
ptg18189307

www.allitebooks.com

http://www.allitebooks.org


ptg18189307

Whatever your need and whatever your time frame, 
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Sams Teach Yourself book as your guide, you can 
quickly get up to speed on just about any new 
product or technology—in the absolute shortest  
period of time possible. Guaranteed. 

Learning how to do new things with your computer 
shouldn’t be tedious or time-consuming. Sams 
Teach Yourself makes learning anything quick, 
easy, and even a little bit fun.

Java in 24 Hours

Rogers Cadenhead
ISBN-13: 978-0-672-33702-4

SamsTeachYourself
When you only have time

for the answers™

jQuery and JavaScript  
in 24 Hours

Brad Dayley
ISBN-13: 978-0-672-33734-5

JavaScript  
in 24 Hours

Phil Ballard 
ISBN-13: 978-0-672-33738-3

Visual Basic 2015  
in 24 Hours

James Foxall
ISBN-13: 978-0-672-33745-1

HTML, CSS and 
JavaScript  
All in One

Julie C. Meloni
ISBN-13: 978-0-672-33714-7

Sams Teach Yourself books are available at most retail and online bookstores. For more information  
or to order direct, visit our online bookstore at informit.com/teachyourself.

Online editions of all Sams Teach Yourself titles are available by subscription from Safari Books 
Online at safari.informit.com.

Contents at a Glance
Part I: Beginning C++

	 1	 Writing Your First Program.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2	 Organizing the Parts of a Program.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3	 Creating Variables and Constants.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4	 Using Expressions, Statements, and Operators.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5	 Calling Functions.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6	 Controlling the Flow of a Program.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7	 Storing Information in Arrays and Strings.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Part II: Classes

8	 Creating Basic Classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

9	 Moving into Advanced Classes.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Part III: Memory Management

10	 Creating Pointers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

11	 Developing Advanced Pointers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

12	 Creating References.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

13	 Developing Advanced References and Pointers.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Part IV: Advanced C++

14	 Calling Advanced Functions.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

15	 Using Operator Overloading.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

Part V: Inheritance and Polymorphism

16	 Extending Classes with Inheritance.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

17	 Using Polymorphism and Derived Classes.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

18	 Making Use of Advanced Polymorphism.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

Part VI: Special Topics

19	 Storing Information in Linked Lists.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 

20	 Using Special Classes, Functions, and Pointers.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

21	 Using New Features of C++14.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

22	 Employing Object-Oriented Analysis and Design.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343

23	 Creating Templates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373

24	 Dealing with Exceptions and Error Handling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391

Part VII: Appendixes

A	 Binary and Hexadecimal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411

B	 Glossary.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419

C	 This Book’s Website.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427

D	 Using the MinGW C++ Compiler on Windows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429

7/12/16   4:09 PM

www.allitebooks.com

http://www.allitebooks.org


ptg18189307

SamsTeachYourself

24in

Hours

800 East 96th Street, Indianapolis, Indiana, 46240 USA

C++

Rogers Cadenhead
Jesse Liberty

SIXTH EDITION

www.allitebooks.com

http://www.allitebooks.org


ptg18189307

Editor

Mark Taber

Project Editor

Lori Lyons

Project Manager

Prashanthi Nadipalli

Copy Editor

Christopher Morris

Technical Editor

Jon Upchurch

Sams Teach Yourself C++ in 24 Hours
Copyright © 2017 by Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected 
by  copyright, and permission must be obtained from the publisher prior to any prohibited 
reproduction, storage in a retrieval system, or transmission in any form or by any means, 
electronic, mechanical, photocopying, recording, or likewise. For information regarding  permissions, 
request forms, and the appropriate contacts within the Pearson Education Global Rights & 
Permissions Department, please visit www.pearsoned.com/permissions/. No patent liability is 
assumed with respect to the use of the information contained herein. Although every precaution 
has been taken in the preparation of this book, the publisher and author assume no  responsibility 
for errors or omissions. Nor is any liability assumed for damages resulting from the use of the 
information contained herein.

ISBN-13: 978-0-672-33746-8
ISBN-10: 0-672-33746-0

Library of Congress Control Number: 2016945006

First Printing August 2016

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks have been 
appropriately capitalized. Sams Publishing cannot attest to the accuracy of this information. 
Use of a term in this book should not be regarded as affecting the validity of any trademark or 
service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possible, but 
no warranty or fitness is implied. The information provided is on an “as is” basis. The authors 
and the publisher shall have neither liability nor responsibility to any person or entity with 
respect to any loss or damages arising from the information contained in this book or programs 
accompanying it.

Special Sales
For information about buying this title in bulk quantities, or for special sales opportunities (which 
may include electronic versions; custom cover designs; and content particular to your  business, 
training goals, marketing focus, or branding interests), please contact our corporate sales 
department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact

governmentsales@pearsoned.com. 

For questions about sales outside the U.S., please contact

intlcs@pearson.com. 

www.allitebooks.com

http://www.pearsoned.com/permissions/
http://www.allitebooks.org


ptg18189307

Contents at a Glance

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Part I: Beginning C++

HOUR 1 Writing Your First Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Organizing the Parts of a Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Creating Variables and Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Using Expressions, Statements, and Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Calling Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6 Controlling the Flow of a Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7 Storing Information in Arrays and Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Part II: Classes

HOUR 8 Creating Basic Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

9 Moving into Advanced Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Part III: Memory Management

HOUR 10 Creating Pointers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

11 Developing Advanced Pointers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

12 Creating References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

13 Developing Advanced References and Pointers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Part IV: Advanced C++

HOUR 14 Calling Advanced Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

15 Using Operator Overloading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

Part V: Inheritance and Polymorphism

HOUR 16 Extending Classes with Inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

17 Using Polymorphism and Derived Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

18 Making Use of Advanced Polymorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

www.allitebooks.com

http://www.allitebooks.org


ptg18189307

iv Sams Teach Yourself C++ in 24 Hours

Part VI: Special Topics

HOUR 19 Storing Information in Linked Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

20 Using Special Classes, Functions, and Pointers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

21 Using New Features of C++14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

22 Employing Object-Oriented Analysis and Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343

23 Creating Templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373

24 Dealing with Exceptions and Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391

Part VII: Appendixes

A Binary and Hexadecimal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411

B Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419

C This Book’s Website . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427

D Using the MinGW C++ Compiler on Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439

www.allitebooks.com

http://www.allitebooks.org


ptg18189307

Table of Contents

Introduction 1

Part I: Beginning C++

HOUR 1: Writing Your First Program 5

Using C++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Compiling and Linking the Source Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Creating Your First Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

HOUR 2: Organizing the Parts of a Program 13

Reasons to Use C++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

The Parts of a Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

HOUR 3: Creating Variables and Constants 27

What Is a Variable? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Defining a Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Assigning Values to Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Using Type Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Auto-Typed Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

HOUR 4: Using Expressions, Statements, and Operators 43

Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

If-Else Conditional Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Logical Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Tricky Expression Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

www.allitebooks.com

http://www.allitebooks.org


ptg18189307

vi Sams Teach Yourself C++ in 24 Hours

HOUR 5: Calling Functions 61

What Is a Function? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Declaring and Defining Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Using Variables with Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Function Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Returning Values from Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Default Function Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Overloading Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Auto-Typed Return Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

HOUR 6: Controlling the Flow of a Program 79

Looping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

while Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

do-while Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

for Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

switch Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

HOUR 7: Storing Information in Arrays and Strings 95

What Is an Array? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Writing Past the End of Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Initializing Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Multidimensional Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Character Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Copying Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Reading Arrays with Foreach Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Part II: Classes

HOUR 8: Creating Basic Classes 109

What Is a Type? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Creating New Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Classes and Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Accessing Class Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Private Versus Public Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Implementing Member Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Creating and Deleting Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

www.allitebooks.com

http://www.allitebooks.org


ptg18189307

Table of Contents vii

HOUR 9: Moving into Advanced Classes 123

const Member Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Interface Versus Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Organizing Class Declarations and Function Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Inline Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Classes with Other Classes as Member Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Part III: Memory Management

HOUR 10: Creating Pointers 135

Understanding Pointers and Their Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

The Stack and the Heap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Null Pointer Constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

HOUR 11: Developing Advanced Pointers 155

Creating Objects on the Heap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Deleting Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Accessing Data Members Using Pointers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Member Data on the Heap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

The this Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Stray or Dangling Pointers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

const Pointers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

const Pointers and const Member Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

HOUR 12: Creating References 167

What is a Reference? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

Creating a Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

Using the Address of Operator on References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

What Can Be Referenced? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Null Pointers and Null References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

Passing Function Arguments by Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

Understanding Function Headers and Prototypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

Returning Multiple Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

HOUR 13: Developing Advanced References and Pointers 183

Passing by Reference for Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Passing a const Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

www.allitebooks.com

http://www.allitebooks.org


ptg18189307

viii Sams Teach Yourself C++ in 24 Hours

References as an Alternative to Pointers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

When to Use References and When to Use Pointers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

References to Objects Not in Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

Returning a Reference to an Object on the Heap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

Pointer, Pointer, Who Has the Pointer? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Part IV: Advanced C++

HOUR 14: Calling Advanced Functions 199

Overloaded Member Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

Using Default Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

Initializing Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

The Copy Constructor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

Compile-Time Constant Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

HOUR 15: Using Operator Overloading 213

Operator Overloading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

Conversion Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

Part V: Inheritance and Polymorphism

HOUR 16: Extending Classes with Inheritance 231

What Is Inheritance? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

Private Versus Protected . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

Constructors and Destructors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

Passing Arguments to Base Constructors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

Overriding Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

HOUR 17: Using Polymorphism and Derived Classes 251

Polymorphism Implemented with Virtual Member Functions . . . . . . . . . . . . . . . . . . . . . 251

How Virtual Member Functions Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

HOUR 18: Making Use of Advanced Polymorphism 267

Problems with Single Inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

Abstract Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

www.allitebooks.com

http://www.allitebooks.org


ptg18189307

Table of Contents ix

Part VI: Special Topics

HOUR 19: Storing Information in Linked Lists 287

Linked Lists and Other Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

Linked List Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

Linked Lists as Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

HOUR 20: Using Special Classes, Functions, and Pointers 301

Static Member Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

Static Member Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

Containment of Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

Friend Classes and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

HOUR 21: Using New Features of C++14 331

The Newest Version of C++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

Using auto in Function Return Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332

Improved Numeric Literals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334

The constexpr Keyword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

Lambda Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338

HOUR 22: Employing Object-Oriented Analysis and Design 343

The Development Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343

Simulating an Alarm System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

PostMaster: A Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350

HOUR 23: Creating Templates 373

What Are Templates? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373

Instances of the Template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374

Template Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374

Using Template Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381

HOUR 24: Dealing with Exceptions and Error Handling 391

Bugs, Errors, Mistakes, and Code Rot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391

Handling the Unexpected . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392

Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393

Using try and catch Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397

Writing Professional-Quality Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403



ptg18189307

x Sams Teach Yourself C++ in 24 Hours

Part VII: Appendixes

APPENDIX A: Binary and Hexadecimal 411

Other Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412

Around the Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412

Hexadecimal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416

APPENDIX B: Glossary 419

APPENDIX C: This Book’s Website 427

APPENDIX D: Using the MinGW C++ Compiler on Windows 429

Downloading MinGW-w64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429

Setting the Path Environment Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431

Testing Your Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433

Index 439



ptg18189307

About the Authors

Rogers Cadenhead is a writer, computer programmer, and web developer who has  written 

more than 25 books on Internet-related topics, including Sams Teach Yourself Java in 21 Days 

and Absolute Beginner’s Guide to Minecraft Mods Programming. He publishes the Drudge 

Retort and other websites that receive more than 22 million visits a year. This book’s official 

 website is at http://cplusplus.cadenhead.org.

Jesse Liberty is the author of numerous books on software development, including 

 best-selling titles on C++ and .NET. He is the president of Liberty Associates, Inc. 

