distanceSize = mousePoint - movePoint;
 movePoint = mousePoint;

 Circle& movedCircle = circleList[moveIndex];
 Invalidate(movedCircle.Area());
 movedCircle.Center() += distanceSize;
 Invalidate(movedCircle.Area());

 UpdateWindow();
 SetDirty(true);
 }
}

Hello, Small World!

[30]

Strictly speaking, the OnMouseUp method could be excluded since the moveIndex method
is set to minus one in the OnMouseDown method, which is always called before the
OnMouseMove method. However, it has been included for the sake of completeness:

void CircleDocument::OnMouseUp
 (MouseButton mouseButtons, Point mousePoint,
 bool shiftPressed /* = false */,
 bool controlPressed /* = false */) {
 moveIndex = -1;
}

The OnDraw method is called every time the window needs to be (partly or completely)
redrawn. The call can be initialized by the system as a response to an event (for instance, the
window has been resized) or by an earlier call to the UpdateWindow method. The
Graphics reference parameter has been created by the framework and can be considered as
a toolbox for drawing lines, painting areas, and writing text. However, in this application,
we do not write text.

We iterate through the circle list and, for each circle, call the Draw method. Note that we do
not care about which circles are to be physically redrawn. We simple redraw all circles.
However, only the circles located in an area that has been invalidated by a previous call to
the Invalidate method will be physically redrawn.

The Draw method has a second parameter indicating the draw mode, which can be Paint
or Print. The Paint method indicates that the OnDraw method is called by the OnPaint
method in the Window class and that the painting is performed in the window's client area.
The Print method indicates that the OnDraw method is called by the OnPrint method and
that the painting is sent to a printer. However, in this application, we do not use that
parameter:

void CircleDocument::OnDraw(Graphics& graphics,
 DrawMode /* drawMode */) const {
 for (Circle circle : circleList) {
 circle.Draw(graphics);
 }
}

The RedRadio, GreenRadio, and BlueRadio methods are called before the menu items are
shown, and the items will be marked with a radio button if they return true. The Red,
Green, and Blue constants are defined in the Color class:

bool CircleDocument::RedRadio() const {
 return (nextColor == Red);
}

Hello, Small World!

[31]

bool CircleDocument::GreenRadio() const {
 return (nextColor == Green);
}

bool CircleDocument::BlueRadio() const {
 return (nextColor == Blue);
}

The OnRed, OnGreen, and OnBlue methods are called when the user selects the
corresponding menu item. They all set the nextColor field to an appropriate value:

void CircleDocument::OnRed() {
 nextColor = Red;
}

void CircleDocument::OnGreen() {
 nextColor = Green;
}

void CircleDocument::OnBlue() {
 nextColor = Blue;
}

The OnColorDialog method is called when the user selects the Color dialog menu item
and displays the standard color dialog. If the user chooses a new color, the nextcolor
method will be given the chosen color value:

void CircleDocument::OnColorDialog() {
 StandardDialog(this, nextColor);
}

The Circle class
Circle is a class holding the information about a single circle. The default constructor is
used when reading a circle from a file. The second constructor is used when creating a new
circle. The IsClick method returns true if the given point is located inside the circle (to
check whether the user has clicked in the circle), the Area method returns the circle's
surrounding rectangle (for invalidation), and the Draw method is called to redraw the circle:

Hello, Small World!

[32]

Circle.h

class Circle {
 public:
 Circle();
 Circle(Point center, int radius, Color color);

 bool WriteCircle(ostream& outStream) const;
 bool ReadCircle(istream& inStream);

 bool IsClick(Point point) const;
 Rect Area() const;
 void Draw(Graphics& graphics) const;

 Point Center() const {return center;}
 Point& Center() {return center;}
 Color GetColor() {return color;}

As mentioned in the previous section, a circle is defined by its center position (center),
radius (radius), and color (color):

 private:
 Point center;
 int radius;
 Color color;
};

The default constructor does not need to initialize the fields since it is called when the user
opens a file and the values are read from the file. The second constructor, however,
initializes the center point, radius, and color of the circle:

Circle.cpp

#include "..\\SmallWindows\\SmallWindows.h"
#include "Circle.h"

Circle::Circle() {
 // Empty.
}

Circle::Circle(Point center, int radius, Color color)
 :color(color),
 center(center),
 radius(radius) {
 // Empty.
}

Hello, Small World!

[33]

The WriteCircle method writes the color, center point, and radius to the stream. Since
radius is a regular integer, we simply use the C standard function write, while Color and
Point have their own methods to write their values to a stream. In the ReadCircle
method, we read the color, center point, and radius from the stream in a similar manner:

bool Circle::WriteCircle(ostream& outStream) const {
 color.WriteColorToStream(outStream);
 center.WritePointToStream(outStream);
 outStream.write((char*) &radius, sizeof radius);
 return ((bool) outStream);
}

bool Circle::ReadCircle(istream& inStream) {
 color.ReadColorFromStream(inStream);
 center.ReadPointFromStream(inStream);
 inStream.read((char*) &radius, sizeof radius);
 return ((bool) inStream);
}

The IsClick method uses Pythagoras' theorem to calculate the distance between the given
point and the circle's center point and returns true if the point is located inside the circle (if
the distance is less than or equal to the circle radius):

Hello, Small World!

[34]

 Circle::IsClick(Point point) const {
 int width = point.X() - center.X(),
 height = point.Y() - center.Y();
 int distance = (int) sqrt((width * width) +
 (height * height));
 return (distance <= radius);
}

The top-left corner of the resulting rectangle is the center point minus the radius and the
bottom-right corner is the center point plus the radius:

Rect Circle::Area() const {
 Point topLeft = center - radius,
 bottomRight = center + radius;
 return Rect(topLeft, bottomRight);
}

We use the FillEllipse method (there is no FillCircle method) of the Small Windows
Graphics class to draw the circle. The circle's border is always black, while its interior color
is given by the color field:

void Circle::Draw(Graphics& graphics) const {
 Point topLeft = center - radius,
 bottomRight = center + radius;
 Rect circleRect(topLeft, bottomRight);
 graphics.FillEllipse(circleRect, Black, color);
}

Summary
In this chapter, you looked into two applications in Small Windows: a simple hello-world
application and a slightly more advanced circle application, which introduced the
framework. You also looked into menus, circle drawing, and mouse handling.

In Chapter 3, Building a Tetris Application, we will develop a classic Tetris game.

3
Building a Tetris Application

In this chapter, we develop a classic Tetris game. We look further into the Window class,
including text writing and drawing figures that are more complex. We look also into timing,
random numbers, and graphical updates such as falling figures and flash effects. An
illustration of it is shown next:

Building a Tetris Application

[36]

The MainWindow function
The MainWindow function is similar to the methods in Chapter 2, Hello, Small World!. It sets
the application name and returns a pointer to the main window, which, in this case, is an
instance of the TetrisWindow class. As stated in Chapter 2, Hello, Small World! the
application name is used when accessing the registry, when opening or saving a file, and by
the About menu item. However, none of that functionality is used in this application:

MainWindow.cpp

#include "..\\SmallWindows\\SmallWindows.h"
#include "GameGrid.h"
#include "TetrisFigure.h"
#include "RedFigure.h"
#include "BrownFigure.h"
#include "TurquoiseFigure.h"
#include "GreenFigure.h"
#include "YellowFigure.h"
#include "BlueFigure.h"
#include "PurpleFigure.h"
#include "TetrisWindow.h"

void MainWindow(vector<String> /* argumentList */,
 WindowShow windowShow) {
 Application::ApplicationName() = TEXT("Tetris");
 Application::MainWindowPtr() = new TetrisWindow(windowShow);
}

The Tetris window
In this application, we do not use the StandardDocument framework from the Chapter 2,
Hello, Small World!. Instead, the TetrisWindow class extends the Small Windows root class
Window directly. The reason is simply that we do not need the functionality of the
StandardDocument framework or its base class Document. We do not use menus or
accelerators, and we do not save or load files:

TetrisWindow.h

class TetrisWindow : public Window {
 public:
 TetrisWindow(WindowShow windowShow);
 ~TetrisWindow();

www.allitebooks.com

http://www.allitebooks.org

Building a Tetris Application

[37]

In this application, we ignore the mouse. Instead, we look into keyboard handling. The
OnKeyDown method is called when the user presses or releases a key:

 bool OnKeyDown(WORD key, bool shiftPressed,
 bool controlPressed);

Similar to the circle application, the OnDraw method is called every time the window's client
area needs to be redrawn:

 void OnDraw(Graphics& graphics, DrawMode drawMode) const;

The OnGainFocus and OnLoseFocus methods are called when the window gains or loses
input focus, respectively. When the window loses input focus, it will not receive any
keyboard input and the timer is turned off, preventing the falling figure from moving:

 void OnGainFocus();
 void OnLoseFocus();

The OnTimer method is called every second the window has focus. It tries to move the
falling figure one step downward. It calls the NewFigure method if it fails to move the
figure downward. The NewFigure method tries to introduce a new figure on the game
board. If that fails, the GameOver method is called, which asks the user if they want a new
game. The NewGame method is called if the user wants a new game. If the user does not
want a new game, it exits the application:

 void OnTimer(int timerId);
 void EndOfFigure();
 void GameOver();
 void NewGame();

the DeleteFullRows examines each row by calling the IsRowFull method and calls the
FlashRow and DeleteRow methods for each full row:

 void DeleteFullRows();
 bool IsRowFull(int row);
 void FlashRow(int row);
 void DeleteRow(int markedRow);

The TryClose method is called if the user tries to close the window by clicking on the
cross in the top-right corner of the window. It displays a message box that asks the user if
they really want to quit:

 bool TryClose();

Building a Tetris Application

[38]

The gameGrid field holds the grid on which the figures are displayed (see the next section).
The falling figure (fallingFigure) is falling down on the grid, and the next figure to fall
down (nextFigure) is displayed in the top-right corner. Each time the player fills a row,
the score (currScore) is increased. The timer identity (TimerId) is needed to keep track of
the timer and is given the arbitrary value of 1000. Finally, the figure list (figureList) will
be filled with seven figures, one of each color. Each time a new figure is needed, a randomly
chosen figure from the list will be chosen and copied:

 private:
 GameGrid gameGrid;
 TetrisFigure fallingFigure, nextFigure;

 int currScore = 0;
 bool timerActive = true, inverse = false;

 static const int TimerId = 1000;
 vector<TetrisFigure> figureList;
};

The PreviewCoordinate parameter in the Window constructor call indicates that the
window's size is fixed, and the second parameter indicates that the size is 100 * 100 units.
This means that unlike the circle application, the size of figures and game boards will
change when the user changes the window's size:

TetrisWindow.cpp

#include "..\\SmallWindows\\SmallWindows.h"
#include "GameGrid.h"
#include "TetrisFigure.h"
#include "RedFigure.h"
#include "BrownFigure.h"
#include "TurquoiseFigure.h"
#include "GreenFigure.h"
#include "YellowFigure.h"
#include "BlueFigure.h"
#include "PurpleFigure.h"
#include "TetrisWindow.h"

TetrisWindow::TetrisWindow(WindowShow windowShow)
 :Window(PreviewCoordinate, Rect(0, 0, 100, 100),
 nullptr, OverlappedWindow, NoStyle, Normal),

Building a Tetris Application

[39]

The upper 20 percent of the client area is reserved for the score and the next figure. The
game grid covers the lower 80 percent of the client area (from height unit 20 to 100):

 gameGrid(Rect(0, 20, 100, 100)) {

Since we extend the Window class, we need to set the window header manually:

 SetHeader(TEXT("Tetris"));

The timer interval is set to 1000 milliseconds, which means that OnTimer will be called
every second. The random generator is initialized by calling the C standard functions
srand and time:

 SetTimer(TimerId, 1000);
 srand((unsigned int) time(nullptr));

The figure list is initialized with one figure of each color; the falling and next figure are
randomly chosen from that list. One of the figures in the list will be copied every time we
need a new figure:

 figureList.push_back(RedFigure(this, &gameGrid));
 figureList.push_back(BrownFigure(this, &gameGrid));
 figureList.push_back(TurquoiseFigure(this, &gameGrid));
 figureList.push_back(GreenFigure(this, &gameGrid));
 figureList.push_back(YellowFigure(this, &gameGrid));
 figureList.push_back(BlueFigure(this, &gameGrid));
 figureList.push_back(PurpleFigure(this, &gameGrid));

 fallingFigure = figureList[rand() % figureList.size()];
 nextFigure = figureList[rand() % figureList.size()];
}

Strictly speaking, it is not necessary to drop the timer when closing the Tetris window. The
destructor is included only for the sake of completeness:

TetrisWindow::~TetrisWindow() {
 DropTimer(TimerId);
}

Building a Tetris Application

[40]

Keyboard input
The OnKeyDown method overrides the method in the Window class and is called each time
the user presses a key. We try to move the falling figure in accordance with the key pressed.
We do not care whether the user has pressed the Shift or Ctrl key:

bool TetrisWindow::OnKeyDown(WORD key, bool /* shiftPressed */,
 bool /* controlPressed */) {
 switch (key) {
 case KeyLeft:
 fallingFigure.TryMoveLeft();
 break;

 case KeyRight:
 fallingFigure.TryMoveRight();
 break;

 case KeyUp:
 fallingFigure.TryRotateAnticlockwise();
 break;

 case KeyDown:
 fallingFigure.TryRotateAnticlockwise();
 break;

When the user presses the Space key, the falling figure falls with visible speed to create the
illusion of falling. We try to move the falling figure one step down every 10 milliseconds by
calling the Win32 API function Sleep. The TryMoveDown method returns false when it is
no longer possible to move the figure downward:

 case KeySpace:
 while (fallingFigure.TryMoveDown()) {
 ::Sleep(10);
 }
 break;
 }

 return true;
}

Building a Tetris Application

[41]

Drawing
The OnDraw method starts by drawing the game grid and two lines dividing the client area
into three parts. The top-left corner displays the current score, the top-right corner displays
the next figure, and the lower part displays the actual game grid:

void TetrisWindow::OnDraw(Graphics& graphics,
 DrawMode /* drawMode */) const {
 gameGrid.DrawGameGrid(graphics, inverse);
 graphics.FillRectangle(Rect(Point(0, 0), Point(100,20)),
 White, White);
 graphics.DrawLine(Point(40, 0), Point(40, 20), Black);
 graphics.DrawLine(Point(0, 20), Point(100, 20), Black);

Note that we add an offset when drawing the next figure in order to move from the game
grid to the top-right corner. The value 25 moves the figure from the middle of the grid to
the middle of its right half, and the value -18 moves from the grid up to the area preceding
the grid:

 fallingFigure.DrawFigure(graphics);
 nextFigure.DrawFigure(graphics, Size(25, -18));

The score font is set to Times New Roman, size 10. Here, the size does not refer to
typographical points, but to logical units. Since the call to the Window constructor states we
gave the PreviewCoordinate coordinate system and the size 100 * 100, the height of the
text will be 10 units, which is a tenth of the text client area's height. It is also half the height
of the part of the client area where the score is written:

 Font scoreFont(TEXT("Times New Roman"), 10);

The final false parameter in the call to the DrawText method indicates that the size of the
text won't be recalculated. In the next chapters, we will display text that maintains the same
size, regardless of the window size and the screen resolution. In this chapter, however, the
size of the text will be changed when the user changes the size of window:

 graphics.DrawText(Rect(0, 0, 40, 20), to_String(currScore),
 scoreFont, Black, White, false);
}

Building a Tetris Application

[42]

Input focus
The OnGainFocus and OnLoseFocus methods start and stop the timer, respectively, so that
the falling figure does not fall down when the window is out of focus:

void TetrisWindow::OnGainFocus() {
 SetTimer(TimerId, 1000);
}

void TetrisWindow::OnLoseFocus() {
 DropTimer(TimerId);
}

The timer
The timer is active when it has the input focus. When active, the TryMoveDown method will
be called every time the OnTimer method is called (once every second). When the figure
cannot fall down any more (the TryMoveDown method returns false), the EndOfFigure
method is called:

void TetrisWindow::OnTimer(int /* timerId */) {
 if (timerActive) {
 if (!fallingFigure.TryMoveDown()) {
 EndOfFigure();
 }
 }
}

New figures
When it is not possible for the falling figure to move downward, the OnTimer method calls
the NewFigure method. First, we need to store the falling figure to the game grid by calling
the AddToGrid method. Then, we let the next figure become the new falling figure and we
choose by random the new next figure from the figure list. We invalidate the area of the
new falling figure and the area of the top-right corner where the next figure is drawn:

void TetrisWindow::NewFigure() {
 fallingFigure.AddToGrid();
 fallingFigure = nextFigure;
 fallingFigure.InvalidateFigure();

Building a Tetris Application

[43]

 nextFigure = figureList[rand() % figureList.size()];
 Rect nextArea(40, 0, 100, 20);
 Invalidate(nextArea);
 UpdateWindow();

We delete the possible full rows and update the window:

 DeleteFullRows();
 UpdateWindow();

If the new falling figure is not valid from the very beginning, the game is over and
GameOver is called:

 if (!fallingFigure.IsFigureValid()) {
 GameOver();
 }
}

Game over
The GameOver method presents the score and lets the user decide whether they want a new
game. If they want a new game, it is initialized by the NewGame call. If the user does not
want a new game, the call to the Win32 API function PostQuitMessage terminates the
execution of the application.

Note that we call another version of the Invalidate method, without parameters. It
invalidates the whole client area:

void TetrisWindow::GameOver() {
 Invalidate();
 UpdateWindow();

The timer is inactive while the message is displayed:

 timerActive = false;
 String message = TEXT("Game Over.\nYou scored ") +
 to_String(currScore) +
 TEXT(" points.\nAnother game?");

 if (MessageBox(message, TEXT("Tetris"), YesNo, Question)==Yes) {
 NewGame();
 }
 else {
 ::PostQuitMessage(0);
 }
}

Building a Tetris Application

[44]

New game
The NewGame method initializes the randomly chosen new falling and next figures, resets
the score, and clears the game grid before activating the timer, as well as invalidates and
updates the window, which makes the new falling figure starting to fall and the new game
to begin:

void TetrisWindow::NewGame() {
 fallingFigure = figureList[rand() % figureList.size()];
 nextFigure = figureList[rand() % figureList.size()];

 currScore = 0;
 gameGrid.ClearGameGrid();
 timerActive = true;
 Invalidate();
 UpdateWindow();
}

Deleting and flashing rows
When deleting full rows, we loop through the rows, flashing and removing each full row.
We increase the score and update the area of the row. Note that the rows start at the top of
the grid. This means that we have to loop from the highest row to the lowest row in order to
delete the row in the right order.

Note that if the row becomes flashed and deleted, we do not update the row variable since
the deleted row will be replaced by the row above, which also needs to be examined:

void TetrisWindow::DeleteFullRows() {
 int row = Rows - 1;
 while (row >= 0) {
 if (IsRowFull(row)) {
 FlashRow(row);
 DeleteRow(row);

 ++currScore;
 Rect scoreArea(0, 0, 40, 20);
 Invalidate(scoreArea);
 UpdateWindow();
 }
 else {
 --row;
 }
 }
}

Building a Tetris Application

[45]

A row is considered full if it does not contain a white square:

bool TetrisWindow::IsRowFull(int row) {
 for (int col = 0; col < Cols; ++col) {
 if (gameGrid[row][col] == White) {
 return false;
 }
 }

 return true;
}

The flash effect is executed by redrawing the row in normal and inversed color (the
inverse method is set) three times with an interval of 50 milliseconds. While doing this, it
is especially important that we only invalidate the area of the chosen row. Otherwise, the
whole window client area will be flashed:

void TetrisWindow::FlashRow(int row) {
 Rect gridArea = gameGrid.GridArea();
 int colWidth = gridArea.Width() / Cols,
 rowHeight = gridArea.Height() / Rows;

 Rect rowArea(0, row * rowHeight, Cols * colWidth,
 (row + 1) * rowHeight);

 for (int count = 0; count < 3; ++count) {
 inverse = true;
 Invalidate(rowArea + gridArea.Top()Left());
 UpdateWindow();
 ::Sleep(50);

 inverse = false;
 Invalidate(rowArea + gridArea.Top()Left());
 UpdateWindow();
 ::Sleep(50);
 }
}

Building a Tetris Application

[46]

When deleting a row, we do not really delete it. Instead, we move each row above the
deleted row one step downward and fill the top row with white squares. A complication is
that we count rows from the top. This makes the lowest row on the screen the row with the
highest index. This gives the appearance that we start from the bottom and remove every
full row until we reach the top:

void TetrisWindow::DeleteRow(int markedRow) {
 for (int row = markedRow; row > 0; --row) {
 for (int col = 0; col < Cols; ++col) {
 gameGrid[row][col] = gameGrid[row - 1][col];
 }
 }

 for (int col = 0; col < Cols; ++col) {
 gameGrid[0][col] = White;
 }

 Invalidate(gameGrid.GridArea());
 Invalidate(g);
 UpdateWindow();
}

Closing the window
Finally, when the user wants to close the window by clicking in the cross on the top-right
corner, we need to confirm that they really want to quit. If the TryClose method returns
true, the window is closed:

bool TetrisWindow::TryClose() {
 timerActive = false;

 if (MessageBox(TEXT("Quit?"), TEXT("Tetris"),
 YesNo, Question) == Yes) {
 return true;
 }

 timerActive = true;
 return false;
}

Building a Tetris Application

[47]

The TetrisFigure class
In this application, there is the root figure class and one subclass for each type of falling
figure. All figures can be moved sideways or rotated as a response to the user's requests.
They are also moved downward by the timer.

There are seven figures, one for each color: red, brown, turquoise, green, yellow, blue, and
purple. Each of them also has a unique shape. However, they all contain four squares. They
can further be divided into three groups based on their ability to rotate. The red figure is the
simplest one. It is a square and does not rotate at all. The brown, turquoise, and green figure
can be rotated in vertical and horizontal directions, while the yellow, blue, and purple
figures can be rotated in north, east, south, and west directions. For the red figure, it does
not really matter since it does not rotate.

The row and col fields of the TetrisFigure class hold the center of the figure, which is
marked by a cross in the illustrations of this section. The color field holds the color of the
figure, and direction holds the current direction of the figure.

Finally, the direction array holds the relative positions of the three squares surrounding
the marked square. There are four directions at most. Each direction holds three squares,
which are the three remaining squares that are not the center of the figure. Each square
holds two integers: the relative position of the center row and column.

The default constructor is needed to initialize the fallingFigure and nextFigure
methods in the TetrisWindow class. The second constructor is protected since it is only
called by its sub classes. Each figure has its own TetrisFigure subclass. Their constructors
take a pointer to the color grid and define its color, start position, and figure patterns:

TetrisFigure.h

class TetrisFigure {
 public:
 TetrisFigure();

 protected:
 TetrisFigure(Window* windowPtr, GameGrid* colorGridPtr,
 Color color, int row, int col, Direction direction,
 IntPair* northList, IntPair* eastList,
 IntPair* southList, IntPair* westList);

 public:
 TetrisFigure& operator=(const TetrisFigure& figure);

Building a Tetris Application

[48]

The TryMoveLeft, TryMoveRight, TryRotateClockwise, TryRotateClockwise,
TryRotateAnticlockwise, and TryMoveDown methods all try to move the figure. They
call the IsFigureValid method, which checks whether the new location is valid, that is, it
is not located outside the game grid or at a location already occupied. The IsFigureValid
method, in turn, calls the IsSquareValid method for each of its four squares:

 void TryMoveLeft();
 void TryMoveRight();
 void TryRotateClockwise();
 void TryRotateAnticlockwise();
 bool TryMoveDown();

There are two versions of the IsFigureValid method, where the first version is called by
the TetrisWindow method and the other version is called by the preceding try methods in
order to test whether a new location of the falling figure is valid:

 bool IsFigureValid();
 static bool IsFigureValid(int direction, int row, int col,
 GameGrid* gameGridPtr, IntPair* figureInfo[]);
 static bool IsSquareValid(int row, int col,
 GameGrid* gameGridPtr);

The AddToGrid method adds the four squares of the figure to the game grid:

 void AddToGrid();

The InvalidateFigure method invalidates the area occupied by the figure, and the
DrawFigure method draws the figure:

 void InvalidateFigure(Size offsetSize = ZeroSize);
 void DrawFigure(Graphics& graphics,
 Size offsetSize = ZeroSize) const;

The gameGridPtr field is a pointer to the game grid, which we access when we try to move
a figure in order to decide whether its new location is valid. The color field is the color of
the figure (red, brown, turquoise, green, yellow, blue, or purple). The row, col, and
direction fields hold the current location and direction of the figure.

The figureInfo field holds the shape of the figure. The figure can hold up to four
directions: north, east, south, and west. Remember that row and col hold the location of the
figures. More specifically, they hold the location of the center square of the four squares
constituting the figure (marked by a cross in the following illustrations). The other three
squares are defined by integer pairs holding their locations relative to the center square.

Building a Tetris Application

[49]

Technically, figureInfo is an array of four pointers (one each for the directions north, east,
south, and west). Each pointer points at an array of three integer pairs, holding the locations
of the three squares relative to the center square:

 protected:
 Window* windowPtr;
 GameGrid* gameGridPtr;
 Color color;
 int row, col;
 Direction direction;
 IntPair* figureInfo[4];
 };

The default constructor is necessary because fallingFigure and nextFigure are member
objects of the TetrisWindow class. However, they do not need to be initialized since their
values are assigned one of the seven figures in the figureList array:

TetrisFigure.cpp

#include "..\\SmallWindows\\SmallWindows.h"
#include "GameGrid.h"
#include "TetrisFigure.h"
#include "TetrisWindow.h"

TetrisFigure::TetrisFigure() {
 // Empty
}

The second constructor is called by the colored figure sub class constructor in order to
initialize the figure. It takes a pointer to the main window and the game grid, the color of
the figure, its start location and direction, and its location lists in the north, east, south, and
west directions. Each of the lists holds three integer pairs representing the location of the
squares relative to the center square:

TetrisFigure::TetrisFigure(Window*windowPtr, GameGrid*gameGridPtr,
 Color color, int row, int col,
 Direction direction,
 IntPair* northList, IntPair* eastList,
 IntPair* southList, IntPair* westList)
 :windowPtr(windowPtr),
 gameGridPtr(gameGridPtr),
 color(color),
 row(row),
 col(col),
 direction(direction) {
 figureInfo[North] = northList;
 figureInfo[East] = eastList;

Building a Tetris Application

[50]

 figureInfo[South] = southList;
 figureInfo[West] = westList;
}

The assignment operator is necessary because the fallingFigure and nextFigure
methods in the TetrisWindow class are copied from the figure list:

TetrisFigure& TetrisFigure::operator=(const TetrisFigure& figure) {
 if (this != &figure) {
 windowPtr = figure.windowPtr;
 gameGridPtr = figure.gameGridPtr;
 color = figure.color;
 row = figure.row;
 col = figure.col;
 direction = figure.direction;
 figureInfo[North] = figure.figureInfo[North];
 figureInfo[East] = figure.figureInfo[East];
 figureInfo[South] = figure.figureInfo[South];
 figureInfo[West] = figure.figureInfo[West];
 }

 return *this;
}

The TryMoveLeft, TryMoveRight, TryRotateClockwise, and
TryRotateAnticlockwise methods are called when the user presses the arrow keys. They
try to move the figure and invalidate its previous and current area if they succeed:

void TetrisFigure::TryMoveLeft() {
 if (IsFigureValid(direction, row, col - 1
 gameGridPtr, figureInfo)) {
 windowPtr->Invalidate(Area());
 --col;
 windowPtr->Invalidate(Area());
 windowPtr->UpdateWindow();
 }
}

void TetrisFigure::TryMoveRight() {
 if (IsFigureValid(direction, row, col + 1
 gameGridPtr, figureInfo)) {
 windowPtr->Invalidate(Area());
 ++col;
 windowPtr->Invalidate(Area());
 windowPtr->UpdateWindow();
 }
}

Building a Tetris Application

[51]

void TetrisFigure::TryRotateClockwise() {
 Direction newDirection = (direction == West) ? North :
 ((Direction) (direction + 1));

 if (IsFigureValid(newDirection, row, col,
 gameGridPtr, figureInfo)) {
 InvalidateFigure();
 direction = newDirection;
 InvalidateFigure();
 windowPtr->UpdateWindow();
 }
}

void TetrisFigure::TryRotateAnticlockwise() {
 Direction newDirection = (this->direction == North) ? West :
 ((Direction) (direction - 1));

 if (IsFigureValid(newDirection, row, col,
 gameGridPtr, figureInfo)) {
 InvalidateFigure();
 direction = newDirection;
 InvalidateFigure();
 windowPtr->UpdateWindow();
 }
}

The TryMoveDown method is called by the timer when the player presses the Space key. It is
also called by the OnTimer method in the TetrisWindow class; it returns a Boolean value
indicating whether the movement succeeded:

bool TetrisFigure::TryMoveDown() {
 if (IsFigureValid(direction, row + 1, col
 gameGridPtr, figureInfo)) {
 windowPtr->Invalidate(Area());
 ++row;
 windowPtr->Invalidate(Area());
 windowPtr->UpdateWindow();
 return true;
 }

 return false;
}

The first version of the IsFigureValid method is called by the TetrisWindow class and
calls the second static version, with the current location and direction of the figure:

Building a Tetris Application

[52]

bool TetrisFigure::IsFigureValid() {
 return IsFigureValid(direction, row, col
 gameGridPtr, figureInfo);
}

The second version of the IsFigureValid method is called by the preceding try methods
and checks if the figure is valid by calling the IsSquareValid method for each square in
the figure. In order to do so, it needs to look up the relative positions of the included
squares in the figureInfo method. The first value of the integer pairs is the row, and the
second value is the column:

bool TetrisFigure::IsFigureValid(int direction, int row, int col,
 GameGrid* gameGridPtr,
 IntPair* figureInfo[]) {
 int relRow0 = row + figureInfo[direction][0].first,
 relCol0 = col + figureInfo[direction][0].second,
 relRow1 = row + figureInfo[direction][1].first,
 relCol1 = col + figureInfo[direction][1].second,
 relRow2 = row + figureInfo[direction][2].first,
 relCol2 = col + figureInfo[direction][2].second;

 return IsSquareValid(row, col, gameGridPtr) &&
 IsSquareValid(relRow0, relCol0, gameGridPtr) &&
 IsSquareValid(relRow1, relCol1, gameGridPtr) &&
 IsSquareValid(relRow2, relCol2, gameGridPtr);
}

The IsSquareValid method returns true if the given square is located inside the game
grid and not already occupied. A square on the game board is considered unoccupied if it is
white:

bool TetrisFigure::IsSquareValid(int row, int col,
 GameGrid* gameGridPtr) {
 return (row >= 0) && (row < Rows) &&
 (col >= 0) && (col < Cols) &&
 ((*gameGridPtr)[row][col] == White);
}

When the falling figure has reached its final position, it is added to the game grid. It is
performed by setting the figure's color to the squares in the game grid at its current location.
A falling figure has reached its final position when it cannot fall any longer without
colliding with an earlier figure or has reached the game grid's lower bound:

void TetrisFigure::AddToGrid() {
 (*gameGridPtr)[row][col] = color;

Building a Tetris Application

[53]

 { int relRow = row + figureInfo[direction][0].first,
 relCol = col + figureInfo[direction][0].second;
 (*gameGridPtr)[relRow][relCol] = color;
 }

 { int relRow = row + figureInfo[direction][1].first,
 relCol = col + figureInfo[direction][1].second;
 (*gameGridPtr)[relRow][relCol] = color;
 }

 { int relRow = row + figureInfo[direction][2].first,
 relCol = col + figureInfo[direction][2].second;
 (*gameGridPtr)[relRow][relCol] = color;
 }
}

When a figure has been moved, we need to redraw it. In order to avoid dazzle, we want to
invalidate only its area, which is done by the InvalidateFigure method. We look up the
rows and columns of the figure's four squares and call the InvalidateSquare method in
the game grid for each of them:

void TetrisFigure::InvalidateFigure(Size offsetSize/*=ZeroSize*/){
 gameGridPtr->InvalidateSquare(windowPtr, row, col, offsetSize);

 { int relRow = row + figureInfo[direction][0].first,
 relCol = col + figureInfo[direction][0].second;
 gameGridPtr->InvalidateSquare(windowPtr, relRow,
 relCol, offsetSize);
 }
 { int relRow = row + figureInfo[direction][1].first,
 relCol = col + figureInfo[direction][1].second;
 gameGridPtr->InvalidateSquare(windowPtr, relRow,
 relCol, offsetSize);
 }
 { int relRow = row + figureInfo[direction][2].first,
 relCol = col + figureInfo[direction][2].second;
 gameGridPtr->InvalidateSquare(windowPtr, relRow,
 relCol, offsetSize);
 }
}

When drawing the figure, we need to look up the locations of the squares of the figure
before we draw them in a way similar to the InvalidateFigure method:

Building a Tetris Application

[54]

void TetrisFigure::DrawFigure(Graphics& graphics,Size offsetSize)
 const {
 gameGridPtr->DrawSquare(graphics, row, col,
 Black, color, offsetSize);

 { int relRow = row + figureInfo[direction][0].first,
 relCol = col + figureInfo[direction][0].second;
 gameGridPtr->DrawSquare(graphics, relRow, relCol,
 Black, color, offsetSize);
 }

 { int relRow = row + figureInfo[direction][1].first,
 relCol = col + figureInfo[direction][1].second;
 gameGridPtr->DrawSquare(graphics, relRow, relCol,
 Black, color, offsetSize);
 }

 { int relRow = row + figureInfo[direction][2].first,
 relCol = col + figureInfo[direction][2].second;
 gameGridPtr->DrawSquare(graphics, relRow, relCol,
 Black, color, offsetSize);
 }
}

The red figure
The red figure is one large square, built up by four smaller regular squares. It the simplest
figure of the game since it does not change shape when rotating. This implies that we just
need to look at one figure, shown as follows:

This also implies that it is enough to define the squares for one direction and this to define
the shape of the figure in all four directions:

Building a Tetris Application

[55]

RedFigure.h

class RedFigure : public TetrisFigure {
 public:
 static IntPair GenericList[];
 RedFigure(Window* windowPtr, GameGrid* gameGridPtr);
};

RedFigure.cpp

#include "..\\SmallWindows\\SmallWindows.h"
#include "GameGrid.h"
#include "TetrisFigure.h"
#include "RedFigure.h"

IntPair RedFigure::GenericList[] =
 {IntPair(0,1), IntPair(1,0), IntPair(1,1)};

RedFigure::RedFigure(Window* windowPtr, GameGrid* gameGridPtr)
 :TetrisFigure(windowPtr, gameGridPtr, Red, 1, (Cols / 2) - 1,
 North, GenericList, GenericList, GenericList,
 GenericList) {
 // Empty.
}

The first integer pair (rel row 0, rel col 1) of the generic list represents the square to
the right of the marked square, the second integer pair (rel row 1, rel col 0) represents
the square below the marked square, and the third integer pair (rel row 1, rel col 1)
represents the square below and to the right of the marked square. Note that the rows
increase downward and the columns increase to the right.

The brown figure
The brown figure can be oriented in a horizontal or vertical direction. It is initialized to
vertical mode, as it can only be rotated into two directions. The north and south arrays are
initialized with the vertical array and the east and west arrays are initialized with the
horizontal array, as shown in the following image:

Building a Tetris Application

[56]

Since the row numbers increase downward and the column numbers increase to the right,
the topmost square in the vertical direction (and the leftmost square in the horizontal
direction) are represented by negative values:

BrownFigure.h

class BrownFigure : public TetrisFigure {
 public:
 static IntPair HorizontalList[], VerticalList[];
 BrownFigure(Window* windowPtr, GameGrid* gameGridPtr);
};

BrownFigure.cpp

#include "..\\SmallWindows\\SmallWindows.h"
#include "GameGrid.h"
#include "TetrisFigure.h"
#include "BrownFigure.h"

IntPair BrownFigure::HorizontalList[] =
 {IntPair(-1,0), IntPair(1,0), IntPair(2,0)},
 BrownFigure::VerticalList[] =
 {IntPair(0,-1), IntPair(0,1), IntPair(0,2)};

BrownFigure::BrownFigure(Window* windowPtr, GameGrid* gameGridPtr)
 :TetrisFigure(windowPtr, gameGridPtr, Brown, 1, (Cols / 2) - 1,
 North, HorizontalList, VerticalList,
 HorizontalList, VerticalList) {
 // Empty.
}

Building a Tetris Application

[57]

The turquoise figure
Similar to the brown figure, the turquoise figure can be rotated in a vertical and horizontal
direction, as shown in the following figure:

TurquoiseFigure.h

class TurquoiseFigure : public TetrisFigure {
 public:
 static IntPair HorizontalList[], VerticalList[];
 TurquoiseFigure(Window* windowPtr, GameGrid* gameGridPtr);
};

TurquoiseFigure cpp

#include "..\\SmallWindows\\SmallWindows.h"
#include "GameGrid.h"
#include "TetrisFigure.h"
#include "TurquoiseFigure.h"

IntPair TurquoiseFigure::HorizontalList[] =
 {IntPair(-1,0), IntPair(0,1), IntPair(1,1)},
 TurquoiseFigure::VerticalList[] =
 {IntPair(1,-1), IntPair(1,0), IntPair(0,1)};

TurquoiseFigure::TurquoiseFigure(Window* windowPtr,
 GameGrid* gameGridPtr)
 :TetrisFigure(windowPtr, gameGridPtr, Turquoise, 1, (Cols/2) - 1,
 North, HorizontalList, VerticalList,
 HorizontalList, VerticalList) {
 // Empty.
}

Building a Tetris Application

[58]

The green figure
The green figure is mirrored in relation to the turquoise figure, shown as follows:

GreenFigure.h

class GreenFigure : public TetrisFigure {
 public:
 static IntPair HorizontalList[], VerticalList[];
 GreenFigure(Window* windowPtr, GameGrid* gameGridPtr);
};

GreenFigure.cpp

#include "..\\SmallWindows\\SmallWindows.h"
#include "GameGrid.h"
#include "TetrisFigure.h"
#include "GreenFigure.h"

IntPair GreenFigure::HorizontalList[] =
 {IntPair(1,-1), IntPair(0,-1), IntPair(-1,0)},
GreenFigure::VerticalList[] =
 {IntPair(0,-1), IntPair(1,0), IntPair(1,1)};

GreenFigure::GreenFigure(Window* windowPtr, GameGrid* gameGridPtr)
 :TetrisFigure(windowPtr, gameGridPtr, Green, 1, Cols / 2,
 North, HorizontalList, VerticalList,
 HorizontalList, VerticalList) {
 // Empty.
}

Building a Tetris Application

[59]

The yellow figure
The yellow figure can be rotated in a north, east, south, and west direction. It is initialized to
the south, as shown in the following figure:

YellowFigure.h

class YellowFigure : public TetrisFigure {
 public:
 static IntPair NorthList[], EastList[],
 SouthList[], WestList[];
 YellowFigure(Window* windowPtr, GameGrid* gameGridPtr);
};

YellowFigure.cpp

#include "..\\SmallWindows\\SmallWindows.h"
#include "GameGrid.h"
#include "TetrisFigure.h"
#include "YellowFigure.h"
IntPair YellowFigure::NorthList[] =
 {IntPair(0,-1), IntPair(-1,0), IntPair(0,1)},
 YellowFigure::EastList[] =
 {IntPair(-1,0),IntPair(0,1),IntPair(1,0)},
 YellowFigure::SouthList[] =
 {IntPair(0,-1),IntPair(1,0),IntPair(0,1)},
 YellowFigure::WestList[] =
 {IntPair(-1,0),IntPair(0,-1),IntPair(1,0)};

Building a Tetris Application

[60]

YellowFigure::YellowFigure(Window* windowPtr,
 GameGrid* gameGridPtr)
 :TetrisFigure(windowPtr, gameGridPtr, Yellow, 1, (Cols / 2) - 1,
 South, NorthList, EastList, SouthList, WestList) {
 // Empty.
}

The blue figure
The blue figure can also be directed in all four directions. It is initialized to the south, as
shown in the following figure:

BlueFigure.h

class BlueFigure : public TetrisFigure {
 public:
 static IntPair NorthList[], EastList[],
 SouthList[], WestList[];
 BlueFigure(Window* windowPtr, GameGrid* gameGridPtr);
};

BlueFigure.cpp

#include "..\\SmallWindows\\SmallWindows.h"
#include "GameGrid.h"
#include "TetrisFigure.h"
#include "BlueFigure.h"

Building a Tetris Application

[61]

IntPair BlueFigure::NorthList[] =
 {IntPair(0,-2),IntPair(0,-1),IntPair(-1,0)},
 BlueFigure::EastList[] =
 {IntPair(-2,0), IntPair(-1,0), IntPair(0,1)},
 BlueFigure::SouthList[] =
 {IntPair(1,0), IntPair(0,1), IntPair(0,2)},
 BlueFigure::WestList[] =
 {IntPair(0,-1), IntPair(1,0), IntPair(2,0)};

BlueFigure::BlueFigure(Window* windowPtr, GameGrid* gameGridPtr)
 :TetrisFigure(windowPtr, gameGridPtr, Blue, 1, (Cols / 2) - 1,
 South, NorthList, EastList, SouthList, WestList) {
 // Empty.
}

The purple figure
Finally, the purple figure is mirrored in relation to the blue figure and also initialized to the
south, as shown in the following image:

PurpleFigure.h

class PurpleFigure : public TetrisFigure {
 public:
 static IntPair NorthList[], EastList[],
 SouthList[], WestList[];
 PurpleFigure(Window* windowPtr, GameGrid* gameGridPtr);
};

Building a Tetris Application

[62]

PurpleFigure.cpp

#include "..\\SmallWindows\\SmallWindows.h"
#include "GameGrid.h"
#include "TetrisFigure.h"
#include "PurpleFigure.h"

IntPair PurpleFigure::NorthList[] =
 {IntPair(-1,0),IntPair(0,1),IntPair(0,2)},
 PurpleFigure::EastList[] =
 {IntPair(1,0), IntPair(2,0), IntPair(0,1)},
 PurpleFigure::SouthList[] =
 {IntPair(0,-2),IntPair(0,-1),IntPair(1,0)},
 PurpleFigure::WestList[] =
 {IntPair(0,-1),IntPair(-2,0),IntPair(-1,0)};

PurpleFigure::PurpleFigure(Window* windowPtr,
 GameGrid* gameGridPtr)
 :TetrisFigure(windowPtr, gameGridPtr, Purple, 1, Cols / 2, South,
 NorthList, EastList, SouthList, WestList) {
 // Empty.
}

The GameGrid class
Finally, the GameGrid class is quite simple. It keeps track of the squares on the game board.
The gridArea field is the portion of the total client area that is occupied by the grid:

GameGrid.h

const int Rows = 20, Cols = 10;

class GameGrid {
 public:
 GameGrid(Rect gridArea);
 void ClearGameGrid();

 Color* operator[](int row) {return gameGrid[row];}
 void InvalidateSquare(Window* windowPtr, int row,
 int col, Size offsetSize);
 void DrawGameGrid(Graphics& graphics, bool inverse) const;

Building a Tetris Application

[63]

 void DrawSquare(Graphics& graphics, int row, int col,
 Color penColor, Color brushColor,
 Size offsetSize = ZeroSize) const;

 Rect GridArea() const {return gridArea;}

 private:
 Rect gridArea;
 Color gameGrid[Rows][Cols];
};

When called by the TetrisWindow constructor, the grid area will be set to (0, 20, 100, 100)
units, placing it in the lower 80 percent of the client area of the window:

GameGrid.cpp

#include "..\\SmallWindows\\SmallWindows.h"
#include "GameGrid.h"

GameGrid::GameGrid(Rect gridArea)
 :gridArea(gridArea) {
 ClearGameGrid();
}

When clearing the grid, we actually set every square to white:

void GameGrid::ClearGameGrid () {
 for (int row = 0; row < Rows; ++row) {
 for (int col = 0; col < Cols; ++col) {
 gameGrid[row][col] = White;
 }
 }
}

Invalidating and drawing squares
The DrawGameGrid iterates through the squares of the grid. White squares are surrounded
by white borders, while squares of every other color are surrounded by black borders. If the
inverseColor parameter is true, the square color is inversed before drawn. This is useful
when flashing rows:

Building a Tetris Application

[64]

void GameGrid::DrawGameGrid(Graphics& graphics, bool inverse)
 const {
 for (int row = 0; row < Rows; ++row) {
 for (int col = 0; col < Cols; ++col) {
 Color squareColor = gameGrid[row][col];
 Color penColor = (squareColor == White) ? White : Black;
 Color brushColor = inverse ? squareColor.Inverse()
 : squareColor;
 DrawSquare(graphics, row, col, penColor, brushColor);
 }
 }
}

Note that the InvalidateSquare and DrawSquare methods add an offset. It is zero in all
cases except when invalidating or drawing the next figure in the TetrisWindow class. Both
methods calculate the size of the rows and columns of the grid and define the area of the
square invalidated or drawn:

void GameGrid::InvalidateSquare(Window* windowPtr, int row,
 int col, Size offsetSize) {
 int colWidth = gridArea.Width() / Cols,
 rowHeight = gridArea.Height() / Rows;

 Rect squareArea(col * colWidth, row * rowHeight,
 (col + 1) * colWidth, (row + 1) * rowHeight);
 windowPtr->Invalidate(gridArea.TopLeft() + squareArea +
 offsetSize);
}

void GameGrid::DrawSquare(Graphics& graphics, int row, int col,
 Color penColor, Color brushColor,
 Size offsetSize /* = ZeroSize */) const{
 int colWidth = gridArea.Width() / Cols,
 rowHeight = gridArea.Height() / Rows;

 Rect squareArea (col * colWidth, row * rowHeight,
 (col + 1) * colWidth, (row + 1) * rowHeight);
 graphics.FillRectangle(gridArea.TopLeft() + squareArea +
 offsetSize, penColor, brushColor);
}

Building a Tetris Application

[65]

Summary
In this chapter, we developed a Tetris game. You looked into timing and randomization, as
well as a new coordinate system, more advanced drawing, how to catch keyboard events,
and how to write text.

In Chapter 4, Working with Shapes and Figures, we will develop a drawing program capable
of drawing lines, arrows, rectangles, and ellipses.

4
Working with Shapes and

Figures
In this chapter, we develop a program capable of drawing lines, arrows, rectangles, and
ellipses. The application can be viewed as a more advanced version of the circle application.
Similar to the circle application, we have a list of figures and we catch the user's mouse
actions. However, there are four different kinds of figures: lines, arrows, rectangles, and
ellipses. They are defined in a class hierarchy that is similar to but more advanced than the
hierarchy in the Tetris game. Moreover, we also introduce cut, copy, paste, cursor control,
and registry handling:

Working with Shapes and Figures

[67]

The user can add new figures, move one or several figures, modify figures by grabbing their
endpoints, mark and unmark figures by pressing the mouse button and the Ctrl key, and
mark several figures by enclosing them by a rectangle. When a figure is marked, it becomes
annotated with small black squares. The user can modify the shape of a figure by grabbing
one of the squares. The user can also move a figure by grabbing some other part of the
figure.

The MainWindow function
The MainWindow function in this application is very similar to that in Chapter 3, Building a
Tetris Application; it sets the application name and creates the main document window:

#include "..\\SmallWindows\\SmallWindows.h"
#include "DrawFigure.h"
#include "LineFigure.h"
#include "ArrowFigure.h"
#include "RectangleFigure.h"
#include "EllipseFigure.h"
#include "TextFigure.h"
#include "DrawDocument.h"

void MainWindow(vector<String> /* argumentList */,
 WindowShow windowShow) {
 Application::ApplicationName() = TEXT("DrawFigure");
 Application::MainWindowPtr() = new DrawDocument(windowShow);
}

The DrawDocument class
The DrawDocument class extends the StandardDocument framework, similar to the circle
application. It catches the mouse events, overrides the file methods, implements cut, copy,
and paste, as well as cursor handling:

DrawDocument.h

class DrawDocument : public StandardDocument {
 public:
 DrawDocument(WindowShow windowShow);
 ~DrawDocument();

Working with Shapes and Figures

[68]

Similar to the circle application, we catch mouse action with the OnMouseDown,
OnMouseMove, and OnMouseUp methods. However, in this application, we also catch
double-clicks with the OnDoubleClick method. When the user double-clicks on a figure, it
takes individual actions:

 void OnMouseDown(MouseButton mouseButtons, Point mousePoint,
 bool shiftPressed, bool controlPressed);
 void OnMouseMove(MouseButton mouseButtons, Point mousePoint,
 bool shiftPressed, bool controlPressed);
 void OnDoubleClick(MouseButton mouseButtons, Point mousePoint,
 bool shiftPressed, bool controlPressed);
 void OnMouseUp(MouseButton mouseButtons, Point mousePoint,
 bool shiftPressed, bool controlPressed);

The OnDraw method is called when the window's client area needs to be redrawn. It draws
the figures, and the rectangle enclosing the figures, if the user is in the process of marking
figures with a rectangle:

 void OnDraw(Graphics& graphics, DrawMode drawMode) const;

The ClearDocument method is called when the user selects the New menu item, the
ReadDocumentFromStream method is called when they select the Open menu item, and
the WriteDocumentToStream method is called when they select the Save or Save As menu
item:

 void ClearDocument();
 bool WriteDocumentToStream(String name, ostream& outstream)
 const;

Each figure has an integer identity value that is written by the WriteDocumentToStream
method and read by the ReadDocumentFromStream method to decide which figure has to
be created. Given the identity value, the CreateFigure method creates the new figure:

 bool ReadDocumentFromStream(String name, istream& instream);
 DrawFigure* CreateFigure(FigureId figureId) const;

In this application, we introduce functionality for cut, copy, and paste. The CopyGeneric
method is called when the user selects the Cut or Copy menu item in the Edit menu and the
PasteGeneric method is called when the user selects the Paste menu item. In the
StandardDocument framework, there are methods for cutting, copying, and pasting ASCII
and Unicode text as well. However, we do not use them in this application:

 bool IsCopyGenericReady(int /* format */) const;
 void CopyGeneric(int format, InfoList& infoList) const;
 void PasteGeneric(int format, InfoList& infoList);

Working with Shapes and Figures

[69]

The CopyEnable method returns true if information is ready to be copied. In that case, the
Cut, Copy, and Delete menu items are enabled. In this application, we do not override the
PasteEnable method, since the StandardDocument framework looks up whether there is
a memory buffer in the global clipboard suitable to paste. The OnDelete method is called
when the user selects the Delete menu item:

 bool CopyEnable() const;
 void OnDelete();

Similar to the circle application, we have a set of listeners, even though the set is larger in
this case. Each listener is added to the menus in the constructor. Unlike the circle
application, we also use enable methods: methods that are called before the menu item
becomes visible. If the methods return false, the menu items become disabled and grayed.
If the menu item is connected to an accelerator, the accelerator also becomes disabled. We
place the Modify, Color, and Fill items in the Modify menu, and the Line, Arrow,
Rectangle, and Ellipse items in the Add menu:

 DEFINE_BOOL_LISTENER(DrawDocument, ModifyEnable)
 DEFINE_BOOL_LISTENER(DrawDocument, ModifyRadio)
 DEFINE_VOID_LISTENER(DrawDocument, OnModify)

 DEFINE_BOOL_LISTENER(DrawDocument, ColorEnable)
 DEFINE_VOID_LISTENER(DrawDocument, OnColor)

 DEFINE_BOOL_LISTENER(DrawDocument, FillEnable)
 DEFINE_BOOL_LISTENER(DrawDocument, FillCheck)
 DEFINE_VOID_LISTENER(DrawDocument, OnFill)

 DEFINE_BOOL_LISTENER(DrawDocument, LineEnable);
 DEFINE_BOOL_LISTENER(DrawDocument, ArrowEnable);
 DEFINE_BOOL_LISTENER(DrawDocument, RectangleEnable);
 DEFINE_BOOL_LISTENER(DrawDocument, EllipseEnable);

 DEFINE_BOOL_LISTENER(DrawDocument, LineRadio);
 DEFINE_BOOL_LISTENER(DrawDocument, ArrowRadio);
 DEFINE_BOOL_LISTENER(DrawDocument, RectangleRadio);
 DEFINE_BOOL_LISTENER(DrawDocument, EllipseRadio);

 DEFINE_VOID_LISTENER(DrawDocument, OnLine);
 DEFINE_VOID_LISTENER(DrawDocument, OnArrow);
 DEFINE_VOID_LISTENER(DrawDocument, OnRectangle);
 DEFINE_VOID_LISTENER(DrawDocument, OnEllipse);

In this application, we also introduce cursor control. The UpdateCursor method sets the
cursor to an appropriate appearance depending on whether the user is creating, modifying,
or moving figures:

Working with Shapes and Figures

[70]

 void UpdateCursor();

One central point of this application is its mode: the applicationMode method keeps track
of the actions when the user presses the left mouse button. It holds the following modes:

Idle: The application waits for input from the user. This is always the mode as
long as the user does not press the left mouse button. However, when the user
presses the mouse button, until they release it, the applicationMode method
holds one value. The user presses the Ctrl key and clicks on an already marked
figure. The figure becomes unmarked, nothing more happens.
ModifySingle: The user grabs one single figure that is being modified (if the
user clicks on one of its endpoints) or moved (if the user clicks on any other part
of the figure).
ModifyRectangle: The user has clicked on the client area without hitting a
figure, resulting in a rectangle being drawn. When the user releases the mouse
button, every figure completely enclosed by the rectangle is marked.
MoveMultiple: The user presses the Ctrl key and clicks on an unmarked figure.
It is not possible to modify more than one figure at the same time.

Note that the applicationMode method is relevant only as long as the user presses the left
mouse button. As soon as they release the mouse button, the applicationMode method is
always Idle:

 private:
 enum ApplicationMode {Idle, ModifySingle,
 MoveMultiple, ModifyRectangle};
 ApplicationMode applicationMode = Idle;

When the applicationMode method holds the Idle mode, the application waits for
further input from the user. The actionMode field defines the next action, which may hold
the following values:

Modify: When the user presses the mouse button, the applicationMode
method is set to the ModifySingle mode if they click on a figure, the
MoveMultiple mode if they click on an unmarked figure while pressing the Ctrl
key, the Idle mode if the figure is already marked, or the ModifyRectangle
mode if they click on the client area without hitting a figure.
Add: When the user presses the left mouse button, a new figure is created at the
location, regardless of whether there already is a figure at the location. The value
of the addFigureId method decides which kind of figure should be added; it can
hold any of the values LineId, ArrowId, RectangleId, or EllipseId.

Working with Shapes and Figures

[71]

 enum ActionMode {Modify, Add};
 ActionMode actionMode = Add;
 FigureId addFigureId = LineId;

Later in the chapter, we will encounter expressions such as in Modify mode and in Add
mode, which refer to the value of the actionMode variable: Modify or Add.

The nextColor and nextFill fields hold the figure's color and fill status (in the case of a
rectangle or ellipse), respectively, of the next figure to be added:

 Color nextColor;
 bool nextFill;

Similar to the circle application, when the user adds or modifies a figure, we need to store
the previous mouse position in the prevMousePoint method in order to keep track of the
distance the mouse has been moved since the last mouse action:

 Point prevMousePoint;

When the applicationMode method holds the ModifySingle value, the figure being
modified is always placed at the beginning of the figure pointer list (figurePtrList[0])
in order for it to appear on top of the figures. When the applicationMode method holds
the ModifyRectangle mode, the insideRectangle method keeps track of the rectangle
enclosing the figures:

 Rect insideRectangle;

The static DrawFormat constant is used to identify data to be cut, copied, or pasted in
the global clipboard. It is arbitrarily set to 1000:

 static const unsigned int DrawFormat = 1000;

As the user adds and removes figures from the drawing, the figures are dynamically
created and deleted; their addresses are stored in the figurePtrList list. The
DynamicList class is a Small Windows class that is a more advanced version of the C++
standard classes list and vector.

The values of the figure list are pointers to the DrawFigure class, which is the root class of
the figure hierarchy used in this application (described in Chapter 5, The Figure Hierarchy).
Unlike the circle and Tetris applications in the previous chapters, we do not store the figure
objects directly in the list, but rather their pointers. This is necessary, since we use class
hierarchy holds with pure virtual methods, which makes the DrawWindow class abstract
and not possible to store directly in the list. It is also necessary in order to take advantage of
dynamic binding of the class hierarchy:

Working with Shapes and Figures

[72]

 DynamicList<DrawFigure*> figurePtrList;
};

The application modes
This section holds a further description of the applicationMode field. It is closely
connected to the mouse input cycle. When the user is not pressing the left mouse button, the
applicationMode method is always in the Idle mode. When the user presses the left
mouse button in modify mode, they can choose to press the Ctrl key at the same time:

If they do not press the Ctrl key, the applicationMode method is set to the
ModifySingle mode if they hit a figure. That figure becomes marked and other
figures become unmarked.
If they do press the Ctrl key, the applicationMode method is set to the
MoveMultiple mode if they hit a figure that is not marked and to the Idle mode
if it is marked. The figure becomes marked if it is unmarked and unmarked if it is
marked. The rest of the figures are unaffected.
If they do not hit a figure, the applicationMode method is set to the
ModifyRectangle mode regardless of whether they pressed the Ctrl key and the
inside rectangle (insideRectangle) is being initialized. All figures become
unmarked. All figures that are completely enclosed by the rectangle when the
user releases the left button are marked.

When the user moves the mouse with the left button pressed in modify mode, there are four
possible values of the applicationMode method to consider:

Idle: We do nothing.
ModifySingle: We call the Modify method on the single figure. This may result
in the single hit figure being modified or moved, depending on where the user
hit the figure.
MoveMultiple: We call the Move method on all marked figures. This always
results in the marked figures being moved, not modified.
ModifyRectangle: We modify the inside rectangle.

Finally, when the user releases the left mouse button, we again look into the four modes of
the applicationMode method:

Idle, ModifySingle, or MoveMultiple: We do nothing since everything has
already been done when the user moved the mouse. The marked figures have
been moved or modified.

Working with Shapes and Figures

[73]

ModifyRectangle: We mark all figures completely enclosed by the rectangle.

The DynamicList class
In this chapter, we use a subset of the methods of the auxiliary DynamicList class. It holds
a set of methods that take callback functions, that is, functions that are sent as parameters to
methods and called by the methods:

template <class Type>
class DynamicList {
 public:

IfFuncPtr and DoFuncPtr are pointers to callback functions. The difference between them
is that the IfFuncPtr pointer is intended for methods that only inspect the values of the
list. Therefore, the value parameter is constant. The DoFuncPtr pointer is intended for
methods that modify the values. Consequently, the value parameter is not constant:

 typedef bool (*IfFuncPtr) (const Type& value, void* voidPtr);
 typedef void (*DoFuncPtr) (Type& value, void* voidPtr);

The AnyOf method takes the ifFuncPtr pointer and applies it to each value of the array.
The methods return true if at least one of the values satisfies the ifFunctPtr pointer (if
the ifFuncPtr pointer returns true for the value). The ifVoidPtr parameter is sent as the
second parameter to the ifFuncPtr pointer:

 bool AnyOf(IfFuncPtr ifFuncPtr, void* ifVoidPtr = nullptr)
 const;

The FirstOf method also returns true if at least one value satisfies the ifFuncPtr
pointer. In that case, the first satisfied value is copied to the value parameter:

 bool FirstOf(IfFuncPtr ifFuncPtr,Type& value,
 void* ifVoidPtr = nullptr) const;

The Apply method calls the doFunctPtr pointer to every value of the list. The ApplyIf
method calls the doFuncPtr pointer to all values that satisfy the ifFuncPtr pointer:

 void Apply(DoFuncPtr doFuncPtr, void* ifVoidPtr = nullptr);
 void ApplyIf(IfFuncPtr ifFuncPtr, DoFuncPtr doFuncPtr,
 void* ifVoidPtr = nullptr,
 void* doVoidPtr = nullptr);

The CopyIf method copies the values satisfying the ifFuncPtr pointer into the
copyArray method. The RemoveIf method removes every value satisfying the ifFuncPtr

Working with Shapes and Figures

[74]

pointer:

 void CopyIf(IfFuncPtr ifFuncPtr, DynamicList& copyArray,
 void* ifVoidPtr = nullptr) const;
 void RemoveIf(IfFuncPtr ifFuncPtr, void* ifVoidPtr = nullptr);

The ApplyRemoveIf method calls the doFuncPtr pointer and then removes every value
satisfying the ifFuncPtr pointer, which comes in handy when we want to deallocate and
remove pointers from the list:

 void ApplyRemoveIf(IfFuncPtr ifFuncPtr, DoFuncPtr doFuncPtr,
 void* ifVoidPtr = nullptr, void* doVoidPtr=nullptr);
};

Initialization
The constructor of the DrawDocument class is similar to the constructor of the
CircleDocument class. We use the LogicalWithScroll coordinate system with US letter
size. The file description Draw Files and the suffix drw are used to filter drawing files in
the open and save dialogs. The null pointer indicates that the document does not have a
parent window, and the false parameter indicates that the Print and Print Preview items
in the File menu are omitted. Finally, the initiation lists holding the DrawFormat parameter
indicates the format used to identify data to be copied and pasted. In this case, we use the
same format for both copying and pasting:

DrawDocument.cpp

#include "..\\SmallWindows\\SmallWindows.h"
#include "DrawFigure.h"
#include "LineFigure.h"
#include "ArrowFigure.h"
#include "RectangleFigure.h"
#include "EllipseFigure.h"
#include "TextFigure.h"
#include "DrawDocument.h"

DrawDocument::DrawDocument(WindowShow windowShow)
 :StandardDocument(LogicalWithScroll, USLetterPortrait,
 TEXT("Draw Files, drw"), nullptr,
 OverlappedWindow, windowShow,
 {DrawFormat}, {DrawFormat}) {

Since we extend the StandardDocument framework, the window has a standard menu bar
with the File menu holding New, Open, Save, Save As, and Exit (the Print and Print

Working with Shapes and Figures

[75]

Preview items are omitted due to the false parameter in the constructor call) items, the
Edit menu holding Cut, Copy, Paste, and Delete, and the Help items, and About.

We also add two application-specific menus: Format and Add. The Format menu holds the
menu items Modify, Color, and Fill. Similar to the circle application, we mark the menu
items with mnemonics and accelerators. However, we also use the enable parameters; the
ModifyEnable, ColorEnable, and FillEnable methods are called before the menu items
become visible. If they return false, the menu item is disabled and grayed:

 Menu menuBar(this);
 menuBar.AddMenu(StandardFileMenu(false));
 menuBar.AddMenu(StandardEditMenu());

 Menu formatMenu(this, TEXT("F&ormat"));
 formatMenu.AddItem(TEXT("&Modify\tCtrl+M"), OnModify,
 ModifyEnable, nullptr, ModifyRadio);
 formatMenu.AddItem(TEXT("&Color\tAlt+C"), OnColor, ColorEnable);
 formatMenu.AddItem(TEXT("F&ill\tCtrl+I"), OnFill, FillEnable
 FillCheck, nullptr);
 menuBar.AddMenu(formatMenu);

The Add menu holds one item for each kind of figure to be added:

 Menu addMenu(this, TEXT("&Add"));
 addMenu.AddItem(TEXT("&Line\tCtrl+L"), OnLine,
 LineEnable, nullptr, LineRadio);
 addMenu.AddItem(TEXT("&Arrow\tAlt+A"), OnArrow,
 ArrowEnable, nullptr, ArrowRadio);
 addMenu.AddItem(TEXT("&Rectangle\tCtrl+R"), OnRectangle,
 RectangleEnable, nullptr, RectangleRadio);
 addMenu.AddItem(TEXT("&Ellipse\tCtrl+E"), OnEllipse,
 EllipseEnable, nullptr, EllipseRadio);
 menuBar.AddMenu(addMenu);

 menuBar.AddMenu(StandardHelpMenu());
 SetMenuBar(menuBar);

Finally, we read values from the Windows Registry, which is a database in the Windows
system that we can use to store values between the executions of our applications. The
Small Windows auxiliary classes Color, Font, Point, Size, and Rect have their own
registry methods. The Small Windows Registry class holds static methods for reading and
writing text as well as numerical and integer values:

 actionMode = (ActionMode)
 Registry::ReadInteger(TEXT("actionMode"), Modify);
 addFigureId = (FigureId)
 Registry::ReadInteger(TEXT("addFigureId"), LineId);

Working with Shapes and Figures

[76]

 nextColor.ReadColorFromRegistry(TEXT("nextColor"));
 nextFill = Registry::ReadBoolean(TEXT("nextFill"), false);
}

The destructor writes the values to the registry. In this application, it is not necessary to
provide any common destructor actions such as deallocating memory or closing files:

DrawDocument::~DrawDocument() {
 Registry::WriteInteger(TEXT("actionMode"), actionMode);
 Registry::WriteInteger(TEXT("addFigureId "), addFigureId);
 nextColor.WriteColorToRegistry(TEXT("nextColor"));
 Registry::WriteBoolean(TEXT("nextFill"), nextFill);
}

Mouse input
IsFigureMarked, IsFigureClicked, and UnmarkFigure are callback functions that are
called by the DynamicList methods AnyOf, FirstOf, CopyIf, ApplyIf, and
ApplyRemoveIf. These methods take the pointer to a figure and an optional void pointer
that holds additional information.

The IsFigureMarked function returnstrue if the figure is marked, the IsFigureClicked
function returns true if the mouse point given in the voidPtr pointer hits the figure, and
the IsFigureClicked function unmarks the figure if it is marked. As you can see, the
IsFigureMarked function is defined as a lambda function, while the IsFigureClicked
function is defined as a regular function.

There is no rational reason for this, other than that I would like to demonstrate both ways to
define functions:

auto IsFigureMarked = [](DrawFigure* const& figurePtr,
 void* /* voidPtr */) {
 return figurePtr->IsMarked();
};

bool IsFigureClicked(DrawFigure* const& figurePtr, void* voidPtr) {
 Point* mousePointPtr = (Point*) voidPtr;
 return figurePtr->IsClick(*mousePointPtr);
}

void UnmarkFigure(DrawFigure*& figurePtr, void* /* voidPtr */) {
 if (figurePtr->IsMarked()) {
 figurePtr->Mark(false);
 }
}

Working with Shapes and Figures

[77]

In the OnMouseDown method, we first check that the user presses the left mouse button. If
so, we save the mouse position in the prevMousePoint field so that we can calculate the
distance the figure has moved in subsequent calls to the OnMouseMove method:

void DrawDocument::OnMouseDown(MouseButton mouseButtons,
 Point mousePoint, bool shiftPressed,
 bool controlPressed) {
 if (mouseButtons == LeftButton) {
 prevMousePoint = mousePoint;

As mentioned earlier, the mouse click will result in different actions depending on the value
of the actionMode method. In case of the Modify method, we call the FirstOf parameter
on the figure pointer list to extract the first clicked figure. The figures can overlap, and the
click may hit more than one figure. In that case, we want the topmost figure located at the
beginning of the list. The FirstOf method returns true if there is at least one clicked
figure, which is copied into the topClickedFigurePtr reference parameter. The address
of the mousePoint method is given as the second parameter to the FirstOf method and is,
in turn, given to the IsFigureClicked function as its second parameter:

 switch (actionMode) {
 case Modify: {
 DrawFigure* topClickedFigurePtr;
 if (figurePtrList.FirstOf(IsFigureClicked,
 topClickedFigurePtr, &mousePoint)) {

We have two cases to consider, depending on whether the user presses the Ctrl key. If they
do so, the figure will be marked if it is unmarked and vice versa, and other marked figures
will remain marked.

However, in the other case, when the user does not press the Ctrl key, the figure becomes
marked regardless of whether it is already marked, all other marked figures become
unmarked, and the application is set to the ModifySingle mode. The figures are removed
from the list and inserted at the beginning (front) in order to appear on top of the drawing:

 if (!controlPressed) {
 figurePtrList.ApplyIf(IsFigureMarked, UnmarkFigure);
 topClickedFigurePtr->Mark(true);
 applicationMode = ModifySingle;
 int topFigureIndex =
 figurePtrList.IndexOf(topClickedFigurePtr);
 figurePtrList.Erase(topFigureIndex);
 figurePtrList.PushFront(topClickedFigurePtr);
 }

Working with Shapes and Figures

[78]

If the user presses the Ctrl key, we have another two cases. If the clicked figure is already
marked, we unmark it and set the applicationMode method to the Idle mode. If the
clicked figure is not already marked, we mark it and set the applicationMode method to
the MoveMultiple mode. In this way, we have at least one marked figure to be moved in
the OnMouseMove method when the user moves the mouse. Note that if the user presses the
Ctrl key, one or several figures can be moved but not modified. It would be illogical to
modify more than one figure at the same time:

 else {
 if (topClickedFigurePtr->IsMarked()) {
 applicationMode = Idle;
 topClickedFigurePtr->Mark(false);
 }
 else {
 applicationMode = MoveMultiple;
 topClickedFigurePtr->Mark(true);
 }
 }
 }

If the user hits a point where no figure is located (the figurePtrList.FirstOf method
returns false), we unmark all marked figures, initialize the insideRectangle method,
and set the applicationMode method to the ModifyRectangle mode.

 else {
 figurePtrList.ApplyIf(IsFigureMarked, UnmarkFigure);
 insideRectangle = Rect(mousePoint, mousePoint);
 applicationMode = ModifyRectangle;
 }
 }
 break;

All the aforementioned cases in this method takes place when the actionMode method is
Modify. However, it can also be Add, in which case a new figure will be added to the
drawing. We use the addFigureId method to decide which kind of figure to add when
calling the CreateFigure method. We set the dirty flag, since we have added a figure and
the document has been modified. Finally, we add the address of the new figure to the
beginning of the figure list (so that it appears on top) and set the applicationMode
method to the ModifySingle mode:

 case Add: {
 DrawFigure* newFigurePtr = CreateFigure(addFigureId);
 newFigurePtr->SetColor(nextColor);
 newFigurePtr->Fill(nextFill);
 newFigurePtr->SetFirstPoint(mousePoint);

Working with Shapes and Figures

[79]

 SetDirty(true);
 figurePtrList.PushFront(newFigurePtr);
 applicationMode = ModifySingle;
 }
 break;
 }

Depending on the action and modes, the window and cursor may need to be updated:

 UpdateWindow();
 UpdateCursor();
 }
}

The MoveMarkFigure method is a callback function that is called by the Apply method on
figurePtrList in the OnMouseMove method. It moves the figure that is marked. The
address of the moving distance is given in the voidPtr parameter:

void MoveMarkedFigure(DrawFigure*& figurePtr, void* voidPtr) {
 if (figurePtr->IsMarked()) {
 figurePtr->Invalidate();
 Size* distanzeSizePtr = (Size*) voidPtr;
 figurePtr->Move(*distanzeSizePtr);
 figurePtr->Invalidate();
 }
}

In the OnMouseMove method, we start by calculating the distance since the previous call to
the OnMouseDown or OnMouseMove method. We also set the prevMousePoint method to
the mouse position:

void DrawDocument::OnMouseMove(MouseButton mouseButtons,
 Point mousePoint,bool shiftPressed,
 bool controlPressed) {
 if (mouseButtons == LeftButton) {
 Size distanceSize = mousePoint - prevMousePoint;
 prevMousePoint = mousePoint;

Depending on the applicationMode method, we perform different tasks. In case of the
Modify method on a single figure, we call the MoveOrModify method on that figure. The
figure is placed at the beginning of the figure pointer list (figurePtrList[0]), since we
placed it there in the OnMouseDown method. The idea is that the figure itself, depending on
where the user clicked, decides whether it is moved or modified. The state of the figure is
set when the user clicks on it, and depends on whether they click on any of the endpoints of
the figure:

Working with Shapes and Figures

[80]

 switch (applicationMode) {
 case ModifySingle:
 figurePtrList[0]->Modify(distanceSize);
 SetDirty(true);
 break;

In case of multiple movements, we move every marked figure the distance since the last
mouse message. Note that we do not modify the figures in the multiple cases as we do in
the single case:

 case MoveMultiple:
 figurePtrList.Apply(MoveMarkedFigure, &distanceSize);
 SetDirty(true);
 break;

In the rectangle case, we set its bottom-right corner and redraw it:

 case ModifyRectangle:
 Invalidate(insideRectangle);
 insideRectangle.SetBottomRight(mousePoint);
 Invalidate(insideRectangle);
 UpdateWindow();
 break;
 }

 UpdateWindow();
 UpdateCursor();
 }
}

The IsFigureInside and MarkFigure methods are callback functions that are called by
the DynamicList methods CopyIf, RemoveIf, and Apply on figurePtrList in the
OnMouseUp method. The IsFigureInside method returns true if the figure is located
inside the given rectangle, while the MarkFigure method simply marks the figure:

bool IsFigureInside(DrawFigure* const& figurePtr, void* voidPtr) {
 Rect* insideRectanglePtr = (Rect*) voidPtr;
 return figurePtr->IsInside(*insideRectanglePtr);
}

void MarkFigure(DrawFigure*& figurePtr, void* /* voidPtr */) {
 figurePtr->Mark(true);
}

In the OnMouseUp method, we only need to take the ModifyRectangle case into
consideration. We need to decide which figures are totally enclosed by the rectangle. In
order for them to appear on top of the drawing, we first call the CopyIf method on the

Working with Shapes and Figures

[81]

figurePtrList list to temporarily copy the figures located completely inside the rectangle
to the insideList list.

Then we remove the figures from the figurePtrList list and insert them from the
insideList list at the beginning of the figurePtrList list. This makes them appear at
the top of the drawing. Finally, we mark the figure inside the rectangle by calling Apply on
the insideList list:

void DrawDocument::OnMouseUp(MouseButton mouseButtons,
 Point mousePoint, bool shiftPressed,
 bool controlPressed) {
 if (mouseButtons == LeftButton) {
 switch (applicationMode) {
 case ModifyRectangle: {
 insideRectangle.Normalize();
 DynamicList<DrawFigure*> insideList;
 figurePtrList.CopyIf(IsFigureInside, insideList,
 &insideRectangle);
 figurePtrList.RemoveIf(IsFigureInside,
 &insideRectangle);
 figurePtrList.PushFront(insideList);
 insideList.Apply(MarkFigure);
 Invalidate(insideRectangle);
 insideRectangle.Clear();
 UpdateWindow();
 }
 break;
 }

After the user has released the left mouse button, the application holds the Idle mode,
which it always holds as long as the user does not press the left mouse button:

 applicationMode = Idle;
 }
}

The OnDoubleClick method is called when the user double-clicks on the mouse button.
The difference between a double-click and two consecutive clicks is decided by the
Windows system, and can be adjusted in the Windows control panel. In case of a double-
click, the OnMouseDown and OnMouseUp methods are called before the OnDoubleClick
method. We extract the topmost clicked figure, if any, and call the DoubleClick method.
The result depends on the type of figure: the head of an arrow is reversed, a rectangle or
ellipse is filled if unfilled and vice versa, and a line is not affected at all:

Working with Shapes and Figures

[82]

void DrawDocument::OnDoubleClick(MouseButton mouseButtons,
 Point mousePoint, bool shiftPressed,
 bool controlPressed) {
 if ((mouseButtons == LeftButton) && !controlPressed) {
 DrawFigure* topClickedFigurePtr;

 if (figurePtrList.FirstOf(IsFigureClicked,topClickedFigurePtr,
 &mousePoint)) {
 topClickedFigurePtr->DoubleClick(mousePoint);
 }
 }
}

Painting
In Small Windows, there are three general painting methods: OnPaint, OnPrint, and
OnDraw. The Windows system indirectly calls the OnPaint and OnPrint methods for
painting a window or printing a paper, respectively. Their default behavior is to call the
OnDraw method. Remember that we do not take any initiatives to paint the window, we just
wait for the right message. The idea is that in cases when we need to distinguish between
painting and printing, we override the OnPaint and OnPrint methods, and when we do
not need that distinction, we override the OnDraw method instead.

In the word processor, which is discussed later in this book, we will look into the difference
between painting and printing. However, in this application, we just override the OnDraw
method. As mentioned in Chapter 3, Building a Tetris Application, the Graphics class
reference is created by the framework and can be considered a toolbox equipped with pens
and brushes. In this case, we just call the DrawFigure method for each figure with the
Graphics reference as a parameter. In case of the ModifyRectangle mode, we also draw
the rectangle:

void DrawDocument::OnDraw(Graphics& graphics,
 DrawMode /* drawMode */) const {
 int size = figurePtrList.Size();
 for (int index = (size - 1); index >= 0; --index) {
 DrawFigure* figurePtr := figurePtrList) {[index];
 figurePtr->Draw(graphics);
 }

 if (applicationMode == ModifyRectangle) {
 graphics.DrawRectangle(insideRectangle, Gray);
 }
}

Working with Shapes and Figures

[83]

The File menu
Thanks to the framework in the StandardDocument class, the file management is quite
easy. The ClearDocument method is called when the user selects the New menu item, we
just delete the figures and clear the figure list:

void DrawDocument::ClearDocument() {
 for (DrawFigure* figurePtr : figurePtrList) {
 delete figurePtr;
 }

 figurePtrList.Clear();
}

The WriteDocumentToStream method is called when the user selects the Save or Save As
menu item. It first writes the size of the figure list, and for each figure it writes its identity
number (which is necessary when reading the figure in the ReadDocumentFromStream
method shown as follows), and then writes the figure itself by calling its
WriteFigureToStream method:

bool DrawDocument::WriteDocumentToStream(String name,
 ostream& outStream)const{
 int listSize = figurePtrList.Size();
 outStream.write((char*) &listSize, sizeof listSize);

 for (DrawFigure* figurePtr : figurePtrList) {
 FigureId figureId = figurePtr->GetId();
 outStream.write((char*) &figureId, sizeof figureId);
 figurePtr->WriteFigureToStream(outStream);
 }

 return ((bool) outStream);
}

The ReadDocumentFromStream method is called when the user selects the Open menu
item. It starts by reading the number of figures in the figure list. We need to read the
identity number for the next figure and call the CreateFigure method to receive a pointer
to the created figure. Then we just call the ReadFigureFromStream method for the figure
and add the figure's address to the figure pointer list:

bool DrawDocument::ReadDocumentFromStream(String name,
 istream& inStream) {
 int listSize;
 inStream.read((char*) &listSize, sizeof listSize);

Working with Shapes and Figures

[84]

 for (int index = 0; index < listSize; ++index) {
 FigureId figureId;
 inStream.read((char*) &figureId, sizeof figureId);

 DrawFigure* figurePtr = CreateFigure(figureId);
 figurePtr->ReadFigureFromStream(inStream);

 figurePtrList.PushBack(figurePtr);
 }

 return ((bool) inStream);
}

The CreateFigure method is called by the ReadFigureFromStream and
ReadFigureFromClipboard method and creates a figure of the given type:

DrawFigure* DrawDocument::CreateFigure(FigureId figureId) const {
 switch (figureId) {
 case LineId:
 return (new LineFigure(this));

 case ArrowId:
 return (new ArrowFigure(this));

 case RectangleId:
 return (new RectangleFigure(this));

 case EllipseId:
 return (new EllipseFigure(this));
 }

 return nullptr;
}

Cut, copy, and paste
Similar to the aforementioned file management case, the framework also takes care of the
details of cut, copy, and paste. First, we do need to decide when the cut and copy menu
items and accelerators will be enabled. In Modify mode, it is enough that at least one figure
is marked. We use the DynamicList method AnyOf to decide whether at least one figure is
marked. In Add mode, cut or copy is never allowed. We do not need to override the
CutEnable method, since its default behavior in the StandardDocument framework is to
call the CopyEnable method:

Working with Shapes and Figures

[85]

bool DrawDocument::CopyEnable() const {
 if (applicationMode == Idle) {
 switch (actionMode) {
 case Modify:
 return figurePtrList.AnyOf(IsFigureMarked);

 case Add:
 return false;
 }
 }

 return false;
}

There is a PasteEnable method in the StandardDocument framework. However, in this
application we do not need to override it, since the framework decides when to enable
pasting or, more specifically, when there is data on the global clipboard with the format
code given in the StandardDocument constructor, in this case the DrawFormat field. The
global clipboard is a Windows resource intended for short-term storing of information that
has been copied.

The CopyGeneric method takes a list of characters that are intended to be filled with
application-specific information. We save the number of marked figures, and for each
marked figure, we write its identity number and call the WriteFigureToClipboard
method, which writes the figure-specific information to the infoList parameter:

bool DrawDocument::IsCopyGenericReady(int /* format */) const {
 return true;
}

void DrawDocument::CopyGeneric(int format, InfoList& infoList)
 const {
 DynamicList<DrawFigure*> markedList;
 figurePtrList.CopyIf(IsFigureMarked, markedList);
 infoList.AddValue<int>(markedList.Size());

 for (DrawFigure* figurePtr : markedList) {
 infoList.AddValue<FigureId>(figurePtr->GetId());
 figurePtr->WriteFigureToClipboard(infoList);
 }
}

Working with Shapes and Figures

[86]

The PasteGeneric method pastes the figures in a way similar to the aforementioned the
ReadDocumentFromStream method:

void DrawDocument::PasteGeneric(int format, InfoList& infoList) {
 figurePtrList.ApplyIf(IsFigureMarked, UnmarkFigure);

 int pasteSize;
 infoList.GetValue<int>(pasteSize);

 for (int count = 0; count < pasteSize; ++count) {
 FigureId figureId;
 infoList.GetValue<FigureId>(figureId);

 DrawFigure* figurePtr = CreateFigure(figureId);
 figurePtr->ReadFigureFromClipboard(infoList);
 figurePtr->Move(Size(1000, 1000));
 figurePtrList.PushBack(figurePtr);

 figurePtr->Mark(true);
 }

 UpdateWindow();
}

There is a DeleteEnable method in the StandardDocument framework, which we do not
need to override since its default behavior is to call the CopyEnable method. The OnDelete
method goes through the figure list, invalidating and deleting the marked figures. We use
the DynamicList method ApplyRemoveIf to remove and delete marked figures.

We cannot simply use the ApplyIf and RemoveIf methods to deallocate and remove the
figures, since it would result in memory errors (dangling pointers):

void DeleteFigure(DrawFigure*& figurePtr, void* /* voidPtr */) {
 figurePtr->Invalidate();
 delete figurePtr;
}

void DrawDocument::OnDelete() {
 figurePtrList.ApplyRemoveIf(IsFigureMarked, DeleteFigure,
 nullptr, this);
 UpdateWindow();
 SetDirty(true);
}

www.allitebooks.com

http://www.allitebooks.org

Working with Shapes and Figures

[87]

The Modify menu
The Modify menu item is quite easy to handle. It is enabled in case the application is in the
Idle mode, which it is in when the user does not press the left mouse button. The radio
button is also present if the actionMode method is Modify, and the menu item listener just
sets the actionMode method to Modify:

bool DrawDocument::ModifyEnable() const {
 return (applicationMode == Idle);
}

bool DrawDocument::ModifyRadio() const {
 return ((applicationMode == Idle) && (actionMode == Modify));
}

void DrawDocument::OnModify() {
 actionMode = Modify;
}

For the Color and Fill menu items, there are enable methods that are rather easy and
listeners that are a little bit more complicated. It is possible to change the color in Modify
mode if at least one figure is marked. In Add mode, it is always possible to change the color:

bool DrawDocument::ColorEnable() const {
 if (applicationMode == Idle) {
 switch (actionMode) {
 case Modify:
 return figurePtrList.AnyOf(IsFigureMarked);
 case Add:
 return true;
 }
 }
 return false;
}

The SetFigureColor method is a callback function that is called by the ApplyIf method
on the figurePtrList list in the OnColor method:

void SetFigureColor(DrawFigure*& figurePtr, void* voidPtr) {
 Color* colorPtr = (Color*) voidPtr;

 if (figurePtr->IsMarked() &&
 (figurePtr->GetColor() != *colorPtr)) {
 figurePtr->SetColor(*colorPtr);
 }
}

Working with Shapes and Figures

[88]

The OnColor method is called when the user selects the Color menu item. In Modify mode,
we extract the marked figures and choose the color of the topmost of them. We know that at
least one figure is marked, otherwise the preceding ColorEnable method would return
false and the Color menu item would be disabled. If the ColorDialog call returns true,
we set the new color of all marked figures by calling the ApplyIf method on the
figurePtrList list:

void DrawDocument::OnColor() {
 switch (actionMode) {
 case Modify: {
 DynamicList<DrawFigure*> markedList;
 figurePtrList.CopyIf(IsFigureMarked, markedList);
 DrawFigure* topFigurePtr = markedList[0];
 Color topColor = topFigurePtr->GetColor();

 if (StandardDialog::ColorDialog(this, topColor)) {
 nextColor = topColor;
 figurePtrList.ApplyIf(IsFigureMarked, SetFigureColor,
 nullptr, &topColor);
 UpdateWindow();
 SetDirty(true);
 }
 }
 break;

If the actionMode method is Add, we just display a color dialog to set the next color:

 case Add:
 StandardDialog::ColorDialog(this, nextColor);
 break;
 }
}

The IsFigureMarkedAndFilled method is a callback function that is called by the AnyOf
method on the figurePtrList list in the FillCheck method. The Fill menu item is
checked with a radio mark if at least one figure is marked and filled:

bool IsFigureMarkedAndFilled(DrawFigure* const& figurePtr,
 void* /* voidPtr */) {
 return (figurePtr->IsMarked() && figurePtr->IsFilled());
}

bool DrawDocument::FillCheck() const {
 if (applicationMode == Idle) {
 switch (actionMode) {
 case Modify:
 return figurePtrList.AnyOf(IsFigureMarkedAndFilled);

Working with Shapes and Figures

[89]

 case Add:
 return nextFill;
 }
 }

 return false;
}

The IsFigureMarkedAndFillable method is a callback function that is called by the
AnyOf method on the figurePtrList list in the FillEnable method. The Fill menu item
is enabled if at least one fillable figure (rectangle or ellipse) is marked, or if the user is about
to add a rectangle or ellipse:

bool IsFigureMarkedAndFillable(DrawFigure* const& figurePtr,
 void* /* voidPtr */){
 return (figurePtr->IsMarked() && figurePtr->IsFillable());
}

bool DrawDocument::FillEnable() const {
 if (applicationMode == Idle) {
 switch (actionMode) {
 case Modify:
 return figurePtrList.AnyOf(IsFigureMarkedAndFillable);

In order to test whether the figure type of the next figure to be added is fillable, we create
and delete such a figure:

 case Add: {
 DrawFigure* addFigurePtr = CreateFigure(addFigureId);
 bool fillable = addFigurePtr->IsFillable();
 delete addFigurePtr;
 return fillable;
 }
 }
 }
 return false;
}

The InverseFill method is a callback function that is called by the AnyOf method on the
figurePtrList list in the OnFill method, which is called when the user selects the Fill
menu item. The OnFill method inverts the fill status of all marked figures in Modify
mode. In Add mode, it just inverts the value of nextFill, indicating that the next figure to
be added will have the inverted fill status:

Working with Shapes and Figures

[90]

void InverseFill(DrawFigure*& figurePtr, void* /* voidPtr */) {
 if (figurePtr->IsMarked()) {
 figurePtr->Fill(!figurePtr->IsFilled());
 }
}

void DrawDocument::OnFill() {
 switch (actionMode) {
 case Modify:
 figurePtrList.ApplyIf(IsFigureMarked, InverseFill);
 UpdateWindow();
 break;

 case Add:
 nextFill = !nextFill;
 break;
 }
}

The Add menu
The listeners for the items of the Add menu are rather straightforward. The enable methods
are simple, for the menu item to be enabled it is enough if the applicationMode method is
in the Idle mode:

bool DrawDocument::LineEnable() const {
 return (applicationMode == Idle);
}
bool DrawDocument::ArrowEnable() const {
 return (applicationMode == Idle);
}

bool DrawDocument::RectangleEnable() const {
 return (applicationMode == Idle);
}

bool DrawDocument::EllipseEnable() const {
 return (applicationMode == Idle);
}

The radio methods return true in Add mode if the figure to be added matches the figure of
the radio method:

bool DrawDocument::LineRadio() const {
 return ((actionMode == Add) && (addFigureId == LineId));
}

Working with Shapes and Figures

[91]

bool DrawDocument::ArrowRadio() const {
 return ((actionMode == Add) && (addFigureId == ArrowId));
}

bool DrawDocument::RectangleRadio() const {
 return ((actionMode == Add) && (addFigureId == RectangleId));
}

bool DrawDocument::EllipseRadio() const {
 return ((actionMode == Add) && (addFigureId == EllipseId));
}

Finally, the methods responding to the menu item and accelerator selections sets the
actionMode to Add and the figure to be added:

void DrawDocument::OnLine() {
 actionMode = Add;
 addFigureId = LineId;
}

void DrawDocument::OnArrow() {
 actionMode = Add;
 addFigureId = ArrowId;
}
void DrawDocument::OnRectangle() {
 actionMode = Add;
 addFigureId = RectangleId;
}

void DrawDocument::OnEllipse() {
 actionMode = Add;
 addFigureId = EllipseId;
}

The cursor
The Set method in the Cursor class sets the cursor to an appropriate value. If the
application mode is Idle mode, we wait for the user to press the mouse button. In that
case, we use the well-known arrow cursor image. If the user is in the process of enclosing
figures with a rectangle, we use the cross-hair. If the user is in the process of moving several
figures, we use the cursor with four arrows (size all). Finally, if they are in the process of
modifying a single figure, the figure (whose address is located in the figurePtrList[0]
list) itself is deciding which cursor to use:

Working with Shapes and Figures

[92]

void DrawDocument::UpdateCursor() {
 switch (applicationMode) {
 case Idle:
 Cursor::Set(Cursor::Arrow);
 break;

 case ModifyRectangle:
 Cursor::Set(Cursor::Crosshair);
 break;

 case MoveMultiple:
 Cursor::Set(Cursor::SizeAll);
 break;

 case ModifySingle:
 Cursor::Set(figurePtrList[0]->GetCursor());
 break;
 }
}

Summary
In this chapter, you started the development of a drawing program capable of drawing
lines, arrows, rectangles, and ellipses. In Chapter 5, The Figure Hierarchy, we will look into
the figure hierarchy.

5
The Figure Hierarchy

This chapter introduces the figure classes of the drawing program. Each figure is
responsible for deciding whether it is hit by a mouse click or if it is enclosed by a rectangle.
It is also responsible for moving or modifying, as well as drawing and communicating with
a file stream and the clipboard.

The drawing figure hierarchy is made up of the Draw, LineFigure, ArrowFigure,
RectangleFigure, and EllipseFigure classes, as shown in the following image:

The DrawFigure class
The Draw class is the root class of the hierarchy and is mostly made up of virtual and pure
virtual methods intended to be overridden by the subclasses.

The difference between a virtual method and a pure virtual method is that the virtual
method has a body and it may be overridden by a subclass. If the subclass overrides the
method, its version of the method is called.

The Figure Hierarchy

[94]

If the subclass does not override the method, the method of the base class is called instead.
A pure virtual method does not usually have a body, and a class holding at least one pure
virtual method becomes abstract. The subclass can either override all the pure virtual
methods of its base class or become abstract itself:

Draw.h

enum FigureId {LineId, ArrowId, RectangleId, EllipseId};
class DrawDocument;

class Draw {
 public:
 Draw(const Window* windowPtr);

Each figure has its own identity number, returned by the GetId method:

 virtual FigureId GetId() const = 0;
 virtual void SetFirstPoint(Point point) = 0;

The IsClick method returns True if the mouse point hits the figure, and the IsInside
method returns True if the figure is completely enclosed by the area. The DoubleClick
method gives the figure a possibility to perform a figure-specific action:

 virtual bool IsClick(Point mousePoint) = 0;
 virtual bool IsInside(Rect area) = 0;
 virtual void DoubleClick(Point mousePoint) = 0;

The Modify and Move methods simply move the figure. However, the Modify method
performs figure-specific actions defined by the IsClick method. If the user clicked on one
of the figure endpoints, it will be modified, and if they clicked on any other part of the
figure, it will be moved:

 virtual void Modify(Size distanceSize) = 0;
 virtual void Move(Size distanceSize) = 0;

The Invalidate method invalidates the figure by calling the Area method, which returns
the area occupied by the figure. The Draw method draws the figure with the given
Graphics class's reference:

 virtual Rect Area() const = 0;
 virtual void Draw(Graphics& graphics) const = 0;
 void Invalidate() const {windowPtr->Invalidate(Area());}

The Figure Hierarchy

[95]

The IsFillable, IsFilled, and Fill methods are only overridden by the Rectangle
and Ellipse methods:

 virtual bool IsFillable() const {return false;}
 virtual bool IsFilled() const {return false;}
 virtual void Fill(bool fill) {/* Empty. */}

The WriteFigureToStream and ReadFigureFromStream methods are called when the
user opens or saves a document. They write or read the information of the figure to and
from the streams:

 virtual bool WriteFigureToStream(ostream& outStream) const;
 virtual bool ReadFigureFromStream(istream& inStream);

The WriteFigureToClipboard and ReadFigureFromClipboard methods are called
when the user copies or pastes figures. They write information to a character list and read
information to a character buffer:

 virtual void WriteFigureToClipboard(InfoList& infoList) const;
 virtual void ReadFigureFromClipboard(InfoList& infoList);

The color and marked fields have their own get and set methods:

 bool IsMarked() const {return marked;}
 void Mark(bool mark);

 Color GetColor() const {return color;}
 void SetColor(Color color);

The GetCursor method returns the correct cursor for the figure:

 virtual CursoTyper GetCursor() const = 0;

The MarkRadius method is the size of the small squares showing that the figure is marked:

 static const Size MarkRadius;

The windowPtr pointer is used when invalidating the figure:

 private:
 const Window* windowPtr;

The Figure Hierarchy

[96]

Each figure, regardless of its type, has a color and is marked or unmarked:

 Color color;
 bool marked = false;
};

Draw.cpp

#include "..\\SmallWindows\\SmallWindows.h"
#include "Draw.h"

The MarkRadius parameter is set to 100 * 100 units, which is 1 * 1 millimeters:

const Size DrawFigure::MarkRadius(100, 100);

When a figure is created, it is always unmarked.

DrawFigure::Draw(const Window* windowPtr)
 :windowPtr(windowPtr) {
 // Empty.
}

We redraw when the user toggles the figure's marked state. You may notice the different
order in the if...else statements. The reason is that when we mark a figure, it becomes
larger; that is why we first set the marked parameter to True and then invalidate the figure
to catch its area including its markings. On the other hand, when we unmark a figure it
becomes smaller; that is why we first invalidate it to catch its area, including the markings,
and then set the marked parameter to False.

void DrawFigure::Mark(bool mark) {
 if (!marked && mark) {
 marked = true;
 Invalidate();
 }
 else if (marked && !mark) {
 Invalidate();
 marked = false;
 }
}

The color is the only field written or read in file handling and in communication with the
clipboard. The subclasses of the DrawFigure class call these methods and then write and
read figure-specific information. The WriteFigureToStream and
ReadFigureFromStream methods return the Boolean value of the stream to indicate
whether the file operation succeeded.

The Figure Hierarchy

[97]

bool DrawFigure::WriteFigureToStream(ostream& outStream) const {
 color.WriteColorToStream(outStream);
 return ((bool) outStream);
}

bool DrawFigure::ReadFigureFromStream(istream& inStream) {
 color.ReadColorFromStream(inStream);
 return ((bool) inStream);
}

void DrawFigure::WriteFigureToClipboard(InfoList& infoList) const{
 color.WriteColorToClipboard(charList);
}

void DrawFigure::ReadFigureFromClipboard(InfoList& infoList) {
 color.ReadColorFromClipboard(infoList);
}

The LineFigure class
A line is drawn between two points, represented by the firstPoint field to the
lastPoint field in the LineFigure class, as shown in the following image:

The header file overrides some of the methods of its DrawFigure base class. The
DoubleClick method does nothing. As I see it, there is no really meaningful response to a
double-click on a line. However, we still need to override the DoubleClick method, since it
is a pure virtual method in the DrawFigure base class. If we do not override it, the
LineFigure class will be abstract.

The Figure Hierarchy

[98]

LineFigure.h

class LineFigure : public DrawFigure {
 public:
 LineFigure(const Window* windowPtr);
 virtual FigureId GetId() const {return LineId;}
 virtual void SetFirstPoint(Point point);

 virtual bool IsClick(Point mousePoint);
 virtual bool IsInside(Rect rectangleArea);
 virtual void DoubleClick(Point mousePoint) {/* Empty. */}

 virtual void Modify(Size distanceSize);
 virtual void Move(Size distanceSize);

 virtual Rect Area() const;
 virtual void Draw(Graphics& graphics) const;
 virtual CursorType GetCursor() const;

 virtual bool WriteFigureToStream(ostream& outStream) const;
 virtual bool ReadFigureFromStream(istream& inStream);

 virtual void WriteFigureToClipboard(InfoList& infoList) const;
 virtual void ReadFigureFromClipboard(InfoList& infoList);

 protected:
 enum {CreateLine, FirstPoint, LastPoint, MoveLine} lineMode;
 Point firstPoint, lastPoint;
 static bool IsPointInLine(Point firstPoint, Point lastPoint,
 Point point);
};

LineFigure.cpp

#include "..\\SmallWindows\\SmallWindows.h"
#include "Draw.h"
#include "LineFigure.h"

LineFigure::LineFigure(const Window* windowPtr)
 :Draw(windowPtr), lineMode(CreateLine) {
 // Empty.
}

The Figure Hierarchy

[99]

The SetFirstPoint method is called when the line is created and sets both the first and
last points.

void LineFigure::SetFirstPoint(Point point) {
 firstPoint = point;
 lastPoint = point;
}

The IsClick method has two cases: the user has to hit either one of the endpoints or the
line itself. We define two squares (firstSquare and lastSquare) covering the endpoints,
and test whether the mouse hits one of them. If not, we test whether the mouse hits the line
itself by calling the IsPointInLine method.

bool LineFigure::IsClick(Point mousePoint) {
 Rect firstSquare(firstPoint - MarkRadius,
 firstPoint + MarkRadius);
 firstSquare.Normalize();

 if (firstSquare.PointInside(mousePoint)) {
 lineMode = FirstPoint;
 return true;
 }

 Rect lastSquare(lastPoint - MarkRadius, lastPoint + MarkRadius);
 lastSquare.Normalize();

 if (lastSquare.PointInside(mousePoint)) {
 lineMode = LastPoint;
 return true;
 }

 if (IsPointInLine(firstPoint, lastPoint, mousePoint)) {
 lineMode = MoveLine;
 return true;
 }

 return false;
}

The IsPointInLine method checks whether the point is located on the line, with some
tolerance. We use trigonometric functions to calculate the position of the point relative to
the line. However, if the line is completely vertical and the points have the same x
coordinate, we have a special case.