(www. libertyassociates.com), where he provides custom programming, consulting, and 

 training.

http://cplusplus.cadenhead.org
http://www. libertyassociates.com


ptg18189307

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value 
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Introduction

Congratulations! By reading this sentence, you are already 20 seconds closer to learning C++, 

one of the most important programming languages in the world.

If you continue for another 23 hours, 59 minutes, and 40 seconds, you will master the 

fundamentals of the C++ programming language. Twenty-four one-hour lessons cover important 

features such as managing I/O, creating loops and arrays, using object-oriented  programming 

with templates, and creating C++ programs.

All of this has been organized into well-structured, easy-to-follow lessons. There are working 

 projects that you create—complete with output and an analysis of the code—to illustrate the 

 topics of the hour. Syntax examples are clearly marked for handy reference.

To help you become more proficient, each hour ends with a set of common questions and 

answers.

Who Should Read This Book?
You don’t need any previous experience in programming to learn C++ with this book. It starts 

with the basics and teaches you both the language and the concepts involved with  programming 

C++. Whether you are just beginning or already have some experience programming, you will 

find that this book makes learning C++ fast and easy.

Should I Learn C First?
No, you don’t need to learn C first. C++ is a much more powerful and versatile language that 

was created by Bjarne Stroustrup as a successor to C. Learning C first can lead you into some 

programming habits that are more error-prone than what you’ll do in C++. This book does not 

assume that readers are familiar with C.



ptg18189307

2 Introduction

Why Should I Learn C++?
You could be learning a lot of other languages, but C++ is valuable to learn because it has stood 

the test of time and continues to be a popular choice for modern programming.

Despite being created in 1979, C++ is still being used for professional software today because of 

the power and flexibility of the language. There’s even a new version of the language, called 

C++14, that makes it even more useful.

Because other languages such as Java were inspired by C++, learning the language can  provide 

you insight into them, as well. Mastering C++ gives you portable skills that you can use on 

just about any platform on the market today, from desktop computers to Linux servers, mobile 

 devices, videogame consoles, and mainframes.

What If I Don’t Want This Book?
I’m sorry you feel that way, but these things happen sometimes. Please reshelve this book with 

the front cover facing outward on an endcap with access to a lot of the store’s foot traffic.

Conventions Used in This Book
This book contains special elements as described here.

NOTE

These boxes provide additional information to the material you just read.

CAUTION

These boxes focus your attention on problems or side effects that can occur in specific situations.

TIP

These boxes give you tips and highlight information that can make your C++ programming more 
efficient and effective.

When you see this symbol, you know that what you see next will show the output from a code 

listing/example.
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This book uses various typefaces:

 To help you distinguish C++ code from regular English, actual C++ code is typeset in a 

special monospace font.

 Placeholders—words or characters temporarily used to represent the real words or 

characters you would type in code—are typeset in italic monospace.

 New or important terms are typeset in italic.

 In the listings in this book, each real code line is numbered. If you see an unnumbered line 

in a listing, you’ll know that the unnumbered line is really a continuation of the preceding 

numbered code line (some code lines are too long for the width of the book). In this case, 

you should type the two lines as one; do not divide them.
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HOUR 1
Writing Your First Program

What You’ll Learn in This Hour:

 How and why C++ was invented

 How to find a C++ compiler

 How to create and compile your first program

 How to link and run the program

Using C++
In 1979, a Danish computer scientist at Bell Labs in the United States began work on an 

enhancement to the C programming language. Bjarne Stroustrop explained on his personal 

website that he wanted a language “in which I could write programs that were both efficient 

and elegant.”

A lot of other people wanted that too.

Stroustrop’s creation, which he dubbed C++, has held a spot among the world’s top program-

ming languages for decades. Many programming trends have come and gone over the years, but 

this language remains a contemporary and useful choice for software development on desktop 

computers, servers, embedded devices like phones, and many other computing environments.

C++ is a portable language that works equally well on Microsoft Windows, Apple Mac OS, Linux, 

and UNIX systems. The best way to learn the language is to write programs without regard to 

the operating system the program runs on.

Sams Teach Yourself C++ in 24 Hours offers a hands-on introduction to the language that makes 

absolutely no assumptions about your operating system. The book can achieve this because it 

covers standard C++ (also called ANSI/ISO C++), the internationally agreed-upon version of the 

language, which is portable to any platform and development environment.

The code presented throughout the book is standard ANSI/ISO C++ and should work with any 

development environment for C++ that’s up-to-date.
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New features that are introduced in C++14, the language’s current version, also are covered. 

Popular C++ development environments support this version, which has 14 as part of its name 

because it was released in 2014.

C++ programs are developed by a set of tools that work together called the compiler and linker.

A compiler turns C++ programs into a form that can be run. The compiler translates a program 

from a human-readable form called source code into a machine-runnable form called machine 

code. The compiler produces an object file. From the object file, a linker builds an executable file 

that can be run.

There are several popular environments for C++ programming that you might have used before 

or know how to obtain. Some of these are GCC (the GNU Compiler Collection), Microsoft Visual 

Studio, NetBeans, and Embarcadero C++ Builder.

If you have an up-to-date C++ compiler on your system and know the basics of how to use it, 

you will have no trouble completing the programming projects in this book.

If you don’t have a C++ compiler, don’t know how to use a compiler, or don’t know how to 

find one, relax. You can learn how to download and install an excellent free compiler, GCC, 

in Appendix D, “Using the MinGW C++ Compiler on Windows.” Do that now if you need a   

compiler before you proceed in this book.

Microsoft Visual Studio also supports C++ programming, and a free version called Visual Studio 

Community is available from the website www.visualstudio.com. Some guidance is offered in this 

book for people learning C++ with Visual Studio.

Compiling and Linking the Source Code
Before you create your first C++ program later this hour, it’s worthwhile to understand the 

 process.

C++ programs begin as source code, which is just text typed into an editor such as Windows 

WordPad, Gedit, Emacs, or Vi. Although Microsoft Word and other word processors can save files 

as plain text, you should use a simpler editor for programming because you don’t need all the 

formatting and presentation capabilities of a word processor. Source code consists of plain text 

with no special formatting.

NOTE

There’s a free text editor for Windows called Notepad++ that provides excellent support for C++ 
programming. It includes features you’ll come to appreciate as you get experience creating your own 
programs, such as code highlighting, which displays different elements of the language in different 
colors. You can download it from https://notepad-plus-plus.org.

http://www.visualstudio.com
https://notepad-plus-plus.org
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The source code files you create for C++ can be given filenames ending with the extensions 

.cpp, .cxx, .cp, or .c. This book names all source code files with the .cpp extension, the most 

 common choice for C++ programmers and the default for some compilers. Most C++  compilers 

don’t care about the extension given to source code, but using .cpp consistently helps you 

 identify source code files.

Source code is the human-readable form of a C++ program. It can’t be run until it is compiled 

and linked.

After your source code is compiled, an object file is produced. This file is turned into an 

 executable program by a linker.

C++ programs are created by linking together one or more object files with one or more libraries. 

A library is a collection of linkable files that provide useful functions and classes that you can 

rely on in your programs. A function is a block of code that performs a task, such as  multiplying 

two numbers or displaying text. A class is the definition of a new type of data and related 

 functions.

Here are the steps to create a C++ program:

1. Create a source code file with a text editor.

2. Use a compiler to convert the source code into an object file.

3. Use a linker to link the object file and any necessary libraries to produce an executable

program.

4. Type the name of the executable to run it.

The GCC compiler can handle compiling and linking in a single step.

Creating Your First Program
Now that you’ve been introduced to the process, it’s time to create your first C++ program and 

give the compiler a test drive.

Launch the text editor you’re using to create programs and open a new file. The first program 

that you create will display text on the screen.

Type the text of Listing 1.1 into the editor. Ignore the numbers along the left side of the listing 

and the colons that follow them—these are there simply for reference purposes in this book.

As you type, make sure to enter the punctuation on each line properly, such as the :: and << 

characters on line 5.

When you’ve finished, save the file as Motto.cpp.
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LISTING 1.1 The Full Text of Motto.cpp.

1:  #include <iostream>

2:  

3:  int main()

4:  {

5: std::cout << "Solidum petit in profundis!\n";

6: return 0;

7:  }

The point of this project is to become familiar with the steps of creating a C++ program. If you 

are confused by what each line is doing, don’t panic—you’ll begin to discover what’s going on 

here during Hour 2, “Organizing the Parts of a Program.”

After you save the file, it needs to be compiled and linked. If you’re using GCC, the following 

command accomplishes both tasks:

g++ Motto.cpp -o Motto.exe

This command tells the G++ compiler to compile the file named Motto.cpp and link it into an 

executable program named Motto.exe. If it compiles successfully, no message is displayed. 

The compiler says something only if there’s a problem, displaying an error message and the 

line (or lines) where the error appeared.

If you get a compiler error, recheck the program line by line. Make sure that all the punctuation 

is included, particularly the semicolons at the end of lines 5 and 6.

After fixing any potential problems, try the compiler again. If you continue to experience 

 problems and can’t find the cause, you can download a copy of this program from the book’s 

website at http://cplusplus.cadenhead.org. Go to the Hour 1 page.

When the program has been compiled properly, you can run Motto.exe like any other program 

on your computer: Type its name, Motto.exe, as a command and press Enter.

The Motto program displays the following output:

Solidum petit in profundis!

This is the motto of Aarhus University, a public school with 38,000 students in Aarhus, Denmark, 

and the kingdom’s second-largest university. The motto is Latin for “Seek a firm footing in the 

depths.”

Aarhus alumni include Danish Queen Margrethe II, Nobel laureate chemist Jens Christian Skou, 

Crown Prince Fredrik, and some guy named Bjarne Stroustrop.

http://cplusplus.cadenhead.org
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Summary
Congratulations! You can now call yourself a C++ programmer, though if you quit at this point 

no one will call you an ambitious one.

The C++ language has been a popular choice for software development for more than three 

decades. The language has its idiosyncrasies, but when you become comfortable with how 

programs are structured, it is easy to build on your knowledge by creating more sophisticated 

programs.

Over the next few hours, you learn the basic building blocks of C++, creating several programs 

each hour that demonstrate new facets of the language and programming techniques.

Solidum petit in profundis! 

Q&A
Q. What is the difference between a text editor and a word processor?

A. A text editor produces files with plain text in them—just letters, numbers, spaces, and
punctuation. There are no formatting commands for things such as bold or italic text,
 justified lines, special margins, and so forth. You don’t need any of that formatting in C++
source code, and using a word processor can save things in the file that the compiler won’t
understand. If you have trouble getting the Motto program to compile and you’re using a
word processor, try a simpler editor such as Notepad (or Notepad++) on Windows to see
whether that solves the problem.

Q. My compiler has a built-in editor. Is that the right thing to use?

A. It sounds like you’re using an integrated development environment (IDE), a graphical
tool that speeds the process of writing, debugging, and testing programs. Sophisticated
 compilers such as Microsoft Visual Studio include a full IDE, enabling the programmer to
access help files, edit, and compile the code in place, and also to resolve compile and
link errors without ever leaving the environment. These offer a much better way to write
C++ programs, but only if you know how to use the IDE already. Trying to learn C++ as you
learn the ins and outs of an IDE at the same time is difficult. That’s one reason this book
 recommends GCC, which is simple, powerful, and free.

Q. Can I ignore warning messages from my compiler?

A. Absolutely not. C++ uses the compiler to warn when you’re doing something as a
 programmer that you might not intend. The best approach is to heed those warnings and
do what is required to make them go away. Getting an error means that the compiler cannot
figure out how to convert what you wrote into machine language. A warning means that it
can convert it but maybe not in the way you expected.



ptg18189307

10 HOUR 1: Writing Your First Program

Q. Do you only answer questions related to C++?

A. Nope. Ask anything.

Q. Groovy. Why doesn’t anyone sell grape-flavored ice cream?

A. Unlike other fruit flavors incorporated into ice cream, grapes get almost all their flavor from
their skins rather than the interior of the fruit. Without the skins, they just taste sweet in an
entirely non-distinct and generic way, so you wouldn’t know you were eating grape ice cream
unless somebody told you.

When the skins are included to get around this problem, ice cream makers say that the
resulting texture of the finished product freaks people out. So grape ice cream is extremely
rare and a bit gross even when it is available.

Fans of the flavor can still enjoy grape juice, grape jelly, and grape soda. But not
 Grape-Nuts. That 120-year-old breakfast cereal contains neither grapes nor nuts.

Workshop
Now that you’ve had the chance to enter, compile, link, and execute your first program, you can 
answer a few questions and complete a couple of exercises to firm up your knowledge about the 
compiler.

Quiz
1. What tool turns C++ source code into object code?

A. A compiler

B. A linker

C. An integrated development environment

2. What filename extension is most common for source code files?

A. .cpp

B. .c

C. .h

3. What tools can you use to edit your source code?

A. A text editor

B. A word processor

C. Either one
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Answers
1. A. The compiler takes a file of C++ source code and turns it into object code. The linker

links that object file and any other necessary object files to create an executable program.

2. A. Compilers can handle any source code file regardless of extension, but .cpp is in wide
use as the file extension for C++ code. Using this extension makes it easier later when
you’re looking around your computer’s file folders for a program’s source code.

3. C. You can use any tool that saves the code as plain text. You can use the simple editors
that come with your operating system (such as Notepad, Vi, Gedit, or Emacs) or others that
are available. Have I mentioned Notepad++?

Activities
1. Modify the Motto program to display the text “Saluton Mondo!,” the greeting “Hello world!”

in the artificial language Esperanto.

2. If you don’t have a C++ IDE and you’re not comfortable using the command line, take a look
at Notepad++, NetBeans at http://netbeans.org or Code::Blocks at http://codeblocks.org.
They’re free IDEs that can be configured to work in conjunction with GCC. You might find
them easier to use as you read this book.

To see solutions to these activities, visit this book’s website at http://cplusplus.cadenhead.org.

http://netbeans.org
http://codeblocks.org
http://cplusplus.cadenhead.org
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HOUR 2
Organizing the Parts of a 

Program

What You’ll Learn in This Hour:

 Why to use C++

 How C++ programs are organized

 How comments make programs easier to understand

 What functions can accomplish

Although it recently turned 37, the C++ programming language has aged a lot better than some 

other things that came out in the late 1970s. Unlike disco, oil embargoes, shag carpet, and 

avocado-colored refrigerators, C++ is still in vogue today. It remains a world-class programming 

language.

The reason for its surprising longevity is that C++ makes it possible to create fast executing 

programs with a small amount of code that can run on a variety of computing environments. 

Today’s C++ programming tools enable the creation of complex and powerful applications in 

commercial, business, and open source development.

Reasons to Use C++
During the seven decades of the computing age, computer programming languages have under-

gone a dramatic evolution. C++ is considered to be an evolutional improvement of a language 

called C that was introduced in 1972.

The earliest programmers worked with the most primitive computer instructions: machine 

language. These instructions were represented by long strings of ones and zeroes. Assemblers were 

devised that could map machine instructions to human-readable and manageable commands 

such as ADD and MOV.

The instructions that make up a computer program are called its source code.

In time, higher-level languages were introduced such as BASIC and COBOL. These languages 

made it possible for programmers to begin to craft programs using language closer to actual 
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words and sentences, such as Let Average = .366. These instructions were translated back 

into machine language by tools that were called either interpreters or compilers.

An interpreter-based language translates a program as it reads each line, acting on each instruction.

A compiler-based language translates a program into what is called object code through a 

 process called compiling. This code is stored in an object file. Next, a linker transforms the object 

file into an executable program that can be run on an operating system.

Because interpreters read the code as it is written and execute the code on the fly, they’re easy 

for programmers to work with. Compilers require the more inconvenient extra steps of compiling 

and linking programs. The benefit to this approach is that the programs run significantly faster 

than programs run by an interpreter.

For many years, the principal goal of programmers was to write short pieces of code that would 

execute quickly. Programs needed to be small because memory was expensive, and they needed 

to be fast because processing power also was expensive. As computers have become cheaper, 

faster, and more powerful and the cost and capacity of memory has fallen, these priorities 

diminished in importance.

Today, the greatest expense in programming is the cost of a programmer’s time. Modern 

 languages such as C++ make it faster to produce well-written, easy-to-maintain programs that 

can be extended and enhanced.

Styles of Programming
As programming languages have evolved, languages have been created to cater to different 

styles of programming.

In procedural programming, programs are conceived of as a series of actions performed on a set 

of data. Structured programming was introduced to provide a systematic approach to organizing 

these procedures and managing large amounts of data.

The principal idea behind structured programming is to divide and conquer. Take a task that 

needs to be accomplished in a program, and if it is too complex, break it down into a set of 

smaller component tasks. If any of those tasks is still too complicated, break it down into even 

smaller tasks. The end goal is tasks that are small and self-contained enough to be easily 

understood.

As an example, pretend you’ve been asked by this publisher to write a program that tracks the 

average income of its team of enormously talented and understatedly charismatic computer 

book authors. This job can be broken down into these subtasks:

1. Find out what each author earns.

2. Count how many authors the publisher has.
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3. Total all their income.

4. Divide the total by the number of authors.

Totaling the income can be broken down into the following:

1. Get each author’s personnel record.

2. Access the author’s book advances and royalties.

3. Deduct the cost of morning coffee, corrective eyewear and chiropractic care.

4. Add the income to the running total.

5. Get the next author’s record.

In turn, obtaining each author’s record can be broken down into these subtasks:

1. Open the file folder of authors.

2. Go to the correct record.

3. Read the data from disk.

Although structured programming has been widely used, this approach has some drawbacks. 

The separation of data from the tasks that manipulate the data becomes harder to comprehend 

and maintain as the amount of data grows. The more things that must be done with data, the 

more confusing a program becomes.

Procedural programmers often find themselves reinventing new solutions to old problems instead 

of producing reusable programs. The idea behind reusability is to build program components 

that can be plugged into programs as needed. This approach is modeled after the physical 

world, where devices are built out of individual parts that each perform a specific task and have 

already been manufactured. A person designing a bicycle doesn’t have to create a brake system 

from scratch. Instead, she can incorporate an existing brake into the design and take advantage 

of its existing functionality.

This component-based approach became available to computer programmers for the first time 

with the introduction of object-oriented programming.

C++ and Object-Oriented Programming
C++ helped popularize a revolutionary style of programming with a funny acronym: OOP.

The essence of object-oriented programming is to treat data and the procedures that act 

upon the data as a single object—a self-contained entity with an identity and characteristics of 

its own.
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The C++ language fully supports object-oriented programming, including three concepts that 

have come to be known as the pillars of object-oriented development: encapsulation, 

inheritance, and polymorphism.

Encapsulation
When the aforementioned bike engineer creates a new bicycle, she connects together  component 

pieces such as the frame, handlebars, wheels, and a headlight (baseball card in the spokes 

optional). Each component has certain properties and can accomplish certain behaviors. She 

can use the headlight without understanding the details of how it works, as long as she knows 

what it does.

To achieve this, the headlight must be self-contained. It must do one well-defined thing and it 

must do it completely. Accomplishing one thing completely is called encapsulation.

All the properties of the headlight are encapsulated in the headlight object. They are not spread 

out through the bicycle.

C++ supports the properties of encapsulation through the creation of user-defined types called 

classes. A well-defined class acts as a fully encapsulated entity that is used as an entire unit or 

not at all. The inner workings of the class should be hidden on the principle that the programs 

which use a well-defined class do not need to know how the class works. They only need to know 

is how to use it. You learn how to create classes in Hour 8, “Creating Basic Classes.”

Inheritance and Reuse
Now we’re starting to learn a little more about our bike engineer. Let’s call her Penny Farthing. 

Penny needs her new bicycle to hit the market quickly—she has run up enormous gambling 

debts to people who are not known for their patience.

Because of the urgency, Penny starts with the design of an existing bicycle and enhances it with 

cool add-ons like a cup holder and mileage counter. Her new bicycle is conceived as a kind 

of bicycle with added features. She reused all the features of a regular bicycle while adding 

capabilities to extend its utility.

C++ supports the idea of reuse through inheritance. A new type can be declared that is an 

extension of an existing type. This new subclass is said to derive from the existing type. Penny’s 

bicycle is derived from a plain old bicycle and thus inherits all its qualities but adds additional 

features as needed. Inheritance and its application in C++ are discussed in Hour 16, “Extending 

Classes with Inheritance.”

Polymorphism
As its final new selling point, Penny Farthing’s Amazo-Bicycle behaves differently when its horn 

is squeezed. Instead of honking like an anguished duck, it sounds like a car when lightly pressed 

www.allitebooks.com

http://www.allitebooks.org
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and roars like a foghorn when strongly squashed. The horn does the right thing and makes the 

proper sound based on how it is used by the bicycle’s rider.

C++ supports this idea that different objects do the right thing through a language feature called 

function polymorphism and class polymorphism. Polymorphism refers to the same thing taking many 

forms, and is discussed during Hour 17, “Using Polymorphism and Derived Classes.”

You will learn the full scope of object-oriented programming by learning C++. These concepts 

will become familiar to you by the time you’ve completed this full 24-hour ride and begun to 

develop your own C++ programs.

Disclaimer: You won’t learn how to design bicycles or get out of gambling debt.

The Parts of a Program
The program you created during the first hour, Motto.cpp, contains the basic framework of a 

C++ program. Listing 2.1 reproduces the source code of this program so that it can be explored 

in more detail.

When typing this program in to a programming editor such as NetBeans, remember not to 

include the line numbers in the listing. They are included solely for the purpose of referring to 

specific lines in this book.

LISTING 2.1 The Full Text of Motto.cpp 

1:  #include <iostream>

2:  

3:  int main()

4:  {

5: std::cout << "Solidum petit in profundis!\n";

6: return 0;

7:  }

This program produces a single line of output, the motto of Aarhus University:

Solidum petit in profundis!

On line 1 of Listing 2.1 a file named iostream is included in the source code. This line causes 

the compiler to act as if the entire contents of that file were typed at that place in Motto.cpp.

Preprocessor Directives
A C++ compiler’s first action is to call another tool called the preprocessor that examines the 

source code. This happens automatically each time the compiler runs.
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The first character in line 1 is the # symbol, which indicates that the line is a command to be 

handled by the preprocessor. These commands are called preprocessor directives. The preprocessor’s 

job is to read source code looking for directives and modify the code according to the indicated 

directive. The modified code is fed to the compiler.

The preprocessor serves as an editor of code right before it is compiled. Each directive is a 

 command telling that editor what to do.

The #include directive tells the preprocessor to include the entire contents of a designated 

 filename at that spot in a program. As you learned in Hour 1, “Writing Your First Program,” 

C++ includes a standard library of source code that can be used in your programs to perform 

useful functionality. The code in the iostream file supports input and output tasks such as 

displaying information onscreen and taking input from a user.

The < and > brackets around the filename iostream tell the preprocessor to look in a standard 

set of locations for the file. Because of the brackets, the preprocessor looks for the iostream 

file in the folder that holds header files for the compiler. These files also are called include files 

because they are included in a program’s source code.

The full contents of iostream are included in place of line 1.

NOTE

Header files traditionally ended with the filename extension .h and also were called h files, so they 
used a directive of the form include <iostream.h>.

Modern compilers don’t require that extension, but if you refer to files using it, the directive might 
still work for compatibility reasons. This book omits the extraneous .h in include files.