The Figure Hierarchy

[100]

Applying the trigonometric functions would result in division by zero. Instead, we create a
small rectangle surrounding the line and check if the point is located in the rectangle, as
shown in the following image:

bool LineFigure::IsPointInLine(Point firstPoint, Point lastPoint,
 Point point) {
 if (firstPoint.X() == lastPoint.X()) {
 Rect lineRect(firstPoint - MarkRadius,
 lastPoint + MarkRadius);
 lineRect.Normalize();
 return lineRect.PointInside(point);
 }

If the line is not vertical, we start by creating an enclosing rectangle and test if the mouse
point is in it. If it is, we let the leftmost point of the firstPoint and lastPoint fields
equal to the minPoint field and the rightmost point equal to the maxPoint field. Then we
calculate the width (lineWidth) and height (lineHeight) of the enclosing rectangle, as
well as the distance between the minPoint and mousePoint fields in x and y directions
(diffWidth and diffHeight), as shown in the following image:

The Figure Hierarchy

[101]

Due to uniformity, the following equation is true if the mouse point hits the line:

This implies that:

And this also implies that:

Let us allow for a small tolerance; let us say that the user is allowed to miss the line by a
millimeter (100 units). This changes the last equation to the following:

The Figure Hierarchy

[102]

 else {
 Point minPoint = Min(firstPoint, lastPoint),
 maxPoint = Max(firstPoint, lastPoint);

 if ((minPoint.X() <= point.X()) &&
 (point.X() <= maxPoint.X())) {
 int lineWidth = maxPoint.X() - minPoint.X(),
 lineHeight = maxPoint.Y() - minPoint.Y();

 int diffWidth = point.X() - minPoint.X(),
 diffHeight = point.Y() - minPoint.Y();

 double delta = fabs(diffHeight - (diffWidth *
 ((double) lineHeight) / lineWidth));
 return (delta <= 100);
 }

 return false;
 }
}

The IsInside method is easier than the IsClick method. We just check whether both
endpoints are enclosed by the given rectangle.

bool LineFigure::IsInside(Rect rect) {
 return (rect.PointInside(firstPoint) &&
 rect.PointInside(lastPoint));
}

In the Modify mode, we move one of the endpoints or the line depending on the value of
the lineMode parameter set by the IsClick method. If the user has hit the first point, we
move it. If they have hit the last point, or if the line is in the process of being created, we
move the last point. If they have hit the line, we move the line. That is, we move both the
first and last points.

void LineFigure::Modify(Size distanceSize) {
 Invalidate();
 switch (lineMode) {
 case FirstPoint:
 firstPoint += distanceSize;
 break;

 case CreateLine:
 case LastPoint:
 lastPoint += distanceSize;
 break;

The Figure Hierarchy

[103]

 case MoveLine:
 Move(distanceSize);
 break;
 }

 Invalidate();
}

The Move method is also easy; we just move the two endpoints.

void LineFigure::Move(Size distanceSize) {
 Invalidate();
 firstPoint += distanceSize;
 lastPoint += distanceSize;
 Invalidate();
}

In the Draw method, we draw the line and, if the line is marked, its two endpoints are
always black.

void LineFigure::Draw(Graphics& graphics) const {
 graphics.DrawLine(firstPoint, lastPoint, GetColor());

 if (IsMarked()) {
 graphics.FillRectangle(Rect(firstPoint - MarkRadius,
 firstPoint + MarkRadius), Black,Black);
 graphics.FillRectangle(Rect(lastPoint - MarkRadius,
 lastPoint + MarkRadius), Black, Black);
 }
}

The area occupied by the line is a rectangle with the endpoints as corners. If the line is
marked, the mark radius is added.

Rect LineFigure::Area() const {
 Rect lineArea(firstPoint.X(), firstPoint.Y(),
 lastPoint.X(), lastPoint.Y());
 lineArea.Normalize();

 if (IsMarked()) {
 lineArea -= MarkRadius;
 lineArea += MarkRadius;
 }

 return lineArea;
}

The Figure Hierarchy

[104]

If the line is being modified, the Crosshair cursor is returned. If it is being moved, the
size-all cursor (four arrows in the compass directions) is returned. If none of these cases
apply, then we just return the normal arrow cursor.

CursorType LineFigure::GetCursor() const {
 switch (lineMode) {
 case CreateLine:
 case FirstPoint:
 case LastPoint:
 return Cursor::Crosshair;

 case MoveLine:
 return Cursor::SizeAll;

 default:
 return Cursor::Normal;
 }
}

The WriteFigureToStream, ReadFigureFromStream, WriteFigureToClipboard, and
ReadFigureFromClipboard methods write and read the first and last endpoints of the line
after calling the corresponding methods in the DrawFigure class.

bool LineFigure::WriteFigureToStream(ostream& outStream) const {
 DrawFigure::WriteFigureToStream(outStream);
 firstPoint.WritePointToStream(outStream);
 lastPoint.WritePointToStream(outStream);
 return ((bool) outStream);
}

bool LineFigure::ReadFigureFromStream (istream& inStream) {
 DrawFigure::ReadFigureFromStream(inStream);
 firstPoint.ReadPointFromStream(inStream);
 lastPoint.ReadPointFromStream(inStream);
 return ((bool) inStream);
}

void LineFigure::WriteFigureToClipboard(InfoList& infoList) const{
 DrawFigure::WriteFigureToClipboard(charList);
 firstPoint.WritePointToClipboard(charList);
 lastPoint.WritePointToClipboard(charList);
}

The Figure Hierarchy

[105]

void LineFigure::ReadFigureFromClipboard(InfoList& infoList) {
 DrawFigure::ReadFigureFromClipboard(infoList);
 firstPoint.ReadPointFromClipboard(infoList);
 lastPoint.ReadPointFromClipboard(infoList);
}

The ArrowFigure class
The ArrowFigure is a subclass of the LineFigure class and reuses the firstPoint and
lastPoint fields and some of its functionality. The endpoints of the arrowhead are stored
in the leftPoint and rightPoint fields, as shown in the following image. The lengths of
the sides are defined by the ArrowLength constant to 500 units, which is 5 millimeters.

The ArrowFigure class overrides some of the methods of the LineFigure class. Mostly, it
calls the methods of the LineFigure class and then adds functionality of its own.

ArrowFigure.h

class ArrowFigure : public LineFigure {
 public:
 ArrowFigure(const Window* windowPtr);
 FigureId GetId() const {return ArrowId;};

 bool IsClick(Point mousePoint);
 bool IsInside(Rect area);
 void DoubleClick(Point mousePoint);

The Figure Hierarchy

[106]

 void Modify(Size distanceSize);
 void Move(Size distanceSize);
 Rect Area() const;
 void Draw(Graphics& graphics) const;

 bool WriteFigureToStream(ostream& outStream) const;
 bool ReadFigureFromStream(istream& inStream);

 void WriteFigureToClipboard(InfoList& infoList) const;
 void ReadFigureFromClipboard(InfoList& infoList);

 private:
 static const int ArrowLength = 500;
 Point leftPoint, rightPoint;
 void CalculateArrowHead();
};

The constructors let the LineFigure constructors initialize the arrow's endpoints, and then
call the CalculateArrowHead method to calculate the endpoints of the arrowhead.

ArrowFigure.cpp

#include "..\\SmallWindows\\SmallWindows.h"
#include "Draw.h"
#include "LineFigure.h"
#include "ArrowFigure.h"

ArrowFigure::ArrowFigure(const Window* windowPtr)
 :LineFigure(windowPtr) {
 CalculateArrowHead();
}

The IsClick method returns True if the user clicks on the line or any part of the
arrowhead.

bool ArrowFigure::IsClick(Point mousePoint) {
 return LineFigure::IsClick(mousePoint) ||
 IsPointInLine(firstPoint, leftPoint, mousePoint) ||
 IsPointInLine(firstPoint, rightPoint, mousePoint) ||
 IsPointInLine(leftPoint, rightPoint, mousePoint);
}

The IsInside method returns True if all the endpoints of the line and arrowhead are
inside the area.

The Figure Hierarchy

[107]

bool ArrowFigure::IsInside(Rect area) {
 return area.PointInside(firstPoint) &&
 area.PointInside(lastPoint) &&
 area.PointInside(leftPoint) &&
 area.PointInside(rightPoint);
}

The Modify method modifies the line and recalculates the arrowhead.

void ArrowFigure::Modify(Size distanceSize) {
 LineFigure::Modify(distanceSize);
 CalculateArrowHead();
}

The Move method moves the line and the arrowhead.

void ArrowFigure::Move(Size distanceSize) {
 LineFigure::Move(distanceSize);
 leftPoint += distanceSize;
 rightPoint += distanceSize;
}

When the user double-clicks on the arrow, its head and tail are swapped.

void ArrowFigure::DoubleClick(Point mousePoint) {
 if (IsClick(mousePoint)) {
 Invalidate();
 Point tempPoint = firstPoint;
 firstPoint = lastPoint;
 lastPoint = tempPoint;
 CalculateArrowHead();
 Invalidate();
 }
}

The Area method calculates the minimum and maximum of the line's and arrowhead's
endpoints and returns an area with its top-left and bottom-right corners. If the arrow is
marked, the mark radius is added to the area.

Rect ArrowFigure::Area() const {
 Point topLeft(min(firstPoint.X(), min(lastPoint.X(),
 min(leftPoint.X(), rightPoint.X()))),
 min(firstPoint.Y(), min(lastPoint.Y(),
 min(leftPoint.Y(), rightPoint.Y())))),
 bottomRight(max(firstPoint.X(), max(lastPoint.X(),
 max(leftPoint.X(), rightPoint.X()))),
 max(firstPoint.Y(), max(lastPoint.Y(),
 max(leftPoint.Y(), rightPoint.Y()))));

The Figure Hierarchy

[108]

 if (IsMarked()) {
 topLeft -= MarkRadius;
 bottomRight += MarkRadius;
 }

 return Rect(topLeft, bottomRight);
}

The Draw method draws the line and the arrowhead. If the arrow is marked, the arrow's
endpoints are also marked with squares.

void ArrowFigure::Draw(Graphics& graphics) const {
 LineFigure::Draw(graphics);

 graphics.DrawLine(lastPoint, leftPoint, GetColor());
 graphics.DrawLine(lastPoint, rightPoint, GetColor());
 graphics.DrawLine(leftPoint, rightPoint, GetColor());
 if (IsMarked()) {
 graphics.FillRectangle(Rect(leftPoint - MarkRadius,
 leftPoint + MarkRadius), Black, Black);
 graphics.FillRectangle(Rect(rightPoint - MarkRadius,
 rightPoint + MarkRadius), Black,Black);
 }
}

The WriteFigureToStream, ReadFigureFromStream, WriteFigureToClipboard, and
ReadFigureFromClipboard methods let the LineFigure class write and read the line's
endpoints. Then it writes and reads the arrowhead's endpoints.

bool ArrowFigure::WriteFigureToStream(ostream& outStream) const {
 LineFigure::WriteFigureToStream(outStream);
 leftPoint.WritePointToStream(outStream);
 rightPoint.WritePointToStream(outStream);
 return ((bool) outStream);
}

bool ArrowFigure::ReadFigureFromStream(istream& inStream) {
 LineFigure::ReadFigureFromStream(inStream);
 leftPoint.ReadPointFromStream(inStream);
 rightPoint.ReadPointFromStream(inStream);
 return ((bool) inStream);
}

void ArrowFigure::WriteFigureToClipboard(InfoList& infoList)const{
 LineFigure::WriteFigureToClipboard(charList);
 leftPoint.WritePointToClipboard(charList);
 rightPoint.WritePointToClipboard(charList);
}

The Figure Hierarchy

[109]

void ArrowFigure::ReadFigureFromClipboard(InfoList& infoList) {
 LineFigure::ReadFigureFromClipboard(infoList);
 leftPoint.ReadPointFromClipboard(infoList);
 rightPoint.ReadPointFromClipboard(infoList);
}

The CalculateArrowHead method is a private auxiliary method that calculates the
endpoints of the arrowhead. We will use the following relations to calculate the leftPoint
and rightPoint fields.

The calculation is performed in three steps; first we calculate alpha and beta. See the
following illustration for the definition of the angles:

The Figure Hierarchy

[110]

Then we calculate leftAngle and rightAngle and use their values to calculate the value
of leftPoint and rightPoint. The angle between the line and the arrowhead parts is 45
degrees, which is equivialent to Π/4 radians. So, in order to determine the angles for the
arrowhead parts, we simply subtract Π/4 from beta and add Π/4 to beta:

Then we use the following formulas to finally determine leftPoint and rightPoint:

The trigonometric functions are available in the C standard library. However, we need to
define our value for Π. The atan2 function calculates the tangent value for the quota of
height and width and takes into consideration the possibility that width might be zero.

The Figure Hierarchy

[111]

void ArrowFigure::CalculateArrowHead() {
 int height = lastPoint.Y() - firstPoint.Y();
 int width = lastPoint.X() - firstPoint.X();

 const double Pi = 3.14159265;
 double alpha = atan2((double) height, (double) width);
 double beta = alpha + Pi;

 double leftAngle = beta - (Pi / 4);
 double rightAngle = beta + (Pi / 4);

 leftPoint.X() = lastPoint.X() +
 (int) (ArrowLength * cos(leftAngle));
 leftPoint.Y() = lastPoint.Y() +
 (int) (ArrowLength * sin(leftAngle));

The Figure Hierarchy

[112]

 rightPoint.X() = lastPoint.X() +
 (int) (ArrowLength * cos(rightAngle));
 rightPoint.Y() = lastPoint.Y() +
 (int) (ArrowLength * sin(rightAngle));
}

The RectangleFigure class
The RectangleFigure class holds a rectangle, which can be filled or unfilled. The user can
modify it by grabbing one of its four corners. The DrawRectangle class overrides most of
the methods of the DrawFigure class.

One difference compared to the line and arrow cases is that a rectangle is two-dimensional
and can be filled or unfilled. The Fillable method returns True and the IsFilled and
Fill methods are overridden. When the user double-clicks on a rectangle it will be toggled
between the filled and unfilled states.

RectangleFigure.h

class RectangleFigure : public DrawFigure {
 public:
 RectangleFigure(const Window* windowPtr);

 virtual void SetFirstPoint(Point point);
 virtual FigureId GetId() const {return RectangleId;}

 virtual bool IsClick(Point mousePoint);
 virtual bool IsInside(Rect rectangleArea);
 virtual void DoubleClick(Point mousePoint);

 virtual void Modify(Size distanceSize);
 virtual void Move(Size distanceSize);

 virtual Rect Area() const;
 virtual void Draw(Graphics& graphics) const;
 virtual CursorType GetCursor() const;

 bool IsFillable() const {return true;}
 bool IsFilled() const {return filled;}
 void Fill(bool fill) {filled = fill; Invalidate();}

 virtual bool WriteFigureToStream(ostream& outStream) const;
 virtual bool ReadFigureFromStream(istream& inStream);

The Figure Hierarchy

[113]

 virtual void WriteFigureToClipboard(InfoList& infoList) const;
 virtual void ReadFigureFromClipboard(InfoList& infoList);

 private:
 enum {CreateRectangle, TopLeftPoint, TopRightPoint,
 BottomRightPoint, BottomLeftPoint, MoveRectangle}
 rectangleMode;

 protected:
 bool filled = false;
 Point topLeft, bottomRight;
};

RectangleFigure.cpp

#include "..\\SmallWindows\\SmallWindows.h"
#include "Draw.h"
#include "RectangleFigure.h"
RectangleFigure::RectangleFigure(const Window* windowPtr)
:Draw(windowPtr), rectangleMode(CreateRectangle) { /* Empty. */ }
void RectangleFigure::SetFirstPoint(Point point) { topLeft = point;
bottomRight = point; }

When the user clicks on the rectangle, they may hit one of its four corners, the borders of the
rectangle, or (if it is filled) its interior. First, we check the corners and then the rectangle
itself. If it is filled, we just test whether the mouse point is enclosed in the rectangle. If the
rectangle is unfilled, we test whether any of its four borders has been hit by constructing a
slightly smaller rectangle and a slightly larger one. If the mouse position is included in the
larger rectangle, but not in the smaller one, the user has hit one of the rectangle borders.

The Figure Hierarchy

[114]

bool RectangleFigure::IsClick(Point mousePoint) {
 Rect topLeftRect(topLeft - MarkRadius, topLeft + MarkRadius);

 if (topLeftRect.PointInside(mousePoint)) {
 rectangleMode = TopLeftPoint;
 return true;
 }

 Point topRightPoint(bottomRight.X(), topLeft.Y());
 Rect topRectRight(topRightPoint - MarkRadius,
 topRightPoint + MarkRadius);

 if (topRectRight.PointInside(mousePoint)) {
 rectangleMode = TopRightPoint;
 return true;
 }

 Rect bottomRightRect(bottomRight - MarkRadius,
 bottomRight + MarkRadius);

 if (bottomRightRect.PointInside(mousePoint)) {
 rectangleMode = BottomRightPoint;
 return true;
 }

 Point bottomLeftPoint(topLeft.X(), bottomRight.Y());
 Rect bottomLeftRect(bottomLeftPoint - MarkRadius,
 bottomLeftPoint + MarkRadius);

 if (bottomLeftRect.PointInside(mousePoint)) {
 rectangleMode = BottomLeftPoint;
 return true;
 }

 Rect areaRect(topLeft, bottomRight);
 areaRect.Normalize();

 if (IsFilled()) {
 areaRect.PointInside(mousePoint);

 if (areaRect.PointInside(mousePoint)) {
 rectangleMode = MoveRectangle;
 return true;
 }
 }

The Figure Hierarchy

[115]

 else {
 Rect largeAreaRect(areaRect.TopLeft() - MarkRadius,
 areaRect.BottomRight() + MarkRadius),
 smallAreaRect(areaRect.TopLeft() + MarkRadius,
 areaRect.BottomRight() - MarkRadius);
 if (largeAreaRect.PointInside(mousePoint) &&
 !smallAreaRect.PointInside(mousePoint)) {
 rectangleMode = MoveRectangle;
 return true;
 }
 }

 return false;
}

The IsInside method returns true if the top-left and bottom-right corners are enclosed by
the rectangle area.

bool RectangleFigure::IsInside(Rect area) {
 return area.PointInside(topLeft) &&
 area.PointInside(bottomRight);
}

The DoubleClick method fills the rectangle if it is unfilled and vice versa.

void RectangleFigure::DoubleClick(Point mousePoint) {
 if (IsClick(mousePoint)) {
 filled = !filled;
 Invalidate();
 }
}

The Modify method modifies or moves the rectangle in accordance with the setting of the
rectangleMode parameter in the IsClick method.

void RectangleFigure::Modify(Size distanceSize) {
 Invalidate();

 switch (rectangleMode) {
 case TopLeftPoint:
 topLeft += distanceSize;
 break;

 case TopRightPoint:
 topLeft.Y() += distanceSize.Height();
 bottomRight.X() += distanceSize.Width();
 break;

The Figure Hierarchy

[116]

 case CreateRectangle:
 case BottomRightPoint:
 bottomRight += distanceSize;
 break;

 case BottomLeftPoint:
 topLeft.X() += distanceSize.Width();
 bottomRight.Y() += distanceSize.Height();
 break;

 case MoveRectangle:
 Move(distanceSize);
 break;
 }

 Invalidate();
}

The Move method moves the rectangle's corners.

void RectangleFigure::Move(Size distanceSize) {
 Invalidate();
 topLeft += distanceSize;
 bottomRight += distanceSize;
 Invalidate();
}

The area of the rectangle is simply that of the rectangle. However, if it is marked, we
increase it in order to include the corner squares.

Rect RectangleFigure::Area() const {
 Rect areaRect(topLeft, bottomRight);
 areaRect.Normalize();

 if (IsMarked()) {
 areaRect -= MarkRadius;
 areaRect += MarkRadius;
 }
 return areaRect;
}

The Figure Hierarchy

[117]

The Draw method draws or fills the rectangle. It also fills the squares if it is marked.

void RectangleFigure::Draw(Graphics& graphics) const {
 if (filled) {
 graphics.FillRectangle(Rect(topLeft, bottomRight),
 GetColor(), GetColor());
 }
 else {
 graphics.DrawRectangle(Rect(topLeft, bottomRight),
 GetColor());
 }

 if (IsMarked()) {
 graphics.FillRectangle(Rect(topLeft - MarkRadius,
 topLeft + MarkRadius), Black, Black);

 Point topRight(bottomRight.X(), topLeft.Y());
 graphics.FillRectangle(Rect(topRight - MarkRadius,
 topRight + MarkRadius), Black, Black);

 graphics.FillRectangle(Rect(bottomRight - MarkRadius,
 bottomRight + MarkRadius),Black,Black);

 Point bottomLeft(topLeft.X(), bottomRight.Y());
 graphics.FillRectangle(Rect(bottomLeft - MarkRadius,
 bottomLeft + MarkRadius.Height()), Black, Black);
 }
}

The cursor of the rectangle is the size-all cursor (arrows in the four compass directions)
when the figure is being moved. It is a cursor with arrows in accordance with the grabbed
corner while being modified: north-west and south-east arrows in the case of the top-left or
bottom-right corner, and north-east and south-west arrows in the case of the top-right or
bottom-left corner.

CursorType RectangleFigure::GetCursor() const {
 switch (rectangleMode) {
 case TopLeftPoint:
 case BottomRightPoint:
 return Cursor::SizeNorthWestSouthEast;

 case TopRightPoint:
 case BottomLeftPoint:
 return Cursor::SizeNorthEastSouthWest;

 case MoveRectangle:
 return Cursor::SizeAll;

The Figure Hierarchy

[118]

 default:
 return Cursor::Normal;
 }
}

The WriteFigureToStream, ReadFigureFromStream, WriteFigureToClipboard, and
ReadFigureFromClipboard methods call the corresponding methods in the DrawFigure
class. Then they write and read the four corners of the rectangle, and whether it is filled or
not.

bool RectangleFigure::WriteFigureToStream(ostream& outStream)
 const {
 DrawFigure::WriteFigureToStream(outStream);
 topLeft.WritePointToStream(outStream);
 bottomRight.WritePointToStream(outStream);
 outStream.write((char*) &filled, sizeof filled);
 return ((bool) outStream);
}

bool RectangleFigure::ReadFigureFromStream (istream& inStream) {
 DrawFigure::ReadFigureFromStream(inStream);
 topLeft.ReadPointFromStream(inStream);
 bottomRight.ReadPointFromStream(inStream);
 inStream.read((char*) &filled, sizeof filled);
 return ((bool) inStream);
}

void RectangleFigure::WriteFigureToClipboard(InfoList& infoList)
 const {
 DrawFigure::WriteFigureToClipboard(infoList);
 topLeft.WritePointToClipboard(infoList);
 bottomRight.WritePointToClipboard(infoList);
 infoList.AddValue<bool>(filled);
}

void RectangleFigure::ReadFigureFromClipboard(InfoList& infoList) {
 DrawFigure::ReadFigureFromClipboard(infoList);
 topLeft.ReadPointFromClipboard(infoList);
 bottomRight.ReadPointFromClipboard(infoList);
 infoList.GetValue<bool>(filled);
}

The Figure Hierarchy

[119]

The EllipseFigure class
The EllipseFigure class is a subclass of the RectangleFigure class. The ellipse can be
moved or reshaped by the horizontal or vertical corners. Most of the methods from the
RectangleFigure class are not overridden by the Ellipse class.

Ellipse.h

class EllipseFigure : public RectangleFigure {
 public:
 EllipseFigure(const Window* windowPtr);
 FigureId GetId() const {return EllipseId;}

 bool IsClick(Point mousePoint);
 void Modify(Size distanceSize);
 void Draw(Graphics& graphics) const;
 CursoTyper GetCursor() const;

 private:
 enum {CreateEllipse, LeftPoint, TopPoint, RightPoint,
 BottomPoint, MoveEllipse} ellipseMode;
};

Ellipse.cpp

#include "..\\SmallWindows\\SmallWindows.h"
#include "Draw.h"
#include "RectangleFigure.h"
#include "EllipseFigure.h"
EllipseFigure::EllipseFigure(const Window* windowPtr)
 :RectangleFigure(windowPtr),
 ellipseMode(CreateEllipse) {
 // Empty.
}

Just as in the rectangle case, the IsClick method first decides if the user has clicked on one
of the four endpoints; however, the positions are different compared to the rectangle
corners.

The Figure Hierarchy

[120]

bool EllipseFigure::IsClick(Point mousePoint) {
 Point leftPoint(topLeft.X(), (topLeft.Y() + bottomRight.Y())/2);
 Rect leftRect(leftPoint - MarkRadius, leftPoint + MarkRadius);

 if (leftRect.PointInside(mousePoint)) {
 ellipseMode = LeftPoint;
 return true;
 }

 Point topPoint((topLeft.X() + bottomRight.X()) / 2,topLeft.Y());
 Rect topRect(topPoint - MarkRadius, topPoint + MarkRadius);

 if (topRect.PointInside(mousePoint)) {
 ellipseMode = TopPoint;
 return true;
 }

 Point rightPoint(bottomRight.X(),
 (topLeft.Y() + bottomRight.Y()) / 2);
 Rect rightRect(rightPoint - MarkRadius,
 rightPoint + MarkRadius);

 if (rightRect.PointInside(mousePoint)) {
 ellipseMode = RightPoint;
 return true;
 }
 Point bottomPoint((topLeft.X() + bottomRight.X()) / 2,
 bottomRight.Y());
 Rect bottomRect(bottomPoint - MarkRadius,
 bottomPoint + MarkRadius);

 if (bottomRect.PointInside(mousePoint)) {
 ellipseMode = BottomPoint;
 return true;
 }

The Figure Hierarchy

[121]

If the user has not clicked on one of the modifying positions, we have to decide if the user
has clicked on the ellipse itself. It is rather easy if the ellipse is not filled. We create an
elliptic region by using the Win32 API function CreateEllipticRgn and test if the mouse
position is in it. If the ellipse is not filled, we create two regions, one slightly smaller and
one slightly larger. If the mouse position is included in the larger region, but not in the
smaller one, we have a hit.

 ellipseMode = MoveEllipse;
 Point minPoint = Min(topLeft, bottomRight),
 maxPoint = Max(topLeft, bottomRight);
 if (IsFilled()) {
 HRGN ellipseRegion =
 CreateEllipticRgn(minPoint.X(), minPoint.Y(),
 maxPoint.X(), maxPoint.Y());
 return (PtInRegion(ellipseRegion, mousePoint.X(),
 mousePoint.Y()) != 0);
 }
 else {
 HRGN smallRegion =
 CreateEllipticRgn(minPoint.X() + MarkRadius.Width(),
 minPoint.Y() + MarkRadius.Height(),
 maxPoint.X() - MarkRadius.Width(),
 maxPoint.Y() - MarkRadius.Height());
 HRGN largeRegion =
 CreateEllipticRgn(minPoint.X() - MarkRadius.Width(),
 minPoint.Y() - MarkRadius.Height(),
 maxPoint.X() + MarkRadius.Width(),
 maxPoint.Y() + MarkRadius.Height());
 return ((PtInRegion(largeRegion, mousePoint.X(),
 mousePoint.Y()) != 0) &&
 (PtInRegion(smallRegion, mousePoint.X(),
 mousePoint.Y()) == 0));
 }

The Figure Hierarchy

[122]

 return false;
}

The Modify method moves the corner in accordance with the setting of the ellipseMode
parameter in the IsClick method.

void EllipseFigure::Modify(Size distanceSize) {
 Invalidate();

 switch (ellipseMode) {
 case CreateEllipse:
 bottomRight += distanceSize;
 break;

 case LeftPoint:
 topLeft.X() += distanceSize.Width();
 break;

 case RightPoint:
 bottomRight.X() += distanceSize.Width();
 break;

 case TopPoint:
 topLeft.Y() += distanceSize.Height();
 break;

 case BottomPoint:
 bottomRight.Y() += distanceSize.Height();
 break;

 case MoveEllipse:
 Move(distanceSize);
 break;
 }

 Invalidate();
}

The Figure Hierarchy

[123]

The Draw method fills or draws the ellipse, and the four squares if the ellipse is marked.

void EllipseFigure::Draw(Graphics& graphics) const {
 if (filled) {
 graphics.FillEllipse(Rect(topLeft, bottomRight),
 GetColor(), GetColor());
 }
 else {
 graphics.DrawEllipse(Rect(topLeft, bottomRight), GetColor());
 }

 if (IsMarked()) {
 Point leftPoint(topLeft.X(), (topLeft.Y()+bottomRight.Y())/2);
 graphics.FillRectangle(Rect(leftPoint - MarkRadius,
 leftPoint + MarkRadius), Black, Black);

 Point topPoint((topLeft.X() + bottomRight.X())/2,topLeft.Y());
 graphics.FillRectangle(Rect(topPoint - MarkRadius,
 topPoint + MarkRadius),Black, Black);

 Point rightPoint(bottomRight.X(),
 (topLeft.Y() + bottomRight.Y()) / 2);
 graphics.FillRectangle(Rect(rightPoint - MarkRadius,
 rightPoint + MarkRadius), Black,Black);

 Point bottomPoint((topLeft.X() + bottomRight.X()) / 2,
 bottomRight.Y());
 graphics.FillRectangle(Rect(bottomPoint - MarkRadius,
 bottomPoint + MarkRadius),Black,Black);
 }
}

Finally, when it comes to the cursor, we have the following five different cases:

When the ellipse is being created, the crosshair is returned
When the user grabs the left or right endpoint of the ellipse, the west-east (left-
right) arrow is returned
When the user grabs the top or bottom endpoint, the top-bottom (up-down)
arrow is returned
When the user moves the ellipse, the size-all arrow (four arrows that point left,
right, up, and down) is returned
Finally, when the user neither moves nor modifies the ellipse, the normal arrow
cursor is returned

The Figure Hierarchy

[124]

CursorType EllipseFigure::GetCursor() const {
 switch (ellipseMode) {
 case CreateEllipse:
 return Cursor::Crosshair;

 case LeftPoint:
 case RightPoint:
 return Cursor::SizeWestEast;

 case TopPoint:
 case BottomPoint:
 return Cursor::SizeNorthSouth;

 case MoveEllipse:
 return Cursor::SizeAll;

 default:
 return Cursor::Normal;
 }
}

Summary
In this chapter, you studied the figure class hierarchy for the drawing program of Chapter
4, Working with Shapes and Figures. You covered the following topics:

Testing whether the figure has been hit by a mouse click or if it is enclosed by a
rectangle
Modification and movement of the figure
Drawing the figure and calculating the area of the figure
Writing and reading the figure to and from a file stream or the clipboard
Cursor handling with different cursors depending on the current state of figure

In Chapter 6, Building a Word Processor, you will start developing a word processor.

6
Building a Word Processor

In this chapter, we build a word processor that is capable of handling text on character
level: that is, a single character that has its own font, color, size, and style. We also introduce
caret handling, printing and print previewing, and file dropping, as well as clipboard
handling with ASCII and Unicode text, which means that we can cut and paste between this
application and, for instance, a text editor.

Auxiliary classes
A document in this application is made up of pages, paragraphs, lines, and characters. Let
me try to explain how it all hangs together:

First of all, the document is made up of a list of characters. Each character has its
own font and pointers to the paragraph and line it belongs to. The character
information is stored in objects of the CharInfo class. The charList field in the
WordDocument class is a list of CharInfo objects.

Building a Word Processor

[126]

The characters are divided into paragraphs. A paragraph does not hold its own
character list. Instead, it holds the indexes in the character list of its first and last
characters. The paragraphList field in WordDocument is a list of Paragraph
objects. The last character of each paragraph is always a newline.
Each paragraph is divided into a list of lines. The Paragraph class below holds a
list of Line objects. A line holds the indexes of its first and last characters relative
to the beginning of the paragraph.
Finally, the document is also divided into pages. A page holds as many whole
paragraphs as possible.

Every time something is changed in the document, the current line and paragraph are
recalculated. The page list is also recalculated.

Let's continue to look into the CharInfo, LineInfo, and Paragraph classes.

Character information
The CharInfo class is a structure that holds the following:

A character and its font
Its enclosing rectangle, which is used when drawing the character
Pointers to the line and the paragraph it belongs to

CharInfo.h

class LineInfo;
class Paragraph;

class CharInfo {
 public:
 CharInfo(Paragraph* paragraphPtr = nullptr,
 TCHAR tChar = TEXT('\0'),
 Font font = SystemFont, Rect rect = ZeroRect);

 CharInfo(const CharInfo& charInfo);
 CharInfo& operator=(const CharInfo& charInfo);

 bool WriteCharInfoToStream(ostream& outStream) const;
 bool ReadCharInfoFromStream(istream& inStream);

 void WriteCharInfoToClipboard(InfoList& infoList) const;
 void ReadCharInfoFromClipboard(InfoList& infoList);

Building a Word Processor

[127]

Each of the private fields in this class has its own method for getting and setting the value.
The first set of methods is constant and returns the value itself, which means that the value
of the field cannot be changed by these methods. The second set of methods is nonconstant
and returns a reference to the field, which means that the value can be changed. However,
they cannot be called from a constant object.

 TCHAR Char() const {return tChar;}
 Font CharFont() const {return charFont;}
 Rect CharRect() const {return charRect;}
 LineInfo* LineInfoPtr() const {return lineInfoPtr;}
 Paragraph* ParagraphPtr() const {return paragraphPtr;}

 TCHAR& Char() {return tChar;}
 Font& CharFont() {return charFont;}
 Rect& CharRect() {return charRect;}
 LineInfo*& LineInfoPtr() {return lineInfoPtr;}
 Paragraph*& ParagraphPtr() {return paragraphPtr;}

The tChar and charFont fields hold the character itself and its font, and the charRect
coordinates are relative to the top-left position of the paragraph the character belongs to.
Each character belongs to a paragraph and one of the lines of that paragraph, which
paragraphPtr and lineInfoPtr point at.

 private:
 TCHAR tChar;
 Font charFont;
 Rect charRect;
 Paragraph* paragraphPtr;
 LineInfo* lineInfoPtr;
};

CharInfo.cpp

#include "..\\SmallWindows\\SmallWindows.h"
#include "CharInfo.h"

The default value of the font parameter is the system font that gives the default font. It is
often 10 point Arial.

CharInfo::CharInfo(Paragraph* paragraphPtr /* = nullptr */,
 TCHAR tChar /* = TEXT('\0') */,
 Font font/* = SystemFont */,
 Rect rect /* = ZeroRect */)
 :lineInfoPtr(nullptr),
 paragraphPtr(paragraphPtr),
 tChar(tChar),
 charFont(font),

Building a Word Processor

[128]

 charRect(rect) {
 // Empty.
}

The copy constructor and assignment operator copies the fields. They are called on several
occasions when the characters are written to and read from file streams, or when they are
cut, copied, or pasted.

CharInfo::CharInfo(const CharInfo& charInfo)
 :lineInfoPtr(charInfo.lineInfoPtr),
 paragraphPtr(charInfo.paragraphPtr),
 tChar(charInfo.tChar),
 charFont(charInfo.charFont),
 charRect(charInfo.charRect) {
 // Empty.
}

CharInfo& CharInfo::operator=(const CharInfo& charInfo) {
 lineInfoPtr = charInfo.lineInfoPtr;
 paragraphPtr = charInfo.paragraphPtr;
 tChar = charInfo.tChar;
 charFont = charInfo.charFont;
 charRect = charInfo.charRect;
 return *this;
}

The WriteCharInfoToStream method writes and the ReadCharInfoFromStream method
reads the values of the class to and from a file stream and the clipboard. Note that we omit
the paragraphPtr and lineInfoPtr pointers since it would be meaningless to save
pointer addresses to a stream. Instead, their values are set by the
ReadDocumentFromStream method in the WordDocument class after calling the
ReadCharInfoFromStream method.

bool CharInfo::WriteCharInfoToStream(ostream& outStream) const {
 outStream.write((char*) &tChar, sizeof tChar);
 charFont.WriteFontToStream(outStream);
 charRect.WriteRectToStream(outStream);
 return ((bool) outStream);
}

bool CharInfo::ReadCharInfoFromStream(istream& inStream) {
 inStream.read((char*) &tChar, sizeof tChar);
 charFont.ReadFontFromStream(inStream);
 charRect.ReadRectFromStream(inStream);
 return ((bool) inStream);
}

Building a Word Processor

[129]

The WriteCharInfoToClipboard method writes and the ReadCharInfoFromClipboard
method reads the values to and from the clipboard. Also, in this case, we omit the
paragraphPtr and lineInfoPtr pointers. These pointers are set by the PasteGeneric
method in the WordDocument class after the call to the ReadCharInfoFromClipboard
method.

void CharInfo::WriteCharInfoToClipboard(InfoList& infoList) const{
 infoList.AddValue<TCHAR>(tChar);
 charFont.WriteFontToClipboard(infoList);
}

void CharInfo::ReadCharInfoFromClipboard(InfoList& infoList) {
 infoList.GetValue<TCHAR>(tChar);
 charFont.ReadFontFromClipboard(infoList);
}

Line information
The LineInfo method is a small structure holding information about a line in a paragraph:

The integer index of its first and last characters
Its height and ascent, that is, the height and ascent of the largest character on the
line.
The top position of the line relative to its paragraph top position

LineInfo.h

class LineInfo {
 public:
 LineInfo();
 LineInfo(int first, int last, int top,
 int height, int ascent);

 bool WriteLineInfoToStream(ostream& outStream) const;
 bool ReadLineInfoFromStream(istream& inStream);

Similar to the CharInfo method mentioned previously, the LineInfo method holds a set
of constant methods for inspecting the class fields and a set of nonconstant methods for
modifying them.

 int First() const {return first;}
 int Last() const {return last;}
 int Top() const {return top;}
 int Height() const {return height;}

Building a Word Processor

[130]

 int Ascent() const {return ascent;}
 int& First() {return first;}
 int& Last() {return last;}
 int& Top() {return top;}
 int& Height() {return height;}
 int& Ascent() {return ascent;}

The fields of this class are four integer values; the first and last fields refer to the first
and last characters on the line, respectively. The top, height, and ascent fields are the top
position of the line relative to the top position of the paragraph, the maximum height, and
ascent of the line.

 private:
 int first, last, top, height, ascent;
};

LineInfo.cpp

#include "..\\SmallWindows\\SmallWindows.h"
#include "LineInfo.h"

The default construct is called when the user reads a document from a stream, while the
second constructor is called when new lines of a paragraph are being generated.

LineInfo::LineInfo() {
 // Empty.
}

LineInfo::LineInfo(int first, int last, int top,
 int height, int ascent)
 :first(first),
 last(last),
 top(top),
 height(height),
 ascent(ascent) {
 // Empty.
}

The WriteLineInfoToStream and ReadLineInfoFromStream methods simply write and
read, respectively, the field value. Note that there are no corresponding methods for cut,
copy, and paste since the line list of a paragraph is regenerated each time the paragraph is
pasted.

bool LineInfo::WriteLineInfoToStream(ostream& outStream) const {
 outStream.write((char*) &first, sizeof first);
 outStream.write((char*) &last, sizeof last);
 outStream.write((char*) &ascent, sizeof ascent);

Building a Word Processor

[131]

 outStream.write((char*) &top, sizeof top);
 outStream.write((char*) &height, sizeof height);
 return ((bool) outStream);
}

bool LineInfo::ReadLineInfoFromStream(istream& inStream) {
 inStream.read((char*) &first, sizeof first);
 inStream.read((char*) &last, sizeof last);
 inStream.read((char*) &ascent, sizeof ascent);
 inStream.read((char*) &top, sizeof top);
 inStream.read((char*) &height, sizeof height);
 return ((bool) inStream);
}

The Paragraph class
A document is made up of a sequence of paragraphs. The Paragraph structure holds the
following:

The index of its first and last characters
Its top position relative to the beginning of the document, and its height
Its index in the document paragraph pointer list
Its alignment–a paragraph can be left, center, justified, or right aligned
Whether it holds a page break, that is, whether this paragraph will be located at
the beginning of the next page

Paragraph.h

enum Alignment {Left, Center, Right, Justified};
class WordDocument:

class Paragraph {
 public:
 Paragraph();
 Paragraph(int first, int last,
 Alignment alignment, int index);

 bool WriteParagraphToStream(ostream& outStream) const;
 bool ReadParagraphFromStream(WordDocument* wordDocumentPtr,
 istream& inStream);

 void WriteParagraphToClipboard(InfoList& infoList) const;
 void ReadParagraphFromClipboard(InfoList& infoList);

Building a Word Processor

[132]

 int& First() {return first;}
 int& Last() {return last;}
 int& Top() {return top;}
 int& Index() {return index;}
 int& Height() {return height;}
 bool& PageBreak() {return pageBreak;}

As you can see, we name the AlignmentField method instead of just the Alignment
method. The reason for this is that there already is a class named Alignment. We cannot
give the same name to both the class and method. Therefore, we add the Field suffix to the
method name.

 Alignment& AlignmentField() {return alignment;}
 DynamicList<LineInfo*>& LinePtrList() {return linePtrList;}

The first and last fields are the index in the document character list of the first and last
characters in the paragraph, respectively; the last character of the paragraph is always a
newline. The top field is the top position of the paragraph relative to the beginning of the
document, which is always zero for the first paragraph of the document and positive for the
other paragraphs. The height is the height of the paragraph, and index refers to the index
of the paragraph in the document paragraph pointer list. If pageBreak is true, the
paragraph will always be located at the beginning of a page.

 int first, last, top, height, index;
 bool pageBreak;

A paragraph can be left, right, centered, and justified aligned. In the justified case, the
spaces are extended in order for the words to be distributed over the whole width of the
page.

 Alignment alignment;

A paragraph is made up of at least one line. The indexes of the linePtrList list are
relative to the index of the first character in the paragraph (not the document), and the
coordinates are relative to the top of the paragraph (again, not the document).

 DynamicList<LineInfo*> linePtrList;
};

Building a Word Processor

[133]

Paragraph.cpp

#include "..\\SmallWindows\\SmallWindows.h"
#include "CharInfo.h"
#include "LineInfo.h"
#include "Paragraph.h"
#include "WordDocument.h"
Paragraph::Paragraph() { /* Empty. */ }
Paragraph::Paragraph(int first, int last, Alignment alignment, int index)
:top(-1), first(first), last(last), index(index), pageBreak(false),
alignment(alignment) { /* Empty. */ }

The idea is that the WriteParagraphToStream and ReadParagraphFromStream methods
write and read, respectively, all information about the paragraph. Remember that all
coordinates are given in logical units (hundredths of millimeters), which means that works
to save and open the file on screens with different resolutions.

bool Paragraph::WriteParagraphToStream(ostream& outStream) const {
 outStream.write((char*) &first, sizeof first);
 outStream.write((char*) &last, sizeof last);
 outStream.write((char*) &top, sizeof top);
 outStream.write((char*) &height, sizeof height);
 outStream.write((char*) &index, sizeof index);
 outStream.write((char*) &pageBreak, sizeof pageBreak);
 outStream.write((char*) &alignment, sizeof alignment);

 { int linePtrListSize = linePtrList.Size();
 outStream.write((char*) &linePtrListSize,
 sizeof linePtrListSize);

 for (const LineInfo* lineInfoPtr : linePtrList) {
 lineInfoPtr->WriteLineInfoToStream(outStream);
 }
 }

 return ((bool) outStream);
}

bool Paragraph::ReadParagraphFromStream
 (WordDocument* wordDocumentPtr, istream& inStream){
 inStream.read((char*) &first, sizeof first);
 inStream.read((char*) &last, sizeof last);
 inStream.read((char*) &top, sizeof top);
 inStream.read((char*) &height, sizeof height);
 inStream.read((char*) &index, sizeof index);
 inStream.read((char*) &pageBreak, sizeof pageBreak);
 inStream.read((char*) &alignment, sizeof alignment);

Building a Word Processor

[134]

When we have read indexes of the first and last character of the paragraph, we need to set
the paragraph pointer of each character.

 for (int charIndex = first; charIndex <= last; ++charIndex) {
 wordDocumentPtr->CharList()[charIndex].ParagraphPtr() = this;
 }

 { int linePtrListSize = linePtrList.Size();
 inStream.read((char*) &linePtrListSize,
 sizeof linePtrListSize);

 for (int count = 0; count < linePtrListSize; ++count) {
 LineInfo* lineInfoPtr = new LineInfo();
 assert(lineInfoPtr != nullptr);
 lineInfoPtr->ReadLineInfoFromStream(inStream);
 linePtrList.PushBack(lineInfoPtr);

In the same way as in the paragraph pointer case above, we need to set the line pointer of
each character.

 for (int charIndex = lineInfoPtr->First();
 charIndex <= lineInfoPtr->Last(); ++charIndex) {
 wordDocumentPtr->CharList()[first + charIndex].
 LineInfoPtr() = lineInfoPtr;
 }
 }
 }

 return ((bool) inStream);
}

On the other hand, the WriteParagraphToClipboard and
ReadParagraphFromClipboard methods only write and read, respectively, the essential
information. After the paragraph has been read, the CalaulateParagraph method is then
called, which calculates the character rectangles and the height of the paragraph and
generates its line pointer list.

void Paragraph::WriteParagraphToClipboard(InfoList& infoList) const {
 infoList.AddValue<int>(first);
 infoList.AddValue<int>(last);
 infoList.AddValue<int>(top);
 infoList.AddValue<int>(index);
 infoList.AddValue<bool>(pageBreak);
 infoList.AddValue<Alignment>(alignment);
}

Building a Word Processor

[135]

void Paragraph::ReadParagraphFromClipboard(InfoList& infoList) {
 infoList.GetValue<int>(first);
 infoList.GetValue<int>(last);
 infoList.GetValue<int>(top);
 infoList.GetValue<int>(index);
 infoList.GetValue<bool>(pageBreak);
 infoList.GetValue<Alignment>(alignment);
}

The MainWindow class
The MainWindow class is nearly identical to the versions of the previous chapters. It sets the
application name to Word and returns the address of a WordDocument instance:

#include "..\\SmallWindows\\SmallWindows.h"
#include "CharInfo.h"
#include "LineInfo.h"
#include "Paragraph.h"
#include "WordDocument.h"

void MainWindow(vector<String> /* argumentList */,
 WindowShow windowShow) {
 Application::ApplicationName() = TEXT("Word");
 Application::MainWindowPtr() = new WordDocument(windowShow);
}

The WordDocument class
The WordDocument class is the main class of the application. It extends the
StandardDocument class and takes advantage of its document-based functionality.

WordDocument.h

class WordDocument : public StandardDocument {
 public:
 WordDocument(WindowShow windowShow);

The InitDocument class is called by the constructor, the ClearDocument, and Delete
classes.

 void InitDocument();

Building a Word Processor

[136]

The OnKeyboardMode method is called every time the user presses the Insert key. The
UpdateCaret method sets the caret to a vertical bar in insert mode and a block in
overwrite mode. When the user marks one or several characters, the caret is cleared.

 void OnKeyboardMode(KeyboardMode keyboardMode);
 void UpdateCaret();

When the user presses, moves, and releases the mouse, we need to find the index of the
character located at the mouse position. The MousePointToIndex method finds the
paragraph, and the MousePointToParagraphIndex method finds the character in the
paragraph. The InvalidateBlock method invalidates the characters from the smallest
index, inclusive, to the largest index, exclusive.

 void OnMouseDown(MouseButton mouseButtons, Point mousePoint,
 bool shiftPressed,
 bool controlPressed);
 void OnMouseMove(MouseButton mouseButtons, Point mousePoint,
 bool shiftPressed,
 bool controlPressed);
 void OnMouseUp(MouseButton mouseButtons, Point mousePoint,
 bool shiftPressed,
 bool controlPressed);
 int MousePointToIndex(Point mousePoint) const;
 int MousePointToParagraphIndex(Paragraph* paragraphPtr,
 Point mousePoint) const;
 void InvalidateBlock(int firstIndex, int lastIndex);

When the user double-clicks on a word, it will be marked. The GetFirstWordIndex and
GetLastWordIndex methods find the first and last index of the word, respectively, if in fact
the user double-clicks on a word (rather than a space, period, comma, or question mark).

 void OnDoubleClick(MouseButton mouseButtons, Point mousePoint,
 bool shiftPressed, bool controlPressed);
 int GetFirstWordIndex(int charIndex) const;
 int GetLastWordIndex(int charIndex) const;

In this application, we introduce touchscreen handling. Unlike mouse clicks, it is possible to
touch the screen in several locations at the same time. Therefore, the parameter is a list of
points rather that one individual point.

 void OnTouchDown(vector<Point> pointList);
 void OnTouchMove(vector<Point> pointList);

The OnPageSetup method is called when the user has changed the page setting by selecting
the Page Setup menu item in the File menu, which allows the user to modify the page and
paragraphs settings. The CalculateDocument method distributes the paragraphs on the

Building a Word Processor

[137]

pages. If a paragraph is marked with a page break, or if it does not completely fit on the rest
of the current page, it is placed at the beginning of the next page.

 void OnPageSetup(PageSetupInfo pageSetupInfo);
 void CalculateDocument();

Unlike the applications in the previous chapters, we override both the OnPaint and
OnDraw methods. The OnPaint method is called when the client area needs to be redrawn.
It performs paint-specific actions, that is, actions that will be performed only when the
document is drawn in a window, but not when it is sent to the printer. More specifically, we
add page break markers in the client area, but not in the printer text.

The OnPaint method then calls the OnDraw method that performs the actual drawing of the
document. There is also a method OnPrint in the StandardDocument class (which we do
not override) that calls the OnDraw method when printing the document.

 void OnPaint(Graphics& graphics) const;
 void OnDraw(Graphics& graphics, DrawMode drawMode) const;

Similar to the applications in the previous chapters, the ClearDocument,
WriteDocumentToStream, and ReadDocumentFromStream methods are called when the
user selects the New, Save, Save As, or Open menu items in the File menu.

 void ClearDocument();
 bool WriteDocumentToStream(String name, ostream& outStream)
 const;
 bool ReadDocumentFromStream(String name, istream& inStream);

The CopyEnable method returns true when text is ready to be copied, that is, when the
user has marked a part of the text. The CopyAscii and CopyUnicode methods are called
when the user selects the Cut or Copy menu item and copies the marked text into a string
list. The CopyGeneric method is also called when the user selects the Cut or Copy menu
item and copies the marked text in an application-specific format that also copies the font
and style of the characters.

 bool CopyEnable() const;
 bool IsCopyAsciiReady() const;
 bool IsCopyUnicodeReady() const;
 bool IsCopyGenericReady(int format) const;

 void CopyAscii(vector<String>& textList) const;
 void CopyUnicode(vector<String>& textList) const;
 void CopyGeneric(int format, InfoList& infoList) const;

Building a Word Processor

[138]

The PasteAscii, PasteUnicode, and PasteGeneric methods are called when the user
selects the Paste menu item. One difference between copying and pasting is that all the
three aforementioned methods are called when copying, but only one method when
pasting, in the order the format is given in the StandardDocument constructor call.

 void PasteAscii(const vector<String>& textList);
 void PasteUnicode(const vector<String>& textList);
 void PasteGeneric(int format, InfoList& infoList);

We do not override the CutEnable or OnCut methods, since the CutEnable method in the
StandardDocument class calls the CopyEnable method, and the OnCut method calls the
OnDelete method followed by the OnCopy method.

The Delete menu item is enabled unless the input position is at the end of the document, in
which case there is nothing to delete. The Delete method is a general method for deleting
text and is called when the user presses the Delete or Backspace keys or when a marked text
block is being overwritten.

 bool DeleteEnable() const;
 void OnDelete();
 void Delete(int firstIndex, int lastIndex);

The OnPageBreak method sets the page break status of the edit paragraph. In case of a
page break, the paragraph will be placed at the beginning of the next page. The OnFont
method displays the standard font dialog that sets the font and color of the next character to
be input or the font of the marked block.

 DEFINE_BOOL_LISTENER(WordDocument, PageBreakEnable)
 DEFINE_VOID_LISTENER(WordDocument, OnPageBreak)
 DEFINE_VOID_LISTENER(WordDocument, OnFont)

A paragraph can be left, center, right, or justified aligned. The radio mark is present if the
paragraph currently edited or all paragraphs currently marked have the alignment in
question. All the listeners call the IsAlignment and SetAlignment methods, which
returns the current alignment and sets the alignment, respectively, for the edited paragraph
or all marked paragraphs.

 DEFINE_BOOL_LISTENER(WordDocument, LeftRadio)
 DEFINE_VOID_LISTENER(WordDocument, OnLeft)
 DEFINE_BOOL_LISTENER(WordDocument, CenterRadio)
 DEFINE_VOID_LISTENER(WordDocument, OnCenter)
 DEFINE_BOOL_LISTENER(WordDocument, RightRadio)
 DEFINE_VOID_LISTENER(WordDocument, OnRight)
 DEFINE_BOOL_LISTENER(WordDocument, JustifiedRadio)
 DEFINE_VOID_LISTENER(WordDocument, OnJustified)

Building a Word Processor

[139]

 bool IsAlignment(Alignment alignment) const;
 void SetAlignment(Alignment alignment);

The OnChar method is called every time the user presses a graphical character; it calls the
InsertChar or OverwriteChar method, depending on whether the keyboard holds
insert or overwrite mode. When the text is marked and the user changes the font, the
font is set on all marked characters. However, when editing text, the font of the next
character to be input is set.

When the user does anything else than input the next character, such as clicking the mouse
or pressing any of the arrow keys, the ClearNextFont method is called, which clears the
next font by setting it to the SystemFont method.

 void OnChar(TCHAR tChar);
 void InsertChar(TCHAR tChar, Paragraph* paragraphPtr);
 void OverwriteChar(TCHAR tChar, Paragraph* paragraphPtr);
 void ClearNextFont();

The OnKeyDown method is called every time the user presses a key, such as the arrow keys,
Page Up and Page Down, Home and End, Delete, or Backspace:

 bool OnKeyDown(WORD key, bool shiftPressed,
 bool controlPressed);
 void OnRegularKey(WORD key);
 void EnsureEditStatus();
 void OnLeftArrowKey();
 void OnRightArrowKey();
 void OnUpArrowKey();
 void OnDownArrowKey();
 int MousePointToIndexDown(Point mousePoint) const;
 void OnPageUpKey();
 void OnPageDownKey();
 void OnHomeKey();
 void OnEndKey();

When the user presses the key without pressing the Shift key at the same time, the caret is
moved. However, when they press the Shift key, the marking of the text is changed.

 void OnShiftKey(WORD key);
 void EnsureMarkStatus();
 void OnShiftLeftArrowKey();
 void OnShiftRightArrowKey();
 void OnShiftUpArrowKey();
 void OnShiftDownArrowKey();
 void OnShiftPageUpKey();
 void OnShiftPageDownKey();
 void OnShiftHomeKey();

Building a Word Processor

[140]

 void OnShiftEndKey();

When the user presses the Home or End key together with the Ctrl key, the caret is placed at
the beginning or end of the document. If they also press the Shift key, the text is marked.

The reason we use listener instead of regular methods is that all actions involving the Ctrl
key are interpreted as accelerators by Small Windows. The listeners are also added to a
menu in the following constructor.

 DEFINE_VOID_LISTENER(WordDocument, OnControlHomeKey);
 DEFINE_VOID_LISTENER(WordDocument, OnControlEndKey);
 DEFINE_VOID_LISTENER(WordDocument, OnShiftControlHomeKey);
 DEFINE_VOID_LISTENER(WordDocument, OnShiftControlEndKey);

There are also the Return, Backspace, and Delete keys, in which case we do not care whether
the Shift or Ctrl key is pressed. The Delete key is handled by the Delete menu item
accelerator.

 void OnNeutralKey(WORD key);
 void OnReturnKey();
 void OnBackspaceKey();

When the user moves the caret with the keyboard, the edit character will be visible. The
MakeVisible method makes sure it is visible, even if it means scrolling the document.

 void MakeVisible();

When something happens to the paragraph (characters are added or deleted, the font or
alignment is changed, or the page setup), the positions of the characters need to be
calculated. The GenerateParagraph method calculates the surrounding rectangle for each
of its character and generates its line list by calling the GenerateSizeAndAscentList
method to calculate the size and ascent line for the characters, the GenerateLineList
method to divide the paragraph into lines, the GenerateRegularLineRectList method
to generate the character rectangles for left, center, or right aligned paragraphs or the
GenerateJustifiedLineRectList method for justified paragraphs, and the
GenerateRepaintSet method to invalidate the changed characters.

 void GenerateParagraph(Paragraph* paragraphPtr);
 void GenerateSizeAndAscentList(Paragraph* paragraphPtr,
 DynamicList<Size>& sizeList,
 DynamicList<int>& ascentList);
 void GenerateLineList(Paragraph* paragraphPtr,
 DynamicList<Size>& sizeList,
 DynamicList<int>& ascentList);

Building a Word Processor

[141]

 void GenerateRegularLineRectList(Paragraph* paragraphPtr,
 LineInfo* lineInfoPtr,
 DynamicList<Size>& sizeList,
 DynamicList<int>&ascentList);
 void GenerateJustifiedLineRectList(Paragraph* paragraphPtr,
 LineInfo* lineInfoPtr,
 DynamicList<Size>& sizeList,
 DynamicList<int>& ascentList);
 void InvalidateRepaintSet(Paragraph* paragraphPtr,
 DynamicList<CharInfo>& prevRectList);
 DynamicList<CharInfo>& CharList() {return charList;}

One central part of this application is the wordMode method. At a certain time, the
application can be set to edit mode (the caret is visible), in which case wordMode is the
WordEdit method, or mark mode (a part of the text is marked), in which case wordMode is
the WordMark method. Later in the chapter, we will encounter expressions such as in edit
mode and in mark mode, which refer to the value of wordMode: WordEdit or WordMark.

We will also encounter the expressions in insert mode and in overwrite mode, which refer
to the input mode of the keyboard, the InsertKeyboard or OverwriteKeyboard
method, which is returned by the GetKeyboardMode method in the Small Windows class
Document.

The totalPages field holds the number of pages, which is used when printing and when
setting the vertical scroll bar. The list of characters is stored in the charList list, and the list
of paragraph pointers is stored in the paragraphList list. Note that the paragraphs are
dynamically created and deleted Paragraph objects while the characters are static
CharInfo objects. Also note that each paragraph does not hold a character list. There is
only one charList, which is common to all paragraphs. However, each paragraph holds its
own list of Line pointers that are local to the paragraph.

In this chapter, we will also encounter expressions such as the edit character, which refers
to the character with index editIndex in the charList list. As mentioned at the beginning
of this chapter, each character has pointers to its paragraph and line. The expressions the
edit paragraph and the edit line refer to the paragraph and line pointed at by the edit
character.

The firstMarkIndex and lastMarkIndex fields hold the indexes of the first and last
marked characters in mark mode. They are also referred to in expressions such as the first
marked character, the first marked paragraph, and the first marked line as well as the last
marked character, the last marked paragraph, and the last marked line. Note that the two
fields refer to the chronological order, not necessarily their physical order. When needed,
we will define the minIndex and maxIndex methods to refer to the first and last markings

Building a Word Processor

[142]

in the document in physical order.

When the user sets the font in edit mode, it is stored in the nextFont font, which is then
used when the user inputs the next character. The caret takes into consideration the status
of the nextFont font, that is, if the nextFont font is not equal to the ZeroFont font, it is
used to set the caret. However, the nextFont font is cleared as soon as the user does
anything else.

The user can zoom the document by menu items or by touching the screen. In that case, we
need the initZoom and initDistance fields to keep track of the zooming. Finally, we
need the WordFormat field to identify cut, copied, and pasted application-specific
information. It is given the arbitrary value of 1002.

 private:
 enum {WordEdit, WordMark} wordMode;

 int totalPages;
 DynamicList<CharInfo> charList;
 DynamicList<Paragraph*> paragraphList;

 int editIndex, firstMarkIndex, lastMarkIndex;
 Font nextFont;

 double initZoom, initDistance;
 static const unsigned int WordFormat = 1002;
};

WordDocument.cpp

#include "..\\SmallWindows\\SmallWindows.h"
#include "CharInfo.h"
#include "LineInfo.h"
#include "Paragraph.h"
#include "WordDocument.h"

The WordDocument constructor calls the StandardDocument constructor. The
UnicodeFormat and AsciiFormat methods are general formats defined by Small
Windows, while the WordFormat method is specific to this application.

WordDocument::WordDocument(WindowShow windowShow)
 :StandardDocument(LogicalWithScroll, USLetterPortrait,
 TEXT("Word Files, wrd; Text Files, txt"),
 nullptr, OverlappedWindow, windowShow,
 {WordFormat, UnicodeFormat, AsciiFormat},
 {WordFormat, UnicodeFormat, AsciiFormat}) {

Building a Word Processor

[143]

The Format menu holds the Font and Page Break menu items. Unlike the earlier
applications in this book, we send true to StandardFileMenu. It indicates that we want to
include the Page Setup, Print Preview, and Print menu items in the File menu.

 Menu menuBar(this);
 menuBar.AddMenu(StandardFileMenu(true));
 menuBar.AddMenu(StandardEditMenu());

 Menu formatMenu(this, TEXT("F&ormat"));
 formatMenu.AddItem(TEXT("&Font\tCtrl+F"), OnFont);
 formatMenu.AddItem(TEXT("&Page Break\tCtrl+B"),
 OnPageBreak, PageBreakEnable);
 menuBar.AddMenu(formatMenu);

The Alignment menu holds items for the left, center, right, and justified alignment:

 Menu alignmentMenu(this, TEXT("&Alignment"));
 alignmentMenu.AddItem(TEXT("&Left\tCtrl+L"), OnLeft,
 nullptr, nullptr, LeftRadio);
 alignmentMenu.AddItem(TEXT("&Center\tCtrl+E"), OnCenter,
 nullptr, nullptr, CenterRadio);
 alignmentMenu.AddItem(TEXT("&Right\tCtrl+R"), OnRight,
 nullptr, nullptr, RightRadio);
 alignmentMenu.AddItem(TEXT("&Justified\tCtrl+J"), OnJustified,
 nullptr, nullptr, JustifiedRadio);
 menuBar.AddMenu(alignmentMenu);

 menuBar.AddMenu(StandardHelpMenu());
 SetMenuBar(menuBar);

The extraMenu menu is only added for the accelerators; note that we do not add it to the
menu bar. The text of the menu, or its items, does not matter either. We only want to allow
the user to jump to the beginning or end of the document by pressing the Ctrl key with
Home or End, and possibly Shift.

 Menu extraMenu(this);
 extraMenu.AddItem(TEXT("&A\tCtrl+Home"), OnControlHomeKey);
 extraMenu.AddItem(TEXT("&B\tCtrl+End"), OnControlEndKey);
 extraMenu.AddItem(TEXT("&C\tShift+Ctrl+Home"),
 OnShiftControlHomeKey);
 extraMenu.AddItem(TEXT("&D\tShift+Ctrl+End"),
 OnShiftControlEndKey);

Finally, we call the InitDocument method that initializes the empty document. The
InitDocument method is also called by the ClearDocument and Delete classes as
follows, when the initialization code is placed in its own method.

Building a Word Processor

[144]

 InitDocument();
}

A document always holds at least one paragraph, which, in turn, holds at least a newline.
We create the first character and the first left-justified paragraph. The paragraph and
character are added to the paragraphList and charList lists.

Then, the paragraph is calculated by the GenerateParagraph method and distributed on
the document by the CalculateDocument method. Finally, the caret is updated by the
UpdateCaret method.

void WordDocument::InitDocument() {
 wordMode = WordEdit;
 editIndex = 0;
 Paragraph* firstParagraphPtr = new Paragraph(0, 0, Left, 0);
 assert(firstParagraphPtr != nullptr);
 Font font(TEXT("Times New Roman"), 36, false, true);
 charList.PushBack(CharInfo(firstParagraphPtr, NewLine, font));
 GenerateParagraph(firstParagraphPtr);
 paragraphList.PushBack(firstParagraphPtr);
 CalculateDocument();
 UpdateCaret();
}

The caret
Since in this chapter we introduce text handling, we need to keep track of the caret: the
blinking vertical bar (in insert mode) or block (in overwrite mode) indicating where to
input the character. The UpdateCaret method is called by the OnKeyboardMode method
(which is called when the user presses the Insert key) as well as other methods when the
input position is being modified.

void WordDocument::OnKeyboardMode(KeyboardMode/*=KeyboardMode*/) {
 UpdateCaret();
}

void WordDocument::UpdateCaret() {
 switch (wordMode) {
 case WordEdit: {
 CharInfo charInfo = charList[editIndex];
 Rect caretRect = charList[editIndex].CharRect();

In edit mode, the caret will be visible, and we obtain the area from the edit character.
However, if the nextFont font is active (does not equal the SystemFont font), the user has

Building a Word Processor

[145]

changed the font, which we must take into consideration. In that case, we set the width and
height of the caret in accordance with the size of an average character of the nextFont font.

 if (nextFont != SystemFont) {
 int width = GetCharacterAverageWidth(nextFont),
 height = GetCharacterHeight(nextFont);
 caretRect.Right() = caretRect.Left() + width;
 caretRect.Top() = caretRect.Bottom() - height;
 }

If the nextFont font is not active, we check whether the keyboard holds insert mode and
the caret is not located at the beginning of the paragraph. In that case, the caret's vertical
coordinates will reflect the font size of the preceding character, since the next character to be
input will be given its font.

 else if ((GetKeyboardMode() == InsertKeyboard) &&
 (charInfo.ParagraphPtr()->First() < editIndex)) {
 Rect prevCharRect = charList[editIndex - 1].CharRect();
 caretRect.Top() = caretRect.Bottom() – prevCharRect.Height();
 }

If the keyboard holds the insert mode, the caret will be a vertical bar, regardless of
whether the nextFont font is active. It is given the width of one unit (which is later
rounded to the width of one physical pixel).

 if (GetKeyboardMode() == InsertKeyboard) {
 caretRect.Right() = caretRect.Left() + 1;
 }

The caret will not extend outside the page. If it does, its right border is set to the page's
border.

 if (caretRect.Right() >= PageInnerWidth()) {
 caretRect.Right() = PageInnerWidth() - 1;
 }

Finally, we need the top position of the edit paragraph, since the caret so far is calculated
relative to its top position.

 Paragraph* paragraphPtr =
 charList[editIndex].ParagraphPtr();
 Point topLeft = Point(0, paragraphPtr->Top());
 SetCaret(topLeft + caretRect);
 }
 break;

Building a Word Processor

[146]

In mark mode, the caret will be invisible. Therefore, we call ClearCaret as follows:

 case WordMark:
 ClearCaret();
 break;
 }
}

Mouse input
The OnMouseDown, OnMouseMove, OnMouseUp, and OnDoubleClick methods take the
pressed buttons and the mouse coordinates. In all four cases, we check that the left mouse
button is pressed. The OnMouseDown method first calls the EnsureEditStatus method in
order to clear any potential marked area. Then it sets the application to mark mode (which
may later be changed by the OnMouseUp method) and looks up the index of the character
pointed at by calling the MousePointToIndex method. The nextFont field is cleared by a
call to the ClearNextFont method. We also call the UpdateCaret method, since the caret
will be cleared while the user drags the mouse.

void WordDocument::OnMouseDown(MouseButton mouseButtons,
 Point mousePoint, bool shiftPressed,
 bool controlPressed) {
 if (mouseButtons == LeftButton) {
 EnsureEditStatus();
 ClearNextFont();
 wordMode = WordMark;
 firstMarkIndex = lastMarkIndex =
 MousePointToIndex(mousePoint);
 UpdateCaret();
 }
}

In the OnMouseMove method, we retrieve the paragraph and character of the mouse by
calling the MousePointToIndex method. If the mouse has been moved to a new character
since the last call to the OnMouseDown or OnMouseMove method, we update the marked text
by calling the InvalidateBlock method with the current and new mouse position, which
invalidates the part of the text between the current and previous mouse event. Note that we
do not invalidate the whole marked block. We only invalidate the block between the
previous and current mouse positions in order to avoid dazzles.

Building a Word Processor

[147]

void WordDocument::OnMouseMove(MouseButton mouseButtons,
 Point mousePoint, bool shiftPressed,
 bool controlPressed) {
 if (mouseButtons == LeftButton) {
 int newLastMarkIndex = MousePointToIndex(mousePoint);

 if (lastMarkIndex != newLastMarkIndex) {
 InvalidateBlock(lastMarkIndex, newLastMarkIndex);
 lastMarkIndex = newLastMarkIndex;
 }
 }
}

In the OnMouseUp method, we just have to check the last position. If it is the same as the
first position (the user pressed and released the mouse at the same character), we change
the application to edit mode and call the UpdateCaret method to make the caret visible.

void WordDocument::OnMouseUp(MouseButton mouseButtons,
 Point mousePoint, bool shiftPressed,
 bool controlPressed) {
 if (mouseButtons == LeftButton) {
 if (firstMarkIndex == lastMarkIndex) {
 wordMode = WordEdit;
 editIndex = min(firstMarkIndex, charList.Size() - 1);
 UpdateCaret();
 }
 }
}

The MousePointToIndex method finds the paragraph that the user has clicked on and calls
the MousePointToParagraphIndex method to find the character in the paragraph. The
reason we divide the functionality into two methods is that the MousePointToIndexDown
method in Chapter 7, Keyboard Input and Character Calculation, also calls the
MousePointToParagraphIndex method, which iterates through the paragraph list. If the
vertical position is less than the top position of a paragraph, the correct paragraph is the
previous one.

This somewhat cumbersome way of finding the correct paragraph is due to the fact that
paragraphs are distributed over the pages in such manner that when a paragraph does not
fit on the rest of the page, or if it is marked with a page break, it is placed at the beginning
of the next page. This may result in parts of the document where no paragraph is located. If
the user clicks on such an area, we want the paragraph located before that area to be the
correct one. In the same way, if the user clicks below the last paragraph of the document, it
becomes the correct one.

Building a Word Processor

[148]

int WordDocument::MousePointToIndex(Point mousePoint) const{
 for (int parIndex = 1; parIndex < paragraphList.Size();
 ++parIndex) {
 Paragraph* paragraphPtr = paragraphList[parIndex];

 if (mousePoint.Y() < paragraphPtr->Top()) {
 return MousePointToParagraphIndex
 (paragraphList[parIndex - 1], mousePoint);
 }
 }

 return MousePointToParagraphIndex
 (paragraphList[paragraphList.Size() - 1], mousePoint);
}

The MousePointToParagraphIndex method finds the clicked character in the paragraph.
First, we subtract the paragraph's top position from the mouse position, since the
paragraph's line coordinates are relative to the paragraph's top position.

int WordDocument::MousePointToParagraphIndex
 (Paragraph* paragraphPtr,Point mousePoint) const{
 mousePoint.Y() -= paragraphPtr->Top();

As mentioned previously, the user may click on a position below the paragraph's area. In
that case, we set the mouse position to its height, -1, which is equivalent to the user clicking
on the last line of the paragraph.

 if (mousePoint.Y() >= paragraphPtr->Height()) {
 mousePoint.Y() = paragraphPtr->Height() - 1;
 }

First, we need to find the correct line in the paragraph. We check every line and test if the
mouse position is located within the line by comparing it to the sum of the line's top
position and its height. Compared to the paragraph search in the MousePointToIndex
method, as mentioned previously, this search is a bit simpler, since there is no space
between the lines in the paragraph as there may be between the paragraphs in the
document.

 int firstChar = paragraphPtr->First();
 for (LineInfo* lineInfoPtr : paragraphPtr->LinePtrList()) {
 if (mousePoint.Y() < (lineInfoPtr->Top() +
 lineInfoPtr->Height())) {
 Rect firstRect =
 charList[firstChar +lineInfoPtr->First()].CharRect(),
 lastRect =
 charList[firstChar + lineInfoPtr->Last()].CharRect();

Building a Word Processor

[149]

When we have found the correct line, we have three cases to consider: the user may have
clicked on the left of the text (if the paragraph is center or right aligned), to its right (if it is
left or center aligned), or on the text itself. If they have clicked on the left or right of the line,
we return the index of the first or last character of the line. Note that we add the index of
the first character of the paragraph, since the indexes of the lines are relative to the
paragraph's first index.

 if (mousePoint.X() < firstRect.Left()) {
 return paragraphPtr->First() + lineInfoPtr->First();
 }
 else if (lastRect.Right() <= mousePoint.X()) {
 return paragraphPtr->First() + lineInfoPtr->Last();
 }

If the user has clicked on the text, we need to find the correct character. We iterate through
the characters of the line and compare the mouse position to the right-hand border of the
character. When we have found the correct character, we need to decide whether the user
has clicked near the character's left or right border. In case of the right border, we add one
to the character index.

 else {
 for (int charIndex = lineInfoPtr->First();
 charIndex <= lineInfoPtr->Last(); ++charIndex) {
 Rect charRect = charList[charIndex].CharRect();

 if (mousePoint.X() < charRect.Right()) {
 int leftSize = mousePoint.X() - charRect.Left(),
 rightSide = charRect.Right() - mousePoint.X();

 return paragraphPtr->First() +
 ((leftSize < rightSide) ? charIndex
 : (charIndex + 1));
 }
 }
 }
 }
 }

As mentioned previously, there is no space between the lines in a paragraph. Therefore, we
will always find the correct line and never reach this point. However, in order to avoid
compiler errors, we still have to return a value. In this book, we will on a few occasions use
the following notation:

 assert(false);
 return 0;
}

Building a Word Processor

[150]

void WordDocument::InvalidateBlock(int firstIndex, int lastIndex){
 int minIndex = min(firstIndex, lastIndex),
 maxIndex = min(max(firstIndex, lastIndex).
 charList.Size() - 1);

 for (int charIndex = minIndex; charIndex <= maxIndex;
 ++charIndex) {
 CharInfo charInfo = charList[charIndex];
 Point topLeft(0, charInfo.ParagraphPtr()->Top());
 Invalidate(topLeft + charInfo.CharRect());
 }
}

When the user double-clicks the left mouse button, the word hit by the mouse will be
marked. The application has been set to edit mode and the editIndex method has been
properly set, because the call to the OnDoubleClick method is always preceded by calls to
the OnMouseDown and OnMouseUp methods. If the mouse hits a word, we mark the word
and set the application to mark mode.

We find the indexes of the first and last characters in a word by calling the
GetFirstWordIndex and GetLastWordIndex methods. If the first index is less than the
last index, the user has double-clicked on an actual word, which we mark. If the first index
is not less than the last index, the user has double-clicked on a space or a delimiter, in which
case the double-click has no effect.

void WordDocument::OnDoubleClick(MouseButton mouseButtons,
 Point mousePoint, bool shiftPressed,
 bool controlPressed) {
 int firstIndex = GetFirstWordIndex(editIndex),
 lastIndex = GetLastWordIndex(editIndex);

 if (firstIndex < lastIndex) {
 wordMode = WordMark;
 firstMarkIndex = firstIndex;
 lastMarkIndex = lastIndex;

 UpdateCaret();
 InvalidateBlock(firstMarkIndex, lastMarkIndex);
 UpdateWindow();
 }
}

In the GetFirstWordIndex method, we find the index of the first character of the word by
going backward in the character list until we reach the beginning of the document or a
character that is not a letter.

Building a Word Processor

[151]

int WordDocument::GetFirstWordIndex(int charIndex) const{
 while ((charIndex >= 0) &&
 (isalpha(charList[charIndex].Char()))) {
 --charIndex;
 }
 return (charIndex + 1);
}

In the GetLastWordIndex method, we do not need to check the end of the character list,
since the last character always is a newline, which is not a letter. Note that in this case we
return the index of the character after the last character of the word, since the marking of
text is valid up to, but not inclusive of, the last character.

int WordDocument::GetLastWordIndex(int charIndex) const{
 while (isalpha(charList[charIndex].Char())) {
 ++charIndex;
 }
 return charIndex;
}

Touchscreen
On a touchscreen, the user can zoom the document by dragging two fingers on the screen.
The OnTouchDown method is called when the user touches the screen, and the
OnTouchMove method is called when they move their fingers. Unlike the mouse input
methods mentioned previously, the user can touch several points on the screen at the same
time. The points are stored in the pointList list.

If the list does not hold two points, we just let the Window class perform the default action,
which is to convert each touch action to a mouse action.

void WordDocument::OnTouchDown(vector<Point> pointList) {
 if (pointList.size() == 2) {
 initZoom = GetZoom();
 Point firstInitPoint = pointList[0],
 secondInitPoint = pointList[1];
 double width = firstInitPoint.X() - secondInitPoint.X(),
 height = firstInitPoint.Y() - secondInitPoint.Y(),
 initDistance = sqrt((width * width) + (height * height));
 }
 else {
 Window::OnTouchDown(pointList);
 }
}

Building a Word Processor

[152]

When the user moves their fingers on the screen, the distance between the fingers is
calculated and the zoom is set with regard to the initial distance. The zooming is allowed to
range between 10% (factor 0.1) and 1,000% (factor 10.0):

void WordDocument::OnTouchMove(vector<Point> pointList) {
 if (pointList.size() == 2) {
 Point firstPoint = pointList[0], secondPoint = pointList[1];

 int width = firstPoint.X() - secondPoint.X(),
 height = firstPoint.Y() - secondPoint.Y();
 double distance = sqrt((width * width) + (height * height));

 double factor = distance / initDistance;
 double newZoom = factor * initZoom;
 SetZoom(min(max(newZoom, 0.1), 10.0));

 UpdateCaret();
 Invalidate();
 UpdateWindow();
 }
 else {
 Window::OnTouchMove(pointList);
 }
}

Page setup and calculation
The OnPageSetup method is called when the user selects the standard Page Setup menu
item in the File menu. Since the page settings have been altered, we need to recalculate each
paragraph as well as the whole document.

void WordDocument::OnPageSetup(PageSetupInfo pageSetupInfo) {
 ClearNextFont();

 for (Paragraph* paragraphPtr : paragraphList) {
 GenerateParagraph(paragraphPtr);
 }

 CalculateDocument();
 UpdateCaret();
 UpdateWindow();
}

A small change may affect the whole document, and we need to calculate the paragraphs
and distribute them on the pages in the document.

Building a Word Processor

[153]

void WordDocument::CalculateDocument() {
 int pageInnerWidth = PageInnerWidth(),
 pageInnerHeight = PageInnerHeight(),
 documentHeight = 0, newTotalPages = 1;

We iterate through the paragraph list, and in case the current document height differs from
the paragraph's top position, we update its top position and invalidate it.

 for (int parIndex = 0; parIndex < paragraphList.Size();
 ++parIndex) {
 Paragraph* paragraphPtr = paragraphList[parIndex];

 if (paragraphPtr->Top() != documentHeight) {
 paragraphPtr->Top() = documentHeight;
 Invalidate(Rect(0, paragraphPtr->Top(), pageInnerWidth,
 paragraphPtr->Top() + paragraphPtr->Height()));
 }

We have a page break if the paragraph is marked with a page break and if it is not already
located at the top of a page.

 bool pageBreak = paragraphPtr->PageBreak() &&
 ((paragraphPtr->Top() % pageInnerHeight) != 0);

The paragraph does not fit on the rest of the page if its top position plus its height is greater
than the page height.

 bool notFitOnPage =
 (documentHeight > 0) &&
 ((paragraphPtr->Top() + paragraphPtr->Height()) >
 (newTotalPages * pageInnerHeight));

If we have a page break, or if the paragraph does not fit on the rest of the page, we
invalidate the rest of the page and place the paragraph at the top of the next page.

 if (pageBreak || notFitOnPage) {
 Rect restOfPage(0, documentHeight, pageInnerWidth,
 newTotalPages * pageInnerHeight);
 Invalidate(restOfPage);
 paragraphPtr->Top() = (newTotalPages++) * pageInnerHeight;

Since the paragraph has been moved to a new position, we need to invalidate its new area.

 Invalidate(Rect(0, paragraphPtr->Top(), pageInnerWidth,
 paragraphPtr->Top() + paragraphPtr->Height()));
 documentHeight = paragraphPtr->Top() +
 paragraphPtr->Height();
 }

Building a Word Processor

[154]

If the paragraph fits on the rest of the document, we just increase the document height.

 else {
 documentHeight += paragraphPtr->Height();
 }
 }

After the last paragraph, we need to invalidate the rest of the last page.

 Rect restOfPage(0, documentHeight, pageInnerWidth,
 newTotalPages * pageInnerHeight);
 Invalidate(restOfPage);

If the number of pages has changed, we invalidate the pages that differ.

 if (totalPages != newTotalPages) {
 int minTotalPages = min(totalPages, newTotalPages),
 maxTotalPages = max(totalPages, newTotalPages);
 Invalidate(Rect(0, minTotalPages * pageInnerHeight,
 pageInnerWidth, maxTotalPages * pageInnerHeight));
 totalPages = newTotalPages;
 SetVerticalScrollTotalHeight(totalPages * pageInnerHeight);
 }
}

Painting and drawing
The OnPaint method performs the action that is specific to drawing the client area, while
the OnPrint method performs the action specific to printing. The default behavior for both
the OnPaint and OnPrint methods in the StandardDocument class is to call the OnDraw
method.

In the application of the previous chapters, we have overridden only the OnDraw method,
resulting in the same drawing regardless of whether the drawing occurs in the client area or
is sent to a printer. However, in this application, we also override the OnPaint method,
which fills the parts of the client area outside the document with a light gray color and
places the text Page Break between every pair of pages, and finally calls the OnDraw method
that performs the actual drawing of the document.

void WordDocument::OnPaint(Graphics& graphics) const {
 int pageInnerWidth = PageInnerWidth(),
 pageInnerHeight = PageInnerHeight();

 int documentInnerHeight = totalPages * pageInnerHeight;
 Size clientSize = GetClientSize();

Building a Word Processor

[155]

 if (pageInnerWidth() < clientSize.Width()) {
 int maxHeight = max(documentInnerHeight, clientSize.Height());
 Rect rightRect(pageInnerWidth, 0,
 clientSize.Width(), maxHeight);
 graphics.FillRectangle(rightRect, LightGray, LightGray);
 }

 if (documentInnerHeight() < clientSize.Height()) {
 Rect bottomRect(0, documentInnerHeight(),
 pageInnerWidth(), clientSize.Height());
 graphics.FillRectangle(bottomRect, LightGray, LightGray);
 }

 OnDraw(graphics, Paint);

 int breakWidth = min(clientSize.Width()),
 breakHeight = GetCharacterHeight(SystemFont);
 Size breakSize(breakWidth, breakHeight);

 for (int pageIndex = 1; pageIndex < totalPages; ++pageIndex) {
 int line = pageIndex * pageInnerHeight;
 graphics.DrawLine(Point(0, line), Point(pageInnerWidth, line),
 Black);

 Point topLeft(0, line - (breakHeight / 2));
 graphics.DrawText(Rect(topLeft, breakSize),
 TEXT("Page Break"), SystemFont,Black,White);
 }
}

The OnDraw method draws every character in the charList list. The drawMode parameter
is Paint if the OnDraw method is called by the OnPaint method, and Print if it is called by
the OnPrint method. In the previous applications, we have ignored the drawMode method.
However, in this application, we draw a small square at every paragraph marked with a
page break, if called by the OnPaint method.

void WordDocument::OnDraw(Graphics& graphics, DrawMode drawMode) const {
 minCharIndex = min(firstMarkIndex, lastMarkIndex),
 maxCharIndex = max(firstMarkIndex, lastMarkIndex);

 for (int charIndex = 0; charIndex <= charList.Size() - 1;
 ++charIndex) {
 CharInfo charInfo = charList[charIndex];
 Point topLeft(0, charInfo.ParagraphPtr()->Top());

 Color textColor = charInfo.CharFont().GetColor();
 Color backColor = textColor.Inverse();

Building a Word Processor

[156]

If the character is marked, its text and background colors are inverted.

 if ((wordMode == WordMark) &&
 (minCharIndex <= charIndex)&&(charIndex < maxCharIndex)) {
 swap(textColor, backColor);
 }

If the character is newline, a space is drawn instead.

 TCHAR tChar = (charInfo.Char() == NewLine)
 ? Space: charInfo.Char();
 TCHAR text[] = {tChar, TEXT('\0')};

If the character's rectangle is located outside the page, its right border is set to the page right
border.

 Rect charRect = charList[charIndex].CharRect();
 if (charRect.Right() >= pageWidth) {
 charRect.Right() = pageWidth - 1;
 }

Finally, the character is drawn:

 graphics.DrawText(topLeft + charRect, text,
 charInfo.CharFont(), textColor, backColor);
 }

Actually, there is one more thing: if the OnDraw method has been called by the OnPaint
method, we draw a small red square (2 × 2 millimeters) at its top-left position for every
paragraph marked with a page break.

 if (drawMode == Paint) {
 for (Paragraph* paragraphPtr : paragraphList) {
 if (paragraphPtr->PageBreak()) {
 Point topLeft(0, paragraphPtr->Top());
 graphics.FillRectangle(Rect(topLeft, topLeft +
 Size(200, 200)), Red, Red);
 }
 }
 }
}

Building a Word Processor

[157]

File management
The ClearDocument method is called by the StandardDocument class when the user
selects the New menu item in the File menu; the WriteDocumentToStream method is
called when they select the Save or Save As menu items in the File menu, and the
ReadDocumentFromStream method is called when they select the Open menu item.

The ClearDocument method deletes every paragraph in the paragraphList list by calling
the DeleteParagraph method, which, in turn, deletes each line of the paragraph. This is
actually the only memory we need to delete, since it is the only dynamically allocated
memory of this application. Finally, the InitDocument method is called, which initializes
an empty document.

void DeleteParagraph(Paragraph* paragraphPtr) {
 for (LineInfo* lineInfoPtr : paragraphPtr->LinePtrList()) {
 delete lineInfoPtr;
 }

 delete paragraphPtr;
}

void WordDocument::ClearDocument() {
 nextFont = SystemFont;

 for (Paragraph* paragraphPtr : paragraphList) {
 DeleteParagraph(paragraphPtr);
 }

 charList.Clear();
 paragraphList.Clear();
 InitDocument();
}

The WriteDocumentToStream method writes all the information about the document to
the stream: the application mode (edit or mark), the index of the edit character, the
indexes of the first and last marked characters, the number of pages in the document, and
the next font. The idea is that the document will be opened in the exact same shape as it was
written.

bool WordDocument::WriteDocumentToStream(String name,
 ostream& outStream)const{
 if (EndsWith(name, TEXT(".wrd")) &&
 WritePageSetupInfoToStream(outStream)){
 outStream.write((char*) &wordMode, sizeof wordMode);
 outStream.write((char*) &editIndex, sizeof editIndex);

Building a Word Processor

[158]

 outStream.write((char*) &firstMarkIndex,
 sizeof firstMarkIndex);
 outStream.write((char*) &lastMarkIndex, sizeof lastMarkIndex);
 outStream.write((char*) &totalPages, sizeof totalPages);
 nextFont.WriteFontToStream(outStream);

 { int charInfoListSize = charList.Size();
 outStream.write((char*) &charInfoListSize,
 sizeof charInfoListSize);
 for (CharInfo charInfo : charList) {
 charInfo.WriteCharInfoToStream(outStream);
 }
 }

 { int paragraphListSize = paragraphList.Size();
 outStream.write((char*) ¶graphListSize,
 sizeof paragraphListSize);

 for (const Paragraph* paragraphPtr : paragraphList) {
 paragraphPtr->WriteParagraphToStream(outStream);
 }
 }
 }

However, if the file suffix is .txt, we save the word in text format and discard all
formatting.

 else if (EndsWith(name, TEXT(".txt"))) {
 for (CharInfo charInfo : charList) {
 char c = (char) charInfo.Char();
 outStream.write(&c, sizeof c);
 }
 }

 return ((bool) outStream);
}

The ReadDocumentFromStream method reads the information written by the
WriteDocumentToStream method. Note that the MakeVisible method is called at the end
in order to make the current position visible.

bool WordDocument::ReadDocumentFromStream(String name,
 istream& inStream) {
 if (EndsWith(name, TEXT(".wrd")) &&
 ReadPageSetupInfoFromStream(inStream)){
 inStream.read((char*) &wordMode, sizeof wordMode);
 inStream.read((char*) &editIndex, sizeof editIndex);
 inStream.read((char*) &firstMarkIndex, sizeof firstMarkIndex);

Building a Word Processor

[159]

 inStream.read((char*) &lastMarkIndex, sizeof lastMarkIndex);
 inStream.read((char*) &totalPages, sizeof totalPages);
 nextFont.ReadFontFromStream(inStream);

 { charList.Clear();
 int charInfoListSize;
 inStream.read((char*) &charInfoListSize,
 sizeof charInfoListSize);

 for (int count = 0; count < charInfoListSize; ++count) {
 CharInfo charInfo;
 charInfo.ReadCharInfoFromStream(inStream);
 charList.PushBack(charInfo);
 }
 }

 { paragraphList.Clear();
 int paragraphListSize;
 inStream.read((char*) ¶graphListSize,
 sizeof paragraphListSize);

 for (int count = 0; count < paragraphListSize; ++count) {
 Paragraph* paragraphPtr = new Paragraph();
 assert(paragraphPtr != nullptr);
 paragraphPtr->ReadParagraphFromStream(this, inStream);
 paragraphList.PushBack(paragraphPtr);
 }
 }
 }

However, if the file has the file suffix .txt, we just read the characters, and all characters
are given the system font.

 else if (EndsWith(name, TEXT(".txt"))) {
 wordMode = WordEdit;
 editIndex = 0;
 firstMarkIndex = 0;
 lastMarkIndex = 0;
 totalPages = 0;
 nextFont = SystemFont;

 Paragraph* paragraphPtr = new Paragraph(0, 0, Left, 0);
 int charIndex = 0, paragraphIndex = 0;
 char c;

 while (inStream >> c) {
 CharInfo charInfo(paragraphPtr, (TCHAR) c,
 SystemFont, ZeroRect);

Building a Word Processor

[160]

 charList.PushBack(charInfo);

 if (c == '\n') {
 paragraphPtr->Last() = charIndex;
 for (int index = paragraphPtr->First();
 index <= paragraphPtr->Last(); ++index) {
 charList[index].ParagraphPtr() = paragraphPtr;
 }

 GenerateParagraph(paragraphPtr);
 paragraphList.PushBack(paragraphPtr);
 Paragraph* paragraphPtr =
 new Paragraph(charIndex + 1, 0, Left, ++paragraphIndex);
 }

 ++charIndex;
 }

 paragraphPtr->Last() = charIndex;
 for (int index = paragraphPtr->First();
 index <= paragraphPtr->Last(); ++index) {
 charList[index].ParagraphPtr() = paragraphPtr;
 }

 GenerateParagraph(paragraphPtr);
 paragraphList.PushBack(paragraphPtr);
 CalculateDocument();
 }

 MakeVisible();
 return ((bool) inStream);
}

Cut, copy, and paste
The Copy item in the Edit menu is enabled in mark mode:

bool WordDocument::CopyEnable() const {
 return (wordMode == WordMark);
}

As long as the CopyEnable method mentioned previously returns true, we are always
ready to copy in every format. Therefore, we must let the IsCopyAsciiReady,
IsCopyUnicodeReady, and IsCopyGenericReady methods return true (if they return
false in the StandardDocument class).

Building a Word Processor

[161]

bool WordDocument::IsCopyAsciiReady() const {
 return true;
}

bool WordDocument::IsCopyUnicodeReady() const {
 return true;
}

bool WordDocument::IsCopyGenericReady(int /* format */) const {
 return true;
}

The CopyAscii method simply calls the CopyUnicode method, since the text is stored in
the generic text format and is transformed into ASCII and Unicode when saved to the
global clipboard. The CopyUnicode method iterates through the marked paragraphs and,
for each marked paragraph, extracts the marked text that is stored in the paragraph to the
textList parameter. When it encounters a newline, it pushes the current text in the
textList parameter.

void WordDocument::CopyAscii(vector<String>& textList) {
 CopyUnicode(textList);
}

void WordDocument::CopyUnicode(vector<String>& textList) {
 int minCharIndex = min(firstMarkIndex, lastMarkIndex),
 maxCharIndex = max(firstMarkIndex, lastMarkIndex);

 String text;
 for (int charIndex = minCharIndex; charIndex < maxCharIndex;
 ++charIndex) {
 CharInfo charInfo = charList[charIndex];
 text.push_back(charInfo.Char());

 if (charInfo.Char() == NewLine) {
 textList.push_back(text);
 text.clear();
 }
 }

 textList.push_back(text);
}

The CopyGeneric method is simpler than the CopyUnicode method. It first saves the
number of characters to be copied, then iterates through the marked characters (not the
paragraphs), and then calls the WriteCharInfoToClipboard method for each character.
This works, since each pair of paragraphs is already separated by a newline in the

Building a Word Processor

[162]

charList list. We really do not care about the format, since there is just one format
(WordFormat) for generic cut, copy, and paste operations in this application.

void WordDocument::CopyGeneric(int /* format */,
 InfoList& infoList) const {
 int minCharIndex = min(firstMarkIndex, lastMarkIndex),
 maxCharIndex = max(firstMarkIndex, lastMarkIndex);
 int copySize = maxCharIndex - minCharIndex;
 infoList.AddValue<int>(copySize);

 for (int charIndex = minCharIndex; charIndex < maxCharIndex;
 ++charIndex) {
 CharInfo charInfo = charList[charIndex];
 charInfo.WriteCharInfoToClipboard(infoList);
 }
}

One difference between copying and pasting is that when the user selects Cut or Copy, the
marked text is copied in all three formats (ASCII, Unicode, and generic) given in the
preceding StandardDocument constructor. Their order does not really matter. When
pasting, on the other hand, the StandardDocument constructor tries to paste the text in the
formats order given in the constructor call. If it finds pasted information in one format in
the global clipboard, it does not continue to check the other format. In this application, it
means that if there is text copied in the generic format (WordFormat), then that text is
pasted regardless of whether there is text in the ASCII of Unicode format (AsciiFormat or
UnicodeFormat).

The PasteAscii method calls the PasteUnicode method (again, both ASCII and Unicode
text are transformed into the generic text type), which iterates through the textList
parameter and inserts a new paragraph for each text. Note that we do not override the
PasteEnable method, since the StandardDocument constructor handles it by checking if
there is a clipboard buffer with any of the formats defined in the StandardDocument
constructor call.

The idea is that the first and last text in text list will be merged by the first and last part of
the edit paragraph. The potential remaining text will be inserted as paragraphs in between.
First we delete the marked text, if present, ensure edit mode, and clear the nextFont
parameter (setting it to SystemFont).

void WordDocument::PasteUnicode(const vector<String>& textList) {
 if (wordMode == WordMark) {
 Delete(firstMarkIndex, lastMarkIndex);
 EnsureEditStatus();
 }

Building a Word Processor

[163]

 else {
 ClearNextFont();
 }

We remove the edit paragraph from the paragraph list, which makes it easier to insert the
pasted paragraphs later on.

 Paragraph* paragraphPtr = charList[editIndex].ParagraphPtr();
 paragraphList.Erase(paragraphPtr->Index());

We use the font of the edit character and the alignment of the edit paragraph for the pasted
characters and paragraphs.

 Alignment alignment = paragraphPtr->AlignmentField();
 Font font = charList[editIndex].CharFont();

We save the number of the remaining characters of the edit paragraph. We also save the
current edit index in order to calculate the total number of pasted characters at the end.

 int restChars = paragraphPtr->Last() - editIndex,
 prevEditIndex = editIndex, textListSize = textList.size();

We insert the characters of each text in the edit paragraph.

 for (int textIndex = 0; textIndex < textListSize; ++textIndex) {
 for (TCHAR tChar : textList[textIndex]) {
 charList.Insert(editIndex++,
 CharInfo(paragraphPtr, tChar, font));
 }

Since each text will finish a paragraph, except the last one, we create and insert a new
paragraph.

 if (textIndex < (textListSize - 1)) {
 charList.Insert(editIndex++,
 CharInfo(paragraphPtr, NewLine));
 paragraphPtr->Last() = editIndex - 1;
 for (int index = paragraphPtr->First();
 index <= paragraphPtr->Last(); ++index) {
 charList[index].ParagraphPtr() = paragraphPtr;
 }
 GenerateParagraph(paragraphPtr);
 paragraphList.Insert(paragraphPtr->Index(), paragraphPtr);
 paragraphPtr = new Paragraph(editIndex, 0, alignment,
 paragraphPtr->Index() + 1);
 }

Building a Word Processor

[164]

For the last text, we use the original edit paragraph and change its last character index.

 else {
 paragraphPtr->Last() = editIndex + restChars;
 for (int index = paragraphPtr->First();
 index <= paragraphPtr->Last(); ++index) {
 charList[index].ParagraphPtr() = paragraphPtr;
 }
 GenerateParagraph(paragraphPtr);
 paragraphList.Insert(paragraphPtr->Index(), paragraphPtr);
 }
 }

We may also need to update the index of the succeeding paragraphs, since more than one
paragraph may have been pasted. Since we know that at least one character has been
pasted, we certainly need to at least modify the first and last index of the succeeding
paragraphs.

 int totalAddedChars = editIndex - prevEditIndex;
 for (int parIndex = paragraphPtr->Index() + 1;
 parIndex < paragraphList.Size(); ++parIndex) {
 Paragraph* paragraphPtr = paragraphList[parIndex];
 paragraphPtr->Index() = parIndex;
 paragraphPtr->First() += totalAddedChars;
 paragraphPtr->Last() += totalAddedChars;
 }

 CalculateDocument();
 UpdateCaret();
 UpdateWindow();
}

The PasteGeneric method reads and inserts the generic paragraph information stored in
the clipboard in a way similar to the preceding PasteUnicode method. The difference is
that the paragraphs are separated to be newlines and that each pasted character comes with
its own font.

void WordDocument::PasteGeneric(int /* format */,
 InfoList& infoList) {
 if (wordMode == WordMark) {
 Delete(firstMarkIndex, lastMarkIndex);
 EnsureEditStatus();
 }
 else {
 ClearNextFont();
 }

Building a Word Processor

[165]

We erase the edit paragraph in order to make the insertion easier, just as in the preceding
PasteUnicode method. We use the alignment of the edit paragraph, but not the font of the
edit character since each pasted character has its own font.

 Paragraph* paragraphPtr = charList[editIndex].ParagraphPtr();
 paragraphList.Erase(paragraphPtr->Index());
 Alignment alignment = paragraphPtr->AlignmentField();

We read the paste size, which is the number of character to be pasted.

 int pasteSize, restChars = paragraphPtr->Last() - editIndex;
 infoList.GetValue<int>(pasteSize);

We read each character from the paste buffer and insert the characters into the character list.
When we encounter a newline, we insert a new paragraph.

 for (int pasteCount = 0; pasteCount < pasteSize; ++pasteCount) {
 CharInfo charInfo(paragraphPtr);
 charInfo.ReadCharInfoFromClipboard(infoList);
 charList.Insert(editIndex++, charInfo);

 if (charInfo.Char() == NewLine) {
 paragraphPtr->Last() = editIndex - 1;
 GenerateParagraph(paragraphPtr);
 paragraphList.Insert(paragraphPtr->Index(), paragraphPtr);
 paragraphPtr = new Paragraph(editIndex, 0, alignment,
 paragraphPtr->Index() + 1);
 assert(paragraphPtr != nullptr);
 }
 }

 paragraphPtr->Last() = editIndex + restChars;
 for (int charIndex = editIndex;
 charIndex <= paragraphPtr->Last(); ++charIndex) {
 charList[charIndex].ParagraphPtr() = paragraphPtr;
 }

We need to calculate the original paragraph before we insert it.

 GenerateParagraph(paragraphPtr);
 paragraphList.Insert(paragraphPtr->Index(), paragraphPtr);

Similar to the preceding PasteUnicode case, we may need to update the index of the
succeeding paragraphs, since more than one paragraph may have been pasted. We also
need to modify their first and last index, since at least one character has been pasted.

Building a Word Processor

[166]

 for (int parIndex = paragraphPtr->Index() + 1;
 parIndex < paragraphList.Size(); ++parIndex) {
 Paragraph* paragraphPtr = paragraphList[parIndex];
 paragraphPtr->Index() = parIndex;
 paragraphPtr->First() += pasteSize;
 paragraphPtr->Last() += pasteSize;
 }

 CalculateDocument();
 UpdateCaret();
 UpdateWindow();
}

Delete
In edit mode, it is possible to delete a character unless it is located at the very end of the
document. In mark mode, the marked text can always always be deleted:

bool WordDocument::DeleteEnable() const {
 switch (wordMode) {
 case WordEdit:
 return (editIndex < (charList.Size() - 1));

 case WordMark:
 return true;
 }

 return false;
}

In edit mode, we delete the edit character, and in mark mode, we delete the marked text.
In both cases, we call the Delete method to perform the actual deleting.

void WordDocument::OnDelete() {
 switch (wordMode) {
 case WordEdit:
 ClearNextFont();
 Delete(editIndex, editIndex + 1);
 break;

 case WordMark:
 Delete(firstMarkIndex, lastMarkIndex);
 editIndex = min(firstMarkIndex, lastMarkIndex);
 wordMode = WordEdit;
 break;
 }

Building a Word Processor

[167]

 SetDirty(true);
 CalculateDocument();
 UpdateCaret();
 UpdateWindow();
}

The Delete method is called by the OnDelete, EnsureEditStatus, PasteUnicode, and
PasteGeneric methods. It removes the characters between the given indexes, which do
not have to be in order. The removed paragraphs are deleted and the succeeding
paragraphs are updated.

void WordDocument::Delete(int firstIndex, int lastIndex) {
 int minCharIndex = min(firstIndex, lastIndex),
 maxCharIndex = max(firstIndex, lastIndex);

 Paragraph* minParagraphPtr =
 charList[minCharIndex].ParagraphPtr();
 Paragraph* maxParagraphPtr =
 charList[maxCharIndex].ParagraphPtr();

The deleted area covers at least two paragraphs, we set the characters of the maximal
paragraph to point at the minimal paragraph, since they will be merged. We also set their
rectangles to zero, to ensure that they will be redrawn.

 if (minParagraphPtr != maxParagraphPtr) {
 for (int charIndex = maxParagraphPtr->First();
 charIndex <= maxParagraphPtr->Last(); ++charIndex) {
 CharInfo& charInfo = charList[charIndex];
 charInfo.ParagraphPtr() = minParagraphPtr;
 charInfo.CharRect() = ZeroRect;
 }
 }

The characters are removed from the charList list and the last index of the minimal
paragraph is updated. It is set to the last character of the maximal paragraph (that may be
the same paragraph as the minimal paragraph) minus the number of the characters to be
deleted. The minimal paragraph is then regenerated.

 int deleteChars = maxCharIndex - minCharIndex;
 minParagraphPtr->Last() = maxParagraphPtr->Last() - deleteChars;
 charList.Remove(minCharIndex, maxCharIndex - 1);
 GenerateParagraph(minParagraphPtr);

The paragraphs between the minimal and maximal paragraphs, if any, are deleted and the
indexes of the succeeding paragraphs are set. We call DeleteParagraph for each
paragraph to delete their dynamically allocated memory.

Building a Word Processor

[168]

 int minParIndex = minParagraphPtr->Index(),
 maxParIndex = maxParagraphPtr->Index();

 if (minParIndex < maxParIndex) {
 for (int parIndex = minParIndex + 1;
 parIndex <= maxParIndex; ++parIndex) {
 DeleteParagraph(paragraphList[parIndex]);
 }
 paragraphList.Remove(minParIndex + 1, maxParIndex);
 }

Finally, we need to set the indexes of the succeeding paragraphs. Note that we have to
update the first and last index regardless of whether any paragraphs have been removed,
since we have removed at least one character.

 int deleteParagraphs = maxParIndex - minParIndex;
 for (int parIndex = minParagraphPtr->Index() + 1;
 parIndex < paragraphList.Size(); ++parIndex) {
 Paragraph* paragraphPtr = paragraphList[parIndex];
 paragraphPtr->Index() -= deleteParagraphs;
 paragraphPtr->First() -= deleteChars;
 paragraphPtr->Last() -= deleteChars;
 }

When the delete process is finished, the application is set to edit mode, and the edit index
is set to the first marked character.

 wordMode = WordEdit;
 editIndex = minCharIndex;
}

Page break
The PageBreak menu item is enabled in edit mode, and the OnPageBreak method is also
quite simple. It just inverses the page break status of the edit paragraph:

bool WordDocument::PageBreakEnable() const {
 return (wordMode == WordEdit);
}

void WordDocument::OnPageBreak() {
 Paragraph* paragraphPtr = charList[editIndex].ParagraphPtr();
 paragraphPtr->PageBreak() = !paragraphPtr->PageBreak();
 CalculateDocument();
 UpdateCaret();
}

Building a Word Processor

[169]

Font
The OnFont method is called when the user selects the Font menu item and it displays the
font dialog. In edit mode, we first need to find the default font to use in the dialog. If the
nextFont parameter is active (does not equal SystemFont), we use it. If it is not active, we
check whether the edit character is the first character in the paragraph. If it is the first
character, we use its font. If it is not the first character, we use the font of its preceding
character. This is the same procedure as in the preceding UpdateCaret method:

void WordDocument::OnFont() {
 switch (wordMode) {
 case WordEdit: {
 Font font;

 if (nextFont != SystemFont) {
 font = nextFont;
 }
 else if (editIndex ==
 charList[editIndex].ParagraphPtr()->First()) {
 font = charList[editIndex].CharFont();
 }
 else {
 font = charList[editIndex - 1].CharFont();
 }

If the user closes the font dialog by choosing Ok, we set the nextFont parameter and
recalculate the edit paragraph.

 if (StandardDialog::FontDialog(this, font)) {
 nextFont = font;
 Paragraph* paragraphPtr =
 charList[editIndex].ParagraphPtr();
 GenerateParagraph(paragraphPtr);
 SetDirty(true);
 CalculateDocument();
 UpdateCaret();
 UpdateWindow();
 }
 }
 break;

Building a Word Processor

[170]

In mark mode, we choose the font of the marked character with the lowest index to be the
default font in the font dialog.

 case WordMark: {
 int minCharIndex = min(firstMarkIndex, lastMarkIndex),
 maxCharIndex = max(firstMarkIndex, lastMarkIndex);
 Font font = charList[minCharIndex].CharFont();

If the user chooses Ok, we set the font of every marked character and recalculate each of
their paragraphs.

 if (StandardDialog::FontDialog(this, font)) {
 for (int charIndex = minCharIndex;
 charIndex < maxCharIndex; ++charIndex) {
 charList[charIndex].CharFont() = font;
 }
 int minParIndex =
 charList[minCharIndex].ParagraphPtr()->Index(),
 maxParIndex =
 charList[maxCharIndex].ParagraphPtr()->Index();

 for (int parIndex = minParIndex;
 parIndex <= maxParIndex; ++parIndex) {
 Paragraph* paragraphPtr = paragraphList[parIndex];
 GenerateParagraph(paragraphPtr);
 }

 SetDirty(true);
 CalculateDocument();
 UpdateCaret();
 UpdateWindow();
 }
 }
 break;
 }
}

Alignment
All the radio alignment listeners call the IsAlignment method, and all selection listeners
call the SetAlignment method.

bool WordDocument::LeftRadio() const {
 return IsAlignment(Left);
}

Building a Word Processor

[171]

void WordDocument::OnLeft() {
 SetAlignment(Left);
}

bool WordDocument::CenterRadio() const {
 return IsAlignment(Center);
}

void WordDocument::OnCenter() {
 SetAlignment(Center);
}

bool WordDocument::RightRadio() const {
 return IsAlignment(Right);
}

void WordDocument::OnRight() {
 SetAlignment(Right);
}

bool WordDocument::JustifiedRadio() const {
 return IsAlignment(Justified);
}

void WordDocument::OnJustified() {
 SetAlignment(Justified);
}

In edit mode, the IsAlignment method checks whether the edit paragraph has the given
alignment. In mark mode, it checks if all partly or completely marked paragraph have the
given alignment. This implies that if several paragraphs are marked with different
alignments, no alignment menu item will be marked with a radio button.

bool WordDocument::IsAlignment(Alignment alignment) const {
 switch (wordMode) {
 case WordEdit: {
 Alignment editAlignment =
 charList[editIndex].ParagraphPtr()->AlignmentField();
 return (editAlignment == alignment);
 }
 case WordMark: {
 int minCharIndex = min(firstMarkIndex, lastMarkIndex),
 maxCharIndex = max(firstMarkIndex, lastMarkIndex);

 int minParIndex =
 charList[minCharIndex].ParagraphPtr()->Index(),
 maxParIndex =
 charList[maxCharIndex].ParagraphPtr()->Index();

Building a Word Processor

[172]

 for (int parIndex = minParIndex; parIndex < maxParIndex;
 ++parIndex) {
 Alignment markAlignment =
 paragraphList[parIndex]->AlignmentField();

 if (markAlignment != alignment) {
 return false;
 }
 }

 return true;
 }
 }

 assert(false);
 return false;
}

The SetAlignment method sets the alignment of the edited or marked paragraphs. In edit
mode, we just set the alignment of the edit paragraph. Remember that this method can only
be called when the paragraph has another alignment. In mark mode, we traverse the
marked paragraphs and set the alignment on those paragraphs that do not have the
alignment already in question. Also remember that this method can only be called if at least
one paragraph does not hold the alignment in question. The paragraphs that have changed
alignment need to be recalculated. However, the new alignment does not affect the height
of the paragraph, which implies that we do not need to call the CalculateDocument
method for the remaining paragraphs.

void WordDocument::SetAlignment(Alignment alignment) {
 switch (wordMode) {
 case WordEdit: {
 Paragraph* paragraphPtr =
 charList[editIndex].ParagraphPtr();
 paragraphPtr->AlignmentField() = alignment;
 GenerateParagraph(paragraphPtr);
 UpdateCaret();
 }
 break;

 case WordMark: {
 int minCharIndex = min(firstMarkIndex, lastMarkIndex),
 maxCharIndex = max(firstMarkIndex, lastMarkIndex);

 int minParIndex =
 charList[minCharIndex].ParagraphPtr()->Index(),
 maxParIndex =
 charList[maxCharIndex].ParagraphPtr()->Index();

Building a Word Processor

[173]

 for (int parIndex = minParIndex; parIndex < maxParIndex;
 ++parIndex) {
 Paragraph* paragraphPtr = paragraphList[parIndex];
 paragraphPtr->AlignmentField() = alignment;
 GenerateParagraph(paragraphPtr);
 }
 }
 break;
 }

 UpdateWindow();
}

Summary
In this chapter, you started to develop a word processor capable of handling individual
characters. The word processor supports the following:

Individual font and style of each character
Left, center, right, and justified alignment of each paragraph
Paragraphs that are distributed over the pages
Scrolling and zooming
Touchscreen
Cut, copy, and paste with ASCII or Unicode text, as well as application-specific
generic information

In Chapter 7, Keyboard Input and Character Calculation, we will continue with the keyboard
input and character calculation.

7
Keyboard Input and Character

Calculation
In this chapter, we will continue our work on the word processor from Chapter 6, Building
a Word Processor. More specifically, we will look into keyboard input and character
calculation. The keyboard handling section deals with regular character input and a rather
large set of special keys, such as Home, End, Page Up and Page Down, Return, Backspace, and
arrows.

The calculation section deals with the calculation of each character with regards to its font
and the alignment of its paragraph as well as the page settings. In the end, we will calculate
the position and size of each individual character in the document.

Keyboard handling
To begin with, we look into the input of regular characters. The OnChar method is called
every time a user presses a graphical character (with an ASCII value between 32 and 127,
inclusive) or the Return key. If a part of the text is marked, that part is removed first. Then
the character is added to the character list by the InsertChar method of the
OverwriteChar class, depending on the keyboard mode.

void WordDocument::OnChar(TCHAR tChar) {
 if (isprint(tChar) || (tChar == NewLine)) {
 if (wordMode == WordMark) {
 OnDelete();
 }

 Paragraph* paragraphPtr = charList[editIndex].ParagraphPtr();

Keyboard Input and Character Calculation

[175]

 switch (GetKeyboardMode()) {
 case InsertKeyboard:
 OnInsertChar(tChar, paragraphPtr);
 break;

 case OverwriteKeyboard:
 OnOverwriteChar(tChar, paragraphPtr);
 break;
 }

 SetDirty(true);
 GenerateParagraph(paragraphPtr);
 CalculateDocument();

 if (MakeVisible()) {
 Invalidate();
 UpdateWindow();
 }

 UpdateCaret();
 }
}

When inserting a character, we have three cases, which are similar to the UpdateCaret and
OnFont methods from Chapter 6, Building a Word Processor. If the nextFont parameter is
active (if it does not equal SystemFont), we use it for the new character. Then, the
nextFont parameter is cleared by the ClearNextFont method.

void WordDocument::OnInsertChar(TCHAR tChar,
 Paragraph* paragraphPtr) {
 if (nextFont != SystemFont) {
 charList.Insert(editIndex++,
 CharInfo(paragraphPtr, tChar, nextFont));
 ClearNextFont();
 }

If the nextFont parameter is not active and the input is not at the beginning of the
paragraph, we use the font of the preceding character for the new character.

 else if (charList[editIndex].ParagraphPtr()->First() <
 editIndex) {
 Font font = charList[editIndex - 1].CharFont();
 charList.Insert(editIndex++,
 CharInfo(paragraphPtr, tChar, font));
 }

Keyboard Input and Character Calculation

[176]

However, if the input is at the beginning of the paragraph, we use the font of the first
character in the paragraph.

 else {
 Font font = charList[editIndex].CharFont();
 charList.Insert(editIndex++,
 CharInfo(paragraphPtr, tChar, font));
 }

In order to make room for the inserted character, we increase the last index of its paragraph.
We also increase the first and last index of the succeeding paragraphs.

 ++paragraphPtr->Last();

 for (int parIndex = paragraphPtr->Index() + 1;
 parIndex <= paragraphList.Size() - 1; ++parIndex) {
 ++paragraphList[parIndex]->First();
 ++paragraphList[parIndex]->Last();
 }
}

In the overwrite mode, we have two cases. If the input is at the very end of the document,
we insert the character instead of overwriting it; otherwise, we overwrite the newline
terminating the last paragraph. However, we are free to overwrite the terminating newline
of every paragraph except the last one, in which case, the two paragraphs are merged into
one.

Similar to the InsertChar method, we use the nextFont parameter if it is not equal to the
SystemFont parameter. If it is equal to the SystemFont parameter, we use the font of the
character we overwrite rather than the preceding character as we did in the InsertChar
case.

void WordDocument::OnOverwriteChar(TCHAR tChar,
 Paragraph* paragraphPtr) {
 if (editIndex == (charList.Size() - 1)) {
 if (nextFont != SystemFont) {
 charList.Insert(editIndex++,
 CharInfo(paragraphPtr, tChar, nextFont));
 charList[editIndex] =
 CharInfo(paragraphPtr, NewLine, nextFont);
 ClearNextFont();
 }
 else {
 Font font = charList[editIndex].CharFont();
 charList.Insert(editIndex++,
 CharInfo(paragraphPtr, tChar, font));
 }

Keyboard Input and Character Calculation

[177]

 ++paragraphPtr->Last();
 }
 else {
 if (nextFont != SystemFont) {
 charList[editIndex++] =
 CharInfo(paragraphPtr, tChar, nextFont);
 ClearNextFont();
 }
 else {
 Font font = charList[editIndex].CharFont();
 charList[editIndex++] = CharInfo(paragraphPtr, tChar, font);
 }
 }
}

The ClearNextFont method clears the nextFont parameter by setting its value to the
SystemFont font. It also recalculates the edit paragraph and the document, since the
removal of the nextFont parameter may cause the edit line (and thereby the edit
paragraph) to be lowered. The fonts of the character on the line may all be lower than the
nextFont parameter, which causes the line to be lower when the nextFont parameter is
removed from the line.

void WordDocument::ClearNextFont() {
 if (nextFont != SystemFont) {
 nextFont = SystemFont;
 Paragraph* paragraphPtr = charList[editIndex].ParagraphPtr();
 GenerateParagraph(paragraphPtr);
 CalculateDocument();
 UpdateWindow();
 }
}

The OnKeyDown method is called every time the user presses a key. Depending on the key
and whether the Shift key is pressed, the OnKeyDown method in turn calls the OnShiftKey,
OnRegularKey, or OnNeutralKey method. The Delete, Backspace, and Return keys perform
the same actions irrespective of whether the Shift key is pressed.

bool WordDocument::OnKeyDown(WORD key, bool shiftPressed,
 bool /* controlPressed */) {
 switch (key) {
 case KeyLeft:
 case KeyRight:
 case KeyUp:
 case KeyDown:
 case KeyHome:
 case KeyEnd: {

Keyboard Input and Character Calculation

[178]

 if (shiftPressed) {
 OnShiftKey(key);
 }
 else {
 OnRegularKey(key);
 }
 }
 return true;

 case KeyBackspace:
 case KeyReturn:
 OnNeutralKey(key);
 return true;
 }

 return false;
}

When the user presses a graphical key, the application will be set to the edit mode. The
EnsureEditStatus method makes sure of it. The key stroke may move the caret to a
position outside the visible part of the client area. Therefore, we call the MakeVisible
method to move the scroll bars if necessary, so that the caret appears in the visible part of
the client area. The idea is to make the caret and the edit character always visible in the
window.

void WordDocument::OnRegularKey(WORD key) {
 EnsureEditStatus();

 switch (key) {
 case KeyLeft:
 OnLeftArrowKey();
 break;

 case KeyRight:
 OnRightArrowKey();
 break;

 case KeyUp:
 OnUpArrowKey();
 break;

 case KeyDown:
 OnDownArrowKey();
 break;

Keyboard Input and Character Calculation

[179]

 case KeyHome:
 OnHomeKey();
 break;

 case KeyEnd:
 OnEndKey();
 break;
 }

 if (MakeVisible()) {
 Invalidate();
 UpdateWindow();
 UpdateCaret();
 }
}

We must make sure that the application is set to the edit mode when the user presses Page
Up, Page Down, or one of the arrow keys, without pressing the Shift key. The
EnsureEditStatus method takes care of that. The editIndex is set to lastMarkIndex.

void WordDocument::EnsureEditStatus() {
 if (wordMode == WordMark) {
 wordMode = WordEdit;
 editIndex = lastMarkIndex;
 InvalidateBlock(firstMarkIndex, lastMarkIndex);
 UpdateCaret();
 UpdateWindow();
 }
}

Arrow keys
The OnLeftArrowKey method is called when the user presses the left arrow key. Its
purpose is to move the caret one step to the left, which is simple enough. We must make
sure that the edit position is not already at the beginning of the document. If we move the
position to the left, we also need to clear the nextFont parameter, since it will be active
only when the user is about to input a new character.

void WordDocument::OnLeftArrowKey() {
 if (editIndex > 0) {
 ClearNextFont();
 --editIndex;
 }
}

Keyboard Input and Character Calculation

[180]

The OnRightArrowKey method is called when the user presses the right arrow key. If the
caret position is not at the end of the document, we move it one step to the right.

void WordDocument::OnRightArrowKey() {
 if (editIndex < (charList.Size() - 1)) {
 ClearNextFont();
 ++editIndex;
 }
}

When the user presses the up arrow key, we have to find the key above the edit line. We do
that by simulating a mouse click slightly above (one logical unit) the line. Note that we have
to look up the edit line. It is not enough to use the character rectangle, since the characters
may differ in height and ascent (refer to the next section) and we cannot be sure that the
character rectangle is the highest rectangle on the line. Therefore, we look up the height of
the edit line. In the following screenshot, the text is surrounded by rectangles for the
purpose of clarification. The code does not actually draw the rectangles. If we would use the
rectangle of the digit four, we would not reach the preceding line because the rectangle of
the digit 5 is higher. Instead, we have to use the line rectangle of the line 456.

void WordDocument::OnUpArrowKey() {
 CharInfo charInfo = charList[editIndex];

 Paragraph* paragraphPtr = charInfo.ParagraphPtr();
 Point topLeft(0, paragraphPtr->Top());

 LineInfo* lineInfoPtr = charInfo.LineInfoPtr();
 Rect lineRect =
 topLeft + Rect(0, lineInfoPtr->Top(), PageInnerWidth(),
 lineInfoPtr->Top() + lineInfoPtr->Height());

Keyboard Input and Character Calculation

[181]

We need to check that the edit character is not located on the first line of the document. If
the edit character is already located on the first line then nothing will happen to the output.

 if (lineRect.Top() > 0) {
 ClearNextFont();
 Rect charRect = topLeft + charInfo.CharRect();
 editIndex =
 MousePointToIndex(Point(charRect.Left(), lineRect.Top()-1));
 }
}

When the user presses the down arrow key, we simulate a mouse click by calling the
MousePointToIndexDown method. In the call, we use the position slightly under the edit
line (1 unit) in order to find the index of the character in the same horizontal position on the
next line. One difference compared to the preceding UpArrowKey case is that we call the
MousePointToIndexDown method instead of the MousePointToIndex method because it
might be the last line of the paragraph, and there might be some space before the next
paragraph. In that case, we would want the index of the character following the empty
space, which the MousePointToIndexDown method returns, while the
MousePointToIndex method returns the index of the character preceding the empty space.

void WordDocument::OnDownArrowKey() {
 CharInfo charInfo = charList[editIndex];
 Paragraph* paragraphPtr = charInfo.ParagraphPtr();
 Point topLeft(0, paragraphPtr->Top());
 LineInfo* lineInfoPtr = charInfo.LineInfoPtr();
 Rect lineRect =
 topLeft + Rect(0, lineInfoPtr->Top(), PageInnerWidth(),
 lineInfoPtr->Top() + lineInfoPtr->Height());

Similar to the preceding OnUpArrowKey case, we need to ensure that the edit line is not the
last line in the document. We do so by comparing it to the bottom of the last paragraph. If it
is the last line then nothing will happen to the output.

 Paragraph* lastParagraphPtr = paragraphList.Back();
 int bottom = lastParagraphPtr->Top() +
 lastParagraphPtr->Height();

 if (lineRect.Bottom() < bottom) {
 ClearNextFont();
 Rect charRect = topLeft + charInfo.CharRect();
 editIndex =
 MousePointToIndexDown(Point(charRect.Left(),
 lineRect.Bottom() + 1));
 }
}

Keyboard Input and Character Calculation

[182]

The MousePointToIndexDown method returns the index of the character on which we
click. If the mouse point is between two paragraphs, the index of the preceding character is
returned.

int WordDocument::MousePointToIndexDown(Point mousePoint) const{
 for (int parIndex = 0; parIndex < paragraphList.Size();
 ++parIndex) {
 Paragraph* paragraphPtr = paragraphList[parIndex];

 if (mousePoint.Y() <=
 (paragraphPtr->Top() + paragraphPtr->Height())) {
 return MousePointToParagraphIndex
 (paragraphList[parIndex], mousePoint);
 }
 }

As this method always finds the correct paragraph, this point will never be reached, but we
assert that in case of coding error it behaves otherwise.

 assert(false);
 return 0;
}

The OnPageUp and OnPageDown methods look up the height of the current vertical scroll
bar in order to simulate a mouse click one page up or down.

void WordDocument::OnPageUpKey() {
 CharInfo charInfo = charList[editIndex];
 Rect editRect = charInfo.CharRect();

 Paragraph* paragraphPtr = charInfo.ParagraphPtr();
 Point topLeft(0, paragraphPtr->Top());

 int scrollPage = GetVerticalScrollPageHeight();
 Point editPoint((editRect.Left() + editRect.Right()) / 2,
 ((editRect.Top() + editRect.Bottom()) / 2) - scrollPage);

 editIndex = MousePointToIndex(topLeft + editPoint);
}

void WordDocument::OnPageDownKey() {
 CharInfo charInfo = charList[editIndex];
 Rect editRect = charInfo.CharRect();

 Paragraph* paragraphPtr = charInfo.ParagraphPtr();
 Point topLeft(0, paragraphPtr->Top());

 int scrollPage = GetVerticalScrollPageHeight();

Keyboard Input and Character Calculation

[183]

 Point editPoint((editRect.Left() + editRect.Right()) / 2,
 ((editRect.Top() + editRect.Bottom()) / 2) + scrollPage);

 editIndex = MousePointToIndex(topLeft + editPoint);
}

Home and End
The OnHomeKey method is called when the user presses the Home key. It looks up the index
of the first character on the edit line by following its paragraph and line pointers. It uses the
index of the first character of the line.

void WordDocument::OnHomeKey() {
 CharInfo charInfo = charList[editIndex];
 int homeCharIndex = charInfo.ParagraphPtr()->First() +
 charInfo.LineInfoPtr()->First();

If the edit character is not already at the beginning of the line, the nextFont parameter is
cleared by the ClearNextFont method, the edit index is updated, and the caret is updated.

 if (homeCharIndex < editIndex) {
 ClearNextFont();
 editIndex = homeCharIndex;
 UpdateCaret();
 }
}

The OnEndKey method is called when the user presses the End key. It looks up the index of
the last character on the edit line by following its paragraph and line pointers and using the
index of the last character of the line.

void WordDocument::OnEndKey() {
 CharInfo charInfo = charList[editIndex];
 int endCharIndex = charInfo.ParagraphPtr()->First() +
 charInfo.LineInfoPtr()->Last();

If the edit character is not already at the end of the line, the nextFont parameter is cleared
by the ClearNextFont method, the edit index is updated, and the caret is updated.

 if (editIndex < endCharIndex) {
 ClearNextFont();
 editIndex = endCharIndex;
 UpdateCaret();
 }
}

Keyboard Input and Character Calculation

[184]

Shift arrow keys
The OnShiftKey method is called when the user presses a key together with the Shift key:

void WordDocument::OnShiftKey(WORD key) {
 EnsureMarkStatus();
 switch (key) {
 case KeyLeft:
 OnShiftLeftArrowKey();
 break;

 case KeyRight:
 OnShiftRightArrowKey();
 break;

 case KeyUp:
 OnShiftUpArrowKey();
 break;

 case KeyDown:
 OnShiftDownArrowKey();
 break;

 case KeyPageUp:
 OnShiftPageUpKey();
 break;

 case KeyPageDown:
 OnShiftPageDownKey();
 break;

 case KeyHome:
 OnShiftHomeKey();
 break;

 case KeyEnd:
 OnShiftEndKey();
 break;
 }

 if (MakeVisible()) {
 Invalidate();
 UpdateWindow();
 UpdateCaret();
 }
}

Keyboard Input and Character Calculation

[185]

If the user presses a key together with the Shift key, we must make sure that the application
is set to the mark mode; the EnsureMarkMode method deals with that. It clears the
nextFont parameter (by setting it to SystemFont), sets the application to the mark mode,
and assigns both the first and last marked index to the edit index.

void WordDocument::EnsureMarkStatus() {
 if (wordMode == WordEdit) {
 ClearNextFont();
 wordMode = WordMark;
 firstMarkIndex = editIndex;
 lastMarkIndex = editIndex;
 UpdateCaret();
 }
}

The OnShiftLeftArrowKey method decreases the last marked index. Note that we only
invalidate the indexes between the old and new value of the lastMarkIndex method in
order to avoid dazzle:

void WordDocument::OnShiftLeftArrowKey() {
 if (lastMarkIndex > 0) {
 InvalidateBlock(lastMarkIndex, --lastMarkIndex);
 }
}

The OnShiftRightArrowKey method moves the position of the last marked character in a
way similar to the OnShiftLeftArrowKey method.

void WordDocument::OnShiftRightArrowKey() {
 if (lastMarkIndex < charList.Size()) {
 InvalidateBlock(lastMarkIndex, lastMarkIndex++);
 }
}

The OnShiftUpArrowKey and OnShiftDownArrowKey methods are called when the user
presses the up or down arrow key together with the Shift key. Its task is to move the last
marked position one line upward. We simulate the mouse click in the same way as we did
for the OnUpArrowKey and OnDownArrowKey method earlier.

void WordDocument::OnShiftUpArrowKey() {
 CharInfo charInfo = charList[lastMarkIndex];

 Paragraph* paragraphPtr = charInfo.ParagraphPtr();
 Point topLeft(0, paragraphPtr->Top());

 LineInfo* lineInfoPtr = charInfo.LineInfoPtr();

Keyboard Input and Character Calculation

[186]

 Rect lineRect =
 topLeft + Rect(0, lineInfoPtr->Top(), PageInnerWidth(),
 lineInfoPtr->Top() + lineInfoPtr->Height());

 if ((paragraphPtr->Top() + lineRect.Top()) > 0) {
 Rect charRect = topLeft + charInfo.CharRect();
 int newLastMarkIndex =
 MousePointToIndex(Point(charRect.Left(), lineRect.Top()-1));
 InvalidateBlock(lastMarkIndex, newLastMarkIndex);
 lastMarkIndex = newLastMarkIndex;
 }
}

void WordDocument::OnShiftDownArrowKey() {
 CharInfo charInfo = charList[lastMarkIndex];

 Paragraph* paragraphPtr = charInfo.ParagraphPtr();
 Point topLeft(0, paragraphPtr->Top());

 LineInfo* lineInfoPtr = charInfo.LineInfoPtr();
 Rect lineRect =
 topLeft + Rect(0, lineInfoPtr->Top(), PageInnerWidth(),
 lineInfoPtr->Top() + lineInfoPtr->Height());

 Paragraph* lastParagraphPtr = paragraphList.Back();
 int bottom = lastParagraphPtr->Top() +
 lastParagraphPtr->Height();

 if (lineRect.Bottom() < bottom) {
 Rect charRect = topLeft + charInfo.CharRect();
 int newLastMarkIndex =
 MousePointToIndexDown(Point(charRect.Left(),
 lineRect.Bottom() + 1));
 InvalidateBlock(lastMarkIndex, newLastMarkIndex);
 lastMarkIndex = newLastMarkIndex;
 }
}

Keyboard Input and Character Calculation

[187]

Shift Page Up and Page Down
The OnShiftPageUpKey and OnShiftPageDown methods move the edit character index
one page-height by simulating a mouse click on Page Up or Page Down:

void WordDocument::OnShiftPageUpKey() {
 Rect lastRectMark = charList[lastMarkIndex].CharRect();
 int scrollPage = GetVerticalScrollPageHeight();
 Point lastPointMark
 ((lastRectMark.Left() + lastRectMark.Right()) / 2,
 (lastRectMark.Top()+lastRectMark.Bottom()) / 2 - scrollPage);

 int newLastMarkIndex = MousePointToIndex(lastPointMark);
 InvalidateBlock(lastMarkIndex, newLastMarkIndex);
 lastMarkIndex = newLastMarkIndex;
}

void WordDocument::OnShiftPageDownKey() {
 Rect lastRectMark = charList[lastMarkIndex].CharRect();

 int scrollPage = GetVerticalScrollPageHeight();
 Point lastPointMark
 ((lastRectMark.Left() + lastRectMark.Right()) / 2,
 (lastRectMark.Top()+lastRectMark.Bottom())/2 + scrollPage);

 int newLastMarkIndex = MousePointToIndexDown(lastPointMark);
 InvalidateBlock(lastMarkIndex, newLastMarkIndex);
 lastMarkIndex = newLastMarkIndex;
}

Shift Home and End
The OnShiftHomeKey and OnShiftEndKey methods are called when the user presses the
Home or End key together with the Shift key. Their task is to mark the line from the current
position to the beginning or end of the line:

void WordDocument::OnShiftHomeKey() {
 CharInfo charInfo = charList[editIndex];
 int homeCharIndex = charInfo.ParagraphPtr()->First() +
 charInfo.LineInfoPtr()->First();

 if (homeCharIndex < lastMarkIndex) {
 InvalidateBlock(lastMarkIndex, homeCharIndex);
 lastMarkIndex = homeCharIndex;
 }
}

Keyboard Input and Character Calculation

[188]

void WordDocument::OnShiftEndKey() {
 CharInfo charInfo = charList[editIndex];
 int endCharIndex = charInfo.ParagraphPtr()->First() +
 charInfo.LineInfoPtr()->Last();

 if (lastMarkIndex < endCharIndex) {
 InvalidateBlock(lastMarkIndex, endCharIndex);
 lastMarkIndex = endCharIndex;
 }
}

Control Home and End
The OnControlHomeKey and OnControlEndKey methods set the edit character position to
the beginning or end of the document. Since these methods are listeners and not called by
the OnRegularKey method, we need to call the EnsureEditStatus, MakeVisible, and
UpdateCaret methods:

void WordDocument::OnControlHomeKey() {
 EnsureEditStatus();

 if (editIndex > 0) {
 editIndex = 0;
 if (MakeVisible()) {
 Invalidate();
 UpdateWindow();
 }

 UpdateCaret();
 }
}

void WordDocument::OnControlEndKey() {
 EnsureEditStatus();

 if (editIndex < (charList.Size() - 1)) {
 editIndex = charList.Size() - 1;

 if (MakeVisible()) {
 Invalidate();
 UpdateWindow();
 }

 UpdateCaret();
 }
}

Keyboard Input and Character Calculation

[189]

Shift Control Home and End
The OnShiftControlHomeKey and OnShiftControlEndKey methods set the last mark
index to the beginning or end of the document:

void WordDocument::OnShiftControlHomeKey() {
 EnsureMarkStatus();
 ClearNextFont();

 if (lastMarkIndex > 0) {
 InvalidateBlock(0, lastMarkIndex);
 lastMarkIndex = 0;

 if (MakeVisible()) {
 Invalidate();
 UpdateWindow();
 }

 UpdateCaret();
 }
}

void WordDocument::OnShiftControlEndKey() {
 EnsureMarkStatus();

 if (lastMarkIndex < (charList.Size() - 1)) {
 int lastIndex = charList.Size() - 1;
 InvalidateBlock(lastMarkIndex, lastIndex);
 lastMarkIndex = lastIndex;

 if (MakeVisible()) {
 Invalidate();
 UpdateWindow();
 }

 UpdateCaret();
 }
}

Neutral keys
The Backspace and Return keys are neutral keys in the sense that we do not care whether the
user presses the Shift or Ctrl key. Note that the Delete key is not handled by the
OnNeutralKey method because the Delete menu item has the Delete key as its accelerator:

Keyboard Input and Character Calculation

[190]

void WordDocument::OnNeutralKey(WORD key) {
 switch (key) {
 case KeyBackspace:
 OnBackspaceKey();
 break;
 case KeyReturn:
 OnReturnKey();
 break;
 }

 if (MakeVisible()) {
 Invalidate();
 UpdateWindow();
 UpdateCaret();
 }
}

What the OnBackSpaceKey method does is quite simple–it just calls the OnDelete method.
In the edit mode, we first move one step to the left unless the edit position is not already at
the beginning of the document. If it is, nothing happens. In the mark mode, the Delete key
and the Backspace key have the same effect–they both delete the marked text.

void WordDocument::OnBackspaceKey() {
 switch (wordMode) {
 case WordEdit:
 if (editIndex > 0) {
 OnLeftArrowKey();
 OnDelete();
 }
 break;

 case WordMark:
 OnDelete();
 break;
 }
}

The OnReturnKey method is called when the user presses the Return key. First, we call the
OnChar method with a newline. The OnChar method is never called with newline on any
other occasion, since newline is not a graphical character.

void WordDocument::OnReturnKey() {
 OnChar(NewLine);

Keyboard Input and Character Calculation

[191]

After the newline has been added to the character list, we need to split the edit paragraph
into two. The editIndex field has been updated by the OnChar method, and it is now the
index of the character after the newline. The second paragraph starts at the edit index and
ends at the end of the first paragraph. The first paragraph's last index is set to the edit index
minus one. This means that the first paragraph holds the characters up to the newline,
inclusive, while the second paragraph holds the characters one step beyond the newline.

 Paragraph* firstParagraphPtr =
 charList[editIndex].ParagraphPtr();
 Paragraph* secondParagraphPtr =
 new Paragraph(editIndex, firstParagraphPtr->Last(),
 firstParagraphPtr->AlignmentField(),
 firstParagraphPtr->Index() + 1);
 assert(firstParagraphPtr != nullptr);
 firstParagraphPtr->Last() = editIndex - 1;

We insert the second paragraph in the paragraph list; we also need to set the characters in
the second paragraph to point to the second paragraph.

 paragraphList.Insert(firstParagraphPtr->Index() + 1,
 secondParagraphPtr);
 for (int charIndex = secondParagraphPtr->First();
 charIndex <= secondParagraphPtr->Last(); ++charIndex) {
 charList[charIndex].ParagraphPtr() = secondParagraphPtr;
 }

We need to recalculate both the first and second paragraph, since the first paragraph has
lost characters and the second paragraph has been recently created.

 GenerateParagraph(firstParagraphPtr);
 GenerateParagraph(secondParagraphPtr);

Since we have added a paragraph, we need to increase the indexes of the succeeding
paragraphs.

 for (int parIndex = secondParagraphPtr->Index() + 1;
 parIndex < paragraphList.Size(); ++parIndex) {
 ++paragraphList[parIndex]->Index();
 }

 SetDirty(true);
 CalculateDocument();
 UpdateCaret();
 UpdateWindow();
}

Keyboard Input and Character Calculation

[192]

Visible characters
When the user uses the keyboard, the edit character or the last marked character will
always be visible. We start by finding the area that is visible; in edit mode, it is the area of
the edit character. In the mark mode, it is the area of the character before the last marked
index, unless it is zero, in which case the index is set to zero.

bool WordDocument::MakeVisible() {
 Rect visibleArea;

 switch (wordMode) {
 case WordEdit: {
 Paragraph* editParagraphPtr =
 charList[editIndex].ParagraphPtr();
 Point topLeft(0, editParagraphPtr->Top());
 visibleArea = topLeft + charList[editIndex].CharRect();
 }
 break;

 case WordMark: {
 Paragraph* lastParagraphPtr =
 charList[max(0, lastMarkIndex - 1)].ParagraphPtr();
 Point topLeft(0, lastParagraphPtr->Top());
 visibleArea =
 topLeft + charList[max(0,lastMarkIndex - 1)].CharRect();
 }
 break;
 }

We test whether the visible area is in fact visible at the moment. If it is not visible, we adjust
the scroll bars in order to make it visible.

 int horiScrollLeft = GetHorizontalScrollPosition(),
 horiScrollPage = GetHorizontalScrollPageWidth(),
 vertScrollTop = GetVerticalScrollPosition(),
 vertScrollPage = GetVerticalScrollPageHeight();
 int horiScrollRight = horiScrollLeft + horiScrollPage,
 vertScrollBottom = vertScrollTop + vertScrollPage;

If the left border of the visible area is not visible, we set the horizontal scroll position to its
left border. In the same way, we set the vertical scroll position to the top border of the
visible area if it is not visible.

 if (visibleArea.Left() < horiScrollLeft) {
 SetHorizontalScrollPosition(visibleArea.Left());
 return true;
 }

Keyboard Input and Character Calculation

[193]

 if (visibleArea.Top() < vertScrollTop) {
 SetVerticalScrollPosition(visibleArea.Top());
 return true;
 }

It becomes a little bit more complicated when it comes to the right and bottom border of the
visible area. We start by calculating the distance between the right border of the visible area
and the right scroll position (the left scroll position plus the size of the horizontal scroll bar)
and increase the horizontal scroll position by that distance. In the same way, we calculate
the distance between the right border of the visible area and the bottom scroll position (the
top scroll position plus the size of the vertical scroll bar) and increase the vertical scroll
position by that distance.

 if (visibleArea.Right() > horiScrollRight) {
 int horiDifference = visibleArea.Right() - horiScrollRight;
 SetHorizontalScrollPosition(horiScrollLeft + horiDifference);
 return true;
 }

 if (visibleArea.Bottom() > vertScrollBottom) {
 int vertDifference = visibleArea.Bottom() - vertScrollBottom;
 SetVerticalScrollPosition(vertScrollTop + vertDifference);
 return true;
 }

 return false;
}

Character calculation
The GenerateParagraph fucnction generates the character rectangles and the line lists of a
paragraph every time characters are added or removed or when the font or alignment is
changed. First, we generate lists of sizes and ascents for every character as well as the line
list by calling the GenerateSizeAndAscentList and GenerateLineList methods. Then,
we iterate through the line list and generate the character rectangles by calling the
GenerateLineRectList method. Finally, we invalidate the characters that have been
changed by comparing them to the original rectangle lists:

void WordDocument::GenerateParagraph(Paragraph* paragraphPtr) {
 if (!charList.Empty()) {
 DynamicList<Size> sizeList;
 DynamicList<int> ascentList;
 DynamicList<CharInfo> prevCharList;

Keyboard Input and Character Calculation

[194]

 charList.Copy(prevCharList, paragraphPtr->First(),
 paragraphPtr->Last());

 GenerateSizeAndAscentList(paragraphPtr, sizeList, ascentList);
 GenerateLineList(paragraphPtr, sizeList, ascentList);

 for (LineInfo* lineInfoPtr : paragraphPtr->LinePtrList()) {
 if (paragraphPtr->AlignmentField() == Justified) {
 GenerateJustifiedLineRectList(paragraphPtr, lineInfoPtr,
 sizeList, ascentList);
 }
 else {
 GenerateRegularLineRectList(paragraphPtr, lineInfoPtr,
 sizeList, ascentList);
 }
 }

 GenerateRepaintSet(paragraphPtr, prevCharList);
 }
}

Character size and ascent line
The ascent line separates the upper and lower part of a letter, which is shown in the
following figure:

The GenerateSizeAndAscentList method fills the given lists with the size (width and
height) and ascent of every character in the paragraph:

void WordDocument::GenerateSizeAndAscentList
 (Paragraph* paragraphPtr, DynamicList<Size>& sizeList,
 DynamicList<int>& ascentList) {
 int index = 0;

 for (int charIndex = paragraphPtr->First();
 charIndex <= paragraphPtr->Last(); ++charIndex) {
 CharInfo charInfo = charList[charIndex];
 TCHAR tChar = (charInfo.Char() == NewLine) ? Space
 : charInfo.Char();

Keyboard Input and Character Calculation

[195]

 int width = GetCharacterWidth(charInfo.CharFont(), tChar),
 height = GetCharacterHeight(charInfo.CharFont()),
 ascent = GetCharacterAscent(charInfo.CharFont());

 sizeList.PushBack(Size(width, height));
 ascentList.PushBack(ascent);
 }
}

Line generation
The GenerateLineList method generates the line list. The main point is that we have to
decide how many words fit on each line. We iterate through the characters and calculate the
size of each word. When the next word does not fit on the line, we start a new line. We save
the index of the first and last character on the line as well as its top position. We also save its
maximum height and ascent, which is the height and ascent of the largest character on the
line:

void WordDocument::GenerateLineList(Paragraph* paragraphPtr,
 DynamicList<Size>& sizeList,
 DynamicList<int>& ascentList){
 int maxHeight = 0, maxAscent = 0, lineWidth = 0,
 spaceLineHeight = 0, spaceLineAscent = 0,
 startIndex = paragraphPtr->First(), spaceIndex = -1;

We delete the lines previously stored in the line list. The line list and the paragraph height
are cleared. The lineTop variable is set to zero and is used when calculating the top
position of each line.

 for (LineInfo* lineInfoPtr : paragraphPtr->LinePtrList()) {
 delete lineInfoPtr;
 }

 paragraphPtr->Height() = 0;
 paragraphPtr->LinePtrList().Clear();
 int lineTop = 0;

 for (int charIndex = paragraphPtr->First();
 charIndex <= paragraphPtr->Last(); ++charIndex) {
 CharInfo charInfo = charList[charIndex];

 if (charInfo.Char() != NewLine) {
 lineWidth +=
 sizeList[charIndex - paragraphPtr->First()].Width();
 }

Keyboard Input and Character Calculation

[196]

If the nextFont parameter is active (does not equal SystemFont) and we have reached the
edit index in edit mode, we calculate the height and ascent of the nextFont parameter. In
this case, we are only interested in the height and ascent of the font, and we do not need to
calculate the width of its average character.

 if ((nextFont != SystemFont) && (charIndex == editIndex) &&
 (wordMode == WordEdit)) {
 maxHeight = max(maxHeight, GetCharacterHeight(nextFont));
 maxAscent = max(maxAscent, GetCharacterAscent(nextFont));
 }

Note that we have to subtract the first index of the paragraph, since the indexes of each line
are relative to the beginning of the paragraph. Remember that the character list is common
to all paragraphs in the document.

 else {
 maxHeight = max(maxHeight,
 sizeList[charIndex - paragraphPtr->First()].Height());
 maxAscent = max(maxAscent,
 ascentList[charIndex - paragraphPtr->First()]);
 }

 if (charInfo.Char() == Space) {
 spaceIndex = charIndex;

 spaceLineHeight = max(spaceLineHeight, maxHeight);
 spaceLineAscent = max(spaceLineAscent, maxAscent);

 maxHeight = 0;
 maxAscent = 0;
 }

When we find a newline, we have reached the end of the paragraph.

 if (charInfo.Char() == NewLine) {
 spaceLineHeight = max(spaceLineHeight, maxHeight);
 spaceLineAscent = max(spaceLineAscent, maxAscent);

 LineInfo* lineInfoPtr =
 new LineInfo(startIndex - paragraphPtr->First(),
 charIndex - paragraphPtr->First(),
 lineTop, spaceLineHeight, spaceLineAscent);
 assert(lineInfoPtr != nullptr);

Keyboard Input and Character Calculation

[197]

 for (int index = lineInfoPtr->First();
 index <= lineInfoPtr->Last(); ++index) {
 charList[paragraphPtr->First() + index].LineInfoPtr() =
 lineInfoPtr;
 }

 paragraphPtr->Height() += spaceLineHeight;
 paragraphPtr->LinePtrList().PushBack(lineInfoPtr);
 break;
 }

When the width of the edit line exceeds the page width, we have, in fact, three different
cases:

The line is made up by at least one complete word (space is not equal to minus
one)
The line is made up by one word too long to fit on the page (space is equal to
minus one and charIndex is greater than startIndex)
The line is made up by one single character wider than the page (space is equal to
minus one and charIndex equals startIndex

The third case is unlikely but possible.

 if (lineWidth > PageInnerWidth()) {
 LineInfo* lineInfoPtr = new LineInfo();
 assert(lineInfoPtr != nullptr);
 lineInfoPtr->Top() = lineTop;
 lineTop += spaceLineHeight;

If the line is constituted by at least one complete word followed by a space, we discard the
latest space and start the new line from the next character.

 if (spaceIndex != -1) {
 lineInfoPtr->First() = startIndex - paragraphPtr->First();
 lineInfoPtr->Last() = spaceIndex - paragraphPtr->First();
 lineInfoPtr->Ascent() = spaceLineAscent;
 lineInfoPtr->Height() = spaceLineHeight;
 startIndex = spaceIndex + 1;
 }

If the line is constituted by one single word (with at least two letters) such that its width
does not fit on the page, we define the line to hold the word including the last fitting
character, and we start the new line with the succeeding character.

Keyboard Input and Character Calculation

[198]

 else {
 if (charIndex > startIndex) {
 lineInfoPtr->First() =
 startIndex - paragraphPtr->First();
 lineInfoPtr->Last() =
 charIndex - paragraphPtr->First() - 1;
 startIndex = charIndex;
 }

Finally, in the unlikely event that one single character is wider than the page, we just let that
character constitute the whole line and let the next index be the start index.

 else {
 lineInfoPtr->First() =charIndex - paragraphPtr->First();
 lineInfoPtr->Last() = charIndex - paragraphPtr->First();
 startIndex = charIndex + 1;
 }

The height and ascent of the line are the maximal height and ascent (the height and ascent
of the character with the largest height and ascent).

 lineInfoPtr->Height() = maxHeight;
 lineInfoPtr->Ascent() = maxAscent;
 }

We set all characters on the line to point at the line.

 for (int index = lineInfoPtr->First();
 index <= lineInfoPtr->Last(); ++index) {
 charList[paragraphPtr->First() + index].LineInfoPtr() =
 lineInfoPtr;
 }

The height of the paragraph is increased by the height of the line, and the line pointer is
added to the line pointer list.

 paragraphPtr->Height() += spaceLineHeight;
 paragraphPtr->LinePtrList().PushBack(lineInfoPtr);

In order to prepare for the next iteration, the line width, the maximal height, and ascent are
cleared.

 lineWidth = 0;
 maxAscent = 0;
 maxHeight = 0;

Keyboard Input and Character Calculation

[199]

The charIndex loop variable is set to the latest space index and the spaceIndex is set to
-1, indicating that we have not yet found a space on the new line.

 charIndex = startIndex;
 spaceIndex = -1;
 }
 }
}

Regular and justified rectangle list generation
When we have decided the size and ascent line for each character and divided the
characters into lines, it is time to generate the character rectangles. For a regular (left, center,
or right-aligned) paragraph, we do that in three steps. The justified-aligned paragraph is
handled by the GenerateJustifiedLineRectList method as follows:

We sum the width of each line.1.
We find the leftmost position.2.
We generate the rectangles for the characters.3.

void WordDocument::GenerateRegularLineRectList
 (Paragraph* paragraphPtr,LineInfo* lineInfoPtr,
 DynamicList<Size>& sizeList,
 DynamicList<int>& ascentList) {

We iterate through the characters of the line and sum its width. If the character after the last
character of the line is not a space or newline, we generate its rectangle too.

 for (int charIndex = lineInfoPtr->First();
 charIndex < lineInfoPtr->Last(); ++charIndex) {
 if (charList[paragraphPtr->First() + charIndex].Char() !=
 NewLine) {
 lineWidth +=
 sizeList[charIndex - lineInfoPtr->First()].Width();
 }
 }

 if ((charList[paragraphPtr->First()+lineInfoPtr->Last()].Char()
 != Space) &&
 (charList[paragraphPtr->First()+lineInfoPtr->Last()].Char()
 !=NewLine)) {
 lineWidth +=
 sizeList[lineInfoPtr->Last()-lineInfoPtr->First()].Width();
 }

Keyboard Input and Character Calculation

[200]

Then, we find the leftmost position of the line to start the rectangle generation. In the case of
left alignment, the starting position is always zero. In the case of center alignment, it is half
the difference between the page and text width. In the case of right alignment, it is the
whole difference between the page and text width.

 int leftPos;

 switch (paragraphPtr->AlignmentField()) {
 case Left:
 leftPos = 0;
 break;

 case Center:
 leftPos = (PageInnerWidth() - lineWidth) / 2;
 break;

 case Right:
 leftPos = PageInnerWidth() - lineWidth;
 break;
 }

Next, we iterate through the line and generate each rectangle. If the character after the last
character of the line is a space, we generate its rectangle too.

 for (int charIndex = lineInfoPtr->First();
 charIndex <= lineInfoPtr->Last(); ++charIndex) {
 Size charSize = sizeList[charIndex];
 int ascent = ascentList[charIndex];
 int topPos = lineInfoPtr->Top() +
 lineInfoPtr->Ascent() - ascent;
 charList[paragraphPtr->First() + charIndex].CharRect() =
 Rect(leftPos, topPos, leftPos + charSize.Width(),
 topPos + charSize.Height());
 leftPos += charSize.Width();
 }
}

The GenerateJustifiedLineRectList method is slightly more complicated than the
GenerateRegularLineRectList method. We follow the same three steps as mentioned
previously. However, when calculating the width of the text, we omit the width of spaces
from the text width. Instead, we count the number of spaces.

void WordDocument::GenerateJustifiedLineRectList
 (Paragraph* paragraphPtr, LineInfo* lineInfoPtr,
 DynamicList<Size>& sizeList, DynamicList<int>& ascentList) {
 int spaceCount = 0, lineWidth = 0;

Keyboard Input and Character Calculation

[201]

 for (int charIndex = lineInfoPtr->First();
 charIndex <= lineInfoPtr->Last(); ++charIndex) {
 CharInfo charInfo =
 charList[paragraphPtr->First() + charIndex];

We include every character on the line in lineWidth, except spaces and newlines.

 if (charInfo.Char() == Space) {
 ++spaceCount;
 }
 else if (charInfo.Char() != NewLine) {
 lineWidth += sizeList[charIndex].Width();
 }
 }

 if ((charList[paragraphPtr->First()+lineInfoPtr->Last()].Char()
 != Space) &&
 (charList[paragraphPtr->First()+lineInfoPtr->Last()].Char()
 !=NewLine)) {
 lineWidth += sizeList[lineInfoPtr->Last()].Width();
 }

Similar to the previous left-alignment case, the leftmost position in justified alignment is
always zero. If there is at least one space on the line, we calculate the width of the spaces by
dividing the difference between the page and text width with the number of spaces. We
need to check that the number of spaces is greater than zero. Otherwise, we would be
dividing by zero. On the other hand, if the number of spaces is zero, we do not need the
space width.

 int leftPos = 0, spaceWidth;
 if (spaceCount > 0) {
 spaceWidth = (PageInnerWidth() - lineWidth) / spaceCount;
 }

 for (int charIndex = lineInfoPtr->First();
 charIndex <= lineInfoPtr->Last(); ++charIndex) {
 Size charSize = sizeList[charIndex];
 int ascent = ascentList[charIndex], charWidth;

If the character is a space, we use the calculated space width instead of its actual width.

 if (charList[paragraphPtr->First() + charIndex].Char() ==
 Space) {
 charWidth = spaceWidth;
 }
 else {
 charWidth = charSize.Width();
 }

Keyboard Input and Character Calculation

[202]

 int topPos =
 lineInfoPtr->Top() + lineInfoPtr->Ascent() - ascent;
 charList[paragraphPtr->First() + charIndex].CharRect() =
 Rect(leftPos, topPos, leftPos + charWidth,
 topPos + charSize.Height());
 leftPos += charWidth;
 }
}

Invalidate rectangle set generation
Finally, we need to invalidate the set of rectangles that have been changed. There are two
cases to be considered. First, we have the rectangles themselves. We iterate through the
character list, and for each character we compare its previous and current rectangle, and
invalidate both of them if they differ (which causes both their areas to be repainted).
Remember that invalidate means that we prepare the areas to be repainted next time the
window is updated. Then we to look into the line list and add the areas to the left and right
of the text on the line, if present.

void WordDocument::GenerateRepaintSet(Paragraph* paragraphPtr,
 DynamicList<CharInfo>& prevCharList) {
 Point topLeft(0, paragraphPtr->Top());

 for (int charIndex = paragraphPtr->First();
 charIndex <= paragraphPtr->Last(); ++ charIndex) {
 Rect prevRect =
 prevCharList[charIndex - paragraphPtr->First()].CharRect(),
 currRect = charList[charIndex].CharRect();

 if (prevRect != currRect) {
 Invalidate(topLeft + prevRect);
 Invalidate(topLeft + currRect);
 }
 }
 int pageWidth = PageInnerWidth();

 for (LineInfo* lineInfoPtr : paragraphPtr->LinePtrList()) {
 Rect firstRect = charList[paragraphPtr->First() +
 lineInfoPtr->First()].CharRect();

 if (firstRect.Left() > 0) {
 Rect leftRect(0, lineInfoPtr->Top(), firstRect.Left(),
 lineInfoPtr->Top() + lineInfoPtr->Height());
 Invalidate(topLeft + leftRect);
 }

Keyboard Input and Character Calculation

[203]

 Rect lastRect = charList[paragraphPtr->First() +
 lineInfoPtr->Last()].CharRect();

 if (lastRect.Right() < pageWidth) {
 Rect rightRect(lastRect.Right(), lineInfoPtr->Top(),
 pageWidth, lineInfoPtr->Top()+lineInfoPtr->Height());
 Invalidate(topLeft + rightRect);
 }
 }
}

Summary
In this chapter, we finished the development of our word processor by looking into
keyboard handling and character calculation. In Chapter 8, Building a Spreadsheet
Application, we will start developing a spreadsheet program.

8
Building a Spreadsheet

Application
In this chapter, we will start developing the last application of this book–a spreadsheet
program capable of calculating numerical expressions as well as cutting and pasting cells
with relative references. Similar to the word processor in the previous chapters, the
spreadsheet program cuts and pastes ASCII and Unicode text as well as application-specific
information. Moreover, it is possible to change the font and color of the cells and their
horizontal and vertical alignment.

In this chapter, we will look at the following:

Mouse and keyboard input
Drawing a spreadsheet
Saving and loading the spreadsheet
Cutting, copying, and pasting cell blocks
Fonts, colors, and alignments of cell blocks

The MainWindow class
The MainWindow definition in this chapter looks very much like the previous definitions.

MainWindow.cpp

#include "..\\SmallWindows\\SmallWindows.h"
#include "Token.h"
#include "Error.h"
#include "Scanner.h"

Building a Spreadsheet Application

[205]

#include "TreeNode.h"
#include "Parser.h"
#include "Cell.h"
#include "CalcDocument.h"

void MainWindow(vector<String> /* argumentList */,
 WindowShow windowShow) {
 Application::ApplicationName() = TEXT("Calc");
 Application::MainWindowPtr() = new CalcDocument(windowShow);
}

The CalcDocument class
The CalcDocument class is the main class of the application. It catches mouse and keyboard
events, handles scrolling and painting, and processes menu actions. However, the cell-level
operations are handled by the Cell class, which we will cover in Chapter 9, Formula
Interpretation.

The user can mark one or several cells, in which case, the private field calcMode is set to
Mark. The user can also edit the text in one cell, in which case the calcMode field is set to
Edit. Similar to the word processor in the previous chapters, we refer to the current value
of the calcMode field in expressions such as in mark mode and in edit mode.

class CalcDocument : public StandardDocument {
 public:
 CalcDocument(WindowShow windowShow);

The OnMouseDown, OnMouseMove, and OnDoubleClick methods catch the mouse actions
in the same way as in the previous applications. Note that we do not override the
OnMouseUp method. Contrary to the word processor of Chapter 7, Keyboard Input and
Character Calaculation, this application remains in the mark mode until the user actually
inputs a character, even if they mark only one cell. The user can also mark several cells by
dragging the mouse.

 void OnMouseDown(MouseButton mouseButtons, Point mousePoint,
 bool shiftPressed, bool controlPressed);
 void OnMouseMove(MouseButton mouseButtons, Point mousePoint,
 bool shiftPressed, bool controlPressed);
 void OnDoubleClick(MouseButton mouseButtons, Point mousePoint,
 bool shiftPressed, bool controlPressed);
 void OnMouseUp(MouseButton mouseButtons, Point mousePoint,
 bool shiftPressed, bool controlPressed);

Building a Spreadsheet Application

[206]

The OnHorizontalScroll and OnVerticalScroll methods are called when the user
changes the scroll bars. In the previous applications, we did not override these functions,
but in this application, we want each scroll movement to result in a movement of an exact
number of cells. Besides, in the StandardDocument constructor call, we use the
LogicalWithoutScroll coordinate system in order to be able to handle the row and
column headers of the spreadsheet, which are always located at the top and to the left of the
client area regardless of the scroll bar settings. This implies that we have to handle scroll bar
movements manually.

 virtual void OnHorizontalScroll(WORD flags, WORD x);
 virtual void OnVerticalScroll(WORD flags, WORD y);

The user can mark all cells by clicking on the all box in the top-left corner (ClickAll), all
cells in a column by clicking on the column header (ClickCol), all cells in a row by clicking
on the row header (ClickRow), or just one of the cells (ClickCell) by clicking on the cell.

 enum ClickArea {ClickAll, ClickRow, ClickColumn, ClickCell};

The GetMouseLocation method analyzes a mouse click and returns one of the ClickArea
values. If the user clicks on the right of the spreadsheet, the rightmost cell on the row is
selected, and if they click below the spreadsheet, the cell at the bottom of the column is
selected. The Reference class is defined in Chapter 12, The Auxiliary Classes.

 ClickArea GetMouseLocation(Point mousePoint,
 Reference& cellRef) const;

The MarkBlock method marks the blocks in the click area depending on the marks.

 void MarkBlock(ClickArea clickArea, Reference newFirstMarkRef,
 Reference newLastMarkRef);

The OnDraw method draws the row and column header as well as the cells themselves. In
the edit mode, the UpdateCaret method sets the caret in the cell being edited.

 void OnDraw(Graphics& graphics, DrawMode drawMode) const;
 void UpdateCaret();

When the user marks cells with the keyboard, the latest marked cell will always be visible.
The IsCellVisible method returns true if it is visible, while the MakeCellVisible
method makes sure it is visible by scrolling, if necessary.

Building a Spreadsheet Application

[207]

The MakeCellVisible method without parameters calls the MakeCellVisible method
with the parameter with the edited cell, or the last marked cell, depending on whether the
application holds the edit or mark mode.

 bool IsCellVisible(Reference cellRef) const;
 void MakeCellVisible();
 void MakeCellVisible(Reference cellRect);

When the user finishes input text in a cell, the ToMarkMode method is called, which tries to
change the application mode from edit to mark. It returns false if the input fails (if a
formula with syntax error has been input):

 bool ToMarkMode();

The Remark method is called when the user has marked one or several cells. In order to
avoid dazzle, it does not mark already marked cells:

 void Remark(Reference newFirstRef, Reference newLastRef);

The OnChar method is called when the user inputs a character in mark mode; the
application is changed to edit mode:

 void OnChar(TCHAR tChar);

The OnKeyDown method calls one of the specific key handling methods, which changes the
caret position in the edit mode and changes the cell markings in the mark mode:

 bool OnKeyDown(WORD key, bool shiftPressed,
 bool controlPressed);
 void OnLeftArrowKey(bool shiftPressed);
 void OnRightArrowKey(bool shiftPressed);
 void OnUpArrowKey(bool shiftPressed);
 void OnDownArrowKey(bool shiftPressed);
 void OnHomeKey(bool shiftPressed, bool controlPressed);
 void OnEndKey(bool shiftPressed, bool controlPressed);

The OnReturnKey and OnTabulatorKey methods finish the input in the edit mode
(unless a syntax error occurs) and moves the mark position one step down (Return), to the
left (Shift + Tab) or to the right (Tab). However, in case of an error, an error message box is
displayed and the edit mode remains. The only way for the user to finish the input of a
formula with a syntax error is to press the Esc key, in which case the OnEscapeKey method
is called and the cell's value is reset to the value which it held at the beginning of the input:

 void OnReturnKey();
 void OnTabulatorKey(bool shiftPressed);
 void OnEscapeKey();

Building a Spreadsheet Application

[208]

The OnDeleteKey and OnBackspaceKey methods remove the current character from the
edit mode and clear the marked cells in the mark mode:

 void OnDeleteKey();
 void OnBackspaceKey();

Similar to the previous applications, the ClearDocument method is called when the user
selects the New menu item, the ReadDocumentFromStream method is called when they
select the Open menu item, and the WriteDocumentToStream method is called when they
select the Save or Save As menu items:

 void ClearDocument();
 bool ReadDocumentFromStream(String name, istream& inStream);
 bool WriteDocumentToStream(String name, ostream& outStream)
 const;

A text that begins with an equal sign (=) followed by a numerical expression with cell
references is regarded as a formula. Technically, an equal sign followed by something other
than a numerical expression is also considered a formula. However, in that case, it is a
formula with a syntax error. When the user inputs a formula, the cells referred to in the
formula constitute the cell's source set. The target set of a cell is made up by the cells that
have it at a source (the sets are more exactly defined at the end of this chapter). The
WriteSetMapToStream and ReadSetMapFromStream methods write and read the source
and target set maps:

 static bool WriteSetMapToStream(const map<Reference,
 set<Reference>>& setMap, ostream& outStream);
 static bool ReadSetMapFromStream(map<Reference,set<Reference>>
 &setMap, istream& inStream);

In this application, we overwrite the methods IsCopyAsciiReady, IsCopyUnicodeReady,
and IsCopyGenericReady from the StandardDocument class. They are called by the
OnCopy method in the StandardDocument class:

 bool CopyEnable() const;
 bool IsCopyAsciiReady() const {return true;}
 bool IsCopyUnicodeReady() const {return true;}
 bool IsCopyGenericReady(int format) const {return true;}

It may seem strange that both the CopyEnable method and the three more specific enable
methods are overridden. However, the CopyEnable method returns true if the application
is ready for copying (which it is in the mark mode), while the other methods are called by
the OnCopy method in the StandardDocument class to decide whether the application is
ready to copy in the given format.

Building a Spreadsheet Application

[209]

Their default implementation is to return false, but we need to override them, as it is
always possible to copy the marked cells in mark mode:

 void CopyAscii(vector<String>& textList) const;
 void CopyUnicode(vector<String>& textList) const;
 void CopyGeneric(int format, InfoList& infoList) const;

We could override the PasteEnable method from the StandardDocument class in the
same way we override the CopyEnable method. However, in this application, we need
some finer testing. Therefore, we override the IsPasteAsciiReady,
IsPasteUnicodeReady, and IsPasteGenericReady methods instead. In the word
processor of the previous chapters, we could always paste text, irrespective of the number
of characters or paragraphs. In this application, however, we need to check whether the
block to be pasted fits in the spreadsheet:

 bool IsPasteAsciiReady(const vector<String>& textList) const;
 bool IsPasteUnicodeReady(const vector<String>& textList)const;
 bool IsPasteGenericReady(int format, InfoList& infoList)const;

Similar to the word processor, we override the PasteAscii, PasteUnicode, and
PasteGeneric methods. Remember that these methods are called in the order in which the
formats are given in the list in the CalcDocument constructor call. When the corresponding
enable method IsPasteAsciiReady, IsPasteUnicodeReady, or IsPasteGenericReady
returns true, the PasteAscii, PasteUnicode, or PasteGeneric method is called. Only
the first paste method is called. If none of the enable methods returns true, none of the
paste methods is called:

 void PasteAscii(const vector<String>& textList);
 void PasteUnicode(const vector<String>& textList);
 void PasteGeneric(int format, InfoList& infoList);

The DeleteEnable method always returns true in the mark mode, since there is always at
least one cell marked and ready to be deleted. It returns true in the edit mode if the caret
is not located at the end of the text of the edited cell. The OnDelete method simply calls
the OnDeleteKey method, because the Delete menu item has the same effect as that of a
user pressing the Delete key:

 bool DeleteEnable() const;
 void OnDelete();

The OnFont and OnBackgroundColor methods are called when the user selects the Font or
Background Color menu item. They display the standard Font or Color dialog:

 DEFINE_VOID_LISTENER(CalcDocument, OnFont);
 DEFINE_VOID_LISTENER(CalcDocument, OnBackgroundColor);

Building a Spreadsheet Application

[210]

Horizontally, the text of a cell can be aligned to left, center, right, or justified. Vertically, it
can be aligned to top, center, or bottom. All the radio methods call the
IsHorizontalAlignment or IsVerticalAlignment methods, and all the selection
methods call the SetHorizontalAlignment or SetVerticalAlignment methods:

 DEFINE_BOOL_LISTENER(CalcDocument, HorizontalLeftRadio);
 DEFINE_BOOL_LISTENER(CalcDocument, HorizontalCenterRadio);
 DEFINE_BOOL_LISTENER(CalcDocument, HorizontalRightRadio);
 DEFINE_BOOL_LISTENER(CalcDocument, HorizontalJustifiedRadio);

 DEFINE_VOID_LISTENER(CalcDocument, OnHorizontalLeft);
 DEFINE_VOID_LISTENER(CalcDocument, OnHorizontalCenter);
 DEFINE_VOID_LISTENER(CalcDocument, OnHorizontalRight);
 DEFINE_VOID_LISTENER(CalcDocument, OnHorizontalJustified);

 bool IsHorizontalAlignment(Alignment alignment) const;
 void SetHorizontalAlignment(Alignment alignment);

 DEFINE_BOOL_LISTENER(CalcDocument, VerticalTopRadio);
 DEFINE_BOOL_LISTENER(CalcDocument, VerticalCenterRadio);
 DEFINE_BOOL_LISTENER(CalcDocument, VerticalBottomRadio);

 DEFINE_VOID_LISTENER(CalcDocument, OnVerticalTop);
 DEFINE_VOID_LISTENER(CalcDocument, OnVerticalCenter);
 DEFINE_VOID_LISTENER(CalcDocument, OnVerticalBottom);

 bool IsVerticalAlignment(Alignment alignment) const;
 void SetVerticalAlignment(Alignment alignment);

The InterpretEditCell method interprets the cell after the user has finished the input
and creates a syntax tree (described in Chapter 9, Formula Interpretation) in the case of a
formula (or throws an exception in the case of syntax error). The IsCircular method
returns true if the cell is part of a circular reference (the cell formula refers to itself, directly
or indirectly). The RemoveTargetSetMap method removes the targets of the cell, and the
AddTargetSetMap method adds targets to the cell. The EvaluateCell method evaluates
the value of one cell, while the EvaluateRecursive method recursively evaluates the
values of all its target cells. Finally, the InvalidateCell method invalidates the cell so that
it can be redrawn later:

 bool InterpretEditCell();
 bool IsCircular(Reference cellRef, set<Reference>& targetSet);
 void RemoveTargetSetMap(Reference cellRef);
 void AddTargetSetMap(Reference cellRef,
 set<Reference>& newSourceSet);
 void InvalidateCell(Reference cellRef);

Building a Spreadsheet Application

[211]

 void EvaluateRecursive(Reference cellRef,
 set<Reference>& invalidateSet);
 void EvaluateCell(Reference cellRef);

As mentioned at the beginning of this section, the calcMode method is set to Mark or Edit,
and we refer to its current value as in mark mode and in edit mode:

 private:
 enum CalcMode {Edit, Mark} calcMode = Mark;

The markOk field is set by the OnMouseDown method to signal the OnMouseMove method
that it is clear to mark cells:

 bool markOk;

The firstMarkRef and lastMarkRef fields refer to the first and last marked cell in the
spreadsheet in the mark mode. Note that they refer to their chronological order rather than
their physical order, which means that the first marked reference can be larger than the last
marked reference. When necessary, in some methods, the minimum and maximum
references are calculated:

 Reference firstMarkRef, lastMarkRef, editRef;

In the edit mode, editRef refers to the cell currently edited and editIndex to the index
of the next input position in the cell text (and the caret position):

 int editIndex;

The cellMatrix field holds the spreadsheet of the application. Rows and Cols are constant
values and Cell is the class holding the information of each cell. Matrix is defined in
Chapter 9, Formula Interpretation.

 Matrix<Rows,Cols,Cell> cellMatrix;

When the user inputs a formula in a cell, each reference in the formula becomes a source. In
the same way, each of the source cells is given a cell as a target. The source and target sets of
the cells are stored in the sourceSetMap and targetSetMap methods:

 map<Reference,set<Reference>> sourceSetMap, targetSetMap;

The value of the CalcFormat method used when identifying cut, copy, and paste format is
arbitrarily chosen to be 1003:

 static const unsigned int CalcFormat = 1003;

Building a Spreadsheet Application

[212]

When the user finishes the input of a cell with the Esc key, the previous content of the cell
(what was stored in the cell before the input began) gets stored in the prevCell variable
and is copied back to the cell:

 Cell prevCell;
};

CalcDocument.cpp

#include "..\\SmallWindows\\SmallWindows.h"
#include "Token.h"
#include "Error.h"
#include "Scanner.h"
#include "TreeNode.h"
#include "Parser.h"
#include "Cell.h"
#include "CalcDocument.h"

The constructor calls the StandardDocument constructor in the same way as in the word
processor of the previous chapters. However, note that we choose the
LogicalWithoutScroll coordinate system (in the word processor, we chose
LogicalWithScroll). This implies that the coordinates of the client area are not updated
when the user changes the scroll bar settings. Instead, we have to catch the scroll bar
movements with the OnHorizontalScroll and OnVerticalScroll methods. This is
because the row and column headers are always placed at the top and to the left of the
client area, regardless of the current scroll bar settings. Besides, we also want the scrolling
to result in exact row and column movements. We also give false as the seventh
parameter, indicating that we omit the Print and Print Preview file items in the File menu
in this application:

CalcDocument::CalcDocument(WindowShow windowShow)
 :StandardDocument(LogicalWithoutScroll, USLetterPortrait,
 TEXT("Calc Files, clc; Text Files, txt"),
 nullptr, OverlappedWindow, windowShow,
 {CalcFormat, UnicodeFormat, AsciiFormat},
 {CalcFormat, UnicodeFormat, AsciiFormat}) {

In this application, we only add the Format menu besides the File, Edit, and Help standard
menus to the standard menu bar. The Format menu holds the Font and Background Color
items as well as the sub menus Horizontal Alignment and Vertical Alignment.

 Menu menuBar(this);
 menuBar.AddMenu(StandardFileMenu(false));
 menuBar.AddMenu(StandardEditMenu());

Building a Spreadsheet Application

[213]

 Menu formatMenu(this, TEXT("F&ormat"));
 formatMenu.AddItem(TEXT("&Font ...\tCtrl+F"), OnFont);
 formatMenu.AddItem(TEXT("&Background Color ...\tCtrl+B"),
 OnBackgroundColor);

 Menu horizontalMenu(this, TEXT("&Horizontal Alignment"));
 horizontalMenu.AddItem(TEXT("&Left"), OnHorizontalLeft,
 nullptr, nullptr, HorizontalLeftRadio);
 horizontalMenu.AddItem(TEXT("&Center"), OnHorizontalCenter,
 nullptr, nullptr, HorizontalCenterRadio);
 horizontalMenu.AddItem(TEXT("&Right"), OnHorizontalRight,
 nullptr, nullptr, HorizontalRightRadio);
 horizontalMenu.AddItem(TEXT("&Justified"),OnHorizontalJustified,
 nullptr, nullptr, HorizontalJustifiedRadio);
 Menu verticalMenu(this, TEXT("&Vertical Alignment"));
 verticalMenu.AddItem(TEXT("&Top"), OnVerticalTop,
 nullptr, nullptr, VerticalTopRadio);
 verticalMenu.AddItem(TEXT("&Center"), OnVerticalCenter,
 nullptr, nullptr, VerticalCenterRadio);

 verticalMenu.AddItem(TEXT("&Bottom"), OnVerticalBottom,
 nullptr, nullptr, VerticalBottomRadio);

 formatMenu.AddMenu(horizontalMenu);
 formatMenu.AddMenu(verticalMenu);
 menuBar.AddMenu(formatMenu);

 menuBar.AddMenu(StandardHelpMenu());
 SetMenuBar(menuBar);

The GenerateCaretList method is called for each cell in the spreadsheet, even though
every cell is empty to start with. However, there is an extra caret rectangle generated for the
position to the right of the text, which we need in case the user double-clicks on an empty
cell. If they do, we use the caret list to find the index of the character clicked on (which
naturally is zero for an empty cell):

 for (int row = 0; row < Rows; ++row) {
 for (int col = 0; col < Cols; ++col) {
 cellMatrix[Reference(row, col)].GenerateCaretList(this);
 }
 }

Building a Spreadsheet Application

[214]

Mouse input
The OnMouseDown and OnMouseMove methods look up the part of the spreadsheet with the
mouse position and mark the appropriate set of cells. If the user inputs a formula with a
syntax error, it is not possible to change the mode from edit to mark, so an error message is
displayed in a message box, and the edit mode remains as it is. In that case, the markOk
method is set to false, indicating that the OnMouseMove and OnDoubleClick methods
will take no actions:

void CalcDocument::OnMouseDown(MouseButton mouseButtons,
 Point mousePoint, bool shiftPressed /*=false*/,
 bool controlPressed /* = false */) {
 if ((calcMode == Mark) || ToMarkMode()) {
 markOk = true;
 Reference newFirstMarkRef;
 ClickArea clickArea =
 GetMouseLocation(mousePoint, newFirstMarkRef);
 MarkBlock(clickArea, newFirstMarkRef, newFirstMarkRef);
 UpdateCaret();
 }
 else {
 markOk = false;
 }
}

Note that the OnMouseMove method only takes action if the markOk method is set to true
in the OnMouseDown method. Since the OnMouseDown method is always called before the
OnMouseMove method, the markOk method is always properly set. One difference between
the OnMouseDown and OnMouseMove methods is that the OnMouseDown method sets the
first and last marked cell reference, while the OnMouseMove method only sets the last
marked cell reference:

void CalcDocument::OnMouseMove(MouseButton mouseButtons,
 Point mousePoint, bool shiftPressed /*=false*/,
 bool controlPressed /* = false */) {
 if ((mouseButtons == LeftButton) && markOk) {
 Reference newLastMarkRef;
 ClickArea clickArea =
 GetMouseLocation(mousePoint, newLastMarkRef);
 MarkBlock(clickArea, firstMarkRef, newLastMarkRef);
 }
}

Building a Spreadsheet Application

[215]

When the user double-clicks, the input position (and caret) is set to the character clicked on.
We look up the clicked area in the same way as in the OnMouseDown and OnMouseMove
methods. However, the double-click only takes effect if the user clicks on a cell, not the all-
box or one of the row or column headers. We mark the clicked cell, set the application to the
edit mode, and extract the edit index from the cell by calling the MouseToIndex method:

void CalcDocument::OnDoubleClick(MouseButton mouseButtons,
 Point mousePoint, bool shiftPressed /*=false*/,
 bool controlPressed /* = false */) {
 if ((mouseButtons == LeftButton) && markOk) {
 ClickArea clickArea = GetMouseLocation(mousePoint, editRef);

 if (clickArea == ClickCell) {
 calcMode = Edit;
 Cell& editCell = cellMatrix[editRef];
 prevCell = editCell;
 editCell.DisplayFormula();
 editIndex = editCell.MouseDown(mousePoint.X() % ColWidth);
 InvalidateCell(editRef);
 UpdateWindow();
 UpdateCaret();
 }
 }
}

Scrolling and marking
The OnHorizontalScroll and OnVerticalScroll methods are called when the user
changes the scroll bar settings. We adjust the position to the nearest column or row and set
the scroll position. These methods (together with GetMouseLocation) are the reason we
chose the LogicalWithoutScroll coordinate system in the CalcDocument constructor
call:

void CalcDocument::OnHorizontalScroll(WORD flags, WORD x) {
 int col = x / ColWidth;
 SetHorizontalScrollPosition(col * ColWidth);
}

void CalcDocument::OnVerticalScroll(WORD flags, WORD y) {
 int row = y / RowHeight;
 SetVerticalScrollPosition(row * RowHeight);
}

Building a Spreadsheet Application

[216]

The GetMouseLocation method takes the position of a mouse click and returns one of the
four areas of the client window: the all-box in the top-left corner (ClickAll), one of the
column headers (ClickCol), one of the row headers (ClickRow), or one of the cells in the
spreadsheet (ClickCell). In order for these methods to work properly, we have to choose
the LogicalWithoutScroll coordinate system in the CalcDocument constructor call. We
must be able to find the mouse position without any regard to the current scroll settings.

If the user clicks on the all-box (where both the horizontal and vertical positions are within
the header dimension), we return the ClickAll method:

CalcDocument::ClickArea CalcDocument::GetMouseLocation
 (Point mousePoint, Reference& cellRef) const {
 if ((mousePoint.X() <= HeaderWidth) &&
 (mousePoint.Y() <= HeaderHeight)) {
 return ClickAll;
 }

If the mouse click is not located within the all-box but within the header width, we return
the ClickRow method and set the cell reference to the row clicked on. If the mouse click is
below the bottom row, the bottom row is selected:

 else if (mousePoint.X() <= HeaderWidth) {
 mousePoint.Y() += GetVerticalScrollPosition() - HeaderHeight;
 cellRef = Reference(min(Rows-1, mousePoint.Y()/RowHeight), 0);
 return ClickRow;
 }

If the mouse click is not located within the all-box or in a row header but within the header
height, we return the ClickCol method and set the cell reference to the column clicked on.
If the mouse click is to the right of the rightmost column, the rightmost column is selected:

 else if (mousePoint.Y() <= HeaderHeight) {
 mousePoint.X() += GetHorizontalScrollPosition() - HeaderWidth;
 cellRef = Reference(0, min(Cols - 1,
 mousePoint.X() / ColWidth));
 return ClickColumn;
 }

If the mouse click is not located within the all-box or at a row or column header, we return
the ClickCell method and set the cell reference to the cell clicked on. If the mouse click is
below the bottom row, the bottom row is selected, and if the mouse click is to the right of
the rightmost column, the rightmost column selected:

Building a Spreadsheet Application

[217]

 else {
 mousePoint.X() += GetHorizontalScrollPosition() - HeaderWidth;
 mousePoint.Y() += GetVerticalScrollPosition() - HeaderHeight;
 cellRef = Reference(min(Rows - 1, mousePoint.Y() / RowHeight),
 min(Cols - 1, mousePoint.X() / ColWidth));
 return ClickCell;
 }
}

Here is an outline of the different parts of the spreadsheet:

The MarkBlock method marks a part of the spreadsheet due to the clickArea parameter:

void CalcDocument::MarkBlock(ClickArea clickArea,
 Reference newFirstMarkRef, Reference newLastMarkRef) {
 switch (clickArea) {

If the user clicks on the all-box, all cells in the spreadsheet are marked:

 case ClickAll:
 Remark(ZeroReference, Reference(Rows - 1, Cols - 1));
 break;

If they click on a row, all cells in that row are marked:

Building a Spreadsheet Application

[218]

 case ClickRow:
 Remark(Reference(newFirstMarkRef.Row(), 0),
 Reference(newLastMarkRef.Row(), Cols - 1));
 break;

If they click on a column, all cells in that column are marked:

 case ClickColumn:
 Remark(Reference(0, newFirstMarkRef.Col()),
 Reference(Rows - 1, newLastMarkRef.Col()));
 break;

If they click on a cell, only that cell gets marked:

 case ClickCell:
 Remark(newFirstMarkRef, newLastMarkRef);
 break;
 }
}

Painting
The OnDraw method is called when the window client area needs to be repainted partly or
completely. The client area can be divided into five parts as outlined earlier: the top-left
corner, the row header, the column header, the cell space, and the area outside the
spreadsheet:

void CalcDocument::OnDraw(Graphics& graphics,
 DrawMode /* drawMode */) const {
 int horizontalScroll = GetHorizontalScrollPosition(),
 verticalScroll = GetVerticalScrollPosition();

We use the scroll bar settings to find the top and leftmost row and column. We cannot
simply draw all cells (unless the scroll bar settings are zero) since it would overwrite the
row or column headers:

 int startRow = horizontalScroll / RowHeight,
 startCol = verticalScroll / ColWidth;

The all-box is simply a rectangle:

 graphics.DrawRectangle(Rect(0, 0, HeaderWidth, HeaderHeight),
 Black);

Building a Spreadsheet Application

[219]

When drawing the column headers, we calculate the horizontal position of the cell's left
border by multiplying the column index by the column width. We also need to subtract the
current setting of the horizontal scroll bar and add the width of the header. The first column
has index zero and will be named A, so we add the column index to the character A in order
to find its name:

 for (int col = startCol; col < Cols; ++col) {
 int x = (col * ColWidth) - horizontalScroll + HeaderWidth;
 Rect headerRect(x, 0, x + ColWidth, HeaderHeight);
 graphics.DrawRectangle(Rect(x, 0, x + ColWidth, HeaderHeight),
 Black);
 TCHAR buffer[] = {(TCHAR) (TEXT('A') + col), TEXT('\0')};
 graphics.DrawText(headerRect, buffer,
 SystemFont, Black, White);
 }

In the same way, when drawing the row headers, we calculate the vertical position of the
cell's top border by multiplying the row index by the row height. We also need to subtract
the current setting of the vertical scroll bar and add the height of the header:

 for (int row = startRow; row < Rows; ++row) {
 int y = (row * RowHeight) - verticalScroll + HeaderHeight;
 Rect headerRect(0, y, HeaderWidth, y + RowHeight);
 graphics.DrawRectangle(Rect(0, y, HeaderWidth, y + RowHeight),
 Black);
 String buffer = to_String(row + 1);
 graphics.DrawText(headerRect, buffer,
 SystemFont, Black, White);
 }

Since the marked cells will be inverted and the firstMarkRef and lastMarkRef methods
refer to the chronological order of the marking, we calculate the minimal and maximal
markings:

 int minMarkRow = min(firstMarkRef.Row(), lastMarkRef.Row()),
 minMarkCol = min(firstMarkRef.Col(), lastMarkRef.Col()),
 maxMarkRow = max(firstMarkRef.Row(), lastMarkRef.Row()),
 maxMarkCol = max(firstMarkRef.Col(), lastMarkRef.Col());

Finally, we draw the cells. For the cells marked or being edited, the third DrawCell
parameter is true and the cell is inversed:

 for (int row = startRow; row < Rows; ++row) {
 for (int col = startCol; col < Cols; ++col) {
 bool edit = (calcMode == Edit) &&
 (row == editRef.Row())&&(col == editRef.Col());

Building a Spreadsheet Application

[220]

 bool mark = (calcMode == Mark) &&
 (row >= minMarkRow) && (row <= maxMarkRow) &&
 (col >= minMarkCol) && (col <= maxMarkCol);

 Reference cellRef(row, col);
 Cell cell = cellMatrix[cellRef];
 cell.DrawCell(graphics, cellRef, edit || mark);
 }
 }
}

Visibility
The IsCellVisible method returns true if the cell is visible in the window's client area.
The index of the first and last visible row and column is calculated from the current scroll
bar settings. The given cell reference is then compared to the references of the visible cells:

bool CalcDocument::IsCellVisible(Reference cellRef) const{
 int horizontalScrollPos = GetHorizontalScrollPosition(),
 horizontalScrollPage = GetHorizontalScrollPageWidth();
 int firstVisibleRow = horizontalScrollPos / RowHeight;
 int lastVisibleRow = firstVisibleRow +
 (horizontalScrollPage / RowHeight);

 int verticalScrollPos = GetVerticalScrollPosition(),
 verticalScrollPage = GetVerticalScrollPageHeight();
 int firstVisibleCol = verticalScrollPos / ColWidth;
 int lastVisibleCol = firstVisibleCol +
 (verticalScrollPage / ColWidth);

 int row = cellRef.Row(), col = cellRef.Col();
 return (row >= firstVisibleRow) && (row <= lastVisibleRow) &&
 (col >= firstVisibleCol) && (col <= lastVisibleCol);
}

The MakeCellVisible method makes the cell being edited visible in edit mode and the
last marked cell visible in the mark mode:

void CalcDocument::MakeCellVisible() {
 switch (calcMode) {
 case Edit:
 MakeCellVisible(editRef);
 break;

Building a Spreadsheet Application

[221]

 case Mark:
 MakeCellVisible(lastMarkRef);
 break;
 }
}

The MakeCellVisible method makes the cell visible by comparing it to the current scroll
bar settings. If necessary, it changes the scroll bar settings:

void CalcDocument::MakeCellVisible(Reference cellRef) {
 Point topLeft(cellRef.Col() * ColWidth,
 cellRef.Row() * RowHeight);
 Rect cellRect(topLeft, Size(ColWidth, RowHeight));
 Size clientSize = GetClientSize();

First, we check whether the width of the spreadsheet is larger than the width of the client
area, in which case it may be necessary to change the setting of the horizontal scroll bar:

 if (clientSize.Width() < (HeaderWidth + Cols * ColWidth)) {
 int left = GetHorizontalScrollPosition(),
 xPage = GetHorizontalScrollPageWidth();
 int right = left + xPage - 1;

If the cell's left border is located to the left of the client area's left border or if the cell's right
border is located to the right of the client area's right border, we change the scroll bar
setting, as follows:

 if (cellRect.Left() < left) {
 SetHorizontalScrollPosition(cellRect.Left());
 Invalidate();
 UpdateWindow();
 }
 if (cellRect.Right() > right) {
 int distance = cellRect.Right() - right;
 distance += ColWidth - distance % ColWidth;
 SetHorizontalScrollPosition(left + distance);
 Invalidate();
 UpdateWindow();
 }
 }

If the height of the spreadsheet is more than the height of the client area, it may be
necessary to change the setting of the horizontal scroll bar:

 if (clientSize.Height() < (HeaderHeight + Rows * RowHeight)) {
 int top = GetHorizontalScrollPosition(),
 yPage = GetHorizontalScrollPageWidth();
 int bottom = top + yPage - 1;

Building a Spreadsheet Application

[222]

If the cell's top border is located above the client area's top border or if the cell's bottom
border is located below the client area's bottom border, we change the scroll bar settings:

 if (cellRect.Top() < top) {
 SetVerticalScrollPosition(cellRect.Top());
 Invalidate();
 UpdateWindow();
 }

 if (cellRect.Bottom() > bottom) {
 int distance = cellRect.Bottom() - bottom;
 distance += RowHeight - distance % RowHeight;
 SetVerticalScrollPosition(top + distance);
 Invalidate();
 UpdateWindow();
 }
 }
}

Marking and updating
The UpdateCaret method sets the caret in edit mode if the edited cell is visible.
Otherwise, it clears the caret. We have to check whether the cell is visible. Otherwise, the
caret may be shown in one of the header areas. In the keyboard insert mode, the caret is a
vertical bar, and in the overwrite mode, it is a rectangle the size of the current character.

void CalcDocument::UpdateCaret() {
 if ((calcMode == Edit) && IsCellVisible(editRef)) {
 Point topLeft(HeaderWidth + (editRef.Col() * ColWidth) +
 CellMargin, HeaderHeight + (editRef.Row() *
 RowHeight) + CellMargin);
 Cell& editCell = cellMatrix[editRef];
 Rect caretRect = editCell.CaretList()[editIndex];

 if (GetKeyboardMode() == InsertKeyboard) {
 caretRect.Right() = caretRect.Left() + 1;
 }

 SetCaret(topLeft + caretRect);
 }
 else {
 ClearCaret();
 }
}

Building a Spreadsheet Application

[223]

The ToMarkMode method is called when the user ends the input of the text in the cell by
pressing the Return or Tab key or by clicking the mouse. Its first task is to check whether the
input is valid by calling the InterpretEditCell method, which returns false if the text
contains a formula with a syntax error. In that case, the edit mode remains unchanged and
false is returned. However, if the cell interpretation goes well, the application is set to the
mark mode and we get true in return:

bool CalcDocument::ToMarkMode() {
 if (calcMode == Edit) {
 if (InterpretEditCell()) {
 calcMode = Mark;
 firstMarkRef = editRef;
 lastMarkRef = editRef;
 return true;
 }

 return false;
 }

 return true;
}

The Remark method unmarks the marked cells and marks the new block given by the
parameters without any unnecessary updating. That is, cells already marked shall not be
invalidated. Note that the first and last marked cells refer to their chronological order rather
than their locations on the spreadsheet. The last row or column may be less reflective than
the first one. Therefore, we introduce the minimal and maximal variables to reflect their
actual locations in the spreadsheet:

void CalcDocument::Remark(Reference newFirstRef,
 Reference newLastRef) {
 Reference
 minOldMarked(min(firstMarkRef.Row(), lastMarkRef.Row()),
 min(firstMarkRef.Col(), lastMarkRef.Col())),
 maxOldMarked(max(firstMarkRef.Row(), lastMarkRef.Row()),
 max(firstMarkRef.Col(), lastMarkRef.Col())),
 minNewMarked(min(newFirstRef.Row(), newLastRef.Row()),
 min(newFirstRef.Col(), newLastRef.Col())),
 maxNewMarked(max(newFirstRef.Row(), newLastRef.Row()),
 max(newFirstRef.Col(), newLastRef.Col()));

In the previous marked block, all cells that are not located in the new marked block are
invalidated in order for them to be redrawn as unmarked cells. No old cells within the new
marked blocks become invalidated:

Building a Spreadsheet Application

[224]

 for (int row = minOldMarked.Row();
 row <= maxOldMarked.Row(); ++row) {
 for (int col = minOldMarked.Col();
 col <= maxOldMarked.Col(); ++col) {
 Reference cellRef(row, col);
 if (!cellRef.Inside(minNewMarked, maxNewMarked)) {
 InvalidateCell(cellRef);
 }
 }
 }

In the new marked block, all cells that are not located in the old marked block are
invalidated in order for them to be redrawn as unmarked cells. No already marked cells
become invalidated:

 for (int row = minNewMarked.Row();
 row <= maxNewMarked.Row(); ++row) {
 for (int col = minNewMarked.Col();
 col <= maxNewMarked.Col(); ++col) {
 Reference cellRef(row, col);
 if (!cellRef.Inside(minOldMarked, maxOldMarked)) {
 InvalidateCell(Reference(row, col));
 }
 }
 }

The first and last marked reference is set and the invalidated cells are updated:

 firstMarkRef = newFirstRef;
 lastMarkRef = newLastRef;
 UpdateWindow();
}

Keyboard input
The OnCharDown method is called every time the user presses a graphical key on the
keyboard. In the mark mode, the application is changed to the edit mode, where the edit
reference is set to the first marked reference, the edit index is set to zero since the start of the
input resets the cell, and the prevCell variable is set as backup in case the user finishes the
input by pressing the Esc key:

void CalcDocument::OnChar(TCHAR tChar) {
 if (calcMode == Mark) {
 calcMode = Edit;
 editRef = firstMarkRef;
 Remark(editRef, editRef);

Building a Spreadsheet Application

[225]

 editIndex = 0;
 Cell& editCell = cellMatrix[editRef];
 prevCell = *editCell;
 editCell.Reset();
 }

The cell to be edited is made visible, the character is added to the text, and the caret
rectangle is regenerated. Finally, the caret and window are updated, since the cell has been
altered and the edit index has been updated:

 MakeCellVisible(editRef);
 Cell& cell = cellMatrix[editRef];
 cell.CharDown(editIndex++, tChar, GetKeyboardMode());
 cell.GenerateCaretList(this);
 InvalidateCell(editRef);
 UpdateCaret();
 UpdateWindow();
}

The OnKeyDown method is called every time the user presses a key. The appropriate method
is called in the case of the arrow keys, Page Up, Page Down, Home, End, Return, Tab, Insert,
Delete, or Backspace:

bool CalcDocument::OnKeyDown(WORD key, bool shiftPressed,
 bool controlPressed) {
 switch (key) {
 case KeyLeft:
 OnLeftArrowKey(shiftPressed);
 break;

 case KeyRight:
 OnRightArrowKey(shiftPressed);
 break;

 case KeyUp:
 OnUpArrowKey(shiftPressed);
 break;

 case KeyDown:
 OnDownArrowKey(shiftPressed);
 break;

 case KeyHome:
 OnHomeKey(shiftPressed, controlPressed);
 break;

Building a Spreadsheet Application

[226]

 case KeyEnd:
 OnEndKey(shiftPressed, controlPressed);
 break;

 case KeyReturn:
 OnReturnKey();
 break;

 case KeyTabulator:
 OnTabulatorKey(shiftPressed);
 break;

 case KeyEscape:
 OnEscapeKey();
 break;

 case KeyDelete:
 OnDeleteKey();
 break;

 case KeyBackspace:
 OnBackspaceKey();
 break;
 }
 UpdateCaret();
 UpdateWindow();
 return true;
}

The OnLeftArrowKey method is called when the user presses the left arrow key. We have
three different cases to consider depending on the edit or mark mode and on whether the
user presses the Shift key. In the edit mode, we make the edit cell visible, move the edit
index one step to the left if it is not already at the leftmost position, and update the caret:

void CalcDocument::OnLeftArrowKey(bool shiftPressed) {
 switch (calcMode) {
 case Edit: {
 MakeCellVisible(editRef);
 if (editIndex > 0) {
 --editIndex;
 }
 }
 break;

Building a Spreadsheet Application

[227]

In the mark mode, we have to take into consideration whether the Shift key is pressed. If it
is not, we place the marked block (both the first and last marked cells) one step to the left of
the last marked cell unless it is already at the leftmost column:

 case Mark:
 if (lastMarkRef.Col() > 0) {
 if (!shiftPressed) {
 Reference newLastMarkRef(lastMarkRef.Row(),
 lastMarkRef.Col() - 1);
 MakeCellVisible(newLastMarkRef);
 Remark(newLastMarkRef, newLastMarkRef);
 }

If the Shift key is pressed, we move the last marked cell one step to the left unless it is
already at the leftmost position. The first marked cell is not affected:

 else {
 Reference newLastRefMark(lastMarkRef.Row(),
 lastMarkRef.Col() - 1);
 MakeCellVisible(newLastRefMark);
 Remark(firstMarkRef, newLastRefMark);
 }
 }
 break;
 }
}

The OnRightArrowKey method is called when the user presses the right arrow key. It
works similarly to the OnLeftArrowKey method. In the edit mode, we make the edit cell
visible, move the edit index one step to the right if it is not already at the rightmost position,
and update the caret:

void CalcDocument::OnRightArrowKey(bool shiftPressed) {
 switch (calcMode) {
 case Edit: {
 MakeCellVisible(editRef);

 if (editIndex <
 ((int) cellMatrix[editRef].GetText().length())) {
 ++editIndex;
 }
 }
 break;

In the mark mode, we have to take into consideration whether the Shift key is pressed. If it
is not pressed, we place the marked block one step to the right of the first marked cell,
unless it already is at the rightmost column:

Building a Spreadsheet Application

[228]

 case Mark:
 if (lastMarkRef.Col() < (Cols - 1)) {
 if (!shiftPressed) {
 Reference newLastMarkRef(lastMarkRef.Row(),
 lastMarkRef.Col() + 1);
 MakeCellVisible(newLastMarkRef);
 Remark(newLastMarkRef, newLastMarkRef);
 }

If the Shift key is pressed, we move the last marked cell one step to the right unless it is
already at the rightmost position. The first marked cell is not affected:

 else {
 Reference newLastRefMark(lastMarkRef.Row(),
 lastMarkRef.Col() + 1);
 MakeCellVisible(newLastRefMark);
 Remark(firstMarkRef, newLastRefMark);
 }
 }
 break;
 }
}

The OnUpArrowKey method is called when the user presses the up arrow key. In the edit
mode, no action is taken:

void CalcDocument::OnUpArrowKey(bool shiftPressed) {
 switch (calcMode) {
 case Edit:
 break;

If the Shift key is not pressed in the mark mode, we place the marked cell one step up
relative to the first marked cell if it is not already in the top row. In that case, we place the
marked block in the first marked cell:

 case Mark:
 if (lastMarkRef.Row() > 0) {
 if (!shiftPressed) {
 Reference newLastMarkRef(lastMarkRef.Row() - 1,
 lastMarkRef.Col());
 MakeCellVisible(newLastMarkRef);
 Remark(newLastMarkRef, newLastMarkRef);
 }

Building a Spreadsheet Application

[229]

If the Shift key is pressed, we move the last marked cell one step up unless it is already in
the top row. The first marked cell is not affected:

 else {
 Reference newLastRefMark(lastMarkRef.Row() - 1,
 lastMarkRef.Col());
 MakeCellVisible(newLastRefMark);
 Remark(firstMarkRef, newLastRefMark);
 }
 }
 break;
 }
}

The OnDownArrowKey method is called when the user presses the down arrow key. It
works in a way similar to the OnUpArrowKey method. In the edit mode, no action is taken:

void CalcDocument::OnDownArrowKey(bool shiftPressed) {
 switch (calcMode) {
 case Edit:
 break;

If the Shift key is not pressed in the mark mode, we place the marked block one step
relatively under the first marked cell, unless it already is in the bottom row:

 case Mark:
 if (lastMarkRef.Row() < (Rows - 1)) {
 if (!shiftPressed) {
 Reference newMarkRef(lastMarkRef.Row() + 1,
 lastMarkRef.Col());
 MakeCellVisible(newMarkRef);
 Remark(newMarkRef, newMarkRef);
 }

If the Shift key is pressed, we move the last marked cell one step down unless it is already in
the bottom row. The first marked cell is not affected:

 else {
 Reference newLastRefMark(lastMarkRef.Row() + 1,
 lastMarkRef.Col());
 MakeCellVisible(newLastRefMark);
 Remark(firstMarkRef, newLastRefMark);
 }
 }
 break;
 }
}

Building a Spreadsheet Application

[230]

The OnHomeKey method is called when the user presses the Home key. In the edit mode,
we make the edit cell visible, move the edit index to the leftmost index, and update the
caret:

void CalcDocument::OnHomeKey(bool shiftPressed,
 bool controlPressed) {
 switch (calcMode) {
 case Edit: {
 MakeCellVisible(editRef);
 editIndex = 0;
 UpdateCaret();
 }
 break;

If neither the Shift or Ctrl keys is pressed in the mark mode, we move the marked block to
the leftmost column of the first marked row. If the Shift key is pressed, we move the last
marked cell to the leftmost column of the last marked row. The first marked cell is not
affected:

 case Mark:
 if (!shiftPressed && !controlPressed) {
 Remark(Reference(firstMarkRef.Row(), 0),
 Reference(firstMarkRef.Row(), 0));
 MakeCellVisible(firstMarkRef);
 }
 else if (shiftPressed && !controlPressed) {
 Remark(firstMarkRef, Reference(firstMarkRef.Row(), 0));
 MakeCellVisible(lastMarkRef);
 }

If the Ctrl key is pressed, but not the Shift key, we move the marked block to the top-left
cell. If the Ctrl key is not pressed, we move the last marked cell to the leftmost position in
the row:

 else if (!shiftPressed && controlPressed) {
 Remark(ZeroReference, ZeroReference);
 MakeCellVisible(lastMarkRef);
 }
 else if (shiftPressed && controlPressed) {
 Remark(firstMarkRef, ZeroReference);
 MakeCellVisible(lastMarkRef);
 }
 break;
 }
}

Building a Spreadsheet Application

[231]

The OnEndKey method is called when the user presses the End key, and it works in a way
similar to the OnHomeKey method. In the edit mode, we make the edit cell visible, move
the edit index to the rightmost index, and update the caret:

void CalcDocument::OnEndKey(bool shiftPressed, bool controlPressed) {
 switch (calcMode) {
 case Edit: {
 MakeCellVisible(editRef);
 editIndex = cellMatrix[editRef].GetText().length();
 UpdateCaret();
 }
 break;

If neither the Shift nor the Ctrl key is pressed in the mark mode, we move the marked block
to the rightmost column of the first marked row. If the Shift key is pressed, we move the last
marked cell to the rightmost column of the last marked row. The first marked cell is not
affected:

 case Mark:
 if (!shiftPressed && !controlPressed) {
 Remark(Reference(firstMarkRef.Row(), Cols - 1),
 Reference(firstMarkRef.Row(), Cols - 1));
 MakeCellVisible(firstMarkRef);
 }
 else if (shiftPressed && !controlPressed) {
 Remark(firstMarkRef,
 Reference(firstMarkRef.Row(), Cols - 1));
 MakeCellVisible(lastMarkRef);
 }

If the Ctrl key is pressed, but not the Shift key, we move the marked block to the bottom-
right cell. If the Ctrl key is not pressed, we move the last marked cell to the rightmost
position in the row:

 else if (!shiftPressed && controlPressed) {
 Remark(Reference(Rows - 1, Cols - 1),
 Reference(Rows - 1, Cols - 1));
 MakeCellVisible(lastMarkRef);
 }
 else if (shiftPressed && controlPressed) {
 Remark(firstMarkRef, Reference(Rows - 1, Cols - 1));
 MakeCellVisible(lastMarkRef);
 }
 break;
 }
}

Building a Spreadsheet Application

[232]

The Return key finishes the editing session unless the user has input a formula with a syntax
error, in which case an error message box is displayed. The user can also finish by pressing
the Tab key or by clicking the mouse; in either case, the Remark method takes care of
finishing the editing process. When the editing is finished, we try to mark the cell:

void CalcDocument::OnReturnKey() {
 if ((calcMode == Mark) || ToMarkMode()) {
 Reference newMarkedRef(min(firstMarkRef.Row() + 1, Rows - 1),
 firstMarkRef.Col());
 Remark(newMarkedRef, newMarkedRef);
 MakeCellVisible(newMarkedRef);
 }
}

The Tab key does almost the same thing as the Return key. The only difference is that the
next marked cell is, if possible, the cell to right or the cell to the left (if the user pressed the
Shift key):

void CalcDocument::OnTabulatorKey(bool shiftPressed) {
 if ((calcMode == Mark) || ToMarkMode()) {
 if (shiftPressed && (lastMarkRef.Col() > 0)) {
 Reference firstMarkRef(lastMarkRef.Row(),
 firstMarkRef.Col() - 1);
 Remark(firstMarkRef, firstMarkRef);
 MakeCellVisible(firstMarkRef);
 }
 if (!shiftPressed && (lastMarkRef.Col() < (Cols - 1))) {
 Reference firstMarkRef(firstMarkRef.Row(),
 firstMarkRef.Col() + 1);
 Remark(firstMarkRef, firstMarkRef);
 MakeCellVisible(firstMarkRef);
 }
 }
}

The OnEscapeKey method is called when the user presses the Esc key and resets the cell to
the value of the prevCell variable:

void CalcDocument::OnEscapeKey() {
 if (calcMode == Edit) {
 Cell& editCell = cellMatrix[editRef];
 editCell = prevCell;
 InvalidateCell(editRef);
 calcMode = Mark;
 firstMarkRef = lastMarkRef = editRef;
 }
}

Building a Spreadsheet Application

[233]

The OnDeleteKey method is called when the user presses the Delete key or selects the
Delete menu item to delete a character in the edit mode or the contents of the marked
block in the mark mode. In the edit mode, we delete the character of the edit index unless
it is at the end of the text. In the mark mode, we just reset the marked cell. When the cells
are reset, we need to re-evaluate their target cells recursively:

void CalcDocument::OnDeleteKey() {
 switch (calcMode) {
 case Edit: {
 Cell& editCell = cellMatrix[editRef];
 String& cellText = editCell.GetText();

 if (editIndex < ((int) cellText.length())) {
 String leftPart = cellText.substr(0, editIndex),
 rightPart = cellText.substr(editIndex + 1);
 editCell.SetText(leftPart + rightPart);
 editCell.GenerateCaretList(this);
 InvalidateCell(editRef);
 UpdateWindow();
 SetDirty(true);
 }
 }
 break;

 case Mark: {
 int minMarkRow = min(firstMarkRef.Row(), lastMarkRef.Row()),
 minMarkCol = min(firstMarkRef.Col(), lastMarkRef.Col()),
 maxMarkRow = max(firstMarkRef.Row(), lastMarkRef.Row()),
 maxMarkCol = max(firstMarkRef.Col(), lastMarkRef.Col());

 set<Reference> invalidateSet;
 for (int row = minMarkRow; row <= minMarkRow; ++row) {
 for (int col = minMarkCol; col <= minMarkCol; ++col) {
 Reference cellRef = Reference(row, col);
 cellMatrix[cellRef].Reset();
 EvaluateRecursive(editRef, invalidateSet);
 }
 }
 for (Reference cellRef : invalidateSet) {
 InvalidateCell(cellRef);
 }
 UpdateWindow();
 SetDirty(true);
 }
 break;
 }
}

Building a Spreadsheet Application

[234]

The OnBackspaceKey method is called when the user presses the Backspace key to delete a
character in a cell in the edit mode or the contents of the marked block in the mark mode.
In the edit mode, we decrement the edit index and remove the character by calling the
OnDeleteKey method at the new index, unless the edit position is already at the beginning
of text. In the mark mode, we just call the OnDeleteKey method:

void CalcDocument::OnBackspaceKey() {
 switch (calcMode) {
 case Edit:
 if (editIndex > 0) {
 --editIndex;
 OnDeleteKey();
 }
 break;

 case Mark:
 OnDeleteKey();
 break;
 }
}

File management
Similar to the previous applications, the ClearDocument method is called by the
StandardDocument class when the user selects the New menu item, the
WriteDocumentToStream method is called when the user selects Save or Save As, and the
ReadDocumentFromStream method is called when the user selects Open menu item.