The contents of the file iostream are used by the cout command in line 5, which displays 

information to the screen.

There are no other directives in the source code, so the compiler handles the rest of Motto.cpp.

Source Code Line by Line
Line 3 begins the actual program by declaring a function named main(). Functions are blocks of 

code that perform one or more related actions. Functions do some work and then return to the 

spot in the program where they were called.

Every C++ program has a main() function. When a program starts, main() is called 

automatically.

All functions in C++ must return a value of some kind after their work is done. The main() 

function always returns an integer value. Integers are specified using the keyword int.
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Functions, like other blocks of code in a C++ program, are grouped together using the brace 

marks { and }. All functions begin with an opening brace { and end with a closing brace }.

The braces for the main() function of Motto.cpp are on lines 4 and 7, respectively. Everything 

between the opening and closing braces is part of the function.

In line 5, the cout command is used to display a message on the screen. The object has the 

designation std:: in front of it, which tells the compiler to use the standard C++ input/output 

library. The details of how this works are too complex for this early hour and likely will cause 

you to throw the book across the room if introduced here. For the safety of others in your  vicinity, 

they are explained later. For now, treat std::cout as the name of the object that handles 

 output in your programs and std::cin as the object that handles user input.

The reference to std::cout in line 5 is followed by <<, which is called the output redirection 

 operator. Operators are characters in lines of code that perform an action in response to some 

kind of information. The << operator displays the information that follows it on the line. In 

line 5, the text "Solidum petit in profundis!\n" is enclosed within double quotes. This 

displays a string of characters on the screen followed by a special character specified by "\n", 

a newline character that advances the program’s output to the beginning of the next line.

On line 6, the program returns the integer value 0. This value is received by the operating 

 system after the program finishes running. Typically, a program returns the value 0 to indicate 

that it ran successfully. Any other number indicates a failure of some kind.

The closing braces on line 7 ends the main() function, which ends the program. All of your 

 programs use the basic framework demonstrated by this program.

Comments
As you are writing your own programs for the first time, it will seem perfectly clear to you 

what each line of the source code does. But as time passes and you come back to the program 

to fix a bug or add a new feature, you may find yourself completely mystified by your 

own work.

To avoid this predicament and help others understand your program, you can document your 

source code with comments. Comments are lines of text that explain what a program is doing. 

The compiler ignores them, so they are strictly for benefit of humans reading the code.

There are two types of comments in C++. A single-line comment begins with two slash marks 

(//) and causes the compiler to ignore everything that follows the slashes on the same line. 

Here’s an example:

// The next line is a kludge (ugh!)
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A multiple-line comment begins with the slash and asterisk characters (/*) and ends with 

the same characters reversed (*/). Everything within the opening /* and the closing */ is a 

 comment, even if it stretches over multiple lines. If a program contains a /* that is not  followed 

by a */ somewhere, that’s an error likely to be flagged by the compiler. Here’s a multiline 

 comment:

/* This part of the program doesn't work very well. Please remember to

   fix this before the code goes live –– or else find a scapegoat you can

   blame for the problem. The new guy Curtis would be a good choice. */

In the preceding comment, the text on the left margin is lined up to make it more readable. This 

is not required. Because the compiler ignores everything within the /* and */, anything can be 

put there—grocery lists, love poems, secrets you’ve never told anybody in your life, and so on.

CAUTION

An important thing to remember about multiline comments is that they do not nest inside each 
other. If you use one /* to start a comment and then use another /* a few lines later, the first */ 
mark encountered by the compiler will end all multiline comments. The second */ mark will result in 
a compiler error. Most C++ programming editors display comments in a different color to make clear 
where they begin and end.

The next project that you create includes both kinds of comments. Write lots of comments in 

your programs. The more time spent writing comments that explain what’s going on in source 

code, the easier that code will be to work on weeks, months or even years later.

Functions
The main() function is unusual among C++ functions because it’s called automatically when a 

program begins running.

A program is executed line by line in source code, beginning with the start of main(). When a 

function is called, the program branches off to execute the function. After the function has done 

its work, it returns control to the line where the function was called. Functions may or may not 

return a value, with the exception of main(), which always returns an integer.

Functions consist of a header and a body. The header consists of three things:

 The type of data the function returns

 The function’s name

 The parameters received by the function

The function name is a short identifier that describes its purpose.



ptg18189307

Functions 21

When a function does not return a value, it uses data type void, which means nothing. To 

clarify: void isn’t meaningless. It means “nothing,” like how stars in space are separated by a 

ginormous amount of nothing called “the void.”

Arguments are data sent to the function that control what it does. These arguments are received 

by the function as parameters. A function can have zero, one, or more parameters. The next 

 program that you create has a function called add() that adds two numbers together. Here’s 

how it is declared:

int add(int x, int y)

{

    // body of function goes here

}

The parameters are organized within parentheses marks as a list separated by commas. In this 

function, the parameters are integers named x and y.

The name of a function, its parameters and the order of those parameters is called its signature. 

Like a person’s signature, the function’s signature uniquely identifies it.

A function with no parameters has an empty set of parentheses, as in this example:

int getServerStatus()

{

    // body of function here

}

Function names cannot contain spaces, so the getServerStatus() function capitalizes 

the first letter of each word after the first one. This naming convention is common among 

C++  programmers and adopted throughout this book.

The body of a function consists of an opening brace, zero or more statements, and a closing 

brace. A function that returns a value uses a return statement, as you’ve seen in the Motto 

 program:

return 0;

The return statement causes a function to exit. If you don’t include at least one return 

 statement in a function, it automatically returns void at the end of the function’s body. In that 

situation, void must be specified as the function’s return type.

Using Arguments with Functions
The Calculator.cpp program in Listing 2.2 fleshes out the aforementioned add() function, 

using it to add a pair of numbers together and display the results. This program demonstrates 

how to create a function that takes two integer arguments and returns an integer value.
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LISTING 2.2 The Full Text of Calculator.cpp

 1: #include <iostream>

 2: 

 3: int add(int x, int y)

 4: {

 5:     // add the numbers x and y together and return the sum

 6:     std::cout << "Running calculator ...\n";

 7:     return (x+y);

 8: }

 9: 

10: int main()

11: {

12:     /* this program calls an add() function to add two different

13: sets of numbers together and display the results. The

14: add() function doesn't do anything unless it is called by

15: a line in the main() function. */

16:     std::cout << "What is 867 + 5309?\n";

17:     std::cout << "The sum is " << add(867, 5309) << "\n\n";

18:     std::cout << "What is 777 + 9311?\n";

19:     std::cout << "The sum is " << add(777, 9311) << "\n";

20:     return 0;

21: }

This program produces the following output:

What is 867 + 5309?

Running calculator ...

The sum is 6176

What is 777 + 9311?

Running calculator ...

The sum is 10088

The Calculator program includes a single-line comment on line 5 and a multi-line comment 

on lines 12–15. All comments are ignored by the compiler.

The add() function takes two integer parameters named x and y and adds them together in a 

return statement (lines 3–8).

The program’s execution begins in the main() function. The first statement in line 16 uses the 

object std::cout and the redirection operator << to display the text "What is 867 + 5309?" 

followed by a newline.

The next line displays the text "The sum is" and calls the add() function with the arguments 

777 and 9311. The execution of the program branches off to the add() function, as you can tell 

in the output by the text "Running calculator...."
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The integer value returned by the function is displayed along with two more newlines.

The process repeats for a different set of numbers in lines 18–19.

The formula (x+y) is an expression. You learn how to create these mathematical workhorses in 

Hour 4, “Using Expressions, Statements, and Operators.”

Summary
During this hour, you were shown how C++ evolved from other styles of computer languages and 

embraced a methodology called object-oriented programming. This methodology has been so 

successful in the world of computing that the language remains as contemporary today as it did 

when it was invented in 1979.

I wish the mullet haircut I sported in college had survived the test of time as well. Instead, it lives 

on in Facebook photos that friends share to shock and awe.

In the two programs that you developed during this hour, you made use of three parts of a 

C++ program: preprocessor directives, comments, and functions.

All the programs that you will create in C++ employ the same basic framework as the Motto and 

Calculator programs. They just become more sophisticated as they make use of more  functions, 

whether you write them from scratch or call functions from header files included with the 

#include directive. 

Q&A
Q. What does the # character do in a C++ program?

A. The # symbol signals that the line is a preprocessor directive, a command that is handled
before the program is compiled. The #include directive includes the full text of a file at
that position in the program. The compiler never sees the directive. Instead, it acts as if the
contents of the file were typed in with the rest of the source code.

Q. What is the difference between // comments and /* style comments?

A. The comments that start with // are single-line comments that end with the end of the line
on which they appear. The /* comments are multi-line comments that don’t end until a */
is encountered. The end of a function won’t even cause a multi-line comment to be ended.
You must put in the closing */ mark or the compiler will fail with an error.

Q. What’s the difference between function arguments and function parameters?

A. The terms are two sides of the same process when a function is called. Arguments are the
information sent to the function. Parameters are the same information received by the
 function. You call a function with arguments. Within a function, those arguments are
received as parameters.
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Q. What is a kludge?

A. A kludge is an ugly solution to a problem that’s intended to be replaced later with some-
thing better. The term was popularized by Navy technicians, computer programmers, and
aerospace engineers and spread to other technical professions.

In a computer program a kludge is source code that works but would have been designed
better if there had been more time. Kludges have a tendency to stick around a lot longer
than expected.

The astronauts on the Apollo 13 mission created one of the greatest kludges of all time: a
system cobbled together from duct tape and socks that filtered carbon dioxide from the air
on the spacecraft and helped them make it back to Earth.

The first known usage of the term was in a 1962 article in Datamation magazine by
Jackson W. Granholm, who gave it an elegant definition that has stood the test of time:
“An ill-assorted collection of poorly matching parts, forming a distressing whole.”

Workshop
Now that you’ve learned about some of the pieces of a C++ program, you can answer a couple of 
questions and complete a couple of exercises to firm up your knowledge.

Quiz 
1. What data type does the main function return?

A. void

B. int

C. It does not return a type.

2. What do the braces do in a C++ program?

A. Indicate the start and end of a function

B. Indicate the start and end of a program

C. Straighten the program’s teeth

3. What is not part of a function’s signature?

A. Its name

B. Its arguments

C. Its return type
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Answers
1. B. The main function returns an int (integer).

2. A. Braces mark the start and end of functions and other blocks of code you learn about in
upcoming hours.

3. C. A function signature consists of its name, parameters, and the precise order of those
parameters. It does not include its return type.

Activities
1. Rewrite the Motto program to display the Aarhus University motto in a function.

2. Rewrite the Calculator program to add a third integer called z in the add() function and
call this function with two sets of three numbers.

To see solutions to these activities, visit this book’s website at http://cplusplus.cadenhead.org.

http://cplusplus.cadenhead.org
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HOUR 3
Creating Variables and 

Constants

What You’ll Learn in This Hour:

 How to create variables and constants

 How to assign values to variables and change those values

 How to display the value of variables

 How to find out how much memory a variable requires

What Is a Variable?
A variable is a location in computer memory where you can store and retrieve a value. Your 

computer’s memory can be thought of as a series of cubbyholes lined up in a long row. Each 

cubbyhole is numbered sequentially. The number of each cubbyhole is its memory address.

Variables have addresses and are given names that describe their purpose. In a game  program, 

you could create a variable named score to hold the player’s score and a variable named 

 zombies for the number of zombies the player has defeated. A variable is a label on a 

 cubbyhole so that it can be accessed without knowing the actual memory address.

Figure 3.1 shows seven cubbyholes with addresses ranging from 101 to 107. In address 104, 

the zombies variable holds the value 17. The other cubbyholes are empty.
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102 103 104

17

zombies

105 106 107101

FIGURE 3.1
A visual representation of memory.