In the ClearDocument method, every cell is cleared along with their source and target sets.
When a cell is reset, its text is cleared. When it is cleared, its font and color are also cleared.
Finally, the application is set to the mark mode, where the top-left cell is marked:

void CalcDocument::ClearDocument() {
 for (int row = 0; row < Rows; ++row) {
 for (int col = 0; col < Cols; ++col) {
 cellMatrix[Reference(row, col)].Clear();
 }
 }

 sourceSetMap.clear();
 targetSetMap.clear();

Building a Spreadsheet Application

[235]

 calcMode = Mark;
 firstMarkRef.Clear();
 lastMarkRef.Clear();
}

The WriteCellToStream method is a callback function that, given a cell and an output
stream, writes the cell to the stream. In the same way, the ReadCellFromStream method
reads a cell from an input stream:

void WriteCellToStream(Cell cell, ostream& outStream) {
 cell.WriteCellToStream(outStream);
}

void ReadCellFromStream(Cell& cell, istream& inStream) {
 cell.ReadCellFromStream(inStream);
}

The WriteDocumentToStream and ReadDocumentFromStream methods write and read
the spreadsheet. More specifically, they read and write the application mode, the edit
index and reference, the mark references, the source and target sets, and the cells in the cell
matrix:

bool CalcDocument::WriteDocumentToStream(String name,
 ostream& outStream)const{
 if (EndsWith(name, TEXT(".clc"))) {
 outStream.write((char*) &calcMode, sizeof calcMode);
 outStream.write((char*) &editIndex, sizeof editIndex);
 editRef.WriteReferenceToStream(outStream);
 firstMarkRef.WriteReferenceToStream(outStream);
 lastMarkRef.WriteReferenceToStream(outStream);
 prevCell.WriteCellToStream(outStream);
 WriteSetMapToStream(sourceSetMap, outStream);
 WriteSetMapToStream(targetSetMap, outStream);

 for (int row = 0; row < Rows; ++row) {
 for (int col = 0; col < Cols; ++col) {
 cellMatrix[row][col].WriteCellToStream(outStream);
 }
 }
 }
 else if (EndsWith(name, TEXT(".txt"))) {
 for (int row = 0; row < Rows; ++row) {
 if (row > 0) {
 outStream << "\n";
 }

Building a Spreadsheet Application

[236]

 for (int col = 0; col < Cols; ++col) {
 if (col > 0) {
 outStream << "\t";
 }

 const Cell& cell = cellMatrix[row][col];
 String text = cell.IsFormula()
 ? (TEXT("=") + cell.TreeToString())
 : cell.GetText();

 for (TCHAR c : text) {
 outStream << ((char) c);
 }
 }
 }
 }

 return ((bool) outStream);
}

Note that we call the MakeCellVisible method at the end of the
ReadDocumentFromStream method. The idea is that the user should be able to pick up the
spreadsheet where they left it:

bool CalcDocument::ReadDocumentFromStream(String name,
 istream& inStream) {
 if (EndsWith(name, TEXT(".clc")) &&
 ReadPrintSetupInfoFromStream(inStream)){
 inStream.read((char*)&calcMode, sizeof calcMode);
 inStream.read((char*) &editIndex, sizeof editIndex);
 editRef.ReadReferenceFromStream(inStream);
 firstMarkRef.ReadReferenceFromStream(inStream);
 lastMarkRef.ReadReferenceFromStream(inStream);
 prevCell.ReadCellFromStream(inStream);
 ReadSetMapFromStream(sourceSetMap, inStream);
 ReadSetMapFromStream(targetSetMap, inStream);
 MakeCellVisible();

 for (int row = 0; row < Rows; ++row) {
 for (int col = 0; col < Cols; ++col) {
 cellMatrix[Reference(row, col)].
 ReadCellFromStream(inStream);
 }
 }
 }

Building a Spreadsheet Application

[237]

 else if (EndsWith(name, TEXT(".txt"))) {
 String text;
 int row = 0, col = 0;

 while (inStream) {
 char c;
 inStream.read(&c, sizeof c);

 if (inStream) {
 switch (c) {
 case ';':
 cellMatrix[Reference(row, col++)].SetText(text);
 text.clear();
 break;

 case '\n':
 cellMatrix[Reference(row++, col)].SetText(text);
 text.clear();
 col = 0;
 break;

 default:
 text.push_back((TCHAR) c);
 break;
 }
 }
 }
 }

 return ((bool) inStream);
}

The WriteSetMapToStream and ReadSetMapFromStream methods write and read the
source and target sets. They are static, since they are called for both sourceSetMap and
targetSetMap. For each cell in the spreadsheet, the size of the set as well as the references
of the sets are written and read:

bool CalcDocument::WriteSetMapToStream(const
 map<Reference,set<Reference>>& setMap,
 ostream& outStream) {
 int mapSize = setMap.size();
 outStream.write((char*) &mapSize, sizeof mapSize);

 for (pair<Reference,set<Reference>> entry : setMap) {
 Reference cellRef = entry.first;
 cellRef.WriteReferenceToStream(outStream);

Building a Spreadsheet Application

[238]

 set<Reference> set = entry.second;
 int setSize = set.size();
 outStream.write((char*) &setSize, sizeof setSize);

 for (Reference ref : set) {
 ref.WriteReferenceToStream(outStream);
 }
 }

 return ((bool) outStream);
}

bool CalcDocument::ReadSetMapFromStream
 (map<Reference,set<Reference>>& setMap,
 istream& inStream) {
 int mapSize;
 inStream.read((char*) &mapSize, sizeof mapSize);

 for (int mapIndex = 0; mapIndex < mapSize; ++mapIndex) {
 Reference cellRef;
 cellRef.ReadReferenceFromStream(inStream);

 int setSize;
 inStream.read((char*) &setSize, sizeof setSize);

 set<Reference> set;
 for (int setIndex = 0; setIndex < setSize; ++setIndex) {
 Reference ref;
 ref.ReadReferenceFromStream(inStream);
 set.insert(ref);
 }

 setMap[cellRef] = set;
 }

 return ((bool) inStream);
}

Cut, copy, and paste
The Copy menu item is enabled in the mark mode. Note that we do not override the
PasteEnable method, since the StandardDocument class enables the Paste menu item if
there is a clipboard buffer with one of the application formats–the AsciiFormat,
UnicodeFormat, or CalcFormat format:

Building a Spreadsheet Application

[239]

bool CalcDocument::CopyEnable() const {
 return (calcMode == Mark);
}

The CopyAscii method simply calls CopyUnicode, which in turn fills the textList list
with the copied text. Each text in the textList list holds one row, and the columns are
divided by semicolons (';'):

void CalcDocument::CopyAscii(vector<String>& textList) const {
 CopyUnicode(textList);
}

void CalcDocument::CopyUnicode(vector<String>& textList) const {
 int minMarkRow = min(firstMarkRef.Row(), lastMarkRef.Row()),
 maxMarkRow = max(firstMarkRef.Row(), lastMarkRef.Row()),
 minMarkCol = min(firstMarkRef.Col(), lastMarkRef.Col()),
 maxMarkCol = max(firstMarkRef.Col(), lastMarkRef.Col());

 for (int row = minMarkRow; row <= maxMarkRow; ++row) {
 String text;

 for (int col = minMarkCol; col <= maxMarkCol; ++col) {
 Reference markRef = Reference(row, col);
 const Cell& markCell = cellMatrix[markRef];
 text.append(((col > 0) ? TEXT(";") : TEXT("")) +
 markCell.TreeToString());
 }

 textList.push_back(text);
 }
}

The CopyGeneric method stores the top-left position and size of the marked block and
calls the WriteCellToClipboard method for each marked cell:

void CalcDocument::CopyGeneric(int /* format */,
 InfoList& infoList) const {
 int minRow = min(firstMarkRef.Row(), lastMarkRef.Row()),
 minCol = min(firstMarkRef.Col(), lastMarkRef.Col()),
 copyRows = abs(firstMarkRef.Row() - lastMarkRef.Row()) + 1,
 copyCols = abs(firstMarkRef.Col() - lastMarkRef.Col()) + 1;

 infoList.AddValue<int>(copyRows);
 infoList.AddValue<int>(copyCols);
 infoList.AddValue<int>(minRow);
 infoList.AddValue<int>(minCol);

Building a Spreadsheet Application

[240]

 for (int row = 0; row < copyRows; ++row) {
 for (int col = 0; col < copyCols; ++col) {
 Reference sourceRef(minRow + row, minCol + col);
 const Cell& cell = cellMatrix[sourceRef];
 cell.WriteCellToClipboard(infoList);
 }
 }
}

The IsPasteAsciiReady method simply calls the IsPasteUnicodeReady method, which
returns true if there is only one cell currently marked and the block to be pasted fits in the
spreadsheet, or if the currently marked block has the same size as the block to be pasted.
Note that in the first case, if only one cell is marked, the block to be pasted does not have to
have an equal number of columns for each row, as long as they fit in the spreadsheet:

bool CalcDocument::IsPasteAsciiReady
 (const vector<String>& textList) const {
 return IsPasteUnicodeReady(textList);
}
bool CalcDocument::IsPasteUnicodeReady
 (const vector<String>& textList) const {
 int markedRows = abs(firstMarkRef.Row() - lastMarkRef.Row()) +1,
 markedCols = abs(firstMarkRef.Col() - lastMarkRef.Col()) +1,
 minMarkedRow = min(firstMarkRef.Row(), lastMarkRef.Row()),
 minMarkedCol = min(firstMarkRef.Col(), lastMarkRef.Col());
 if ((markedRows == 1) && (markedCols == 1)) {
 int copyRows = textList.size();
 int maxCopyCols = 0;
 for (String text : textList) {
 maxCopyCols = max(maxCopyCols,
 ((int) Split(text, ';').size()));
 }
 return ((minMarkedRow + copyRows) < Rows) &&
 ((minMarkedCol + maxCopyCols) < Cols);
 }
 else {
 if (textList.size() != markedRows) {
 return false;
 }
 for (String text : textList) {
 if (((int) Split(text, ';').size()) != markedCols) {
 return false;
 }
 }
 return true;
 }
}

Building a Spreadsheet Application

[241]

Similar to the IsPasteUnicodeReady method, the IsPasteGenericReady method
returns true if there is only cell marked at the moment and the block to be pasted fits in the
spreadsheet or if the currently marked block and the block to be pasted have the same size.
However, unlike the Unicode case we saw earlier, the rows of the generic block to be pasted
all have the same size:

bool CalcDocument::IsPasteGenericReady(int /* format */,
 InfoList& infoList) const {
 int markedRows = abs(firstMarkRef.Row() - lastMarkRef.Row()) +1,
 markedCols = abs(firstMarkRef.Col() - lastMarkRef.Col()) +1,
 minMarkedRow = min(firstMarkRef.Row(), lastMarkRef.Row()),
 minMarkedCol = min(firstMarkRef.Col(), lastMarkRef.Col()),
 copyRows, copyCols;

 infoList.PeekValue<int>(copyRows, 0);
 infoList.PeekValue<int>(copyCols, sizeof(int));

 return (((markedRows == copyRows)&&(markedCols == copyCols)) ||
 ((markedRows == 1) && (markedCols == 1))) &&
 ((minMarkedRow + copyRows) <= Rows) &&
 ((minMarkedCol + copyCols) <= Cols);
}

The PasteAscii method simply calls the PasteUnicode method that first takes a backup
of the cell matrix as well as the source and target set maps, since the cells to be pasted may
contain a formula with syntax errors, in which case the pasting process will be aborted.
Then, it iterates through the text to be pasted and splits each row in to columns. The text of
each column is copied to the pasted cell:

void CalcDocument::PasteAscii(const vector<String>& textList) {
 PasteUnicode(textList);
}

void CalcDocument::PasteUnicode(const vector<String>& textList) {
 Matrix<Rows,Cols,Cell> backupMatrix =
 Matrix<Rows,Cols,Cell>(cellMatrix);
 map<Reference,set<Reference>> backupSourceSetMap = sourceSetMap,
 backupTargetSetMap = targetSetMap;

 try {
 set<Reference> invalidateSet;
 int row = min(firstMarkRef.Row(), lastMarkRef.Row()),
 minCol = min(firstMarkRef.Col(), lastMarkRef.Col());
 Reference diffRef(row, minCol);

Building a Spreadsheet Application

[242]

 for (String rowText : textList) {
 int col = minCol;
 vector<String> columnList = Split(rowText, ';');

The text of the column is interpreted, and if it holds a formula with a syntax error, an
exception is thrown, stopping the iteration and restoring the backup matrix together with
the source and target set maps. This is actually the reason why the EvaluateRecursive
method fills the set of references to be invalidated instead of just invalidating them. If the
pasting process fails due to a formula with a syntax error, we would not want any cells to
become invalidated and updated:

 for (String colText : columnList) {
 Reference targetRef(row, col++);
 RemoveTargetSetMap(targetRef);
 Cell& targetCell = cellMatrix[targetRef];
 targetCell.Reset();
 targetCell.SetText(colText)
 set<Reference> sourceSet;
 targetCell.InterpretCell(sourceSet);
 targetCell.GenerateCaretList(this);

When the text has been interpreted, we need to update the references, in case it holds a
formula, by comparing the location of the marked block with the original location (from
where it was copied) of the pasted block in order for the reference to be relative:

 if (!diffRef.IsEmpty()) {
 sourceSet.clear();
 targetCell.UpdateTree(diffRef, sourceSet);
 }

Finally, we set the source and target sets of the cell, evaluate its value, and generate its caret
rectangle list. The evaluation may result in an error (missing value, reference out of range,
circular reference, or division by zero), in which case an error message is stored in the cell
text:

 AddTargetSetMap(targetRef, sourceSet);
 sourceSetMap[targetRef] = sourceSet;
 EvaluateRecursive(targetRef, invalidateSet);
 targetCell.GenerateCaretList(this);
 }
 ++row;
 }

Building a Spreadsheet Application

[243]

The pasted cells are not invalidated until we have iterated through them and none of them
has been found to hold a formula with a syntax error. Note that there may be more than just
the pasted cells to be invalidated, the other cells outside the pasted block that are targets of
the pasted cells, and thereby evaluated, need to be invalidated:

 for (Reference cellRef : invalidateSet) {
 InvalidateCell(cellRef);
 }
 }

If one of the pasted cells holds a formula with a syntax error, we simply restore the backup
and display a message box:

 catch (Error error) {
 cellMatrix = backupMatrix;
 sourceSetMap = backupSourceSetMap;
 targetSetMap = backupTargetSetMap;
 MessageBox(error.ErrorText(), TEXT("Syntax Error"), Ok, Stop);
 }
}

The PasteGeneric method is simpler than the PasteUnicode method: since there is no
need for cell interpretation (as the cell has been copied from the spreadsheet and thereby
holds valid formulas), there in no need for backup and no exception is thrown:

void CalcDocument::PasteGeneric(int /* format */,
 InfoList& infoList) {
 int minMarkedRow = min(firstMarkRef.Row(), lastMarkRef.Row()),
 minMarkedCol = min(firstMarkRef.Col(), lastMarkRef.Col()),
 copyRows, copyCols, minCopyRow, minCopyCol;

 infoList.GetValue<int>(copyRows);
 infoList.GetValue<int>(copyCols);
 infoList.GetValue<int>(minCopyRow);
 infoList.GetValue<int>(minCopyCol);

 Reference diffRef(minMarkedRow - minCopyRow,
 minMarkedCol - minCopyCol);
 int maxCopyRow = minCopyRow + copyRows - 1,
 maxCopyCol = minCopyCol + copyCols - 1;

Each pasted cell is read from the buffer and then the source cell is assigned to it. The target
set is removed and then added by the pasted cell:

 for (int row = minCopyRow; row <= maxCopyRow; ++row) {
 for (int col = minCopyCol; col <= maxCopyCol; ++col) {
 Cell pastedCell;

Building a Spreadsheet Application

[244]

 pastedCell.ReadCellFromClipboard(infoList);

 Reference pastedRef(row, col);
 Reference targetRef = pastedRef + diffRef;

 RemoveTargetSetMap(targetRef);
 Cell& targetCell = cellMatrix[targetRef];
 targetCell = pastedCell;

 set<Reference> sourceSet;
 if (diffRef.IsEmpty()) {
 targetCell.GenerateSourceSet(sourceSet);
 }
 else {
 targetCell.UpdateTree(diffRef, sourceSet);
 }

 AddTargetSetMap(targetRef, sourceSet);
 sourceSetMap[targetRef] = sourceSet;

 set<Reference> invalidateSet;
 EvaluateRecursive(targetRef, invalidateSet);

 for (Reference cellRef : invalidateSet) {
 InvalidateCell(cellRef);
 }
 }
 }

 UpdateWindow();
 SetDirty(true);
}

The Delete menu item is enabled in the edit mode unless the edit index is at the end of the
cell's text. The item is always enabled in the mark mode, since there is always at least one
marked cell marked to be deleted:

bool CalcDocument::DeleteEnable() const {
 if (calcMode == Edit) {
 const Cell& editCell = cellMatrix[editRef];
 return (editIndex < ((int)editCell.GetText().length()));
 }
 else {
 return true;
 }
}

Building a Spreadsheet Application

[245]

The OnDelete method (the menu item) just calls OnDeleteKey (the key pressed), since
they perform the same action:

void CalcDocument::OnDelete() {
 OnDeleteKey();
}

Font and color
The OnFont and OnBackgroundColor methods work in the same manner–they are called
when the user selects the Font or Background Color items in the Format menu. They apply
the change on the edited or marked cells, and the window and (in the edit case) the caret is
updated. If at least one cell has been modified, the dirty flag is set:

void CalcDocument::OnFont() {
 switch (calcMode) {
 case Edit: {
 Cell& editCell = cellMatrix[editRef];
 Font font = editCell.CellFont();
 Font previousFont = font;

In the edit mode, the font of the edited cell is changed if the FontDialog method returns
true (the user has pressed the Ok button) and has chosen a different font. Note that the
FontDialog method also sets the color of the font:

 if (StandardDialog::FontDialog(this, font) &&
 (font != previousFont)) {
 editCell.CellFont() = font;
 editCell.GenerateCaretList(this);
 InvalidateCell(editRef);
 SetDirty(true);
 UpdateCaret();
 UpdateWindow();
 }
 }
 break;

In the mark mode, the font of each marked cell is set to the new font if the FontDialog
method returns true. If the font of at least one cell is set (which we do not know from the
start), the dirty flag is set:

 case Mark: {
 Font font = cellMatrix[lastMarkRef].CellFont();

Building a Spreadsheet Application

[246]

 if (StandardDialog::FontDialog(this, font)) {
 int minMarkRow = min(firstMarkRef.Row(),
 lastMarkRef.Row()),
 maxMarkRow = max(firstMarkRef.Row(),
 lastMarkRef.Row()),
 minMarkCol = min(firstMarkRef.Col(),
 lastMarkRef.Col()),
 maxMarkCol = max(firstMarkRef.Col(),
 lastMarkRef.Col());

 for (int row = minMarkRow; row <= maxMarkRow; ++row) {
 for (int col = minMarkCol; col <= maxMarkCol; ++col) {
 Reference markRef = Reference(row, col);
 Cell& markCell = cellMatrix[markRef];

 if (markCell.CellFont() != font) {
 markCell.CellFont() = font;
 markCell.GenerateCaretList(this);
 InvalidateCell(markRef);
 SetDirty(true);
 }
 }
 }

 UpdateWindow();
 }
 }
 break;
 }
}

The OnBackgroundColor method is similar to the OnFont method. The only difference is
that the OnBackgroundColor method calls the ColorDialog method instead of the
FontDialog method, and that BackgroundColor is called for each cell instead of Font:

void CalcDocument::OnBackgroundColor() {
 switch (calcMode) {
 case Edit: {
 Cell& editCell = cellMatrix[editRef];
 Color color = editCell.BackgroundColor();
 Color previousColor = color;

 if (StandardDialog::ColorDialog(this, color) &&
 (color != previousColor)){
 editCell.BackgroundColor() = color;
 InvalidateCell(editRef);
 SetDirty(true);
 }

Building a Spreadsheet Application

[247]

 }
 break;

 case Mark: {
 Color color = cellMatrix[lastMarkRef].BackgroundColor();

 if (StandardDialog::ColorDialog(this, color)) {
 int minMarkRow = min(firstMarkRef.Row(),
 lastMarkRef.Row()),
 maxMarkRow = max(firstMarkRef.Row(),
 lastMarkRef.Row()),
 minMarkCol = min(firstMarkRef.Col(),
 lastMarkRef.Col()),
 maxMarkCol = max(firstMarkRef.Col(),
 lastMarkRef.Col());

 for (int row = minMarkRow; row <= maxMarkRow; ++row) {
 for (int col = minMarkCol; col <= maxMarkCol; ++col) {
 Reference markRef = Reference(row, col);
 Cell& markCell = cellMatrix[markRef];

 if (markCell.BackgroundColor() != color) {
 markCell.BackgroundColor() = color;
 InvalidateCell(markRef);
 SetDirty(true);
 }
 }
 }
 }
 }
 break;
 }

 UpdateWindow();
}

Alignment
The horizontal and vertical alignments follow the same pattern. The radio methods call the
IsHorizontalAlignment or IsVerticalAlignment method, which return true if the
edited cells or all the marked cells hold the alignment in question. The selection methods
call the SetHorizontalAlignment or SetVerticalAlignment method, which set the
alignment of the edited cell or every marked cell. If at least one cell has been modified, the
dirty flag is set. Finally, the window and (in the edit case) caret are updated.

Building a Spreadsheet Application

[248]

The HorizontalLeftRadio, HorizontalCenterRadio, HorizontalRightRadio, and
HorizontalJustifiedRadio methods call the IsHorizontalAlignment method, as
you'll see next:

bool CalcDocument::HorizontalLeftRadio() const {
 return (IsHorizontalAlignment(Left));
}

bool CalcDocument::HorizontalCenterRadio() const {
 return (IsHorizontalAlignment(Center));
}

bool CalcDocument::HorizontalRightRadio() const {
 return (IsHorizontalAlignment(Right));
}

bool CalcDocument::HorizontalJustifiedRadio() const {
 return (IsHorizontalAlignment(Justified));
}

The IsHorizontalAlignment method returns true if the alignment of the edited cell or at
least one of the marked cells holds the alignment in question:

bool CalcDocument::IsHorizontalAlignment(Alignment alignment)
 const {
 switch (calcMode) {
 case Edit:
 return cellMatrix[editRef].HorizontalAlignment() ==
 alignment;

 case Mark: {
 int minMarkRow = min(firstMarkRef.Row(),
 lastMarkRef.Row()),
 maxMarkRow = max(firstMarkRef.Row(),
 lastMarkRef.Row()),
 minMarkCol = min(firstMarkRef.Col(),
 lastMarkRef.Col()),
 maxMarkCol = max(firstMarkRef.Col(),
 lastMarkRef.Col());

 for (int row = minMarkRow; row <= maxMarkRow; ++row) {
 for (int col = minMarkCol; col <= maxMarkCol; ++col) {
 Reference markRef = Reference(row, col);
 if (cellMatrix[markRef].VerticalAlignment()!=
 alignment) {
 return true;
 }
 }

Building a Spreadsheet Application

[249]

 }
 return false;
 }
 }

 return true;
}

The OnHorizontalLeft, OnHorizontalCenter, OnHorizontalRight, and
OnHorizontalJustified methods call the SetHorizontalAlignment method, as
follows:

void CalcDocument::OnHorizontalLeft() {
 SetHorizontalAlignment(Left);
}

void CalcDocument::OnHorizontalCenter() {
 SetHorizontalAlignment(Center);
}

void CalcDocument::OnHorizontalRight() {
 SetHorizontalAlignment(Right);
}

void CalcDocument::OnHorizontalJustified() {
 SetHorizontalAlignment(Justified);
}

The SetHorizontalAlignment method sets the alignment of the edited cell or all marked
cells:

void CalcDocument::SetHorizontalAlignment(Alignment alignment) {
 switch (calcMode) {
 case Edit: {
 Cell& editCell = cellMatrix[editRef];
 editCell.HorizontalAlignment() = alignment;
 editCell.GenerateCaretList(this);
 InvalidateCell(editRef);
 UpdateCaret();
 }
 break;
 case Mark: {
 int minMarkRow = min(firstMarkRef.Row(),
 lastMarkRef.Row()),
 maxMarkRow = max(firstMarkRef.Row(),
 lastMarkRef.Row()),
 minMarkCol = min(firstMarkRef.Col(),
 lastMarkRef.Col()),

Building a Spreadsheet Application

[250]

 maxMarkCol = max(firstMarkRef.Col(),
 lastMarkRef.Col());

 for (int row = minMarkRow; row <= maxMarkRow; ++row) {
 for (int col = minMarkCol; col <= maxMarkCol; ++col) {
 Reference markRef = Reference(row, col);
 Cell& markCell = cellMatrix[markRef];

For each cell whose alignment is changed, its caret rectangle list is regenerated and the cell
becomes invalidated:

 if (markCell.HorizontalAlignment() != alignment) {
 markCell.HorizontalAlignment() = alignment;
 markCell.GenerateCaretList(this);
 InvalidateCell(markRef);
 }
 }
 }
 }
 break;
 }

The dirty flag is set, since at least one cell has been modified. Otherwise, the alignment
menu item would not be enabled:

 UpdateWindow();
 SetDirty(true);
}

The vertical alignment methods are similar to the horizontal alignment methods, as we can
see here:

bool CalcDocument::VerticalTopRadio() const {
 return (IsVerticalAlignment(Top));
}

bool CalcDocument::VerticalCenterRadio() const {
 return (IsVerticalAlignment(Center));
}

bool CalcDocument::VerticalBottomRadio() const {
 return (IsVerticalAlignment(Bottom));
}

bool CalcDocument::IsVerticalAlignment(Alignment alignment) const {
 switch (calcMode) {
 case Edit:
 return cellMatrix[editRef].VerticalAlignment() == alignment;

Building a Spreadsheet Application

[251]

 case Mark: {
 int minMarkRow = min(firstMarkRef.Row(),
 lastMarkRef.Row()),
 maxMarkRow = max(firstMarkRef.Row(),
 lastMarkRef.Row()),
 minMarkCol = min(firstMarkRef.Col(),
 lastMarkRef.Col()),
 maxMarkCol = max(firstMarkRef.Col(),
 lastMarkRef.Col());

 for (int row = minMarkRow; row <= maxMarkRow; ++row) {
 for (int col = minMarkCol; col <= maxMarkCol; ++col) {
 Reference markRef = Reference(row, col);
 if (cellMatrix[markRef].VerticalAlignment() !=
 alignment){
 return true;
 }
 }
 }
 return false;
 }
 }

 return true;
}

void CalcDocument::OnVerticalTop() {
 SetVerticalAlignment(Top);
}

void CalcDocument::OnVerticalCenter() {
 SetVerticalAlignment(Center);
}

void CalcDocument::OnVerticalBottom() {
 SetVerticalAlignment(Bottom);
}

void CalcDocument::SetVerticalAlignment(Alignment alignment) {
 switch (calcMode) {
 case Edit: {
 Cell& editCell = cellMatrix[editRef];
 editCell.VerticalAlignment() = alignment;
 editCell.GenerateCaretList(this);
 InvalidateCell(editRef);
 UpdateCaret();
 }
 break;

Building a Spreadsheet Application

[252]

 case Mark: {
 int minMarkRow = min(firstMarkRef.Row(),
 lastMarkRef.Row()),
 maxMarkRow = max(firstMarkRef.Row(),
 lastMarkRef.Row()),
 minMarkCol = min(firstMarkRef.Col(),
 lastMarkRef.Col()),
 maxMarkCol = max(firstMarkRef.Col(),
 lastMarkRef.Col());

 for (int row = minMarkRow; row <= maxMarkRow; ++row) {
 for (int col = minMarkCol; col <= maxMarkCol; ++col) {
 Reference markRef = Reference(row, col);
 Cell& markCell = cellMatrix[markRef];

 if (markCell.VerticalAlignment() != alignment) {
 markCell.VerticalAlignment() = alignment;
 markCell.GenerateCaretList(this);
 InvalidateCell(markRef);
 }
 }
 }
 }
 break;
 }

 UpdateWindow();
 SetDirty(true);
}

Source and target sets
Each cell in the spreadsheet holds a numerical value, a formula, or a (possibly empty) plain
text. As mentioned at the beginning of the chapter, a formula is a text beginning with the
equal sign (=) followed by a numerical expression with cell references. If the cell holds a
value, it may affect the values in other cells (if it does not hold a value, it might cause
evaluation errors in target cells). If the cell contains a formula, its value may depend on the
values in other cells. This implies that each cell needs a set of cells that it depends on, that is,
its source set, and a set of cells that depend on it, that is, its target set.

Building a Spreadsheet Application

[253]

Only a formula has a non-empty source set, which is the set of all references of the formula.
The target set, on the other hand, is more complicated–a cell does not decide its own target
set; it is decided indirectly by the formulas that have it as its source cell.

In mathematical terms, the cells with its source and target sets constitute a directed graph.
Technically, they constitute two different directed graphs, one each for the source and
target sets. However, the graphs are just inverses of each other, so in all practical ways, they
can be regarded as the same graph.

For instance, in the screenshot that follows the source set of a3 holds a1 and c1 because its
formula includes a1 and c1. In the same way, the source set of c3 holds c1 because its
formula includes c1. The source set of a1 and c1 are empty, because they do not hold
formulas.

As c1 is included in both the formulas of a3 and c3, the value of c1 affects the values of a3
and c3. This implies that the target set of c1 holds a3 and c3. In the same way, as a1 is
included in the formula of a3, the target set of a1 holds a3. As the values of a3 and c3 do
not affect the values of any other cells, their target sets are empty.

The following is a screenshot of the same spreadsheet with the c3 cell being edited instead
of the a3 cell:

Building a Spreadsheet Application

[254]

The first of the following diagrams shows the acyclic graph of the source sets of the
preceding spreadsheet, the second diagram shows the acyclic graph of the target sets. As
mentioned previously (and shown by the graphs), the source and targets sets are the
inverse of each other. Technically, we can manage with only one of the sets. However, as
the sets are needed on different occasions, the code is clearer with both of them.

When the value of a cell is changed, its target set is traversed and the values of those cells
are updated. Then the target sets of these cells are traversed, and so on. The search
terminates when there are no more cells to evaluate or when we detect a circular reference.
The circular reference is detected by a deep-search algorithm, which is described in the next
section.

Graph searching
When the user changes the value of a cell, we need to find the cells that need to be re-
evaluated. Again, note the difference between source and target sets. While only formula
cells can have non-empty source sets, all kinds of cells (also empty cells) can have non-
empty target sets. Another difference between the two sets is that the target sets are defined
indirectly by formulas in other cells. If a formula of another cell holds a reference to a
particular cell, the reference to the formula cell is added to the target set of the particular
cell. In the same way, when a formula is altered or cleared, the reference to that cell is
removed from the target sets of all its source cells. When a cell is updated, all its targets are
evaluated recursively–the targets cells are re-evaluated, then their target cells are re-
evaluated, and so on. The evaluation always terminates when there are no more targets left,
or when a circular reference is encountered. We always run out of targets or encounter a
circular reference, since there is a finite number of cells in the spreadsheet.

Building a Spreadsheet Application

[255]

The InterpretEditCell method is called when the user finishes the input of a cell. It
interprets the cell by calling the InterpretCell method, which fills the sourceSet
method but throws an exception in the case of a formula with a syntax error:

bool CalcDocument::InterpretEditCell() {
 try {
 Cell& editCell = cellMatrix[editRef];
 set<Reference> sourceSet;
 editCell.InterpretCell(sourceSet);

However, if the parsing goes well, the previous source set is removed and the new source
set is added:

 RemoveTargetSetMap(editRef);
 AddTargetSetMap(editRef, sourceSet);
 sourceSetMap[editRef] = sourceSet;

Then the cell is recursively evaluated and all its direct or indirect target cells are updated:

 set<Reference> invalidateSet;
 EvaluateRecursive(editRef, invalidateSet);
 editCell.GenerateCaretList(this);

Finally, all evaluated cells are invalidated, the dirty flag is set, and true is returned:

 for (Reference cellRef : invalidateSet) {
 InvalidateCell(cellRef);
 }

 SetDirty(true);
 return true;
 }

If a syntax error is detected and an exception is thrown, an error message is displayed and
false is returned. In that case, the application remains in edit mode if the user has
finished the input. If the InterpretEditCell method has been called due to pasting, the
pasting process is aborted:

 catch (Error error) {
 MessageBox(error.ErrorText(), TEXT("Syntax Error"), Ok, Stop);
 return false;
 }
}

Building a Spreadsheet Application

[256]

The InvalidateCell method invalidates the area occupied by the cell with the given
reference:

void CalcDocument::InvalidateCell(Reference cellRef) {
 Point topLeft(HeaderWidth + (cellRef.Col() * ColWidth),
 HeaderHeight + (cellRef.Row() * RowHeight));
 Size cellSize(ColWidth, RowHeight);
 Rect cellRect(topLeft, cellSize);
 Invalidate(cellRect);
}

The sources and targets sets can be searched and evaluated in two ways: depth-first and
breadth-first. As the names implies, depth-first tries to search as deep as possible. When it
reaches a dead end, it backtracks and tries another way, if there is one. Breadth-first, on the
other hand, evaluates all cells at the same distance from the start cell. Not until every cell at
a distance has been evaluated, are the cells at the next distance examined.

When the user adds or alters a formula, it is essential that we detect potential circular
references in the graph. The IsCircular method decides whether the cell is part of a
circular reference, that is, a direct reference to its own cell or a chain of references leading to
its own cell. We perform a depth-first search, which is easier than the breadth-first search,
since we can take advantage of recursive calls. The breadth-first method is, on the other
hand, necessary in order to evaluate the targets of a modified cell in the
EvaluateRecursive method, as shown here:

bool CalcDocument::IsCircular(Reference cellRef,
 set<Reference>& targetSet){
 for (Reference targetRef : targetSet) {
 if ((cellRef == targetRef) ||
 IsCircular(cellRef, targetSetMap[targetRef])) {
 return true;
 }
 }

 return false;
}

When the value of a cell is modified, it is essential that the formulas having references to the
cell are notified and that their values are re-evaluated. The EvaluateRecursive method
performs a breadth-first search by following the target sets forward.

Building a Spreadsheet Application

[257]

Unlike the check for circular references, which we saw earlier, we cannot perform a depth-
first search, since it would introduce the risk of the cells being evaluated in the wrong order:

void CalcDocument::EvaluateCell(Reference cellRef) {
 Cell& cell = cellMatrix[cellRef];

 if (IsCircular(cellRef, targetSetMap[cellRef])) {
 cell.SetText(Error(CircularReference).ErrorText());
 }
 else {
 set<Reference> sourceSet = sourceSetMap[cellRef];
 map<Reference, double> valueMap;

 for (Reference sourceRef : sourceSet) {
 Cell& sourceCell = cellMatrix[sourceRef];

 if (sourceCell.HasValue()) {
 valueMap[sourceRef] = sourceCell.GetValue();
 }
 }

 cell.Evaluate(valueMap);
 }

 cell.GenerateCaretList(this);
}

When a cell is being evaluated, it needs the values of the cells in its source set; the
valueMap parameter holds the values of the source cells that holds some value. Every
source cell not holding a value is omitted from the map:

void CalcDocument::EvaluateRecursive(Reference cellRef,
 set<Reference>& invalidateSet) {

If this cell is not a part of a circular reference, we add the values of the referred cells with
values to the valueMap parameter. Refereed cells without values are simply omitted from
the valueMap parameter:

 set<Reference> targetSet, evaluatedSet;
 targetSet.insert(cellRef);

 while (!targetSet.empty()) {
 Reference targetRef = *targetSet.begin();
 targetSet.erase(targetRef);

Building a Spreadsheet Application

[258]

 if (evaluatedSet.count(targetRef) == 0) {
 EvaluateCell(targetRef);
 evaluatedSet.insert(targetRef);
 invalidateSet.insert(targetRef);
 set<Reference> nextTargetSet = targetSetMap[targetRef];
 targetSet.insert(nextTargetSet.begin(),
 nextTargetSet.end());
 }
 }
}

Regardless of whether the cell was properly evaluated or was found to be part of a circular
reference, we need to regenerate its caret rectangle list. It is either given a proper value or
an error message, and in both cases, the text is changed:

 cell.GenerateCaretList(this);
}

The RemoveTargetSetMap method traverses the source set of the cell in the cell matrix
and, for each source cell, removes the cell as a target. In the same way, the
AddTargetSetMap method traverses the source set of the cell in the cell matrix and, for
each source cell, adds the cell as a target:

void CalcDocument::RemoveTargetSetMap(Reference cellRef) {
 for (Reference sourceRef : sourceSetMap[cellRef]) {
 int row = sourceRef.Row(), col = sourceRef.Col();
 if ((row >= 0) && (row < Rows) && (col >= 0) && (col < Cols)){
 targetSetMap[sourceRef].erase(cellRef);
 }
 }
}

void CalcDocument::AddTargetSetMap(Reference cellRef,
 set<Reference>& sourceSet) {
 for (Reference sourceRef : sourceSet) {
 int row = sourceRef.Row(), col = sourceRef.Col();
 if ((row >= 0) && (row < Rows) && (col >= 0) && (col < Cols)){
 targetSetMap[sourceRef].insert(cellRef);
 }
 }

 sourceSetMap[cellRef] = sourceSet;
}

Building a Spreadsheet Application

[259]

Error handling
The evaluation errors are as follows:

Missing value: This error occurs when the cell referred in a formula does not
hold a value
Reference out of range: This error occurs when a reference is outside the scope of
the spreadsheet
Circular reference: This error occurs when a cell is referring to itself, directly or
indirectly
Division by zero: This error occurs when the denominator in a division
expression is zero

There is also the syntax error that occurs when the user inputs a syntactically incorrect
formula.

Error.h

enum ErrorId {SyntaxError, CircularReference, ReferenceOutOfRange,
 DivisionByZero, MissingValue};

class Error : public exception {
 public:
 Error(ErrorId errorId);
 String ErrorText() const;

 private:
 ErrorId errorId;
};

Error.cpp

#include "..\\SmallWindows\\SmallWindows.h"
#include "Error.h"

Error::Error(ErrorId errorId)
 :errorId(errorId) {
 // Empty.
}

String Error::ErrorText() const{
 switch (errorId) {
 case SyntaxError:
 return TEXT("Syntax Error.");

Building a Spreadsheet Application

[260]

 case CircularReference:
 return TEXT("#Circular reference#");

 case DivisionByZero:
 return TEXT("#Division by Zero#");

 case MissingValue:
 return TEXT("#Missing Value#");

 case ReferenceOutOfRange:
 return TEXT("#Reference out of Range.#");
 }

 return TEXT("");
}

Summary
In this chapter, we looked into how a spreadsheet program is implemented: the mouse and
keyboard input; cut, copy, and paste; file management; and font, color, and alignment.
Chapter 9, Formula Interpretation, will introduce cell handling and formula interpretation,
including parsing, scanning, and caret rectangle list generation.

9
Formula Interpretation

The spreadsheet program is capable of handling text, numerical values, and formulas
composed by the four arithmetic operators. In order to do so, we need to interpret the
formulas. We also need to find the sources of a formula (the cells referred to in the formula)
and the targets of a cell (the cells affected by a change).

In this chapter, we will take a look at the following topics:

Interpretation (scanning and parsing) of numerical expressions
Parse and syntax trees
Evaluation of formulas
References and matrices
Drawing of cells
Loading and saving of cells

In the following spreadsheet, the C3 cell is being edited:

Formula Interpretation

[262]

Formula interpretation
The core of a spreadsheet program is its ability to interpret formulas. When the user inputs
a formula in a cell, it is interpreted and its value is evaluated. The process of formula
interpretation is divided into three separate steps. First, given the input string, the Scanner
generates a Token List, then the Parser generates a Syntax Tree, and the Evaluator
determines the value.

A token is the least significant part of the formula. For instance, a1 is interpreted as a
reference and 1.2 is interpreted as a value. Assuming that the cells have values according to
the following sheet, the formula interpretation process will be as follows. Remember that a
formula is text beginning with an equal sign (=).

Formula Interpretation

[263]

Formula Interpretation

[264]

The tokens
The scanner takes a string as input and finds its least significant parts-its tokens. Spaces
between the tokens are ignored, and the scanner makes out no difference between capital
and small letters. The Value token needs an extra piece of information to keep track of the
actual value, which is called an attribute. In the same way, Reference needs an attribute to
keep track of reference. In this application, there are nine different tokens:

Token.h

enum TokenId {Plus, Minus, Star, Slash, LeftParenthesis,
 RightParenthesis, RefToken, Number, EndOfLine};

Token Description

Plus, Minus, Star, and
Slash

These are the four arithmetic operators: “+“, “-“, “*“, and “/“

LeftParenthesis and
RightParenthesis

These are the left and right parentheses: “(” and “)“

Value This is a numerical value, for instance, 124, 3.14, or -0.23.
It does not matter whether the value is integral or decimal.
Nor does it matter if the decimal point (if present) is preceded
or succeeded by digits. However, the value must contain at
least one digit. This needs a value of type double as an
attribute.

Reference This is a reference, for instance, b8, c6. This needs
Reference object as an attribute.

EndOfLine This is at the end of the line, there are no more (non-space)
characters in the string.

As stated previously, the string 1.2 * (b2 + c3) generates the tokens in the table on the next
page. The end-of-line token is added at the end of the list.

Formula Interpretation

[265]

Text Token Attribute

1.2 Value 1.2

* Star

(LeftParenthesis

b2 Reference row 1, col 1

+ Plus

c3 Reference row 2, col 2

) RightParanthesis

EndOfLine

The tokens are defined in the Token class. A token is made up of a token identifier, a double
value in case of the value token, and a Reference object in case of the reference token.

Token.h

class Token {
 public:
 Token(TokenId tokenId);
 Token(double value);
 Token(Reference reference);

 TokenId Id() const {return tokenId;}
 double Value() const {return value;}
 Reference ReferenceField() const {return reference;}

 private:
 TokenId tokenId;
 double value;
 Reference reference;
};

Token.cpp

#include "..\\SmallWindows\\SmallWindows.h"
#include "Token.h"

Token::Token(TokenId tokenId)
 :tokenId(tokenId) {
 // Empty.
}

Formula Interpretation

[266]

Token::Token(double value)
 :tokenId(Number),
 value(value) {
 // Empty.
}

Token::Token(Reference reference)
 :tokenId(RefToken),
 reference(reference) {
 // Empty.
}

The tree node
As mentioned earlier, the parser generates a syntax tree. More specifically, it generates an
object of the Tree class (described in Chapter 12, Auxiliary Classes), which is a template
class with a node type: TreeNode. There are 10 identities for a node and, similar to Token, a
value node has a double value as its attribute and a reference node has a reference object as
attribute.

TreeNode.h

enum TreeId {EmptyTree, UnaryAdd, UnarySubtract, BinaryAdd, BinarySubtract,
 Multiply, Divide, Parenthesis, RefId, ValueId};

The default constructor is used when reading the value from a file or the clipboard buffer.

class TreeNode {
 public:
 TreeNode();
 TreeNode(TreeId id);
 TreeNode(Reference reference);
 TreeNode(double value);

A cell of a spreadsheet can be saved to a file as well as cut, copied, and pasted, thus we
included the following methods:

 bool WriteTreeNodeToStream(ostream& outStream) const;
 bool ReadTreeNodeFromStream(istream& inStream);
 void WriteTreeNodeToClipboard(InfoList& infoList) const;
 void ReadTreeNodeFromClipboard(InfoList& infoList);

The identity and value of the node can only be inspected, not modified. However, the
reference can be modified, since it is updated when the user copies a cell and then pastes it
to another location:

Formula Interpretation

[267]

 TreeId Id() const {return id;}
 double Value() const {return value;}
 Reference ReferenceField() const {return reference;}
 Reference& ReferenceField() {return reference;}

 private:
 TreeId id;
 Reference reference;
 double value;
};

TreeNode.cpp

#include "..\\SmallWindows\\SmallWindows.h"
#include "TreeNode.h"

TreeNode::TreeNode()
 :id(EmptyTree),
 value(0) {
 // Empty.
}

TreeNode::TreeNode(TreeId id)
 :id(id),
 value(0) {
 // Empty.
}

TreeNode::TreeNode(Reference reference)
: id(RefId),
 value(0),
 reference(reference) {
 // Empty.
}

TreeNode::TreeNode(double value)
 :id(ValueId),
 value(value) {
 // Empty.
}

Formula Interpretation

[268]

The node identity, the value, and the reference are written and read, as follows:

bool TreeNode::WriteTreeNodeToStream(ostream& outStream) const {
 outStream.write((char*) &id, sizeof id);
 outStream.write((char*) &value, sizeof value);
 reference.WriteReferenceToStream(outStream);
 return ((bool) outStream);
}

bool TreeNode::ReadTreeNodeFromStream(istream& inStream) {
 inStream.read((char*) &id, sizeof id);
 inStream.read((char*) &value, sizeof value);
 reference.ReadReferenceFromStream(inStream);
 return ((bool) inStream);
}

void TreeNode::WriteTreeNodeToClipboard(InfoList& infoList) const {
 infoList.AddValue<TreeId>(id);
 infoList.AddValue<double>(value);
 reference.WriteReferenceToClipboard(infoList);
}

void TreeNode::ReadTreeNodeFromClipboard(InfoList& infoList) {
 infoList.GetValue<TreeId>(id);
 infoList.GetValue<double>(value);
 reference.ReadReferenceFromClipboard(infoList);
}

The Scanner – Generating the list of tokens
The task of the Scanner class is to group characters into tokens. For instance, 12.34 is
interpreted as the value 12.34. The constructor takes a string as parameter while Scan
generates a list of tokens by repeatedly calling NextToken until the string is empty.

Scanner.h

class Scanner {
 public:
 Scanner(String buffer);
 list<Token> Scan();

The NextToken method returns EndOfLine when it encounters the end of the string. The
ScanValue and ScanReference methods return true if they encounter a value or a
reference:

Formula Interpretation

[269]

 Token NextToken();
 bool ScanValue(double& value);
 bool ScanReference(Reference& reference);

The next token is continually read from the buffer until it is empty:

 private:
 String buffer;
};

Scanner.cpp

#include "..\\SmallWindows\\SmallWindows.h"
#include "Token.h"
#include "Error.h"
#include "Scanner.h"

TEXT('\0') is added to the string for simplicity; instead of checking whether the
remaining text is empty, we look for the null character:

Scanner::Scanner(String buffer)
 :buffer(buffer + TEXT('\0')) {
 // Empty.
}

The Scan method adds the token from the buffer to tokenList until it encounters
EndOfLine. Finally, the list is returned:

list<Token> Scanner::Scan() {
 list<Token> tokenList;

 while (true) {
 Token token = NextToken();
 tokenList.push_back(token);

 if (token.Id() == EndOfLine) {
 break;
 }
 }

 return tokenList;
}

The NextToken method does the actual work of the scanner by finding the next token in the
buffer. First, we skip the blanks. It is rather simple to extract the token when it comes to the
arithmetic symbols and the parentheses. We just check the next character of the buffer. It
becomes slightly more difficult when it comes to numerical values or references. We have

Formula Interpretation

[270]

two auxiliary methods for that purpose: ScanValue and ScanReference. Take a look at
the following code:

Token Scanner::NextToken() {
 while (buffer[0] == TEXT(' ')) {
 buffer.erase(0, 1);
 }

 switch (buffer[0]) {
 case TEXT('\0'):
 return Token(EndOfLine);

 case TEXT('+'):
 buffer.erase(0, 1);
 return Token(Plus);

 case TEXT('-'):
 buffer.erase(0, 1);
 return Token(Minus);

 case TEXT('*'):
 buffer.erase(0, 1);
 return Token(Star);

 case TEXT('/'):
 buffer.erase(0, 1);
 return Token(Slash);

 case TEXT('('):
 buffer.erase(0, 1);
 return Token(LeftParenthesis);

 case TEXT(')'):
 buffer.erase(0, 1);
 return Token(RightParenthesis);

If none of the trivial cases apply, the token may be a value or a reference. The ScanValue
and ScanReference methods find out if that is the case. If not, the scanner has
encountered an unknown character and a syntax error exception is thrown:

 default: {
 double value;
 Reference reference;
 if (ScanValue(value)) {
 return Token(value);
 }

Formula Interpretation

[271]

 else if (ScanReference(reference)) {
 return Token(reference);
 }
 else {
 throw Error(SyntaxError);
 }
 }
 break;
 }
}

ScanValue uses the _stscanf_s standard function, which is the safe generic version of
sscanf. The returned value is stored in fieldCount, which is set to 1 if the double value
was successfully read. We also need the number of the character read, which is stored in
charCount, in order to erase the correct number of characters from the buffer:

bool Scanner::ScanValue(double& value) {
 int charCount;
 int fieldCount = _stscanf_s(buffer.c_str(), TEXT("%lf%n"),
 &value, &charCount);

 if (fieldCount > 0) {
 buffer.erase(0, charCount);
 return true;
 }

 return false;
}

ScanReference checks whether the first two characters are a letter and a digit. If so, it
extracts the column and the row of the reference:

bool Scanner::ScanReference(Reference& reference) {
 if (isalpha(buffer[0]) && (isdigit(buffer[1]))) {

We extract the column by subtracting the lowercase letter from a, which gives that the first
column has the index zero, and erases the letter from the buffer.

 reference.Col() = tolower(buffer[0]) - TEXT('a');
 buffer.erase(0, 1);

Similar to ScanValue, we extract the row by calling _stscanf_s, which reads the row
integer value and the number of characters, which we use to erase the characters read from
the buffer:

Formula Interpretation

[272]

 int row;
 int charCount;
 _stscanf_s(buffer.c_str(), TEXT("%d%n"), &row, &charCount);
 reference.Row() = row - 1;
 buffer.erase(0, charCount);
 return true;
 }

 return false;
}

The parser – Generating the syntax tree
The user inputs a formula beginning with an equal sign (=). The parser's task is to translate
the scanner's token list into a syntax tree. The syntax of a valid formula can be defined by a
grammar. Let's start with a grammar that handles expressions that make use of the
arithmetic operators:

A grammar is a set of rules. In the preceding grammar, there are eight rules. Formula and
Expression are called non-terminals; EndOfLine, Value, and the characters +, –, *, /, (, and)
are called terminals. Terminals and non-terminals are called symbols. One of the rules is the
grammar's start rule, in our case the first rule. The symbol to the left of the start rules is
called the grammar's start symbol, in our case Formula.

The arrow can be read as “is“, and the preceding grammar can be read as:

A formula is an expression followed by end-of-line. An expression is the sum of two expressions, the
difference of two expressions, the product of two expressions, the quotient of two expressions, an
expression enclosed by parentheses, a reference, or a numerical value.

This is a good start, but there are a few problems. Let's test if the string 1 + 2 * 3 is accepted
by the grammar. We can test that by doing a derivation, where we start with the start
symbol Formula and apply the rules until there are only terminals. The digits in the
following derivation refer to the grammar rules:

Formula Interpretation

[273]

The derivation can be illustrated by the development of a parse tree.

Formula Interpretation

[274]

Let's try another derivation of the same string, with the rules applied in a different order.

This derivation generates a different parse tree, which is as follows:

The grammar is said to be ambiguous as it can generate two different parse trees for the
same input string, which we would like to avoid. The second tree is obviously a violation of
the laws of mathematics, stating that multiplication has higher precedence than addition,
but the grammar does not know that. One way to avoid ambiguity is to introduce a new set
of rules for each level of precedence:

Formula Interpretation

[275]

The new grammar is not ambiguous. If we try our string with this grammar, we can only
generate one parse tree, regardless of the order that we choose to apply the rules. There are
formal methods to prove that the grammar is not ambiguous; however, that is outside the
scope of this book. Check out the references at the end of this chapter for references.

This derivation gives the following tree. As it is not possible to derive two different trees
from the same input string, the grammar is unambiguous.

Formula Interpretation

[276]

We are now ready to write a parser. Essentially, there are two types of parsers: top-down
parser and bottom-up parser. As the terms imply, a top-down parser starts by the
grammar's start symbol together with the input string, and it tries to apply rules until we
are left with only terminals. A bottom-up parser starts with the input string and tries to
apply rules backward, reducing the rules until we reach the start symbol.

It is a complicated matter to construct a bottom-up parser. It is usually not done manually;
instead, there are parser generators constructing a parser table for the given grammar and
skeleton code for the implementation of the parser. However, the theory of bottom-up
parsing is outside the scope of this book.

It is easier to construct a top-down parser than a bottom-up parser. One way to construct a
simple, but inefficient, top-down parser would be to apply all possible rules in random
order. If we reach a dead end, we simply backtrack and try another rule. A more efficient,
but rather simple, parser is a look-ahead parser. Given a suitable grammar, we only need to
look at the next token in order to uniquely determine the rule to apply. If we reach a dead
end, we do not have to backtrack; we simply draw the conclusion that the input string is
incorrect according to the grammar-it is said to be syntactically incorrect, that is, it has a
syntax error.

The first attempt to implement a look-ahead parser could be to write a function for each
rule in the grammar. Unfortunately, we cannot do that quite yet because that would result
in a function Expression like this:

Formula Interpretation

[277]

Tree<TreeNode>* Parser::Expression() {
 Token token = tokenList.front();

 switch (token.Id()) {
 case Plus:
 Tree<TreeNode>* plusTree = Expression();
 // ...
 break;
 }
}

Do you see the problem? The method calls itself without changing the input stream, which
would result in an infinite number of recursive calls. This is called left recursion. We can
solve the problem, however, with the help of a simple translation.

The preceding rules can be translated to the equivalent set of rules (where epsilon ε denotes
empty string):

If we apply this transformation to the Expression and Term rules in the preceding
grammar, we receive the following grammar:

Formula Interpretation

[278]

Let's try this new grammar with our string 1 + 2 * 3.

Formula Interpretation

[279]

The derivation generates the following parse tree:

The requirement for a grammar to be suitable for a look-ahead parser is that every set of
rules with the same left-hand side symbol must begin with different terminals at its right-
hand side. If it does not have an empty rule, it may have at the most one rule with a non-
terminal as the first symbol on the right-hand side. The preceding grammar we covered
meets these requirements.

Now we are ready to write the parser. However, the parser should also generate some kind
of output, representing the string. One such representation is the syntax tree, which can be
viewed as an abstract parse tree-we keep only the essential information. For instance, the
previous parse tree has a matching syntax, which is as follows:

Formula Interpretation

[280]

The following is the Parser class. The idea is that we write a method for every set of rules
with the same left-hand symbol. Each such method generates a part of the resulting syntax
tree. The constructor takes the text to parse and lets the scanner generate a list of tokens.
Then, Parse starts the parsing process, and returns the generated syntax tree. If an error
occurs during the parsing process, a syntax error exception is thrown. When the token list
has been parsed, we should make sure that there are no extra tokens left in the list except
EndOfLine. Also, if the input buffer is completely empty (the user inputs only a single
equal sign), there is still the EndOfLine token in the list.

The result of the parsing is a syntax tree representing the formula. For instance, the formula
a1 * c3 / 3.6 + 2.4 * (b2 – 2.4) generates the following syntax tree, and we take advantage of
the Tree class of Chapter 12, Auxiliary Classes.

Formula Interpretation

[281]

As mentioned in the TreeNode section earlier, there are nine types of syntax tree: the four
arithmetic operators, unary addition and subtraction, expressions in parentheses,
references, and numerical values. We do not actually need the parentheses to store the
formula correctly, as the priority of the expression is stored in the syntax tree itself.
However, we need it to regenerate the original string from the syntax tree when written in a
cell.

Parser.h

class Parser {
 public:
 Parser(String buffer);
 Tree<TreeNode>* Parse();
 void Match(int tokenId);
 Tree<TreeNode>* Expression();
 Tree<TreeNode>* NextExpression(Tree<TreeNode>* leftTermPtr);
 Tree<TreeNode>* Term();
 Tree<TreeNode>* NextTerm(Tree<TreeNode>* leftFactorPtr);
 Tree<TreeNode>* Factor();

 private:
 list<Token> tokenList;
};

Formula Interpretation

[282]

The Parse method is called in order to interpret the text that the user has input. It receives
the token list from the scanner, which holds at least the EndOfLine token and parses the
token list and receives a pointer to the syntax tree. When the token list has been parsed, it
checks whether the next token is EndOfLine to make sure that there are no extra characters
(except spaces) left in the buffer:

Parser.cpp

#include "..\\SmallWindows\\SmallWindows.h"
#include "Token.h"
#include "Error.h"
#include "Scanner.h"
#include "TreeNode.h"
#include "Parser.h"

Parser::Parser(String buffer) {
 Scanner scanner(buffer);
 tokenList = scanner.Scan();
}

Tree<TreeNode>* Parser::Parse() {
 Tree<TreeNode>* resultTreePtr = Expression();
 Match(EndOfLine);
 return resultTreePtr;
}

The Match method is used to match the next token in the list with the expected token. If
they do not match or if the token list is empty, a syntax error exception is thrown.
Otherwise, the next token is removed from the list:

void Parser::Match(int tokenId) {
 if (tokenList.empty() || (tokenList.front().Id() != tokenId)) {
 throw Error(SyntaxError);
 }

 tokenList.pop_front();
}

The rest of the methods implement the grammar we discussed earlier. There is one method
for each for the symbols Expression, NextExpression, Term, NextTerm, and Factor:

Tree<TreeNode>* Parser::Expression() {
 Tree<TreeNode>* termTreePtr = Term();
 return NextExpression(termTreePtr);
}

The NextExpression method takes care of addition and subtraction. If the next token is

Formula Interpretation

[283]

Plus or Minus, we match it and parse its right operand. Then, we create and return a new
syntax tree with the operator in question. If the next token is neither Plus nor Minus, we
just assume that another rule applies and return the given left syntax tree:

Tree<TreeNode>* Parser::NextExpression(Tree<TreeNode>*
 leftTermTreePtr) {
 Token token = tokenList.front();
 switch (token.Id()) {
 case Plus: {
 Match(Plus);
 Tree<TreeNode>* rightTermTreePtr = Term();
 Tree<TreeNode>* sumTreePtr =
 new Tree<TreeNode>(TreeNode(BinaryAdd),
 {leftTermTreePtr, rightTermTreePtr});
 assert(sumTreePtr != nullptr);
 return NextExpression(sumTreePtr);
 }

 case Minus: {
 Match(Minus);
 Tree<TreeNode>* rightTermTreePtr = Term();
 Tree<TreeNode>* diffTreePtr =
 new Tree<TreeNode>(TreeNode(BinarySubtract),
 {leftTermTreePtr, rightTermTreePtr});
 assert(diffTreePtr != nullptr);
 return NextExpression(diffTreePtr);
 }

 default:
 return leftTermTreePtr;
 }
}

Tree<TreeNode>* Parser::Term() {
 Tree<TreeNode>* pFactorTree = Factor();
 return NextTerm(pFactorTree);
}

The NextTerm method works with multiplication and division in a way similar to
NextExpression. Remember that we need a set of methods for each precedence level of
the grammar.

Tree<TreeNode>* Parser::NextTerm(Tree<TreeNode>*leftFactorTreePtr) {
 Token token = tokenList.front();

Formula Interpretation

[284]

 switch (token.Id()) {
 case Star: {
 Match(Star);
 Tree<TreeNode>* rightFactorTreePtr = Factor();
 Tree<TreeNode>* productTreePtr =
 new Tree<TreeNode>(TreeNode(Multiply),
 Tree<TreeNode>* productTreePtr =
 new Tree<TreeNode>(TreeNode(Multiply),
 {leftFactorTreePtr, rightFactorTreePtr});
 assert(productTreePtr != nullptr);
 return NextExpression(productTreePtr);
 }

 case Slash: {
 Match(Slash);
 Tree<TreeNode>* rightFactorTreePtr = Factor();
 Tree<TreeNode>* quotientTreePtr =
 new Tree<TreeNode>(TreeNode(Divide),
 {leftFactorTreePtr, rightFactorTreePtr});
 assert(quotientTreePtr != nullptr);
 return NextExpression(quotientTreePtr);
 }
 default:
 return leftFactorTreePtr;
 }
}

The Factor method parses values, references, and expressions enclosed by parentheses. If
the next token is a unary operator (plus or minus), we parse its expression and create a
syntax tree holding the expression:

Tree<TreeNode>* Parser::Factor() {
 Token token = tokenList.front();

 switch (token.Id()) {
 case Plus: {
 Match(Plus);
 Tree<TreeNode>* nextExprTreePtr = Expression();
 Tree<TreeNode>* plusTreePtr =
 new Tree<TreeNode>(TreeNode(UnaryAdd),
 {nextExprTreePtr});
 assert(plusTreePtr!= nullptr);
 return plusTreePtr;
 }

 case Minus: {
 Match(Minus);
 Tree<TreeNode>* nextExprTreePtr = Expression();

Formula Interpretation

[285]

 Tree<TreeNode>* minusTreePtr =
 new Tree<TreeNode>(TreeNode(UnaryAdd),
 {nextExprTreePtr});
 assert(minusTreePtr!= nullptr);
 return minusTreePtr;
 }

If the next token is a left parenthesis, we match it, parse the following expression, and
match the closing right parenthesis:

 case LeftParenthesis: {
 Match(LeftParenthesis);
 Tree<TreeNode>* innerExprTreePtr = Expression();
 Match(RightParenthesis);
 Tree<TreeNode>* resultTreePtr =
 new Tree<TreeNode>(TreeNode(Parenthesis),
 {innerExprTreePtr});
 assert(resultTreePtr != nullptr);
 return resultTreePtr;
 }

If the next token is a reference, we receive the reference attribute with its row and column
and match the reference token. We create a new syntax tree holding a reference. Note that
the parser does not check whether the reference is valid (refers to a cell inside the
spreadsheet); that is the task of the evaluation of the formula's value:

 case RefToken: {
 Match(RefToken);
 Tree<TreeNode>* resultTreePtr =
 new Tree<TreeNode>(TreeNode(token.ReferenceField()));
 assert(resultTreePtr != nullptr);
 return resultTreePtr;
 }

 case Number: {
 Match(Number);
 Tree<TreeNode>* resultTreePtr =
 new Tree<TreeNode>(TreeNode(token.Value()));
 assert(resultTreePtr != nullptr);
 return resultTreePtr;
 }

If none of the preceding tokens applies, the user has input an invalid expression and a
syntax error exception is thrown:

Formula Interpretation

[286]

 default:
 throw Error(SyntaxError);
 }
}

Matrix and reference
The Matrix class is used when storing the cells of spreadsheet, and the Reference class is
used when accessing cells in the spreadsheet.

The reference class
The Reference class holds the row and column of a cell in the Matrix class, as shown in
the next section:

Reference.h

namespace SmallWindows {
 class Reference;
 extern const Reference ZeroReference;

 class Reference {
 public:

The default constructor initializes the row and column to zero. A reference can be initialized
by and assigned to another reference:

 Reference();
 Reference(int row, int col);
 Reference(const Reference& ref);
 Reference& operator=(const Reference& ref);

The compare operators first compare the rows. If they are equal, the columns are then
compared:

 friend bool operator==(const Reference& ref1,
 const Reference& ref2);
 friend bool operator!=(const Reference& ref1,
 const Reference& ref2);
 friend bool operator<(const Reference& ref1,
 const Reference& ref2);
 friend bool operator<=(const Reference& ref1,
 const Reference& ref2);

Formula Interpretation

[287]

 friend bool operator>(const Reference& ref1,
 const Reference& ref2);
 friend bool operator>=(const Reference& ref1,
 const Reference& ref2);

The addition operators add and subtract the rows and columns separately:

 Reference& operator+=(const Reference& ref);
 Reference& operator-=(const Reference& ref);
 friend Reference operator+(const Reference& ref1,
 const Reference& ref2);
 friend Reference operator-(const Reference& ref1,
 const Reference& ref2);

The Clear method sets both the row and column to zero, and IsEmpty returns true if the
row and column is zero:

 void Clear() {row = 0; col = 0;}
 bool IsEmpty() const {return ((row == 0) && (col == 0));}

The ToString method returns a string representing the reference:

 String ToString() const;

A reference is inside a block of references defined by a smallest and a largest reference if it
is greater than or equal to the smallest one and less than or equal to the largest one:

 bool Inside(Reference minRef, Reference maxRef);

The reference can be written to and read from a file stream, the clipboard, and the registry:

 bool WriteReferenceToStream(ostream& outStream) const;
 bool ReadReferenceFromStream(istream& inStream);
 void WriteReferenceToClipboard(InfoList& infoList) const;
 void ReadReferenceFromClipboard(InfoList& infoList);
 void WriteReferenceToRegistry(String key) const;
 void ReadReferenceFromRegistry(String key,
 Reference defaultRef = ZeroReference);

The row and column are inspected by the constant methods and modified by the non-
constant methods:

 int Row() const {return row;}
 int Col() const {return col;}
 int& Row() {return row;}
 int& Col() {return col;}

Formula Interpretation

[288]

 private:
 int row, col;
 };
};

Reference.cpp

#include "..\\SmallWindows\\SmallWindows.h"
namespace SmallWindows {
 const Reference ZeroReference(0, 0);
 Reference::Reference()
 :row(0),
 col(0) {
 // Empty.
 }

 Reference::Reference(int row, int col)
 :row(row),
 col(col) {
 // Empty.
 }

 Reference::Reference(const Reference& ref)
 :row(ref.row),
 col(ref.col) {
 // Empty.
 }

 Reference& Reference::operator=(const Reference& ref) {
 if (this != &ref) {
 row = ref.row;
 col = ref.col;
 }
 return *this;
 }

 bool operator==(const Reference& ref1, const Reference& ref2) {
 return (ref1.row == ref2.row) && (ref1.col == ref2.col);
 }

 bool operator!=(const Reference& ref1, const Reference& ref2) {
 return !(ref1 == ref2);
 }

 bool operator<(const Reference& ref1, const Reference& ref2) {
 return (ref1.row < ref2.row) ||
 ((ref1.row == ref2.row) && (ref1.col < ref2.col));
 }

Formula Interpretation

[289]

 bool operator<=(const Reference& ref1, const Reference& ref2) {
 return (ref1 < ref2) || (ref1 == ref2);
 }

 bool operator>(const Reference& ref1, const Reference& ref2) {
 return !(ref1 <= ref2);
 }

 bool operator>=(const Reference& ref1, const Reference& ref2) {
 return !(ref1 < ref2);
 }

 Reference& Reference::operator+=(const Reference& ref) {
 row += ref.row;
 col += ref.col;
 return *this;
 }

 Reference& Reference::operator-=(const Reference& ref) {
 row -= ref.row;
 col -= ref.col;
 return *this;
 }

 Reference operator+(const Reference& ref1,
 const Reference& ref2) {
 return Reference(ref1.row + ref2.row, ref1.col + ref2.col);
 }

 Reference operator-(const Reference& ref1,
 const Reference& ref2) {
 return Reference(ref1.row - ref2.row, ref1.col - ref2.col);
 }

The ToString method returns to reference as a string. We increase the number of rows by
one, implying that row zero corresponds to 1. The column is converted to characters,
implying that column zero corresponds to a. If the number of rows or columns is less than
zero, ? is returned:

 String Reference::ToString() const {
 String result;

 if (row >= 0) {
 result.push_back((TCHAR) (col + TEXT('a')));
 }
 else {
 result.push_back(TEXT('?'));
 }

Formula Interpretation

[290]

 if (col >= 0) {
 result.append(to_String(row + 1));
 }
 else {
 result.push_back(TEXT('?'));
 }

 return result;
 }

 bool Reference::Inside(Reference minRef, Reference maxRef) {
 return ((minRef.row <= row) && (row <= maxRef.row) &&
 (minRef.col <= col) && (col <= maxRef.col));
 }

 bool Reference::WriteReferenceToStream(ostream& outStream)const {
 outStream.write((char*) &row, sizeof row);
 outStream.write((char*) &col, sizeof col);
 return ((bool) outStream);
 }

 bool Reference::ReadReferenceFromStream(istream& inStream) {
 inStream.read((char*) &row, sizeof row);
 inStream.read((char*) &col, sizeof col);
 return ((bool) inStream);
 }

 void Reference::WriteReferenceToClipboard(InfoList& infoList) const {
 infoList.AddValue<int>(row);
 infoList.AddValue<int>(col);
 }

 void Reference::ReadReferenceFromClipboard(InfoList& infoList) {
 infoList.GetValue<int>(row);
 infoList.GetValue<int>(col);
 }

When communicating with the registry, we use the WriteBuffer and ReadBuffer static
methods. In order for that to work, we place the row and column values in the
ReferenceStruct structure:

 struct ReferenceStruct {int row, col;};

 void Reference::WriteReferenceToRegistry(String key) const {
 ReferenceStruct writeStruct = {row, col};
 Registry::WriteBuffer(key, &writeStruct, sizeof writeStruct);
 }

Formula Interpretation

[291]

 void Reference::ReadReferenceFromRegistry(String key,
 Reference defaultRef /* = ZeroReference */){
 ReferenceStruct readStruct;
 ReferenceStruct defaultStruct =
 {defaultRef.row, defaultRef.col};
 Registry::ReadBuffer(key, &readStruct, sizeof readStruct,
 &defaultStruct);
 row = readStruct.row;
 col = readStruct.col;
 }
}

The Matrix class
The Matrix class holds a set of cells organized in rows and columns.

Matrix.h

namespace SmallWindows {
 template <int Rows, int Cols, class Type>

 class Matrix {
 public:

The matrix can be initialized by or assigned to another matrix; in both cases, they call Init
to do the actual initialization:

 public:
 Matrix();
 Matrix(const Matrix& matrix);
 Matrix& operator=(const Matrix& matrix);

 private:
 void Init(const Matrix<Rows,Cols,Type>& matrix);

The index operator takes a row or a Reference object. In the case of a row, an array of
columns is returned (technically, the address of its first value is returned), which can be
further indexed by the regular index operator to obtain the value in the buffer. In the case of
a reference, the value is accessed directly by indexing the row and column of the buffer.
Note that in this class, the vertical row coordinate holds the first index and the horizontal
column coordinate the second index:

 public:
 const Type* operator[](int row) const
 {return ((const Type*) buffer[row]);}

Formula Interpretation

[292]

 Type& operator[](const Reference& ref)
 {return buffer[ref.Row()][ref.Col()];}
 Type operator[](const Reference& ref) const
 {return buffer[ref.Row()][ref.Col()];}

 private:
 Type buffer[Rows][Cols];
 };

Since Matrix is a template class, we place the definition of its methods in the header file.
The default constructor lets the default cell constructor initialize the cells:

 template <int Rows, int Cols, class Type>
 Matrix<Rows,Cols,Type>::Matrix() {
 // Empty.
 }

The copy constructor and the assignment operator copies the cells by calling Init:

 template <int Rows, int Cols, class Type>
 Matrix<Rows,Cols,Type>::Matrix(const Matrix<Rows,Cols,Type>&
 matrix) {
 Init(matrix);
 }

 template<int Rows, int Cols, class Type>
 Matrix<Rows,Cols,Type>& Matrix<Rows,Cols,Type>::operator=
 (const Matrix<Rows,Cols,Type>& matrix) {
 if (this != &matrix) {
 Init(matrix);
 }

 return *this;
 }

 template <int Rows, int Cols, class Type>
 void Matrix<Rows,Cols,Type>::Init
 (const Matrix<Rows,Cols,Type>& matrix) {
 for (int row = 0; row < Rows; ++row) {
 for (int col = 0; col < Cols; ++col) {
 buffer[row][col] = matrix.buffer[row][col];
 }
 }
 }
}

Formula Interpretation

[293]

The cell
The cell can hold three modes: (possible empty) text, a numerical value, or a formula. Its
mode is stored in the cellMode field. It can hold the value TextMode, ValueMode, or
FormulaMode. Similar to CalcDocument in this chapter and WordDocument in the previous
chapters, we refer to the current value of cellMode in expressions such as in text mode, in
value mode, and in formula mode.

HeaderWidth, HeaderHeight, ColWidth, and RowHeight are the size of the headers and
cells of the spreadsheet. In order for the cell text to not overwrite the cell's borders,
CellMargin is used. The spreadsheet is made up of ten rows and four columns.

Cell.h

extern const int HeaderWidth, HeaderHeight,
 ColWidth, RowHeight, CellMargin;

#define Rows 10
#define Cols 4

A cell can be aligned at the left, center, right or justified in the horizontal direction, and it
can be aligned at the top, center, or bottom in the vertical direction:

enum Alignment {Left, Center, Right, Justified, Top, Bottom};

class Cell {
 public:
 Cell();
 ~Cell();

 Cell(const Cell& cell);
 Cell& operator=(const Cell& cell);

Formula Interpretation

[294]

The Clear method is called when the user selects the new menu item and clears the font
and background color of the cell before calling Reset, which clears the text and sets the cell
to the text mode. Reset is also called when the user deletes the cell, in that case, the text is
cleared, but not the font or color:

 void Clear();
 void Reset();

The CharDown method is called when the user inputs a character that is inserted before the
current character or overwrites it depending on the value of the keyboardMode parameter.
When the user double-clicks on the text in a cell, MouseToIndex calculates the index of the
character clicked on:

 void CharDown(int editIndex, TCHAR tChar,
 KeyboardMode keyboardMode);
 int MouseToIndex(int x) const;

The Text and CaretList methods return the text and caret rectangle list of the cell.

 vector<Rect> CaretList() const {return caretList;}

 String GetText() const {return text;}
 void SetText(String& t) {text = t;}

 bool IsFormula() const {return (cellMode == FormulaMode);}

The font and background color of the cell can both be modified and inspected, so can the
horizontal and vertical alignment:

 Font CellFont() const {return font;}
 Font& CellFont() {return font;}
 Color BackgroundColor() const {return backgroundColor;}
 Color& BackgroundColor() {return backgroundColor;}

 Alignment HorizontalAlignment() const
 {return horizontalAlignignment;}
 Alignment& HorizontalAlignment()
 {return horizontalAlignignment;}
 Alignment VerticalAlignment() const
 {return verticalAlignignment;}
 Alignment& VerticalAlignment() {return verticalAlignignment;}

Formula Interpretation

[295]

The DrawCell method draws the border of the cell in black, fills the cell with the
background color, and draws the text. All colors are inverted if the inverse parameter is
true, which it is if the cell is either being edited or is marked:

 void DrawCell(Graphics& graphics, Reference cellRef,
 bool inverse) const;
 void GenerateCaretList(Window* windowPtr);

The DisplayFormula method is called when the user starts editing the cell. A cell with a
formula can be displayed with its value or its formula. When the user edits the cell, the
formula is displayed. When they mark it, its value is displayed. The DisplayFormula
method replaces the value by the formula (or an error message in case of an incorrect
formula):

 void DisplayFormula ();

The InterpretCell method interprets the text of the cell, which is interpreted as text, a
numerical value, or a formula. If the formula contains a syntax error, an exception is
thrown:

 void InterpretCell(set<Reference>& sourceSet);

In the formula mode, GenerateSourceSet analyzes the formula and returns the (possibly
empty) set of all its references. In the text or value mode, an empty set is returned:

 void GenerateSourceSet(set<Reference>& sourceSet) const;
 void GenerateSourceSet(Tree<TreeNode>* syntaxNodePtr,
 set<Reference>& sourceSet) const;

In the formula mode, TreeToString returns the formula converted from the syntax tree to
the string that is displayed in the cell when being edited:

 String TreeToString() const;
 String TreeToString(Tree<TreeNode>* syntaxNodePtr) const;

When the user cuts, copies, and pastes cells, their references are updated. UpdateTree
updates all references in the formula mode:

 void UpdateTree(Reference diffRef, set<Reference>& sourceSet);
 void UpdateTree(Tree<TreeNode>* syntaxNodePtr,
 Reference diffRef, set<Reference>& sourceSet);

The HasValue method returns true if the cell holds a value: true in the value mode,
false in the text mode, and true in the formula mode if it has been evaluated to a value,
false if an evaluation error (missing value, reference out of scope, circular reference, or
division by zero) occurred:

Formula Interpretation

[296]

 bool HasValue() const;
 double GetValue() const {return value;}

The Evaluate method evaluates the syntax tree of the formula; valueMap holds the values
of the cells in the source set:

 void Evaluate(map<Reference,double>& valueMap);
 double Evaluate(Tree<TreeNode>* syntaxNodePtr,
 map<Reference,double>& valueMap);

The cell can be saved to a file or cut, copied, and pasted:

 bool WriteCellToStream(ostream& outStream) const;
 bool ReadCellFromStream(istream& inStream);

 void WriteCellToClipboard(InfoList& infoList) const;
 void ReadCellFromClipboard(InfoList& infoList);

As mentioned at the beginning of this section, the cell can hold (possibly empty) text, a
numerical value, or a formula, indicated by the value cellMode:

 private:
 enum CellMode {TextMode, ValueMode, FormulaMode} cellMode;

All characters in the cell hold the same font and background color. The cell can be aligned at
the left, center, right, or justified horizontally, and it can be aligned at the top, center, or
bottom vertically:

 Font font;
 Color backgroundColor;
 Alignment horizontalAlignignment, verticalAlignignment;

The text field holds the text displayed in the cell. In the edit mode, it is the text currently
input by the user. In the mark mode, it is the text input by the user (in text mode), a
numerical value input by the user converted to text, the calculated value of a formula, or an
error message (missing value, reference out of scope, circular reference, or division by zero):

 String text;

The caret list holds the caret rectangle of each character in text. It also holds the rectangle
for the index after the last character, which means that the size of the caret list is always one
more than the text:

 vector<Rect> caretList;

Formula Interpretation

[297]

When the value of a formula is being calculated, it may result in a value or any of the errors
we discussed earlier. If the cell holds a value, hasValue is true and value holds the actual
value:

 bool hasValue;
 double value;

When the user inputs a formula starting with =, it is interpreted as a syntax tree by the
Scanner and Parser classes, and it is stored in syntaxTreePtr:

 Tree<TreeNode>* syntaxTreePtr;
};

Cell.cpp

#include "..\\SmallWindows\\SmallWindows.h"
#include "Token.h"
#include "Error.h"
#include "Scanner.h"
#include "TreeNode.h"
#include "Parser.h"
#include "Cell.h"

const int CellMargin = 100,
 ColWidth = 4000, RowHeight = 1000,
 HeaderWidth = 1000, HeaderHeight = 700;

The width of a cell is the width of the column minus the margins, and its height is the row
height minus the margins:

const int CellWidth = ColWidth - (2 * CellMargin),
 CellHeight = RowHeight - (2 * CellMargin);

When a cell is created, it is empty, it holds the text mode, it is center aligned in both
horizontal and vertical directions, and it holds the system font with black text on white
background:

Cell::Cell()
 :cellMode(TextMode),
 font(SystemFont),
 backgroundColor(White),
 horizontalAlignignment(Center),
 verticalAlignignment(Center),
 hasValue(false),
 value(0),
 syntaxTreePtr(nullptr) {
 // Empty.
}

Formula Interpretation

[298]

The copy constructor and assignment operator check whether syntaxTreePtr is null, if it
is not null it is copied dynamically, its constructor continues copying its children
recursively. It is not enough to simply copy the pointer, since one of the formulas of either
the original or copy cell may be changed, but not the other one:

Cell::Cell(const Cell& cell)
 :cellMode(cell.cellMode),
 font(cell.font),
 backgroundColor(cell.backgroundColor),
 horizontalAlignignment(cell.horizontalAlignignment),
 verticalAlignignment(cell.verticalAlignignment),
 text(cell.text),
 caretList(cell.caretList),
 hasValue(cell.hasValue),
 value(cell.value) {
 if (cell.syntaxTreePtr != nullptr) {
 syntaxTreePtr = new Tree<TreeNode>(*cell.syntaxTreePtr);
 assert(syntaxTreePtr != nullptr);
 }
 else {
 syntaxTreePtr = nullptr;
 }
}

One difference between the copy constructor and the assignment operator is that we delete
the syntax tree pointer in the assignment operator since it may point at dynamically
allocated memory, which is not the case in the copy constructor. If it points at null, the
delete operator does nothing:

Cell& Cell::operator=(const Cell& cell) {
 if (this != &cell) {
 cellMode = cell.cellMode;
 font = cell.font;
 backgroundColor = cell.backgroundColor;
 horizontalAlignignment = cell.horizontalAlignignment;
 verticalAlignignment = cell.verticalAlignignment;
 text = cell.text;
 caretList = cell.caretList;
 hasValue = cell.hasValue;
 value = cell.value;
 delete syntaxTreePtr;

 if (cell.syntaxTreePtr != nullptr) {
 syntaxTreePtr = new Tree<TreeNode>(*cell.syntaxTreePtr);
 assert(syntaxTreePtr != nullptr);
 }

Formula Interpretation

[299]

 else {
 syntaxTreePtr = nullptr;
 }
 }

 return *this;
}

The syntax tree is the only dynamically allocated memory of the cell. Again, in case of a null
pointer, delete does nothing:

Cell::~Cell() {
 delete syntaxTreePtr;
}

The difference between Clear and Reset is:

Clear is called when the user selects the New menu item and the spreadsheet
shall be totally cleared and also the cell's font, color and alignment shall be reset.
Reset is called when the user deletes a cell and its mode and text shall be reset.

void Cell::Clear() {
 font = SystemFont;
 backgroundColor = White;
 horizontalAlignignment = Center;
 verticalAlignignment = Center;
 Reset();
}

void Cell::Reset() {
 cellMode = TextMode;
 text.clear();
 delete syntaxTreePtr;
 syntaxTreePtr = nullptr;
}

Character input
The CharDown method is called by WindowProc (which in turn is called by the Windows
system) every time the user presses a graphical character. If the input index is at the end of
the text (one step to the right of the text), we just add the character at the end. If it is not at
the end of the text, we have to take into consideration the keyboard mode, which is either
insert or overwrite.

Formula Interpretation

[300]

In case of an insert, we insert the character, and in case of overwrite, we overwrite the
character previously located at the edit index. Unlike the word processor in the previous
chapters, we do not have to deal with the font, since all characters in the cell have the same
font:

void Cell::CharDown(int editIndex, TCHAR tChar,
 KeyboardMode keyboardMode) {
 if (editIndex == text.length()) {
 text.append(1, tChar);
 }
 else {
 switch (keyboardMode) {
 case InsertKeyboard:
 text.insert(editIndex, 1, tChar);
 break;

 case OverwriteKeyboard:
 text[editIndex] = tChar;
 break;
 }
 }
}

The MouseToIndex method is called when the user double-clicks on the cell. First, we need
to subtract the cell margin from the mouse position, then we iterate the caret list and return
the position of the character hit by the mouse. If the user hits to the left of the first character
(aligned at the center or right), zero index is returned, and if they hit to the right of the last
character (aligned to the left or center), the size of the text is returned, which corresponds to
the index to the right of the last character:

int Cell::MouseToIndex(int x) const {
 x -= CellMargin;

 if (x < caretList[0].Left()) {
 return 0;
 }

 int size = text.length();
 for (int index = 0; index < size; ++index) {
 if (x < caretList[index].Right()) {
 return index;
 }
 }

 return size;
}

Formula Interpretation

[301]

Drawing
The Draw method is called when the contents of the cell are to be drawn. The drawing of the
text is rather straightforward-for each character in the character list, we just draw the
character in its caret rectangle. This particular cell may be marked or in the process of being
edited, in which case the inverse is true. In that case, the text, background, and border
colors are inverted. In order to not overwrite the border of the cell, we also take the cell
margin into consideration:

void Cell::DrawCell(Graphics& graphics, Reference cellRef,
 bool inverse) const {
 Point topLeft(HeaderWidth + cellRef.Col() * ColWidth,
 HeaderHeight + cellRef.Row() * RowHeight);
 Size cellSize(ColWidth, RowHeight);
 Rect cellRect(topLeft, cellSize);

 Color textColor = font.FontColor(),
 backColor = backgroundColor, borderColor = Black;

 if (inverse) {
 textColor = textColor.Inverse();
 backColor = backColor.Inverse();
 borderColor = borderColor.Inverse();
 }

 graphics.FillRectangle(cellRect, borderColor, backColor);
 Size marginSize(CellMargin, CellMargin);
 int size = text.length();

 for (int index = 0; index < size; ++index) {
 TCHAR tChar = text[index];
 Rect caretRect = caretList[index];

 Rect charRect = (topLeft + marginSize) + caretRect;
 TCHAR text[] = {tChar, TEXT('\0')};
 graphics.DrawText(charRect, text, font, textColor, backColor);
 }
}

Formula Interpretation

[302]

Caret rectangle list generation
When the user adds or removes a character of the text of a cell or changes its font or
alignment, the caret rectangles need to be recalculated. GenerateCaretList can be
considered a simplified version of GenerateParagraph in the word processor of the
previous chapters. Its task is to calculate the character rectangles, which are used when
setting the caret, drawing the text, and calculating the index of a mouse click.

First, we need to calculate the width of each character as well as the width of the text in
order to set its horizontal start position. In case of justified alignment, we calculate the text
width without spaces and count the spaces:

void Cell::GenerateCaretList(Window* windowPtr) {
 vector<int> widthList;
 int textWidth = 0, spaceCount = 0, noSpaceWidth = 0;

 for (const TCHAR tChar : text) {
 int charWidth = windowPtr->GetCharacterWidth(font, tChar);
 widthList.push_back(charWidth);
 textWidth += charWidth;

 if (horizontalAlignignment == Justified) {
 if (tChar == TEXT(' ')) {
 ++spaceCount;
 }
 else {
 noSpaceWidth += charWidth;
 }
 }
 }

When we have calculated the text width, we set the horizontal start position. In case of left
or justified alignment, the start position is set to the cell margin. In the case of justified
alignment, we also set the width of each space in the text. In the case of right alignment, we
add the difference between the width of the cell and the text to the cell margin in order to
place the rightmost part of the text at the right border in the cell. In the case of center
alignment, we add half the difference in order for the text to be placed in the middle of the
cell:

 int startPos = 0, spaceWidth, cellWidth = ColWidth - (2 * CellMargin);

 switch (horizontalAlignignment) {
 case Left:
 startPos = CellMargin;
 break;

Formula Interpretation

[303]

 case Justified: {
 startPos = CellMargin;
 if (spaceCount > 0) {
 spaceWidth = max(0,(cellWidth-noSpaceWidth)/spaceCount);
 }
 }
 break;

 case Right:
 startPos = CellMargin + max(0, cellWidth - textWidth);
 break;

 case Center:
 startPos = CellMargin + max(0, (cellWidth - textWidth) / 2);
 break;
 }

The vertical top position is set in a similar manner. In the case of top alignment, the top
position is set to the cell margin. In the case of bottom alignment, we add the difference
between the height of the cell and the text to the cell margin in order to place the bottom
part of the text at the bottom border in the cell. In the case of center alignment, we add half
the difference in order to place the text in the middle of the cell:

 int topPos = 0,
 textHeight = windowPtr->GetCharacterHeight(font),
 cellHeight = RowHeight - (2 * CellMargin);

 switch (verticalAlignignment) {
 case Top:
 topPos = CellMargin;
 break;

 case Bottom:
 topPos = CellMargin + max(0, cellHeight - textHeight);
 break;

 case Center:
 topPos = CellMargin + max(0, (cellHeight - textHeight) / 2);
 break;
 }

When the horizontal start position and the top vertical position has been set, we iterate
through the characters and add the rectangles to caretList for each of them. Note that we
use the value of spaceWidth for spaces in the case of justified alignment:

Formula Interpretation

[304]

 caretList.clear();
 int size = text.size();
 for (int index = 0; index < size; ++index) {
 int charWidth = widthList[index];

 if ((horizontalAlignignment == Justified) &&
 (text[index] == TEXT(' '))) {
 charWidth = spaceWidth;
 }

 Point topLeft(startPos, topPos);
 Size charSize(charWidth, textHeight);
 caretList.push_back(Rect(topLeft, charSize));
 startPos += charWidth;
 }

When each rectangle is added, we add the rectangle for the character to the right of the text.
We set its width to the width of an average character of the cell's font:

 Point topLeft(startPos, topPos);
 int averageWidth = windowPtr->GetCharacterAverageWidth(font);
 Size charSize(averageWidth, textHeight);
 caretList.push_back(Rect(topLeft, charSize));
}

Formula interpretation
When the user single-clicks or double-clicks on a cell, its text remains unchanged in the text
or value mode, but it gets changed in the formula mode. In the formula mode, the
calculated value of the formula is displayed in the mark mode, while in the edit mode, the
formula itself is displayed. DisplayFormula calls TreeToString in the formula mode,
which generates the text of the formula:

void Cell::DisplayFormula() {
 switch (cellMode) {
 case TextMode:
 case ValueMode:
 break;

 case FormulaMode:
 text = TEXT("=") + TreeToString(syntaxTreePtr);
 break;
 }
}

Formula Interpretation

[305]

The InterpretCell method is called when the user terminates the text input by pressing
the Enter or Tab key or clicking the mouse. If the user has input a formula (starting with =),
it is parsed. Parse returns a syntax tree holding the formula or throws an exception in the
case of a syntax error. Note that InterpretCell only report the syntax error. All other
errors (missing value, references out of range, circular reference, or division by zero) are
handled by the following Evaluate:

void Cell::InterpretCell(set<Reference>& sourceSet) {
 String trimText = Trim(text);

 if (IsNumeric(trimText)) {
 cellMode = ValueMode;
 value = stod(trimText);
 }
 else if (!trimText.empty() && (trimText[0] == TEXT('='))) {
 cellMode = FormulaMode;
 Parser parser(trimText.substr(1));
 syntaxTreePtr = parser.Parse();
 GenerateSourceSet(syntaxTreePtr, sourceSet);
 }
 else {
 cellMode = TextMode;
 }
}

The GenerateSourceSet method traverses the syntax tree and extracts a (possible empty)
set of all its references in the formula mode. In the case of text or value mode, the set is
empty, since only formulas hold references:

void Cell::GenerateSourceSet(set<Reference>& sourceSet) const{
 if (cellMode == FormulaMode) {
 GenerateSourceSet(syntaxTreePtr, sourceSet);
 }
}

In case of unary addition or subtraction or an expression enclosed by parentheses, the
source set of its child node is returned:

void Cell::GenerateSourceSet(Tree<TreeNode>* syntaxNodePtr,
 set<Reference>& sourceSet) const{
 DynamicList<Tree<TreeNode>*> childList =
 syntaxNodePtr->ChildList();
 switch (syntaxNodePtr->NodeValue().Id()) {
 case UnaryAdd:
 case UnarySubtract:
 case Parenthesis:
 return GenerateSourceSet(childList[0]);

Formula Interpretation

[306]

In the case of a binary expression, the union of the source sets of the two children is
returned:

 case BinaryAdd:
 case BinarySubtract:
 case Multiply:
 case Divide: {
 set<Reference> leftSet = GenerateSourceSet(childList[0]),
 rightSet = GenerateSourceSet(childList[1]);
 leftSet.insert(rightSet.begin(), rightSet.end());
 return leftSet;
 }

In the case of a reference, a set holding only the reference is returned if it is located in the
spreadsheet. No references outside the spreadsheet are included in the set:

 case RefId: {
 set<Reference> singleSet;
 Reference sourceRef =
 syntaxNodePtr->NodeValue().ReferenceField();

 if ((sourceRef.Row() >= 0) && (sourceRef.Row() < Rows) &&
 (sourceRef.Col() >= 0) && (sourceRef.Col() < Cols)) {
 singleSet.insert(sourceRef);
 }

 return singleSet;
 }

Finally, in the case of a value, an empty set is returned:

 case ValueId:
 return set<Reference>();
 }

 assert(false);
 return set<Reference>();
}

The TreeToString method traverses the syntax tree and converts it to a string. Note that it
is quite possible to have a formula with a reference out of scope. However, the Reference
class returns ? in that case:

String Cell::TreeToString() const {
 if (cellMode == FormulaMode) {
 return TEXT("=") + TreeToString(syntaxTreePtr);
 }

Formula Interpretation

[307]

 else {
 return text;
 }
}

In the case of unary addition or subtraction, + or - is added to the text of the child node:

String Cell::TreeToString(Tree<TreeNode>* syntaxNodePtr) const {
 DynamicList<Tree<TreeNode>*> childList =
 syntaxNodePtr->ChildList();

 switch (syntaxNodePtr->NodeValue().Id()) {
 case UnaryAdd:
 return TEXT("+") + TreeToString(childList[0]);

 case UnarySubtract:
 return TEXT("-") + TreeToString(childList[0]);
 break;

In the case of a binary expressions +, -, *, or / is inserted between the text of the child
nodes:

 case BinaryAdd:
 return TreeToString(childList[0]) + TEXT("+") +
 TreeToString(childList[1]);

 case BinarySubtract:
 return TreeToString(childList[0]) + TEXT("-") +
 TreeToString(childList[1]);

 case Multiply:
 return TreeToString(childList[0]) + TEXT("*") +
 TreeToString(childList[1]);

 case Divide:
 return TreeToString(childList[0]) + TEXT("/") +
 TreeToString(childList[1]);

In the case of an expression enclosed by parentheses, the text of the child node enclosed by
parentheses is returned:

 case Parenthesis:
 return TEXT("(") + TreeToString(childList[0]) + TEXT(")");

Formula Interpretation

[308]

In the case of a reference, its text is returned. Again, if the reference is out of range, ? is
returned:

 case RefId:
 return syntaxNodePtr->
 NodeValue().ReferenceField().ToString();

In the case of a value, its converted text is returned:

 case ValueId:
 return to_String(syntaxNodePtr->NodeValue().Value());
 }

 assert(false);
 return TEXT("");
}

When the user copies and pastes a block of cells, the references of each formula are relative
and will be updated. UpdateTree looks for and updates references in the syntax tree. In all
other cases, it iterates through the child list and calls UpdateTree recursively for each child
(one child each in a unary expression and a parentheses expression, two children in a binary
expression, and no children in values or references):

void Cell::UpdateTree(Reference diffRef,set<Reference>&sourceSet) {
 if (cellMode == FormulaMode) {
 UpdateTree(syntaxTreePtr, diffRef, sourceSet);
 }
}

void Cell::UpdateTree(Tree<TreeNode>* syntaxNodePtr,
 Reference diffRef, set<Reference>& sourceSet) {
 if (syntaxNodePtr->NodeValue().Id() == RefId) {
 syntaxNodePtr->NodeValue().ReferenceField() += diffRef;
 sourceSet.insert(syntaxNodePtr->NodeValue().ReferenceField());
 }
 else {
 for (Tree<TreeNode>* childNodePtr :
 syntaxNodePtr->ChildList()) {
 UpdateTree(childNodePtr, diffRef, sourceSet);
 }
 }
}

When the value of a formula is evaluated, it may return a valid value, in which case
hasValue is set to true. However, if an error occurs during the evaluation (missing value,
references out of range, circular reference, or division by zero), hasValue is set to false.
hasValue is called when a value of a formula of another cell is being evaluated. If it returns

Formula Interpretation

[309]

false, the evaluation will result in the missing value error:

bool Cell::HasValue() const{
 switch (cellMode) {
 case TextMode:
 return false;
 case ValueMode:
 return true;

 case FormulaMode:
 return hasValue;
 }

 assert(false);
 return false;
}

In the formula mode, the formula is being evaluated to a value. If an error occurs (missing
value, reference out of range, circular reference, or division by zero), an exception is thrown
by Evaluate, and the cell text is set to the error message text. Note that it is possible to
input references out of scope, which InterpretCell accepts. However, Evaluate throws
an exception with an error message that is displayed in the cell.

Moreover, it is quite possible to cut, copy, and paste a cell so that its references get located
out of the scope and then cut, copied, and pasted again so that the references become valid.
However, if the user edits a formula with references out of the scope, ? is returned by the
ToString method in the Reference class, since it is difficult to express references with
negative columns:

void Cell::Evaluate(map<Reference,double>& valueMap) {
 if (cellMode == FormulaMode) {
 try {
 value = Evaluate(syntaxTreePtr, valueMap);
 text = to_String(value);
 hasValue = true;
 }
 catch (Error error) {
 text = error.ErrorText();
 hasValue = false;
 }
 }
}

Formula Interpretation

[310]

The Evaluate method finds the current value of the cell by looking up the values of the
cells referred to by the formula:

double Cell::Evaluate(Tree<TreeNode>* syntaxNodePtr,
 map<Reference,double>& valueMap) {
 DynamicList<Tree<TreeNode>*> childList =
 syntaxNodePtr->ChildList();

In the case of a unary or binary expression, the value is calculated (unary addition is only
present for the sake of completeness and does not change the value):

 switch (syntaxNodePtr->NodeValue().Id()) {
 case UnaryAdd:
 return Evaluate(childList[0], valueMap);

 case UnarySubtract:
 return -Evaluate(childList[0], valueMap);

 case BinaryAdd:
 return Evaluate(childList[0], valueMap) +
 Evaluate(childList[1], valueMap);

 case BinarySubtract:
 return Evaluate(childList[0], valueMap) -
 Evaluate(childList[1], valueMap);

 case Multiply:
 return Evaluate(childList[0], valueMap) *
 Evaluate(childList[1], valueMap);

In case of division by zero, an exception is thrown.

 case Divide: {
 double remainder = Evaluate(childList[1], valueMap);

 if (remainder != 0) {
 return Evaluate(childList[0], valueMap) / remainder;
 }
 else {
 throw Error(DivisionByZero);
 }
 }
 break;

In the case of an expression within parentheses, we simply return its evaluated value:

 case Parenthesis:
 return Evaluate(childList[0], valueMap);

Formula Interpretation

[311]

In the case of a reference, we look up the source cell in valueMap. In the case of a source cell
with a missing value (not present in valueMap) or a reference out of scope (referring to a
cell outside the spreadsheet), exceptions are thrown:

 case RefId: {
 Reference sourceRef =
 syntaxNodePtr->NodeValue().ReferenceField();

 if ((sourceRef.Row() >= 0) && (sourceRef.Row() < Rows) &&
 (sourceRef.Col() >= 0) && (sourceRef.Col() < Cols)) {
 if (valueMap.find(sourceRef) != valueMap.end()) {
 return valueMap[sourceRef];
 }
 else {
 throw Error(MissingValue);
 }
 }
 else {
 throw Error(ReferenceOutOfRange);
 }
 }
 break;

In the case of a value, we simply return the value:

 case ValueId:
 return syntaxNodePtr->NodeValue().Value();
 }

 assert(false);
 return 0;
}

Formula Interpretation

[312]

File management
The WriteDocumentToStream method is called by CalcDocument every time the user
selects the Save or Save As menu items from the file menu. In the formula mode, we call
WriteTreeToStream on the syntax tree:

bool Cell::WriteCellToStream(ostream& outStream) const {
 outStream.write((char*) &cellMode, sizeof cellMode);
 outStream.write((char*) &horizontalAlignignment,
 sizeof horizontalAlignignment);
 outStream.write((char*) &verticalAlignignment,
 sizeof verticalAlignignment);
 outStream.write((char*) &hasValue, sizeof hasValue);
 outStream.write((char*) &value, sizeof value);

 backgroundColor.WriteColorToStream(outStream);
 font.WriteFontToStream(outStream);

 int charListSize = text.size();
 outStream.write((char*) &charListSize, sizeof charListSize);

 for (const TCHAR tChar : text) {
 outStream.write((char*) &tChar, sizeof tChar);
 }

 for (const Rect caretRect : caretList) {
 caretRect.WriteRectToStream(outStream);
 }

 if (cellMode == FormulaMode) {
 syntaxTreePtr->WriteTreeToStream(outStream);
 }

 return ((bool) outStream);
}

In ReadCellFromStream, we dynamically create and read the syntax tree in the formula
mode:

bool Cell::ReadCellFromStream(istream& inStream) {
 inStream.read((char*) &cellMode, sizeof cellMode);
 inStream.read((char*) &horizontalAlignignment,
 sizeof horizontalAlignignment);
 inStream.read((char*) &verticalAlignignment,
 sizeof verticalAlignignment);
 inStream.read((char*) &hasValue, sizeof hasValue);
 inStream.read((char*) &value, sizeof value);

Formula Interpretation

[313]

 backgroundColor.ReadColorFromStream(inStream);
 font.ReadFontFromStream(inStream);

 int charListSize;
 inStream.read((char*) &charListSize, sizeof charListSize);

 for (int count = 0; count < charListSize; ++count) {
 TCHAR tChar;
 inStream.read((char*) &tChar, sizeof tChar);
 text.append(1, tChar);
 }

 for (int count = 0; count < (charListSize + 1); ++count) {
 Rect caretRect;
 caretRect.ReadRectFromStream(inStream);
 caretList.push_back(caretRect);
 }

 if (cellMode == FormulaMode) {
 syntaxTreePtr = new Tree<TreeNode>();
 assert(syntaxTreePtr != nullptr);
 syntaxTreePtr->ReadTreeFromStream(inStream);
 }
 else {
 syntaxTreePtr = nullptr;
 }

 return ((bool) inStream);
}

The WriteCellToClipboard and ReadCellFromClipboard methods are called by
CalcDocument when the user cuts, copies, and pastes the cell. It works in the same way as
WriteDocumentToStream and ReadCellFromStream we saw earlier:

void Cell::WriteCellToClipboard(InfoList& infoList) const {
 infoList.AddValue<CellMode>(cellMode);
 infoList.AddValue<Alignment>(horizontalAlignignment);
 infoList.AddValue<Alignment>(verticalAlignignment);
 infoList.AddValue<double>(value);
 infoList.AddValue<bool>(hasValue);

 font.WriteFontToClipboard(infoList);
 backgroundColor.WriteColorToClipboard(infoList);
 infoList.AddValue<int>(text.size());

 for (const TCHAR tChar : text) {
 infoList.AddValue<TCHAR>(tChar);
 }

Formula Interpretation

[314]

 if (cellMode == FormulaMode) {
 syntaxTreePtr->WriteTreeToClipboard(infoList);
 }
}

void Cell::ReadCellFromClipboard(InfoList& infoList) {
 infoList.GetValue<CellMode>(cellMode);
 infoList.GetValue<Alignment>(horizontalAlignignment);
 infoList.GetValue<Alignment>(verticalAlignignment);
 infoList.GetValue<double>(value);
 infoList.GetValue<bool>(hasValue);

 font.ReadFontFromClipboard(infoList);
 backgroundColor.ReadColorFromClipboard(infoList);

 int listSize;
 infoList.GetValue<int>(listSize);

 for (int count = 0; count < listSize; ++count) {
 TCHAR tChar;
 infoList.GetValue<TCHAR>(tChar);
 text.push_back(tChar);
 }

 for (int count = 0; count < (listSize + 1); ++count) {
 Rect caretRect;
 caretRect.ReadRectFromClipboard(infoList);
 caretList.push_back(caretRect);
 }

 if (cellMode == FormulaMode) {
 syntaxTreePtr = new Tree<TreeNode>();
 assert(syntaxTreePtr != nullptr);
 syntaxTreePtr->ReadTreeFromClipboard(infoList);
 }
 else {
 syntaxTreePtr = nullptr;
 }
}

Formula Interpretation

[315]

Further reading
If the scanner and parser of this chapter have got you interested in compilers, I recommend
that you refer to Compilers: Principles, Techniques, and Tools by A. V. Aho et al. (second
edition. Addison Wesley, 2007). It is the second edition of the classic Dragon Book. The
authors explain the theory and practice of compilers from scanning and parsing to
advanced optimization.

If the concept of graphs has caught your interest, I recommend Introduction to Graph Theory
by D. B. West (Prentice Hall, 2000), which reasons about graphs from a mathematical point
of view.

Summary
In this chapter, we covered the spreadsheet program implementation. This chapter
concludes the first part of this book: how to develop an application with Small Windows.
Chapter 10, The Framework, introduces the second part: the implementation of Small
Windows.

10
The Framework

The remaining chapters of this book explain the details of the Small Windows
implementation. This chapter covers the following topics:

An overview of the classes of Small Windows
An example of the Hello World application, which we covered at the beginning
of this book, written in the Win32 API7
The MainWindow and WinMain functions
The implementation of the main classes of Small Windows: Application,
Window, and Graphics

An overview of Small Windows
Here is a short description of the classes of Small Windows:

Chapter Class Description

10 Application This is the main class of Small Windows. It
manages the message loop and registration of
Windows classes.

10 Window This the root Window class. It creates individual
windows and provides basic window
functionality, such as mouse, touch, and keyboard
input, drawing, zooming, timer, focus, size, and
coordinate systems.

10 Graphics This is the class for drawing lines, rectangles,
ellipses, and text in the client area of the window.

The Framework

[317]

11 Document extends Window This extends the window with document
functionality, such as scrolling, caret handling, and
drop files.

11 Menu This handles menu bars, menus, menu items, and
the menu separator.

11 Accelerator This extracts accelerator information from the
menu item texts.

11 StandardDocument extends
Document

This provides a document-based framework with
the common File, Edit, and Help menu items.

12 Size
Point
Rect

These are auxiliary classes that handle a two-
dimensional point (x and y), size (width and
height), or the four corners of a rectangle.

12 Font This wraps the LOGFONT structure, which holds
information about the font's name, size, and
whether it is bold or italic.

12 Cursor This sets the cursor and provides a set of standard
cursors.

12 DynamicList template This is a list of dynamic size and a set of callback
methods.

12 Tree template This is a tree structure where each node has a
(possibly empty) list of child nodes.

12 InfoList This is a list of generic information, which can be
transformed to and from a memory buffer.

13 Registry This provides an interface against the Windows
registry.

13 Clipboard This provides an interface against the Windows
clipboard.

13 StandardDialog This displays the standard dialogs for saving and
opening files, choosing a font or color, and
printing.

13 PreviewDocument extends
Document

This sets up a document whose logical size is fixed
regardless of its physical size.

14 Dialog extends Window This provides a modal dialog. The controls below
are added to the dialog.

The Framework

[318]

14 Control abstract This is the base class for dialog controls.

14 ButtonControl extends
Control

This is the base class for button controls.

14 GroupBox, PushButton,
CheckBox, RadioButton
extends ButtonControl

These are classes for group boxes, push buttons,
checkboxes, and radio buttons.

14 ListControl extends
Control

This is the base class for list controls.

14 ListBox, MultipleListBox
extends ListControl

These are classes for single and multiple list boxes.

14 ComboBox extends Control This is the class for a combo (drop-down) box.

14 Label extends Control This is the class for a simple label, often used as a
prompt for TextField.

14 TextField template extends
Control

This is a class for an editable field, where a
converter may convert between a string and any
type.

14 Converter template This is a converter class that can be specified by
any type.

14 PageSetupDialog extends
Dialog

This is a dialog for page setup settings, such as
margins, headers, and footer text.

14 PageSetupInfo This has page setup information, which we saw
previously.

“Hello” window for the Win32 API
First of all, let's take a look at the Hello application from the first chapter of this book. The
following code snippet is the same application written directly with the Win32 API, without
Small Windows. Note that the code is written in C rather than C++ as the Win32 API is a C
function library rather than a C++ class library. As you can see, the code is a lot more
complicated compared to the application in the first chapter.

Do not worry if it looks complicated. Its purpose is actually to demonstrate the complexity
of the Win32 API; we'll discuss the details in this and the following chapters.

The Framework

[319]

MainWindow.c

#include <Windows.h>
#include <Assert.h>
#include <String.h>
#include <TChar.h>

LRESULT CALLBACK WindowProc(HWND windowHandle, UINT message,
 WPARAM wordParam, LPARAM longParam);

The WinMain method is called when the application starts to execute. It corresponds to
main in Standard C.

int WINAPI WinMain(HINSTANCE instanceHandle,
 HINSTANCE prevInstanceHandle,
 char* commandLine, int commandShow) {

First, we need to register the Windows class for our window. Note that Windows classes are
not C++ classes:

 WNDCLASS windowClass;
 memset(&windowClass, 0, sizeof windowClass);
 windowClass.hInstance = instanceHandle;

The style of the Windows class will be redrawn when the window size is changed in the
horizontal and vertical direction:

 windowClass.style = CS_HREDRAW | CS_VREDRAW | CS_DBLCLKS;

The icon of the window is the standard application icon, the cursor is the standard arrow
cursor, and the background of the client area is white.

 windowClass.hIcon = LoadIcon(NULL, IDI_APPLICATION);
 windowClass.hCursor = LoadCursor(NULL, IDC_ARROW);
 windowClass.hbrBackground =
 (HBRUSH) GetStockObject(WHITE_BRUSH);

The WindowProc function is a callback function called every time the window receives a
message:

 windowClass.lpfnWndProc = WindowProc;

The name of the Windows class is window, which is used in the CreateWindowEx call here:

 windowClass.lpszClassName = TEXT("window");
 RegisterClass(&windowClass);

The Framework

[320]

The CreateWindowEx method creates a window with the default position and size. Note
that we can create many windows with the same Windows class:

 HWND windowHandle =
 CreateWindowEx(0, TEXT("window"), NULL, WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, NULL, CreateMenu(),
 instanceHandle, NULL);
 assert(windowHandle != NULL);
 ShowWindow(windowHandle, commandShow);
 RegisterTouchWindow(windowHandle, 0);
 SetWindowText(windowHandle, TEXT("Hello Window"));

The GetMessage method waits for the next message, which is translated and dispatched to
the window with an input focus. The GetMessage method returns true for all messages
except the quit message, which is eventually sent when the user closes the window:

 MSG message;
 while (GetMessage(&message, NULL, 0, 0)) {
 TranslateMessage(&message);
 DispatchMessage(&message);
 }
 return ((int) message.wParam);
}

LRESULT CALLBACK WindowProc(HWND windowHandle, UINT message,
 WPARAM wordParam, LPARAM longParam){

 switch (message) {
 case WM_PAINT: {

When painting the client area, we need to create a paint structure and a device context,
which is created by BeginPaint:

 PAINTSTRUCT paintStruct;
 HDC deviceContextHandle =
 BeginPaint(windowHandle, &paintStruct);
 SetMapMode(deviceContextHandle, MM_ISOTROPIC);

Since we want to use logical units (hundreds of a millimeters), we need to set the device
context by calling SetWindowExtEx and SetViewportExtEx:

 int horizontalSize =
 100 * GetDeviceCaps(deviceContextHandle, HORZSIZE),
 verticalSize =
 100 * GetDeviceCaps(deviceContextHandle,VERTSIZE);

The Framework

[321]

 SetWindowExtEx(deviceContextHandle, horizontalSize,
 verticalSize, NULL);
 int horizontalResolution =
 (int) GetDeviceCaps(deviceContextHandle,HORZRES),
 verticalResolution =
 (int) GetDeviceCaps(deviceContextHandle,VERTRES);
 SetViewportExtEx(deviceContextHandle,horizontalResolution,
 verticalResolution, NULL);

Since we also want to take scroll movements into consideration, we also call
SetWindowOrgEx:

 int horizontalScroll =
 GetScrollPos(windowHandle, SB_HORZ),
 verticalScroll = GetScrollPos(windowHandle, SB_VERT);
 SetWindowOrgEx(deviceContextHandle, horizontalScroll,
 verticalScroll, NULL);

Also, as we want to take scroll movements into consideration, we call SetWindowOrgEx to
set to logical origin of the client area:

 RECT clientRect;
 GetClientRect(windowHandle, &clientRect);
 POINT bottomRight = {clientRect.right, clientRect.bottom};
 DPtoLP(deviceContextHandle, &bottomRight, 1);
 clientRect.right = bottomRight.x;
 clientRect.top = bottomRight.y;

We need to set a LOGFONT structure to create the 12-point boldface Times New Roman font:

 LOGFONT logFont;
 memset(&logFont, 0, sizeof logFont);
 _tcscpy_s(logFont.lfFaceName, LF_FACESIZE,
 TEXT("Times New Roman"));
 int fontSize = 12;

Since we work with logical units that are hundreds of millimeters, one typographical point
is 1 inch divided by 72 and 1 inch is 25.4 millimeters. We multiply the font size by 2,540 and
divide it by 72:

 logFont.lfHeight = (int) ((2540.0 * fontSize) / 72);
 logFont.lfWeight = FW_BOLD;
 logFont.lfItalic = FALSE;

When we use the font to write text in the client area, we need to create the font indirectly
and add it as a graphical object. We also need to save the previous object in order to restore
it later:

The Framework

[322]

 HFONT fontHandle = CreateFontIndirect(&logFont);
 HFONT oldFontHandle =
 (HFONT) SelectObject(deviceContextHandle, fontHandle);

The text color is black and its background color is white. RGB is a macro that transforms the
red, green, and blue parts of the color into a COLORREF value:

 COLORREF black = RGB(0, 0, 0), white = RGB(255, 255, 255);
 SetTextColor(deviceContextHandle, black);
 SetBkColor(deviceContextHandle, white);

Finally, DrawText draws the text in the middle of the client area:

 TCHAR* textPtr = TEXT("Hello, Small Windows!");
 DrawText(deviceContextHandle, textPtr, _tcslen(textPtr),
 &clientRect, DT_SINGLELINE|DT_CENTER|DT_VCENTER);

Since fonts are system resources, we need to restore the previous font object and delete the
new font object. We also need to restore the paint structure:

 SelectObject(deviceContextHandle, oldFontHandle);
 DeleteObject(fontHandle);
 EndPaint(windowHandle, &paintStruct);
 }

Since we have handled the WM_PAINT message, we return zero.

 break;
 }

For all messages other than WM_PAINT, we call DefWindowProc to handle the message:

 return DefWindowProc(windowHandle, message,
 wordParam, longParam);
}

The MainWindow function
In regular C and C++, the execution of the application starts with the main function. In
Small Windows, however, main has been replaced by MainWindow. MainWindow is
implemented by the user of Small Windows for each project. Its task is to define the
application name and create the main window object.

The Framework

[323]

MainWindow.h

void MainWindow(vector<String> argumentList,
 SmallWindows::WindowShow windowShow);

The WinMain function
In the Win32 API, WinMain is the function equivalent to main. Each application must
include the definition of the WinMain function. In order for Small Windows to work,
WinMain is implemented as a part of Small Windows, while MainWindow has to be
implemented by the user of Small Windows for each project. To sum it up, here are the
three kinds of main functions:

Regular C/C++ Win32 API Small Windows

main WinMain MainWindow

The WinMain function is called by the Windows system and takes the following parameters:

instanceHandle: This holds the handle of the application
prevInstanceHandle: This is present due to backward compatibility but is
always null
commandLine: This is a null-terminated character (char, not TCHAR) array
holding the arguments for the application, separated by spaces
commandShow: This holds the preferred appearance of the main window

WinMain.cpp

#include "SmallWindows.h"

int WINAPI WinMain(HINSTANCE instanceHandle,
 HINSTANCE /* prevInstanceHandle */,
 char* commandLine, int commandShow) {

The WinMain function performs the following tasks:

It divides the space-separated words of the command line into a String list by
calling GenerateArgumentList. Refer to Chapter 12, Auxiliary Classes, for the
definitions of CharPtrToGenericString and Split.
It instantiates an Application object.
It calls the MainWindow function, which creates the main window of the
application and sets its name.

The Framework

[324]

It calls the RunMessageLoop method of Application, which continues to
handle Windows messages until the quit message is sent.

 Application::RegisterWindowClasses(instanceHandle);
 vector<String> argumentList =
 Split(CharPtrToGenericString(commandLine));
 MainWindow(argumentList, (WindowShow) commandShow);
 return Application::RunMessageLoop();
}

The Application class
The Application class handles the message loop of the application. The message loop
waits for the next message from the Windows system and sends it to the right window. The
Application class also defines the Windows classes (which are not C++ classes) for the
Window, Document, StandardDocument, and Dialog C++ classes. The fields of the classes
are static since Application is not intended to be instantiated.

From this point in Small Windows, every part of the Small Windows implementation is
included in the SmallWindows namespace. A namespace is a C++ feature that encapsulates
classes and functions. The declaration of MainWindow, we saw earlier, is not included in the
Smallwindows namespace since the C++ language rules stipulate that it cannot be included
in a namespace. The WinMain definition is also not included in the namespace, since it
needs to be placed outside the namespace to be called by the Windows system.

Application.h

namespace SmallWindows {
 class Application {
 public:

The RegisterWindowClasses method defines the Windows classes for the Window,
Document, StandardDocument, and Dialog C++ classes. The RunMessageLoop method
runs the message loop of the Windows message system. It waits for the next message and
sends it to the right window. When a special quit message is received it breaks the message
loop, which leads to the termination of the Application class:

 static void RegisterWindowClasses(HINSTANCE instanceHandle);
 static int RunMessageLoop();

In Windows, each application holds a handle to the application instance. Handles are
common in the Win32 API, and are used to access objects of the Windows system. They are
similar to pointers but provide identification without revealing any location information.

The Framework

[325]

The instance handle (of the HINSTANCE type) is used when creating windows in the
constructor of the following Window class and when displaying standard dialogs in the
Standard Dialogs section in Chapter 14, Dialogs, Controls, and Page Setup:

 static HINSTANCE& InstanceHandle() {return instanceHandle;}

The application name is set by each application and is referred to by the standard File,
Help, and About menus, the Open and Save dialogs, and the registry:

 static String& ApplicationName() {return applicationName;}

The pointer to the main window of the application is referenced when the user closes a
window. If it is the main window, the application exits. Moreover, when the user selects the
Exit menu item, the main window is closed before the application exits:

 static Window*& MainWindowPtr() {return mainWindowPtr;}

 private:
 static HINSTANCE instanceHandle;
 static String applicationName;
 static Window* mainWindowPtr;
 };
};

Application.cpp

#include "SmallWindows.h"

namespace SmallWindows {
 HINSTANCE Application::instanceHandle;
 String Application::applicationName;
 Window* Application::mainWindowPtr;

The Win32 API Windows classes
The Windows classes are registered in Application. A Windows class needs to be
registered only once. After it has been registered, more than one window can be created for
each Windows class. Again, note that windows classes are not C++ classes. Each Windows
class is stored by its name: lpszClassName. The lpfnWndProc field defines the
freestanding function that receives the window messages from the message loop. Each
window allows double-clicks as well as horizontal and vertical redraw styles, which means
that the WM_PAINT message is sent to the window and the OnPaint method is called each
time the user changes the size of the window. Moreover, each window has the standard
application icon in its top-right corner and the standard arrow cursor. The client area is

The Framework

[326]

white, except for the dialog, where the client area is light gray:

 void Application::RegisterWindowClasses(HINSTANCE
 instanceHandle) {
 Application::instanceHandle = instanceHandle;
 assert(instanceHandle != nullptr);

 WNDCLASS windowClass;
 memset(&windowClass, 0, sizeof windowClass);
 windowClass.hInstance = instanceHandle;
 windowClass.style = CS_HREDRAW | CS_VREDRAW | CS_DBLCLKS;
 windowClass.hIcon = LoadIcon(nullptr, IDI_APPLICATION);
 windowClass.hCursor = LoadCursor(nullptr, IDC_ARROW);
 windowClass.hbrBackground =
 (HBRUSH) GetStockObject(WHITE_BRUSH);

 windowClass.lpfnWndProc = WindowProc;
 windowClass.lpszClassName = TEXT("window");
 ::RegisterClass(&windowClass);

 windowClass.lpfnWndProc = DocumentProc;
 windowClass.lpszClassName = TEXT("document");
 ::RegisterClass(&windowClass);

 windowClass.lpfnWndProc = DocumentProc;
 windowClass.lpszClassName = TEXT("standarddocument");
 ::RegisterClass(&windowClass);
 }

The message loop
The RunMessageLoop method holds the classic Windows message loop. There are two
cases: if the main window pointer points at an object of the Window class, we just need to
handle the message queue with the Win32 API functions GetMessage,
TranslateMessage, and DispatchMessage without caring about accelerators. However,
if it points at an object of Document or any of its subclasses, the message loop becomes more
complicated because we need to take accelerators into consideration:

 int Application::RunMessageLoop() {
 assert(!applicationName.empty());
 assert(mainWindowPtr != nullptr);

 MSG message;

The Framework

[327]

 if (dynamic_cast<Document*>(mainWindowPtr) == nullptr) {
 while (::GetMessage(&message, nullptr, 0, 0)) {
 ::TranslateMessage(&message);
 ::DispatchMessage(&message);
 }
 }

If the main window pointer points at an object of Document or any of its subclasses, we set
up a buffer for the accelerator table defined in Document, which we use in the message
loop. The Win32 API TranslateAccelerator function looks up the accelerator and
decides whether a key stroke message should be treated as the menu item associated with
the accelerator:

 else {
 Document* documentPtr = (Document*) mainWindowPtr;
 int size = documentPtr->AcceleratorSet().size(), index = 0;

The TranslateAccelerator method wants an array of ACCEL structures, so we convert
the accelerator set to an array:

 ACCEL* acceleratorTablePtr = new ACCEL[size];
 assert(acceleratorTablePtr != nullptr);

 for (ACCEL accelerator : documentPtr->AcceleratorSet()) {
 acceleratorTablePtr[index++] = accelerator;
 }

 HACCEL acceleratorTable =
 ::CreateAcceleratorTable(acceleratorTablePtr, size);

 while (::GetMessage(&message, nullptr, 0, 0)) {
 if (!::TranslateAccelerator(mainWindowPtr->WindowHandle(),
 acceleratorTable, &message)) {
 ::TranslateMessage(&message);
 ::DispatchMessage(&message);
 }
 }

When the accelerator array is used, it is deleted:

 delete [] acceleratorTablePtr;
 }

When the message loop is finished, we return the last massage:

 return ((int) message.wParam);
 }

The Framework

[328]

The Window class
The Window class is the root class of the document classes; it handles basic window
functionality such as the timer, input focus, coordinate transformation, window size and
position, text metrics, and the message box as well as mouse, keyboard, and touch screen
input. Moreover, Window defines enumerations for window styles and appearances,
buttons, icons, and coordinate systems.

Window.h

namespace SmallWindows {
 extern map<HWND,Window*> WindowMap;

There is large set of window styles. The window may be equipped with a border, a thick
frame, scroll bars, or minimize and maximize boxes:

 enum WindowStyle {NoStyle = 0, Border = WS_BORDER,
 ThickFrame = WS_THICKFRAME,
 Caption = WS_CAPTION, Child = WS_CHILD,
 ClipChildren = WS_CLIPCHILDREN,
 ClipSibling = WS_CLIPSIBLINGS,
 Disabled = WS_DISABLED,
 DialogFrame = WS_DLGFRAME, Group = WS_GROUP,
 HScroll = WS_HSCROLL, Minimize = WS_MINIMIZE,
 Maximize = WS_MAXIMIZE,
 MaximizeBox = WS_MAXIMIZEBOX,
 MinimizeBox = WS_MINIMIZEBOX,
 Overlapped = WS_OVERLAPPED,
 OverlappedWindow = WS_OVERLAPPEDWINDOW,
 Popup = WS_POPUP,PopupWindow = WS_POPUPWINDOW,
 SystemMenu = WS_SYSMENU,
 Tabulatorstop = WS_TABSTOP,
 Thickframe = WS_THICKFRAME,
 Tiled = WS_TILED, Visible = WS_VISIBLE,
 VScroll = WS_VSCROLL};

The window can be displayed in minimized, maximized, or normal mode:

 enum WindowShow {Restore = SW_RESTORE, Default = SW_SHOWDEFAULT,
 Maximized = SW_SHOWMAXIMIZED,
 Minimized = SW_SHOWMINIMIZED,
 MinNoActive = SW_SHOWMINNOACTIVE,
 NoActive = SW_SHOWNA,
 NoActivate = SW_SHOWNOACTIVATE,
 Normal = SW_SHOWNORMAL,
 Show = SW_SHOW, Hide = SW_HIDE};

The Framework

[329]

A mouse may hold the left, middle, and right button. The mouse wheel can be rolled
upwards or downwards:

 enum MouseButton {NoButton = 0x00, LeftButton = 0x01,
 MiddleButton = 0x02, RightButton = 0x04};
 enum WheelDirection {WheelUp, WheelDown};

There are four kinds of coordinate system as follows:

LogicalWithScroll: In this, each unit is one hundredth of a millimeter,
regardless of the physical screen resolution, with the current scroll bar settings
taken into consideration
LogicalWithoutScroll: This is the same as LogicalWithScroll, except that
the scroll bars settings are ignored
PreviewCoordinate: In this, the window client area always holds a specific
logical size, which means that the size of the logical units is changed when the
size of the window is changed

 enum CoordinateSystem {LogicalWithScroll, LogicalWithoutScroll,
 PreviewCoordinate};

The message box comes equipped with a set of button combinations, icons, and answers.
Note that the answer corresponding to the OK button is named OkAnswer in the Answer
enumeration in order to avoid name clashes with the OK button in the ButtonGroup
enumeration:

 enum ButtonGroup {Ok = MB_OK, OkCancel = MB_OKCANCEL,
 YesNo = MB_YESNO,
 YesNoCancel = MB_YESNOCANCEL,
 RetryCancel = MB_RETRYCANCEL,
 CancelTryContinue = MB_CANCELTRYCONTINUE,
 AbortRetryIgnore = MB_ABORTRETRYIGNORE};

 enum Icon {NoIcon = 0, Information = MB_ICONINFORMATION,
 Stop = MB_ICONSTOP, Warning = MB_ICONWARNING,
 Question = MB_ICONQUESTION};

 enum Answer {OkAnswer = IDOK, Cancel = IDCANCEL, Yes = IDYES,
 No = IDNO, Retry = IDRETRY, Continue = IDCONTINUE,
 Abort = IDABORT, Ignore = IDIGNORE} const;

The default definitions of OnPaint and OnPrint both call OnDraw. In order to distinguish
the two cases, the OnDraw parameter has the value Paint or Print:

 enum DrawMode {Paint, Print};

The Framework

[330]

The first Window constructor is public and intended to be used when a window is created
directly. The pageSize field refers to the size of the window client area. The constructor
also takes a pointer to the window's parent window (which is null if there is no parent
window), the window's basic style and extended style, and its initial appearance, position,
and size. If the position or size is zero, the window is located or dimensioned in accordance
with the system's default settings.

Note the difference between the document and windows sizes in PreviewCoordinate: the
document size is the size of the client area in units defined by the window's coordinate
system, while the size and position of the window are given in the coordinate system of the
parent window or in device units if there is no parent window. Moreover, the document
size refers to the size of the client area while the window size refers to the size of the whole
window:

 class Application;

 class Window {
 public:
 Window(CoordinateSystem system, Size pageSize = ZeroSize,
 Window* parentPtr = nullptr,
 WindowStyle style = OverlappedWindow,
 WindowStyle extendedStyle = NoStyle,
 WindowShow windowShow = Normal,
 Point topLeft = ZeroPoint, Size windowSize=ZeroSize);

The second constructor is protected and intended to be called by subclasses' constructors.
The difference when compared to the first constructor is that is takes the name of the
window class as its first parameter. As defined by the Application class, the class name
can be Window, Document, StandardDocument, or Dialog:

 protected:
 Window(Window* parentPtr = nullptr);
 Window(String className, CoordinateSystem system,
 Size pageSize = ZeroSize,
 Window* parentPtr = nullptr,
 WindowStyle style = OverlappedWindow,
 WindowStyle extendedStyle = NoStyle,
 WindowShow windowShow = Normal,
 Point windowTopLeft = ZeroPoint,
 Size windowSize = ZeroSize);

A device context is used when painting the client area, when transforming between logical
and device units, and when calculating the size of text. It is a connection to the client area of
a window or to a printer. However, since it comes with a set of functions for drawing text of
graphical objects, it can also be considered as a toolbox for drawing. However, before it is

The Framework

[331]

used, it needs to be prepared and adjusted in accordance with the current coordinate
system:

 void PrepareDeviceContext(HDC deviceContextHandle) const;

The destructor destroys the window and exits the application if the window is the
application's main window:

 public:
 virtual ~Window();

The window can be visible or invisible; it can also be enabled in such a way that it catches
mouse, touch, and keyboard inputs:

 void ShowWindow(bool visible);
 void EnableWindow(bool enable);

The OnSize and OnMove methods are called when the user changes the size of the window
or moves it. The size and position are given in logical coordinates. The OnHelp method is
called when the user presses the F1 key of the Help button in a message box. The methods
are intended to be overridden by subclasses, and their default behavior is to do nothing:

 virtual void OnSize(Size windowSize) {/* Empty. */}
 virtual void OnMove(Point topLeft) {/* Empty. */}
 virtual void OnHelp() {/* Empty. */}

The WindowHandle method returns the Win32 API window handle, which is used by
standard dialog functions. The ParentWindowPtr method returns the pointer to the parent
window, which is null, meaning that there is no parent window. The SetHeader method
sets the title of the window, which is visible in the upper border:

 HWND WindowHandle() const {return windowHandle;}
 HWND& WindowHandle() {return windowHandle;}
 Window* ParentWindowPtr() const {return parentPtr;}
 Window*& ParentWindowPtr() {return parentPtr;}
 void SetHeader(String headerText);

The client area of the window is zoomed in accordance with the zoom factor; 1.0
corresponds to the normal size:

 double GetZoom() const {return zoom;}
 void SetZoom(double z) {zoom = z;}

Several timers can be set or dropped as long as the values of the timerId parameter differ.
The OnTimer method is called in accordance with the intervals in milliseconds; its default
behavior is to do nothing.

The Framework

[332]

 void SetTimer(int timerId, unsigned int interval);
 void DropTimer(int timerId);
 virtual void OnTimer(int timerId) {/* Empty. */}

The SetFocus method sets the input focus to this window. The input focus directs the
keyboard input and clipboard to the window. However, the mouse pointer may be aiming
at another window. The window previously holding the input focus loses the focus; only
one window can hold the focus at a given time. The HasFocus method returns true if the
window has input focus.

 void SetFocus() const;
 bool HasFocus() const;

The OnGainFocus and OnLoseFocus methods are called when the window gains or loses
input focus. They are intended to be overridden by subclasses, and their default behavior is
to do nothing.

 virtual void OnGainFocus() {/* Empty. */}
 virtual void OnLoseFocus() {/* Empty. */}

In Windows, a mouse is regarded as holding three buttons, even if it does not do so
physically. The mouse buttons can be pressed or released and the mouse can be moved. The
OnMouseDown, OnMouseUp, and OnMouseMove methods are called when the user presses or
releases one of the mouse buttons or moves the mouse with at least one button pressed. The
user may press the Shift or Ctrl key at the same time, in which case shiftPressed or
controlPressed is true:

 virtual void OnMouseDown(MouseButton mouseButtons,
 Point mousePoint,
 bool shiftPressed,
 bool controlPressed) {/* Empty. */}
 virtual void OnMouseUp(MouseButton mouseButtons,
 Point mousePoint,
 bool shiftPressed,
 bool controlPressed) {/* Empty. */}
 virtual void OnMouseMove(MouseButton mouseButtons,
 Point mousePoint,
 bool shiftPressed,
 bool controlPressed) {/* Empty. */}

The user can also double-click a mouse button, in which case OnDoubleClick is called.
What constitutes a double-click is decided by the Windows system and can be set in the
Control Panel. When the user single-clicks a button, OnMouseDown is called, followed by
OnMouseMove in the case of potential mouse movements, and finally OnMouseUp. However,
in the case of a double-click, OnMouseDown is not called, its call is replaced by

The Framework

[333]

OnDoubleClick:

 virtual void OnDoubleClick(MouseButton mouseButtons,
 Point mousePoint, bool shiftPressed,
 bool controlPressed) {/* Empty. */}

The OnMouseWheel method is called when the user rolls the mouse wheel one step
upwards or downwards:

 virtual void OnMouseWheel(WheelDirection direction,
 bool shiftPressed,
 bool controlPressed){/* Empty. */}

The OnTouchDown, OnTouchMove, and OnTouchUp methods are called when the user
touches the screen. Unlike mouse clicks, the user can touch the screen at several locations at
the same time. Therefore, the parameter is a list of points rather than a single point. The
methods are intended to be overridden by subclasses. Their default behavior is to simulate
a mouse click for each touch point with no button and with neither the Shift nor the Ctrl key
pressed:

 virtual void OnTouchDown(vector<Point> pointList);
 virtual void OnTouchMove(vector<Point> pointList);
 virtual void OnTouchUp(vector<Point> pointList);

The OnKeyDown and OnKeyUp methods are called when the user presses and releases a key.
If the key is a graphical character (with ASCII number between 32 and 127, inclusive),
OnChar is called in between. The OnKeyDown and OnKeyUp methods return bool; the idea
is that the methods return true if the key was used. If not, they return false and the caller
method is free to use the key to, for instance, control scroll movements:

 virtual bool OnKeyDown(WORD key, bool shiftPressed,
 bool controlPressed) {return false;}
 virtual void OnChar(TCHAR tChar) {/* Empty. */}
 virtual bool OnKeyUp(WORD key, bool shiftPressed,
 bool controlPressed) {return false;}

The OnPaint method is called when the client area of the window needs to be redrawn,
partly or completely, and OnPrint is called when the user selects the Print menu item. In
both cases, the default definition calls OnDraw, which performs the actual drawing;
drawMode is Paint when called by OnPaint and Print when called by OnPrint. The idea
is that we let OnPaint and OnPrint perform actions specific to painting and printing and
call OnDraw for the common drawing. The Graphics class is described in the next section:

 virtual void OnPaint(Graphics& graphics) const
 {OnDraw(graphics, Paint);}

The Framework

[334]

 virtual void OnPrint(Graphics& graphics, int page,
 int copy, int totalPages) const
 {OnDraw(graphics, Print);}
 virtual void OnDraw(Graphics& graphics,
 DrawMode drawMode) const {/* Empty. */}

The Invalidate method invalidates the client area, partly or completely; that is, it
prepares the area to be redrawn by OnPaint or OnDraw. If clear is true, the area is first
cleared (painted by the window client color). The UpdateWindow method forces a
repainting of the invalidated parts of the client area:

 void Invalidate(bool clear = true) const;
 void Invalidate(Rect areaRect, bool clear = true) const;
 void UpdateWindow();

The OnClose method is called when the user tries to close the window; its default behavior
is to call TryClose. If TryClose returns true (which it does in its default definition), the
window is closed. If that happens, OnDestroy is called, whose default behavior is to do
nothing:

 virtual bool TryClose() {return true;}
 virtual void OnClose();
 virtual void OnDestroy() {/* Empty. */}

The following method transforms a Point, Rectangle, or Size object between device
units and logical units. They are protected since they are intended to be called by subclasses
only:

 protected:
 Point DeviceToLogical(Point point) const;
 Rect DeviceToLogical(Rect rect) const;
 Size DeviceToLogical(Size size) const;
 Point LogicalToDevice(Point point) const;
 Rect LogicalToDevice(Rect rect) const;
 Size LogicalToDevice(Size size) const;

The following method gets or sets the size and position of the window and the client area in
device units:

 public:
 Point GetWindowDevicePosition() const;
 void SetWindowDevicePosition(Point topLeft);
 Size GetWindowDeviceSize() const;
 void SetWindowDeviceSize(Size windowSize);
 Size GetClientDeviceSize() const;
 Rect GetWindowDeviceRect() const;
 void SetWindowDeviceRect(Rect windowRect);

The Framework

[335]

The following method gets or sets the logical size and position of the window and the client
area, in logical units, in accordance with the coordinate system of the window:

 Point GetWindowPosition() const;
 void SetWindowPosition(Point topLeft);
 Size GetWindowSize() const;
 void SetWindowSize(Size windowSize);
 Size GetClientSize() const;
 Rect GetWindowRect() const;
 void SetWindowRect(Rect windowRect) ;

The CreateTextMetric method initializes and returns a Win32 API TEXTMETRIC
structure, which is then used by the text metric methods in order to calculate the logical size
of text. It is private since it in intended to be called only by the Window methods:

 private:
 TEXTMETRIC CreateTextMetric(Font font);

The following method calculates and returns the width, height, ascent, or average width of
a character or text with the given font, in logical units:

 public:
 int GetCharacterAverageWidth(Font font) const;
 int GetCharacterHeight(Font font) const;
 int GetCharacterAscent(Font font) const;
 int GetCharacterWidth(Font font, TCHAR tChar) const;

The MessageBox method displays a message box with a message, caption, a set of buttons,
an icon, and on optional Help button:

 Answer MessageBox(String message,
 String caption = TEXT("Error"),
 ButtonGroup buttonGroup = Ok,
 Icon icon = NoIcon, bool help = false) const;

The pageSize field holds the window client's logical size in the PreviewCoordinate
coordinate system, which is used when transforming coordinates between logical and
device coordinates. In the LogicalWithScroll and LogicalWithoutScroll coordinate
systems, pageSize holds the logical size of the document, which does not necessarily equal
the logical size of the client area, and is not changed when the window is resized. It is
protected since it is also used by the Document and StandardDocument subclasses in the
next chapter:

 protected:
 const Size pageSize;

The Framework

[336]

In the previous section, there was a handle to the application instance. windowHandle is a
handle of type HWND to a Win32 API window; parentPtr is a pointer to the parent window,
which is null if there is no parent window:

 HWND windowHandle;
 Window* parentPtr;

The coordinate system chosen for the window is stored in system. The zoom field holds the
zooming factor of the window, where 1.0 is the default:

 private:
 CoordinateSystem system;
 double zoom = 1.0;

The WindowProc method is called each time the window receives a message. It is a friend of
Window, since it needs access to its private members:

 friend LRESULT CALLBACK WindowProc(HWND windowHandle,
 UINT message, WPARAM wordParam,
 LPARAM longParam);
 };

Finally, WindowMap maps the HWND handles to the Window pointers, which are used in
WindowProc as follows:

 extern map<HWND,Window*> WindowMap;
};

Window.cpp

#include "SmallWindows.h"

namespace SmallWindows {
 map<HWND,Window*> WindowMap;

Initialization
The first constructor simply calls the second constructor with the class name window:

 Window::Window(CoordinateSystem system, Size pageSize
 /* = ZeroSize */, Window* parentPtr /*=nullptr*/,
 WindowStyle style /* = OverlappedWindow */,
 WindowStyle extendedStyle /* = NoStyle */,
 WindowShow windowShow /* = Normal */,
 Point windowTopLeft /* = ZeroPoint */,
 Size windowSize /* = ZeroSize */)

The Framework

[337]

 :Window(TEXT("window"), system, pageSize, parentPtr, style,
 extendedStyle, windowShow, windowTopLeft, windowSize) {
 // Empty.
 }

The second constructor initializes the parentPtr, system, and pageSize fields:

 Window::Window(String className, CoordinateSystem system,
 Size pageSize /* = ZeroSize */,
 Window* parentPtr /* = nullptr */,
 WindowStyle style /* = OverlappedWindow */,
 WindowStyle extendedStyle /* = NoStyle */,
 WindowShow windowShow /* = Normal */,
 Point windowTopLeft /* = ZeroPoint */,
 Size windowSize /* = ZeroSize */)
 :parentPtr(parentPtr),
 system(system),
 pageSize(pageSize) {

If the window is a child window (the parent pointer is not null), its coordinates are
converted to the coordinate system of its parent window:

 if (parentPtr != nullptr) {
 windowTopLeft = parentPtr->LogicalToDevice(windowTopLeft);
 windowSize = parentPtr->LogicalToDevice(windowSize);
 }

The Win32 API window creation process is divided into two steps. First, a Windows class
needs to be registered, which was done in the Application constructor earlier. Then, the
Windows class name is used in the call to the Win32 API CreateWindowEx function, which
returns a handle to the window. If the size or position is zero, default values are used:

 int left, top, width, height;

 if (windowTopLeft != ZeroPoint) {
 left = windowTopLeft.X();
 top = windowTopLeft.Y();
 }
 else {
 left = CW_USEDEFAULT;
 top = CW_USEDEFAULT;
 }

 if (windowSize != ZeroSize) {
 width = windowSize.Width();
 height = windowSize.Height();
 }

The Framework

[338]

 else {
 width = CW_USEDEFAULT;
 height = CW_USEDEFAULT;
 }

 HWND parentHandle = (parentPtr != nullptr) ?
 parentPtr->windowHandle : nullptr;

 windowHandle =
 CreateWindowEx(extendedStyle, className.c_str(),
 nullptr, style, left, top, width, height,
 parentHandle,::CreateMenu(),
 Application::InstanceHandle(), this);

 assert(windowHandle != nullptr);

In order for WindowProc to be able to receive messages and identify the recipient window,
the handle is stored in WindowMap:

 WindowMap[windowHandle] = this;

The Win32 API functions ShowWindow and RegisterTouchWindow are called to make the
window visible in accordance with the windowShow parameter and to make the window
receptive to touch movements:

 ::ShowWindow(windowHandle, windowShow);
 ::RegisterTouchWindow(windowHandle, 0);
 }

The destructor calls OnDestroy and erases the window from windowMap. If the window
has a parent window, it receives an input focus:

 Window::~Window() {
 OnDestroy();
 WindowMap.erase(windowHandle);

 if (parentPtr != nullptr) {
 parentPtr->SetFocus();
 }

If the window is the application's main window, the Win32 API PostQuitMessage
function is called. It posts a quit message, which is eventually caught by RunMessageLoop
in the Application class that terminates the execution. Finally, the window is destroyed:

 if (this == Application::MainWindowPtr()) {
 ::PostQuitMessage(0);
 }

The Framework

[339]

 WindowMap.erase(windowHandle);
 ::DestroyWindow(windowHandle);
 }

Header and visibility
The ShowWindow and EnableWindow methods call the Win32 API functions ShowWindow
and EnableWindow with the window handle as their first parameter:

 void Window::ShowWindow(bool visible) {
 ::ShowWindow(windowHandle, visible ? SW_SHOW : SW_HIDE);
 }

Note that the second parameter of EnableWindow is a value of the Win32 API type BOOL,
which is not necessarily the same type as the C++ type bool. Therefore, since enable holds
the type bool we need to convert it to BOOL:

 void Window::EnableWindow(bool enable) {
 ::EnableWindow(windowHandle, enable ? TRUE : FALSE);
 }

The SetHeader method sets the title of the window by calling the Win32 API function
SetWindowText. As headerText is a String object and SetWindowText wants a C string
(a zero-terminated char pointer) as parameter, we need to call the c_str function:

 void Window::SetHeader(String headerText) {
 ::SetWindowText(windowHandle, headerText.c_str());
 }

The SetTimer and DropTimer methods turn the timer with the given identity on and off
by calling the Win32 API functions SetTimer and KillTimer. The interval in the
SetTimer call is given in milliseconds:

 void Window::SetTimer(int timerId, unsigned int interval) {
 ::SetTimer(windowHandle, timerId, interval, nullptr);
 }

 void Window::DropTimer(int timerId) {
 ::KillTimer(windowHandle, timerId);
 }

The SetFocus method sets the focus by calling the corresponding Win32 API function
SetFocus. The HasFocus method returns true if the window has the input focus by
calling the GetFocus Win32 API function, which returns the handle to the window, holding

The Framework

[340]

the input focus that is compared to the window's handle:

 void Window::SetFocus() const {
 ::SetFocus(windowHandle);
 }

 bool Window::HasFocus() const {
 return (::GetFocus() == windowHandle);
 }

The touch screen
The default behavior of OnTouchDown, OnTouchMove, and OnTouchUp is to call the
corresponding mouse input method for each touch point, with no button and neither the
Shift nor the Ctrl key pressed:

 void Window::OnTouchDown(vector<Point> pointList) {
 for (Point touchPoint : pointList) {
 OnMouseDown(NoButton, touchPoint, false, false);
 }
 }

 void Window::OnTouchMove(vector<Point> pointList) {
 for (Point touchPoint : pointList) {
 OnMouseMove(NoButton, touchPoint, false, false);
 }
 }

 void Window::OnTouchUp(vector<Point> pointList) {
 for (Point touchPoint : pointList) {
 OnMouseUp(NoButton, touchPoint, false, false);
 }
 }

With a modern screen, the user can touch the screen in ways similar to mouse clicks.
However, the user can touch the screen at several locations at once, and its positions are
stored in a point list. The OnTouch method is an auxiliary method calling OnTouchDown,
OnTouchMove, and OnTouchUp when the user touches the screen. It creates a list of points
in logical coordinates:

 void OnTouch(Window* windowPtr, WPARAM wordParam,
 LPARAM longParam, Point windowTopLeft) {
 UINT inputs = LOWORD(wordParam);
 HTOUCHINPUT touchInputHandle = (HTOUCHINPUT) longParam;

The Framework

[341]

 TOUCHINPUT* inputArray = new TOUCHINPUT[inputs];
 assert(inputArray != nullptr);

 if (::GetTouchInputInfo(touchInputHandle, inputs,
 inputArray, sizeof(TOUCHINPUT))){
 vector<Point> pointList;

 for (UINT index = 0; index < inputs; ++index) {
 Point touchPoint
 ((inputArray[index].x / 100) - windowTopLeft.X(),
 (inputArray[index].y / 100) - windowTopLeft.Y());
 pointList.push_back(touchPoint);
 }

If the touch identity does not equal the first value in the input array, we have a touch down
event; if it does, we have a touch move event:

 static DWORD touchId = -1;
 if (touchId != inputArray[0].dwID) {
 touchId = inputArray[0].dwID;
 windowPtr->OnTouchDown(pointList);
 }
 else {
 windowPtr->OnTouchMove(pointList);
 }

 ::CloseTouchInputHandle(touchInputHandle);
 }

 delete [] inputArray;
 }

Invalidation and window updates
When the window's client area needs to be (partly or completely) repainted, one of the
Invalidate methods is called. The Invalidate methods call the Win32 API function
InvalicateRect, which posts a message that results in a call to OnPaint when
UpdateWindow is called. The clear parameter indicates whether the invalidated area
should be cleared (repainted with the window client area's color) before it is redrawn,
which normally is the case. Similar to the EnableWindow method we saw earlier, we need
to convert clear from type bool to BOOL:

 void Window::Invalidate(bool clear /* = true */) const {
 ::InvalidateRect(windowHandle, nullptr, clear ? TRUE : FALSE);
 }

The Framework

[342]

The Invalidate method transforms the area from logical to device coordinates before the
call to the Win32 API function InvalidateRect and stores the size in a RECT structure:

 void Window::Invalidate(Rect areaRect, bool clear /* = true */)
 const {
 RECT rect = (RECT) LogicalToDevice(areaRect);
 ::InvalidateRect(windowHandle, &rect, clear ? TRUE : FALSE);
 }

The UpdateWindow method calls the Win32 API function UpdateWindow, which eventually
results in a call to OnPaint:

 void Window::UpdateWindow() {
 ::UpdateWindow(windowHandle);
 }

Preparing the device context
When painting the windows's client area, we need a device context, which we need to
prepare in accordance with the coordinate system in order to paint with logical coordinates.
The Win32 API function SetMapMode sets the mapping mode of the logical coordinate
system. MISOTROPIC forces that the x and y axis to have the same unit length (resulting in
non-elliptic circles) that is suitable for the LogicalWithScroll and
LogicalWithoutScroll systems, while MANISOTROPIC allows different unit lengths that
are suitable for the PreviewCoordinate system. We establish a mapping between the
logical and device systems by calling the Win32 API functions SetWindowExtEx, which
takes the logical size of the client area, and SetViewportExtEx, which takes its physical
(device) size.

In the case of the PreviewCoordinate system, we simply match the logical size
(pageSize) of the client area to its device size (clientDeviceRect), given by the Win32
API function GetClientRect, resulting in the client area always having the same logical
size, regardless of its physical size:

 void Window::PrepareDeviceContext(HDC deviceContextHandle)const{
 switch (system) {
 case PreviewCoordinate: {
 RECT clientDeviceRect;
 ::GetClientRect(windowHandle, &clientDeviceRect);

 ::SetMapMode(deviceContextHandle, MM_ANISOTROPIC);
 ::SetWindowExtEx(deviceContextHandle, pageSize.Width(),
 pageSize.Height(), nullptr);

The Framework

[343]

 ::SetViewportExtEx(deviceContextHandle,
 clientDeviceRect.right,
 clientDeviceRect.bottom, nullptr);
 }
 break;

In the case of the logical coordinate system, we need to find the ratio between logical
coordinates (hundreds of millimeters) and device coordinates (pixels). In other words, we
need to establish the logical size of a pixel. We can find the number of pixels on the screen
by calling the Win32 API function GetDeviceCaps with HORZSIZE and VERTSIZE, and the
size of the screen in millimeters with HORZRES and VERTRES. We multiply the logical size
by 100, since we have hundreds of millimeters as our logical unit. We also need to take into
account the zooming factor of the window, which we do by multiplying the physical size by
zoom.

Note that it's only in the PreviewCoordinate system that the client area always has the
same logical size. In the other systems, the logical size changes when the size of the window
is changed. The logical units are always the same in LogicalWithScroll and
LogicalWithoutScroll: hundreds of millimeters:

 case LogicalWithScroll:
 case LogicalWithoutScroll:
 ::SetMapMode(deviceContextHandle, MM_ISOTROPIC);

 { int horizontalSize =
 100 * GetDeviceCaps(deviceContextHandle,HORZSIZE),
 verticalSize =
 100 * GetDeviceCaps(deviceContextHandle,VERTSIZE);
 ::SetWindowExtEx(deviceContextHandle, horizontalSize,
 verticalSize, nullptr);
 }

 { int horizontalResolution = (int)
 (zoom*GetDeviceCaps(deviceContextHandle, HORZRES)),
 verticalResolution = (int)
 (zoom*GetDeviceCaps(deviceContextHandle, VERTRES));
 ::SetViewportExtEx(deviceContextHandle,
 horizontalResolution, verticalResolution, nullptr);
 }

In the case of the LogicalWithScroll logical coordinate system, we also need to adjust
the origin of the window in accordance with the current scroll settings by calling the Win32
API function SetWindowOrg:

The Framework

[344]

 if (system == LogicalWithScroll) {
 int horizontalScroll =
 ::GetScrollPos(windowHandle, SB_HORZ),
 verticalScroll =
 ::GetScrollPos(windowHandle, SB_VERT);
 ::SetWindowOrgEx(deviceContextHandle, horizontalScroll,
 verticalScroll, nullptr);
 }
 break;
 }
}

Unit transformation
The DeviceToLogical method transforms the device coordinates of a point, rectangle, or
size to logical coordinates by preparing the device context and then calling the Win32 API
function DPtoLP (Device Point to Logical Point). Note that we establish the device context
by calling the Win32 API function GetDC and we need to return it by calling ReleaseDC.
Also, note that we need to convert the Point object to a POINT structure and back again,
since DPtoLP takes a pointer to a POINT:

 Point Window::DeviceToLogical(Point point) const {
 HDC deviceContextHandle = ::GetDC(windowHandle);
 PrepareDeviceContext(deviceContextHandle);
 POINT pointStruct = (POINT) point;
 ::DPtoLP(deviceContextHandle, &pointStruct, 1);
 ::ReleaseDC(windowHandle, deviceContextHandle);
 return Point(pointStruct);
 }

When transforming a rectangle, we use the point method to transform its top-left and
bottom-right corners. When transforming a size, we create a rectangle, call the rectangle
method, and convert the rectangle to a size:

 Rect Window::DeviceToLogical(Rect rect) const {
 return Rect(DeviceToLogical(rect.TopLeft()),
 DeviceToLogical(rect.BottomRight()));
 }

 Size Window::DeviceToLogical(Size size) const {
 return ((Size) DeviceToLogical(Rect(ZeroPoint, size)));
 }

The LogicalToDevice method transforms the point, rectangle, or size from logical to
device coordinates calling the Win32 API function LPtoDP (Logical Point to Device Point) in

The Framework

[345]

the same manner as the earlier methods. The only difference is that they call LPtoDP instead
of DPtoLP:

 Point Window::LogicalToDevice(Point point) const {
 HDC deviceContextHandle = ::GetDC(windowHandle);
 PrepareDeviceContext(deviceContextHandle);
 POINT pointStruct = (POINT) point;
 ::LPtoDP(deviceContextHandle, &pointStruct, 1);
 ::ReleaseDC(windowHandle, deviceContextHandle);
 return Point(pointStruct);
 }

 Rect Window::LogicalToDevice(Rect rect) const {
 return Rect(LogicalToDevice(rect.TopLeft()),
 LogicalToDevice(rect.BottomRight()));
 }

 Size Window::LogicalToDevice(Size size) const {
 return ((Size) LogicalToDevice(Rect(ZeroPoint, size)));
 }

Window size and position
The GetWindowDevicePosition, SetWindowDevicePosition, GetWindowDeviceSize,
SetWindowDeviceSize, and GetClientDeviceSize methods call the corresponding
Win32 API functions GetWindowRect, GetClientRect, and SetWindowPos:

 Point Window::GetWindowDevicePosition() const {
 return GetWindowDeviceRect().TopLeft();
 }

 void Window::SetWindowDevicePosition(Point topLeft) {
 ::SetWindowPos(windowHandle, nullptr, topLeft.X(),
 topLeft.Y(), 0, 0, SWP_NOSIZE);
 }

 Size Window::GetWindowDeviceSize() const {
 return GetWindowDeviceRect().GetSize();
 }

 void Window::SetWindowDeviceSize(Size windowSize) {
 ::SetWindowPos(windowHandle, nullptr, 0, 0,
 windowSize.Width(),windowSize.Height(),SWP_NOMOVE);
 }

The Framework

[346]

 Size Window::GetClientDeviceSize() const {
 RECT rectStruct;
 ::GetClientRect(windowHandle, &rectStruct);
 return Size(rectStruct.right, rectStruct.bottom);
 }

 Rect Window::GetWindowDeviceRect() const {
 RECT windowRect;
 ::GetWindowRect(windowHandle, &windowRect);
 POINT topLeft = {windowRect.left, windowRect.top},
 bottomRight = {windowRect.right, windowRect.bottom};

 if (parentPtr != nullptr) {
 ::ScreenToClient(parentPtr->windowHandle, &topLeft);
 ::ScreenToClient(parentPtr->windowHandle, &bottomRight);
 }

 return Rect(Point(topLeft), Point(bottomRight));
 }

 void Window::SetWindowDeviceRect(Rect windowRect) {
 SetWindowDevicePosition(windowRect.TopLeft());
 SetWindowDeviceSize(windowRect.GetSize());
 }

The GetWindowPosition, SetWindowPosition, GetWindowSize, SetWindowSize, and
GetClientSize methods call the corresponding device methods together with
LogicalToDevice or DeviceToLogical:

 Point Window::GetWindowPosition() const {
 return DeviceToLogical(GetWindowDevicePosition());
 }

 void Window::SetWindowPosition(Point topLeft) {
 SetWindowDevicePosition(LogicalToDevice(topLeft));
 }

 Size Window::GetWindowSize() const {
 return DeviceToLogical(GetWindowDeviceSize());
 }

 void Window::SetWindowSize(Size windowSize) {
 SetWindowDeviceSize(LogicalToDevice(windowSize));
 }

 Size Window::GetClientSize() const {
 return DeviceToLogical(GetClientDeviceSize());
 }

The Framework

[347]

 Rect Window::GetWindowRect() const {
 return DeviceToLogical(GetWindowDeviceRect());
 }

 void Window::SetWindowRect(Rect windowRect) {
 SetWindowDeviceRect(LogicalToDevice(windowRect));
 }

Text metrics
Given a font, CreateTextMetric creates a metric structure holding the height, ascent line,
and average width of a character of the font. The CreateFontIndirect and
SelectObject methods prepare the font for GetTextExtentPoint:

 TEXTMETRIC Window::CreateTextMetric(Font font) const {
 font.PointsToLogical();

 HDC deviceContextHandle = ::GetDC(windowHandle);
 PrepareDeviceContext(deviceContextHandle);

 HFONT fontHandle = ::CreateFontIndirect(&font.LogFont());
 HFONT oldFontHandle =
 (HFONT) ::SelectObject(deviceContextHandle, fontHandle);

 TEXTMETRIC textMetric;
 ::GetTextMetrics(deviceContextHandle, &textMetric);

Note that CreateFontIndirect must be matched by DeleteObject and the first call to
SelectObject must be matched by a second call to SelectObject to reinstall the original
object:

 ::SelectObject(deviceContextHandle, oldFontHandle);
 ::DeleteObject(fontHandle);

Also, note that the device context received from GetDC must be released with ReleaseDC:

 ::ReleaseDC(windowHandle, deviceContextHandle);
 return textMetric;
 }

The GetCharacterHeight, GetCharacterAscent, and GetCharacterAverageWidth
methods call CreateTextMetric and return the relevant information:

 int Window::GetCharacterHeight(Font font) const {
 return CreateTextMetric(font).tmHeight;
 }

The Framework

[348]

 int Window::GetCharacterAscent(Font font) const {
 return CreateTextMetric(font).tmAscent;
 }

 int Window::GetCharacterAverageWidth(Font font) const {
 return CreateTextMetric(font).tmAveCharWidth;
 }

The GetCharacterWidth method calls GetTextExtentPoint to establish the width of a
character of the given font. Since the font height is given in typographical points (1 point =
1/72 of an inch = 1/72 * 25.4 mm ≈≈ 0.35 mm) and needs to be given in millimeters, we call
PointsToLogical. Similar to what we did earlier in CreateTextMetric,
CreateFontIndirect and SelectObject prepare the font for GetTextExtentPoint:

 int Window::GetCharacterWidth(Font font, TCHAR tChar) const {
 font.PointsToLogical();

 HDC deviceContextHandle = ::GetDC(windowHandle);
 PrepareDeviceContext(deviceContextHandle);

 HFONT fontHandle = ::CreateFontIndirect(&font.LogFont());
 HFONT oldFontHandle =
 (HFONT) ::SelectObject(deviceContextHandle, fontHandle);

 SIZE szChar;
 ::GetTextExtentPoint(deviceContextHandle, &tChar, 1, &szChar);

 ::SelectObject(deviceContextHandle, oldFontHandle);
 ::DeleteObject(fontHandle);
 ::ReleaseDC(windowHandle, deviceContextHandle);

 return szChar.cx;
 }

Closing the window
When the user tries to close the window, the Window object (this) is deleted if TryClose
returns true:

 void Window::OnClose() {
 if (TryClose()) {
 delete this;
 }
 }

The Framework

[349]

The MessageBox method
The MessageBox method displays a message box holding a caption, a message, a
combination of buttons (OK, OK-Cancel, Retry-Cancel, Yes-No, Yes-No-Cancel, Cancel-
Try-Continue, or Abort-Retry-Ignore), an optional icon (Information, Stop, Warning, or
Question), and an optional Help button. It returns the answer OK Answer (since OK is
already taken by the ButtonGroup enumeration), Cancel, Yes, No, Retry, Continue, Abort,
or Ignore:

 Answer Window::MessageBox(String message,
 String caption /*=TEXT("Error")*/,
 ButtonGroup buttonGroup /* = Ok */,
 Icon icon /* = NoIcon */,
 bool help /* = false */) const {
 return (Answer) ::MessageBox(windowHandle, message.c_str(),
 caption.c_str(), buttonGroup |
 icon | (help ? MB_HELP : 0));
 }

When a window is created by calling CreateWindowEx in the Window class constructor, the
name of a Windows class that has earlier been given by the Application class constructor
is enclosed. When the class is registered, a freestanding function is also given. For the
Window class, the function is WindowProc, which is thereby called every time the window
receives a message.

The wordParam and longParam parameters (WPARAM and LPARAM are both 4 bytes) hold
message-specific information, which may be divided into low and high words (2 bytes)
with the LOWORD and HIWORD macros:

 LRESULT CALLBACK WindowProc(HWND windowHandle, UINT message,
 WPARAM wordParam, LPARAM longParam){

First we need to find the Window object associated with the window handle by looking up
the handle in the static field WindowMap:

 if (WindowMap.count(windowHandle) == 1) {
 Window* windowPtr = WindowMap[windowHandle];

When receiving the WSETFOCUS, WKILLFOCUS, and WTIMER messages, the corresponding
methods in Window are simply called. When the messages have been handled, they do not
need to be further processed; therefore, zero is returned:

The Framework

[350]

 switch (message) {
 case WM_SETFOCUS:
 windowPtr->OnGainFocus();
 return 0;

 case WM_KILLFOCUS:
 windowPtr->OnLoseFocus();
 return 0;

The identity of the timer (the timerId parameter in SetTimer and DropTimer) is stored in
wordParam:

 case WM_TIMER:
 windowPtr->OnTimer((int) wordParam);
 return 0;

When receiving the WMOVE and WSIZE messages, the Point value stored in longParam is
given in device units that need to be transformed into logical units by calling
DeviceToLogical in the calls to OnMove and OnSize in Window:

 case WM_MOVE: {
 Point windowTopLeft =
 {LOWORD(longParam), HIWORD(longParam)};
 windowPtr->OnMove
 (windowPtr->DeviceToLogical(windowTopLeft));
 }
 return 0;

 case WM_SIZE: {
 Size clientSize =
 {LOWORD(longParam), HIWORD(longParam)};
 windowPtr->
 OnSize(windowPtr->DeviceToLogical(clientSize));
 }
 return 0;

If the user presses the F1 key or the Help button in a message box, the WM_HELP message is
sent. We call OnHelp in Window:

 case WM_HELP:
 windowPtr->OnHelp();
 break;

When handling mouse or keyboard input messages, it is useful to decide whether the user
simultaneously presses the Shift or Ctrl key. This can be established by calling the Win32
API function, GetKeyState, which returns an integer value less than zero if the key is
pressed when called with VK_SHIFT or VK_CONTROL:

The Framework

[351]

 case WM_KEYDOWN: {
 WORD key = wordParam;
 bool shiftPressed = (::GetKeyState(VK_SHIFT) < 0);
 bool controlPressed = (::GetKeyState(VK_CONTROL) < 0);

If OnKeyDown returns true, the key message has been processed and we return zero. If it
returns false, the Win32 API function DefWindowProc, as shown here, will be called,
which further processes the message:

 if (windowPtr->OnKeyDown(wordParam, shiftPressed,
 controlPressed)) {
 return 0;
 }
 }
 break;

If the pressed key is a graphical character (ASCII numbers between 32 and 127, inclusive),
OnChar is called:

 case WM_CHAR: {
 int asciiCode = (int) wordParam;

 if ((asciiCode >= 32) && (asciiCode <= 127)) {
 windowPtr->OnChar((TCHAR) asciiCode);
 return 0;
 }
 }
 break;

 case WM_KEYUP: {
 bool shiftPressed = (::GetKeyState(VK_SHIFT) < 0);
 bool controlPressed = (::GetKeyState(VK_CONTROL) < 0);

 if (windowPtr->OnKeyUp(wordParam, shiftPressed,
 controlPressed)) {
 return 0;
 }
 }
 break;

All mouse input points stored in longParam are given in device coordinates, which need to
be transformed into logical coordinates by DeviceToLogical. The mouse-down message is
normally followed by the corresponding mouse-up message. Unfortunately, that is not the
case if the user presses the mouse button in one window and releases it in another window,
in which case the mouse-up message is sent to the other window. However, the problem
can be solved by the Win32 API function, SetCapture, which makes sure that every mouse

The Framework

[352]

message is sent to the window until ReleaseCapture is called:

 case WM_LBUTTONDOWN: {
 bool shiftPressed = (::GetKeyState(VK_SHIFT) < 0);
 bool controlPressed = (::GetKeyState(VK_CONTROL) < 0);
 ::SetCapture(windowPtr->windowHandle);
 Point mousePoint =
 Point({LOWORD(longParam), HIWORD(longParam)});
 windowPtr->OnMouseDown(LeftButton,
 windowPtr->DeviceToLogical(mousePoint),
 shiftPressed, controlPressed);
 }
 return 0;

 case WM_MBUTTONDOWN: {
 bool shiftPressed = (::GetKeyState(VK_SHIFT) < 0);
 bool controlPressed = (::GetKeyState(VK_CONTROL) < 0);
 ::SetCapture(windowPtr->windowHandle);
 Point mousePoint =
 Point({LOWORD(longParam), HIWORD(longParam)});
 windowPtr->OnMouseDown(MiddleButton,
 windowPtr->DeviceToLogical(mousePoint),
 shiftPressed, controlPressed);
 }
 return 0;

 case WM_RBUTTONDOWN: {
 bool shiftPressed = (::GetKeyState(VK_SHIFT) < 0);
 bool controlPressed = (::GetKeyState(VK_CONTROL) < 0);
 ::SetCapture(windowPtr->windowHandle);
 Point mousePoint =
 Point({LOWORD(longParam), HIWORD(longParam)});
 windowPtr->OnMouseDown(RightButton,
 windowPtr->DeviceToLogical(mousePoint),
 shiftPressed, controlPressed);
 }
 return 0;

When the user moves the mouse, they may at the same time press a combination of buttons,
stored in buttonMask:

 case WM_MOUSEMOVE: {
 MouseButton buttonMask = (MouseButton)
 (((wordParam & MK_LBUTTON) ? LeftButton : 0) |
 ((wordParam & MK_MBUTTON) ? MiddleButton : 0) |
 ((wordParam & MK_RBUTTON) ? RightButton : 0));

The Framework

[353]

 if (buttonMask != NoButton) {
 bool shiftPressed = (::GetKeyState(VK_SHIFT) < 0);
 bool controlPressed = (::GetKeyState(VK_CONTROL)<0);
 Point mousePoint =
 Point({LOWORD(longParam), HIWORD(longParam)});
 windowPtr->OnMouseMove(buttonMask,
 windowPtr->DeviceToLogical(mousePoint),
 shiftPressed, controlPressed);
 }
 }
 return 0;

Note that ReleaseCapture is called at the end of the mouse-up methods in order to release
the mouse message from the window and make it possible for mouse messages to be sent to
other windows:

 case WM_LBUTTONUP: {
 bool shiftPressed = (::GetKeyState(VK_SHIFT) < 0);
 bool controlPressed = (::GetKeyState(VK_CONTROL) < 0);
 Point mousePoint =
 Point({LOWORD(longParam), HIWORD(longParam)});
 windowPtr->OnMouseUp(LeftButton,
 windowPtr->DeviceToLogical(mousePoint),
 shiftPressed, controlPressed);
 ::ReleaseCapture();
 }
 return 0;

 case WM_MBUTTONUP: {
 bool shiftPressed = (::GetKeyState(VK_SHIFT) < 0);
 bool controlPressed = (::GetKeyState(VK_CONTROL) < 0);
 Point mousePoint =
 Point({LOWORD(longParam), HIWORD(longParam)});
 windowPtr->OnMouseUp(MiddleButton,
 windowPtr->DeviceToLogical(mousePoint),
 shiftPressed, controlPressed);
 ::ReleaseCapture();
 }
 return 0;

 case WM_RBUTTONUP: {
 bool shiftPressed = (::GetKeyState(VK_SHIFT) < 0);
 bool controlPressed = (::GetKeyState(VK_CONTROL) < 0);
 Point mousePoint =
 Point({LOWORD(longParam), HIWORD(longParam)});
 windowPtr->OnMouseUp(RightButton,
 windowPtr->DeviceToLogical(mousePoint),
 shiftPressed, controlPressed);

The Framework

[354]

 ::ReleaseCapture();
 }
 return 0;

 case WM_LBUTTONDBLCLK: {
 bool shiftPressed = (::GetKeyState(VK_SHIFT) < 0);
 bool controlPressed = (::GetKeyState(VK_CONTROL) < 0);
 Point mousePoint =
 Point({LOWORD(longParam), HIWORD(longParam)});
 windowPtr->OnDoubleClick(LeftButton,
 windowPtr->DeviceToLogical(mousePoint),
 shiftPressed, controlPressed);
 }
 return 0;

 case WM_MBUTTONDBLCLK: {
 bool shiftPressed = (::GetKeyState(VK_SHIFT) < 0);
 bool controlPressed = (::GetKeyState(VK_CONTROL) < 0);
 Point mousePoint =
 Point({LOWORD(longParam), HIWORD(longParam)});
 windowPtr->OnDoubleClick(MiddleButton,
 windowPtr->DeviceToLogical(mousePoint),
 shiftPressed, controlPressed);
 }
 return 0;

 case WM_RBUTTONDBLCLK: {
 bool shiftPressed = (::GetKeyState(VK_SHIFT) < 0);
 bool controlPressed = (::GetKeyState(VK_CONTROL) < 0);
 Point mousePoint =
 Point({LOWORD(longParam), HIWORD(longParam)});
 windowPtr->OnDoubleClick(RightButton,
 windowPtr->DeviceToLogical(mousePoint),
 shiftPressed, controlPressed);
 }
 return 0;

When a touch message is sent, OnTouch is called, which needs the position of the window
in device units:

 case WM_TOUCH:
 OnTouch(windowPtr, wordParam, longParam,
 windowPtr->GetWindowDevicePosition());
 return 0;

When creating a device context in response to a paint message, we use the Win32 API
functions BeginPaint and EndPaint instead of GetDC and ReleaseDC to handle the
device context. However, the device context still needs to be prepared for the window's

The Framework

[355]

coordinate system, which is accomplished by PrepareDeviceContext:

 case WM_PAINT: {
 PAINTSTRUCT paintStruct;
 HDC deviceContextHandle =
 ::BeginPaint(windowHandle,&paintStruct);
 windowPtr->PrepareDeviceContext(deviceContextHandle);
 Graphics graphics(windowPtr, deviceContextHandle);
 windowPtr->OnPaint(graphics);
 ::EndPaint(windowHandle, &paintStruct);
 }
 return 0;

When the user tries to close the window by clicking on the close box in the top-right corner,
OnClose is called. It calls TryClose and closes the window if TryClose returns true:

 case WM_CLOSE:
 windowPtr->OnClose();
 return 0;
 }
 }

If we reach this point, the Win32 API function DefWindowProc is called, which performs
the default message handling:

 return DefWindowProc(windowHandle, message, wordParam, longParam);
 }
};

The Graphics class
The Graphics class is a wrapper class for a device context. It also provides functionality for
drawing lines, rectangles, and ellipses; writing text; saving and restoring graphic states;
setting the origin of the device context; and clipping the painting area. The constructor is
private since Graphics objects are intended to be created internally by Small Windows
only.

Graphics.h

namespace SmallWindows {

When drawing a line, it can be solid, dashed, dotted, dashed and dotted, as well as dashed
and double-dotted:

The Framework

[356]

 class Window;
 enum PenStyle {Solid = PS_SOLID, Dash = PS_DASH, Dot = PS_DOT,
 DashDot = PS_DASHDOT, DashDotDot =PS_DASHDOTDOT};
 class Graphics {
 private:
 Graphics(Window* windowPtr, HDC deviceContextHandle);

The Save method saves the current state of the Graphics object and Restore restores it:

 public:
 int Save();
 void Restore(int saveId);

The SetOrigin method sets the origin of the coordinate system and IntersectClip
restricts the area to be painted:

 void SetOrigin(Point centerPoint);
 void IntersectClip(Rect clipRect);

The following methods draw lines, rectangles, and ellipses, and write text:

 void DrawLine(Point startPoint, Point endPoint,
 Color penColor, PenStyle penStyle = Solid);
 void DrawRectangle(Rect rect, Color penColor,
 PenStyle = Solid);
 void FillRectangle(Rect rect, Color penColor,
 Color brushColor, PenStyle penStyle=Solid);
 void DrawEllipse(Rect rect, Color penColor,
 PenStyle = Solid);
 void FillEllipse(Rect rect, Color penColor,
 Color brushColor, PenStyle penStyle=Solid);
 void DrawText(Rect areaRect, String text, Font font,
 Color textColor, Color backColor,
 bool pointsToMeters = true);

The GetDeviceContextHandle method returns the device context wrapped by the
Graphics object:

 HDC GetDeviceContextHandle() const
 {return deviceContextHandle;}

The windowPtr field holds a pointer to the window about which client area is to be drawn,
and deviceContextHandle holds the handle to the device context, of type HDC:

 private:
 Window* windowPtr;
 HDC deviceContextHandle;

The Framework

[357]

The WindowProc and DialogProc functions are friends of the Graphics class, since they
need access to its private members. This is the same for the PrintDialog methods of the
StandardDialog class:

 friend LRESULT CALLBACK
 WindowProc(HWND windowHandle, UINT message,
 WPARAM wordParam, LPARAM longParam);
 friend Graphics* StandardDialog::PrintDialog
 (Window*parentPtr,int totalPages,
 int& firstPage, int& lastPage,
 int& copies, bool& sorted);
 };
};

Graphics.cpp

#include "SmallWindows.h"

The constructor initializes the window pointer and device context:

namespace SmallWindows {
 Graphics::Graphics(Window* windowPtr, HDC deviceContextHandle)
 :windowPtr(windowPtr),
 deviceContextHandle(deviceContextHandle) {
 // Empty.
 }

Sometimes, it is desirable to save the current state of the Graphics object with Save, which
returns an identity number that can be used to restore the Graphics object with Restore:

 int Graphics::Save() {
 return ::SaveDC(deviceContextHandle);
 }

 void Graphics::Restore(int saveId) {
 ::RestoreDC(deviceContextHandle, saveId);
 }

The default origin (x = 0 and y = 0) of the coordinate system is the top-left corner of the
window client area. This can be changed with SetOrigin, which takes the new origin in
logical units. The win32 API function SetWindowOrgEx sets the new origin:

 void Graphics::SetOrigin(Point centerPoint) {
 ::SetWindowOrgEx(deviceContextHandle, centerPoint.X(),
 centerPoint.Y(), nullptr);
 }

The Framework

[358]

The part of the client area to be painted can be restricted with IntersectClip, resulting in
the area outside the given rectangle not being affected. The Win32 API function
IntersectClip sets the restricted area:

 void Graphics::IntersectClip(Rect clipRect) {
 ::IntersectClipRect(deviceContextHandle, clipRect.Left(),
 clipRect.Top(),clipRect.Right(),clipRect.Bottom());
 }

It is possible to draw lines, rectangles, and ellipses using a pen, which is obtained by the
Win32 API functions CreatePen and SelectObject. Note that we save the previous object
in order to restore it later:

 void Graphics::DrawLine(Point startPoint, Point endPoint,
 Color color, PenStyle penStyle/* = Solid */){
 HPEN penHandle = ::CreatePen(penStyle, 0, color.ColorRef());
 HPEN oldPenHandle =
 (HPEN) ::SelectObject(deviceContextHandle,penHandle);

By the way, the technique of moving the pen to the start point and then drawing the line to
the end point with MoveToEx and LineTo is called Turtle graphics, referring to a turtle
moving over the client area with the pen up or down:

 ::MoveToEx(deviceContextHandle, startPoint.X(),
 startPoint.Y(), nullptr);
 ::LineTo(deviceContextHandle, endPoint.X(), endPoint.Y());

Similar to CreateTextMetrics and GetCharacterWidth in Window, we need to select the
previous object and restore the pen:

 ::SelectObject(deviceContextHandle, oldPenHandle);
 ::DeleteObject(penHandle);
 }

When drawing a rectangle, we need a solid pen and a hollow brush, which we create with
the Win32 API function CreateBrushIndirect with a LOGBRUSH structure parameter:

 void Graphics::DrawRectangle(Rect rect, Color penColor,
 PenStyle penStyle /* = Solid */) {

 HPEN penHandle =
 ::CreatePen(penStyle, 0, penColor.ColorRef());

 LOGBRUSH lbBrush;
 lbBrush.lbStyle = BS_HOLLOW;
 HBRUSH brushHandle = ::CreateBrushIndirect(&lbBrush);

The Framework

[359]

 HPEN oldPenHandle =
 (HPEN) ::SelectObject(deviceContextHandle,penHandle);
 HBRUSH oldBrushHandle =
 (HBRUSH) ::SelectObject(deviceContextHandle, brushHandle);

 ::Rectangle(deviceContextHandle, rect.Left(), rect.Top(),
 rect.Right(), rect.Bottom());

 ::SelectObject(deviceContextHandle, oldBrushHandle);
 ::DeleteObject(brushHandle);

 ::SelectObject(deviceContextHandle, oldPenHandle);
 ::DeleteObject(penHandle);
 }

When filling a rectangle, we also need a solid brush, which we create with the Win32 API
function CreateSolidBrush:

 void Graphics::FillRectangle(Rect rect, Color penColor,
 Color brushColor, PenStyle penStyle /* = Solid */){

 HPEN penHandle =
 ::CreatePen(penStyle, 0, penColor.ColorRef());
 HBRUSH brushHandle =
 ::CreateSolidBrush(brushColor.ColorRef());

 HPEN oldPenHandle =
 (HPEN)::SelectObject(deviceContextHandle,penHandle);
 HBRUSH oldBrushHandle =
 (HBRUSH) ::SelectObject(deviceContextHandle, brushHandle);

 ::Rectangle(deviceContextHandle, rect.Left(), rect.Top(),
 rect.Right(), rect.Bottom());

 ::SelectObject(deviceContextHandle, oldBrushHandle);
 ::DeleteObject(brushHandle);

 ::SelectObject(deviceContextHandle, oldPenHandle);
 ::DeleteObject(penHandle);
 }

The DrawEllipse and FillEllipse methods are similar to DrawRectangle and
FillRectangle. The only difference is that they call the Win32 API function Ellipse
instead of Rectangle:

 void Graphics::DrawEllipse(Rect rect, Color penColor,
 PenStyle penStyle /* = Solid */) {

The Framework

[360]

 HPEN penHandle =
 ::CreatePen(penStyle, 0, penColor.ColorRef());

 LOGBRUSH lbBrush;
 lbBrush.lbStyle = BS_HOLLOW;
 HBRUSH brushHandle = ::CreateBrushIndirect(&lbBrush);

 HPEN oldPenHandle =
 (HPEN)::SelectObject(deviceContextHandle,penHandle);
 HBRUSH oldBrushHandle =
 (HBRUSH) ::SelectObject(deviceContextHandle, brushHandle);

 ::Ellipse(deviceContextHandle, rect.Left(), rect.Top(),
 rect.Right(), rect.Bottom());

 ::SelectObject(deviceContextHandle, oldBrushHandle);
 ::DeleteObject(brushHandle);

 ::SelectObject(deviceContextHandle, oldPenHandle);
 ::DeleteObject(penHandle);
 }

 void Graphics::FillEllipse(Rect rect, Color penColor,
 Color brushColor, PenStyle penStyle /* = Solid */){
 HPEN penHandle =
 ::CreatePen(penStyle, 0, penColor.ColorRef());
 HBRUSH brushHandle =
 ::CreateSolidBrush(brushColor.ColorRef());

 HPEN oldPenHandle =
 (HPEN) ::SelectObject(deviceContextHandle,penHandle);
 HBRUSH oldBrushHandle =
 (HBRUSH) ::SelectObject(deviceContextHandle, brushHandle);

 ::Ellipse(deviceContextHandle, rect.Left(), rect.Top(),
 rect.Right(), rect.Bottom());

 ::SelectObject(deviceContextHandle, oldBrushHandle);
 ::DeleteObject(brushHandle);

 ::SelectObject(deviceContextHandle, oldPenHandle);
 ::DeleteObject(penHandle);
 }

When drawing text, we first need to check whether the font is given in typographical points
and needs to be transformed into logical units (if pointToMeters is true), which is the case
in the LogicalWithScroll and LogicalWithoutScroll coordinates systems. However,

The Framework

[361]

in the PreviewCoordinate system, the size of the text is already given in logical units and
should not be transformed. Moreover, before we write the text, we need to create and select
a font object and set the text and background colors. The Win32 DrawText function centers
the text within the given rectangle:

 void Graphics::DrawText(Rect areaRect, String text, Font font,
 Color textColor, Color backColor,
 bool pointsToMeters /* = true */) {
 if (pointsToMeters) {
 font.PointsToLogical();
 }

 HFONT fontHandle = ::CreateFontIndirect(&font.LogFont());
 HFONT oldFontHandle =
 (HFONT) ::SelectObject(deviceContextHandle, fontHandle);

 ::SetTextColor(deviceContextHandle, textColor.ColorRef());
 ::SetBkColor(deviceContextHandle, backColor.ColorRef());

 RECT rectStruct = (RECT) areaRect;
 ::DrawText(deviceContextHandle, text.c_str(), text.length(),
 &rectStruct, DT_SINGLELINE |DT_CENTER |DT_VCENTER);

 ::SelectObject(deviceContextHandle, oldFontHandle);
 ::DeleteObject(fontHandle);
 }
};

Summary
In this chapter, we looked into the core of Small Windows: the MainWindow function and
the Application, Window, and Graphics classes. In Chapter 11, The Document, we look
into the document classes of Small Windows: Document, Menu, Accelerator, and
StandardDocument.

11
The Document

In the previous chapter we looked into the implementation of the Application and
Window classes, which are useful for general Windows applications. In this chapter, we will
look into the implementation of the Document, StandardDocument, Menu, and
Accelerator classes, which are useful for document-based Windows applications.

The Document class
In this book, a document is a window intended for common document-based applications,
such as the drawing program, spreadsheet program, and word processor of this book. The
Document class implements the document described previously and is a direct subclass of
the Window class. It supports caret and dirty flag, keyboard status, menus, accelerators, the
mouse wheel, scroll bars, and drop files.