Storing Variables in Memory
When you create a variable in C++, you must tell the compiler the variable’s name and what 

kind of information it will hold, such as an integer, character, or floating-point number. This is 

the variable’s type (sometimes called data type). The type tells the compiler how much room to set 

aside in memory to hold the variable’s value.

Each cubbyhole in memory can hold one byte. If a variable’s type is two bytes in size, it needs 

two bytes of memory. Because computers use bytes to represent values, it is important that 

you familiarize yourself with this concept.

A short integer, represented by short in C++, is usually two bytes. A long integer (long) is four 

bytes, an integer (int) can be two or four bytes, and a long long integer is eight bytes.

Characters of text are represented by the char type in C++, which usually is one byte in size. 

In Figure 3.1, each cubbyhole holds one byte. A two-byte value such as a short integer could be 

stored in addresses 106 and 107.

True-false values are stored as the bool type (short for Boolean). The values true and false 

are the only values it can hold.

NOTE

Boolean variables are named for George Boole, an English mathematician who lived from 
1815 to 1864. He created Boolean algebra, a branch in which values are limited to either true or 
false. His creation forms the basis of modern computing all the way down to the smallest digital 
circuits. He must have been good at true-false tests as a child.
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The size of a short always is smaller than or the same as an int. The size of an int is always 

the same or smaller than a long. Floating-point numeric types are different and are discussed 

later this hour.

The usual type sizes described so far do not hold true on all systems. You can check the size a 

type holds in C++ using the sizeof() function. The parentheses that follow sizeof should be 

filled with the name of a type as an argument. Here’s an example:

std:cout << sizeof(int) << "\n";

This statement displays the number of bytes required to store an integer variable. The sizeof() 

function is provided by the compiler and does not require an include directive. The Sizer 

 program in Listing 3.1 relies on the sizeof() function to report the sizes of common C++ types 

on your computer.

LISTING 3.1 The Full Text of Sizer.cpp

 1: #include <iostream>

 2: 

 3: int main()

 4: {

 5:     std::cout << "The size of an integer:\t\t";

 6:     std::cout << sizeof(int) << " bytes\n";

 7:     std::cout << "The size of a short integer:\t";

 8:     std::cout << sizeof(short) << " bytes\n";

 9:     std::cout << "The size of a long integer:\t";

10:     std::cout << sizeof(long) << " bytes\n";

11:     std::cout << "The size of a character:\t";

12:     std::cout << sizeof(char) << " bytes\n";

13:     std::cout << "The size of a boolean:\t\t";

14:     std::cout << sizeof(bool) << " bytes\n";

15:     std::cout << "The size of a float:\t\t";

16:     std::cout << sizeof(float) << " bytes\n";

17:     std::cout << "The size of a double float:\t";

18:     std::cout << sizeof(double) << " bytes\n";

19:     std::cout << "The size of a long long int:\t";

20:     std::cout << sizeof(long long int) << " bytes\n";

21:

22:     return 0;

23: } 
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CAUTION

This program makes use of a relatively recent addition to the C++ language: the long long int 
data type, which holds extremely large integers. If your compiler fails with an error on Sizer.cpp, 
you probably are using a compiler that is out-of-date and does not support C++11, the version of the 
language prior to the current C++14. Delete lines 19–20 and try to compile the program again. If it 
works, that’s the problem and you need to use a newer compiler.

After being compiled, this program produces the following output when run on either a 

Windows 10 or Linux Ubuntu 15.10 system:

The size of an integer:  4 bytes

The size of a short integer: 2 bytes

The size of a long integer: 4 bytes

The size of a character: 1 bytes

The size of a boolean:  1 bytes

The size of a float: 4 bytes

The size of a double float: 8 bytes

The size of a long long int: 8 bytes

Compare this output to how it runs on your computer. The sizeof() function returns the size 

of the specified object as its argument. For example, on line 16 the keyword float is passed 

to sizeof(). As you can see from the output, on the Windows or Ubuntu computers a float 

takes up two bytes of space and is equivalent in size to a long or an int.

Signed and Unsigned Variables
All the integer types come in two varieties specified using a keyword. They are declared with 

unsigned when they only hold positive values and signed when they hold positive or negative 

values. Here’s a statement that creates a short int variable called zombies that does not hold 

negative numbers:

unsigned short zombies = 0;

The variable is assigned the initial value 0. Both signed and unsigned integers can equal 0.

Integers that do not specify either signed or unsigned are assumed to be signed.

Signed and unsigned integers are stored using the same number of bytes. For this reason, the 

largest number that can be stored in an unsigned integer is twice as big as the largest positive 

number that a signed integer can hold. An unsigned short can handle numbers from 

0 to 65,535. Half the numbers represented by a signed short are negative, so a signed 

short represents numbers from –32,768 to 32,767. In both cases, the total number of possible 

values is 65,535.
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Variable Types
In addition to integer variables, C++ types cover floating-point values and characters of text.

Floating-point variables have values that can be expressed as decimal values. Character 

variables hold a single byte representing 1 of the 256 characters and symbols in the standard 

ASCII character set.

Variable types supported by C++ programs are shown in Table 3.1, which lists the variable type, 

the most common memory size, and the possible values that it can hold. Compare this table to 

the output of the Sizer program when run on your computer, looking for size differences.

TABLE 3.1 Variable Types

Type Size Values

unsigned short 2 bytes 0 to 65,535

short 2 bytes –32,768 to 32,767

unsigned long 4 bytes 0 to 4,294,967,295

long 4 bytes –2,147,483,648 to 2,147,483,647

int 4 bytes –2,147,483,648 to 2,147,483,647

unsigned int 4 bytes 0 to 4,294,967,295

long long int 8 bytes –9.2 quintillion to 9.2  quintillion

char 1 byte 256 character values

bool 1 byte true or false

float 4 bytes 1.2e–38 to 3.4e38

double 8 bytes 2.2e–308 to 1.8e308

The short and long variables also are called short int and long int in C++. Both forms 

are acceptable in your programs.

As shown in Table 3.1, unsigned short integers can hold a value only up to 65,535, while 

signed short integers can hold half that at maximum. Although unsigned long long 

int integers can hold more than 18.4 quintillion, that’s still finite. If you need a larger number, 

you must use float or double at the cost of some numeric precision. Floats and doubles can 

hold extremely large numbers, but only the first 7 or 19 digits are significant on most computers. 

Additional digits are rounded off.

Although it’s considered poor programming practice, a char variable can be used as a very 

small integer. Each character has a numeric value equal to its ASCII code in that character set. 

For example, the exclamation point character (!) has the value 33.

A special variable type called auto will be covered later this hour.
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Defining a Variable
A variable is defined in C++ by stating its type, the variable name, and a semi-colon to end the 

statement, as in this example:

int highScore;

More than one variable can be defined in the same statement as long as they share the same 

type. The names of the variables should be separated by commas, as in these examples:

unsigned int highScore, playerScore;

long area, width, length;

The highScore and playerScore variables both are unsigned integers. The second statement 

creates three long integers: area, width, and length. Because these integers share the same 

type, they can be created in one statement.

A variable name can be any combination of uppercase and lowercase letters, numbers, and 

underscore characters (_) without any spaces. Legal variable names include x, driver8, and 

playerScore. C++ is case sensitive, so the highScore variable differs from ones named 

 highscore or HIGHSCORE.

Using descriptive variable names makes it easier to understand a program for the humans 

 reading it. (The compiler doesn’t care one way or the other.) Take a look at the following two 

code examples to see which one is easier to figure out.

Example 1

main()

{

     unsigned short x;

     unsigned short y;

     unsigned int z;

     z = x * y;

}

Example 2

main ()

{

     unsigned short width;

     unsigned short length;

     unsigned short area;

     area = width * length;

}

Programmers differ in the conventions they adopt for variable names. Some prefer all 

lowercase letters for variable names with underscores separating words, such as high_score, 
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player_score, and new_world_record. Others prefer lowercase letters except for the first 

 letter of new words, such as highScore, playerScore, and newWorldRecord. (The latter 

naming convention has been dubbed CamelCase because the middle-of-word capitalizations 

look like a camel’s humps.)

Programmers who learned in a Linux environment tend to use the first convention, whereas 

those in the Microsoft world use CamelCase. The compiler does not care. 

The code in this book follows CamelCase.

With well-chosen variable names and plenty of comments, your C++ code will be much easier to 

figure out when you come back to it months or years later.

CAUTION

Some compilers allow you to turn case sensitivity of variable names off. Do not do this. If you do, 
your programs won’t work with other compilers, and other C++ programmers will make fun of you 
behind your back.

Some words may not be used as variable names in C++ because they are keywords used by the 

language. Reserved keywords include if, while, for, and main. Generally, any reasonable 

name for a variable is almost certainly not a keyword.

Variables may contain a keyword as part of a name but not the entire name, so variables 

 mainFlag and forward are permitted even though main and for are reserved.

Assigning Values to Variables
A variable is assigned a value using the = operator, which is called the assignment operator. 

The following statements show it in action to create an integer named highScore with the 

value 13,000:

unsigned int highScore;

highScore = 13000;

A variable can be assigned an initial value when it is created:

unsigned int highScore = 13000;

This is called initializing the variable. Initialization looks like assignment, but when you work 

later with constants, you’ll see that some variables must be initialized because they cannot be 

assigned a value.

The Rectangle program in Listing 3.2 uses variables and assignments to compute the area of a 

rectangle and display the result.
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LISTING 3.2 The Full Text of Rectangle.cpp

 1: #include <iostream>

 2: 

 3: int main()

 4: {

 5:     // set up width and length

 6:     unsigned short width = 26, length;

 7:     length = 40;

 8:

 9:     // create an unsigned short initialized with the

10:     // result of multiplying width by length

11:     unsigned short area = width * length;

12:

13:     std::cout << "Width: " << width << "\n";

14:     std::cout << "Length: "  << length << "\n";

15:     std::cout << "Area: " << area << "\n";

16:     return 0;

17: }

This program produces the following output when run:

Width: 26

Length: 40

Area: 1040

Like the other programs you’ve written so far, Rectangle uses the #include directive to bring 

the standard iostream library into the program. This makes it possible to use std::cout to 

display information.

Within the program’s main() block, on line 6 the variables width and length are created and 

width is given the initial value of 26. On line 7, the length variable is given the value 40 using 

the = assignment operator.

On line 11, an integer named area is defined. This variable is initialized with the value of the 

variable width multiplied by the value of length. The multiplication operator * multiplies one 

number by another.

On lines 13–15, the values of all three variables are displayed.

Using Type Definitions
When a C++ program contains a lot of variables, it can be repetitious to keep writing unsigned 

short int for each one. A shortcut for an existing type can be created with the keyword 

typedef, which stands for type definition.
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A typedef requires typedef followed by the existing type and its new name. Here’s an 

 example:

typedef unsigned short USHORT

This statement creates a type definition named USHORT that can be used anywhere in a program 

in place of unsigned short. The NewRectangle program in Listing 3.3 is a rewrite of Rectangle 

that uses this type definition.

LISTING 3.3 The Full Text of NewRectangle.cpp

 1: #include <iostream>

 2: 

 3: int main()

 4: {

 5:     // create a type definition

 6:     typedef unsigned short USHORT; 

 7: 

 8:     // set up width and length

 9:     USHORT width = 26;

10:     USHORT length = 40;

11:

12:     // create an unsigned short initialized with the

13:     // result of multiplying width by length

14:     USHORT area = width * length;

15: 

16:     std::cout << "Width: " << width << "\n";

17:     std::cout << "Length: "  << length << "\n";

18:     std::cout << "Area: " << area << "\n";

19:     return 0;

20: }

This program has the same output as Rectangle: the values of width (26), length (40), and 

area (1040).

On line 6, the USHORT typedef is created as a shortcut for unsigned short. A type definition 

substitutes the underlying definition unsigned short wherever the shortcut USHORT is used.