Document.h

namespace SmallWindows {
 extern const Size USLetterPortrait, LineSize;

The keyboard holds either the insert or overwrite mode.

 enum KeyboardMode {InsertKeyboard, OverwriteKeyboard};

Similar to Window, Document has a public constructor intended for instantiation and a
protected constructor intended for subclasses. A document of the Document class can
accept drop files, and the line size is used by the scroll bar methods:

 class Document : public Window {
 public:
 Document(CoordinateSystem system, Size pageSize,
 Window* parentPtr = nullptr,

The Document

[363]

 WindowStyle style=OverlappedWindow,
 WindowShow windowShow = Normal,
 bool acceptDropFiles = true,
 Size lineSize = LineSize);

 protected:
 Document(String className, CoordinateSystem system,
 Size pageSize, Window* parentPtr = nullptr,
 WindowStyle style = OverlappedWindow,
 WindowShow windowShow = Normal,
 bool acceptDropFiles = true,
 Size lineSize = LineSize);

A dirty flag is set if the window has been modified and needs to be saved before closing
(the document has been dirty). The content of the document can be zoomed in accordance
with a zoom factor; the default is 1.0. The name of the document is displayed in the
document header by GenerateHeader, together with the zoom factor expressed as a
percentage, and an asterisk (*) if the dirty flag is true. However, the zoom factor is not
displayed if it is 100%:

 public:
 ~Document();

 String GetName() const;
 void SetName(String name);
 void SetZoom(double zoom);
 bool IsDirty() const;
 void SetDirty(bool dirty);
 private:
 void GenerateHeader();

The OnSize method is overridden to modify the size of the scroll bar in accordance with the
client size. Note that the parameter to OnSize is the logical size of the client area, not the
size of the window:

 public:
 virtual void OnSize(Size clientSize);

The OnMouseWheel method is overridden to scroll the vertical scroll bar one line for each
wheel click:

 virtual void OnMouseWheel(WheelDirection direction,
 bool shiftPressed, bool controlPressed);

The Document class supports the caret, and the OnGainFocus and OnLoseFocus methods
are overridden to show or hide the caret. The SetCaret and ClearCaret methods create

The Document

[364]

and destroy the caret:

 void OnGainFocus();
 void OnLoseFocus();
 void SetCaret(Rect caretLogicalRect);
 void ClearCaret();

The UpdateCaret method is called when the caret needs to be modified, it is intended to be
overridden and its default behavior is to do nothing:

 virtual void UpdateCaret() {/* Empty. */}

The SetMenuBar method sets the menu bar of the window. The OnCommand method is
called every time the user selects a menu item or presses an accelerator key, and
CommandInit is called before the menus become visible in order to set a check mark or a
radio button at the menu item or to enable or disable it:

 void SetMenuBar(Menu& menuBar);
 void OnCommand(WORD commandId);
 void OnCommandInit();

If the acceptDropFiles parameter in the constructor is true, the document accepts drop
files. If the user moves one or several files and drops them in the document window,
OnDropFile is called with the list of path names as parameters. It is intended to be
overridden by subclasses, and its default behavior is to do nothing:

 virtual void OnDropFile(vector<String> pathList)
 {/* Empty. */}

The GetKeyboardMode and SetKeyboardMode methods set and get the keyboard mode.
The OnKeyboardMode method is called when the keyboard mode is changed; it is intended
to be overridden and its default behavior is to do nothing:

 KeyboardMode GetKeyboardMode() const {return keyboardMode;}
 void SetKeyboardMode(KeyboardMode mode)
 {keyboardMode = mode;}
 virtual void OnKeyboardMode(KeyboardMode mode)
 {/* Empty. */}

The OnHorizontalScroll and OnVerticalScroll methods handle the scroll messages.
The scroll bar is set in accordance with the message settings:

 virtual void OnHorizontalScroll(WORD flags,WORD thumbPos=0);
 virtual void OnVerticalScroll(WORD flags, WORD thumbPos =0);

The KeyToScroll method takes a key and performs an appropriate scroll bar action

The Document

[365]

depending on the key and whether the Shift or Ctrl key is pressed. For instance, the Page Up
key moves the vertical scroll bar one page upward:

 virtual bool KeyToScroll(WORD key, bool shiftPressed,
 bool controlPressed);

The following methods set or get the logical position, line size, page size, and total size of
the horizontal and vertical scroll bar:

 void SetHorizontalScrollPosition(int scrollPos);
 int GetHorizontalScrollPosition() const;
 void SetVerticalScrollPosition(int scrollPos);
 int GetVerticalScrollPosition() const;

 void SetHorizontalScrollLineWidth(int lineWidth);
 int GetHorizontalScrollLineHeight() const;
 void SetVerticalScrollLineHeight(int lineHeight);
 int GetVerticalScrollLineHeight() const;

 void SetHorizontalScrollPageWidth(int pageWidth);
 int GetHorizontalScrollPageWidth() const;
 void SetVerticalScrollPageHeight(int pageHeight);
 int GetVerticalScrollPageHeight() const;

 void SetHorizontalScrollTotalWidth(int scrollWidth);
 int GetHorizontalScrollTotalWidth() const;
 void SetVerticalScrollTotalHeight(int scrollHeight);
 int GetVerticalScrollTotalHeight() const;

The command map stores the menu items of the document; for each menu item, the
selection, enable, check, and radio listeners are stored:

 public:
 map<WORD,Command>& CommandMap() {return commandMap;}

The accelerator set holds the accelerators of the document irrespective of whether it is a
regular key or virtual key (for instance, F2, Home, or Delete) and whether the Ctrl, Shift, or
Alt key is pressed. The set is used by the message loop in Application:

 list<ACCEL>& AcceleratorSet() {return acceleratorSet;}

 private:
 map<WORD, Command> commandMap;
 list<ACCEL> acceleratorSet;

The name field is the name of the document displayed at the top of the window;
caretPresent is true when the caret is visible:

The Document

[366]

 String name;
 bool caretPresent = false;

When the user presses one of the arrow keys, OnKeyDown is called. However, if OnKeyDown
returns false, the scroll bar is changed; in that case, we need lineSize to define the size
of a line to be scrolled:

 Size lineSize;

The dirtyFlag field is true when the user has changed the document without saving,
resulting in the Save menu item being enabled and the user being asked whether to save
the document when closing the window or exiting the application:

 bool dirtyFlag = false;

The menuBarHandle method is the Win32 API function that handles the menu bar of the
document window:

 HMENU menuBarHandle;

The keyboard can hold the insert or overwrite mode, which is stored in keyboardMode:

 KeyboardMode keyboardMode = InsertKeyboard;
 };

The DocumentProc method is called when the document window receives a message,
similar to WindowProc in the Window class:

 LRESULT CALLBACK DocumentProc(HWND windowHandle, UINT message,
 WPARAM wordParam,LPARAM longParam);

The ExtractPathList method extracts the paths of the dropped files when the window
receives the WM_DROPFILES message:

 vector<String> ExtractPathList(WORD wordParam);
};

Initialization
The first Document constructor takes the coordinate system, the page size, parent window,
style, appearance, whether the document accepts drop files, and the line size as its
parameters. The size of a US Letter page in portrait mode (standing up) is 215.9 * 279.4
millimeters. A line (used by KeyToScroll when scrolling lines) is 5 millimeters in both the
horizontal and vertical directions. Since a logical unit is one hundredth of a millimeter, we
multiply each measure by one hundred.

The Document

[367]

Document.cpp

#include "SmallWindows.h"

namespace SmallWindows {
 const Size USLetterPortrait(21590, 27940), LineSize(500, 500);

The first constructor calls the second constructor with the Windows class named Document
as the first parameter:

 Document::Document(CoordinateSystem system, Size pageSize,
 Window* parentPtr /* = nullptr */,
 WindowStyle style /* = OverlappedWindow */,
 WindowShow windowShow /* = Normal */,
 bool acceptDropFiles /* = true */,
 Size lineSize /* = LineSize */)
 :Document::Document(TEXT("document"), system, pageSize,
 parentPtr, style, windowShow,
 acceptDropFiles, lineSize) {
 // Empty.
 }

The second constructor takes the same parameters as the first construct with the exception
that it inserts the Windows class name as its first parameter:

 Document::Document(String className, CoordinateSystem system,
 Size pageSize, Window* parentPtr/*=nullptr*/,
 WindowStyle style /* = OverlappedWindow */,
 WindowShow windowShow /* = Normal */,
 bool acceptDropFiles /* = true */,
 Size lineSize /* = LineSize */)
 :Window(className, system, pageSize, parentPtr,
 style, NoStyle, windowShow),

The range and page size of the scroll bars are stored in the window's scroll bar settings.
However, the size of the line needs to be stored in lineSize:

 lineSize(lineSize) {

The header appears on the top bar of the document window:

 GenerateHeader();

The default position of the scroll bars is :

 SetHorizontalScrollPosition(0);
 SetVerticalScrollPosition(0);

The Document

[368]

The size of the scroll bars is the logical width and height of the page:

 SetHorizontalScrollTotalWidth(pageSize.Width());
 SetVerticalScrollTotalHeight(pageSize.Height());

The page sizes of the scroll bars represent the visible part of the document, which is the
logical size of the client area:

 Size clientSize = GetClientSize();
 SetHorizontalScrollPageWidth(clientSize.Width());
 SetVerticalScrollPageHeight(clientSize.Height());

The Win32 API function DragAcceptFiles makes the window accept drop files. Note that
we need to convert the C++ bool type of acceptDropFiles to the value TRUE or FALSE of
the Win32 API BOOL type:

 ::DragAcceptFiles(windowHandle,
 acceptDropFiles ? TRUE : FALSE);
 }

The destructor destroys the caret if present:

 Document::~Document() {
 if (caretPresent) {
 ::DestroyCaret();
 }
 }

The Document header
The GetName method simply returns the name. However, SetName sets the name and
regenerates the header of the document window. The same goes for SetZoom and
SetDirty: they set the zoom factor and dirty flag and then regenerate the header:

 String Document::GetName() const {
 return name;
 }

 void Document::SetName(String name) {
 this->name = name;
 GenerateHeader();
 }

The Document

[369]

 void Document::SetZoom(double zoom) {
 Window::SetZoom(zoom);
 GenerateHeader();
 }

 bool Document::IsDirty() const {
 return dirtyFlag;
 }

 void Document::SetDirty(bool dirty) {
 dirtyFlag = dirty;
 GenerateHeader();
 }

The title of the document includes its name, whether the dirty flag is set (indicated by an
asterisk), and the zoom status (as a percentage), unless it is 100%.

 void Document::GenerateHeader() {
 String headerName = name.empty() ? TEXT("[No Name]") : name,
 dirtyText = dirtyFlag ? TEXT("*") : TEXT("");
 int zoomPerCent = (int) (100 * GetZoom());

 if (zoomPerCent!= 100) {
 String zoomText =
 TEXT(" ") + to_String(zoomPerCent) + TEXT("%");
 SetHeader(headerName + dirtyText + zoomText);
 }
 else {
 SetHeader(headerName + dirtyText);
 }
 }

OnSize modifies the page sizes of the horizontal and vertical scroll bars in accordance with
the new client size:

 void Document::OnSize(Size clientSize) {
 SetHorizontalScrollPageWidth(clientSize.Width());
 SetVerticalScrollPageHeight(clientSize.Height());
 }

The caret
As mentioned in Chapter 1, Introduction, a caret is the marker indicating where to input the
next character. It is a thin vertical bar in the insert mode and a block in the overwrite
mode. The OnGainFocus and OnLoseFocus methods show and hide the caret, if present:

The Document

[370]

 void Document::OnGainFocus() {
 if (caretPresent) {
 ::ShowCaret(windowHandle);
 }
 }

 void Document::OnLoseFocus() {
 if (caretPresent) {
 ::HideCaret(windowHandle);
 }
 }

The SetCaret method displays a caret with the given dimensions. If there already is a caret
present, it is destroyed:

 void Document::SetCaret(Rect caretLogicalRect) {
 if (caretPresent) {
 ::DestroyCaret();
 }

The size of the caret must be given in device units; there is a risk that the
LogicalToDevice call rounds the width to zero (in the case of a vertical bar), in which case
the width is set to 1:

 Rect deviceCaretRect = LogicalToDevice(caretLogicalRect);
 if (deviceCaretRect.Width() == 0) {
 deviceCaretRect.Right() = deviceCaretRect.Left() + 1;
 }

The new caret is created by the Win32 API functions CreateCaret, SetCaretPos, and
ShowCaret:

 ::CreateCaret(windowHandle, nullptr, deviceCaretRect.Width(),
 deviceCaretRect.Height());
 ::SetCaretPos(deviceCaretRect.Left(), deviceCaretRect.Top());
 ::ShowCaret(windowHandle);

 caretPresent = true;
 }

The ClearCaret method destroys the caret, if present:

 void Document::ClearCaret() {
 if (caretPresent) {
 ::DestroyCaret();
 }
 caretPresent = false;
 }

The Document

[371]

The mouse wheel
When the user moves the mouse wheel, the vertical scroll bar is moved one line up or down
(if they do not press the Ctrl key):

 void Document::OnMouseWheel(WheelDirection wheelDirection,
 bool shiftPressed, bool controlPressed){
 if (controlPressed) {
 switch (wheelDirection) {
 case WheelUp:
 OnVerticalScroll(SB_LINEUP);
 break;

 case WheelDown:
 OnVerticalScroll(SB_LINEDOWN);
 break;
 }
 }

If the user presses the Ctrl key, then the client area is zoomed. The permitted range is 10% to
1,000%:

 else {
 switch (wheelDirection) {
 case WheelUp:
 SetZoom(min(10.0, 1.11 * GetZoom()));
 break;

 case WheelDown:
 SetZoom(max(0.1, 0.9 * GetZoom()));
 break;
 }
 }

As the vertical scroll bar position has been modified, we need to repaint the whole client
area:

 Invalidate();
 UpdateWindow();
 UpdateCaret();
 }

The menu bar
The menu bar of the document is set by calling the Win32 API function SetMenu, which
handles the document window and the menu bar; menuBarHandle is used when enabling

The Document

[372]

or marking menu items in OnCommandInit, as shown here:

 void Document::SetMenuBar(Menu& menuBar) {
 menuBarHandle = menuBar.menuHandle;
 ::SetMenu(windowHandle, menuBarHandle);
 }

The OnCommand method is called when the user selects a menu item or an accelerator. It
looks up and calls the selection listener associated with the given command identity
number:

 void Document::OnCommand(WORD commandId) {
 Command command = commandMap[commandId];
 command.Selection()(this);
 }

The OnCommandInit method is called before a menu becomes visible. It iterates through
every menu item and, for each of them, decides whether it should be annotated with a
check mark or radio button, or enabled or disabled:

 void Document::OnCommandInit() {
 for (pair<WORD,Command> pair : commandMap) {
 WORD commandId = pair.first;
 Command command = pair.second;

If the enable listener is not null, we call it and set the enable flag to MF_ENABLED or
MF_GRAYED (disabled):

 if (command.Enable() != nullptr) {
 UINT enableFlag = command.Enable()(this) ?
 MF_ENABLED : MF_GRAYED;
 ::EnableMenuItem(menuBarHandle, commandId,
 MF_BYCOMMAND | enableFlag);
 }

If the check or radio listeners are not null, we call them and set checkflag or radioFlag:

 { bool checkFlag = false;
 if (command.Check() != nullptr) {
 BoolListener checkListener = command.Check();
 checkFlag = checkListener(this);
 }
 bool radioFlag = false;
 if (command.Radio() != nullptr) {
 BoolListener radioListener = command.Radio();
 radioFlag = radioListener(this);
 }

The Document

[373]

If either checkFlag or radioFlag is true, we check the menu item. Whether the menu
item thereby becomes annotated with a check mark or a radio button is decided when the
menu item is added to the menu, which is described in the Menu class in the next section. It
is also stated in Menu that at least one of the check mark and radio listeners must be null,
since it is not possible to annotate a menu item with both a check mark and a radio button:

 UINT checkFlags = (checkFlag | radioFlag) ?
 MF_CHECKED : MF_UNCHECKED;
 ::CheckMenuItem(menuBarHandle, commandId,
 MF_BYCOMMAND | checkFlags);
 }
 }
 }

The scroll bar
The OnHorizontalScroll and OnVerticalScroll methods are called every time the
user scrolls by clicking the scroll bar arrows, the scroll bar itself, or by dragging the scroll
thumb.

The scrollPos field holds the current scroll bar setting. The scrollLine variable is the
size of the line, scrollPage is the size of the page (representing the logical size of the
visible part of the document and equal to the logical size of the client area), and
scrollSize is the total size of the scroll bar (representing the logical size of the document):

 void Document::OnHorizontalScroll(WORD flags,
 WORD thumbPos /*= 0 */) {
 int scrollPos = GetHorizontalScrollPosition(),
 scrollLine = GetHorizontalScrollLineHeight(),
 scrollPage = GetHorizontalScrollPageWidth(),
 scrollSize = GetHorizontalScrollTotalWidth();

 switch (flags) {
 case SB_LEFT:
 SetHorizontalScrollPosition(0);
 break;

In the case of leftward movement, we need to verify that the new scroll position doesn't go
below zero:

 case SB_LINELEFT:
 SetHorizontalScrollPosition(max(0, scrollPos -
 scrollLine));
 break;

The Document

[374]

 case SB_PAGELEFT:
 SetHorizontalScrollPosition(max(0, scrollPos -
 scrollPage));
 break;

In the case of rightward movement, we need to verify that the scroll position does not
exceed the scroll bar size:

 case SB_LINERIGHT:
 SetHorizontalScrollPosition(min(scrollPos + scrollLine,
 scrollSize - scrollLine));
 break;

 case SB_PAGERIGHT:
 SetHorizontalScrollPosition(min(scrollPos + scrollLine,
 scrollSize - scrollPage));
 break;

 case SB_RIGHT:
 SetHorizontalScrollPosition(scrollSize - scrollPage);
 break;

If the user drags the scroll bar thumb, we just set the new scroll position. The difference
between the messages is that SB_THUMBTRACK is sent continually as the user drags the
thumb, while SB_THUMBPOSITION is sent when the user releases the mouse button:

 case SB_THUMBTRACK:
 case SB_THUMBPOSITION:
 SetHorizontalScrollPosition(thumbPos);
 break;
 }
 }

Vertical scroll bar movements work in the same way as horizontal scroll bar movements:

 void Document::OnVerticalScroll(WORD flags,
 WORD thumbPos /* = 0 */) {
 int scrollPos = GetVerticalScrollPosition(),
 scrollLine = GetVerticalScrollLineHeight(),
 scrollPage = GetVerticalScrollPageHeight(),
 scrollSize = GetVerticalScrollTotalHeight();

 switch (flags) {
 case SB_TOP:
 SetVerticalScrollPosition(0);
 break;

The Document

[375]

 case SB_LINEUP:
 SetVerticalScrollPosition(max(0, scrollPos - scrollLine));
 break;

 case SB_PAGEUP:
 SetVerticalScrollPosition(max(0, scrollPos - scrollPage));
 break;

 case SB_LINEDOWN:
 SetVerticalScrollPosition(min(scrollPos + scrollLine,
 scrollSize - scrollLine));
 break;

 case SB_PAGEDOWN:
 SetVerticalScrollPosition(min(scrollPos + scrollLine,
 scrollSize - scrollPage));
 break;

 case SB_BOTTOM:
 SetVerticalScrollPosition(scrollSize - scrollPage);
 break;

 case SB_THUMBTRACK:
 case SB_THUMBPOSITION:
 SetVerticalScrollPosition(thumbPos);
 break;
 }
 }

The KeyToScroll function is called when the user presses a key. It examines the key,
performs an appropriate scroll action, and returns true if the key was used, indicating as
much:

 bool Document::KeyToScroll(WORD key, bool shiftPressed,
 bool controlPressed) {
 switch (key) {
 case KeyUp:
 OnVerticalScroll(SB_LINEUP);
 return true;

 case KeyDown:
 OnVerticalScroll(SB_LINEDOWN);
 return true;

 case KeyPageUp:
 OnVerticalScroll(SB_PAGEUP);
 return true;

The Document

[376]

 case KeyPageDown:
 OnVerticalScroll(SB_PAGEDOWN);
 return true;

 case KeyLeft:
 OnHorizontalScroll(SB_LINELEFT);
 return true;

 case KeyRight:
 OnHorizontalScroll(SB_LINERIGHT);
 return true;

 case KeyHome:
 OnHorizontalScroll(SB_LEFT);
 if (controlPressed) {
 OnVerticalScroll(SB_TOP);
 }
 return true;

 case KeyEnd:
 OnHorizontalScroll(SB_RIGHT);
 if (controlPressed) {
 OnVerticalScroll(SB_BOTTOM);
 }
 return true;
 }

 return false;
 }

If the scroll position has been changed, we set the new scroll position by calling the Win32
API function SetScrollPos and update the window and the caret:

 void Document::SetHorizontalScrollPosition(int scrollPos) {
 if (scrollPos != GetHorizontalScrollPosition()) {
 ::SetScrollPos(windowHandle, SB_HORZ, scrollPos, TRUE);
 Invalidate();
 UpdateWindow();
 UpdateCaret();
 }
 }

The Win32 API function GetScrollPos returns the current scroll bar position:

 int Document::GetHorizontalScrollPosition() const {
 return ::GetScrollPos(windowHandle, SB_HORZ);
 }

The Document

[377]

The methods for the vertical scroll position work in the same way as the methods for the
horizontal scroll bar:

 void Document::SetVerticalScrollPosition(int scrollPos) {
 if (scrollPos != GetVerticalScrollPosition()) {
 ::SetScrollPos(windowHandle, SB_VERT, scrollPos, TRUE);
 Invalidate();
 UpdateWindow();
 UpdateCaret();
 }
 }

 int Document::GetVerticalScrollPosition() const {
 return ::GetScrollPos(windowHandle, SB_VERT);
 }

The SetHorizontalScrollLineWidth, GetHorizontalScrollLineHeight,
SetVerticalScrollLineHeight, and GetVerticalScrollLineHeight methods have
no Win32 API counterparts. Instead, we store the size of a scrolled line in the lineSize
field:

 void Document::SetHorizontalScrollLineWidth(int lineWidth) {
 lineSize.Width() = lineWidth;
 }

 int Document::GetHorizontalScrollLineHeight() const {
 return lineSize.Width();
 }

 void Document::SetVerticalScrollLineHeight(int lineHeight) {
 lineSize.Height() = lineHeight;
 }

 int Document::GetVerticalScrollLineHeight() const {
 return lineSize.Height();
 }

The SetHorizontalScrollPageWidth, GetHorizontalScrollPageWidth,
SetVerticalScrollPageHeight, and GetVerticalScrollPageHeight methods have
no direct Win32 API counterparts. However, the GetScrollInfo and SetScrollInfo
functions handle the general scroll information, and we can set and extract the page
information:

 void Document::SetHorizontalScrollPageWidth(int pageWidth) {
 SCROLLINFO scrollInfo = {sizeof(SCROLLINFO), SIF_PAGE};
 scrollInfo.nPage = pageWidth;

The Document

[378]

 ::SetScrollInfo(windowHandle, SB_HORZ, &scrollInfo, TRUE);
 }

 int Document::GetHorizontalScrollPageWidth() const {
 SCROLLINFO scrollInfo = {sizeof(SCROLLINFO), SIF_PAGE};
 ::GetScrollInfo(windowHandle, SB_HORZ, &scrollInfo);
 return scrollInfo.nPage;
 }

 void Document::SetVerticalScrollPageHeight(int pageHeight) {
 SCROLLINFO scrollInfo = {sizeof(SCROLLINFO), SIF_PAGE};
 scrollInfo.nPage = pageHeight;
 ::SetScrollInfo(windowHandle, SB_VERT, &scrollInfo, TRUE);
 }

 int Document::GetVerticalScrollPageHeight() const {
 SCROLLINFO scrollInfo = {sizeof(SCROLLINFO), SIF_PAGE};
 ::GetScrollInfo(windowHandle, SB_VERT, &scrollInfo);
 return scrollInfo.nPage;
 }

The SetHorizontalScrollTotalWidth, GetHorizontalScrollTotalWidth,
SetVerticalScrollTotalHeight, and GetVerticalScrollTotalHeight methods call
the Win32 API functions SetScrollRange and GetScrollRange, which set and get the
minimum and maximum scroll values. However, we ignore the minimum value since it is
always 0:

 void Document::SetHorizontalScrollTotalWidth(int scrollWidth) {
 ::SetScrollRange(windowHandle, SB_HORZ, 0, scrollWidth, TRUE);
 }

 int Document::GetHorizontalScrollTotalWidth() const {
 int minRange, maxRange;
 ::GetScrollRange(windowHandle, SB_HORZ, &minRange, &maxRange);
 return maxRange;
 }

 void Document::SetVerticalScrollTotalHeight(int scrollHeight) {
 ::SetScrollRange(windowHandle, SB_VERT, 0, scrollHeight,TRUE);
 }

 int Document::GetVerticalScrollTotalHeight() const {
 int minRange, maxRange;
 ::GetScrollRange(windowHandle, SB_VERT, &minRange, &maxRange);
 return maxRange;
 }

The Document

[379]

The DocumentProc method
The DocumentProc method is called every time the document (of the Document class)
receives a message. If it uses the message, 0 is returned; otherwise, WindowProc (described
in the previous chapter) is called to further process the message:

LRESULT CALLBACK DocumentProc(HWND windowHandle, UINT message,
 WPARAM wordParam, LPARAM longParam){

We look up the window in WindowMap in the Window class and take action only if the
window is a Document object:

 if ((windowHandle != nullptr) &&
 (WindowMap.count(windowHandle) == 1)) {
 Document* documentPtr =
 dynamic_cast<Document*>(WindowMap[windowHandle]);

 if (documentPtr != nullptr) {
 switch (message) {

The direction of the mouse wheel is downward if the word parameter's ninth bit is set:

 case WM_MOUSEWHEEL: {
 bool down = (HIWORD(wordParam) & 0x0100) != 0;
 WheelDirection wheelDirection =
 down ? WheelDown : WheelUp;
 bool shiftPressed = (::GetKeyState(VK_SHIFT) < 0);
 bool controlPressed = (::GetKeyState(VK_CONTROL)<0);
 documentPtr->OnMouseWheel(wheelDirection,
 shiftPressed, controlPressed);
 }
 return 0;

The key-down messages both check the Insert key and call OnKeyDown and KeyToScroll,
returning 0 if one of them uses the key:

 case WM_KEYDOWN: {
 WORD key = wordParam;

If the user presses the Insert key, the keyboard mode is swapped between the insert and
overwrite mode. SetKeyboardMode sets the keyboard mode and calls OnKeyboardMode,
which is intended to be overridden by subclasses to alert the application of the change:

 if (key == KeyInsert) {
 switch (documentPtr->GetKeyboardMode()) {

The Document

[380]

 case InsertKeyboard:
 documentPtr->
 SetKeyboardMode(OverwriteKeyboard);
 documentPtr->
 OnKeyboardMode(OverwriteKeyboard);
 break;

 case OverwriteKeyboard:
 documentPtr->SetKeyboardMode(InsertKeyboard);
 documentPtr->OnKeyboardMode(InsertKeyboard);
 break;
 }

 return 0;
 }

If the user does not press the Insert key, we check whether OnKeyDown uses the key (and
thereby returns true). If it does not, we instead check whether KeyToScroll uses the key.
If either OnKeyDown or KeyToScroll returns true, 0 is returned:

 else {
 bool shiftPressed = (::GetKeyState(VK_SHIFT) < 0);
 bool controlPressed=(::GetKeyState(VK_CONTROL)<0);

 if (documentPtr->OnKeyDown(wordParam,shiftPressed,
 controlPressed) ||
 documentPtr->KeyToScroll(key, shiftPressed,
 controlPressed)) {
 return 0;
 }
 }
 }
 break;

The WM_COMMAND case is sent when the user selects a menu item, and WM_INITMENUPOPUP is
sent before a menu becomes visible. Messages are handled by calling OnCommand, which
executes the selection listener connected to the menu item, and OnCommandInit, which
enables or annotates menu items with check marks or radio buttons before they become
visible:

 case WM_COMMAND:
 documentPtr->OnCommand(LOWORD(wordParam));
 return 0;

 case WM_INITMENUPOPUP:
 documentPtr->OnCommandInit();
 return 0;

The Document

[381]

When the user drops a set of files into the window, we need to extract their paths before
calling OnDropFile. The ExtractPath method extracts the path of the files from the drop
and returns a list of paths, which is sent to OnDropFile:

 case WM_DROPFILES: {
 vector<String> pathList =
 ExtractPathList(wordParam);
 documentPtr->OnDropFile(pathList);
 }
 return 0;

The WM_HSCROLL and WM_VSCROLL messages are handled by calling their matching
methods:

 case WM_HSCROLL: {
 WORD flags = LOWORD(wordParam),
 thumbPos = HIWORD(wordParam);
 documentPtr->OnHorizontalScroll(flags, thumbPos);
 }
 return 0;

 case WM_VSCROLL: {
 WORD flags = LOWORD(wordParam),
 thumbPos = HIWORD(wordParam);
 documentPtr->OnVerticalScroll(flags, thumbPos);
 }
 return 0;
 }
 }
 }

Finally, if the message is not caught by DocumentProc, WindowProc (from the previous
chapter) is called to further process the message:

 return WindowProc(windowHandle, message,
 wordParam, longParam);
 }

The ExtractPathList method extracts the paths of the dropped files by calling the Win32
API function DragQueryFile and returns the list of paths:

 vector<String> ExtractPathList(WORD wordParam) {
 vector<String> pathList;
 HDROP dropHandle = (HDROP) wordParam;

The DragQueryFile method returns the number of files when the second parameter is
0xFFFFFFFF:

The Document

[382]

 int size =
 ::DragQueryFile(dropHandle, 0xFFFFFFFF, nullptr, 0);
 for (int index = 0; index < size; ++index) {

The DragQueryFile method returns the size of the path string when the second parameter
is a zero-based index and the third parameter is null:

 int bufferSize =
 ::DragQueryFile(dropHandle, index, nullptr, 0) + 1;
 TCHAR* path = new TCHAR[bufferSize];
 assert(path!= nullptr);

The DragQueryFile method copies the path itself when the third parameter is a pointer to
a text buffer rather than null:

 assert(::DragQueryFile(dropHandle, index,
 path, bufferSize) != 0);
 pathList.push_back(String(path));
 delete [] path;
 }

 return pathList;
 }
};

The Menu class
The Menu class handles a menu, made up of a list of menu items, separator bars, or
submenus. When a menu item is added, its command information is stored in the
document's command map to be used when receiving the WM_COMMAND and
WM_INITCOMMAND messages. If the menu item text includes an accelerator, it is added to the
document's accelerator set. The Command class is an auxiliary class holding pointers to the
menu items: selection, enable, check, and radio listeners.

Command.h

namespace SmallWindows {
 typedef void (*VoidListener)(void* sourcePtr);
 typedef bool (*BoolListener)(void* sourcePtr);

 class Command {
 public:
 Command();
 Command(VoidListener selection, BoolListener enable,
 BoolListener check, BoolListener radio);

The Document

[383]

 VoidListener Selection() const {return selection;}
 BoolListener Enable() const {return enable;}
 BoolListener Check() const {return check;}
 BoolListener Radio() const {return radio;}

 private:
 VoidListener selection;
 BoolListener enable, check, radio;
 };
};

Command.cpp

#include "SmallWindows.h"

namespace SmallWindows {
 Command::Command()
 :selection(nullptr),
 enable(nullptr),
 check(nullptr),
 radio(nullptr) {
 // Empty.
 }

 Command::Command(VoidListener selection, BoolListener enable,
 BoolListener check, BoolListener radio)
 :selection(selection),
 enable(enable),
 check(check),
 radio(radio) {
 // Empty.
 }
};

Menu and accelerator listeners are not regular methods. They are declared (they do not
need to be defined) by the DECLARE_BOOL_LISTENER and DECLARE_VOID_LISTENER
macros. This is because we cannot call a non-static method in an unknown class directly.
Therefore, we let the macros declare a non-static method without parameters and define a
static method with a void pointer as a parameter that calls the non-static method. The
macros do not define the non-static method. That task is left for the user of Small Windows.

When the user adds a menu item with a listener, a Command object is created. It is actually
the static method with the void pointer parameter that is added to the Command object.
Moreover, when the user selects a menu item, it is the static method that is called. The static
method in turn calls the non-static method, which is defined by the user.

The macros take the names of the current class and the listener as parameters. Note that the

The Document

[384]

bool listener is constant, while the void listener is not constant. This is because bool
listeners are intended to look up the values of one or several of the fields of the class, while
void listeners also modify the fields.

Menu.h

#define DEFINE_BOOL_LISTENER(SubClass, Listener) \
 virtual bool Listener() const; \
 static bool SubClass::Listener(void* voidPtr) { \
 return ((SubClass*) voidPtr)->Listener(); \
 }

#define DEFINE_VOID_LISTENER(SubClass, Listener) \
 virtual void Listener(); \
 static void SubClass::Listener(void* voidPtr) { \
 ((SubClass*) voidPtr)->Listener(); \
 }

namespace SmallWindows {
 class Document;

 class Menu {
 public:
 Menu(Document* documentPtr, String text = TEXT(""));
 Menu(const Menu& menu);

 void AddMenu(Menu& menu);
 void AddSeparator();
 void AddItem(String text, VoidListener selection,
 BoolListener enable = nullptr,
 BoolListener check = nullptr,
 BoolListener radio = nullptr);

The document pointer is needed when accessing the command map and accelerator set of
the document. Every menu except the menu bar has text that is displayed in the document
window; menuHandle is the Win32 API menu handle wrapped by this class:

 private:
 Document* documentPtr;
 String text;
 HMENU menuHandle;

 friend class Document;
 friend class StandardDocument;
 };
};

The Document

[385]

Menu.cpp

#include "SmallWindows.h"

The constructor initializes the pointer document and the text. It also creates the menu by
calling the Win32 API function CreateMenu. Since the menu bar does not need text, the
text parameter is empty by default:

namespace SmallWindows {
 Menu::Menu(Document* documentPtr, String text /* = TEXT("") */)
 :documentPtr(documentPtr),
 text(text),
 menuHandle(::CreateMenu()) {
 // Empty.
 }

The copy constructor copies the fields of the menu. Note that we copy the menuHandle field
rather than creating a new menu handle.

 Menu::Menu(const Menu& menu)
 :documentPtr(menu.documentPtr),
 text(menu.text),
 menuHandle(menu.menuHandle) {
 // Empty.
 }

The AddMenu method adds a menu (not a menu item) as a submenu to the menu, while
AddSeparator adds a separator (a horizontal bar) to the menu:

 void Menu::AddMenu(Menu& menu) {
 ::AppendMenu(menuHandle, MF_STRING | MF_POPUP,
 (UINT) menu.menuHandle, menu.text.c_str());
 }

 void Menu::AddSeparator() {
 ::AppendMenu(menuHandle, MF_SEPARATOR, 0, nullptr);
 }

The AddItem method adds a menu item (not a menu) to the menu, with the selection,
enable, check, and radio listeners:

 void Menu::AddItem(String text, VoidListener selection,
 BoolListener enable /* = nullptr */,
 BoolListener check /* = nullptr */,
 BoolListener radio /* = nullptr */) {

The Document

[386]

The selection listener is not allowed to be null, and at least one of the check marks and radio
listeners must be null, since it is not possible to annotate a menu item with both a check
mark and a radio button:

 assert((selection != nullptr) &&
 ((check == nullptr) || (radio == nullptr)));

Each menu item is given a unique identity number, which we obtain from the current size
of the command map:

 map<WORD,Command>& commandMap = documentPtr->CommandMap();
 int itemId = commandMap.size();

We add a Command object to the command map and add the menu item with the Win32 API
function AppendMenu, which takes the menu handle, identity number, and text:

 commandMap[itemId] = Command(listener, enable, check, radio);
 ::AppendMenu(menuHandle, MF_STRING,
 (UINT) itemId, text.c_str());

If the radio listener is not null, we need to call the Win32 API function SetMenuItemInfo
in order for the radio button to appear with the menu item:

 if (radio != nullptr) {
 MENUITEMINFO menuItemInfo;
 menuItemInfo.cbSize = sizeof menuItemInfo;
 menuItemInfo.fMask = MIIM_FTYPE;
 menuItemInfo.fType = MFT_RADIOCHECK;
 ::SetMenuItemInfo(menuHandle, (UINT) itemId,
 FALSE, &menuItemInfo);
 }

Finally, we call TextToAccelerator in Accelerator (described in the next section) to
add an accelerator, if present, to the accelerator set of the document, which is used by the
message loop of Application:

 Accelerator::TextToAccelerator(text, itemId,
 documentPtr->AcceleratorSet());
 }
};

The Document

[387]

The Accelerator class
It is possible to add an accelerator to a menu item. The accelerator text is preceded by a
tabulator character (\t) and the text is made up of the optional prefixes Ctrl+, Shift+, or
Alt+ followed by a character (for instance, &Open\tCtrl+O) or the name of a virtual key
(for instance, &Save\tAlt+F2).

Accelerator.h

namespace SmallWindows {

The Win32 API holds a set of virtual keys with names beginning with VK_. In Small
Windows, they have been given other names, hopefully easier to understand. The virtual
keys available are: F1 – F12, Insert, Delete, Backspace, Tab, Home, End, Page Up, Page
Down, Left, Right, Up, Down, Space, Escape, and Return:

 enum Keys {KeyF1 = VK_F1, KeyF2 = VK_F2, KeyF3 = VK_F3,
 KeyF4 = VK_F4, KeyF5 = VK_F5, KeyF6 = VK_F6,
 KeyF7 = VK_F7, KeyF8 = VK_F8, KeyF9 = VK_F9,
 KeyF10 = VK_F10, KeyF11 = VK_F11, KeyF12 = VK_F12,
 KeyInsert = VK_INSERT, KeyDelete = VK_DELETE,
 KeyBackspace = VK_BACK, KeyTabulator = VK_TAB,
 KeyHome = VK_HOME, KeyEnd = VK_END,
 KeyPageUp = VK_PRIOR, KeyPageDown = VK_NEXT,
 KeyLeft = VK_LEFT, KeyRight = VK_RIGHT,
 KeyUp = VK_UP, KeyDown = VK_DOWN,
 KeySpace = VK_SPACE, KeyEscape = VK_ESCAPE,
 KeyReturn = VK_RETURN};

The Accelerator class only holds the TextToAccelerator method, which takes text,
extracts the accelerator, and adds it to the accelerator set, if present:

 class Accelerator {
 public:
 static void TextToAccelerator(String& text, int idemId,
 list<ACCEL>& acceleratorSet);
 };
};

Accelerator.cpp

 #include "SmallWindows.h"

TextToVirtualKey is an auxiliary function that takes text and returns the corresponding
virtual key. The keyTable array holds the map between the texts and the available virtual
keys:

The Document

[388]

namespace SmallWindows {
 WORD TextToVirtualKey(String& text) {
 static const struct {
 TCHAR* textPtr;
 WORD key;
 } keyTable[] = {
 {TEXT("F1"), KeyF1}, {TEXT("F2"), KeyF2},
 {TEXT("F3"), KeyF3}, {TEXT("F4"), KeyF4},
 {TEXT("F5"), KeyF5}, {TEXT("F6"), KeyF6},
 {TEXT("F7"), KeyF7}, {TEXT("F8"), KeyF8},
 {TEXT("F9"), KeyF9}, {TEXT("F10"), KeyF10},
 {TEXT("F11"), KeyF11}, {TEXT("F12"), KeyF12},
 {TEXT("Insert"), KeyInsert}, {TEXT("Delete"), KeyDelete},
 {TEXT("Back"), KeyBackspace}, {TEXT("Tab"), KeyTabulator},
 {TEXT("Home"), KeyHome}, {TEXT("End"), KeyEnd},
 {TEXT("Page Up"), KeyPageUp},
 {TEXT("Page Down"), KeyPageDown},
 {TEXT("Left"), KeyLeft}, {TEXT("Right"), KeyRight},
 {TEXT("Up"), KeyUp}, {TEXT("Down"), KeyDown},
 {TEXT("Space"), KeySpace}, {TEXT("Escape"), KeyEscape},
 {TEXT("Return"), KeyReturn}, {nullptr, 0}};

We loop through the table until we find the virtual key:

 for (int index = 0; keyTable[index].textPtr != nullptr;
 ++index) {
 if (text == keyTable[index].textPtr) {
 return keyTable[index].key;
 }
 }

If we do not find a key matching the text, an assert occurs:

 assert(false);
 return 0;
 }

In TextToAccelerator, we store the Control, Shift, Alt, and virtual key status together
with the key in a Win32 API ACCEL structure:

 void Accelerator::TextToAccelerator(String& text, int itemId,
 list<ACCEL>&acceleratorSet){

First, we check whether the text contains a Tab key (\t). If it does, we initialize the ACCEL
structure with itemId and extract the accelerator part of the text:

The Document

[389]

 int tabulatorIndex = text.find(TEXT("\t"));
 if (tabulatorIndex != -1) {
 ACCEL accelerator;
 accelerator.fVirt = 0;
 accelerator.cmd = itemId;
 String acceleratorText = text.substr(tabulatorIndex + 1);

If the accelerator text contains the prefix Ctrl+, Alt+, or Shift+, we mask FCONTROL,
FALT, or FSHIFT to the fVirt field and remove the prefix:

 { String controlText = TEXT("Ctrl+");
 int controlIndex = acceleratorText.find(controlText);

 if (controlIndex != -1) {
 accelerator.fVirt |= FCONTROL;
 acceleratorText.erase(controlIndex,
 controlText.length());
 }
 }

 { String altText = TEXT("Alt+");
 int altIndex = acceleratorText.find(altText);

 if (altIndex != -1) {
 accelerator.fVirt |= FALT;
 acceleratorText.erase(altIndex, altText.length());
 }
 }

 { String shiftText = TEXT("Shift+");
 int shiftIndex = acceleratorText.find(shiftText);

 if (shiftIndex != -1) {
 accelerator.fVirt |= FSHIFT;
 acceleratorText.erase(shiftIndex, shiftText.length());
 }
 }

After we remove the Ctrl+, Shift+, and Alt+ prefixes, we look into the remaining part of
the accelerator text. If there is one single character (the length is one), we save it in the key
field. However, we do not save the ASCII number. Instead, we save the letter number,
which starts with 1 for a or A:

 if (acceleratorText.length() == 1) {
 accelerator.key =
 (WORD) ((tolower(acceleratorText[0]) - ''a'') + 1);
 }

The Document

[390]

If the remaining part of the accelerator text is made up of more than one character, we
assume that it is a virtual key and call TextToVirtualKey to find it and mask the
FVIRTKEY constant to the fVirt field:

 else {
 accelerator.fVirt |= FVIRTKEY;
 accelerator.key = TextToVirtualKey(acceleratorText);
 }

If fVirt is still zero, the accelerator does not contain Ctrl+, Shift+, Alt+, or a virtual key,
which is not allowed:

 assert(accelerator.fVirt != 0);

Finally, we add the accelerator to the accelerator set:

 acceleratorSet.push_back(accelerator);
 }

Note that no accelerator is added to the accelerator set if the text does not contain a
tabulator:

 }
};

The StandardDocument class
The StandardDocument class is a direct subclass of Document; it handles the File, Edit,
and Help menus and implements file handling, cut, copy, and paste, drop files, and
printing. There is no specific message function for this class; all messages are sent to
DocumentProc in the Document section covered previously. The document name and the
dirty flag are automatically updated by the framework. StandardDocument does also
handle the Page Setup dialog, which is more closely described in Chapter 12, The Auxiliary
Classes.

StandardDocument.h

namespace SmallWindows {
 class StandardDocument : public Document {
 public:

Most constructor parameters are sent to the Document constructor. What is specific for
StandardDocument is the file description text and the copy and paste format lists. The file
description is used by the standard save and open dialogs. The copy and paste lists are used

The Document

[391]

when copying and pasting information between the application and the global Clipboard:

 StandardDocument(CoordinateSystem system, Size pageSize,
 String fileDescriptionsText,
 Window* parentPtr=nullptr,
 WindowStyle style = OverlappedWindow,
 WindowShow windowShow = Normal,
 initializer_list<unsigned int>
 copyFormatList = {},
 initializer_list<unsigned int>
 pasteFormatList = {},
 bool acceptDropFiles = true,
 Size lineSize = LineSize);

 private:
 void InitializeFileFilter(String fileDescription);

The StandardFileMenu, StandardEditMenu, and StandardHelpMenu methods create
and return the standard menus. If print in StandardFileMenu is true, the Page Setup,
Print, and Print Preview menu items are included:

 protected:
 Menu StandardFileMenu(bool print);
 Menu StandardEditMenu();
 Menu StandardHelpMenu();

The Save menu item is disabled when the document does not need to be saved (the dirty
flag is false). The SaveEnable method is called before the Save menu item becomes
visible and enables it if the dirty flag is true.

 private:
 DEFINE_VOID_LISTENER(StandardDocument, OnNew);
 DEFINE_VOID_LISTENER(StandardDocument, OnOpen);
 DEFINE_BOOL_LISTENER(StandardDocument, SaveEnable);
 DEFINE_VOID_LISTENER(StandardDocument, OnSave);
 DEFINE_VOID_LISTENER(StandardDocument, OnSaveAs);

The OnSave method calls SaveFileWithName or SaveFileWidhoutName depending on
whether the document has been given a name. However, OnSaveAs always calls
SaveFileWithoutName, regardless of whether the document has a name.

 private:
 void SaveFileWithName(String name);
 void SaveFileWithoutName();

The ClearDocument, WriteDocumentToStream, and ReadDocumentFromStream

The Document

[392]

methods are called when the user selects the New, Save, Save As, or Open menu items and
are intended to be overridden by subclasses to clear, write, and read the document:

 protected:
 void ClearPageSetupInfo();
 bool ReadPageSetupInfoFromStream(istream &inStream);
 bool WritePageSetupInfoToStream(ostream &outStream) const;

 virtual void ClearDocument() {/* Empty. */}
 virtual bool WriteDocumentToStream(String name,
 ostream& outStream) const {return true;}
 virtual bool ReadDocumentFromStream(String name,
 istream& inStream) {return true;}

The OnCut, OnCopy, OnPaste, and OnDelete methods are called when the user selects the
corresponding menu item in the Edit menu. The default behavior for OnCut is to call
OnCopy followed by OnDelete:

 DEFINE_VOID_LISTENER(StandardDocument, OnCut);
 DEFINE_VOID_LISTENER(StandardDocument, OnCopy);
 DEFINE_VOID_LISTENER(StandardDocument, OnPaste);
 DEFINE_VOID_LISTENER(StandardDocument, OnDelete);

The CutEnable, CopyEnable, PasteEnable, and DeleteEnable methods are listeners
deciding whether the menu items are enabled. The default behavior for CutEnable and
DeleteEnable is to call CopyEnable:

 DEFINE_BOOL_LISTENER(StandardDocument, CutEnable);
 DEFINE_BOOL_LISTENER(StandardDocument, CopyEnable);
 DEFINE_BOOL_LISTENER(StandardDocument, PasteEnable);
 DEFINE_BOOL_LISTENER(StandardDocument, DeleteEnable);

The IsCopyAsciiReady, IsCopyUnicodeReady, and IsCopyGenericReady methods are
called by CopyEnable. They are intended to be overridden and return true if the
application is ready to be copied in the ASCII, Unicode, or generic formats. Their default
behavior is to return false:

 virtual bool IsCopyAsciiReady() const {return false;}
 virtual bool IsCopyUnicodeReady() const {return false;}
 virtual bool IsCopyGenericReady(int format)
 const {return false;}

The CopyAscii, CopyUnicode, and CopyGeneric methods are called by OnCopy when the
user selects the Copy menu item. They are intended to be overridden by subclasses and are
called in accordance with the copy format list in the constructor and the copy-ready
methods:

The Document

[393]

 virtual void CopyAscii(vector<String>& textList) const
 {/* Empty. */}
 virtual void CopyUnicode(vector<String>& textList) const
 {/* Empty. */}
 virtual void CopyGeneric(int format, InfoList& infoList)
 const {/* Empty. */}

The IsPasteAsciiReady, IsPasteUnicodeReady, and IsPasteGenericReady methods
are called by PasteEnable, which returns true if at least one of the methods returns true.
They are intended to be overridden and return true if the application is ready to be pasted
in the ASCII, Unicode, or generic formats. Their default behavior is to return true:

 virtual bool IsPasteAsciiReady
 (const vector<String>&textList) const {return true;}
 virtual bool IsPasteUnicodeReady
 (const vector<String>&textList) const {return true;}
 virtual bool IsPasteGenericReady(int format,
 InfoList& infoList) const {return true;}

The PasteAscii, PasteUnicode, and PasteGeneric methods are called by OnPaste
when the user selects the Paste menu item. They are intended to be overridden by
subclasses and are called in accordance with the paste format list in the constructor and the
paste-ready methods. One difference between copying and pasting is that copying is
performed in all available formats while pasting is performed in the first available format
only:

 virtual void PasteAscii(const vector<String>& textList)
 {/* Empty. */}
 virtual void PasteUnicode(const vector<String>& textList)
 {/* Empty. */}
 virtual void PasteGeneric(int format, InfoList& infoList)
 {/* Empty. */}

The OnDropFile methods is called when the user drops a set of files in the window's client
area. If there is exactly one file with the suffix given in the constructor in the path list, that
file is read in the same way as if the user had selected it in the standard open dialog.
However, if there are no files or more than one file with the suffix in the list, an error
message is displayed:

 void OnDropFile(vector<String> pathList);

The PageOuterSize methods returns the logical size of the page in portrait or landscape
mode depending on the page setup settings, without regard to the margins, while
PageInnerSize, PageInnerWidth, and PageInnerHeight return the size of the page
after subtracting the margins:

The Document

[394]

 private:
 Size PageOuterSize() const;
 Size PageInnerSize() const;

 protected:
 int PageInnerWidth() const{return PageInnerSize().Width();}
 int PageInnerHeight()const{return PageInnerSize().Height();}

The OnPageSetup, OnPrintPreview, and OnPrintItem methods are called when the user
selects the Page Setup, Print, and Print Preview menu items. They display Page Setup
Dialog, Print Preview Window, and Print Dialog:

 public:
 DEFINE_VOID_LISTENER(StandardDocument, OnPageSetup);
 DEFINE_VOID_LISTENER(StandardDocument, OnPrintPreview);
 DEFINE_VOID_LISTENER(StandardDocument, OnPrintItem);

The PrintPage method is called by OnPrintItem and prints one page of the document:

 bool PrintPage(Graphics* graphicsPtr, int page,
 int copy, int totalPages);

The OnPageSetup method is called to notify the application when the user has selected the
Page Setup menu item and has changed the page setup information. It is intended to be
overridden by subclasses and its default behavior is to do nothing:

 virtual void OnPageSetup(PageSetupInfo info) {/* Empty. */}

The GetTotalPages method returns the number of pages to print; the default is 1. It is
intended to be overridden by subclasses:

 virtual int GetTotalPages() const {return 1;}

The OnPrint method is called once by OnPrintItem for each page and copy. Its default
behavior is to write the header and footer in accordance with the setting in the Page Setup
Dialog, and then call OnDraw for the application-specific contents of the document:

 virtual void OnPrint(Graphics& graphics, int page,
 int copy, int totalPages) const;

The OnExit method is called when the user selects the Exit menu item and quits the
application if TryClose returns true. If the dirty flag is true, TryClose displays a
message box, asking the user for permission to close the window:

 DEFINE_VOID_LISTENER(StandardDocument, OnExit);
 virtual bool TryClose();

The Document

[395]

The OnAbout method displays a simple message box with the application name:

 DEFINE_VOID_LISTENER(StandardDocument, OnAbout);

The fileFilter fields are used by the Open and Save standard dialogs and
fileSuffixList is used to check the file suffix of dropped files:

 private:
 TCHAR fileFilter[MAX_PATH];
 vector<String> fileSuffixList;

The pageSetupInfo field is used when the user selects the Page Setup menu item. It stores
information about the header and footer text and font, page orientation (portrait or
landscape), margins, and whether the pages are surrounded by a frame. Refer to the next
chapter for a closer description.

 PageSetupInfo pageSetupInfo;

The copyFormatList and pasteFormatList fields hold the formats available for cutting,
copying, and pasting:

 list<unsigned int> copyFormatList, pasteFormatList;
 };
};

Initialization
The first StandardDocument constructor takes a large set of parameters. The coordinate
system, page size, parent window, style, appearance, whether the document accepts drop
files, and the line size parameters are the same as in the Document case covered previously.

What remains is the file description text, whether the print menu is present, and the format
list for copying and pasting. The description text holds a semicolon-separated list of file
descriptions and file suffixes for the allowed files, for instance, Calc Files, clc; Text Files, txt.
The copy and paste format list holds the allowed formats for copying and pasting
information.

StandardDocument.cpp

#include "SmallWindows.h"

Most constructor parameters are sent to the Document constructor. However, the copy and
paste format lists are stored in copyFormatList and pasteFormatList. The file filter and
file suffix lists are initialized by InitializeFileFilter:

The Document

[396]

namespace SmallWindows {
 StandardDocument::StandardDocument(CoordinateSystem system,
 Size pageSize,
 String fileDescriptionsText,
 Window* parentPtr /* = nullptr */,
 WindowStyle style/* = OverlappedWindow */,
 WindowShow windowShow /* = Normal */,
 initializer_list<unsigned int>
 copyFormatList /* = {} */,
 initializer_list<unsigned int>
 pasteFormatList /* = {}*/,
 bool acceptDropFiles /* = true */,
 Size lineSize /* = LineSize */)
 :Document(TEXT("standarddocument"), system, pageSize,
 parentPtr, style, windowShow,
 acceptDropFiles, lineSize),
 copyFormatList(copyFormatList),
 pasteFormatList(pasteFormatList) {
 InitializeFileFilter(fileDescriptionsText);

In Window, we used the page size for transforming between logical and physical units. In
Document, we used it for setting the scroll page size. However, in StandardDocument,
there are actually two kinds of page sizes: the outer and inner page size. The outer page size
is the page size without taking the margins of the document into consideration. The inner
page size is obtained by subtracting the margins from the outer page size. In
StandardDocument, we use the inner page size to set the size of the scroll bar:

 SetHorizontalScrollTotalWidth(PageInnerWidth());
 SetVerticalScrollTotalHeight(PageInnerHeight());
 }

Standard menus
The code for this is shown as follows:

 void StandardDocument::InitializeFileFilter(String fileListText)
 { OStringStream filterStream;
 vector<String> fileList = Split(fileListText, TEXT('';''));
 assert(fileList.size() > 0);

 for (String fileText : fileList) {
 vector<String> partList = Split(fileText, TEXT('',''));
 assert(partList.size() == 2);
 String description = Trim(partList[0]),
 suffix = Trim(partList[1]);
 fileSuffixList.push_back(suffix);

The Document

[397]

 filterStream << description << TEXT(" (*.") << suffix
 << TEXT(")\n") << TEXT("*.") << suffix
 << TEXT("\n");
 }

 filterStream << TEXT("\n");

 int index = 0;
 for (TCHAR c : filterStream.str()) {
 fileFilter[index++] = (c == TEXT(''\n'')) ? TEXT(''\0'') : c;
 }
 }

The standard File menu holds the New, Open, Save, Save As, and Exit menu items as well
as (if print is true) the Page Setup, Print Preview, and Print menu items:

 Menu StandardDocument::StandardFileMenu(bool print) {
 Menu fileMenu(this, TEXT("&File"));
 fileMenu.AddItem(TEXT("&New\tCtrl+N"), OnNew);
 fileMenu.AddItem(TEXT("&Open\tCtrl+O"), OnOpen);
 fileMenu.AddItem(TEXT("&Save\tCtrl+S"), OnSave, SaveEnable);
 fileMenu.AddItem(TEXT("Save &As\tCtrl+Shift+S"), OnSaveAs);

 if (print) {
 fileMenu.AddSeparator();
 fileMenu.AddItem(TEXT("Page Set&up"), OnPageSetup);
 fileMenu.AddItem(TEXT("Print Pre&view"), OnPrintPreview);
 fileMenu.AddItem(TEXT("&Print\tCtrl+P"), OnPrintItem);
 }

 fileMenu.AddSeparator();
 fileMenu.AddItem(TEXT("E&xit\tAlt+X"), OnExit);
 return fileMenu;
 }

The standard Edit menu holds the Cut, Copy, Paste, and Delete menu items:

 Menu StandardDocument::StandardEditMenu() {
 Menu editMenu(this, TEXT("&Edit"));
 editMenu.AddItem(TEXT("C&ut\tCtrl+X"), OnCut, CutEnable);
 editMenu.AddItem(TEXT("&Copy\tCtrl+C"), OnCopy, CopyEnable);
 editMenu.AddItem(TEXT("&Paste\tCtrl+V"), OnPaste,PasteEnable);
 editMenu.AddSeparator();
 editMenu.AddItem(TEXT("&Delete\tDelete"),
 OnDelete, DeleteEnable);
 return editMenu;
 }

The Document

[398]

The standard Help menu holds the About menu item with the help of the application name:

 Menu StandardDocument::StandardHelpMenu() {
 Menu helpMenu(this, TEXT("&Help"));
 helpMenu.AddItem(TEXT("About ") +
 Application::ApplicationName() +
 TEXT(" ..."), OnAbout);
 return helpMenu;
 }

File management
The TryClose method checks whether the dirty flag is true when the user tries to close the
window. If it is true, the user is asked if they want to save the document before closing it.
If they answer yes, the document is saved as if the user has selected the Save menu item. If
the dirty flag is set to false after that, it means that the save operation went well and true
is returned. If the user answers no, true is returned and the window is closed without
saving. If the answer is cancel, false is returned and the closing is aborted:

 bool StandardDocument::TryClose() {
 if (IsDirty()) {
 switch (MessageBox(TEXT("Do you want to save?"),
 TEXT("Unsaved Document"), YesNoCancel)) {
 case Yes:
 OnSave();
 return !IsDirty();

 case No:
 return true;

 case Cancel:
 return false;
 }
 }

 return true;
 }

The OnExit method calls TryClose and deletes the application's main window, which
eventually sends a quit message to the message loop that terminates the application, if
TryClose returns true:

The Document

[399]

 void StandardDocument::OnExit() {
 if (TryClose()) {
 delete Application::MainWindowPtr();
 }
 }

The OnNew method is called when the user selects the New menu item. It tries to close the
window by calling TryClose. If TryClose returns true, the document, dirty flag, and
name are cleared, and the window is invalidated and updated. The ClearDocument
method is indented to be overridden by subclasses to clear the application-specific contents
of the document:

 void StandardDocument::OnNew() {
 if (TryClose()) {
 ClearDocument();
 ClearPageSetupInfo();
 SetZoom(1.0);
 SetDirty(false);
 SetName(TEXT(""));
 Invalidate();
 UpdateWindow();
 UpdateCaret();
 }
 }

The OnOpen method is called when the user selects the Open menu item. It tries to close the
window by calling TryClose and displays the standard open dialog to establish the path of
the file if it succeeds. If OpenDialog returns true and the input stream is valid, the page
setup information is read and the methods ClearDocument and
ReadDocumentFromStream, which are intended to be overridden by subclasses, are called:

 void StandardDocument::OnOpen() {
 if (TryClose()) {
 String name = GetName();

 if (StandardDialog::OpenDialog(this, name, fileFilter,
 fileSuffixList)) {
 ClearDocument();
 Invalidate();
 UpdateWindow();
 ifstream inStream(name.c_str());

 if (inStream && ReadDocumentFromStream(name, inStream)) {
 SetName(name);
 }

The Document

[400]

 else {
 MessageBox(TEXT("Could not open ") +
 name + TEXT("."));
 }
 }
 }

 SetDirty(false);
 SetZoom(1.0);
 Invalidate();
 UpdateWindow();
 UpdateCaret();
 }

The Save menu item is enabled if the dirty flag is true:

 bool StandardDocument::SaveEnable() const {
 return IsDirty();
 }

When saving the file, we call SaveFileWithName if the file has a name. If the file has not
yet been given a name, SaveFileWithoutName is called instead:

 void StandardDocument::OnSave() {
 String name = GetName();

 if (!name.empty()) {
 SaveFileWithName(name);
 }
 else {
 SaveFileWithoutName();
 }
 }

When the user selects Save As, SaveFileWithoutName is called and the Save standard
dialog is displayed, regardless of whether the document has a name:

 void StandardDocument::OnSaveAs() {
 SaveFileWithoutName();
 }

The SaveFileWithoutName method displays the save dialog. If the user presses the Ok
button, the SaveDialog call returns true, the new name is set, and SaveFileWithName is
called to do the actual writing of the document file:

 void StandardDocument::SaveFileWithoutName() {
 String name = GetName();

The Document

[401]

 if (StandardDialog::SaveDialog(this, name, fileFilter,
 fileSuffixList)) {
 SaveFileWithName(name);
 }
 }

The SaveFileWithName method tries to open the document file for writing and calls
WriteDocumentToStream, which is intended to be overridden by subclasses, to do the
actually writing of the document's content. If the writing of both the page setup information
and the contents of the document succeeds, the dirty flag is cleared:

 void StandardDocument::SaveFileWithName(String name) {
 ofstream outStream(name.c_str());

 if (outStream && WriteDocumentToStream(name, outStream)) {
 SetName(name);
 SetDirty(false);
 SetZoom(1.0);
 }
 }

 void StandardDocument::ClearPageSetupInfo() {
 pageSetupInfo.ClearPageSetupInfo();
 }

 bool StandardDocument::ReadPageSetupInfoFromStream
 (istream &inStream) {
 pageSetupInfo.ReadPageSetupInfoFromStream(inStream);
 return ((bool) inStream);
 }

 bool StandardDocument::WritePageSetupInfoToStream
 (ostream &outStream) const {
 pageSetupInfo.WritePageSetupInfoToStream(outStream);
 return ((bool) outStream);
 }

When the user selects the About menu item in the Help standard menu, a message box
with a message including the name of the application is displayed:

 void StandardDocument::OnAbout() {
 String applicationName = Application::ApplicationName();
 MessageBox(applicationName + TEXT(", version 1.0"),
 applicationName, Ok, Information);
 }

The Document

[402]

Cut, copy, and paste
The default behavior for CutEnable and DeleteEnable is to simply call CopyEnable,
since it is likely that they are enabled under the same conditions:

 bool StandardDocument::CutEnable() const {
 return CopyEnable();
 }

 bool StandardDocument::DeleteEnable() const {
 return CopyEnable();
 }

The default behavior for OnCut is to simply call OnCopy and OnDelete, which is the
common action for cutting:

 void StandardDocument::OnCut() {
 OnCopy();
 OnDelete();
 }

The OnDelete method is empty and intended to be overridden by subclasses:

 void StandardDocument::OnDelete() {
 // Empty.
 }

The CopyEnable method iterates through the paste format list and calls
IsCopyAsciiReady, IsCopyUnicodeReady, or IsCopyGenericReady depending on the
formats. As soon as one of the methods returns true, CopyEnable returns true, implying
that it is enough that copying is allowed for one of the formats. When the actual copying
occurs in OnCopy, the ready methods are called again:

 bool StandardDocument::CopyEnable() const {
 for (unsigned int format : pasteFormatList) {
 switch (format) {
 case AsciiFormat:
 if (IsCopyAsciiReady()) {
 return true;
 }
 break;

 case UnicodeFormat:
 if (IsCopyUnicodeReady()) {
 return true;
 }
 break;

The Document

[403]

 default:
 if (IsCopyGenericReady(format)) {
 return true;
 }
 break;
 }
 }
 return false;
 }

The OnCopy method iterates through the copy format list given in the constructor and calls
appropriate methods depending on the formats:

 void StandardDocument::OnCopy() {
 if (Clipboard::Open(this)) {
 Clipboard::Clear();
 for (unsigned int format : copyFormatList) {
 switch (format) {

If the ASCII format applies and if IsCopyAsciiReady returns true, CopyAscii is called,
which is intended to be overridden by subclasses to fill asciiList with ASCII text. When
the list has been copied, it is passed on to WriteAscii in Clipboard, which stores the text
on the global clipboard:

 case AsciiFormat:
 if (IsCopyAsciiReady()) {
 vector<String> asciiList;
 CopyAscii(asciiList);
 Clipboard::WriteText<AsciiFormat,char>(asciiList);
 }
 break;

If the Unicode format applies and if IsCopyUnicodeReady returns true, CopyUnicode is
called, which is intended to be overridden by subclasses to fill unicodeList with Unicode
text. When the list has been copied, it is passed on to WriteUnicode in Clipboard, which
stores the text on the global clipboard:

 case UnicodeFormat:
 if (IsCopyUnicodeReady()) {
 vector<String> unicodeList;
 CopyUnicode(unicodeList);
 Clipboard::WriteText<UnicodeFormat,wchar_t>
 (unicodeList);
 }
 break;

If neither ASCII nor Unicode applies and if IsCopyGenericReady returns true,

The Document

[404]

CopyGeneric is called, which is intended to be overridden by subclasses to fill the
character list with generic information. In C++, a value of type char always holds one byte;
it is therefore used in the absence of a more generic byte type. When the information has
been copied to infoList, it is passed on to WriteGeneric in Clipboard to store the
information on the global Clipboard:

 default:
 if (IsCopyGenericReady(format)) {
 InfoList infoList;
 CopyGeneric(format, infoList);
 Clipboard::WriteGeneric(format, infoList);
 }
 break;
 }
 }
 Clipboard::Close();
 }
 }

The PasteEnable method iterates through the paste format list given in the constructor
and returns true if at least one of the formats is available on the global Clipboard:

 bool StandardDocument::PasteEnable() const {
 if (Clipboard::Open(this)) {
 for (unsigned int format : pasteFormatList) {
 if (Clipboard::Available(format)) {
 switch (format) {
 case AsciiFormat: {
 vector<String> asciiList;
 if (Clipboard::ReadText<AsciiFormat,char>
 (asciiList) &&
 IsPasteAsciiReady(asciiList)) {
 Clipboard::Close();
 return true;
 }
 }
 break;
 case UnicodeFormat: {
 vector<String> unicodeList;
 if (Clipboard::ReadText<UnicodeFormat,wchar_t>
 (unicodeList) &&
 IsPasteUnicodeReady(unicodeList)) {
 Clipboard::Close();
 return true;
 }
 }
 break;

The Document

[405]

 default: {
 InfoList infoList;
 if (Clipboard::ReadGeneric(format, infoList) &&
 IsPasteGenericReady(format, infoList)) {
 Clipboard::Close();
 return true;
 }
 }
 }
 }
 }

 Clipboard::Close();
 }

 return false;
 }

The OnPaste method iterates through the paste format list given in the constructor and, for
each format, checks whether it is available on the global Clipboard. If it is, an appropriate
method is called. Note that, while OnCopy iterates through the whole copy format list,
OnPaste quits after the first format available on the Clipboard, which makes the order of
the paste format list significant:

 void StandardDocument::OnPaste() {
 if (Clipboard::Open(this)) {
 for (unsigned int format : pasteFormatList) {
 bool quit = false;
 if (Clipboard::Available(format)) {
 switch (format) {

In the case of the ASCII format, ReadAscii in Clipboard is called, which reads the text list
from the global clipboard and, if IsPasteAsciiReady returns true, calls PasteAscii,
which is intended to be overridden by subclasses to do the actual application-specific
pasting:

 case AsciiFormat: {
 vector<String> asciiList;
 if (Clipboard::ReadText<AsciiFormat,char>
 (asciiList) &&
 IsPasteAsciiReady(asciiList)) {
 PasteAscii(asciiList);
 quit = true;
 }
 }
 break;

The Document

[406]

In the case of the Unicode format, ReadUnicode in Clipboard is called, which reads the
text list from the global clipboard and, if IsPasteUnicodeReady returns true, it calls
PasteUnicode, which is intended to be overridden by subclasses to do the actual
application-specific pasting:

 case UnicodeFormat: {
 vector<String> unicodeList;
 if (Clipboard::ReadText<UnicodeFormat,wchar_t>
 (unicodeList) &&
 IsPasteUnicodeReady(unicodeList)) {
 PasteUnicode(unicodeList);
 quit = true;
 }
 }
 break;

If neither ASCII nor Unicode applies, ReadGeneric in Clipboard is called to read the
generic information from the global clipboard and, if IsPasteGenericReady returns true,
it calls PasteGeneric, which is intended be overridden by subclasses to do the actual
pasting.

One difference between copying and pasting in the generic case is that OnCopy uses a
character list since it does not know the size in advance (if we used a memory block, we
would need two methods: one that calculates the size of the block and one that does the
actual reading, which would be cumbersome), while OnPaste uses a memory block, which
cannot be converted into a character list since we do not know the size. Only the document-
specific overridden version of PasteGeneric can decide the size of the memory block:

 default: {
 InfoList infoList;
 if (Clipboard::ReadGeneric(format, infoList) &&
 IsPasteGenericReady(format, infoList)) {
 PasteGeneric(format, infoList);
 quit = true;
 }
 }
 break;
 }
 if (quit) {
 break;
 }
 }
 }
 Clipboard::Close();
 }
 }

The Document

[407]

Drop files
When the user drops one or several files in the client area of the window, we check the file
suffix of each filename. If we find exactly one file with one of the file suffixes of the
document (the fileSuffixList field) we open it in the same way as if the user had
opened it with the standard Open dialog:

 void StandardDocument::OnDropFile(vector<String> pathList) {
 set<String> pathSet;

We iterate through the path list and add every path with the file suffix to pathSet:

 for (String path : pathList) {
 for (String suffix : fileSuffixList) {
 if (EndsWith(path, TEXT(".") + suffix)) {
 pathSet.insert(path);
 break;
 }
 }
 }

If pathSet is empty, no files with the file suffix have been dropped.

 if (pathSet.empty()) {
 MessageBox(TEXT("No suitable dropped file."),
 TEXT("Drop File"), Ok, Stop);
 }

If pathSet holds more than one file, too many files with the file suffix have been dropped:

 else if (pathSet.size() > 1) {
 MessageBox(TEXT("To many suitable dropped files."),
 TEXT("Drop File"), Ok, Stop);
 }

If pathSet holds exactly one file, it is read in the same way as if the user has selected the
Open menu item:

 else {
 String path = *pathSet.begin();

 if (TryClose()) {
 ClearDocument();
 ReadDocumentFromStream(path, ifstream(path));
 SetName(path);
 SetDirty(false);
 SetZoom(1.0);

The Document

[408]

 Invalidate();
 UpdateWindow();
 UpdateCaret();
 }
 }
 }

Page size
The PageOuterSize method returns the page size with no regard to the margins. There are
two page sizes, depending on the orientation in the Page Setup dialog. The page size given
in the constructor refers to the Portrait orientation. In the case of the Landscape
orientation, the width and height of the page are swapped:

 Size StandardDocument::PageOuterSize() const {
 if (pageSetupInfo.GetOrientation() == Landscape) {
 return Size(pageSize.Height(), pageSize.Width());
 }

 return pageSize;
 }

The PageInnerSize method returns the page size with regard to the margins. The width is
subtracted by the left and right margins. The height is subtracted by the top and bottom
margins. Remember that the margins are given in millimeters and the logical units are in
hundredths of millimeters. Therefore, we multiply the margins by 100:

 Size StandardDocument::PageInnerSize() const {
 Size outerSize = PageOuterSize();

 int innerWidth = outerSize.Width() -
 (100 * (pageSetupInfo.LeftMargin() +
 pageSetupInfo.RightMargin())),
 innerHeight = outerSize.Height() -
 (100 * (pageSetupInfo.TopMargin() +
 pageSetupInfo.BottomMargin()));

 return Size(innerWidth, innerHeight);
 }

The PageInnerWidth and PageInnerHeight methods return the width and height of the
document after the margins have been subtracted. As the margins are given in millimeters
and one millimeter is one hundred logical units, we multiply the margins by 100 in order to
obtain logical units:

The Document

[409]

 int StandardDocument::PageInnerWidth() const {
 return PageOuterSize().Width() -
 (100 * (pageSetupInfo.LeftMargin() +
 pageSetupInfo.RightMargin()));
 }

 int StandardDocument::PageInnerHeight() const {
 return PageOuterSize().Height() -
 (100 * (pageSetupInfo.TopMargin() +
 pageSetupInfo.BottomMargin()));
 }

Page setup
The OnPageSetup method is called when the user selects the Page Setup menu item. It
displays the Page Setup dialog (refer to Chapter 12, The Auxiliary Classes) and calls
OnPageSetup, which is intended to be overridden by subclasses, to notify the application
that the page setup information has been changed:

 void StandardDocument::OnPageSetup() {
 PageSetupDialog pageSetupDialog(this, &pageSetupInfo);

 if (pageSetupDialog.DoModal()) {
 OnPageSetup(pageSetupInfo);
 }
 }

Printing
The OnPrintPreview method is called when the user selects the Print Preview menu item.
It displays the print preview document, which is more closely described in Chapter 12, The
Auxiliary Classes. The GetTotalPages method returns the current number of pages in the
document:

 void StandardDocument::OnPrintPreview() {
 new PrintPreviewDocument(this, GetTotalPages());
 }

The OnPrintItem method is called when the user selects the Print menu item. It displays
the standard Print dialog and prints the pages of the document in accordance with the page
interval and the order and number of copies specified by the user in the dialog.

The method is named OnPrintItem so that it is not confused with OnPrint in Window,

The Document

[410]

which is called when the window receives the WM_PAINT message. However, both methods
could have been named OnPrint since they have different parameter lists:

void StandardDocument::OnPrintItem() {
 int totalPages = GetTotalPages(), firstPage, lastPage, copies;
 bool sorted;

The PrintDialog method creates and returns a pointer to a Graphics object, if the user
presses the Ok button, or a null pointer if the user presses the Cancel button. The
totalPages parameters indicate the last possible page that the user can choose (the first
possible page is 1). In the case of the Ok button, firstPage, lastPage, copies, and
sorted are initialized: firstPage and lastPage are the page intervals to be printed,
copies is the number of copies to be printed, and sorted indicates whether the copies (if
more than one) will be sorted:

 Graphics* graphicsPtr =
 StandardDialog::PrintDialog(this, totalPages, firstPage,
 lastPage, copies, sorted);

The Win32 API function StartDoc initializes the printing process. It takes the device
context connected to the printer by the Graphics object and a DOCINFO structure that only
needs to be initialized with the document name. If StartDoc returns a value greater than
zero, we are clear to print the pages. We prepare the device context and disable the window
while the printing occurs:

 if (graphicsPtr != nullptr) {
 static DOCINFO docInfo;
 docInfo.cbSize = sizeof docInfo;
 docInfo.lpszDocName = GetName().c_str();

 if (::StartDoc(graphicsPtr->GetDeviceContextHandle(),
 &docInfo) > 0) {
 PrepareDeviceContext
 (graphicsPtr->GetDeviceContextHandle());
 EnableWindow(false);

If sorted is true, the pages are printed in the sorted order. For instance, let's assume that
firstPage is set to 1, lastPage is set to 3, and copies is set to 2. If sorted is true, the
pages are printed in order 1, 2, 3, 1, 2, 3. If sorted is false, they are printed in the order 1,
1, 2, 2, 3, 3. PrintPage is called for each page and the printing continues as long as it
returns true; printOk keeps track of whether the loop continues:

The Document

[411]

 if (sorted) {
 bool printOk = true;
 for (int copy = 1; (copy <= copies) && printOk; ++copy){
 for (int page = firstPage;
 (page <= lastPage) && printOk; ++page){
 printOk = PrintPage(graphicsPtr, page,
 copy, totalPages);
 }
 }
 }
 else {
 bool printOk = true;
 for (int page = firstPage;
 (page <= lastPage) && printOk; ++page) {
 for (int copy = 1; (copy <= copies) && printOk;
 ++copy) {
 printOk = PrintPage(graphicsPtr, page,
 copy, totalPages);
 }
 }
 }

The Win32 API function EndDoc is used to finish printing:

 ::EndDoc(graphicsPtr->GetDeviceContextHandle());
 }
 }
 }

The PrintPage method calls the Win32 API functions StartPage and EndPage before and
after the printing of the page. If they both return values greater than zero, it indicates that
the printing went well, true is returned, and more pages can be printed. OnPrint
(overridden from Window) is called to do the actual printing, page and copy are the current
page and copy, and totalPages is the number of pages in the document:

 bool StandardDocument::PrintPage(Graphics* graphicsPtr,
 int page, int copy, int totalPages){
 if (::StartPage(graphicsPtr->GetDeviceContextHandle()) > 0) {
 OnPrint(*graphicsPtr, page, copy, totalPages);
 return (::EndPage(graphicsPtr->GetDeviceContextHandle())>0);
 }

 return false;
 }

The OnPrint method prints the information given by the pageSetupInfo field. Then, the
contents of the documents are clipped and drawn by calling OnDraw, and finally the frame

The Document

[412]

enclosing the contents of the document is drawn, if present:

 void StandardDocument::OnPrint(Graphics& graphics, int page,
 int copy, int totalPages) const {

The document is cleared by being painted white.

 graphics.FillRectangle(Rect(0, 0, PageOuterSize().Width(),
 PageOuterSize().Height()), White, White);

 int left = 100 * pageSetupInfo.LeftMargin(),
 top = 100 * pageSetupInfo.TopMargin();
 int right = left + PageInnerWidth(),
 bottom = top + PageInnerHeight();

The header text is written unless it is empty; if the current page is the first page, it is not
written:

 if (!pageSetupInfo.HeaderText().empty() &&
 !((page == 1) && (!pageSetupInfo.HeaderFirst()))) {
 Rect headerRect(left, 0, right, top);
 String headerText =
 Template(this, pageSetupInfo.HeaderText(),
 copy, page, totalPages);
 Color textColor = pageSetupInfo.HeaderFont().FontColor();
 Color backColor = textColor.Inverse();
 graphics.DrawText(headerRect, headerText,
 pageSetupInfo.HeaderFont(), textColor, backColor);
 }

Similar to the header text, the footer text is written unless it is empty; if the current page is
the first page, it is not written:

 if (!pageSetupInfo.FooterText().empty() &&
 !((page == 1) && (!pageSetupInfo.HeaderFirst()))) {
 Rect footerRect(left, bottom, right,
 PageOuterSize().Height());
 String footerText =
 Template(this, pageSetupInfo.FooterText(),
 copy, page, totalPages);
 Color textColor = pageSetupInfo.FooterFont().FontColor();
 Color backColor = textColor.Inverse();
 graphics.DrawText(footerRect, footerText,
 pageSetupInfo.FooterFont(), textColor, backColor);
 }

The current state of the device context is saved, the origin is set to the top-left corner of the
current page, the area of the current page is clipped, OnDraw is called to draw the current

The Document

[413]

page, and the paint area is finally restored:

 int save = graphics.Save();
 Point centerPoint(-left,
 ((page - 1) * PageInnerHeight()) - top);
 graphics.SetOrigin(centerPoint);
 Rect clipRect(0, (page - 1) * PageInnerHeight(),
 PageInnerWidth(), page * PageInnerHeight());
 graphics.IntersectClip(clipRect);
 OnDraw(graphics, Print);
 graphics.Restore(save);

Finally, the page is enclosed by a rectangle if the frame field of the page setup information is
true:

 if (pageSetupInfo.Frame()) {
 graphics.DrawRectangle(Rect(left, top, right, bottom),
 Black);
 }
 }
};

Summary
In this chapter, we studied the document classes of Small Windows: Document, Menu,
Accelerator, and StandardDocument. In Chapter 12, The Auxiliary Classes, we continue
by looking into to the auxiliary classes of Small Windows.

12
The Auxiliary Classes

Small Windows includes a set of auxiliary classes, which are as follows:

Size, Point, Rect, Color, and Font: These wrap the Win32 API structures
which are SIZE, POINT, RECT, COLORREF, and LOGFONT. They are equipped with
methods to communicate with files, the clipboard, and the registry. The Registry
is a database in the Windows system that we can use to store values between the
executions of our applications.
Cursor: is a type representing the Windows cursor.
DynamicList: holds a list of dynamic size with a set of callback functions.
Tree: holds a recursive tree structure.
InfoList: holds a list of generic information that can be transformed to and
from a memory buffer.
There is also a small set of string manipulation functions.

The Size class
The Size class is a small class holding the width and height:

Size.h

namespace SmallWindows {

The ZeroSize object is an object with its width and height set to zero:

 class Size;
 extern const Size ZeroSize;
 class Size {
 public:

The Auxiliary Classes

[415]

The default constructor initializes the width and height to zero. The size can be initialized
by, and assigned to, another size. The Size class uses the assignment operator to assign a
size to another size:

 Size();
 Size(int width, int height);
 Size(const Size& size);
 Size& operator=(const Size& size);

A Size object can be initialized and assigned to a value of the Win32 API SIZE structure,
and a Size object can be converted to a SIZE:

 Size(const SIZE& size);
 Size& operator=(const SIZE& size);
 operator SIZE() const;

When comparing two sizes, the widths are compared first. If they are equal, the heights are
then compared:

 bool operator==(const Size& size) const;
 bool operator!=(const Size& size) const;
 bool operator<(const Size& size) const;
 bool operator<=(const Size& size) const;
 bool operator>(const Size& size) const;
 bool operator>=(const Size& size) const;
 friend Size Min(const Size& left, const Size& right);
 friend Size Max(const Size& left, const Size& right);

The multiplication operators multiply both the width and height with the factor. Note that
even though the factor is a double, the resulting width and height are always rounded to
integers:

 Size operator*=(double factor);
 friend Size operator*(const Size& size, double factor);
 friend Size operator*(double factor, const Size& size);

It is also possible to multiply the size with a pair of values, where the first value is
multiplied by the width and the second value is multiplied by the height. Also, in this case,
the resulting width and height are integers:

 Size operator*=(pair<double,double> factorPair);
 friend Size operator*(const Size& size,
 pair<double,double> factorPair);
 friend Size operator*(pair<double,double> factorPair,
 const Size& size);

The Auxiliary Classes

[416]

The first set of addition operators adds and subtracts the distance to both the width and
height:

 Size operator+=(int distance);
 Size operator-=(int distance);
 friend Size operator+(const Size& size, int distance);
 friend Size operator-(const Size& size, int distance);

The second set of addition operators adds and subtracts the widths and heights separately:

 Size operator+=(const Size& size);
 Size operator-=(const Size& size);
 friend Size operator+(const Size& left, const Size& right);
 friend Size operator-(const Size& left, const Size& right);

The size can be written to, and read from, a file stream, the clipboard, and the registry:

 bool WriteSizeToStream(ostream& outStream) const;
 bool ReadSizeFromStream(istream& inStream);
 void WriteSizeToClipboard(InfoList& infoList) const;
 void ReadSizeFromClipboard(InfoList& infoList);
 void WriteSizeToRegistry(String key) const;
 void ReadSizeFromRegistry(String key,
 Size defaultSize = ZeroSize);

The width and height are inspected by the constant methods and modified by the non-
constant methods:

 int Width() const {return width;}
 int Height() const {return height;}
 int& Width() {return width;}
 int& Height() {return height;}

 private:
 int width, height;
 };
};

The implementation of the Size class is rather straightforward:

Size.cpp

#include "SmallWindows.h"
namespace SmallWindows {
 Size::Size()
 :width(0),

The Auxiliary Classes

[417]

 height(0) {
 // Empty.
 }

 Size::Size(int width, int height)
 :width(width),
 height(height) {
 // Empty.
 }

 Size::Size(const Size& size)
 :width(size.width),
 height(size.height) {
 // Empty.
 }

 Size& Size::operator=(const Size& size) {
 if (this != &size) {
 width = size.width;
 height = size.height;
 }
 return *this;
 }

 Size::Size(const SIZE& size)
 :width(size.cx),
 height(size.cy) {
 // Empty.
 }

 Size& Size::operator=(const SIZE& size) {
 width = size.cx;
 height = size.cy;
 return *this;
 }

 Size::operator SIZE() const {
 SIZE size = {width, height};
 return size;
 }

 bool Size::operator==(const Size& size) const {
 return (width == size.width) && (height == size.height);
 }

 bool Size::operator!=(const Size& size) const {
 return !(*this == size);
 }

The Auxiliary Classes

[418]

As mentioned earlier, when comparing two sizes, the widths are compared first. If they are
equal the heights are then compared:

 bool Size::operator<(const Size& size) const {
 return (width < size.width) ||
 ((width == size.width) && (height < size.height));
 }

 bool Size::operator<=(const Size& size) const {
 return ((*this < size) || (*this == size));
 }

 bool Size::operator>(const Size& size) const {
 return !(*this <= size);
 }

 bool Size::operator>=(const Size& size) const {
 return !(*this < size);
 }

Note that Min and Max return the right-hand side value if the values are equal. We could let
it return the left-hand side value instead. However, since the Size objects in that case hold
the same x and y values and the methods return objects rather than references to an object, it
does not matter. The same value is returned:

 Size Min(const Size& left, const Size& right) {
 return (left < right) ? left : right;
 }

 Size Max(const Size& left, const Size& right) {
 return (left > right) ? left : right;
 }

As mentioned earlier, the resulting width and height are always rounded to integers, even
though the factor is a double:

 Size Size::operator*=(double factor) {
 width = (int) (factor * width);
 height = (int) (factor * height);
 return *this;
 }

 Size operator*(const Size& size, double factor) {
 return Size((int) (size.width * factor),
 (int) (size.height * factor));
 }

The Auxiliary Classes

[419]

 Size operator*(double factor, const Size& size) {
 return Size((int) (factor * size.width),
 (int) (factor * size.height));
 }

 Size Size::operator*=(pair<double,double> factorPair) {
 width = (int) (factorPair.first * width);
 height = (int) (factorPair.second * height);
 return *this;
 }

 Size operator*(const Size& size,
 pair<double,double> factorPair) {
 return Size((int) (size.width * factorPair.first),
 (int) (size.height * factorPair.second));
 }

 Size operator*(pair<double,double> factorPair,
 const Size& size) {
 return Size((int) (factorPair.first * size.width),
 (int) (factorPair.second * size.height));
 }

 Size Size::operator+=(int distance) {
 width += distance;
 height += distance;
 return *this;
 }
 Size Size::operator-=(int distance) {
 width -= distance;
 height -= distance;
 return *this;
 }

 Size operator+(const Size& size, int distance) {
 return Size(size.width + distance, size.height + distance);
 }

 Size operator-(const Size& size, int distance) {
 return Size(size.width - distance, size.height - distance);
 }

 Size Size::operator+=(const Size& size) {
 width += size.width;
 height += size.height;
 return *this;
 }

The Auxiliary Classes

[420]

 Size Size::operator-=(const Size& size) {
 width -= size.width;
 height -= size.height;
 return *this;
 }

 Size operator+(const Size& left, const Size& right) {
 return Size(left.width + right.width,
 right.height + right.height);
 }

 Size operator-(const Size& left, const Size& right) {
 return Size(left.width - right.width,
 right.height - right.height);
 }

 bool Size::WriteSizeToStream(ostream& outStream) const {
 outStream.write((char*) &width, sizeof width);
 outStream.write((char*) &height, sizeof height);
 return ((bool) outStream);
 }

 bool Size::ReadSizeFromStream(istream& inStream) {
 inStream.read((char*) &width, sizeof width);
 inStream.read((char*) &height, sizeof height);
 return ((bool) inStream);
 }

 void Size::WriteSizeToClipboard(InfoList& infoList) const {
 infoList.AddValue<int>(width);
 infoList.AddValue<int>(height);
 }

 void Size::ReadSizeFromClipboard(InfoList& infoList) {
 infoList.GetValue<int>(width);
 infoList.GetValue<int>(height);
 }

When writing the size to the registry, we convert the size to a SIZE structure that is sent to
WriteBuffer in Registry:

 void Size::WriteSizeToRegistry(String key) const {
 SIZE sizeStruct = (SIZE) *this;
 Registry::WriteBuffer(key, &sizeStruct, sizeof sizeStruct);
 }

When reading the size from the registry, we convert the default size to a SIZE structure that
is sent to ReadBuffer in Registry. The result is then converted back to a Size object:

The Auxiliary Classes

[421]

 void Size::ReadSizeFromRegistry(String key,
 Size defaultSize /*=ZeroSize*/){
 SIZE sizeStruct, defaultSizeStruct = (SIZE) defaultSize;
 Registry::ReadBuffer(key, &sizeStruct, sizeof sizeStruct,
 &defaultSizeStruct);
 *this = Size(sizeStruct);
 }
 const Size ZeroSize(0, 0);
};

The Point class
The Point class is a small class holding the x and y position of a two-dimensional point:

Point.h

namespace SmallWindows {
 class Point {
 public:

The default constructor initializes the x and y value to zero. The point can be initialized by,
and assigned to, another point:

 Point();
 Point(int x, int y);
 Point(const Point& point);

Similar to the Size class mentioned earlier, Point uses the assignment operator:

 Point& operator=(const Point& point);

Similar to SIZE in the preceding section, there is a POINT Win32 API structure. A Point
object can be initialized by, and assigned to, a POINT structure, and a Point object can be
converted to POINT:

 Point(const POINT& point);
 Point& operator=(const POINT& point);
 operator POINT() const;

When comparing two points, the x values are first compared. If they are equal, the y values
are then compared:

 bool operator==(const Point& point) const;
 bool operator!=(const Point& point) const;
 bool operator<(const Point& point) const;
 bool operator<=(const Point& point) const;

The Auxiliary Classes

[422]

 bool operator>(const Point& point) const;
 bool operator>=(const Point& point) const;
 friend Point Min(const Point& left, const Point& right);
 friend Point Max(const Point& left, const Point& right);

Similar to the Size class mentioned earlier, the x and y values of the point can be multiplied
by a factor. Note that even though the factor is a double, the resulting x and y values are
always rounded to integers:

 Point& operator*=(double factor);
 friend Point operator*(const Point& point, double factor);
 friend Point operator*(double factor, const Point& point);

It is also possible to multiply the point with a pair of values, where the first value is
multiplied with the x value and the second value is multiplied with the y value. Also, in this
case, the resulting x and y values are integers:

 Point& operator*=(pair<double,double> factorPair);
 friend Point operator*(const Point& point,
 pair<double,double> factorPair);
 friend Point operator*(pair<double,double> factorPair,
 const Point& point);

The first set of addition operators adds and subtracts the integer distance to both the x and y
value of the point:

 Point& operator+=(const int distance);
 Point& operator-=(const int distance);
 friend Point operator+(const Point& left, int distance);
 friend Point operator-(const Point& left, int distance);

The second set of addition operators adds and subtracts the width and height of the size to
the x and y values of the point:

 Point& operator+=(const Size& size);
 Point& operator-=(const Size& size);
 friend Point operator+(const Point& point,const Size& size);
 friend Point operator-(const Point& point,const Size& size);

The third set of addition operators adds and subtracts the x and y values of the points:

 Point& operator+=(const Point& point);
 Point& operator-=(const Point& point);
 friend Point operator+(const Point&left, const Point&right);
 friend Size operator-(const Point& left, const Point&right);

The point can be written to, and read from, a file stream, the clipboard, and the registry:

The Auxiliary Classes

[423]

 bool WritePointToStream(ostream& outStream) const;
 bool ReadPointFromStream(istream& inStream);
 void WritePointToClipboard(InfoList& infoList) const;
 void ReadPointFromClipboard(InfoList& infoList);
 void WritePointToRegistry(String key) const;
 void ReadPointFromRegistry(String key,
 Point defaultPoint /* = ZeroPoint */);

The x and y value of the point are inspected by the constant methods and modified by the
non-constant methods:

 int X() const {return x;}
 int Y() const {return y;}
 int& X() {return x;}
 int& Y() {return y;}

 private:
 int x, y;
 };

 extern const Point ZeroPoint;
};

The implementation of the Point class is also rather straightforward:

Point.cpp

#include "SmallWindows.h"

namespace SmallWindows {
 Point::Point()
 :x(0), y(0) {
 // Empty.
 }

 Point::Point(int x, int y)
 :x(x), y(y) {
 // Empty.
 }

 Point::Point(const Point& point)
 :x(point.x),
 y(point.y) {
 // Empty.
 }

In the assignment operator, it is a good custom to verify that we do not assign the same
object. However, it is not completely necessary in this case since we just assign the integer

The Auxiliary Classes

[424]

values of x and y:

 Point& Point::operator=(const Point& point) {
 if (this != &point) {
 x = point.x;
 y = point.y;
 }

 return *this;
 }

 Point::Point(const POINT& point)
 :x(point.x),
 y(point.y) {
 // Empty.
 }

 Point& Point::operator=(const POINT& point) {
 x = point.x;
 y = point.y;
 return *this;
 }

 Point::operator POINT() const {
 POINT point = {x, y};
 return point;
 }

 bool Point::operator==(const Point& point) const {
 return ((x == point.x) && (y == point.y));
 }

 bool Point::operator!=(const Point& point) const {
 return !(*this == point);
 }

 bool Point::operator<(const Point& point) const {
 return (x < point.x) || ((x == point.x) && (y < point.y));
 }

 bool Point::operator<=(const Point& point) const {
 return ((*this < point) || (*this == point));
 }

 bool Point::operator>(const Point& point) const {
 return !(*this <= point);
 }

The Auxiliary Classes

[425]

 bool Point::operator>=(const Point& point) const {
 return !(*this < point);
 }

 Point Min(const Point& left, const Point& right) {
 return (left < right) ? left : right;
 }

 Point Max(const Point& left, const Point& right) {
 return (left > right) ? left : right;
 }

 Point& Point::operator*=(double factor) {
 x = (int) (factor * x);
 y = (int) (factor * y);
 return *this;
 }

 Point operator*(const Point& point, double factor) {
 return Point((int) (point.x * factor),
 (int) (point.y * factor));
 }

 Point operator*(double factor, const Point& point) {
 return Point((int) (factor * point.x),
 (int) (factor * point.y));
 }

 Point& Point::operator*=(pair<double,double> factorPair) {
 x = (int) (factorPair.first * x);
 y = (int) (factorPair.second * y);
 return *this;
 }

 Point operator*(const Point& point,
 pair<double,double> factorPair) {
 return Point((int) (point.x * factorPair.first),
 (int) (point.y * factorPair.second));
 }

 Point operator*(pair<double,double> factorPair,
 const Point& point) {
 return Point((int) (factorPair.first * point.x),
 (int) (factorPair.second * point.y));
 }

The Auxiliary Classes

[426]

 Point& Point::operator+=(const int distance) {
 x += distance;
 y += distance;
 return *this;
 }

 Point& Point::operator-=(const int distance) {
 x -= distance;
 y -= distance;
 return *this;
 }

 Point& Point::operator+=(const Size& size) {
 x += size.Width();
 y += size.Height();
 return *this;
 }

 Point& Point::operator-=(const Size& size) {
 x -= size.Width();
 y -= size.Height();
 return *this;
 }

 Point& Point::operator+=(const Point& point) {
 x += point.x;
 y += point.y;
 return *this;
 }

 Point& Point::operator-=(const Point& point) {
 x -= point.x;
 y -= point.y;
 return *this;
 }

 Point operator+(const Point& left, int distance) {
 return Point(left.x + distance, left.y + distance);
 }

 Point operator-(const Point& left, int distance) {
 return Point(left.x - distance, left.y - distance);
 }

 Point operator+(const Point& point, const Size& size) {
 return Point(point.x + size.Width(), point.y + size.Height());
 }

The Auxiliary Classes

[427]

 Point operator-(const Point& point, const Size& size) {
 return Point(point.x - size.Width(), point.y - size.Height());
 }

 Point operator+(const Point& left, const Point& right) {
 return Point(left.x + right.x, left.y + right.y);
 }

 Size operator-(const Point& left, const Point& right) {
 return Size(left.x - right.x, left.y - right.y);
 }

 bool Point::WritePointToStream(ostream& outStream) const {
 outStream.write((char*) &x, sizeof x);
 outStream.write((char*) &y, sizeof y);
 return ((bool) outStream);
 }

 bool Point::ReadPointFromStream(istream& inStream) {
 inStream.read((char*) &x, sizeof x);
 inStream.read((char*) &y, sizeof y);
 return ((bool) inStream);
 }

 void Point::WritePointToClipboard(InfoList& infoList) const {
 infoList.AddValue<int>(x);
 infoList.AddValue<int>(y);
 }

 void Point::ReadPointFromClipboard(InfoList& infoList) {
 infoList.GetValue<int>(x);
 infoList.GetValue<int>(y);
 }

 void Point::WritePointToRegistry(String key) const {
 POINT pointStruct = (POINT) *this;
 Registry::WriteBuffer(key, &pointStruct, sizeof pointStruct);
 }

 void Point::ReadPointFromRegistry(String key,
 Point defaultPoint /* = ZeroPoint */) {
 POINT pointStruct, defaultPointStruct = (POINT) defaultPoint;
 Registry::ReadBuffer(key, &pointStruct, sizeof pointStruct,
 &defaultPointStruct);
 *this = Point(pointStruct);
 }

The Auxiliary Classes

[428]

 const Point ZeroPoint(0, 0);
};

The Rect class
The Rect class holds the four borders of a rectangle: left, top, right, and bottom.