During Hour 8, “Creating Basic Classes,” you learn how to create new types in C++. This is a 

 different from creating type definitions.

NOTE

Some compilers will warn that in the NewRectangle program a “conversion may lose significant 
digits.” This occurs because the product of the two USHORTS on line 14 might be larger than an 
unsigned short integer can hold. For this program, you can safely ignore the warning.
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Constants
A constant, like a variable, is a memory location where a value can be stored. Unlike variables, 

constants never change in value. You must initialize a constant when it is created. C++ has two 

types of constants: literal and symbolic.

A literal constant is a value typed directly into your program wherever it is needed. For example, 

consider the following statement:

long width = 19;

This statement assigns the integer variable width the value 19. The 19 in the statement is a 

 literal constant. You can’t assign a value to 19, and its value can’t be changed.

The values true and false, which are stored in bool variables, also are literal constants.

A symbolic constant is a constant represented by a name, just like a variable. The const 

 keyword precedes the type, name, and initialization. Here’s a statement that sets the point 

reward for killing a zombie:

const int KILL_BONUS = 5000;

Whenever a zombie is dispatched, the player’s score could be increased by the reward:

playerScore = playerScore + KILL_BONUS;

If you decide later to increase the reward to 10,000 points, you can change the constant 

KILL_BONUS, and it will be reflected throughout the program. If you were to use the literal 

constant 5000 instead, it would be more difficult to find all the places it is used and change the 

value. Using constants reduces the potential for error.

Well-named symbolic constants also make a program more understandable. Constants often are 

fully capitalized by programmers to make them distinct from variables. This is not required by 

C++, but the capitalization of a constant must be consistent in any statement where it appears 

because the language is case sensitive.

Defining Constants
There’s another way to define constants that dates back to early versions of the C language, the 

precursor of C++. The preprocessor directive #define can create a constant by specifying its 

name and value, separated by spaces:

#define KILLBONUS 5000

The constant does not have a type such as int or char. The #define directive enables a simple 

text substitution that replaces every instance of KILLBONUS in the code with 5000. The compiler 

sees only the end result.

www.allitebooks.com

http://www.allitebooks.org
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Because these constants lack a type, the compiler cannot ensure that the constant has a proper 

value. Because these defined constants cannot be checked for type, it’s better to use the standard 

constants and avoid using a directive just to set a constant.

Enumerated Constants
Enumerated constants create a set of constants with a single statement. They are defined with 

the keyword enum followed by a series of comma-separated names surrounded by braces, as in 

this example:

enum COLOR { RED, BLUE, GREEN, WHITE, BLACK };

This statement creates a set of enumerated constants named COLOR with five values named RED, 

BLUE, GREEN, WHITE and BLACK. The set of constants is called an enumeration.

Internally, enumerated constants hold integer values. The values begin with 0 for the first in the 

set and count upwards by 1. So RED equals 0, BLUE equals 1, GREEN equals 2, WHITE equals 3, 

and BLACK equals 4. All the values are integers.

Constants also can specify their values using an = assignment operator:

enum Color { RED=100, BLUE, GREEN=500, WHITE, BLACK=700 };

This statement sets RED to 100, GREEN to 500, and BLACK to 700. The members of the set with-

out assigned values will be 1 higher than the previous member, so BLUE equals 101 and WHITE 

equals 501.

The advantage of this technique is that you get to use a symbolic name such as BLACK or WHITE 

rather than a possibly meaningless number such as 1 or 700.

The Compass program in Listing 3.4 uses enumerated constants for the eight compass directions, 

storing one such value in a variable named heading.

LISTING 3.4 The Full Text of Compass.cpp

 1: #include <iostream>

 2:

 3: int main()

 4: {

 5:     // set up enumeration

 6:     enum Direction { North, Northeast, East, Southeast, South,

 7: Southwest, West, Northwest };

 8: 

 9:     // create a variable to hold it

10:     Direction heading;

11:     // initialize that variable

12:     heading = Southeast;
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13: 

14:     std::cout << "Moving " << heading << std::endl;

15:     return 0;

16: }

You may wonder what will be displayed when the value of the heading variable is sent over the 

output stream in line 14.

Compile and run the program to produce this output:

Moving 3

An enumeration is defined in lines 6–7. A variable is created to hold one of these eight 

enumerated constants and it is set to the value Southeast.

When this is displayed, the integer value of that constant is shown, not its name.

The Compass program has something unusual at the end of line 14: a reference to the object 

std::endl. Like std::cout, this is part of the C++ Standard Library. It displays the end-of-line 

character, just like using the "\n" character.

Auto-Typed Variables
As you have learned, a variable in C++ must have a type that indicates the kind of  information 

it holds, such as long for long integers and bool for Boolean values. As a programmer you 

determine the type at the variable’s creation:

int seconds = 86400;

The auto keyword in C++ enables a type to be inferred based on the value that’s initially 

assigned to it. The compiler figures out a suitable data type.

Here are some examples:

auto index = 3;

auto multiple = 2.25F;

auto rate = 500 / 3.0;

These statements create an index variable that holds an int value, a multiple variable that 

holds a float and a rate variable that holds a double. The literal assigned to the variable at 

initialization determines the type.

In the rate statement, the expression 500 / 3.0 produces a double because one of the 

operands is a double value. (You learn more about expressions in Hour 4, “Using Expressions, 

Statements, and Operators.”)
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The compiler determines the type. In the preceding example, it’s as if the following statements 

were encountered:

int index = 3;

float multiple = 2.25F;

double rate = 500 / 3.0;

When using auto, you must assign the variable a value at initialization.

Multiple variables can be assigned with an auto keyword as long as every one of the variables 

has the same data type.

auto a = 86, b = 75, c = 309;

For this hour’s final project, the Combat program in Listing 3.5 calculates combat statistics such 

as those for a character in a videogame.

LISTING 3.5 The Full Text of Combat.cpp

 1: #include <iostream>

 2: 

 3: int main()

 4: {

 5:     // define character values

 6:     auto strength = 80;

 7:     auto accuracy = 45.5;

 8:     auto dexterity = 24.0;

 9: 

10:     // define constants

11:     const auto MAXIMUM = 50;

12: 

13:     // calculate character combat stats

14:     auto attack = strength * (accuracy / MAXIMUM);

15:     auto damage = strength * (dexterity / MAXIMUM);

16: 

17:     std::cout << "\nAttack rating: " << attack << "\n";

18:     std::cout << "Damage rating: " << damage << "\n";

19: }

Because the auto keyword was added in a recent C++ version, you may need to compile 

Combat.cpp with a special command-line option. The -std=c++14 option causes the compiler to 

use the current version of C++. Here’s an example command for the GCC compiler:

g++ -std=c++14 Combat.cpp -o Combat.exe
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After its compiled successfully, the program displays the following output:

Attack rating: 72.8

Damage rating: 38.4

In lines 6–8, variables set the value of three attributes: the character’s strength, accuracy, and 

dexterity. In lines 14–15, these are plugged in to formulas to calculate an attack rating and 

damage rating. If this code were part of a game, the values would be used when the character 

engages in combat.

All six variables in the program make use of the auto keyword, so if lines 6–8 are initialized 

with integers they are treated as int variables. If they are floating-point values, they’re treated 

as double.

Make changes to the literal constants in those lines, then compile and run the program. Use 

 different types of values to see how the output changes.

CAUTION

Older versions of C++ had an auto keyword that was supposed to be used to indicate that a 
 variable was local to the part of the program it was defined in—a concept called scope. The 
 developers of C++ inspected millions of lines of code and found only a handful of uses, most in test 
suites. They decided the keyword was redundant and replaced it with this new functionality.

Any code that relies on the old meaning of auto will not work in C++14.

Summary
This hour covered how to work with simple kinds of information in C++ such as integers, 

floating-point values, and characters. Variables are used to store values that can change as a 

program runs. Constants store values that stay the same—in other words, they are not variable.

The biggest challenge when using variables is choosing the proper type. If you’re working with 

signed integers that might go higher than 65,000, you should store them in a long rather than 

a short. If they might go higher than 2.1 billion, they’re too big for a long. If a numeric value 

contains decimal values, it must be either float or double, the two floating-point types in the 

C++ language.

The auto keyword takes some of the work out of using variables, because it makes the compiler 

determine the type.

One thing to keep in mind when working with variables is the number of bytes they occupy, 

which can vary on different systems. The sizeof() function provided by the compiler returns 

the number of bytes any variable type requires. 
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Q&A
Q. If a short integer can run out of room, why not always use long integers?

A. Both short integers and long integers will run out of room, but a long integer will do so
with a much larger number. On most computers, a long integer takes up twice as much
memory, which has become less of a concern because of the memory available on modern
PCs.

Q. What happens if I assign a number with a decimal to an integer rather than a float or

 double? Consider the following line of code:

int rating = 5.4;

A. Some compilers issue a warning, but the assignment of a decimal value to an integer type
is permitted in C++. The number is truncated into an integer, so the statement assigns the
rating integer the value 5. The more precise information is lost in the assignment, so if
you tried later to assign rating to a float variable, it would still equal 5.

Q. Why should I bother using symbolic constants?

A. When a constant is used in several places in a program, a symbolic constant enables
all the values to change simply by changing the constant’s initialization. Symbolic
constants also serve an explanatory purpose like comments. If a statement multiplies
a number by 360, it’s less easily understood than multiplying it by a constant named
degreesInACircle that equals 360.

Q. Why did Jack Klugman have a 40-year feud with Norman Fell?

A. Klugman, the star of the TV shows Quincy M.E. and The Odd Couple, had a well-publicized
long-running spat with Fell, the star of Three’s Company and the landlord on The Graduate.
No one seems to know the cause, but it did not end until Fell’s death in 1998.

The movie reference site IMDb quotes Fell as saying, “I could have killed as Oscar. I would
have been great as Quincy. I wouldn’t have been so hammy. Klugman overacted every
scene. You want the show to be good, pick me. You want a chain-smoking - - - - - - - who ruins
any credibility for your project, I’ll give you Klugman’s number.”

IMDb quotes Klugman as saying after Fell’s funeral, “Best funeral I’ve ever been to. I’ve
never laughed so hard in years. I had the time of my life.”

The two actors, born in Philadelphia two years apart, bear some resemblance to each other
and could have competed for the same roles over the decades they were acting in films and
television. In reality, however, they were not enemies. As the blogger Tom Nawrocki found
out in 2008, their feud was a 30-year joke they played on the media.
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Workshop
Now that you’ve learned about variables and constants, you can answer a few questions and do a 
couple of exercises to firm up your knowledge about them.

Quiz
1. Why would you use unsigned over signed integers?

A. They hold more numbers.

B. They hold more positive numbers.

C. There’s no reason to prefer one over the other.

2. Are the variables ROSE, rose, and Rose the same?

A. Yes

B. No

C. None of your business

3. What is the difference between a #define constant and const?

A. Only one is handled by the preprocessor.

B. Only one has a type.

C. Both a and b

Answers
1. B. Unsigned integers hold more positive values and cannot be used to hold negative

values. They hold the same number of values.

2. B. Because C++ is case sensitive, a ROSE is not a rose is not a Rose. Each reference is
treated as a different variable by the compiler.

3. C. The preprocessor directive #define substitutes the specified value into your code every
place it appears in code. It does not have a data type and is invisible to the compiler.
A constant, created with the keyword const, has a data type and is handled by the compiler.

Activities
1. Create a program that uses constants for a touchdown (6 points), field goal (3 points), point

after touchdown (1 point), and safety (2 point) and then adds them in the same order they
were scored by the teams in the last Super Bowl. Display the final score. (For extra credit,
make the Carolina Panthers win.)