Rect.h

namespace SmallWindows {
 class Rect;
 extern const Rect ZeroRect;

 class Rect {
 public:

The default constructor sets all the four borders to zero. The rectangle can be initialized by,
or assigned to, another rectangle. It is also possible to initialize the rectangle with the top-
left and bottom-right corners, as well as the top-left corner and a size holding the width and
height of the rectangle:

 Rect();
 Rect(int left, int top, int right, int bottom);
 Rect(const Rect& rect);
 Rect& operator=(const Rect& rect);
 Rect(Point topLeft, Point bottomRight);
 Rect(Point topLeft, Size size);

Similar to SIZE and POINT in the previous sections, a rectangle can be initialized and
assigned to a value of the Win32 API RECT structure. A Rect object can also be converted to
a RECT:

 Rect(const RECT& rect);
 Rect& operator=(const RECT& rect);
 operator RECT() const;

The compare operators first compare the top-left corners. If they are equal, the bottom-right
corners are then compared:

 bool operator==(const Rect& rect) const;
 bool operator!=(const Rect& rect) const;
 bool operator<(const Rect& rect) const;
 bool operator<=(const Rect& rect) const;
 bool operator>(const Rect& rect) const;
 bool operator>=(const Rect& rect) const;

The Auxiliary Classes

[429]

The multiplication operators multiply all sides with the factor. Even though the factor is a
double, the border values are always integers, similar to the Size and Point cases of the
previous sections:

 Rect& operator*=(double factor);
 friend Rect operator*(const Rect& rect, double factor);
 friend Rect operator*(double factor, const Rect& rect);

It is also possible to multiply the rectangle with a pair of values, where the first value is
multiplied with left and right, and the second value is multiplied with top and bottom.
Also, in this case, the resulting values are integers:

 Rect& operator*=(pair<double,double> factorPair);
 friend Rect operator*(const Rect& rect,
 pair<double,double> factorPair);
 friend Rect operator*(pair<double,double> factorPair,
 const Rect& rect);

The following operators are a little bit special: the addition operator adds the size to the
bottom-right corner and leaves the top-left corner unchanged while the subtraction operator
subtracts the size from the top-left corner and leaves the bottom-right corner unchanged:

 Rect& operator+=(const Size& size);
 Rect& operator-=(const Size& size);

However, the following operators add and subtract the size to and from both the top-left
and bottom-right corners:

 friend Rect operator+(const Rect& rect, const Size& size);
 friend Rect operator-(const Rect& rect, const Size& size);

The following operators take a point as a parameter and add the point to, and subtract it
from, both the top-left and bottom-right corner:

 Rect& operator+=(const Point& point);
 Rect& operator-=(const Point& point);
 friend Rect operator+(const Rect& rect, const Point& point);
 friend Rect operator+(const Point& point, const Rect& rect);
 friend Rect operator-(const Rect& rect, const Point& point);

The width of a rectangle is the absolute difference between the left and right border, and its
height is the absolute difference between the top and bottom border:

 int Width() const {return abs(right - left);}
 int Height() const {return abs(bottom - top);}

The GetSize method returns the width and height of the rectangle. It is not possible to

The Auxiliary Classes

[430]

name it Size, since there is a class with that name. However, it is still possible to define an
operator returning a Size object. The Size and Point operators return the size and top-left
corner of the rectangle:

 Size GetSize() const {return Size(Width(), Height());}
 operator Size() const {return GetSize();}
 operator Point() const {return TopLeft();}

The top-left and bottom-right corner can both be inspected and modified. It is not
appropriate to define methods returning a reference to a point since there are no
corresponding fields for the corners:

 Point TopLeft() const {return Point(left, top);}
 Point BottomRight() const {return Point(right, bottom);}

 void SetTopLeft(Point topLeft) {left = topLeft.X();
 right = topLeft.Y();}
 void SetBottomRight(Point bottomRight)
 {right = bottomRight.X();
 bottom = bottomRight.Y();}

The Clear method sets all four corners to zero, Normalize swaps the left and right borders
and the top and bottom borders if they appear in the wrong order, and PointInside
returns true if the point is located inside the rectangle, assuming that it has been
normalized:

 void Clear();
 void Normalize();
 bool PointInside(Point point) const;

The rectangle can be written to and read from a file stream, the clipboard, and the registry:

 bool WriteRectToStream(ostream& outStream) const;
 bool ReadRectFromStream(istream& inStream);
 void WriteRectToClipboard(InfoList& infoList) const;
 void ReadRectFromClipboard(InfoList& infoList);
 void WriteRectToRegistry(String key) const;
 void ReadRectFromRegistry(String key,
 Rect defaultRect = ZeroRect);

The four corners are inspected by the constant methods and modified by the non-constant
methods:

 int Left() const {return left;}
 int Right() const {return right;}
 int Top() const {return top;}
 int Bottom() const {return bottom;}

The Auxiliary Classes

[431]

 int& Left() {return left;}
 int& Right() {return right;}
 int& Top() {return top;}
 int& Bottom() {return bottom;}

 private:
 int left, top, right, bottom;
 };
};

Similar to Size and Point, the implementation of Rect is rather straightforward.

Rect.cpp

#include "SmallWindows.h"

namespace SmallWindows {
 Rect::Rect()
 :left(0), top(0), right(0), bottom(0) {
 // Empty.
 }

 Rect::Rect(int left, int top, int right, int bottom)
 :left(left),
 top(top),
 right(right),
 bottom(bottom) {
 // Empty.
 }

 Rect::Rect(const Rect& rect)
 :left(rect.left),
 top(rect.top),
 right(rect.right),
 bottom(rect.bottom) {
 // Empty.
 }

 Rect& Rect::operator=(const Rect& rect) {
 if (this != &rect) {
 left = rect.left;
 top = rect.top;
 right = rect.right;
 bottom = rect.bottom;
 }

 return *this;
 }

The Auxiliary Classes

[432]

 Rect::Rect(Point topLeft, Point bottomRight)
 :left(topLeft.X()),
 top(topLeft.Y()),
 right(bottomRight.X()),
 bottom(bottomRight.Y()) {
 // Empty.
 }

 Rect::Rect(Point topLeft, Size size)
 :left(topLeft.X()),
 top(topLeft.Y()),
 right(topLeft.X() + size.Width()),
 bottom(topLeft.Y() + size.Height()) {
 // Empty.
 }

 Rect::Rect(const RECT& rect)
 :left(rect.left),
 top(rect.top),
 right(rect.right),
 bottom(rect.bottom) {
 // Empty.
 }

 Rect& Rect::operator=(const RECT& rect) {
 left = rect.left;
 top = rect.top;
 right = rect.right;
 bottom = rect.bottom;
 return *this;
 }

 Rect::operator RECT() const {
 RECT rect = {left, top, right, bottom};
 return rect;
 }

 bool Rect::operator==(const Rect& rect) const {
 return (left == rect.left) && (top == rect.top) &&
 (right == rect.right) && (bottom == rect.bottom);
 }

 bool Rect::operator!=(const Rect& rect) const {
 return !(*this == rect);
 }

The Auxiliary Classes

[433]

 bool Rect::operator<(const Rect& rect) const {
 return (TopLeft() < rect.TopLeft()) ||
 ((TopLeft() == rect.TopLeft()) &&
 (BottomRight() < rect.BottomRight()));
 }

 bool Rect::operator<=(const Rect& rect) const {
 return ((*this < rect) || (*this == rect));
 }

 bool Rect::operator>(const Rect& rect) const {
 return !(*this <= rect);
 }

 bool Rect::operator>=(const Rect& rect) const {
 return !(*this < rect);
 }

 Rect& Rect::operator*=(double factor) {
 left = (int) (factor * left);
 top = (int) (factor * top);
 right = (int) (factor * right);
 bottom = (int) (factor * bottom);
 return *this;
 }

 Rect operator*(const Rect& rect, double factor) {
 return Rect(rect.TopLeft() * factor,
 rect.BottomRight() * factor);
 }

 Rect operator*(double factor, const Rect& rect) {
 return Rect(factor * rect.TopLeft(),
 factor * rect.BottomRight());
 }

 Rect& Rect::operator*=(pair<double,double> factorPair) {
 left = (int) (factorPair.first * left);
 top = (int) (factorPair.second * top);
 right = (int) (factorPair.first * right);
 bottom = (int) (factorPair.second * bottom);
 return *this;
 }

The Auxiliary Classes

[434]

 Rect operator*(const Rect& rect,
 pair<double,double> factorPair) {
 return Rect(rect.TopLeft() * factorPair,
 rect.BottomRight() * factorPair);
 }

 Rect operator*(pair<double,double> factorPair,
 const Rect& rect) {
 return Rect(factorPair * rect.TopLeft(),
 factorPair * rect.BottomRight());
 }

 Rect& Rect::operator+=(const Size& size) {
 right += size.Width();
 bottom += size.Height();
 return *this;
 }

 Rect& Rect::operator-=(const Size& size) {
 left -= size.Width();
 top -= size.Height();
 return *this;
 }

 Rect operator+(const Rect& rect, const Size& size) {
 return Rect(rect.left + size.Width(),
 rect.top + size.Height(),
 rect.right + size.Width(),
 rect.bottom + size.Height());
 }

 Rect operator-(const Rect& rect, const Size& size) {
 return Rect(rect.left - size.Width(),
 rect.top - size.Height(),
 rect.right - size.Width(),
 rect.bottom - size.Height());
 }

 Rect& Rect::operator+=(const Point& point) {
 left += point.X();
 top += point.Y();
 right += point.X();
 bottom += point.Y();
 return *this;
 }

The Auxiliary Classes

[435]

 Rect& Rect::operator-=(const Point& point) {
 left -= point.X();
 top -= point.Y();
 right -= point.X();
 bottom -= point.Y();
 return *this;
 }

 Rect operator+(const Rect& rect, const Point& point) {
 return Rect(rect.left + point.X(), rect.top + point.Y(),
 rect.right + point.X(), rect.bottom + point.Y());
 }

 Rect operator+(const Point& point, const Rect& rect) {
 return Rect(point.X() + rect.left, point.Y() + rect.top,
 point.X() + rect.right, point.Y() + rect.bottom);
 }

 Rect operator-(const Rect& rect, const Point& point) {
 return Rect(rect.left - point.X(), rect.top - point.Y(),
 rect.right - point.X(), rect.bottom - point.Y());
 }

 void Rect::Clear() {
 left = top = right = bottom = 0;
 }

 void Rect::Normalize() {
 int minX = min(left, right), minY = min(top, bottom),
 maxX = max(left, right), maxY = max(top, bottom);
 left = minX;
 top = minY;
 right = maxX;
 bottom = maxY;
 }

 bool Rect::PointInside(Point point) const {
 return ((left <= point.X()) && (point.X() <= right) &&
 (top <= point.Y()) && (point.Y() <= bottom));
 }

 bool Rect::WriteRectToStream(ostream& outStream) const {
 outStream.write((char*) &left, sizeof left);
 outStream.write((char*) &top, sizeof top);
 outStream.write((char*) &right, sizeof right);
 outStream.write((char*) &bottom, sizeof bottom);
 return ((bool) outStream);
 }

The Auxiliary Classes

[436]

 bool Rect::ReadRectFromStream(istream& inStream) {
 inStream.read((char*) &left, sizeof left);
 inStream.read((char*) &top, sizeof top);
 inStream.read((char*) &right, sizeof right);
 inStream.read((char*) &bottom, sizeof bottom);
 return ((bool) inStream);
 }

 void Rect::WriteRectToClipboard(InfoList& infoList) const {
 infoList.AddValue<int>(left);
 infoList.AddValue<int>(top);
 infoList.AddValue<int>(right);
 infoList.AddValue<int>(bottom);
 }

 void Rect::ReadRectFromClipboard(InfoList& infoList) {
 infoList.GetValue<int>(left);
 infoList.GetValue<int>(top);
 infoList.GetValue<int>(right);
 infoList.GetValue<int>(bottom);
 }

 void Rect::WriteRectToRegistry(String key) const {
 RECT pointStruct = (RECT) *this;
 Registry::WriteBuffer(key, &pointStruct, sizeof pointStruct);
 }

 void Rect::ReadRectFromRegistry(String key,
 Rect defaultRect /* = ZeroRect */) {
 RECT rectStruct, defaultRectStruct = (RECT) defaultRect;
 Registry::ReadBuffer(key, &rectStruct, sizeof rectStruct,
 &defaultRectStruct);
 *this = Rect(rectStruct);
 }

 const Rect ZeroRect(0, 0, 0, 0);
};

The Color class
The Color class is a wrapper class for the Win32 API COLORREF structure, which holds a
color in accordance with the Red-Green-Blue (RGB) standard. Each component of the color
is represented by a value between 0 and 255, inclusive, which gives a theoretical total
number of 2563 = 16,777,216 different colors, among which Color defines 142 standard
colors.

The Auxiliary Classes

[437]

Color.h

namespace SmallWindows {
 class Color;
 extern const Color SystemColor;

The default constructor initializes the color with zero for each of the red, green, and blue
values, which corresponds to black. A color object can also be initialized by, and assigned
to, another color:

 class Color {
 public:
 Color();
 Color(int red, int green, int blue);
 Color(const Color& color);
 Color& operator=(const Color& color);

The equality operators compare the red, green, and blue values:

 bool operator==(const Color& color) const;
 bool operator!=(const Color& color) const;

The Inverse function returns the inverted color and GrayScale returns the corresponding
grayscale color:

 Color Inverse();
 void GrayScale();

The color can be written to, and read from, a file stream, the clipboard, and the registry:

 bool WriteColorToStream(ostream& outStream) const;
 bool ReadColorFromStream(istream& inStream);
 void WriteColorToClipboard(InfoList& infoList) const;
 void ReadColorFromClipboard(InfoList& infoList);
 void WriteColorToRegistry(String key) const;
 void ReadColorFromRegistry(String key,
 Color defaultColor =SystemColor);

The wrapped COLORREF structure value is inspected by the constant method and modified
by the non-constant method:

 COLORREF ColorRef() const {return colorRef;}
 COLORREF& ColorRef() {return colorRef;}

 private:
 COLORREF colorRef;
 };

The Auxiliary Classes

[438]

The predefined colors are constant objects:

 extern const Color
 AliceBlue, AntiqueWhite, Aqua, Aquamarine,
 Azure, Beige, Bisque, Black, BlanchedAlmond,
 Blue, BlueViolet, Brown, Burlywood, CadetBlue,
 Chartreuse, Chocolate, Coral, CornflowerBlue,
 Cornsilk, Crimson, Cyan, DarkBlue, DarkCyan,
 DarkGoldenRod, DarkGray, DarkGreen, DarkKhaki,
 DarkMagenta, DarkOliveGreen, DarkOrange, DarkOrchid,
 DarkRed, DarkSalmon, DarkSeaGreen, DarkSlateBlue,
 DarkSlateGray, DarkTurquoise, DarkViolet, DeepPink,
 DeepSkyBlue, DimGray, DodgerBlue, FireBrick,
 FloralWhite, ForestGreen, Fuchsia, Gainsboro,
 GhostWhite, Gold, GoldenRod, Gray, Green, GreenYellow,
 HoneyDew, HotPink, IndianRed, Indigo, Ivory, Khaki,
 Lavender, LavenderBlush, Lawngreen, LemonChiffon,
 LightBlue, LightCoral, LightCyan, LightGoldenRodYellow,
 LightGreen, LightGray, LightPink, LightSalmon,
 LightSeaGreen, LightSkyBlue, LightSlateGray,
 LightSteelBlue, LightYellow, Lime, LimeGreen, Linen,
 Magenta, Maroon, MediumAquamarine, MediumBlue,
 MediumOrchid, MediumPurple, MediumSeaGreen,
 MediumSlateBlue, MediumSpringGreen, MediumTurquoise,
 MediumVioletRed, MidnightBlue, MintCream, MistyRose,
 Moccasin, NavajoWhite, Navy, Navyblue, OldLace, Olive,
 OliveDrab, Orange, OrangeRed, Orchid, PaleGoldenRod,
 PaleGreen, PaleTurquoise, PaleVioletRed, PapayaWhip,
 PeachPuff, Peru, Pink, Plum, PowderBlue, Purple,
 Red, RosyBrown, RoyalBlue, SaddleBrown, Salmon,
 SandyBrown, SeaGreen, SeaShell, Sienna, Silver, SkyBlue,
 SlateBlue, SlateGray, Snow, SpringGreen, SteelBlue,
 SystemColor, Tan, Teal, Thistle, Tomato, Turquoise,
 Violet, Wheat, White, WhiteSmoke, Yellow, YellowGreen;
};

The implementation of Color is rather straightforward. The Win32 RGB macro creates a
COLORREF value based on the three color components.

Color.cpp

#include "SmallWindows.h"

namespace SmallWindows {
 Color::Color()
 :colorRef(RGB(0, 0, 0)) {
 // Empty.
 }

The Auxiliary Classes

[439]

 Color::Color(COLORREF colorRef)
 :colorRef(colorRef) {
 // Empty.
 }

 Color::Color(int red, int green, int blue)
 :colorRef(RGB(red, green, blue)) {
 // Empty.
 }

 Color::Color(const Color& color)
 :colorRef(color.colorRef) {
 // Empty.
 }

 Color& Color::operator=(const Color& color) {
 if (this != &color) {
 colorRef = color.colorRef;
 }

 return *this;
 }

Two colors are equal if their wrapped COLORREF structures are equal, and they are
compared with the C standard function memcpy.

 bool Color::operator==(const Color& color) const {
 return (colorRef == color.colorRef);
 }

 bool Color::operator!=(const Color& color) const {
 return !(*this == color);
 }

The Inverse function returns the inverted color with each component subtracted from 255,
and GrayScale returns the corresponding grayscale color with each component holding
the average value of the red, green, and blue components. GetRValue, GetGValue, and
GetBValue are Win32 API macros that extract the red, green, and blue components:

 Color Color::Inverse() {
 int inverseRed = 255 - GetRValue(colorRef);
 int inverseGreen = 255 - GetGValue(colorRef);
 int inverseBlue = 255 - GetBValue(colorRef);
 return Color(inverseRed, inverseGreen, inverseBlue);
 }

The Auxiliary Classes

[440]

 void Color::GrayScale() {
 int red = GetRValue(colorRef);
 int green = GetGValue(colorRef);
 int blue = GetBValue(colorRef);

 int average = (red + green + blue) / 3;
 colorRef = RGB(average, average, average);
 }

 bool Color::WriteColorToStream(ostream& outStream) const {
 outStream.write((char*) &colorRef, sizeof colorRef);
 return ((bool) outStream);
 }

 bool Color::ReadColorFromStream(istream& inStream) {
 inStream.read((char*) &colorRef, sizeof colorRef);
 return ((bool) inStream);
 }

 void Color::WriteColorToClipboard(InfoList& infoList) const {
 infoList.AddValue<COLORREF>(colorRef);
 }

 void Color::ReadColorFromClipboard(InfoList& infoList) {
 infoList.GetValue<COLORREF>(colorRef);
 }

 void Color::WriteColorToRegistry(String key) const {
 Registry::WriteBuffer(key, &colorRef, sizeof colorRef);
 }

 void Color::ReadColorFromRegistry(String key,
 Color defaultColor /*=SystemColor */) {
 Registry::ReadBuffer(key, &colorRef, sizeof colorRef,
 &defaultColor.colorRef);
 }

Each of the predefined colors calls the constructor that takes the red, green, and blue
components:

 const Color
 AliceBlue(240, 248, 255), AntiqueWhite(250, 235, 215),
 Aqua(0, 255, 255), Aquamarine(127, 255, 212),
 Azure(240, 255, 255), Beige(245, 245, 220),
 Bisque(255, 228, 196), Black(0, 0, 0),
 BlanchedAlmond(255, 255, 205), Blue(0, 0, 255),
 BlueViolet(138, 43, 226), Brown(165, 42, 42),
 Burlywood(222, 184, 135), CadetBlue(95, 158, 160),

The Auxiliary Classes

[441]

 Chartreuse(127, 255, 0), Chocolate(210, 105, 30),
 Coral(255, 127, 80), CornflowerBlue(100, 149, 237),
 Cornsilk(255, 248, 220), Crimson(220, 20, 60),
 Cyan(0, 255, 255), DarkBlue(0, 0, 139),
 DarkCyan(0, 139, 139), DarkGoldenRod(184, 134, 11),
 DarkGray(169, 169, 169), DarkGreen(0, 100, 0),
 DarkKhaki(189, 183, 107), DarkMagenta(139, 0, 139),
 DarkOliveGreen(85, 107, 47), DarkOrange(255, 140, 0),
 DarkOrchid(153, 50, 204), DarkRed(139, 0, 0),
 DarkSalmon(233, 150, 122), DarkSeaGreen(143, 188, 143),
 DarkSlateBlue(72, 61, 139), DarkSlateGray(47, 79, 79),
 DarkTurquoise(0, 206, 209), DarkViolet(148, 0, 211),
 DeepPink(255, 20, 147), DeepSkyBlue(0, 191, 255),
 DimGray(105, 105, 105), DodgerBlue(30, 144, 255),
 FireBrick(178, 34, 34), FloralWhite(255, 250, 240),
 ForestGreen(34, 139, 34), Fuchsia(255, 0, 255),
 Gainsboro(220, 220, 220), GhostWhite(248, 248, 255),
 Gold(255, 215, 0), GoldenRod(218, 165, 32),
 Gray(127, 127, 127), Green(0, 128, 0),
 GreenYellow(173, 255, 47), HoneyDew(240, 255, 240),
 HotPink(255, 105, 180), IndianRed(205, 92, 92),
 Indigo(75, 0, 130), Ivory(255, 255, 240),
 Khaki(240, 230, 140), Lavender(230, 230, 250),
 LavenderBlush(255, 240, 245), Lawngreen(124, 252, 0),
 LemonChiffon(255, 250, 205), LightBlue(173, 216, 230),
 LightCoral(240, 128, 128), LightCyan(224, 255, 255),
 LightGoldenRodYellow(250, 250, 210),
 LightGreen(144, 238, 144), LightGray(211, 211, 211),
 LightPink(255, 182, 193), LightSalmon(255, 160, 122),
 LightSeaGreen(32, 178, 170), LightSkyBlue(135, 206, 250),
 LightSlateGray(119, 136, 153), LightSteelBlue(176, 196, 222),
 LightYellow(255, 255, 224), Lime(0, 255, 0),
 LimeGreen(50, 205, 50), Linen(250, 240, 230),
 Magenta(255, 0, 255), Maroon(128, 0, 0),
 MediumAquamarine(102, 205, 170), MediumBlue(0, 0, 205),
 MediumOrchid(186, 85, 211), MediumPurple(147, 112, 219),
 MediumSeaGreen(60, 179, 113), MediumSlateBlue(123, 104, 238),
 MediumSpringGreen(0, 250, 154), MediumTurquoise(72, 209, 204),
 MediumVioletRed(199, 21, 133), MidnightBlue(25, 25, 112),
 MintCream(245, 255, 250), MistyRose(255, 228, 225),
 Moccasin(255, 228, 181), NavajoWhite(255, 222, 173),
 Navy(0, 0, 128), Navyblue(159, 175, 223),
 OldLace(253, 245, 230), Olive(128, 128, 0),
 OliveDrab(107, 142, 35), Orange(255, 165, 0),
 OrangeRed(255, 69, 0), Orchid(218, 112, 214),
 PaleGoldenRod(238, 232, 170), PaleGreen(152, 251, 152),
 PaleTurquoise(175, 238, 238), PaleVioletRed(219, 112, 147),
 PapayaWhip(255, 239, 213), PeachPuff(255, 218, 185),

The Auxiliary Classes

[442]

 Peru(205, 133, 63), Pink(255, 192, 203),
 Plum(221, 160, 221), PowderBlue(176, 224, 230),
 Purple(128, 0, 128), Red(255, 0, 0),
 RosyBrown(188, 143, 143), RoyalBlue(65, 105, 225),
 SaddleBrown(139, 69, 19), Salmon(250, 128, 114),
 SandyBrown(244, 164, 96), SeaGreen(46, 139, 87),
 SeaShell(255, 245, 238), Sienna(160, 82, 45),
 Silver(192, 192, 192), SkyBlue(135, 206, 235),
 SlateBlue(106, 90, 205), SlateGray(112, 128, 144),
 Snow(255, 250, 250), SpringGreen(0, 255, 127),
 SteelBlue(70, 130, 180), SystemColor(0, 0, 0),
 Tan(210, 180, 140), Teal(0, 128, 128),
 Thistle(216, 191, 216), Tomato(255, 99, 71),
 Turquoise(64, 224, 208), Violet(238, 130, 238),
 Wheat(245, 222, 179), White(255, 255, 255),
 WhiteSmoke(245, 245, 245), Yellow(255, 255, 0),
 YellowGreen(139, 205, 50);
};

The Font class
The Font class is a wrapper class for the Win32 API LOGFONT structure. The structure holds
a large set of properties; however, we only take into consideration the fields for the font's
name and size and whether the font is italic, bold, or underlined; the other fields are set to
zero. The system font is the font where all fields in the LOGFONT structure are set to zero,
which results in the standard font of the system. Finally, the Font class also includes a
Color object.

Font.h

namespace SmallWindows {
 class Font;
 extern const Font SystemFont;

 class Font {
 public:

The default constructor sets the name to the empty string and all other values to zero,
resulting in the system font, usually 10 points Arial. The size of the font is given in
typographic points (1 point = 1/72 of an inch = 1/72 * 25.4 mm ≈ 0.35 mm). A font can also be
initialized by, or assigned to, another font:

 Font();
 Font(String name, int size,
 bool italic = false, bool bold = false);

The Auxiliary Classes

[443]

 Font(const Font& Font);
 Font& operator=(const Font& font);

Two fonts are equal if they hold the same name and size as well as the same italic, bold, and
underline status (all other fields are assumed to be zero):

 bool operator==(const Font& font) const;
 bool operator!=(const Font& font) const;

The font can be written to, and read from, a file stream, the clipboard, and the registry:

 bool WriteFontToStream(ostream& outStream) const;
 bool ReadFontFromStream(istream& inStream);
 void WriteFontToClipboard(InfoList& infoList) const;
 void ReadFontFromClipboard(InfoList& infoList);
 void WriteFontToRegistry(String key);
 void ReadFontFromRegistry(String key,
 Font defaultFont = SystemFont);

The PointToMeters function converts a typographic point to logical units (hundredths of
millimeters):

 void PointsToLogical(double zoom = 1.0);

The wrapped LOGFONT structure is inspected by the constant method and modified by the
non-constant method:

 LOGFONT LogFont() const {return logFont;}
 LOGFONT& LogFont() {return logFont;}

The color field can also be inspected by the constant method and modified by the non-
constant method:

 Color FontColor() const {return color;}
 Color& FontColor() {return color;}

 private:
 LOGFONT logFont;
 Color color;
 };
};

The Auxiliary Classes

[444]

Font.cpp

#include "SmallWindows.h"

namespace SmallWindows {
 Font::Font() {
 memset(&logFont, 0, sizeof logFont);
 }

 Font::Font(String name, int size, bool italic, bool bold) {
 memset(&logFont, 0, sizeof logFont);
 wcscpy_s(logFont.lfFaceName, LF_FACESIZE, name.c_str());
 logFont.lfHeight = size;
 logFont.lfItalic = (italic ? TRUE : FALSE);
 logFont.lfWeight = (bold ? FW_BOLD : FW_NORMAL);
 }

 Font::Font(const Font& font) {
 logFont = font.LogFont();
 color = font.color;
 }

 Font& Font::operator=(const Font& font) {
 if (this != &font) {
 logFont = font.LogFont();
 color = font.color;
 }

 return *this;
 }

Two fonts are equal if their wrapped LOGFONT structures and their Color fields are equal:

 bool Font::operator==(const Font& font) const {
 return (::memcmp(&logFont, &font.logFont,
 sizeof logFont) == 0) &&
 (color == font.color);
 }

 bool Font::operator!=(const Font& font) const {
 return !(*this == font);
 }

The write and read methods write and read the wrapped LOGFONT structure and call the
Color write and read methods:

The Auxiliary Classes

[445]

 bool Font::WriteFontToStream(ostream& outStream) const {
 outStream.write((char*) &logFont, sizeof logFont);
 color.WriteColorToStream(outStream);
 return ((bool) outStream);
 }

 bool Font::ReadFontFromStream(istream& inStream) {
 inStream.read((char*) &logFont, sizeof logFont);
 color.ReadColorFromStream(inStream);
 return ((bool) inStream);
 }

 void Font::WriteFontToClipboard(InfoList& infoList) const {
 infoList.AddValue<LOGFONT>(logFont);
 color.WriteColorToClipboard(infoList);
 }

 void Font::ReadFontFromClipboard(InfoList& infoList) {
 infoList.GetValue<LOGFONT>(logFont);
 color.ReadColorFromClipboard(infoList);
 }

 void Font::WriteFontToRegistry(String key) {
 Registry::WriteBuffer(key, &logFont, sizeof logFont);
 color.WriteColorToRegistry(key);
 }

 void Font::ReadFontFromRegistry(String key,
 Font defaultFont /* = SystemFont */) {
 Registry::ReadBuffer(key, &logFont, sizeof logFont,
 &defaultFont.logFont);
 color.ReadColorFromRegistry(key);
 }

A typographic point is 1/72th of an inch, and an inch is 25.4 millimeters. To transform a font
typographical unit to logical units (hundredths of millimeters), we divide the width and
height by 72, multiply by 2,540 (2,540 logical units equals 25.4 millimeters) and the zoom
factor:

 void Font::PointsToLogical(double zoom /* = 1.0 */) {
 logFont.lfWidth =
 (int) (zoom * 2540.0 * logFont.lfWidth / 72.0);
 logFont.lfHeight =
 (int) (zoom * 2540.0 * logFont.lfHeight / 72.0);
 }

 const Font SystemFont;
};

The Auxiliary Classes

[446]

The Cursor class
There is a set of cursors available in the Win32 API, all with names starting with IDC_. In
Small Windows, they have been given other names, which are hopefully easier to
understand. Unlike other cases, we cannot use an enumeration for the cursors, since they
are actually zero-terminated C++ strings (character pointers). Instead, every cursor is a
pointer to a zero-terminated string. LPCTSTR stands for Long Pointer to Constant TChar
String.

The reason the cursor has its own class, while the caret has a method in the Document class
is that the caret does need a window handle to be set, while the cursor does not.

Cursor.h

namespace SmallWindows {
 typedef LPCTSTR CursorType;

 class Cursor {
 public:
 static const CursorType Normal;
 static const CursorType Arrow;
 static const CursorType ArrowHourGlass;
 static const CursorType Crosshair;
 static const CursorType Hand;
 static const CursorType ArrowQuestionMark;
 static const CursorType IBeam;
 static const CursorType SlashedCircle;
 static const CursorType SizeAll;
 static const CursorType SizeNorthEastSouthWest;
 static const CursorType SizeNorthSouth;
 static const CursorType SizeNorthWestSouthEast;
 static const CursorType SizeWestEast;
 static const CursorType VerticalArrow;
 static const CursorType HourGlass;

 static void Set(CursorType cursor);
 };
};

Cursor.cpp

#include "SmallWindows.h"

namespace SmallWindows {
 const CursorType Cursor::Normal = IDC_ARROW;
 const CursorType Cursor::Arrow = IDC_ARROW;
 const CursorType Cursor::ArrowHourGlass = IDC_APPSTARTING;

The Auxiliary Classes

[447]

 const CursorType Cursor::Crosshair = IDC_CROSS;
 const CursorType Cursor::Hand = IDC_HAND;
 const CursorType Cursor::ArrowQuestionMark = IDC_HELP;
 const CursorType Cursor::IBeam = IDC_IBEAM;
 const CursorType Cursor::SlashedCircle = IDC_NO;
 const CursorType Cursor::SizeAll = IDC_SIZEALL;
 const CursorType Cursor::SizeNorthEastSouthWest = IDC_SIZENESW;
 const CursorType Cursor::SizeNorthSouth = IDC_SIZENS;
 const CursorType Cursor::SizeNorthWestSouthEast = IDC_SIZENWSE;
 const CursorType Cursor::SizeWestEast = IDC_SIZEWE;
 const CursorType Cursor::VerticalArrow = IDC_UPARROW;
 const CursorType Cursor::HourGlass = IDC_WAIT;

The Set method sets the cursor by calling the Win32 API functions LoadCursor and
SetCursor:

 void Cursor::Set(CursorType cursor) {
 ::SetCursor(::LoadCursor(nullptr, cursor));
 }
};

The DynamicList class
The DynamicList class can be regarded as a more advanced version of the C++ standard
classes list and vector. It varies its size dynamically:

DynamicList.h

namespace SmallWindows {
 template <class Type>
 class DynamicList {
 public:

The IfFuncPtr pointer is a function prototype that is used when testing (without
changing) a value in the list. It takes a constant value and a void pointer and returns a
Boolean value. DoFuncPtr is used when changing a value in the list and takes a (non-
constant) value and a void pointer. The void pointers are sent by the calling methods; they
hold additional information:

 typedef bool (*IfFuncPtr)(const Type& value, void* voidPtr);
 typedef void (*DoFuncPtr)(Type& value, void* voidPtr);

The list can be initialized by, and assigned to, another list. The default constructor creates
an empty list, and the destructor deallocates the memory from the list:

The Auxiliary Classes

[448]

 DynamicList();
 DynamicList(const DynamicList& list);
 DynamicList& operator=(const DynamicList& list);
 ~DynamicList();

The Empty function returns true if the list is empty, Size returns the number of values in
the list, Clear removes every value in the list, and IndexOf gives the zero-based index of
the given value, or returns minus one if there is no such value in the list:

 bool Empty() const;
 int Size() const;
 void Clear();
 int IndexOf(Type& value) const;

The begin and end methods return pointers to the beginning and end of the list. They are
included in order for the list to be iterated by the for statement:

 Type* begin();
 const Type* begin() const;
 Type* end();
 const Type* end() const;

The index method inspects or modifies the value with the given zero-based index in the list:

 Type operator[](int index) const;
 Type& operator[](int index);

The Front and Back methods inspect and modify the first and the last value of the list by
calling the index methods mentioned previously:

 Type Front() const {return (*this)[0];}
 Type& Front() {return (*this)[0];}
 Type Back() const {return (*this)[size - 1];}
 Type& Back() {return (*this)[size - 1];}

The PushFront and PushBack methods add a value or a list at the beginning or at the end
of the list, and Insert inserts a value or a list at the given index:

 void PushBack(const Type& value);
 void PushBack(const DynamicList& list);
 void PushFront(const Type& value);
 void PushFront(const DynamicList& list);
 void Insert(int index, const Type& value);
 void Insert(int index, const DynamicList& list);

The Erase function deletes the value at the given index, and Remove deletes the list from
firstIndex to lastIndex, inclusive, or the end of the list if lastIndex is minus one. If

The Auxiliary Classes

[449]

firstIndex is zero and lastIndex is minus one, the whole list is deleted. The methods
have been given different names since lastIndex in Remove is a default parameter. Giving
the methods the same name would be a violation of the overload rules:

 void Erase(int deleteIndex);
 void Remove(int firstIndex = 0, int lastIndex = -1);

The Copy function copies the list from firstIndex to lastIndex, inclusive, to copyList
or the rest of the list if lastIndex is minus one, which implies that the whole list is copied
if firstIndex is zero and lastIndex is minus one:

 void Copy(DynamicList& copyList, int firstIndex = 0,
 int lastIndex = -1) const;

The AnyOf function returns true if at least one value satisfies ifFuncPtr. That is, if
ifFuncPtr returns true when called with the value as parameter. The AllOf function
returns true if all values satisfy ifFuncPtr:

 bool AnyOf(IfFuncPtr ifFuncPtr, void* ifVoidPtr = nullptr)
 const;
 bool AllOf(IfFuncPtr ifFuncPtr, void* ifVoidPtr = nullptr)
 const;

The FirstOf and LastOf methods set the value parameter to the first and last value
satisfying ifFuncPtr; they return false is there are no such values:

 bool FirstOf(IfFuncPtr ifFuncPtr, Type& value,
 void* ifVoidPtr = nullptr) const;
 bool LastOf(IfFuncPtr ifFuncPtr, Type& value,
 void* ifVoidPtr = nullptr) const;

The Apply method calls doFuncPtr for all values in the list, and ApplyIf calls doFuncPtr
for each value in the list that satisfies ifFuncPtr:

 void Apply(DoFuncPtr doFuncPtr, void* ifVoidPtr = nullptr);
 void ApplyIf(IfFuncPtr ifFuncPtr, DoFuncPtr doFuncPtr,
 void* ifVoidPtr = nullptr,
 void* doVoidPtr = nullptr);

The CopyIf method copies each value in the list satisfying ifFuncPtr to copyList.
RemoveIf removes the values satisfying ifFuncPtr:

 void CopyIf(IfFuncPtr ifFuncPtr, DynamicList& copyList,
 void* ifVoidPtr = nullptr) const;
 void RemoveIf(IfFuncPtr ifFuncPtr,
 void* ifVoidPtr = nullptr);

The Auxiliary Classes

[450]

The ApplyRemoveIf method calls doFuncPtr to each value satisfying ifFuncPtr and
then removes them. It may seem strange to apply a function to values that are to be
removed. However, it is useful when removing dynamically allocated values, where
doFuncPtr deallocates the memory of each value before it is removed from the list. It
would not work to simply call ApplyIf and RemoveIf. When the values have been deleted
by ApplyIf, they cannot be parameters to ifFuncPtr calls in RemoveIf:

 void ApplyRemoveIf(IfFuncPtr ifFuncPtr, DoFuncPtr doFuncPtr,
 void* ifVoidPtr=nullptr,
 void* doVoidPtr=nullptr);

The size is the number of values in the list and the buffer holds the values themselves. The
size of the buffer is dynamic and changes when values are added to, or removed from, the
list. When the list is empty, the buffer points are null:

 private:
 int size;
 Type* buffer;
 };

 template <class Type>
 DynamicList<Type>::DynamicList()
 :size(0),
 buffer(nullptr) {
 // Empty.
 }

The default constructor and assignment operator iterates through the given list and copies
each value. For this to work, the type must support the assignment operator, which all
types, except arrays, do:

 template <class Type>
 DynamicList<Type>::DynamicList(const DynamicList& list)
 :size(list.size),
 buffer(new Type[list.size]) {
 assert(buffer != nullptr);
 for (int index = 0; index < size; ++index) {
 buffer[index] = list.buffer[index];
 }
 }

In the assignment operator, we first delete the buffer, as it may hold values. If the list is
empty, the buffer points are null and the delete operator does nothing:

 template <class Type>
 DynamicList<Type>& DynamicList<Type>::operator=
 (const DynamicList& list) {

The Auxiliary Classes

[451]

 if (this != &list) {
 delete[] buffer;
 size = list.size;
 assert((buffer = new Type[size]) != nullptr);

 for (int index = 0; index < size; ++index) {
 buffer[index] = list.buffer[index];
 }
 }

 return *this;
 }

The destructor simply deletes the buffer. Again, if the list is empty, the buffer points are
null and the delete operator does nothing:

 template <class Type>
 DynamicList<Type>::~DynamicList() {
 delete[] buffer;
 }

 template <class Type>
 bool DynamicList<Type>::Empty() const {
 return (size == 0);
 }

 template <class Type>
 int DynamicList<Type>::Size() const {
 return size;
 }

The Clear method sets the size to zero and the buffer to null:

 template <class Type>
 void DynamicList<Type>::Clear() {
 size = 0;
 delete[] buffer;
 buffer = nullptr;
 }

The IndexOf method iterates through the list and returns the index of the found value, or it
returns minus one if there is no such value:

 template <class Type>
 int DynamicList<Type>::IndexOf(Type& value) const {
 for (int index = 0; index < size; ++index) {

The Auxiliary Classes

[452]

 if (buffer[index] == value) {
 return index;
 }
 }

 return -1;
 }

The begin method returns the address of the first value in the list:

 template <class Type>
 Type* DynamicList<Type>::begin() {
 return &buffer[0];
 }

 template <class Type>
 const Type* DynamicList<Type>::begin() const {
 return &buffer[0];
 }

The end method returns the address one step beyond the last value in the list, which is the
convention of list iterators in C++:

 template <class Type>
 Type* DynamicList<Type>::end() {
 return &buffer[size];
 }

 template <class Type>
 const Type* DynamicList<Type>::end() const {
 return &buffer[size];
 }

An assertion occurs if the index is beyond the list:

 template <class Type>
 Type DynamicList<Type>::operator[](int index) const {
 assert((index >= 0) && (index < size));
 return buffer[index];
 }

 template <class Type>
 Type& DynamicList<Type>::operator[](int index) {
 assert((index >= 0) && (index < size));
 return buffer[index];
 }

The Auxiliary Classes

[453]

When adding a value at the end of the original list, we need to allocate a new list with one
extra value and add the new value at the end:

 template <class Type>
 void DynamicList<Type>::PushBack(const Type& value) {
 Type* newBuffer = new Type[size + 1];
 assert(newBuffer != nullptr);

 for (int index = 0; index < size; ++index) {
 newBuffer[index] = buffer[index];
 }

 newBuffer[size++] = value;
 delete[] buffer;
 buffer = newBuffer;
 }

When adding a new list at the end of the original list, we need to allocate a new list with the
size of the original and new lists, and copy the values from the original list to the new list:

 template <class Type>
 void DynamicList<Type>::PushBack(const DynamicList& list) {
 Type* newBuffer = new Type[size + list.size];
 assert(newBuffer != nullptr);

 for (int index = 0; index < size; ++index) {
 newBuffer[index] = buffer[index];
 }

 for (int index = 0; index < list.size; ++index) {
 newBuffer[size + index] = list.buffer[index];
 }

 delete[] buffer;
 buffer = newBuffer;
 size += list.size;
 }

When inserting a new value at the beginning of the list, we need to copy all the values in the
original list one step forward to make room for the new value:

 template <class Type>
 void DynamicList<Type>::PushFront(const Type& value) {
 Type* newBuffer = new Type[size + 1];
 assert(newBuffer != nullptr);
 newBuffer[0] = value;

The Auxiliary Classes

[454]

 for (int index = 0; index < size; ++index) {
 newBuffer[index + 1] = buffer[index];
 }

 delete[] buffer;
 buffer = newBuffer;
 ++size;
 }

When inserting a new list, at the beginning of the list, we need to copy all its values and the
number of steps corresponding to the size of the new list to make room for its values:

 template <class Type>
 void DynamicList<Type>::PushFront(const DynamicList& list) {
 Type* newBuffer = new Type[size + list.size];
 assert(newBuffer != nullptr);

We move the values of the original list in order to make room for the new list:

 for (int index = 0; index < list.size; ++index) {
 newBuffer[index] = list.buffer[index];
 }

When we have made room for the new list, we copy it to the original list at the beginning:

 for (int index = 0; index < size; ++index) {
 newBuffer[index + list.size] = buffer[index];
 }

 delete[] buffer;
 buffer = newBuffer;
 size += list.size;
 }

The Insert method works in ways similar to PushFront. We need to allocate a new list
and copy values in the original list to make room for the new values, and then copy the new
values into the original list:

 template <class Type>
 void DynamicList<Type>::Insert(int insertIndex,
 const Type& value) {
 assert((insertIndex >= 0) && (insertIndex <= size));
 Type* newBuffer = new Type[size + 1];
 assert(newBuffer != nullptr);

 for (int index = 0; index < insertIndex; ++index) {
 newBuffer[index] = buffer[index];
 }

The Auxiliary Classes

[455]

 newBuffer[insertIndex] = value;

 for (int index = 0; index < (size - insertIndex); ++index) {
 newBuffer[insertIndex + index + 1] =
 buffer[insertIndex + index];
 }

 delete[] buffer;
 buffer = newBuffer;
 ++size;
 }

 template <class Type>
 void DynamicList<Type>::Insert(int insertIndex,
 const DynamicList& list){
 assert((insertIndex >= 0) && (insertIndex <= size));
 Type* newBuffer = new Type[size + list.size];
 assert(newBuffer != nullptr);

 for (int index = 0; index < insertIndex; ++index) {
 newBuffer[index] = buffer[index];
 }

 for (int index = 0; index < list.size; ++index) {
 newBuffer[insertIndex + index] = list.buffer[index];
 }

 for (int index = 0; index < (size - insertIndex); ++index) {
 newBuffer[insertIndex + index + list.size] =
 buffer[insertIndex + index];
 }

 delete[] buffer;
 buffer = newBuffer;
 size += list.size;
 }

When erasing a value in the list, we allocate a new smaller list and copy the remaining
values to that list:

 template <class Type>
 void DynamicList<Type>::Erase(int eraseIndex) {
 assert((eraseIndex >= 0) && (eraseIndex < size));
 Type* newBuffer = new Type[size - 1];
 assert(newBuffer != nullptr);

The Auxiliary Classes

[456]

First, we copy the values before the delete index:

 for (int index = 0; index < eraseIndex; ++index) {
 newBuffer[index] = buffer[index];
 }

Then, we copy the values after the delete index:

 for (int index = 0; index < (size - (eraseIndex + 1));
 ++index) {
 newBuffer[eraseIndex + index] =
 buffer[eraseIndex + index + 1];
 }

 delete[] buffer;
 buffer = newBuffer;
 --size;
 }

The Remove method works in the same way as Delete; the difference is that more than one
value can be removed from the list; removeSize holds the number of values to be removed:

 template <class Type>
 void DynamicList<Type>::Remove(int firstIndex /* = 0 */,
 int lastIndex /* = -1 */) {
 if (lastIndex == -1) {
 lastIndex = size - 1;
 }

 assert((firstIndex >= 0) && (firstIndex < size));
 assert((lastIndex >= 0) && (lastIndex < size));
 assert(firstIndex <= lastIndex);

 int removeSize = lastIndex - firstIndex + 1;
 Type* newBuffer = new Type[size - removeSize];
 assert(newBuffer != nullptr);
 for (int index = 0; index < firstIndex; ++index) {
 newBuffer[index] = buffer[index];
 }

 for (int index = 0;
 index < (size - (firstIndex + removeSize)); ++index){
 newBuffer[firstIndex + index] =
 buffer[firstIndex + index + removeSize];
 }

 delete[] buffer;
 buffer = newBuffer;

The Auxiliary Classes

[457]

 size -= removeSize;
 }

The Copy method simply calls PushBack for each value to be copied:

 template <class Type>
 void DynamicList<Type>::Copy(DynamicList& copyList,
 int firstIndex/* =0 */,
 int lastIndex /* = -1 */) const {
 if (lastIndex == -1) {
 lastIndex = size - 1;
 }

 assert((firstIndex >= 0) && (firstIndex < size));
 assert((lastIndex >= 0) && (lastIndex < size));
 assert(firstIndex <= lastIndex);

 for (int index = firstIndex; index <= lastIndex; ++index) {
 copyList.PushBack(buffer[index]);
 }
 }

The AnyOf method iterates through the list and returns true if at least one value satisfies
the function:

 template <class Type>
 bool DynamicList<Type>::AnyOf(IfFuncPtr ifFuncPtr,
 void* ifVoidPtr /* = nullptr */) const {
 for (int index = 0; index < size; ++index) {
 if (ifFuncPtr(buffer[index], ifVoidPtr)) {
 return true;
 }
 }

 return false;
 }

The AllOf method iterates through the list and returns false if at least one value does not
satisfy the function:

 template <class Type>
 bool DynamicList<Type>::AllOf(IfFuncPtr ifFuncPtr,
 void* ifVoidPtr /* = nullptr */) const {
 for (int index = 0; index < size; ++index) {
 if (!ifFuncPtr(buffer[index], ifVoidPtr)) {
 return false;
 }
 }

The Auxiliary Classes

[458]

 return true;
 }

The FirstOf method finds the first value in the list that satisfies the function, copies it to
the value parameter, and returns true. If it does not find any value satisfying the function,
false is returned:

 template <class Type>
 bool DynamicList<Type>::FirstOf(IfFuncPtr ifFuncPtr,
 Type& value, void* ifVoidPtr /* = nullptr */) const{
 for (int index = 0; index < size; ++index) {
 if (ifFuncPtr(buffer[index], ifVoidPtr)) {
 value = buffer[index];
 return true;
 }
 }

 return false;
 }

The LastOf method finds the last value satisfying the function in the same way as
FirstOf; the difference is that the search is performed backward:

 template <class Type>
 bool DynamicList<Type>::LastOf(IfFuncPtr ifFuncPtr, Type& value,
 void* ifVoidPtr /* = nullptr */) const {
 for (int index = (size - 1); index >= 0; --index) {
 if (ifFuncPtr(buffer[index], ifVoidPtr)) {
 value = buffer[index];
 return true;
 }
 }

 return false;
 }

The Apply method iterates through the list and calls doFuncPtr for each value, the value
may be modified (actually, the point of Apply is that the value is modified) since the
parameter to doFuncPtr is not constant:

 template <class Type>
 void DynamicList<Type>::Apply(DoFuncPtr doFuncPtr,
 void* doVoidPtr /* = nullptr */) {
 for (int index = 0; index < size; ++index) {
 doFuncPtr(buffer[index], doVoidPtr);
 }
 }

The Auxiliary Classes

[459]

The ApplyIf method iterates through the list and calls doFuncPtr for each value that
satisfies ifFuncPtr:

 template <class Type>
 void DynamicList<Type>::ApplyIf(IfFuncPtr ifFuncPtr,
 DoFuncPtr doFuncPtr, void* ifVoidPtr /* = nullptr */,
 void* doVoidPtr /* = nullptr */){
 for (int index = 0; index < size; ++index) {
 if (ifFuncPtr(buffer[index], ifVoidPtr)) {
 doFuncPtr(buffer[index], doVoidPtr);
 }
 }
 }

The CopyIf method copies every value that satisfies ifFuncPtr to copyList by calling
PushBack:

 template <class Type>
 void DynamicList<Type>::CopyIf(IfFuncPtr ifFuncPtr,
 DynamicList& copyList,
 void* ifVoidPtr /* = nullptr */) const {
 for (int index = 0; index < size; ++index) {
 if (ifFuncPtr(buffer[index], ifVoidPtr)) {
 copyList.PushBack(buffer[index]);
 }
 }
 }

The RemoveIf method removes every value that satisfies ifFuncPtr by calling Delete for
each value:

 template <class Type>
 void DynamicList<Type>::RemoveIf(IfFuncPtr ifFuncPtr,
 void* ifVoidPtr /* = nullptr */) {
 for (int index = 0; index < size; ++index) {
 if (ifFuncPtr(buffer[index], ifVoidPtr)) {
 Erase(index--);
 }
 }
 }

The ApplyRemoveIf method applies doFuncPtr to each value that satisfies ifFuncPtr.
We cannot simply call Apply and RemoveIf, since doFuncPtr may deallocate the values in
Apply, and ifFuncPtr in RemoveIf would not work when called on deleted values.
Instead, we call doFuncPtr and call Erase immediately after. In this way, the values are
not accessed after the call to doFuncPtr:

The Auxiliary Classes

[460]

 template <class Type>
 void DynamicList<Type>::ApplyRemoveIf(IfFuncPtr ifFuncPtr,
 DoFuncPtr doFuncPtr, void* ifVoidPtr /* = nullptr */,
 void* doVoidPtr /* = nullptr */) {
 for (int index = 0; index < size; ++index) {
 if (ifFuncPtr(buffer[index], ifVoidPtr)) {
 doFuncPtr(buffer[index], doVoidPtr);
 Erase(index--);
 }
 }
 }
};

The Tree class
The C++ standard library hold a set of container classes for arrays, lists, vectors, sets, and
maps. However, there is no class for a tree structure. Therefore, the Tree class has been
added to Small Windows. A tree is made up of a set of nodes, among which, one is the root
node. Each node holds a (possibly empty) list of child nodes:

Tree.h

namespace SmallWindows {
 template <class NodeType>
 class Tree {
 public:
 Tree();
 Tree(NodeType nodeValue,
 initializer_list<Tree<NodeType>*> childList = {});
 Tree(const Tree& tree);
 Tree& operator=(const Tree& tree);
 void Init(const Tree& tree);
 ~Tree();

The tree can be written to, and read from, a file stream or the clipboard:

 bool WriteTreeToStream(ostream& outStream) const;
 bool ReadTreeFromStream(istream& inStream);
 void WriteTreeToClipboard(InfoList& infoList) const;
 void ReadTreeFromClipboard(InfoList& infoList);

Each tree node holds a value that is inspected by the constant method and modified by the
non-constant method:

 NodeType NodeValue() const {return nodeValue;}
 NodeType& NodeValue() {return nodeValue;}

The Auxiliary Classes

[461]

The tree node also holds a list of child nodes, which is inspected by the constant method
and modified by the non-constant method:

 const DynamicList<Tree*>& ChildList() const
 {return childList;}
 DynamicList<Tree*>& ChildList() {return childList;}

 private:
 NodeType nodeValue;
 DynamicList<Tree*> childList;
 };

 template <class NodeType>
 Tree<NodeType>::Tree() {
 // Empty.
 }

The child list is an initializer list of tree nodes; it is empty by default:

 template <class NodeType>
 Tree<NodeType>::Tree(NodeType nodeValue,
 initializer_list<Tree<NodeType>*> childList /* = {} */)
 :nodeValue(nodeValue) {
 for (Tree<NodeType>* childNodePtr : childList) {
 this->childList.PushBack(childNodePtr);
 }
 }

The default constructor and the assignment operator call Init to do the actual initialization
of the tree:

 template <class NodeType>
 Tree<NodeType>::Tree(const Tree& tree) {
 Init(tree);
 }

 template <class NodeType>
 Tree<NodeType>& Tree<NodeType>::operator=(const Tree& tree) {
 if (this != &tree) {
 Init(tree);
 }

 return *this;
 }

The Auxiliary Classes

[462]

 template <class NodeType>
 void Tree<NodeType>::Init(const Tree& tree) {
 nodeValue = tree.nodeValue;

 for (Tree* childPtr : tree.childList) {
 Tree* childClonePtr = new Tree(*childPtr);
 assert(childClonePtr != nullptr);
 childList.PushBack(childClonePtr);
 }
 }

The destructor deletes the children recursively:

 template <class NodeType>
 Tree<NodeType>::~Tree() {
 for (Tree* childPtr : childList) {
 delete childPtr;
 }
 }

The WriteTreeToStream method writes the node value and the number of children to the
stream, and then calls itself recursively for each child:

 template <class NodeType>
 bool Tree<NodeType>::WriteTreeToStream(ostream& outStream)const{
 nodeValue.WriteTreeNodeToStream(outStream);

 int childListSize = childList.Size();
 outStream.write((char*) &childListSize, sizeof childListSize);

 for (Tree* childPtr : childList) {
 childPtr->WriteTreeToStream(outStream);
 }

 return ((bool) outStream);
 }

The ReadTreeFromStream method reads the node value and the number of children from
the stream, creates the children, and calls itself recursively for each child:

 template <class NodeType>
 bool Tree<NodeType>::ReadTreeFromStream(istream& inStream) {
 nodeValue.ReadTreeNodeFromStream(inStream);

 int childListSize;
 inStream.read((char*) &childListSize, sizeof childListSize);

The Auxiliary Classes

[463]

 for (int count = 0; count < childListSize; ++count) {
 Tree* childPtr = new Tree();
 assert(childPtr != nullptr);
 childPtr->ReadTreeFromStream(inStream);
 childList.PushBack(childPtr);
 }

 return ((bool) inStream);
 }

The WriteTreeToClipboard and ReadTreeFromClipboard methods work in ways
similar to WriteTreeToStream and ReadTreeFromStream:

 template <class NodeType>
 void Tree<NodeType>::WriteTreeToClipboard(InfoList& infoList)
 const {
 nodeValue.WriteTreeNodeToClipboard(infoList);

 infoList.AddValue<int>(childList.Size());

 for (Tree* childPtr : childList) {
 childPtr->WriteTreeToClipboard(infoList);
 }
 }

 template <class NodeType>
 void Tree<NodeType>::ReadTreeFromClipboard(InfoList& infoList) {
 nodeValue.ReadTreeNodeFromClipboard(infoList);

 int childListSize;
 infoList.GetValue<int>(childListSize);

 for (int count = 0; count < childListSize; ++count) {
 Tree* childPtr = new Tree();
 assert(childPtr != nullptr);
 childPtr->ReadTreeFromClipboard(infoList);
 childList.PushBack(childPtr);
 }
 }
};

The InfoList class
The InfoList class is an auxiliary class with template methods that stores information in a
character list; information can be added and extracted; or written to, or read from, a buffer.

The Auxiliary Classes

[464]

InfoList.h

namespace SmallWindows {
 class InfoList {
 public:
 template <class AlignType> void Align();
 template <class ListType>
 void AddValue(const ListType value);
 template <class ListType>
 void PeekValue(ListType& value, int index);
 template <class ListType> void GetValue(ListType& value);
 template <class CharType>
 void AddString(basic_string<CharType> text);
 template <class CharType>
 basic_string<CharType> GetString();
 void FromBuffer(const void* voidBuffer, int size);
 void ToBuffer(void* voidBuffer);
 int Size() const {return list.Size();}

 private:
 DynamicList<char> list;
 };

The Align function increases the list one byte at a time until the size of the align type is a
divisor of the list size:

 template <class AlignType>
 void InfoList::Align() {
 int size = sizeof(AlignType);

 while ((list.Size() % size) > 0) {
 list.PushBack(0);
 }
 }

The AddValue function adds a value of the template type by adding its value byte by byte
to the list, while GetValue gets the value at the beginning of the list by extracting it byte by
byte from the list:

 template <class ListType>
 void InfoList::AddValue(const ListType value) {
 int size = sizeof(ListType);
 const char* buffer = (char*) &value;

 for (int count = 0; count < size; ++count) {
 list.PushBack(*(buffer++));
 }
 }

The Auxiliary Classes

[465]

 template <class ListType>
 void InfoList::PeekValue(ListType& value, int index) {
 int size = sizeof(ListType);
 char* buffer = (char*) &value;

 for (int count = 0; count < size; ++count) {
 *(buffer++) = list[index + count];
 }
 }

 template <class ListType>
 void InfoList::GetValue(ListType& value) {
 int size = sizeof(ListType);
 char* buffer = (char*) &value;

 for (int count = 0; count < size; ++count) {
 *(buffer++) = list.Front();
 list.Erase(0);
 }
 }

The AddString function adds the characters of the text to the list along with a terminating
zero character, while GetString reads the text from the list until it encounters the
terminating zero character:

 template <class CharType>
 void InfoList::AddString(basic_string<CharType> text) {
 for (CharType c : text) {
 AddValue<CharType>(c);
 }

 AddValue<CharType>(0);
 }

 template <class CharType>
 basic_string<CharType> InfoList::GetString() {
 bacic_string<CharType> text;

 CharType c, zero = (CharType) 0;
 while ((c = GetValue<CharType>()) != zero) {
 text.append(c);
 }

 return text;
 }
};

The Auxiliary Classes

[466]

InfoList.cpp

#include "SmallWindows.h"

The FromBuffer function adds each byte of the buffer to the list, while ToBuffer extracts
and copies each byte of the list to the buffer:

void InfoList::FromBuffer(const void* voidBuffer, int size) {
 const char* charBuffer = (const char*) voidBuffer;

 for (int count = 0; count < size; ++count) {
 list.PushBack(*(charBuffer++));
 }
}

void InfoList::ToBuffer(void* voidBuffer) {
 char* charBuffer = (char*) voidBuffer;

 for (char c : list) {
 *(charBuffer++) = c;
 }
}

Strings
There are a small set of string functions:

CharPtrToGenericString: This takes text as a char character pointer and
returns the same text as a generic String object. Remember that the String class
holds values of the TCHAR type, of which many are char or wchar_t depending
on system settings.
Split: This takes a string and returns a list of strings holding the space-separated
words of the text.
IsNumeric: This returnstrue if the text holds a numeric value.
Trim: This removes spaces at the beginning and at the end of the text.
ReplaceAll: This replaces one string with another string.
WriteStringToStream and ReadStringFromStream: These write and read a
string to and from a stream.
StartsWith and EndsWith: These returntrue if the text starts or ends with the
subtext.

The Auxiliary Classes

[467]

String.h

namespace SmallWindows {
 extern String CharPtrToGenericString(char* text);
 extern vector<String> Split(String text, TCHAR c = TEXT(' '));
 extern bool IsNumeric(String text);
 extern String Trim(String text);
 void ReplaceAll(String& text, String from, String to);
 extern bool WriteStringToStream(const String& text,
 ostream& outStream);
 extern bool ReadStringFromStream(String& text,
 istream& inStream);
 extern bool StartsWith(String text, String part);
 extern bool EndsWith(String text, String part);
};

String.cpp

#include "SmallWindows.h"

namespace SmallWindows {
 String CharPtrToGenericString(char* text) {
 String result;

 for (int index = 0; text[index] != '\0'; ++index) {
 result += (TCHAR) text[index];
 }

 return result;
 }

 vector<String> Split(String text, TCHAR c /* = TEXT(' ') */) {
 vector<String> list;
 int spaceIndex = -1, size = text.size();

 for (int index = 0; index < size; ++index) {
 if (text[index] == c) {
 String word =
 text.substr(spaceIndex + 1, index - spaceIndex - 1);
 list.push_back(word);
 spaceIndex = index;
 }
 }

 String lastWord = text.substr(spaceIndex + 1);
 list.push_back(lastWord);
 return list;
 }

The Auxiliary Classes

[468]

The IsNumeric method uses the IStringStream method to read the value of the string
and compare the number of characters read with the length of the text. If all the characters
of the text are read, the text will hold a numeric value and true will be returned:

 bool IsNumeric(String text) {
 IStringStream stringStream(Trim(text));
 double value;
 stringStream >> value;
 return stringStream.eof();
 }

 String Trim(String text) {
 while (!text.empty() && isspace(text[0])) {
 text.erase(0, 1);
 }

 while (!text.empty() && isspace(text[text.length() - 1])) {
 text.erase(text.length() - 1, 1);
 }

 return text;
 }

 void ReplaceAll(String& text, String from, String to) {
 int index, fromSize = from.size();

 while ((index = text.find(from)) != -1) {
 text.erase(index, fromSize);
 text.insert(index, to);
 }
 }

 bool WriteStringToStream(const String& text,ostream& outStream){
 int size = text.size();
 outStream.write((char*) &size, sizeof size);

 for (TCHAR tChar : text) {
 outStream.write((char*) &tChar, sizeof tChar);
 }

 return ((bool) outStream);
 }

 bool ReadStringFromStream(String& text, istream& inStream) {
 int size;
 inStream.read((char*) &size, sizeof size);

The Auxiliary Classes

[469]

 for (int count = 0; count < size; ++count) {
 TCHAR tChar;
 inStream.read((char*) &tChar, sizeof tChar);
 text.push_back(tChar);
 }

 return ((bool) inStream);
 }

 bool StartsWith(String text, String part) {
 return (text.find(part) == 0);
 }

 bool EndsWith(String text, String part) {
 int index = text.rfind(part),
 difference = text.length() - part.length();
 return ((index != -1) && (index == difference));
 }
};

Summary
In this chapter, we studied the auxiliary classes used by Small Windows. In Chapter 13, The
Clipboard, Standard Dialogs, and Print Preview, we will look into the registry, the clipboard,
standard dialogs, and print preview.

13
The Registry, Clipboard,

Standard Dialogs, and Print
Preview

This chapter describes the implementation of:

The Registry: A Windows database holding information between application
executions.
The Clipboard: A Windows database holding information that has been cut,
copied, and pasted.
The standard dialogs: This is used for saving and opening documents, for colors
and fonts, and for printing.
Print preview: In the StandardDocument class, it is possible to view the
document on the screen as if it is being printed.

The registry
The static write, read, and erase methods in the Registry class operate on values of the
Integer, Double, Boolean, and String types, as well as memory blocks in the Windows
Registry.

Registry.h:

namespace SmallWindows {
 class Registry {
 public:

The Registry, Clipboard, Standard Dialogs, and Print Preview

[471]

 static void WriteInteger(String key, const int value);
 static void WriteDouble(String key, const double value);
 static void WriteBoolean(String key, const bool value);
 static void WriteString(String key, const String text);

 static void WriteBuffer(String key, const void* buffer,
 int size);

 static int ReadInteger(String key, const int defaultValue);
 static double ReadDouble(String key,
 const double defaultValue);
 static bool ReadBoolean(String key,
 const bool defaultValue);
 static String ReadString(String key,
 const String defaultText);
 static void ReadBuffer(String key, void* buffer, int size,
 const void* defaultBuffer);

 static void Erase(String key);
 };
};

Registry.cpp:

#include "SmallWindows.h"

namespace SmallWindows {

The global constant RegistryFileName holds the path to the registry domain of Small
Windows:

 const String RegistryFileName = TEXT(".\\SmallWindows.ini");

The WriteInteger, WriteDouble, and WriteBoolean functions simply convert the value
to a string and call WriteString:

 void Registry::WriteInteger(String key, const int intValue) {
 WriteBuffer(key, &intValue, sizeof intValue);
 }

 void Registry::WriteDouble(String key,
 const double doubleValue) {
 WriteBuffer(key, &doubleValue, sizeof doubleValue);
 }

 void Registry::WriteBoolean(String key, const bool boolValue) {
 WriteBuffer(key, &boolValue, sizeof boolValue);
 }

The Registry, Clipboard, Standard Dialogs, and Print Preview

[472]

The WriteString function calls the Win32 API function WritePrivateProfileString,
which writes the string to the registry. All the C++ String objects need to be converted to
zero-terminated C strings (char pointers) by c_str:

 void Registry::WriteString(String key, const String text) {
 ::WritePrivateProfileString
 (Application::ApplicationName().c_str(),
 key.c_str(), text.c_str(), RegistryFileName.c_str());
 }

The WriteBuffer function calls the Win32 API function WritePrivateProfileStruct,
which writes the memory block to the registry:

 void Registry::WriteBuffer(String key, const void* buffer,
 int size) {
 ::WritePrivateProfileStruct
 (Application::ApplicationName().c_str(),
 key.c_str(), (void*) buffer, size,
 RegistryFileName.c_str());
 }

The ReadInteger, ReadDouble, and ReadBoolean functions convert the default value to a
string and call ReadString. The return value of ReadString is then converted and
returned; _tstoi and _tstof are the generic versions of the standard C functions atoi
and atof:

 int Registry::ReadInteger(String key, const int defaultValue) {
 int intValue;
 ReadBuffer(key, &intValue, sizeof intValue, &defaultValue);
 return intValue;
 }

 double Registry::ReadDouble(String key,
 const double defaultValue) {
 double doubleValue;
 ReadBuffer(key, &doubleValue, sizeof doubleValue,
 &defaultValue);
 return doubleValue;
 }

 bool Registry::ReadBoolean(String key, const bool defaultValue){
 bool boolValue;
 ReadBuffer(key, &boolValue, sizeof boolValue, &defaultValue);
 return boolValue;
 }

The Registry, Clipboard, Standard Dialogs, and Print Preview

[473]

The ReadString function calls the Win32 API function GetPrivateProfileString,
which reads the string value to text and returns the number of characters read. If the
number of read characters is greater than zero, the text is converted to a string object and
returned; otherwise, the default text is returned:

 String Registry::ReadString(String key,
 const String defaultText) {
 TCHAR text[MAX_PATH];
 int count =
 ::GetPrivateProfileString
 (Application::ApplicationName().c_str(), key.c_str(),
 nullptr, text, MAX_PATH, RegistryFileName.c_str());
 return (count > 0) ? String(text) : defaultText;
 }

The ReadBuffer function calls the Win32 API function ReadPrivateProfileStruct,
which reads the memory block from the registry. If it returns zero, it means that the reading
failed and the default buffer is copied to the buffer:

 void Registry::ReadBuffer(String key, void* buffer, int size,
 const void* defaultBuffer) {
 int result =
 ::GetPrivateProfileStruct
 (Application::ApplicationName().c_str(), key.c_str(),
 buffer, size, RegistryFileName.c_str());

 if (result == 0) {
 ::memcpy(buffer, defaultBuffer, size);
 }
 }

When erasing a value from the registry, we call WritePrivateProfileString with a null
pointer instead of a string, which erases the value:

 void Registry::Erase(String key) {
 ::WritePrivateProfileString
 (Application::ApplicationName().c_str(),
 key.c_str(),nullptr,RegistryFileName.c_str());
 }
};

The Registry, Clipboard, Standard Dialogs, and Print Preview

[474]

The Clipboard class
The Clipboard class is an interface to the global Windows Clipboard, which makes it
possible to cut, copy, and paste information between different kinds of applications. There
are two forms of clipboard operations: ASCII and Unicode text and generic (application-
specific) information.

Clipboard.h:

namespace SmallWindows {

The formats for ASCII and Unicode lines are predefined.

 enum {AsciiFormat = CF_TEXT, UnicodeFormat = CF_UNICODETEXT};

Open and Close open and close the clipboard. They return true if they succeed. Clear
clears the clipboard when it has been opened. More specifically, it removes any potential
information with the specified format and Available returns true if there is information
with the format stored on the clipboard.

Information in different formats may be stored on the clipboard. For instance, when the
user copies text in an application, the text may be stored on the clipboard as ASCII and
Unicode text, as well as a more advanced application-specific format. Available returns
true if information is stored on the clipboard with the specified format:

 class Clipboard {
 public:
 static bool Open(const Window* windowPtr);
 static bool Close();
 static bool Clear();
 static bool Available(unsigned int format);

The WriteText and ReadText functions write and read a list of strings, while the
WriteGeneric and ReadGeneric functions write and read generic information:

 template<int Format, class CharType>
 static bool WriteText(vector<String>& lineList);
 template<int Format, class CharType>
 static bool ReadText(vector<String>& lineList);

 static bool WriteGeneric(unsigned int format,
 InfoList& infoList);
 static bool ReadGeneric(unsigned int format,
 InfoList& infoList);
 };

The Registry, Clipboard, Standard Dialogs, and Print Preview

[475]

Clipboard.cpp:

#include "SmallWindows.h"

namespace SmallWindows {

The Open, Close, and Clear functions call the Win32 API functions OpenClipboard,
CloseClipboard, and EmptyClipboard. They all return integer values; a non-zero value
indicates success:

 bool Clipboard::Open(const Window* windowPtr) {
 return (::OpenClipboard(windowPtr->WindowHandle()) != 0);
 }

 bool Clipboard::Close() {
 return (::CloseClipboard() != 0);
 }

 bool Clipboard::Clear() {
 return (::EmptyClipboard() != 0);
 }

The Available function examines whether there is data with the format available on the
clipboard by calling the Win32 API function FormatAvailable:

 bool Clipboard::Available(unsigned int format) {
 return (::IsClipboardFormatAvailable(format) != 0);
 }

ASCII and Unicode lines
As WriteText and ReadText are template methods, they are included in the header file
instead of the implementation file. WriteText takes a list of generic strings and writes them
in any format to the clipboard; AsciiFormat (one byte/character) and UnicodeFormat
(two bytes/character) are predefined.

Clipboard.h:

 template<int Format,class CharType>
 bool Clipboard::WriteText(vector<String>& lineList) {

First, we need to find the buffer size, which we calculate by adding the total number of
characters in the lines. We also add one for each line since each line also holds a terminating
character. The terminating character is the return character (\r) for each line, except the last
line, which is terminated by a zero character (\0):

The Registry, Clipboard, Standard Dialogs, and Print Preview

[476]

 int bufferSize = 0;

 for (String line : lineList) {
 bufferSize += line.size();
 }

 int listSize = lineList.size();
 bufferSize += listSize;

When we have calculated the buffer size, we can call the Win32 API GlobalAlloc function
to allocate the buffer in the global clipboard. We will later connect it to the format. We use
the size of the template character type for the buffer:

 HGLOBAL globalHandle =
 ::GlobalAlloc(GMEM_MOVEABLE, bufferSize * sizeof(CharType));

If the allocation succeeds, we receive a handle to the buffer. Since the clipboard and its
buffers can be used by several processes at the same time, we need to lock the buffer by
calling the Win32 API function GlobalLock. As long as the buffer is locked, no other
processes can access it. When we lock the buffer we receive a pointer to it, which we can use
when writing information to the buffer:

 if (globalHandle != nullptr) {
 CharType* buffer = (CharType*) ::GlobalLock(globalHandle);

 if (buffer != nullptr) {
 int bufferIndex = 0;

We write the characters of the line to the buffer, and we add a return character unless it is
the last line in the list:

 for (int listIndex = 0; listIndex < listSize;++listIndex) {
 for (TCHAR tChar : lineList[listIndex]) {
 buffer[bufferIndex++] = (CharType) tChar;
 }

 if (listIndex < (listSize - 1)) {
 buffer[bufferIndex++] = (CharType) '\r';
 }
 }

We add a zero character at the end of the buffer to mark its ending:

 buffer[bufferIndex] = (CharType) '\0';

When the buffer has been loaded with information, we only need to unlock the buffer so
that other processes can access it and associate the buffer with the format:

The Registry, Clipboard, Standard Dialogs, and Print Preview

[477]

 ::GlobalUnlock(globalHandle);
 ::SetClipboardData(Format, globalHandle);

Finally, we return true to indicate that the operation succeeded:

 return true;
 }
 }

If we were not able to allocate a buffer to write the line list to, we indicate that the operation
did not succeeded by returning false:

 return false;
 }

When reading the line list with ReadText, we use Format (which usually is AsciiFormat
or UnicodeFormat) to receive a handle from the clipboard, which we then use to lock the
buffer and receive its pointer, which in turn allows to us read from the buffer:

 template<int Format,class CharType>
 bool Clipboard::ReadText(vector<String>& lineList) {
 HGLOBAL globalHandle = ::GetClipboardData(Format);

 if (globalHandle != nullptr) {
 CharType* buffer = (CharType*) ::GlobalLock(globalHandle);

 if (buffer != nullptr) {
 String currentLine;

Note that we have to divide the buffer size with the template character type size (which
may be greater than 1) in order to find the number of characters:

 int charCount =
 ::GlobalSize(globalHandle) / (sizeof(CharType));

 for (int count = 0; count < charCount; ++count) {
 CharType cChar = (*buffer++);

When we encounter a return character (\r), the current line is finished; we add it to the line
list and then clear it in order for it to be ready for the next line:

 switch (cChar) {
 case ((CharType) '\r') :
 lineList.push_back(currentLine);
 currentLine.clear();
 break;

When we encounter a return character ('\0'), we also add the current line to the line list.

The Registry, Clipboard, Standard Dialogs, and Print Preview

[478]

However, there is no need to clear the current line, since the zero character is the last
character in the buffer:

 case ((CharType) '\0') :
 lineList.push_back(currentLine);
 break;

If the character is neither a return nor a zero character, we add it to the current line. Note
that we read a character of the template CharType type and convert it to a generic character
of the TCHAR type:

 default:
 currentLine += (TCHAR) cChar;
 break;
 }
 }

Finally, we unlock the buffer and return true to indicate that the operation succeeded:

 ::GlobalUnlock(globalHandle);
 return true;
 }
 }

If we do not receive a buffer for the format, we return false to indicate that the operation
did not succeed:

 return false;
 }
};

Generic information
The WriteGeneric function is actually simpler than the preceding WriteText function,
since it does need to take line lists into consideration. We simply lock the clipboard buffer,
write each byte in infoList to the buffer, unlock the buffer, and associate it with the
format.

Clipboard.cpp:

 bool Clipboard::WriteGeneric(unsigned int format,
 InfoList& infoList) {
 int bufferSize = infoList.Size();
 HGLOBAL globalHandle = GlobalAlloc(GMEM_MOVEABLE, bufferSize);

The Registry, Clipboard, Standard Dialogs, and Print Preview

[479]

 if (globalHandle != nullptr) {
 void* buffer = ::GlobalLock(globalHandle);

The ToBuffer object in the InfoList function writes its bytes to the buffer:

 if (buffer != nullptr) {
 infoList.ToBuffer(buffer);
 ::GlobalUnlock(globalHandle);
 ::SetClipboardData(format, globalHandle);
 return true;
 }
 }

If we do not manage to allocate the global buffer, we return false to indicate that the
operation did not succeed:

 return false;
 }

The ReadGeneric function locks the clipboard buffer, writes each byte in the buffer to
infoList, unlocks the buffer, and returns true to indicate that the operation succeeded:

 bool Clipboard::ReadGeneric(unsigned int format,
 InfoList& infoList) {
 HGLOBAL globalHandle = ::GetClipboardData(format);

 if (globalHandle != nullptr) {
 void *buffer = ::GlobalLock(globalHandle);
 int bufferSize = ::GlobalSize(globalHandle);
 infoList.FromBuffer(buffer, bufferSize);
 ::GlobalUnlock(globalHandle);
 return true;
 }

If we do not receive the global handle, we return false to indicate that the operation did
not succeed:

 return false;
 }
};

The Registry, Clipboard, Standard Dialogs, and Print Preview

[480]

Standard dialogs
In Windows, it's possible to define dialogs. Unlike windows, dialogs are intended to be
populated with controls such as buttons, boxes, and text fields. A dialog may be modal,
which means that the other windows of the application become disabled until the dialog is
closed. In the next chapter, we will look into how we build our own dialogs.

However, in this section, we will look into the Windows standard dialogs for saving and
opening files, choosing fonts and colors, and printing. Small Windows supports standard
dialogs by wrapping the Win32 API function, which provides us with the dialogs.

The Save dialog
The SaveDialog function displays the standard Save dialogs.

The filter parameters filter the file types to be displayed. Each file format is defined in
two parts: the text displayed in the dialog and the default file suffix. The parts are separated
by a zero character and the filter is terminated with two zero characters. For instance,
consider the following:

Word Files (*.wrd)\0*.drw\0Text Files(*.txt)\0*.txt\0\0

The Registry, Clipboard, Standard Dialogs, and Print Preview

[481]

The fileSuffixList parameter gives the allowed file suffixes and saveFlags holds the
flags of the operation. The following two flags are available:

PromptBeforeOverwrite: This flag is a warning message that is displayed if the
file does already exist
PathMustExist: This flag is an error message that is displayed if the path does
not exist

StandardDialog.h:

namespace SmallWindows {
 class Window;
 class Graphics;

 class StandardDialog {
 public:
 enum SaveFlags {NoSaveFlag = 0,
 PromptBeforeOverwrite = OFN_OVERWRITEPROMPT,
 PathMustExist = OFN_PATHMUSTEXIST,
 NormalSaveFlags = OFN_OVERWRITEPROMPT |
 OFN_PATHMUSTEXIST};

 static bool SaveDialog(Window* windowPtr, String& path,
 const TCHAR* filter,
 const vector<String> fileSuffixList,
 StandardDialog::SaveFlags saveFlags =
 NormalSaveFlags);

StandardDialog.cpp:

#include "SmallWindows.h"

namespace SmallWindows {
 bool StandardDialog::SaveDialog(Window* windowPtr, String& path,
 const TCHAR* filter,
 const vector<String> fileSuffixList,
 SaveFlags saveFlags
 /* = NormalSaveFlags */) {

The Win32 API OPENFILENAME structure saveFileName is loaded with appropriate values:
hwndOwner is set to the window's handle, hInstance is set to the application instance
handle, lpstrFilter is set to the filter parameter, lpstrFile is set to pathBuffer,
which in turn holds the path parameter, and Flags is set to the saveFlags parameter:

The Registry, Clipboard, Standard Dialogs, and Print Preview

[482]

 OPENFILENAME saveFileName;
 memset(&saveFileName, 0, sizeof saveFileName);

 TCHAR pathBuffer[MAX_PATH];
 wcscpy_s(pathBuffer, MAX_PATH, path.c_str());

 saveFileName.lStructSize = sizeof saveFileName;
 saveFileName.hwndOwner = windowPtr->WindowHandle();
 saveFileName.hInstance = Application::InstanceHandle();
 saveFileName.lpstrFilter = filter;
 saveFileName.lpstrFile = pathBuffer;
 saveFileName.nMaxFile = MAX_PATH;
 saveFileName.Flags = saveFlags;

 if (!fileSuffixList.empty()) {
 saveFileName.lpstrDefExt = fileSuffixList.front().c_str();
 }
 else {
 saveFileName.lpstrDefExt = nullptr;
 }

When saveFileName is loaded, we call the Win32 API function GetSaveFileName, which
displays the standard Save dialog and returns a non-zero value if the user terminates the
dialog by clicking on the Save button or pressing the Return key. In that case, we set the
path parameter to the chosen path, check whether the path ends with one of the suffixes in
fileSuffixList, and return true if it does. If the path suffix is not present in the list, we
display an error message and the saving process starts over again. If the user cancels the
process, false is returned. In fact, the only way for the user to finish the process is to
choose a file with a suffix in the list or to cancel the dialog:

 while (true) {
 if (::GetSaveFileName(&saveFileName) != 0) {
 path = pathBuffer;

 for (String fileWithSuffix : fileSuffixList) {
 if (EndsWith(path, TEXT(".") + fileWithSuffix)) {
 return true;
 }
 }

 windowPtr->MessageBox(TEXT("Undefined file suffix."));
 }
 else {
 return false;
 }
 }
 }

The Registry, Clipboard, Standard Dialogs, and Print Preview

[483]

The Open dialog
The OpenDialog function displays the standard Open dialog.

The filter and fileSuffixList parameters work in the same way as in the preceding
SaveDialog function. There are three flags available:

PromptBeforeCreate: This flag displays a warning message if the file already
exists
FileMustExist: The opened file must exist
HideReadOnly: This flag indicates that read-only files are hidden in the dialog

OpenDialog.h:

 enum OpenFlags {NoOpenFlag = 0,
 PromptBeforeCreate = OFN_CREATEPROMPT,
 FileMustExist = OFN_FILEMUSTEXIST,
 HideReadOnly = OFN_HIDEREADONLY,
 NormalOpenFlags = OFN_CREATEPROMPT |
 OFN_FILEMUSTEXIST |
 OFN_HIDEREADONLY};

The Registry, Clipboard, Standard Dialogs, and Print Preview

[484]

 static bool OpenDialog(Window* windowPtr, String& path,
 const TCHAR* filter,
 const vector<String> fileSuffixList,
 StandardDialog::OpenFlags openFlags =
 NormalOpenFlags);

The implementation of OpenDialog is similar to the preceding SaveDialog function. We
use the same OPENFILENAME structure; the only difference is that we call
GetOpenFileName instead of GetSaveFileName.

OpenDialog.cpp:

 bool StandardDialog::OpenDialog(Window* windowPtr, String& path,
 const TCHAR* filter,
 const vector<String> fileSuffixList,
 StandardDialog::OpenFlags openFlags
 /*=NormalOpenFlags */){
 OPENFILENAME openFileName;
 memset(&openFileName, 0, sizeof openFileName);

 TCHAR pathBuffer[MAX_PATH];
 wcscpy_s(pathBuffer, MAX_PATH, path.c_str());

 openFileName.lStructSize = sizeof openFileName;
 openFileName.hwndOwner = windowPtr->WindowHandle();
 openFileName.hInstance = Application::InstanceHandle();
 openFileName.lpstrFilter = filter;
 openFileName.lpstrFile = pathBuffer;
 openFileName.nMaxFile = MAX_PATH;
 openFileName.Flags = openFlags;

 if (!fileSuffixList.empty()) {
 openFileName.lpstrDefExt = fileSuffixList.front().c_str();
 }
 else {
 openFileName.lpstrDefExt = nullptr;
 }

 while (true) {
 if (::GetOpenFileName(&openFileName) != 0) {
 path = pathBuffer;

 for (String fileWithSuffix : fileSuffixList) {
 if (EndsWith(path, TEXT(".") + fileWithSuffix)) {
 return true;
 }
 }

The Registry, Clipboard, Standard Dialogs, and Print Preview

[485]

 windowPtr->MessageBox(TEXT("Undefined file suffix."));
 }
 else {
 return false;
 }
 }
 }

The Color dialog
The ColorDialog function displays a standard Color dialog.

StandardDialog.h:

 static COLORREF customColorArray[];
 static bool ColorDialog(Window* windowPtr, Color& color);

The static COLORREF array customColorArray is used by the user in the color dialog to
store the chosen colors. Since it is static, the customColorArray array is reused between
dialog display sessions.

The ColorDialog function uses the Win32 API CHOOSECOLOR structure to initialize the
dialog. The hwndOwner function is set to the window's handle, rgbResult is set to the
color's COLORREF field, and lpCustColors is set to the custom color array. The
CC_RGBINIT and CC_FULLOPEN flags initialize the dialog with the given color so that it is
fully extended.

The Registry, Clipboard, Standard Dialogs, and Print Preview

[486]

StandardDialog.cpp:

 COLORREF StandardDialog::customColorArray[16];

 bool StandardDialog::ColorDialog(Window* windowPtr,
 Color& color) {
 CHOOSECOLOR chooseColor;
 chooseColor.lStructSize = sizeof chooseColor;
 chooseColor.hwndOwner = windowPtr->WindowHandle();
 chooseColor.hInstance = nullptr;
 chooseColor.rgbResult = color.ColorRef();
 chooseColor.lpCustColors = customColorArray;
 chooseColor.Flags = CC_RGBINIT | CC_FULLOPEN;
 chooseColor.lCustData = 0;
 chooseColor.lpfnHook = nullptr;
 chooseColor.lpTemplateName = nullptr;

The Win32 ChooseColor function displays the Color dialog and returns a non-zero value if
the user terminates the dialog by clicking on the OK button. In that case, we set the chosen
color and return true:

 if (::ChooseColor(&chooseColor) != 0) {
 color.ColorRef() = chooseColor.rgbResult;
 return true;
 }

If the user cancels the dialog, we return false:

 return false;
 }

The Registry, Clipboard, Standard Dialogs, and Print Preview

[487]

The Font dialog
The FontDialog function displays a standard Font dialog.

StandardDialog.h:

 static bool FontDialog(Window* windowPtr, Font& font);

FontDialog.cpp:

 bool StandardDialog::FontDialog(Window* windowPtr, Font& font) {
 LOGFONT logFont = font.LogFont();

The Win32 API CHOOSEFONT structure chooseFont is loaded with appropriate values. The
lpLogFont object is set to the font's LOGFONT field and rgbColors is set to the color's
COLORREF field:

 CHOOSEFONT chooseFont;
 memset(&chooseFont, 0, sizeof chooseFont);

 chooseFont.lStructSize = sizeof(CHOOSEFONT);
 chooseFont.hInstance = Application::InstanceHandle();
 chooseFont.hwndOwner = windowPtr->WindowHandle();
 chooseFont.Flags = CF_INITTOLOGFONTSTRUCT |
 CF_SCREENFONTS | CF_EFFECTS;
 chooseFont.lpLogFont = &logFont;
 chooseFont.rgbColors = font.FontColor().ColorRef();

The Registry, Clipboard, Standard Dialogs, and Print Preview

[488]

The Win32 ChooseFont function displays the Font dialog and returns a non-zero value if
the user clicks on the OK button. In that case, we set the chosen font and color and return
true:

 if (::ChooseFont(&chooseFont) != 0) {
 font.LogFont() = logFont;
 font.FontColor() = Color(chooseFont.rgbColors);
 return true;
 }

If the user cancels the dialog, we return false:

 return false;
 }

The Print dialog
The PrintDialog function displays a standardPrint dialog.

If the user clicks on the Print button, the chosen print settings are saved in the
PrintDialog parameters:

The Registry, Clipboard, Standard Dialogs, and Print Preview

[489]

PrintDialog.h:

 static Graphics* PrintDialog(Window* parentPtr,
 int totalPages,
 int& firstPage, int& lastPage,
 int& copies, bool& sorted);
 };
};

The PrintDialog function loads the Win32 API PRINTDLG structure printDialog with
appropriate values, nFromPage and nToPage are set to the first and last page to be printed
(whose default values are 1 and the number of pages respectively), nMaxPage is set to the
number of pages, and nCopies is set to 1 (the default value).

PrintDialog.cpp:

 Graphics* StandardDialog::PrintDialog(Window* parentPtr,
 int totalPages,
 int& firstPage, int& lastPage,
 int& copies, bool& sorted) {
 PRINTDLG printDialog;
 memset(&printDialog, 0, sizeof printDialog);
 printDialog.lStructSize = sizeof printDialog;
 printDialog.hwndOwner = parentPtr->WindowHandle();
 printDialog.hDevMode = nullptr;
 printDialog.hDevNames = nullptr;
 printDialog.hDC = nullptr;
 printDialog.Flags = PD_ALLPAGES | PD_COLLATE |
 PD_RETURNDC | PD_NOSELECTION;
 printDialog.nFromPage = 1;
 printDialog.nToPage = totalPages;
 printDialog.nMinPage = 1;
 printDialog.nMaxPage = totalPages;
 printDialog.nCopies = 1;
 printDialog.hInstance = nullptr;
 printDialog.lCustData = 0L;
 printDialog.lpfnPrintHook = nullptr;
 printDialog.lpfnSetupHook = nullptr;
 printDialog.lpPrintTemplateName = nullptr;
 printDialog.lpSetupTemplateName = nullptr;
 printDialog.hPrintTemplate = nullptr;
 printDialog.hSetupTemplate = nullptr;

The Win32 API function PrintDlg displays the standard print dialog and returns a non-
zero value if the user finishes the dialog by pressing the Print button. In that case, the first
and last page to be printed, the number of copies, and whether the copies will be sorted are
stored in the parameters, and the pointer to the Graphics object to be used when printing

The Registry, Clipboard, Standard Dialogs, and Print Preview

[490]

is created and returned.

If the user has chosen a page interval, we use the nFromPage and nToPage fields;
otherwise, all pages are selected and we use the nMinPage and nMaxPage fields to set the
first and last page to be printed:

 if (::PrintDlg(&printDialog) != 0) {
 bool pageIntervalSelected =
 ((printDialog.Flags & PD_SELECTION) != 0);

 if (pageIntervalSelected) {
 firstPage = printDialog.nFromPage;
 lastPage = printDialog.nToPage;
 }
 else {
 firstPage = printDialog.nMinPage;
 lastPage = printDialog.nMaxPage;
 }

If the PD_COLLATE flags is present, the user has chosen to sort the pages:

 copies = printDialog.nCopies;
 sorted = (printDialog.Flags & PD_COLLATE) != 0;

Finally, we create and return a pointer to the Graphics object to be used when painting to
the printer.

 return (new Graphics(parentPtr, printDialog.hDC));
 }

If the user terminates the dialog by pressing the Cancel button, we return null:

 return nullptr;
 }
};

Print preview
The PrintPreviewDocument class displays the pages of the document parent window.
The OnKeyDown method closes the document when the user presses the Esc key. The
OnSize method adjusts the physical size of the page so that the page always fits inside the
window. The OnVerticalScroll method shifts the pages when the user scrolls up or
down, and OnPaint calls OnPrint of the parent document for each page.

The Registry, Clipboard, Standard Dialogs, and Print Preview

[491]

PrintPreviewDocument.h:

namespace SmallWindows {
 class PrintPreviewDocument : Document {
 public:
 PrintPreviewDocument(StandardDocument* parentDocument,
 int page = 1, Size pageSize = USLetterPortrait);
 bool OnKeyDown(WORD key, bool shiftPressed,
 bool controlPressed);

The OnSize function is overridden only to neutralize its functionality in Document. In
Document, OnSize modifies the scroll bars, but we do not want that to happen in this class:

 void OnSize(Size clientSize) {/* Empty. */}
 void OnVerticalScroll(WORD flags, WORD thumbPos = 0);
 void OnPaint(Graphics& graphics) const;

The page field holds the current page number and totalPages holds the total number of
pages:

 private:
 void SetHeader();
 int page, totalPages;
 };
};

PrintPreviewDocument.cpp

#include "SmallWindows.h"

The constructor sets the page and totalPages fields to appropriate values.

namespace SmallWindows {
 PrintPreviewDocument::PrintPreviewDocument
 (StandardDocument* parentDocument, int totalPages /* = 1 */,
 Size pageSize/* = USLetterPortrait */)
 :Document(PreviewCoordinate, pageSize, parentDocument),
 page(1),
 totalPages(totalPages) {

The horizontal scroll bar is always set to the width of the window, which means that the
user cannot change its setting:

 SetHorizontalScrollPosition(0);
 SetHorizontalScrollPageWidth(pageSize.Width());
 SetHorizontalScrollTotalWidth(pageSize.Width());

The vertical scroll bar is set to match the number of pages of the document, and the scroll

The Registry, Clipboard, Standard Dialogs, and Print Preview

[492]

thumb corresponds to one page:

 SetVerticalScrollPosition(0);
 SetVerticalScrollPageHeight(pageSize.Height());
 SetVerticalScrollTotalHeight(totalPages * pageSize.Height());

 SetHeader();
 ShowWindow(true);
 }

The header displays the current and total number of pages:

 void PrintPreviewDocument::SetHeader() {
 SetName(TEXT("Print Preview: Page ") + to_String(page) +
 TEXT(" out of ") + to_String(totalPages));
 }

Keyboard input
The OnKeyDown function is called when the user presses a key. If they press the Esc key, the
preview window is closed and destroyed, and the input focus is returned to the main
window of the application. If they press the Home, End, Page Up, or Page Down keys or the
up and down arrow keys, OnVerticalScroll is called to take the appropriate action:

 bool PrintPreviewDocument::OnKeyDown
 (WORD key, bool shiftPressed, bool controlPressed) {
 switch (key) {
 case KeyEscape: {
 Window* parentWindow = ParentWindowPtr();
 ::CloseWindow(WindowHandle());
 parentWindow->SetFocus();
 }
 break;

 case KeyHome:
 OnVerticalScroll(SB_TOP);
 break;

 case KeyEnd:
 OnVerticalScroll(SB_BOTTOM);
 break;

 case KeyUp:
 case KeyPageUp:
 OnVerticalScroll(SB_LINEUP);
 break;

The Registry, Clipboard, Standard Dialogs, and Print Preview

[493]

 case KeyDown:
 case KeyPageDown:
 OnVerticalScroll(SB_LINEDOWN);
 break;
 }

We return true to indicate that the keyboard input has been used:

 return true;
 }

Scroll bar
The OnVerticalScroll function is called when the user scrolls the vertical bar. If they
click on the scroll bar itself, above or below the scroll thumb, the previous or next page is
displayed. And if they drag the thumb to a new position, the corresponding page is
calculated. The SB_TOP and SB_BOTTOM cases are included to accommodate the Home and
End keys from the preceding OnKeyDown function rather than to accommodate any scroll
movements; they set the page to the first or last page:

 void PrintPreviewDocument::OnVerticalScroll(WORD flags,
 WORD thumbPos /* = 0 */) {
 int oldPage = page;

 switch (flags) {
 case SB_LINEUP:
 case SB_PAGEUP:
 page = max(1, page - 1);
 break;

 case SB_LINEDOWN:
 case SB_PAGEDOWN:
 page = min(page + 1, totalPages);
 break;

 case SB_THUMBTRACK:
 case SB_THUMBPOSITION:
 page = (thumbPos / pageSize.Height()) + 1;
 break;

 case SB_TOP:
 page = 1;
 break;

The Registry, Clipboard, Standard Dialogs, and Print Preview

[494]

 case SB_BOTTOM:
 page = totalPages;
 break;
 }

If the scroll movement has resulted in a new page, we set the header and the scroll bar
position and invalidate and update the window:

 if (oldPage != page) {
 SetHeader();
 SetVerticalScrollPosition((page - 1) * pageSize.Height());
 Invalidate();
 UpdateWindow();
 }
 }

The OnPaint function in PrintPreviewDocument calls OnPaint in the parent standard
document window in order to paint the contents of the preview window:

 void PrintPreviewDocument::OnPaint(Graphics& graphics) const {
 StandardDocument* parentDocument =
 (StandardDocument*) ParentWindowPtr();
 parentDocument->OnPrint(graphics, page, 1, totalPages);
 }
};

Summary
In this chapter, we looked into the registry, the clipboard, standard dialogs, and print
preview. In Chapter 14, Dialogs, Controls, and Page Setup, we will look into custom dialogs,
controls, converters, and page setup.

14
Dialogs, Controls, and Page

Setup
In this chapter, we look into the implementation of the following:

Custom dialogs: The Dialog class is intended to be inherited by subclasses and
equipped with controls.
Controls: The Control class and its subclasses. There are controls for edit fields,
check boxes, radio buttons, list boxes, and combo boxes.
Converters: Between strings and other values. For instance, when the user inputs
text that represents a numerical value, it is possible to add a converter that
converts the text to a value, or gives an error message if the text does not hold a
valid value.
Page Setup: Where we extend the Dialog class. The dialog is used when setting
page settings for a document of the StandardDocument class. It handles
information for headers, footers, and margins.

Custom dialogs
The Dialog class handles a set of controls, which are added to the dialog by the
AddControl method. For a subclass of the Dialog class, refer to PageSetupDialog in the
last section of this chapter. The Dialog class provides a modal dialog, which means that all
other windows in the application become disabled until the dialog is closed.

The user may navigate between controls with the Tab key and between radio buttons in the
same group with the arrow keys. They can also use mnemonics to access controls.

Dialogs, Controls, and Page Setup

[496]

Dialog.h

namespace SmallWindows {

The dialogMap field is used by DialogProc to look up the dialog receiving the messages:

 extern map<HWND,Dialog*> dialogMap;
 extern Font DialogFont;

The Dialog class is a subclass of Window even though it calls the default Window
constructor, which does not call the Win32 API function CreateWindowEx. Instead,
DoModal collects information about the dialog and its controls and calls the Win32 API
function DialogBoxIndirectParam:

 class Dialog : public Window {
 public:
 Dialog(String name, Point topLeft,
 Window* parentPtr = nullptr,
 WindowStyle style = OverlappedWindow,
 WindowStyle extendedStyle = NoStyle,
 Font font = DialogFont);

As the name implies, DoModal disables its parent window for as long as the dialog is
visible. That is, until the user closes the dialog:

 bool DoModal();

The destructor deletes all controls, which implies that a subclass to Dialog should add
dynamically allocated controls to the dialog without deleting them:

 ~Dialog();

The AddControl method assigns an identity number to the control and adds it to idMap.

 int AddControl(Control* controlPtr);

The OnSize function is called each time the user changes the size of the dialog, it iterates
through the controls and adjusts their size so that they keep their size relative to the size of
the dialog client area.

 void OnSize(Size windowSize);

When the user presses the Return key OnReturn is called, and when they press the Esc key
OnEscape is called. Their default behavior is to close the dialog and return control to
DoModal with 1 and 0 as the return code; 1 is interpreted as true and 0 as false.

Dialogs, Controls, and Page Setup

[497]

 void OnReturn();
 void OnEscape();

The OnControlInit method is intended to be overridden by subclasses and is called when
the dialog is being initialized (when it receives the WM_INITDIALOG message).

 virtual void OnDialogInit() {/* Empty. */}

The TryClose method is intended to be overridden by subclasses and its default behavior
is to return true. The OnClose method is called when the user tries to close the dialog, and
its default behavior is to call TryClose and close the dialog if it returns true, in which case
OnDestroy is also called:

 virtual bool TryClose() const {return true;}
 virtual void OnClose();
 virtual void OnDestroy() {/* Empty. */}

Each control is assigned an identity number when added to the dialog, which is mapped to
a pointer to the control in idMap:

 map<WORD,Control*> IdMap() const {return idMap;}
 map<WORD,Control*>& IdMap() {return idMap;}

 private:
 map<WORD,Control*> idMap;

The dialog has a header text, top-left position, font, regular style, and extended style, which
are stored by the constructor and used by DoModal in the DialogBoxIndirectParam call.
However, the size of the dialog is not a constructor parameter; instead, the size is based on
the control dimensions:

 String header;
 Point topLeft;
 Font font;
 WindowStyle style;
 WindowStyle extendedStyle;

The leftMargin, maxWidth, topMargin, and maxHeight fields are used when calculating
the size of the dialog. The idea is that its size will be adjusted so that the left and right
margins as well as the top and bottom margins for the closest control are equal:

 int leftMargin, maxWidth, topMargin, maxHeight;

The first control is not assigned the identity number of 0, since it will cause confusion when
handling messages if the control with identity 0 is a push button. Instead, we initialize
currentId with 1000, and decrease its value with each new control. It is necessary to

Dialogs, Controls, and Page Setup

[498]

decrease the value in order for the Tab key to work correctly in the dialog:

 int currentId = 1000;

When the dialog is initialized (by receiving the WM_INITDIALOG message), its size is stored
in originalClientSize to be used by OnSize when calculating the size of the controls:

 Size originalClientSize;

The DialogProc method is called every time the dialog receives a message. Unlike
WindowProc, it will return TRUE if the message has been handled and does not need further
processing. Moreover, it will not call DefWindowProc at the end; instead it will return
FALSE if the message has not been handled:

 friend INT_PTR CALLBACK
 DialogProc(HWND windowHandle, UINT message,
 WPARAM wordParam, LPARAM longParam);
 };
};

Dialog.cpp

#include "SmallWindows.h"

namespace SmallWindows {
 map<HWND,Dialog*> dialogMap;

The default dialog font is set to 12-point Times New Roman.

 Font DialogFont(TEXT("Times New Roman"), 12);

The constructor calls the Window constructor, which sets the parent window pointer and
does nothing else. That is, it does not call the Win32 API function CreateWindowEx. The
header, topLeft, style, extendedStyle, and font fields are stored to be used by
DoModal:

 Dialog::Dialog(String header, Point topLeft,
 Window* parentPtr /*=nullptr*/,
 WindowStyle style /* = OverlappedWindow */,
 WindowStyle extendedStyle /* = NoStyle */,
 Font font /* = DialogFont */)
 :Window(parentPtr),
 header(header),
 topLeft(topLeft),
 style(style),
 extendedStyle(extendedStyle),

Dialogs, Controls, and Page Setup

[499]

 font(font) {
 // Empty.
 }

The DoModal function makes the dialog enter the modal state. That is, its parent window
becomes disabled until the dialog is destroyed. But, it first loads information to infoList.
The AddValue method is a template method of the InfoList class and adds values of
different types to the list:

 bool Dialog::DoModal() {
 InfoList infoList;

First, we need to add the value 1 in order to set the version of the dialog template we want
to work with:

 infoList.AddValue<WORD>(1);

The 0xFFFF value indicates that we want to work with the extended dialog template:

 infoList.AddValue<WORD>(0xFFFF);

The next word is intended for a help identity; however, we do not use it so we just set it to
0:

 infoList.AddValue<DWORD>(0);

Then comes the extended and regular style. Besides the style sent to the constructor, we set
the dialog to have a caption, a system menu, a modal frame, and a font. Due to the
DS_SETFONT flag, we will later add information about the dialog font:

 infoList.AddValue<DWORD>(extendedStyle);
 infoList.AddValue<DWORD>(style | WS_CAPTION | WS_SYSMENU |
 DS_MODALFRAME | DS_SETFONT);

The next value is the number of controls in the dialog, which is given by the size of idMap:

 infoList.AddValue<WORD>(idMap.size());

The top-left position is given by the topLeft field:

 infoList.AddValue<WORD>(topLeft.X());
 infoList.AddValue<WORD>(topLeft.Y());

The size of the client area of the dialog is set by maxWidth, leftMargin, maxHeight, and
topMargin, which has been calculated in AddControl. The width of the client area is the
maximum width of the control set plus its left margin. In this way, we adjust the dialog to
hold the controls with equal left and right margins as well as top and bottom margins to the

Dialogs, Controls, and Page Setup

[500]

closest control:

 infoList.AddValue<WORD>(maxWidth + leftMargin);
 infoList.AddValue<WORD>(maxHeight + topMargin);

The next two zeros indicate that we do not want to use a menu and that we use the default
dialog Windows class:

 infoList.AddValue<WORD>(0);
 infoList.AddValue<WORD>(0);

Then, we set the header of the dialog. The AddString method is an InfoList template
method that adds the string with a terminating 0 to the information list:

 infoList.AddString<TCHAR>(header);

Finally, we set the font of the dialog. We extract the LOGFONT structure of the Font class
and extract its size (lfHeight), whether it is bold (lfWeight) or italics, its character set
(which is 0 since we do not use it), and the font name:

 LOGFONT logFont = font.LogFont();
 infoList.AddValue<WORD>((WORD) logFont.lfHeight);
 infoList.AddValue<WORD>((WORD) logFont.lfWeight);
 infoList.AddValue<BYTE>(logFont.lfItalic);
 infoList.AddValue<BYTE>(logFont.lfCharSet);
 infoList.AddString<TCHAR>(logFont.lfFaceName);

When the dialog information has been added to the information list, we call
AddControlInfo for each control in order for the control information to be added to the
list:

 for (pair<WORD,Control*> entry : idMap) {
 Control* controlPtr = entry.second;
 controlPtr->AddControlInfo(infoList);
 }

When the list has been fully loaded, we allocate a global buffer and load it with the list. The
ToBuffer method copies the list into the buffer:

 HGLOBAL globalHandle = ::GlobalAlloc(0, infoList.Size());
 if (globalHandle != nullptr) {
 char* buffer = (char*) ::GlobalLock(globalHandle);

 if (buffer != nullptr) {
 infoList.ToBuffer(buffer);

Dialogs, Controls, and Page Setup

[501]

We need the handle to the parent window, if present, and then we create the dialog by
calling the Win32 API function DialogBoxIndirectParam, which will not return until the
user closes the dialog. The last parameter is a pointer to the Dialog object that will be sent
with the WM_INITDIALOG message. The return value stored in result is the second
parameter to an EndDialog call:

 HWND parentHandle = (parentPtr != nullptr) ?
 parentPtr->WindowHandle() : nullptr;
 INT_PTR result =
 ::DialogBoxIndirectParam(Application::InstanceHandle(),
 (DLGTEMPLATE*) buffer, parentHandle,
 DialogProc, (LPARAM) this);
 ::GlobalUnlock(globalHandle);

We return true if the result value does not equal 0:

 return (result != 0);
 }
 }

If the global buffer allocation does not succeed, we return false:

 return false;
 }

The destructor iterates through idMap and deletes each control of the dialog:

 Dialog::~Dialog() {
 for (pair<WORD,Control*> entry : idMap) {
 Control* controlPtr = entry.second;
 delete controlPtr;
 }
 }

The AddControl method adds a control to the dialog. If it is the first control to be added
(idMap is empty), leftMargin and topMargin are set to the top-left corner of the control,
and maxWidth and maxHeight are set to the top-left corner plus the control width or
height. However, if it is not, the first control we need to compare is its top-left corner and
size, with the current values, in order to find the margins and maximum size of the control
set:

 int Dialog::AddControl(Control* controlPtr) {
 Point topLeft = controlPtr->TopLeft();
 Size controlSize = controlPtr->GetSize();

Dialogs, Controls, and Page Setup

[502]

 if (idMap.empty()) {
 leftMargin = topLeft.X();
 topMargin = topLeft.X();
 maxWidth = topLeft.X() + controlSize.Width();
 maxHeight = topLeft.Y() + controlSize.Height();
 }
 else {
 leftMargin = min(leftMargin, topLeft.X());
 topMargin = min(topMargin, topLeft.Y());
 maxWidth = max(maxWidth, topLeft.X() + controlSize.Width());
 maxHeight = max(maxHeight,topLeft.Y()+controlSize.Height());
 }

The identity number of the control is set to currentId, which is returned and decreased:

 idMap[currentId] = controlPtr;
 return currentId--;
 }

The OnSize method compares the new size of the client area with its original size. The ratio
between them is stored in factorPair:

 void Dialog::OnSize(Size newClientSize) {
 pair<double, double> factorPair
 (((double) newClientSize.Width() /
 originalClientSize.Width()),
 ((double) newClientSize.Height() /
 originalClientSize.Height()));

The controls of idMap are iterated and the original size of each control is multiplied with
factorPair, the ratio between the new and original client area size. In this way, the control
will keep their sizes relative to the size of the dialog client area when the user changes the
dialog size.

 for (pair<WORD,Control*> entry : idMap) {
 Control* controlPtr = entry.second;
 Rect originalRect = controlPtr->OriginalRect();
 controlPtr->SetWindowDeviceRect(factorPair * originalRect);
 }
 }

The OnReturn method is called when the user presses the Return key, OnEscape is called
when they press the Esc key, and OnClose is called when they close the dialog. The default
behavior is to call TryClose and, if it returns true, call the Win32 API function
EndDialog, which causes the DialogBoxIndirectParam call in DoModal to return the
integer value given as the second parameter to EndDialog:

Dialogs, Controls, and Page Setup

[503]

 void Dialog::OnReturn() {
 if (TryClose()) {
 ::EndDialog(windowHandle, 1);
 }
 }

 void Dialog::OnEscape() {
 if (TryClose()) {
 ::EndDialog(windowHandle, 0);
 }
 }

 void Dialog::OnClose() {
 if (TryClose()) {
 ::EndDialog(windowHandle, 0);
 }
 }

The DialogProc method is called each time the dialog receives a message. The first
parameter is a handle to the dialog, which is mapped to a Dialog pointer by dialogMap:

 INT_PTR CALLBACK DialogProc(HWND dialogHandle, UINT message,
 WPARAM wordParam, LPARAM longParam){
 switch (message) {

The WM_INITDIALOG case is called when the dialog is created, but before it becomes visible.
When the dialog was created by the DialogBoxIndirectParam method, the last
parameter was a pointer to the encapsulating Dialog object. That pointer is given in the
longParam parameter, it is translated into a pointer to Dialog, and added to dialogMap:

 case WM_INITDIALOG: {
 Dialog* dialogPtr = (Dialog*) longParam;
 dialogMap[dialogHandle] = dialogPtr;

The Win32 API window handle of the dialog is assigned to dialogHandle, the original size
of the client area is calculated and stored in originalClientSize, and OnDialogInit is
called:

 dialogPtr->WindowHandle() = dialogHandle;
 dialogPtr->originalClientSize =
 dialogPtr->GetClientDeviceSize();
 dialogPtr->OnDialogInit();

For each control in the dialog, its window handle is set by calling the Win32 API function
GetDlgItem, which takes the dialog window handle and the control identity number, set
by AddControl. Similar to the original client size of the dialog, the original size and

Dialogs, Controls, and Page Setup

[504]

position of the controls are also stored. Finally, OnControlInit is called for each control:

 for (pair<WORD,Control*> entry : dialogPtr->IdMap()) {
 WORD controlId = entry.first;
 Control* controlPtr = entry.second;
 controlPtr->WindowHandle() =
 ::GetDlgItem(dialogHandle,controlId);
 controlPtr->OriginalRect() =
 controlPtr->GetWindowDeviceRect();
 controlPtr->OnControlInit(dialogPtr);
 }
 }

Since the message is handled, TRUE is returned:

 return TRUE;

The WM_SIZE case is sent to the dialog each time its size has been changed. The width and
height are stored in the lower and upper word of the longParam parameter. The OnSize
method is called in order to handle the message:

 case WM_SIZE: {
 Dialog* dialogPtr = dialogMap[dialogHandle];
 assert(dialogPtr != nullptr);
 Size clientSize =
 {LOWORD(longParam), HIWORD(longParam)};
 dialogPtr->OnSize(clientSize);
 }
 return TRUE;

The WM_CLOSE case is called when the user tries to close the dialog. The OnClose method is
called to handle the message, which may or may not close the dialog:

 case WM_CLOSE: {
 Dialog* dialogPtr = dialogMap[dialogHandle];
 assert(dialogPtr != nullptr);
 dialogPtr->OnClose();
 }
 return TRUE;

The WM_DESTROY case is called when the dialog is being destroyed. Unlike WM_CLOSE, there
is no way to prevent the dialog from being destroyed. Since WM_DESTROY is the last message
sent to the dialog, the dialog is removed from dialogMap:

Dialogs, Controls, and Page Setup

[505]

 case WM_DESTROY: {
 Dialog* dialogPtr = dialogMap[dialogHandle];
 dialogPtr->OnDestroy();
 dialogMap.erase(dialogHandle);
 }
 return TRUE;

The WM_COMMAND case is sent to the dialog when the user has performed some action with
one of the controls. In cases where the action involves a control, its identity number is
stored in the lower word of wordParam:

 case WM_COMMAND: {
 Dialog* dialogPtr = dialogMap[dialogHandle];
 WORD controlId = LOWORD(wordParam);

If the identity number is IDOK or IDCANCEL, the user has pressed the Return or Esc key:

 switch (controlId) {
 case IDOK:
 dialogPtr->OnReturn();
 break;

 case IDCANCEL:
 dialogPtr->OnEscape();
 break;

If the identity number is not IDOK or IDCANCEL, we look up the control with idMap and the
notification code in the higher word of wordParam. The notification code may have the
same value as IDOK or IDCANCEL, which is why we use this somewhat cumbersome
construction to handle the code:

 default: {
 Control* controlPtr =
 dialogPtr->IdMap()[controlId];
 WORD notificationCode = HIWORD(wordParam);

When a control gains or loses input focus, OnGainFocus or OnLoseFocus is called; when
they change the input text of a text field, OnChange is called; when they change the
selection of a combo box, list box, or multiple list box, OnSelect is called; and when they
click on a push button, checkbox, or radio button, OnClick is called:

 switch (notificationCode) {
 case EN_SETFOCUS:
 controlPtr->OnGainFocus(dialogPtr);
 break;

Dialogs, Controls, and Page Setup

[506]

 case EN_KILLFOCUS:
 controlPtr->OnLoseFocus(dialogPtr);
 break;

 case EN_CHANGE:
 controlPtr->OnChange(dialogPtr);
 break;

 case CBN_SELCHANGE:
 controlPtr->OnSelect(dialogPtr);
 break;

 case BN_CLICKED:
 controlPtr->OnClick(dialogPtr);
 break;
 }
 }
 }
 }

When the command message has been handled, there is no need to further process it.
Therefore, we return true:

 return TRUE;
 }

If the message has not been handled, we returns false in order for the message to be
further processed by the Windows system:

 return FALSE;
 }
};

Dialogs, Controls, and Page Setup

[507]

Controls
Here is the Small Windows control hierarchy:

Control.h

namespace SmallWindows {
 class Dialog;

The constructor sends the parent window pointer to the Window constructer and stores the
other values until it is added to the dialog information list by AddControlInfo:

 class Control : public Window {
 public:
 Control(Dialog* parentPtr, Point topLeft, Size controlSize,
 String className, String text, int style);
 void AddControlInfo(InfoList& infoList) const;

 Point TopLeft() const {return topLeft;}
 Size GetSize() const {return controlSize;}

The following methods are intended to be overridden by subclasses and are by default
empty:

 virtual void OnControlInit(Dialog* dialogPtr) {/* Empty. */}
 virtual void OnGainFocus(Dialog* dialogPtr) {/* Empty. */}
 virtual void OnLoseFocus(Dialog* dialogPtr) {/* Empty. */}
 virtual void OnChange(Dialog* dialogPtr) {/* Empty. */}
 virtual void OnSelect(Dialog* dialogPtr) {/* Empty. */}
 virtual void OnClick(Dialog* dialogPtr) {/* Empty. */}

Dialogs, Controls, and Page Setup

[508]

The rectangle holding the original size and position is set by Dialog when it receives the
MW_INITDIALOG message:

 Rect OriginalRect() const {return originalRect;}
 Rect& OriginalRect() {return originalRect;}

 private:
 Rect originalRect;

Each control has an identity number, given by AddControl in Dialog. It has a regular
style; the extended style is always 0. The style, top-left corner and control size, class name,
and control text are added to the information list when DoModal in Dialog calls
AddControlInfo:

 int controlId, style;
 Point topLeft;
 Size controlSize;
 String className;
 String text;
 };
};

Control.cpp

#include "..\\SmallWindows.h"

The constructor calls AddControl for its parent dialog to add the control to the dialog and
to receive the control's identity number:

namespace SmallWindows {
 Control::Control(Dialog* parentPtr, Point topLeft,
 Size controlSize, String className,
 String text, int style)
 :Window(parentPtr),
 topLeft(topLeft),
 controlSize(controlSize),
 className(className),
 text(text),
 style(style) {
 controlId = parentPtr->AddControl(this);
 }

The AddControlInfo method, which is called by DoModal in Dialog, adds the
information of the control. First, we need to align the information list with the size of a
double word (4 bytes):

Dialogs, Controls, and Page Setup

[509]

 void Control::AddControlInfo(InfoList& infoList) const {
 infoList.Align<DWORD>();

The help identity and extended style are always 0:

 infoList.AddValue<DWORD>(0);
 infoList.AddValue<DWORD>(0);

The style is extended with the child and visible flags, indicating that the control is a child
window of the dialog and that it becomes visible when the dialog becomes visible:

 infoList.AddValue<DWORD>(WS_CHILD | WS_VISIBLE | style);

The top-left corner and size of the control are given in dialog units, which are based on the
dialog font and are translated into device units:

 infoList.AddValue<WORD>(topLeft.X());
 infoList.AddValue<WORD>(topLeft.Y());
 infoList.AddValue<WORD>(controlSize.Width());
 infoList.AddValue<WORD>(controlSize.Height());

The control identity number is given in order to identify the control when the user performs
some action, such as clicking on a button or selecting a list item:

 infoList.AddValue<DWORD>(controlId);

Each control has a class name, which is button, list, combo, static (label), or edit (text field),
and text, which is the text of a text field or the label of a box or button, but is ignored for list
and combo boxes:

 infoList.AddString<TCHAR>(className);
 infoList.AddString<TCHAR>(text);

Finally, it is possible to send extra data with the control. However, we pass on that
opportunity and just send 0:

 infoList.AddValue<WORD>(0);
 }
};

Dialogs, Controls, and Page Setup

[510]

The button controls
There are four kinds of button controls: group box, push button, checkbox, and radio
button. The checkbox and radio button can be checked; the Check and IsChecked methods
are defined in ButtonControl.

ButtonControl.h

namespace SmallWindows {

 class ButtonControl : public Control {
 public:
 ButtonControl(Dialog* parentPtr, Point topLeft,
 Size controlSize, String text, int style);

 protected:
 void Check(bool check) const;
 bool IsChecked() const;
 };
};

ButtonControl.cpp

#include "..\\SmallWindows.h"

namespace SmallWindows {
 ButtonControl::ButtonControl(Dialog* parentPtr, Point topLeft,
 Size controlSize, String text, int style)
 :Control(parentPtr, topLeft, controlSize,
 TEXT("button"), text, style) {
 // Empty.
 }

We send the BM_SETCHECK message to a check, a checkbox, or a radio button and the
BM_GETCHECK message to find out whether it is checked:

 void ButtonControl::Check(bool check) const {
 ::SendMessage(windowHandle, BM_SETCHECK, check ? 1 : 0, 0);
 }

 bool ButtonControl::IsChecked() const {
 return (::SendMessage(windowHandle, BM_GETCHECK, 0, 0) != 0);
 }
};

A group box is quite simple; it encapsulates a set of other controls and has no functionality
besides its graphical appearance.

Dialogs, Controls, and Page Setup

[511]

GroupBox.h

namespace SmallWindows {
 class GroupBox : public ButtonControl {
 public:
 GroupBox(Dialog* parentPtr, Point topLeft,
 Size controlSize, String text);
 };
};

GroupBox.cpp

#include "..\\SmallWindows.h"

namespace SmallWindows {
 GroupBox::GroupBox(Dialog* parentPtr, Point topLeft,
 Size controlSize, String text)
 :ButtonControl(parentPtr, topLeft, controlSize,
 text, BS_GROUPBOX) {
 // Empty.
 }
};

The clickListener constructor parameter is a listener called when the user clicks on the
button. The OnClick method is overridden from Control.

PushButton.h

namespace SmallWindows {
 class PushButton : public ButtonControl {
 public:
 PushButton(Dialog* parentPtr, Point topLeft,
 Size controlSize, String text,
 VoidListener clickListener,
 bool default = false);
 void OnClick(Dialog* dialogPtr);

 private:
 VoidListener clickListener;
 };
};

Dialogs, Controls, and Page Setup

[512]

PushButton.cpp

#include "..\\SmallWindows.h"

namespace SmallWindows {
 PushButton::PushButton(Dialog* parentPtr, Point topLeft,
 Size controlSize, String text,
 VoidListener clickListener,
 bool default /* = false */)
 :ButtonControl(parentPtr, topLeft, controlSize, text,
 WS_BORDER | WS_GROUP| WS_TABSTOP |
 (default ? BS_DEFPUSHBUTTON : BS_PUSHBUTTON)),
 clickListener(clickListener) {
 // Empty.
 }

 void PushButton::OnClick(Dialog* dialogPtr) {
 clickListener(dialogPtr);
 }
};

A checkbox works independently of other checkboxes. The checkPtr parameter is a
pointer to a Boolean value set to true or false, depending on whether the checkbox is
checked.

CheckBox.h

namespace SmallWindows {
 class CheckBox : public ButtonControl {
 public:
 CheckBox(Dialog* parentPtr, Point topLeft,
 Size controlSize, String text, bool* checkPtr);

 private:
 void OnControlInit(Dialog* dialogPtr);
 void OnClick(Dialog* dialogPtr);
 bool* checkPtr;
 };
};

CheckBox.cpp

#include "..\\SmallWindows.h"

namespace SmallWindows {
 CheckBox::CheckBox(Dialog* parentPtr, Point topLeft,
 Size controlSize, String text, bool* checkPtr)

Dialogs, Controls, and Page Setup

[513]

 :ButtonControl(parentPtr, topLeft, controlSize, text,
 BS_AUTOCHECKBOX | WS_GROUP | WS_TABSTOP),
 checkPtr(checkPtr) {
 }

The OnControlInit method is overridden from Control and checks the box in
accordance with the value that checkPtr points at. OnClick is also overridden from
Control and sets the value to true if the box is checked:

 void CheckBox::OnControlInit(Dialog* dialogPtr) {
 Check(*checkPtr);
 }

 void CheckBox::OnClick(Dialog* dialogPtr) {
 *checkPtr = IsChecked();
 }
};

A radio button is intended to work in a group with other radio buttons, with exactly one
button checked at the time. When the user checks one button in the group, it gets checked
and the previously checked box get unchecked. Each radio button in the group has a zero-
based index; indexPtr points to an integer value, common to all radio buttons in the
group, which is set to the index of the button currently checked.

RadioButton.h

namespace SmallWindows {
 class RadioButton : public ButtonControl {
 public:
 RadioButton(Dialog* parentPtr, Point topLeft, Size size,
 String text, int* indexPtr, int index);
 void OnControlInit(Dialog* dialogPtr);
 void OnClick(Dialog* dialogPtr);

 private:
 int *indexPtr, index;
 };
};

RadioButton.cpp

#include "..\\SmallWindows.h"

The constructor sends the group and tab stop styles to the Control constructor if the index
is 0, since the first button is the first button in the group. All buttons in the group will not be
accessed by the Tab key, but only the first button. The group style indicates that the button
starts a group and all additional radio buttons are considered members of the group, until

Dialogs, Controls, and Page Setup

[514]

another button with the group style is added:

namespace SmallWindows {
 RadioButton::RadioButton(Dialog* parentPtr, Point topLeft,
 Size size, String text, int* indexPtr,
 int index)
 :ButtonControl(parentPtr, topLeft, size, text,
 BS_AUTORADIOBUTTON |
 ((index == 0) ? (WS_GROUP | WS_TABSTOP) : 0)),
 indexPtr(indexPtr),
 index(index) {
 // Empty.
 }

The radio button is checked if it has the same index as the value that indexPtr points at,
and the value is set to the index of the button that is checked:

 void RadioButton::OnControlInit(Dialog* dialogPtr) {
 Check((*indexPtr) == index);
 }

 void RadioButton::OnClick(Dialog* dialogPtr) {
 *indexPtr = index;
 }
};

List controls
There are two kinds of list box: single list box and multiple list box. The single list box
selects exactly one item at a time, and the multiple list box selects one or several (or none at
all) items at the same time. The constructor takes a string list that is loaded to the list box by
LoadList.

ListControl.h

namespace SmallWindows {
 class ListControl : public Control {
 public:
 ListControl(Dialog* parentPtr, Point topLeft,
 Size controlSize, int style,
 list<String> textList);

 protected:
 void LoadList() const;

Dialogs, Controls, and Page Setup

[515]

 private:
 list<String> textList;
 };
};

ListControl.cpp

#include "..\\SmallWindows.h"

namespace SmallWindows {
 ListControl::ListControl(Dialog* parentPtr, Point topLeft,
 Size controlSize, int style,
 list<String> textList)
 :Control(parentPtr, topLeft, controlSize,
 TEXT("listbox"), TEXT(""), style),
 textList(textList) {
 // Empty.
 }

The LoadList method adds the item text in textList to the (single or multiple) list box by
calling the LB_ADDSTRING message:

 void ListControl::LoadList() const {
 for (String text : textList) {
 ::SendMessage(windowHandle, LB_ADDSTRING,
 0, (LPARAM) text.c_str());
 }
 }
};

A (single) list box is a box holding a list of visible items, as opposed to a combo box where
the items are dropped down. If necessary, the list can be scrolled. Only one item can be
selected at a time, as opposed to the multiple list. Similar to the radio box group, the
constructor takes the indexPtr pointer pointing at an integer value holding the zero-based
index of the currently selected item. Moreover, the constructor also takes a string list that is
loaded into the list box by LoadList in ListControl.

ListBox.h

namespace SmallWindows {
 class ListBox : public ListControl {
 public:
 ListBox(Dialog* parentPtr, Point topLeft, Size controlSize,
 initializer_list<String> textList, int* indexPtr);
 void OnControlInit(Dialog* dialogPtr);
 void OnSelect(Dialog* dialogPtr);

Dialogs, Controls, and Page Setup

[516]

 private:
 void SelectList(int index) const;
 int GetListSelection() const;
 int* indexPtr;
 };
};

ListBox.cpp

#include "..\\SmallWindows.h"

namespace SmallWindows {
 ListBox::ListBox(Dialog* parentPtr, Point topLeft,
 Size controlSize, initializer_list<String> textList,
 int* indexPtr)
 :ListControl(parentPtr, topLeft, controlSize, WS_VSCROLL |
 WS_BORDER | LBS_NOTIFY | WS_GROUP | WS_TABSTOP,
 textList),
 indexPtr(indexPtr) {
 // Empty.
 }

 void ListBox::OnControlInit(Dialog* dialogPtr) {
 LoadList();
 SelectList(*indexPtr);
 }

 void ListBox::OnSelect(Dialog* dialogPtr) {
 *indexPtr = GetListSelection();
 }

We send the LB_SETCURSEL message to select an item and LB_GETCURSEL to get the index
of the currently selected item:

 void ListBox::SelectList(int index) const {
 ::SendMessage(windowHandle, LB_SETCURSEL, index, 0);
 }

 int ListBox::GetListSelection() const {
 return ::SendMessage(windowHandle, LB_GETCURSEL, 0, 0);
 }
};

A multiple list box is a list box where the user can select more than one value, or no value at
all; therefore, the indexSetPtr parameter is a pointer to a set of indexes rather than a
pointer to one index.

Dialogs, Controls, and Page Setup

[517]

MultipleListBox.h

namespace SmallWindows {
 class MultipleListBox : public ListControl {
 public:
 MultipleListBox(Dialog* parentPtr, Point topLeft,
 Size controlSize, initializer_list<String> textList,
 set<int>* indexSetPtr);
 void OnControlInit(Dialog* dialogPtr);
 void OnSelect(Dialog* dialogPtr);

 private:
 void SelectMultiple(set<int>& indexSet) const;
 set<int> GetSelectionMultiple() const;
 set<int>* indexSetPtr;
 };
};

MultipleListBox.cpp

#include "..\\SmallWindows.h"

namespace SmallWindows {
 MultipleListBox::MultipleListBox(Dialog* parentPtr,
 Point topLeft, Size controlSize,
 initializer_list<String> textList,
 set<int>* indexSetPtr)
 :ListControl(parentPtr, topLeft, controlSize, LBS_MULTIPLESEL |
 WS_VSCROLL | WS_BORDER | LBS_NOTIFY | WS_GROUP |
 WS_TABSTOP, textList),
 indexSetPtr(indexSetPtr) {
 // Empty.
 }

 void MultipleListBox::OnControlInit(Dialog* dialogPtr) {
 LoadList();
 SelectMultiple(*indexSetPtr);
 }

 void MultipleListBox::OnSelect(Dialog* dialogPtr) {
 *indexSetPtr = GetSelectionMultiple();
 }

When the user selects 0 or several values in the multiple list, we iterate through the indexes
and send the LB_SETSEL message for each index with a Boolean value indicating whether
its item will be set:

Dialogs, Controls, and Page Setup

[518]

 void MultipleListBox::SelectMultiple(set<int>& indexSet) const {
 int size = ::SendMessage(windowHandle, LB_GETCOUNT, 0, 0);
 for (int index = 0; index < size; ++index) {
 BOOL selected = (indexSet.count(index) > 0) ? TRUE : FALSE;
 ::SendMessage(windowHandle, LB_SETSEL, selected, index);
 }
 }

When checking which values are currently selected, we send the LB_GETSEL message for
each index and add the indexes of the selected items to the set, which is then returned:

 set<int> MultipleListBox::GetSelectionMultiple() const {
 int size = ::SendMessage(windowHandle, LB_GETCOUNT, 0, 0);

 set<int> indexSet;
 for (int index = 0; index < size; ++index) {
 if (::SendMessage(windowHandle, LB_GETSEL, index, 0) != 0) {
 indexSet.insert(index);
 }
 }

 return indexSet;
 }
};

Combo box
A combo box is a drop-down list of items, from which the user can select one. The
functionality of a combo box is equal to a list box, only their graphical appearance differs.
Moreover, the functionality is also equivalent to a radio button group. Similar to ListBox
and Radiobutton, the constructor takes the indexPtr parameter, which is a pointer to an
integer value, holding the zero-based index of the item currently selected.

ComboBox.h

namespace SmallWindows {
 class ComboBox : public Control {
 public:
 ComboBox(Dialog* parentPtr, Point topLeft, Size controlSize,
 initializer_list<String> textList, int* indexPtr);
 void OnControlInit(Dialog* dialogPtr);
 void OnSelect(Dialog* dialogPtr);

Dialogs, Controls, and Page Setup

[519]

 private:
 void LoadCombo() const;
 void SelectCombo(int index) const;
 int GetComboSelection() const;
 list<String> textList;
 int* indexPtr;
 };
};

ComboBox.cpp

#include "..\\SmallWindows.h"

namespace SmallWindows {
 ComboBox::ComboBox(Dialog* parentPtr, Point topLeft,
 Size controlSize, initializer_list<String> textList,
 int* indexPtr)
 :Control(parentPtr, topLeft, controlSize, TEXT("combobox"),
 TEXT(""), CBS_DROPDOWN | CBS_HASSTRINGS | LBS_NOTIFY |
 LBS_COMBOBOX | WS_GROUP | WS_TABSTOP),
 textList(textList),
 indexPtr(indexPtr) {
 // Empty.
 }

 void ComboBox::OnControlInit(Dialog* dialogPtr) {
 LoadCombo();
 SelectCombo(*indexPtr);
 }

 void ComboBox::OnSelect(Dialog* dialogPtr) {
 *indexPtr = GetComboSelection();
 }

The CB_ADDSTRING message loads the combo box with items, CB_SETCURSEL sets the
selected item, and CB_GETCURSEL returns the index of the selected item:

 void ComboBox::LoadCombo() const {
 for (String text : textList) {
 ::SendMessage(windowHandle, CB_ADDSTRING,
 0, (LPARAM) text.c_str());
 }
 }

 void ComboBox::SelectCombo(int index) const {
 ::SendMessage(windowHandle, CB_SETCURSEL, index, 0);
 }

Dialogs, Controls, and Page Setup

[520]

 int ComboBox::GetComboSelection() const {
 return ::SendMessage(windowHandle, CB_GETCURSEL, 0, 0);
 }
};

Label
A label is a displayed text that often serves as a prompt to a text field; it has no functionality
besides its graphical appearance.

Label.h

namespace SmallWindows {
 class Label : public Control {
 public:
 Label(Dialog* parentPtr, Point topLeft,
 Size controlSize, String text);
 };
};

Label.cpp

#include "..\\SmallWindows.h"

namespace SmallWindows {
 Label::Label(Dialog* parentPtr, Point topLeft,
 Size controlSize, String text)
 :Control(parentPtr, topLeft, controlSize,
 TEXT("static"), text, 0) {
 }
};

The TextField class
The TextField class is a template for a text field; it takes the type of the value stored in the
text field; an integer base for octal, decimal, or hexadecimal integers (ignored for non-
integer types); and a converter of the Converter class in the next section, which converts
between values and text. The constructor's valuePtr parameter is a pointer to the value to
be edited in the text field.

Dialogs, Controls, and Page Setup

[521]

TextField.h

namespace SmallWindows {
 enum EditStyle {LeftEdit = ES_LEFT, CenterEdit = ES_CENTER,
 RightEdit = ES_RIGHT, DigitsOnly = ES_NUMBER,
 ReadOnly = ES_READONLY, Password = ES_PASSWORD,
 Uppercase = ES_UPPERCASE,Lowercase=ES_LOWERCASE,
 AutoScroll = ES_AUTOHSCROLL};

 enum {oct = 8, dec = 10, hex = 16};

 template <class Type = String, int Base = dec,
 class TheConverter = Converter<Type>>
 class TextField : public Control {
 public:
 TextField(Dialog* parentPtr, Point topLeft,
 Size controlSize, Type* valuePtr,
 int size = 100, EditStyle style = AutoScroll);

The OnControlInit method is called when the text field has been created. It converts the
value to the text displayed in the text field. The OnLoseFocus method is called when the
user leaves the text field and converts its text to a value of the template type if the text is
valid. If it is not valid, the text field is set to the text converted from the latest valid value:

 void OnControlInit(Dialog* dialogPtr);
 void OnLoseFocus(Dialog* dialogPtr);

 protected:
 String GetText() const;
 void SetText(String text);

 private:
 Type* valuePtr;
 };

 template <class Type = String, int Base = dec,
 class TheConverter = Converter<Type>>
 TextField<Type,Base,TheConverter>::TextField
 (Dialog* parentPtr, Point topLeft, Size controlSize,
 Type* valuePtr, int size /* = 100 */,
 EditStyle style /* = AutoScroll */)
 :Control(parentPtr, topLeft, controlSize, TEXT("edit"),
 TEXT(""), style | WS_BORDER | WS_GROUP | WS_TABSTOP),
 valuePtr(valuePtr) {
 // Empty.
 }

Dialogs, Controls, and Page Setup

[522]

The Win32 API function GetWindowText gets the text of the text field and SetWindowText
sets its text. We need to convert from a zero-terminated character pointer string to a String
object by calling the String constructor, and from a String object to a zero-terminated
character pointer by calling the c_str method of the String class:

 template <class Type = String, int Base = dec,
 class TheConverter = Converter<Type>>
 String TextField<Type,Base,TheConverter>::GetText() const {
 TCHAR buffer[MAX_PATH];
 ::GetWindowText(windowHandle, buffer, MAX_PATH);
 return String(buffer);
 }

 template <class Type = String, int Base = dec,
 class TheConverter = Converter<Type>>
 void TextField<Type,Base,TheConverter>::SetText(String text) {
 ::SetWindowText(windowHandle, text.c_str());
 }

When the text field has been initialized, the ValueToText method of the Converter class
is called to convert the value pointed to by valuePtr to the text displayed in the text field:

 template <class Type = String, int Base = dec,
 class TheConverter = Converter<Type>>
 void TextField<Type,Base,TheConverter>::OnControlInit
 (Dialog* dialogPtr) {
 SetText(TheConverter::ValueToText(*valuePtr, Base));
 }

When the text field loses input focus, the text is evaluated by the Check method in order to
decide whether it is suitable to be converted to a value. If it is suitable, the ValueToText
method is called to do the actual converting, and then the text is loaded to the text field:

 template <class Type = String, int Base = dec,
 class TheConverter = Converter<Type>>
 void TextField<Type,Base,TheConverter>::OnLoseFocus
 (Dialog* dialogPtr) {
 String text = GetText();

 if (TheConverter::Check(text, Base)) {
 *valuePtr = TheConverter::TextToValue(text, Base);
 }

 SetText(TheConverter::ValueToText(*valuePtr, Base));
 }
};

Dialogs, Controls, and Page Setup

[523]

Converters
The Converter class is a template class intended to be specialized by type. Its task is to
convert values between the template type and the String objects. The Check variable takes
a string and returns true if it holds a valid value, TextToValue converts a text to a value,
and ValueToText converts a value to a text.

Converter.h

namespace SmallWindows {
 template <class Type>
 class Converter {
 public:
 static bool Check(String& text, int base);
 static Type TextToValue(String& text, int base);
 static String ValueToText(Type& value, int base);
 };

Signed integers
Small Windows comes equipped with a set of predefined converters, which are
specializations of Converter. One of these handles signed integer values of the type int.

Converter.h

 template <>
 class Converter<int> {
 public:
 static bool Check(String& text, int base);
 static int TextToValue(String& text, int base);
 static String ValueToText(int& value, int base);
 };

Converter.cpp

#include "SmallWindows.h"

When checking whether the given string holds a valid integer value, we create an
IStringStream object (the generic version of the Standard C++ class istringstream,
with TCHAR instead of char) initialized with the trimmed text (initial and terminating white
spaces are removed). Then, we read the text into an integer variable with the base
parameter and test whether the stream has reached end-of-file (eof). If it has, all characters
of the text have been read, which implies that the text holds a valid integer value and true
is returned:

Dialogs, Controls, and Page Setup

[524]

namespace SmallWindows {
 bool Converter<int>::Check(String& text, int base) {
 IStringStream stringStream(Trim(text));
 int value;
 stringStream >> setbase(base) >> value;
 return stringStream.eof();
 }

The conversion from a string to an integer is similar to Check, which we covered earlier,
with the difference that we return the integer value assuming that Check has confirmed that
the text holds a valid integer value:

 int Converter<int>::TextToValue(String& text, int base) {
 IStringStream stringStream(Trim(text));
 int value;
 stringStream >> setbase(base) >> value;
 return value;
 }

When converting an integer to a string, we use the OStringStream method (the generic
version of ostringstream), write the value to the stream, and return the stream converted
to a string by str:

 String Converter<int>::ValueToText(int& value, int base) {
 OStringStream outputStream;
 outputStream << setbase(base) << value;
 return outputStream.str();
 }

Unsigned integers
Unsigned integers work in the same way as signed integers, the only difference is that int
has been replaced by unsignedint:

Converter.h

 template <>
 class Converter<unsigned int> {
 public:
 static bool Check(String& text, int base);
 static unsigned int TextToValue(String& text, int base);
 static String ValueToText(unsigned int& value, int base);
 };

Dialogs, Controls, and Page Setup

[525]

Converter.cpp

 bool Converter<unsigned int>::Check(String& text, int base) {
 IStringStream stringStream(Trim(text));
 unsigned int value;
 stringStream >> setbase(base) >> value;
 return stringStream.eof() && (text.find(TEXT("-")) == -1);
 }
 unsigned int Converter<unsigned int>::TextToValue(String& text,
 int base){
 IStringStream stringStream(Trim(text));
 unsigned int value;
 stringStream >> setbase(base) >> value;
 return value;
 }
 String Converter<unsigned int>::ValueToText(unsigned int&value,
 int base){
 OStringStream outputStream;
 outputStream << setbase(base) << value;
 return outputStream.str();
 }

Double values
Double values ignore the base parameter and do not use the setbase manipulator;
otherwise, the test and conversions work in the same way as in integer cases.

Converter.h

 template <>
 class Converter<double> {
 public:
 static bool Check(String& text, int /* base */);
 static double TextToValue(String& text, int /* base */);
 static String ValueToText(double& value, int /* base */);
 };

Converter.cpp

 bool Converter<double>::Check(String& text, int /* base */) {
 IStringStream stringStream(Trim(text));
 double value;
 stringStream >> value;
 return stringStream.eof();
 }

Dialogs, Controls, and Page Setup

[526]

 double Converter<double>::TextToValue(String& text,
 int /* base */) {
 IStringStream stringStream(Trim(text));
 double value;
 stringStream >> value;
 return value;
 }
 String Converter<double>::ValueToText(double& value,
 int /* base */) {
 OStringStream outputStream;
 outputStream << value;
 return outputStream.str();
 }

Strings
The string case is trivial, since a string can always be converted to another string.

Converter.h

 template <>
 class Converter<String> {
 public:
 static bool Check(String& text, int /* base */)
 {return true;}
 static String TextToValue(String& text, int /* base */)
 {return String(text);}
 static String ValueToText(String& value, int /* base */)
 {return String(value);}
 };

Rational numbers
A rational number is a number that can be expressed as a fraction of two integers, where
the second integer is non-zero. We do not really use rational numbers in this section or
complex numbers in the next section, in our applications. They are included only to
demonstrate the converter, and they are implemented in the Appendix at the end of the
book.

Converter.h

 template <>
 class Converter<Rational> {

Dialogs, Controls, and Page Setup

[527]

 public:
 static bool Check(String& text, int /* base */);
 static Rational TextToValue(String& text, int /* base */);
 static String ValueToText(Rational& value, int /* base */);
 };

When checking whether the text holds a valid rational number, we simply create an object
of the Rational class. If the constructor accepts the text without throwing a
NotaRationalNumber exception, we return true. If it throws the exception, the text is not
acceptable and we return false.

Converter.cpp

 bool Converter<Rational>::Check(String& text, int /* base */) {
 try {
 Rational value(text);
 return true;
 }
 catch (NotaRationalNumber) {
 return false;
 }
 }

When converting a string to a rational number, we create and return a Rational object,
assuming that Check has confirmed that the text holds a valid rational number:

 Rational Converter<Rational>::TextToValue(String& text,
 int /* base */) {
 return Rational(text);
 }

When converting a rational number to a string we call the String conversion operator of
the Rational class.

 String Converter<Rational>::ValueToText(Rational& value,
 int /* base */) {
 return ((String) value);
 }

Complex numbers
A complex number is the sum z = x + yi of a real number x and a real number y multiplied
by the imaginary unit i, which is the solution of the equation x2 + 1 = 0. The specialization of
Converter with regard to the Complex class is similar to the Rational specialization.

Dialogs, Controls, and Page Setup

[528]

Converter.h

 template <>
 class Converter<Complex> {
 public:
 static bool Check(String& text, int /* base */);
 static Complex TextToValue(String& text, int /* base */);
 static String ValueToText(Complex& value, int /* base */);
 };
};

Converter.cpp

 bool Converter<Complex>::Check(String& text, int /* base */) {
 try {
 Complex value(text);
 return true;
 }
 catch (NotaComplexNumber) {
 return false;
 }
 }

 Complex Converter<Complex>::TextToValue(String& text,
 int /* base */) {
 return Complex(text);
 }

 String Converter<Complex>::ValueToText(Complex& value,
 int /* base */) {
 return ((String) value);
 }
};

Page setup
The final section describes page setup functionality, divided into the PageSetupInfo class,
which handles page setup information, the PageSetupDialog, which is a subclass of
Dialog displayed for the user to input page setup information, and the Template function,
which translates code input by the user in the Page Setup dialog to actual values.

Dialogs, Controls, and Page Setup

[529]

Page setup information
The PageSetupInfo class holds information about the page: portrait or landscape
orientation, the margins, the text and font of the header and footer, whether the header and
footer will be present on the first page, and whether the pages will be enclosed by a frame.

PageSetupInfo.h

namespace SmallWindows {
 enum Orientation {Portrait, Landscape};

 class PageSetupInfo {
 public:
 PageSetupInfo();
 PageSetupInfo(const PageSetupInfo& pageSetupInfo);
 bool operator==(const PageSetupInfo& pageSetupInfo);
 bool operator!=(const PageSetupInfo& pageSetupInfo);

 void ClearPageSetupInfo();
 bool WritePageSetupInfoToStream(ostream& outStream) const;
 bool ReadPageSetupInfoFromStream(istream& inStream);

 Orientation& GetOrientation() {return orientation;}
 int& LeftMargin() {return leftMargin;}
 int& TopMargin() {return topMargin;}
 int& RightMargin() {return rightMargin;}
 int& BottomMargin() {return bottomMargin;}
 String& HeaderText() {return headerText;}
 String& FooterText() {return footerText;}
 bool& HeaderFirst() {return headerFirst;}
 bool& FooterFirst() {return footerFirst;}
 bool& Frame() {return frame;}
 Font& HeaderFont() {return headerFont;}
 Font& FooterFont() {return footerFont;}

 Orientation GetOrientation() const {return orientation;}
 int LeftMargin() const {return leftMargin;}
 int TopMargin() const {return topMargin;}
 int RightMargin() const {return rightMargin;}
 int BottomMargin() const {return bottomMargin;}
 String HeaderText() const {return headerText;}
 String FooterText() const {return footerText;}
 bool HeaderFirst() const {return headerFirst;}
 bool FooterFirst() const {return footerFirst;}
 bool Frame() const {return frame;}
 Font HeaderFont() const {return headerFont;}
 Font FooterFont() const {return footerFont;}

Dialogs, Controls, and Page Setup

[530]

 private:
 Orientation orientation;
 int leftMargin, topMargin, rightMargin, bottomMargin;
 String headerText, footerText;
 bool headerFirst, footerFirst, frame;
 Font headerFont, footerFont;
 };
};

PageSetupInfo.cpp

#include "..\\SmallWindows\\SmallWindows.h"

The default constructor initializes the default member values by calling PageSetupInfo.

namespace SmallWindows {
 PageSetupInfo::PageSetupInfo() {
 ClearPageSetupInfo();
 }

The default constructor and assignment operator copy the member values.

 PageSetupInfo::PageSetupInfo(const PageSetupInfo& pageSetupInfo)
 :orientation(pageSetupInfo.orientation),
 leftMargin(pageSetupInfo.leftMargin),
 topMargin(pageSetupInfo.topMargin),
 rightMargin(pageSetupInfo.rightMargin),
 bottomMargin(pageSetupInfo.bottomMargin),
 headerText(pageSetupInfo.headerText),
 footerText(pageSetupInfo.footerText),
 headerFirst(pageSetupInfo.headerFirst),
 footerFirst(pageSetupInfo.footerFirst),
 frame(pageSetupInfo.frame),
 headerFont(pageSetupInfo.headerFont),
 footerFont(pageSetupInfo.footerFont) {
 // Empty.
 }

The equality operators compare all the fields:

 bool PageSetupInfo::operator==
 (const PageSetupInfo& pageSetupInfo) {
 return (orientation == pageSetupInfo.orientation) &&
 (leftMargin == pageSetupInfo.leftMargin) &&
 (topMargin == pageSetupInfo.topMargin) &&
 (rightMargin == pageSetupInfo.rightMargin) &&
 (bottomMargin == pageSetupInfo.bottomMargin) &&
 (headerText == pageSetupInfo.headerText) &&
 (footerText == pageSetupInfo.footerText) &&

Dialogs, Controls, and Page Setup

[531]

 (headerFirst == pageSetupInfo.headerFirst) &&
 (footerFirst == pageSetupInfo.footerFirst) &&
 (frame == pageSetupInfo.frame) &&
 (headerFont == pageSetupInfo.headerFont) &&
 (footerFont == pageSetupInfo.footerFont);
 }

 bool PageSetupInfo::operator!=
 (const PageSetupInfo& pageSetupInfo) {
 return !(*this == pageSetupInfo);
 }
 void PageSetupInfo::ClearPageSetupInfo() {
 orientation = Portrait;
 leftMargin = 25;
 topMargin = 25;
 rightMargin = 25;
 bottomMargin = 25;
 headerText = TEXT("");
 footerText = TEXT("");
 headerFirst = true;
 footerFirst = true;
 frame = true;
 headerFont = Font(TEXT("Times New Roman"), 12, false, true);
 footerFont = Font(TEXT("Times New Roman"), 12, false);
 }

Page setup information can be written to, or read from, a stream:

 bool PageSetupInfo::WritePageSetupInfoToStream
 (ostream& outStream) const {
 outStream.write((char*) &orientation, sizeof orientation);
 outStream.write((char*) &leftMargin, sizeof leftMargin);
 outStream.write((char*) &topMargin, sizeof topMargin);
 outStream.write((char*) &rightMargin, sizeof rightMargin);
 outStream.write((char*) &bottomMargin, sizeof bottomMargin);
 WriteStringToStream(headerText, outStream);
 WriteStringToStream(footerText, outStream);
 outStream.write((char*) &headerFirst, sizeof headerFirst);
 outStream.write((char*) &footerFirst, sizeof footerFirst);
 outStream.write((char*) &frame, sizeof frame);
 headerFont.WriteFontToStream(outStream);
 footerFont.WriteFontToStream(outStream);
 return ((bool) outStream);
 }

 bool PageSetupInfo::ReadPageSetupInfoFromStream
 (istream& inStream) {
 inStream.read((char*) &orientation, sizeof orientation);

Dialogs, Controls, and Page Setup

[532]

 inStream.read((char*) &leftMargin, sizeof leftMargin);
 inStream.read((char*) &topMargin, sizeof topMargin);
 inStream.read((char*) &rightMargin, sizeof rightMargin);
 inStream.read((char*) &bottomMargin, sizeof bottomMargin);
 ReadStringFromStream(headerText, inStream);
 ReadStringFromStream(footerText, inStream);
 inStream.read((char*) &headerFirst, sizeof headerFirst);
 inStream.read((char*) &footerFirst, sizeof footerFirst);
 inStream.read((char*) &frame, sizeof frame);
 headerFont.ReadFontFromStream(inStream);
 footerFont.ReadFontFromStream(inStream);
 return ((bool) inStream);
 }
};

The Page Setup dialog
The PageSetupDialog class is a part of Small Windows and is displayed by the
StandardDocument framework when the user selects the Page Setup menu item. The word
processor earlier in this book gives an example. The PageSetupDialog class is a subclass of
Dialog and provides the user with the possibility to input the information in
PageSetupInfo. Note that the header and footer text can be annotated with blocks of code,
explained in the next section.

Dialogs, Controls, and Page Setup

[533]

PageSetupDialog.h

namespace SmallWindows {
 class PageSetupDialog : public Dialog {
 public:
 PageSetupDialog(Window* parentPtr, PageSetupInfo* infoPtr);

Each push button has its own listener:

 DEFINE_VOID_LISTENER(PageSetupDialog, OnHeaderFont);
 DEFINE_VOID_LISTENER(PageSetupDialog, OnFooterFont);
 DEFINE_VOID_LISTENER(PageSetupDialog, OnOk);
 DEFINE_VOID_LISTENER(PageSetupDialog, OnCancel);

The page setup information is pointed at by infoPtr, which is modified when the user
changes the state of the controls. There is also backupInfo, in case the user cancels the
dialog:

 private:
 PageSetupInfo *infoPtr, backupInfo;
 };
};

PageSetupDialog.cpp

#include "SmallWindows.h"

The constructor sets the pointer infoPtr to point at the page setup information. The
information is also stored in backupInfo, which will be used if the user cancels the dialog;
refer to OnCancel:

namespace SmallWindows {
 PageSetupDialog::PageSetupDialog(Window* parentPtr,
 PageSetupInfo* infoPtr)
 :Dialog(TEXT("Page Setup"), Point(0, 0), parentPtr),
 infoPtr(infoPtr),
 backupInfo(*infoPtr) {

Each control gives the Page Setup dialog (this) as its parent dialog, which means that the
controls will be deleted by the dialog's destructor. This implies that we do need to keep
track of the controls in order to delete them manually. Actually, we will not delete them
manually as it would result in dangling pointers:

 new GroupBox(this, Point(10, 10),
 Size(330, 50), TEXT("Margins"));
 new Label(this, Point(20, 20), Size(50, 10),
 TEXT("&Top Margin:"));

Dialogs, Controls, and Page Setup

[534]

Note that we give a pointer as a reference for the value of the top margin. This value will be
modified when the user changes the value:

 new TextField<int>(this, Point(70, 20), Size(100, 12),
 &infoPtr->TopMargin());
 new Label(this, Point(180, 20), Size(50, 10),
 TEXT("&Bottom Margin:"));
 new TextField<int>(this, Point(230, 20), Size(100, 12),
 &infoPtr->BottomMargin());
 new Label(this, Point(20, 40), Size(50, 10),
 TEXT("&Left Margin:"));
 new TextField<int>(this, Point(70, 40), Size(100, 12),
 &infoPtr->LeftMargin());
 new Label(this, Point(180, 40), Size(50, 10),
 TEXT("&Right Margin:"));
 new TextField<int>(this, Point(230, 40), Size(100, 12),
 &infoPtr->RightMargin());

 new GroupBox(this, Point(10, 70),
 Size(330, 50), TEXT("Header"));
 new Label(this, Point(20, 80), Size(50, 10),
 TEXT("&Header Text:"));
 new TextField<>(this, Point(70, 80), Size(260, 12),
 &infoPtr->HeaderText());

Similar to the TextField case, we give a pointer to a reference of the HeaderFirst value,
which is a Boolean value. It will be modified when the user checks the box:

 new CheckBox(this, Point(70, 100), Size(100, 10),
 TEXT("H&eader at First Page"),
 &infoPtr->HeaderFirst());

The OnHeaderFont listener is called when the user presses the button:

 new PushButton(this, Point(270, 98), Size(60, 15),
 TEXT("He&ader Font"), OnHeaderFont);

 new GroupBox(this, Point(10, 130),
 Size(330, 50), TEXT("Footer"));
 new Label(this, Point(20, 140), Size(50, 10),
 TEXT("&Footer Text:"));
 new TextField<>(this, Point(70, 140), Size(260, 12),
 &infoPtr->FooterText());
 new CheckBox(this, Point(70, 160), Size(100, 10),
 TEXT("F&ooter at First Page"),
 &infoPtr->FooterFirst());
 new PushButton(this, Point(270, 158), Size(60, 15),
 TEXT("Footer Fo&nt"), OnFooterFont);

Dialogs, Controls, and Page Setup

[535]

 new Label(this, Point(20, 190), Size(40, 10),
 TEXT("&Orientation:"));
 new ComboBox(this, Point(65, 190), Size(70, 30),
 {TEXT("Portrait"), TEXT("Landscape")},
 (int*) &infoPtr->GetOrientation());
 new CheckBox(this, Point(20, 205), Size(100, 10),
 TEXT("Page &Surrounded by Frame"),
 &infoPtr->Frame());
 new PushButton(this, Point(200, 200),
 Size(60, 15), TEXT("Ok"), OnOk);
 new PushButton(this, Point(270, 200), Size(60, 15),
 TEXT("Cancel"), OnCancel);
 }

The OnHeaderFont and OnFooterFont methods display font dialogs:

 void PageSetupDialog::OnHeaderFont() {
 StandardDialog::FontDialog(this, infoPtr->HeaderFont());
 }

 void PageSetupDialog::OnFooterFont() {
 StandardDialog::FontDialog(this, infoPtr->FooterFont());
 }

The OnOk and OnCancel methods terminate the dialog. The OnCancel method also copies
the backup information that was stored by the constructor at the beginning, since no new
information will be returned when the user cancels the dialog:

 void PageSetupDialog::OnOk() {
 Dialog::OnReturn();
 }

 void PageSetupDialog::OnCancel() {
 *infoPtr = backupInfo;
 Dialog::OnEscape();
 }
};

The Template function
When the user inputs text in the header and footer fields in the Page Setup dialog, they can
insert code in the text, which needs to be translated into valid values. The code is shown in
the following table:

Dialogs, Controls, and Page Setup

[536]

Code Description Example

%P Path with suffix C:\Test\Test.wrd

%p Path without suffix C:\Test\Test

%F File with suffix Test.wrd

%f File without suffix Test

%N Total number of pages 7

%n Current page 5

%c Current Copy 3

%D Date with full month January 1, 2016

%d Date with abbreviated month Jan 1, 2016

%T Time with seconds 07:08:09

%t Time without seconds 07:08

%% Percent character %

The task of the Template function is to replace the code with valid values. It takes the
templateText string with template code and returns the text with the code replaced by
valid values. It needs the current copy and page number as well as the total number of
pages.

For instance, the Page %n out of %N text can be translated to Page 3 out of 5 and File:
%F, date: %d can be translated to File: Text.txt, date: Dec 31, 2016.

Template.h

namespace SmallWindows {
 String Template(const Document* documentPtr, String templateText,
 int copy = 0, int page = 0, int totalPages = 0);
};

Template.cpp

#include "SmallWindows.h"

namespace SmallWindows {
 String Template(const Document* documentPtr, String templateText,
 int copy /* = 0 */, int page /* = 0 */,
 int totalPages /* = 0 */) {

We start by replacing the c, n, and N code with the number of copies and the current and

Dialogs, Controls, and Page Setup

[537]

total pages. The numerical values are translated into strings by to_String:

 ReplaceAll(templateText, TEXT("%c"), to_String(copy));
 ReplaceAll(templateText, TEXT("%n"), to_String(page));
 ReplaceAll(templateText, TEXT("%N"), to_String(totalPages));

The file of the path is its text after the last backslash (\) and the suffix is its text after the last
dot (.). If there is no backslash, the file is the same as the path; if there is no dot, the path and
file without the suffix is the same as the file and path with the suffix:

 String pathWithSuffix = documentPtr->GetName();
 ReplaceAll(templateText, TEXT("%P"), pathWithSuffix);

 int lastPathDot = pathWithSuffix.find_last_of(TEXT('.'));
 String pathWithoutSuffix =
 pathWithSuffix.substr(0, lastPathDot);
 ReplaceAll(templateText, TEXT("%p"), pathWithoutSuffix);

 int lastBackslash = pathWithSuffix.find_last_of(TEXT(''));
 String fileWithSuffix =
 pathWithSuffix.substr(lastBackslash + 1);
 ReplaceAll(templateText, TEXT("%F"), fileWithSuffix);

 int lastFileDot = fileWithSuffix.find_last_of(TEXT('.'));
 String fileWithoutSuffix =
 fileWithSuffix.substr(0, lastFileDot);
 ReplaceAll(templateText, TEXT("%f"), fileWithoutSuffix);

The current date and time are obtained by calling the Standard C functions time and
localtime_s:

 time_t t = ::time(nullptr);
 struct tm time;
 ::localtime_s(&time, &t);

The current time with and without seconds and the current date with whole and
abbreviated month names are written to string output streams. The setw manipulator
makes sure that two characters are always written, setfill fills with zeros if necessary,
and ios::right writes the value in a right-aligned manner:

 { OStringStream timeWithoutSeconds;
 timeWithoutSeconds << std::setw(2) << setw(2)
 << setiosflags(ios::right)
 << setfill(TEXT('0')) << time.tm_hour
 << TEXT(":") << setiosflags(ios::right)
 << setw(2) << setfill(TEXT('0'))
 << time.tm_min;

Dialogs, Controls, and Page Setup

[538]

 ReplaceAll(templateText, TEXT("%t"),
 timeWithoutSeconds.str());

 OStringStream timeWithSeconds;
 timeWithSeconds << timeWithoutSeconds.str() << TEXT(":")
 << setiosflags(ios::right) << setw(2)
 << setfill(TEXT('0')) << time.tm_sec;
 ReplaceAll(templateText, TEXT("%T"), timeWithSeconds.str());
 }

 { static const String longMonths[] =
 {TEXT("January"), TEXT("February"), TEXT("March"),
 TEXT("April"), TEXT("May"), TEXT("June"), TEXT("July"),
 TEXT("August"), TEXT("September"), TEXT("October"),
 TEXT("November"), TEXT("December")};
 OStringStream dateFullMonth;
 dateFullMonth << longMonths[time.tm_mon] << TEXT(" ")
 << time.tm_mday << TEXT(", ")
 << (1900 + time.tm_year);
 ReplaceAll(templateText, TEXT("%D"), dateFullMonth.str());
 }

 { static const String shortMonths[] =
 {TEXT("Jan"), TEXT("Feb"), TEXT("Mar"), TEXT("Apr"),
 TEXT("May"), TEXT("Jun"), TEXT("Jul"), TEXT("Aug"),
 TEXT("Sep"), TEXT("Oct"), TEXT("Nov"), TEXT("Dec")};
 OStringStream dateShortMonth;
 dateShortMonth << shortMonths[time.tm_mon] << TEXT(" ")
 << time.tm_mday << TEXT(", ")
 << (1900 + time.tm_year);
 ReplaceAll(templateText, TEXT("%d"), dateShortMonth.str());
 }

Finally, we need to replace each instance of %% with %:

 ReplaceAll(templateText, TEXT("%%"), TEXT("%"));
 return templateText;
 }
};

Summary
In this chapter, we looked into custom dialogs, controls, converters, and the Page Setup
dialog. The only remaining part of the book is the implementation of the rational and
complex classes.

Rational and Complex Numbers
This Appendix defines the Rational and Complex classes from the Converters section in
the previous chapter.

Rational numbers
A rational number can be expressed as a fraction of two integers, called the numerator and
denominator.

Rational.h

namespace SmallWindows {
 class NotaRationalNumber : public exception {
 public:
 NotaRationalNumber() {/* Empty. */}
 };

The default constructor initializes the numerator and denominator to 0 and 1, respectively.
The second constructor takes a string and throws a NotaRationalNumber exception if the
string does not hold a valid rational number. The copy constructor and the assignment
operator take another rational number. The String conversion operator returns the rational
number as a string:

 class Rational {
 public:
 Rational(int numerator = 0, int denominator = 1);
 Rational(const String& text);
 Rational(const Rational &rational);
 Rational operator=(const Rational &complex);
 operator String() const;
 bool operator==(const Rational &rational) const;

Rational and Complex Numbers

[540]

 bool operator!=(const Rational &rational) const;
 bool operator< (const Rational &rational) const;
 bool operator<=(const Rational &rational) const;
 bool operator> (const Rational &rational) const;
 bool operator>=(const Rational &rational) const;
 Rational operator+(const Rational &rational) const;
 Rational operator-(const Rational &rational) const;
 Rational operator*(const Rational &rational) const;
 Rational operator/(const Rational &rational) const;

A rational number is always normalized when it has been created by the constructor or any
of the arithmetic operators: the numerator and the denominator are divided by their
Greatest Common Divisor (GCD):

 private:
 void Normalize();
 int GCD(int iNum1, int iNum2);
 int numerator, denominator;
 };
};

Rational.cpp

#include "SmallWindows.h"

The default constructor initializes the numerator and the denominator, and throws an
exception if the denominator is zero. This constructor and the next constructor that takes a
string are actually the only places where the denominator can be zero. The following
constructors and arithmetic operators always produce a rational number with non-zero
denominators:

namespace SmallWindows {
 Rational::Rational(int numerator /* = 0 */,
 int denominator /* = 1 */)
 :numerator(numerator),
 denominator(denominator) {
 if (denominator == 0) {
 throw NotaRationalNumber();
 }
 Normalize();
 }

Rational and Complex Numbers

[541]

Text can hold a rational number in two formats: as an integer followed by a slash (/) and
another integer, or as a single integer. We start by initializing the numerator and the
denominator to 0 and 1:

 Rational::Rational(const String& text)
 :numerator(0),
 denominator(1) {
 String trimText(Trim(text));

First, we try two integers and a slash; we read the numerator, slash, and denominator.
Before the slash we set the skipws flag, which causes the stream to skip any potential white
spaces before the slash. If we have reached the end of the line, the denominator is not 0, the
character read into the slash variable really is a slash, the text holds a rational number, and
we have read the numerator and denominator, then we are done and we return:

 { IStringStream totalStream(trimText);
 TCHAR slash;
 totalStream >> numerator >> setiosflags(ios::skipws)
 >> slash >> denominator;
 if (totalStream.eof() && (denominator != 0) &&
 (slash == TEXT('/'))) {
 Normalize();
 return;
 }
 }

If using two integers and a slash does not work, we try the case of a single integer. We
create a new stream and read the numerator. If we have reached the end of the stream after
that, the string holds a valid integer. We let the numerator hold its initialized value, which
was 1, and return.

 { IStringStream numeratorStream(trimText);
 numeratorStream >> numerator;
 if (numeratorStream.eof()) {
 return;
 }
 }

If two integers and a slash as well as a single integer both failed, we have to draw the
conclusion that the string does not hold a valid rational number, and we throw a
NotaRationalNumber exception:

 throw NotaRationalNumber();
 }

Rational and Complex Numbers

[542]

The copy constructor simply copies the numerator and denominator of the rational number:

 Rational::Rational(const Rational &rational)
 :numerator(rational.numerator),
 denominator(rational.denominator) {
 // Empty.
 }

The assignment operator also copies the numerator and denominator of the rational
number and returns its own Rational object (*this):

 Rational Rational::operator=(const Rational &rational) {
 numerator = rational.numerator;
 denominator = rational.denominator;
 return *this;
 }

The String conversion operator creates an OStringStream object and looks into the
denominator. If it is 1, the rational number can be expressed as a single integer; otherwise, it
needs to be expressed as a fraction of the numerator and denominator. Finally, the stream is
converted into a string that is returned:

 Rational::operator String() const {
 OStringStream outStream;

 if (denominator == 1) {
 outStream << numerator;
 }
 else {
 outStream << numerator << TEXT("/") << denominator;
 }

 return outStream.str();
 }

As rational numbers are always normalized, we can conclude that two rational numbers are
equal if they have the same numerator and denominator:

 bool Rational::operator==(const Rational &rational) const {
 return (numerator == rational.numerator) &&
 (denominator == rational.denominator);
 }

 bool Rational::operator!=(const Rational &rational) const {
 return !(*this == rational);
 }

Rational and Complex Numbers

[543]

When deciding whether a rational number is smaller than another rational number, in order
not to involve floating values, we multiply both sides by the denominator and compare the
products:

 bool Rational::operator<(const Rational &rational) const {
 return ((numerator * rational.denominator) <
 (rational.numerator * denominator));
 }

 bool Rational::operator<=(const Rational &rational) const {
 return ((*this < rational) || (*this == rational));
 }

 bool Rational::operator>(const Rational &rational) const {
 return !(*this <= rational);
 }

 bool Rational::operator>=(const Rational &rational) const {
 return !(*this < rational);
 }

When adding two rational numbers, we multiply the numerator by the opposite
denominator in each term:

 Rational Rational::operator+(const Rational &rational) const {
 Rational result((numerator * rational.denominator) +
 (rational.numerator * denominator),
 denominator * rational.denominator);
 result.Normalize();
 return result;
 }

When subtracting two rational numbers, we also multiply the numerator by the opposite
denominator in each term:

Rational and Complex Numbers

[544]

 Rational Rational::operator-(const Rational &rational) const {
 Rational result((numerator * rational.denominator) -
 (rational.numerator * denominator),
 denominator * rational.denominator);

 result.Normalize();
 return result;
 }

When multiplying two rational numbers, we simply multiply the numerators and
denominators:

 Rational Rational::operator*(const Rational &rational) const {
 Rational result(numerator * rational.numerator,
 denominator * rational.denominator);
 result.Normalize();
 return result;
 }

When dividing two rational numbers, we invert the second operand and then multiply the
numerators and denominators:

 Rational Rational::operator/(const Rational &rational) const {
 assert(rational.numerator != 0);
 Rational result(numerator * rational.denominator,
 denominator * rational.numerator);
 result.Normalize();
 return result;
 }

When normalizing the rational number, we first look into the numerator. If it is 0, we set the
denominator to 1 regardless of its previous value and return:

 void Rational::Normalize() {
 if (numerator == 0) {
 denominator = 1;
 return;
 }

Rational and Complex Numbers

[545]

However, if the numerator is not 0, we look into the denominator. If it is less than 0, we
switch the sign of both the numerator and denominator so that the denominator is always
greater than 0:

 if (denominator < 0) {
 numerator = -numerator;
 denominator = -denominator;
 }

Then we calculate the Greatest Common Divisor by calling GCD, and then we divide both
the numerator and denominator by the Greatest Common Divisor:

 int gcd = GCD(abs(numerator), denominator);
 numerator /= gcd;
 denominator /= gcd;
 }

The GCD method calls itself recursively by comparing the numbers and subtracting the
smaller number from the larger number. When they are equal, we return the number. The
GCD algorithm is regarded as the world's oldest non-trivial algorithm.

 int Rational::GCD(int number1, int number2) {
 if (number1 > number2) {
 return GCD(number1 - number2, number2);
 }
 else if (number1 < number2) {
 return GCD(number1, number2 - number1);
 }
 else {
 return number1;
 }
 }
};

Complex numbers
A complex number z = x + yi is the sum of a real number x and a real number y multiplied
by the imaginary unit i, i2 = -1 ⇒ i = ±√(-1) , which is the solution of the equation x2 + 1 = 0.

Complex.h

namespace SmallWindows {
 class NotaComplexNumber : public exception {
 public:
 NotaComplexNumber() {/* Empty. */}

Rational and Complex Numbers

[546]

 };

 extern double Square(double value);

The constructors, assignment operators, and the String conversion operator are similar to
their counterparts in Rational:

 class Complex {
 public:
 Complex(double x = 0, double y = 0);
 Complex(const Complex &complex);
 Complex operator=(const Complex &complex);
 bool ReadStream(const String& text);
 Complex(const String& text);
 operator String() const;

When comparing two complex number, their absolute values (refer to Abs) are compared.

 bool operator==(const Complex &complex) const;
 bool operator!=(const Complex &complex) const;
 bool operator<(const Complex &complex) const;
 bool operator<=(const Complex &complex) const;
 bool operator>(const Complex &complex) const;
 bool operator>=(const Complex &complex) const;

The arithmetic operators apply to complex numbers and double values:

 Complex operator+=(double x);
 Complex operator+=(Complex &complex);
 friend Complex operator+(double x, const Complex &complex);
 friend Complex operator+(const Complex &complex, double x);
 friend Complex operator+(const Complex &complex1,
 const Complex &complex2);

 Complex operator-=(double x);
 Complex operator-=(Complex &complex);
 friend Complex operator-(double x, const Complex &complex);
 friend Complex operator-(const Complex &complex, double x);
 friend Complex operator-(const Complex &complex1,
 const Complex &complex2);

 Complex operator*=(double x);
 Complex operator*=(Complex &complex);
 friend Complex operator*(double x, const Complex &complex);
 friend Complex operator*(const Complex &complex, double x);
 friend Complex operator*(const Complex &complex1,
 const Complex &complex2);

Rational and Complex Numbers

[547]

 Complex operator/=(double x);
 Complex operator/=(Complex &complex);
 friend Complex operator/(double x, const Complex &complex);
 friend Complex operator/(const Complex &complex, double x);
 friend Complex operator/(const Complex &complex1,
 const Complex &complex2);

The absolute value of a complex number (and its value converted to a double) is the
Pythagoras theorem of the real and imaginary part, that is, the square root of the sum of the
squares of the parts:

 double Abs() const {return sqrt(Square(x) + Square(y));}
 operator double() const {return Abs();}

 private:
 double x, y;
 };
};

Complex.cpp

#include "SmallWindows.h"

namespace SmallWindows {
 double Square(double value) {
 return value * value;
 }

 Complex::Complex(double x, double y)
 :x(x), y(y) {
 // Empty.
 }

 Complex::Complex(const Complex &complex)
 :x(complex.x),
 y(complex.y) {
 // Empty.
 }

 Complex Complex::operator=(const Complex &complex) {
 x = complex.x;
 y = complex.y;
 return *this;
 }

Rational and Complex Numbers

[548]

When interpreting a text holding a rational number, we read the text from a stream, and we
need some auxiliary functions to start with. The ReadWhiteSpaces method reads (and
disposes of) all white spaces at the beginning of the stream:

 void ReadWhiteSpaces(IStringStream& inStream) {
 while (true) {
 TCHAR tChar = inStream.peek();

 if ((tChar >= 0) && (tChar <= 255) && isspace(tChar)) {
 inStream.get();
 }
 else {
 break;
 }
 }
 }

The Peek method reads the white spaces and returns the zero character (\0) if it has
reached the end of the stream. If not, we look into what comes next in the stream by calling
peek, and return its resulting value. Note that peek does not consume the character from
the stream; it just checks out the next character:

 TCHAR Peek(IStringStream& inStream) {
 ReadWhiteSpaces(inStream);

 if (inStream.eof()) {
 return TEXT('\0');
 }
 else {
 return (TCHAR) inStream.peek();
 }
 }

The ReadI method verifies whether the next character in the stream is i or I. If it is, it reads
the character from the stream and returns true:

bool ReadI(IStringStream& inStream) {
 if (tolower(Peek(inStream)) == TEXT('i')) {
 inStream.get();
 return true;
 }
 return false;
 }

Rational and Complex Numbers

[549]

The ReadSign method verifies that the next character in the stream is a plus or minus sign.
If it is, it reads the character from the stream, sets the sign parameter to + or –, and returns
true:

 bool ReadSign(IStringStream& inStream, TCHAR& sign) {
 TCHAR tChar = Peek(inStream);
 switch (tChar) {
 case TEXT('+'):
 inStream.get();
 sign = TEXT('+');
 return true;

 case TEXT('-'):
 inStream.get();
 sign = TEXT('-');
 return true;

 default:
 return false;
 }
 }

The ReadValue method verifies that the next two characters in the stream are a plus or a
minus sign followed by a digit or a dot, or whether the first character is a digit or a dot. If
the latter is the case, it reads the value parameter from the beginning of the stream and
returns true:

 bool ReadValue(IStringStream& inStream, double& value) {
 TCHAR tChar = Peek(inStream);

 if ((tChar == TEXT('+')) || (tChar == TEXT('-'))) {
 inStream.get();
 tChar = Peek(inStream);
 inStream.unget();

 if (isdigit(tChar) || (tChar == TEXT('.'))) {
 inStream >> value;
 return true;
 }
 }
 else if (isdigit(tChar) || (tChar == TEXT('.'))) {
 inStream >> value;
 return true;
 }

 return false;
 }

Rational and Complex Numbers

[550]

The EndOfLine method simply returns true if the next character in the stream is the zero
character (\0), in which case we have reached the end of the string:

 bool EndOfLine(IStringStream& inStream) {
 return Peek(inStream) == TEXT('\0');
 }

Now we are ready to interpret a string as a rational number. We have the following ten
cases, where x and y are real values, i is the imaginary unit, and ± is plus or minus. All ten
cases represent valid complex numbers:

x ± yi1.
x ± ±i2.
x ± i3.
yi ± x4.
±i ± x5.
i ± x6.
yi7.
±i8.
i9.
x10.

The ReadStream method creates an input stream from the text and tries to interpret it as
one of the preceding ten cases. The idea is that we read the stream and try one part of the
potential complex number at a time:

 bool Complex::ReadStream(const String& text) {
 IStringStream inStream(Trim(text));
 double value1, value2;
 TCHAR sign1, sign2;

If the stream is made up of a value, a sign, another value, and i or I, we set x and y in
accordance with case 1 (x ± yi) and return true. The y field is negative if the sign is minus.
However, the second value may also be negative, in which case y is positive:

 if (ReadValue(inStream, value1)) {
 if (ReadSign(inStream, sign1)) {
 if (ReadValue(inStream, value2) && ReadI(inStream) &&
 EndOfLine(inStream)) {
 x = value1;
 y = (sign1 == TEXT('-')) ? -value2 : value2;
 return true;
 }

Rational and Complex Numbers

[551]

If the sign is not followed by a value, but by another sign and i or I, case 2 (x ± ±i) applies
and we return true. In this case, we actually have to adjust the value of y twice in
accordance with both signs:

 else if (ReadSign(inStream, sign2)) {
 if (ReadI(inStream) && EndOfLine(inStream)) {
 x = value1;
 y = (sign1 == TEXT('-')) ? -1 : 1;
 y = (sign2 == TEXT('-')) ? -y : y;
 return true;
 }
 }

If the sign is not followed by a value or another sign, but by i or I, case 3 (x ± i) applies and
we return true:

 else if (ReadI(inStream) && EndOfLine(inStream)) {
 x = value1;
 y = (sign1 == TEXT('-')) ? -1 : 1;
 return true;
 }
 }

If the value is not followed by a sign but by i or I, another sign, and another value, case 4 (yi
± x) applies and we return true:

 else if (ReadI(inStream)) {
 if (ReadSign(inStream, sign1)) {
 if (ReadValue(inStream, value2) && EndOfLine(inStream)){
 y = value1;
 x = (sign1 == TEXT('-')) ? -value2 : value2;
 return true;
 }
 }

If the value is followed by i or I and nothing else, case 7 (yi) applies and we return true:

 else if(EndOfLine(inStream)) {
 y = value1;
 x = 0;
 return true;
 }
 }

Rational and Complex Numbers

[552]

If the value is followed by nothing else, case 10 (x) applies and we return true:

 else if (EndOfLine(inStream)) {
 x = value1;
 y = 0;
 return true;
 }
 }

If the stream does not start with a value, but with a sign followed by i or I, another sign and
another value, case 5 (±i ± x) applies and we return true:

 else if (ReadSign(inStream, sign1)) {
 if (ReadI(inStream)) {
 if (ReadSign(inStream, sign2)) {
 if (ReadValue(inStream, value2) && EndOfLine(inStream)){
 y = (sign1 == TEXT('-')) ? -1 : 1;
 x = (sign2 == TEXT('-')) ? -value2 : value2;
 return true;
 }
 }

If the stream starts with a sign followed by i or I and nothing else, case 8 (±i) applies and we
return true:

 else if (EndOfLine(inStream)) {
 y = (sign1 == TEXT('-')) ? -1 : 1;
 x = 0;
 return true;
 }
 }
 }

If the stream does not start with a value or a sign, but with i or I followed by a sign and a
value, case 6 (i ± x) applies and we return true:

 else if (ReadI(inStream)) {
 if (ReadSign(inStream, sign2)) {
 if (ReadValue(inStream, value2) && EndOfLine(inStream)) {
 y = 1;
 x = (sign2 == TEXT('-')) ? -value2 : value2;
 return true;
 }
 }

If the stream is made up by i or I and nothing else, case 9 (i) applies and we return true:

Rational and Complex Numbers

[553]

 else if (EndOfLine(inStream)) {
 y = 1;
 x = 0;
 return true;
 }
 }

Finally, if none of the above cases apply, the text does not hold a complex number and we
return false:

 return false;
 }

The constructor that takes a text simply calls ReadStream and throws a
NotaComplexNumber exception if ReadStream returns false. However, if ReadStream
returns true, x and y are set to the appropriate values:

 Complex::Complex(const String& text) {
 if (!ReadStream(text)) {
 throw NotaComplexNumber();
 }
 }

In the String conversion operator, we look into several different cases:

x + i1.
x – i2.
x ± i3.
x4.
+i5.
–i6.
yi7.

8. 0

If the real part x is not 0, we write its value on the stream and look into the first four cases
with regard to the imaginary part, y. If y is plus or minus 1, we simply write +i or -i. If it is
not plus or minus 1, and not 0, we write its value with the showpos flag, which forces the
plus sign to be present in the case of a positive value. Finally, if y is 0, we do not write it at
all:

 Complex::operator String() const {
 OStringStream outStream;

 if (x != 0) {

Rational and Complex Numbers

[554]

 if (y == 1) {
 outStream << x << TEXT("+i");
 }
 else if (y == -1) {
 outStream << x << TEXT("-i");
 }
 else if (y != 0) {
 outStream << x << setiosflags(ios::showpos)
 << y << TEXT("i");
 }
 else {
 outStream << x;
 }
 }

If x is zero, we omit it and write the value of y in the same manner as we did earlier.
However, if y is zero, we write 0; otherwise, nothing will be written if both x and y are 0.
Moreover, we omit the showpos flag, since it is not necessary to write the plus sign in the
case of a positive value:

 else {
 if (y == 1) {
 outStream << TEXT("i");
 }
 else if (y == -1) {
 outStream << TEXT("-i");
 }
 else if (y != 0) {
 outStream << y << TEXT("i");
 }
 else {
 outStream << TEXT("0");
 }
 }
 return outStream.str();
 }

Two complex numbers are equal if their real and imaginary parts are equal:

 bool Complex::operator==(const Complex &complex) const {
 return ((x == complex.x) && (y == complex.y));
 }

 bool Complex::operator!=(const Complex &complex) const {
 return !(*this == complex);
 }

Rational and Complex Numbers

[555]

When deciding whether a complex number is smaller than another complex number, we
chose to compare their absolute values, which is given by the Abs method:

 bool Complex::operator<(const Complex &complex) const {
 return (Abs() < complex.Abs());
 }

 bool Complex::operator<=(const Complex &complex) const {
 return ((*this < complex) || (*this == complex));
 }

 bool Complex::operator>(const Complex &complex) const {
 return !(*this <= complex);
 }

 bool Complex::operator>=(const Complex &complex) const {
 return !(*this < complex);
 }

The addition operators all call the following final operator, which works for all four
arithmetic operators:

 Complex Complex::operator+=(double x) {
 *this = (*this + Complex(x));
 return *this;
 }

 Complex Complex::operator+=(Complex &complex) {
 *this = (*this + complex);
 return *this;
 }

 Complex operator+(double x, const Complex &complex) {
 return (Complex(x) + complex);
 }

 Complex operator+(const Complex &complex, double x) {
 return (complex + Complex(x));
 }

When adding two complex numbers, we add the real and imaginary parts separately:

 Complex operator+(const Complex &complex1,
 const Complex &complex2) {
 return Complex(complex1.x + complex2.x,
 complex1.y + complex2.y);
 }

Rational and Complex Numbers

[556]

 Complex Complex::operator-=(double x) {
 return (*this - Complex(x));
 }

 Complex Complex::operator-=(Complex &complex) {
 return (*this - complex);
 }

 Complex operator-(double x, const Complex &complex) {
 return (Complex(x) - complex);
 }

 Complex operator-(const Complex &complex, double x) {
 return (complex - Complex(x));
 }

When subtracting two complex numbers, we subtract the real and imaginary parts
separately:

 Complex operator-(const Complex &complex1,
 const Complex &complex2) {
 return Complex(complex1.x - complex2.x,
 complex1.y - complex2.y);
 }

 Complex Complex::operator*=(double x) {
 *this = (*this * Complex(x));
 return *this;
 }

 Complex Complex::operator*=(Complex &complex) {
 *this = (*this * complex);
 return *this;
 }

 Complex operator*(double x, const Complex &complex) {
 return (Complex(x) * complex);
 }

 Complex operator*(const Complex &complex, double x) {
 return (complex * Complex(x));
 }

The product of two complex numbers can be established by some algebra:

(x1 + y1i)(x2 + y2i) = x1x2 + x1y2i + y1ix2 + y1y2i
2 = x1x2 + x1y2i + y1ix2 + y1y2 (-1) = x1x2 + x1y2i + x2y1i –

y1y2 = (x1x2– y1y2) + (x1y2 + x2y1)i

Rational and Complex Numbers

[557]

 Complex operator*(const Complex &complex1,
 const Complex &complex2) {
 return Complex((complex1.x * complex2.x) -
 (complex1.y * complex2.y),
 (complex1.x * complex2.y) +
 (complex2.x * complex1.y));
 }

 Complex Complex::operator/=(double x) {
 *this = (*this / Complex(x));
 return *this;
 }

 Complex Complex::operator/=(Complex &complex) {
 *this = (*this / complex);
 return *this;
 }

 Complex operator/(double x, const Complex &complex) {
 return (Complex(x) / complex);
 }

 Complex operator/(const Complex &complex, double x) {
 return (complex / Complex(x));
 }

The quotient between two complex numbers can also be established by some algebra. The
conjugate of a complex number x2 + y2i is x2– y2i, which we can use in the conjugate rule:

(x2 + y2i)(x2– y2i) = x2
2– x2y2i + x2y2i – y2

2 (-1) = x2
2– x2y2i + x2y2i + y2

2 = x2
2 + y2

2

We can use the conjugate rule when dividing two complex numbers by multiplying the
conjugate by both the numerator and the denominator:

Rational and Complex Numbers

[558]

 Complex operator/(const Complex &complex1,
 const Complex &complex2) {
 double sum = Square(complex2.x) + Square(complex2.y);
 double x = ((complex1.x * complex2.x) +
 (complex1.y * complex2.y)) / sum,
 y = ((complex2.x * complex1.y) +
 (complex1.x * complex2.y)) / sum;
 return Complex(x, y);
 }
};

Summary
By reading this book you have learned how to develop applications in Windows with Small
Windows, a C++ object-oriented class library for graphical applications in Windows.
I hope you have enjoyed the book!

Index

A
accelerator 14
Accelerator class 387
Application class
 about 324
 message loop 326
 Win32 API Windows classes 325
ArrowFigure class 105, 110
attribute 264
auxiliary classes
 about 125, 414
 character information 126, 129
 Color class 436
 Cursor class 446
 DynamicList 16
 DynamicList class 447
 Font class 442
 InfoList 16
 InfoList class 463
 line information 129
 Paragraph class 131, 133
 Point 16
 Point class 421
 Rect 16
 Rect class 428
 Size 16
 Size class 414
 string functions 466
 Tree 16
 Tree class 460

C
caret 12
cell
 about 294, 295
 caret rectangle list generation 302

 character input 299, 300
 contents, drawing 301
 file management 312
 formula interpretation 304, 308
 modes 293
 width 297
character calculation
 about 193
 ascent line 194
 justified rectangle list generation 199, 200
 line, generating 195, 198, 199
 rectangle set generation, invalidating 202
 regular rectangle list generation 199, 200
 size 194
circle application
 about 21
 Circle class 31, 34
 CircleDocument class 23, 24, 25, 26, 28, 31
 main window 22
client area 9
Clipboard class
 about 474
 ASCII lines 475
 generic information 478
 Unicode lines 475
controls
 about 495, 507
 button controls 510
 combo box 518
 label 520
 list controls 514
 TextField class 520
converters
 about 495, 523
 complex numbers 527
 double values 525
 rational numbers 526

[560]

 signed integers 523
 strings 526
 unsigned integers 524
coordinate systems, Small Windows
 LogicalWithoutScroll 16
 LogicalWithScroll 16
 PreviewCoordinates 16
Ctrl+O 3, 14
custom dialogs 495

D
derivation 272
device context 330
directed graph 253
dirty flag 12
Document class
 about 362
 caret 369
 Document header 368
 DocumentProc method 379
 initialization 366
 menu bar 371
 mouse wheel 371
 scroll bar 373
DrawDocument class
 about 67, 68
 application modes 72
 copy function 84
 cut function 84
 DynamicList class 73
 File menu 83
 initialization 74
 mouse point 76, 77
 painting functions 82
DrawFigure class 93, 95, 96

E
EllipseFigure class 119, 122, 123
evaluation errors
 circular reference 259
 missing value 259
 reference out of range 259
Evaluator 262

F
figures
 hierarchy 93
 working with 67
formula 272
formula interpretation
 about 262
 parser, used for generating syntax tree 272,

274, 276, 277, 279, 281, 282, 283
 Scanner class, used for grouping characters to

tokens 268, 269
 token 264
 tree node 266

G
GameGrid class
 about 62
 invalidating 63
 squares, drawing 63
grammar 272
graph searching 254, 256
Graphics class 355

H
handle 324
Hello, Small Windows! program
 writing 18, 19, 21

I
invalidated area 10, 28

K
keyboard, handling
 about 174, 176
 arrow keys, using 179, 181
 Control Home and End key 188
 Home key 183
 neutral keys 189, 190, 191
 shift arrow key 184
 Shift Control Home and End key 189
 Shift End key 187
 Shift Home key 187
 Shift Page Down key 187
 Shift Page Up key 187

[561]

 visible characters, finding 192

L
LineFigure class 97, 100, 102, 104
logical units 16
Long Pointer to Constant TChar String (LPCTSTR)

446

look-ahead parser 276

M
MainWindow function 36, 322
Matrix class 286, 291, 292
Menu class 382
modes, applicationMode
 Idle 70
 ModifyRectangle 70
 ModifySingle 70
 MoveMultiple 70

N
non-terminals 272

P
Page Break 154
page setup
 about 495, 528
 information, fetching 529
 PageSetupdialog class 532
 Template function 535
painting functions
 Add menu 90
 cursor 91
 Modify menu 87, 88, 89
 OnDraw 82
 OnPaint 82
 OnPrint 82
parse tree 273
Parser 262
parser generators 276
parser table 276
parser
 bottom-up parser 276
 top-down parser 276
 writing 276

print preview
 about 490
 keyboard input 492
 scroll bars, using 493

R
RectangleFigure class 112, 115, 116, 118
Reference class 286, 287, 289
registry 470

S
Scanner 262
Small Windows
 about 8
 overview 316
source sets
 about 252
 breadth-first approach 256
 depth first approach 256
spreadsheet application, building
 about 204
 alignments, adjusting 247, 248
 CalcDocument class, using 205, 206, 207, 208,

209, 213
 caret, updating 222, 224
 client area, repainting 218
 color, changing 245
 copy methods, using 238, 239, 241, 242, 244,

245

 cut methods, using 238, 240, 243, 245
 Down method, using 214
 files, managing 234, 237
 font, changing 245
 IsCellVisible method, using 220, 222
 keyboard input, using 224, 227, 229, 231, 233
 MainWindow class, using 204
 mouse inputs, using 214
 OnCharDown method, using 224, 227, 229, 232
 OnDraw method, using 218, 219
 OnHorizontalScroll method, using 215
 OnMouseMove methods, using 214, 216
 OnVerticalScroll method 216
 OnVerticalScroll method, using 215
 paste method, using 238, 239, 241, 243, 245
 UpdateCaret method, using 222, 224

[562]

 visible areas, calculating 220
standard dialogs
 about 480
 Color dialog 485
 Font dialog 487
 Open dialog 483
 Print dialog 488
 Save dialog 480
Standard Document class
 about 390
 CopyEnable 402
 CutEnable 402
 file management 398
 files, dropping 407
 initialization 395
 page setup 409
 page size 408
 print preview document, displaying 409
 standard menus 396
start symbol 272
string functions
 CharPtrToGenericString 466
 EndsWith 466
 IsNumeric 466
 ReadStringFromStream 466
 ReplaceAll 466
 Split 466
 Trim 466
 WriteStringToStream 466
symbols 272
syntax error 276
Syntax Tree 262
syntax tree 279

T
target sets 252, 254
terminals 272
Tetris window
 about 36
 closing 46
 GameOver function 43
 NewFigures function 42
 NewGame function 44
 OnDraw function 41
 OnGainFocus function 42

 OnKeyboard function 40
 OnLoseFocus 42
 rows, deleting 44, 46
 rows, flashing 44, 46
 timer 42
TetrisFigure class
 about 47, 52
 blue figure 60
 brown figure 55
 green figure 58
 purple figure 61
 red figure 54, 55
 turquoise figure 57
 yellow figure 59
timer 9
Token List 262

U
unambiguous grammar 275

W
Win32 API
 Hello window application 318
Window class
 about 328
 device context, preparing 342
 header 339
 initialization 336
 invalidation 341
 MessageBox method 349
 text metrics 347
 touch screen 340
 unit transformation 344
 visibility 339
 window position 345
 window size 345
 window updates 341
 window, closing 348
Windows 32-bit Applications Programming Interface

(Win32 API) 7
Windows Clipboard 17
Windows Registry 16, 75
WinMain function
 about 323
 tasks 323

word processor 125
WordDocument class
 about 135, 137, 138, 141, 142, 144
 character, deleting 166, 168
 copy method 160, 163
 cut method 160, 163
 file management method 157
 font, using 169

 IsAlignment method 170
 mouse input methods 146, 151
 OnPageBreak method 168
 OnPaint method 154, 156
 OnPgeSetup method 152
 paste method 160, 163
 touchscreen methods 151
 UpdateCaret method 144

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction
	The library
	Summary

	Chapter 2: Hello, Small World!
	Hello, Small Windows!
	The circle application
	The main window
	The CircleDocument class
	The Circle class

	Summary

	Chapter 3: Building a Tetris Application
	The MainWindow function
	The Tetris window
	Keyboard input
	Drawing
	Input focus
	The timer
	New figures
	Game over
	New game
	Deleting and flashing rows
	Closing the window

	The TetrisFigure class
	The red figure
	The brown figure
	The turquoise figure
	The green figure
	The yellow figure
	The blue figure
	The purple figure

	The GameGrid class
	Invalidating and drawing squares

	Summary

	Chapter 4: Working with Shapes and Figures
	The MainWindow function
	The DrawDocument class
	The application modes
	The DynamicList class
	Initialization
	Mouse input
	Painting
	The File menu
	Cut, copy, and paste
	The Modify menu
	The Add menu
	The cursor

	Summary

	Chapter 5: The Figure Hierarchy
	The DrawFigure class
	The LineFigure class
	The ArrowFigure class
	The RectangleFigure class
	The EllipseFigure class
	Summary

	Chapter 6: Building a Word Processor
	Auxiliary classes
	Character information
	Line information
	The Paragraph class

	The MainWindow class
	The WordDocument class
	The caret
	Mouse input
	Touchscreen
	Page setup and calculation
	Painting and drawing
	File management
	Cut, copy, and paste
	Delete
	Page break
	Font
	Alignment

	Summary

	Chapter 7: Keyboard Input and Character Calculation
	Keyboard handling
	Arrow keys
	Home and End
	Shift arrow keys
	Shift Page Up and Page Down
	Shift Home and End
	Control Home and End
	Shift Control Home and End
	Neutral keys
	Visible characters

	Character calculation
	Character size and ascent line
	Line generation
	Regular and justified rectangle list generation
	Invalidate rectangle set generation

	Summary

	Chapter 8: Building a Spreadsheet Application
	The MainWindow class
	The CalcDocument class
	Mouse input
	Scrolling and marking
	Painting
	Visibility
	Marking and updating
	Keyboard input
	File management
	Cut, copy, and paste
	Font and color
	Alignment

	Source and target sets
	Graph searching
	Error handling
	Summary

	Chapter 9: Formula Interpretation
	Formula interpretation
	The tokens
	The tree node
	The Scanner – Generating the list of tokens
	The parser – Generating the syntax tree

	Matrix and reference
	The reference class
	The Matrix class

	The cell
	Character input
	Drawing
	Caret rectangle list generation
	Formula interpretation
	File management

	Further reading
	Summary

	Chapter 10: The Framework
	An overview of Small Windows
	“Hello” window for the Win32 API
	The MainWindow function
	The WinMain function
	The Application class
	The Win32 API Windows classes
	The message loop

	The Window class
	Initialization
	Header and visibility
	The touch screen
	Invalidation and window updates
	Preparing the device context
	Unit transformation
	Window size and position
	Text metrics
	Closing the window
	The MessageBox method

	The Graphics class
	Summary

	Chapter 11: The Document
	The Document class
	Initialization
	The Document header
	The caret
	The mouse wheel
	The menu bar
	The scroll bar
	The DocumentProc method

	The Menu class
	The Accelerator class
	The StandardDocument class
	Initialization
	Standard menus
	File management
	Cut, copy, and paste
	Drop files
	Page size
	Page setup
	Printing

	Summary

	Chapter 12: The Auxiliary Classes
	The Size class
	The Point class
	The Rect class
	The Color class
	The Font class
	The Cursor class
	The DynamicList class
	The Tree class
	The InfoList class
	Strings
	Summary

	Chapter 13: The Registry, Clipboard, Standard Dialogs, and Print Preview
	The registry
	The Clipboard class
	ASCII and Unicode lines
	Generic information

	Standard dialogs
	The Save dialog
	The Open dialog
	The Color dialog
	The Font dialog
	The Print dialog

	Print preview
	Keyboard input
	Scroll bar

	Summary

	Chapter 14: Dialogs, Controls, and Page Setup
	Custom dialogs
	Controls
	The button controls
	List controls
	Combo box
	Label
	The TextField class

	Converters
	Signed integers
	Unsigned integers
	Double values
	Strings
	Rational numbers
	Complex numbers

	Page setup
	Page setup information
	The Page Setup dialog
	The Template function

	Summary

	Appendix: Rational and Complex Numbers
	Rational numbers
	Complex numbers
	Summary

	Index