2. Expand the Rectangle program so that it determines the area of a three-dimensional
 rectangle that has width, length, and height. To determine the area, use the multiplication
operator * to multiply all three values.

To see solutions to these activities, visit this book’s website at http://cplusplus.cadenhead.org.

http://cplusplus.cadenhead.org
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HOUR 4
Using Expressions, Statements, 

and Operators

What You’ll Learn in This Hour:

 How to write statements

 How to create expressions

 How to run code if a condition is met

 What the different operators accomplish

Statements
All C++ programs are made up of statements, which are commands that end with a  semicolon. 

Each statement takes up one line by convention, but this is not a requirement—multiple 

statements can be put on a line as long as each ends with a semicolon. A statement controls the 

program’s sequence of execution, evaluates an expression, or even can do nothing at all (the 

null statement). A common statement is an assignment:

x = a + b;

This statement assigns the variable x to equal the sum of a + b. The assignment operator = 

assigns the value on the right side of the operator to a variable on the left side. If a equals 4 and 

b equals 13, x will equal 17 after the statement is executed.

Whitespace
In the source code of a C++ program, any spaces, tabs, and newline characters are called 

whitespace. The compiler generally ignores whitespace, which serves the purpose of making the 

code more readable to programmers.

The previous assignment statement could be written in the following two ways and still work the 

same way:

x=a+b;

x     =     a     + b     ;
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The compiler ignores whitespace (or the lack of it). Whitespace cannot be used inside a variable 

name, so the variable playerScore could not be referred to as player Score.

The tabs or spaces that serve the purpose of indentation in programs are whitespace. Proper 

indentation makes it easier to see when a program block or function block begins and ends.

Compound Statements
Several statements can be grouped together as a compound statement, which begins with an 

opening brace { and ends with a closing brace }. A compound statement can appear anywhere 

a single statement could.

Although every statement in a compound statement must end with a semicolon, the compound 

statement itself does not end with a semicolon. Here’s an example:

{

     temp = a;

     a = b;

     b = temp;

}

This compound statement swaps the values in the variables a and b using a variable named 

temp as a temporary holding place for one value.

Expressions
An expression is any part of a statement that returns a value, as in this simple example:

x = y + 13;

This statement makes the variable x equal to the variable y plus 13. So, if y equals 20, x equals 

33. The entire statement returns the final value of x, so it’s also an expression. To understand

this better, consider a more complex statement:

z = x = y + 13;

This statement consists of three expressions:

 The result of the expression y + 13 is stored in the variable x.

 The expression x = y + 13 returns the value of x, which is stored in the variable z.

 The expression z = x = y + 13 returns the value of z, which is not stored.

The assignment operator = causes the operand on the left side of the operator to have its value 

changed to the value on the right side of the operator.
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Operand is a mathematical term referring to the part of an expression operated upon by an 

operator.

The Expression program in Listing 4.1 displays the values of three variables before and after they 

are used in a complex multiple-expression statement.

LISTING 4.1 The Full Text of Expression.cpp

 1: #include <iostream>

 2: int main()

 3: {

 4:     int x = 12, y = 42, z = 88;

 5:     std::cout << "Before –– x: " << x << " y: " << y;

 6:     std::cout << " z: " << z << "\n\n";

 7:     z = x = y + 13;

 8:     std::cout << "After –– x: " << x << " y: " << y;

 9:     std::cout << " z: " << z << "\n";

10:     return 0;

11: }

This program produces the following output:

Before –– x: 12 y: 42 z: 88

After –– x: 55 y: 42 z: 55

Three variables are declared and given initial values in line 4, then those values are displayed. 

An expression in line 7 assign values to x and z, in that order. The new values are displayed and 

the program ends.

Operators
An operator is a symbol that causes the compiler to take an action such as assigning a value or 

performing multiplication, division, or another mathematical operation.

Assignment Operator
An expression consists of an assignment operator, an operand to its left called an l-value, and an 

operand to its right called an r-value. In the expression grade = 95, the l-value is grade, and 

the r-value is 95.

Constants are r-values but cannot be l-values. The expression 95 = grade is not permitted in 

C++ because the constant 95 cannot be assigned a new value.
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The primary reason to learn the terms l-value and r-value is because they may appear in 

compiler error messages.

Mathematical Operators
There are five mathematical operators: addition (+), subtraction (–), multiplication (*), division 

(/), and modulus (%). C++, like C, does not have an exponentiation operator to raise a value to a 

specified power. There is a function to perform the task.

Addition, subtraction, and multiplication act as you’d expect, but division is more complex.

Integer division differs from ordinary division. When you divide 21 by 4, the result is a real 

 number that has a fraction or decimal value. By contrast, integer division produces only 

 integers, so the remainder is dropped. The value returned by 21 / 4 is 5.

The modulus operator % returns the remainder value of integer division, so 21 % 4 equals 1. 

The integer division 21 / 4 is 5, leaving a remainder of 1.

NOTE

When describing an expression using the modulus operator, it is called modulo, so 21 % 4 is 
“21 modulo 4.” Modulo is the operation performed by the modulus operator and the result is called 
the modulus.

Finding the modulus can be useful in programming. If you want to display a statement every 

tenth time that a task is performed, the expression taskCount % 10 can watch for this. The 

modulus ranges in value from 0 to 10. Every time it equals 0, the count of tasks is a multiple 

of 10.

Floating-point division is comparable to ordinary division. The expression 21 / 4.0 equals 5.25.

C++ decides which division to perform based on the type of the operands. If at least one  operand 

is a floating-point variable or literal, the division is floating point. Otherwise, it is integer 

 division.

Combining Operators
It is not uncommon to want to add a value to a variable and then to assign the result back into 

the variable. The following expression adds 10 to the value of a variable named score:

score = score + 10;

This expression takes the existing value of score, adds 10 to it, and stores the result in score.

This can be written more simply using the += self-assigned addition operator:

score += 10;
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The self-assigned addition operator += adds the r-value to the l-value, and then assigns the result 

to the l-value. There are self-assigned subtraction (–=), division (/=), multiplication (*=), and 

modulus (%=) operators, as well.

These self-assignment operators do the same thing as longer expressions, so either form can be 

used at your discretion.

Increment and Decrement Operators
The most common value to add or subtract from a variable is 1. Increasing a variable by 1 is 

called incrementing, and decreasing it by 1 is called decrementing. C++ includes a ++ increment 

operator and –– decrement operator to accomplish these tasks:

score++;

zombies––;

These statements increase score by 1 and decrease zombies by 1, respectively. They are 

 equivalent to these more verbose statements:

score = score + 1;

zombies = zombies – 1;

The ++ operator is said aloud as “plus-plus” and –– as “minus-minus.”

NOTE

Now that you’ve been introduced to the increment operator, the name C++ should make more 
sense. The C++ programming language was intended by creator Bjarne Stroustrup as an incremental 
improvement over the C language. He named it like an expression, putting the increment operator in 
its name and causing countless people over the years to wonder why it’s called “C-plus-plus” rather 
than “C-plus.”

Prefix and Postfix Operators
The increment operator ++ and decrement operator –– can be used either before or after a 

 variable’s name to achieve different results. An operator placed before a variable’s name is called 

a prefix operator, as in this statement:

++count;

An operator placed after the variable name is called the postfix operator:

count++;

In simple statements like the preceding examples, the operators accomplish the same thing. 

The count variable is increased by 1 in both statements.
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The reason for the existence of prefix and postfix operators becomes apparent in complex 

expressions where a variable is being incremented or decremented and assigned to another 

variable. The prefix operator occurs before the variable’s value is used in the expression. The 

postfix is evaluated after.

This will make more sense with a concrete example:

int x = 5;

int sum = ++x;

After these statements are executed, the x variable and sum variable both equal 6. The prefix 

operator in ++x causes x to be incremented from 5 to 6 before it is assigned to sum.

Compare it to this example:

int x = 5;

int sum = x++;

This causes sum to equal 5 and x to equal 6. The postfix operator causes x to be assigned to sum 

before it is incremented from 5 to 6.

Listing 4.2 contains the Years program, which counts forward several years using prefix and 

postfix increment operators.

LISTING 4.2 The Full Text of Years.cpp

 1: #include <iostream>

 2: 

 3: int main()

 4: {

 5:     int year = 2016;

 6:     std::cout << "The year " << ++year << " passes.\n";

 7:     std::cout << "The year " << ++year << " passes.\n";

 8:     std::cout << "The year " << ++year << " passes.\n";

 9: 

10:     std::cout << "\nIt is now " << year << ".";

11:     std::cout << " Have the Chicago Cubs won the World Series yet?\n";

12: 

13:     std::cout << "\nThe year " << year++ << " passes.\n";

14:     std::cout << "The year " << year++ << " passes.\n";

15:     std::cout << "The year " << year++ << " passes.\n";

16: 

17:     std::cout << "\nSurely the Cubs have won the Series by now.\n";

18:     return 0;

19: }
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This program displays the following output:

The year 2017 passes.

The year 2018 passes.

The year 2019 passes.

It is now 2019. Have the Chicago Cubs won the World Series yet?

The year 2019 passes.

The year 2020 passes.

The year 2021 passes.

Surely the Cubs have won the Series by now.

The Years program counts forward the years, anticipating the first World Series victory by the 

Chicago Cubs, a Major League Baseball team that hasn’t won a championship since 1908. The 

program begins by setting the year variable to 2016 in Line 5.

Line 6 produces the first output of the program: “The year 2017 passes.” Take note that the year 

is 2017, not 2016 as it was originally set. This happens because the prefix operator in that line 

changes the value of year before it is displayed.

Several years pass, and in lines 10–11, the year equals 2019.

Line 13 produces this output: “The year 2019 passes.” The year remains 2019 because the 

 postfix operator changes the value of year after it is displayed.

NOTE

There are three ways of adding 1 to a variable in C++: a = a + 1, a += 1, and a++. This leads 
to some confusion about which one is best to use. There’s no best way. As long as you know 
what your code is doing, all three ways are perfectly acceptable.

Operator Precedence 
The values produced by complex expressions depend on the order of precedence, which is the 

order in which expressions are evaluated. Here’s a complex expression with three operators:

int x = 5 + 3 * 8;

Without knowing the order of multiplication and addition, it’s impossible to know what x equals 

after this statement executes.

This expression sets x to 64 if addition takes place before multiplication, because 8 times 8 

equals 64. If multiplication takes place before addition, x equals 29 because 5 plus 24 equals 29.
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Every operator has a precedence value in C++. Multiplication has higher precedence than 

addition, so the expression sets x to 29. The precedence of operators is shown in Table 4.1.

You are introduced to most of these operators in later hours. Operators are evaluated from the 

top of the table down. Operators with the same precedence are evaluated from left to right or 

right to left, as indicated in the table.

Looking at the table, you can see that the multiplication operator * and division operator / 

have higher precedence than the addition operator + and subtraction operator –. For this reason, 

multiplication and division are handled before addition and subtraction.

TABLE 4.1 Operator Precedence

Level Operators Evaluation Order

1 (highest) ( ) . [ ] → :: Left to right

2 * & ! ~ ++ –– + – Right to left

sizeof new delete Left to right

3 .* → * Left to right

4 * / Left to right

5 + – Left to right

6 << >> Left to right

7 < <= >>= Left to right

8 == != Left to right

9 & Left to right

10 ^ Left to right

11 | Left to right

12 && Left to right

13 || Left to right

14 ?: Right to left

15 = *= /= += –= %= Right to left

<<= >>= &= ^= |= Right to left

16 (lowest) , Left to right

When two mathematical operators have the same precedence, they are performed in left-to-right 

order. Here’s an expression with two multiplication operators and three addition operators:

int x = 5 + 3 + 8 * 9 + 6 * 4;
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Because multiplication has higher precedence than addition and the same operators have 

left-to-right order, 8 times 9 is evaluated first and becomes 72:

int x = 5 + 3 + 72 + 6 * 4;

Next, 6 times 4 is evaluated:

int x = 5 + 3 + 72 + 24;

Now the addition operators are handled in left-to-right order. The final result is that x 

equals 104.

Some operators, such as assignment, are evaluated in right-to-left order:

int z = x = y + 13;

The first expression evaluated is y + 13, which is assigned to x. Next, x is assigned to z.

When precedence order doesn’t meet your needs, you can use parentheses to impose a different 

order. Items within parentheses are evaluated at a higher precedence than any mathematical 

operators:

int totalSeconds = (minutesWork + minutesTravel) * 60;

This expression adds minutesWork and minutesTravel, multiplies the result by 60, and 

assigns it to totalSeconds.

Parentheses can be nested within each other. The innermost parenthesis are evaluated first:

totalSeconds = ((secondsWork * 60) + minutesTravel) * 60;

NOTE

When in doubt, use parentheses to make an expression’s meaning clear. They do not affect a 
program’s performance, so there’s no harm in using them even in cases where they wouldn’t be 
needed.

Relational Operators
Relational operators are used for comparisons to determine when two numbers are equal or 

one is greater or less than the other. Every relational expression returns either true or false. 

The  relational operators are presented in Table 4.2.
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TABLE 4.2 The Relational Operators

Name Operator Sample Evaluates

Equals == 100 == 50; false

50 == 50; true

Not equal != 100 != 50; true

50 != 50; false

Greater than > 100 > 50; true

50 > 50; false

Greater than or equals >= 100 >= 50; true

50 >= 50; true

Less than < 100 < 50; false

50 < 50; false

Less than or equals <= 100 <= 50; false

50 <= 50; true

If you have integer variables called myAge and yourAge, the expression myAge == yourAge 

determines whether they are equal. The following statement uses this expression:

std::cout << (myAge == yourAge) << "\n";

This statement displays 1 if they are equal and 0 if unequal.

CAUTION

Many novice C++ programmers confuse the assignment operator = with the equality operator ==, 
which can introduce bugs into a program that are difficult to spot. The compiler might give you a 
warning when you use the assignment operator in situations where the equality operator makes 
more sense, but it sometimes won’t be detected until the program does not perform as intended.

If-Else Conditional Statements
The programs you have created thus far execute each line in order from top to bottom. The if 

keyword makes it possible to run code only if a condition is met, such as whether two variables 

are equal, one variable is larger than a specific value, or a bool variable has the value true.

The following if statement displays a message only when an integer called zombies meets a 

specific condition:

if (zombies == 0)

    std::cout << "No more zombies!\n";
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This code displays the words “No more zombies!” if the zombies variable equals 0. The 

 expression within parentheses is the condition. If the expression is true, the statement following 

the if is executed. If it is false, the statement is skipped.

For example, if the zombies variable equals 25 when this code runs, nothing is displayed.

The expression must be true for the conditional code to be executed. Because bool variables can 

be true or false, one can be used as the condition:

bool run = true;

if (run)

    std::cout << "Running\n";

This code displays the text “Running” only when the bool variable run equals true.

The Else Clause
A program can execute one statement if an if condition is true and another if it is false. The 

else keyword identifies the statement to execute when the condition is false:

if (zombies == 0)

    std::cout << "No more zombies!\n";

else

    std::cout << "Beware the zombie apocalypse!\n";

The Grader program in Listing 4.3 demonstrates the use of conditional statements.

LISTING 4.3 The Full Text of Grader.cpp

 1: #include <iostream>

 2:   

 3: int main()

 4: {

 5:     int grade;

 6:     std::cout << "Enter a grade (1–100): ";

 7:     std::cin >> grade;

 8: 

 9:     if (grade >= 70)

10: std::cout << "\nYou passed. Hooray!\n";

11:     else

12: std::cout << "\nYou failed. Sigh.\n";

13: 

14:     return 0;

15: }
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All the programs you’ve written so far have used std::cout, an object from the Standard C++ 

Library that displays information to a user. The directive in line 1 makes this object available in 

a program.

The Grader program uses another object from the input-output library: std::cin, which collects 

information from a user. Line 6 displays a query to the user: “Enter a grade (1–100).” Line 7 uses 

std::cin to receive keyboard input from the user, storing it in the integer variable grade.

Grader displays different output depending on what the user enters as a grade. This variability 

employs the if-else conditional in lines 9–12.

Here’s an example of its output:

Enter a grade (1–100): 

85

You passed. Hooray!

You got a B grade. Good work, but I know you can do better if you apply yourself and stop 

spending so much time on Snapchat when you should be studying.

Compound If Statements
Compound statements can be used anywhere in code that a single statement could be placed. 

The if and if-else conditionals often are followed by compound statements:

if (zombies == 0)

{

    std::cout << "No more zombies!\n";

    score += 5000;

}

This code does two things when zombies equals 0: It displays “No more zombies!” and adds 

5,000 to the variable score. If zombies does not equal 0, neither of these things occurs.

Any statement can be used with an if conditional, even another if or else statement.

The NewGrader program in Listing 4.4 expands Grader by displaying a different message for 

A, B, C, and F grades.

LISTING 4.4 The Full Text of NewGrader.cpp

 1: #include <iostream>

 2:   

 3: int main()

 4: {

 5:     int grade;
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 6:     std::cout << "Enter a grade (1–100): ";

 7:     std::cin >> grade;

 8: 

 9:     if (grade >= 70)

10:     {

11: if (grade >= 90)

12: {

13: std::cout << "\nYou got an A. Great job!\n";

14: return 0;

15: }

16: if (grade >= 80)

17: {

18: std::cout << "\nYou got a B. Good work!\n";

19: return 0;

20: }

21: std::cout << "\nYou got a C. Perfectly adequate!\n";

22:     }

23:     else

24: std::cout << "\nYou got an F. I failed as a parent!\n";

25:  

26:     return 0;

27: }

The NewGrader program has a main if-else conditional that handles when the user-input 

grade is 70 or higher and when it isn’t.

Grades of 70 or higher are handled in lines 10–22. Two if statements cover grades 90 or higher 

and 80 or higher and display messages for A and B students. After the message is displayed, the 

return 0 statement immediately ends the main() function so the program ends.

If the program is still running when line 21 is reached, a message for C students is displayed.

The else conditional is paired with the if in line 9. It covers grades lower than 70 and displays 

a despondent message.

Here’s sample output for the program:

Enter a grade (1–100): 93

You got an A. Great job!

With diligence and focus, you’ve improved your grades. Mother and I are very proud.

The NewGrader program uses braces only around compound statements. The else conditional 

is followed with a single statement, so it does not need braces.
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Some programmers always use braces with conditionals and other blocks of code, even when 

unnecessary:

if (zombies == 0)

{

    std::cout << "No more zombies!\n";

}

else

{

    std::cout << "Beware the zombie apocalypse!\n";

}

This is permitted by the compiler and makes the if and else blocks of code more visually 

 distinct. It also avoids bugs that occur when a single statement is turned into a compound 

 statement by adding a new line but the programmer forgets to enclose it within braces.

NOTE

Remember that whitespace and indentation are meaningful to you as a programmer but entirely 
meaningless to the compiler. It doesn’t care how if statements line up.

Logical Operators
The if-else conditionals used so far have a single expression as the condition. It’s possible to 

test more than one condition using the logical operators && (also called AND) and || (OR). The 

logical operator ! (NOT) tests whether an expression is false.

These operators are listed in Table 4.3.

TABLE 4.3 The Logical Operators

Operator Symbol Example

AND && grade >= 70 && grade < 80

OR || grade > 100 || grade < 1

NOT ! !grade >= 70

AND Operator
The logical AND operator evaluates two expressions. If both expressions are true, the logical AND 

expression is true, as well. Consider this statement:

if ((x == 5) && (y == 5))

    // do something here



ptg18189307

Logical Operators 57

If x and y both equal 5, the expression is true. If either x or y does not equal 5, the  expression 

is false. Both sides must be true for the entire expression to be true and for the conditional 

 statement to execute.

OR Operator
The logical OR operator evaluates two expressions and if either one is true, the expression is true:

if ((x == 5) || (y == 5))

     // do something here

If either x or y equals 5 or both equal 5, the expression is true. In fact, if x equals 5, the compiler 

never checks y at all.

NOT Operator
A logical NOT statement reverses a normal expression, returning true if the expression is false 

and false if the expression is true. Here’s a statement that uses one:

if (!(grade < 70))

This expression is true if grade is 70 or greater and false otherwise. The Grader and NewGrader 

programs used the expression grade >= 70 to check for passing grades. This NOT expression 

accomplishes the same thing by looking for grades that are not less than 70.

Relational Precedence
Relational operators and logical operators, like other operators, return a value of true or false 

and have a precedence order that determines which relations are evaluated first. This fact is 

important when determining the value of the statement such as the following:

if (x > 5 && y > 5 || z > 5)

The logical AND and OR operators have the same precedence, so they are evaluated in 

left-to-right order. For this expression to be true, both x and y must be greater than 5 or z must 

be greater than 5.

Parentheses can be used to impose a different order:

if (x > 5 && (y > 5 || z > 5))

For this expression to be true, x must be greater than 5 and either y or z must be greater than 5.
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NOTE

It is a good idea to use extra parentheses in a complex logical expression just to clarify what the 
statement is doing. The left-to-right precedence of logical operators is easy for the compiler to 
understand, but not always clear to programmers. The goal always should be to write programs that 
work and that are easy to understand.

Tricky Expression Values
Expressions produce the values true or false. In C++, the value 0 also is considered false and any 

other value is true. Some C++ programmers take advantage of this feature in if statements:

if (zombies)

    std::cout << "There are " << x << " zombies left\n";

When zombies equals 0, the if expression is false and the zombie count is not displayed. When 

zombies equals any other number, the expression is true and the count is shown. This code is 

the same as the following:

if (zombies != 0)

    std::cout << "There are " << x << " zombies left\n";

Both statements are permitted in C++, but the latter is clearer. It is good programming practice 

to reserve the former method for true tests of logic, rather than for testing for non-zero values.

These two statements also are equivalent:

if (!x)

if (x == 0)

Both statements are true when x equals 0. The second statement is somewhat easier to 

 comprehend.

Summary
During this hour, you learned about statements, expressions, and operators, the basic building 

blocks of a C++ program.

Statements are individual lines of code that perform specific tasks. A program consists of 

hundreds, thousands, or even millions of statements. Each statement ends with a semicolon.

Expressions are statements or portions of statements that produce a value. The value can be 

assigned to a variable using the assignment operator =.
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Operators are symbols that cause the compiler to take action. Operators can assign values, 

perform mathematical operations such as addition or division, compare two values, and handle 

logical comparisons.

The conditional statements if and else can cause statements to be executed only if a specific 

condition is true. These conditions often are defined as expressions. 

Q&A
Q. Because precedence determines which operators are acted on first, why use parentheses

when you don’t need them?

A. Precedence isn’t always as clear to a programmer looking at code as it is to the C++
 compiler. Using parentheses to make a program more understandable to the people  working
on it will pay off in the long run.

Q. What effect do tabs, spaces, and newline characters have on a program?

A. These characters, which are called whitespace, are ignored by the compiler and have
no effect on the program. Their purpose is to make programs easier for humans to
 understand. Poor indentation can make it difficult to determine which statement belongs to
an if conditional, where a compound statement begins and ends, and so on.

Q. Are negative numbers true or false?

A. Every number except for 0, whether positive and negative, is treated as true.

Q. Who gets to decide what a newly discovered animal is named?

A. The naming system for new species is guided by the International Code on Zoological
Nomenclature, a set of rules that determine how the name is structured.

The person who discovers the animal usually gets to select its name, which is submitted
for approval to the commission at the National History Museum in London, England.

If you have discovered a new species, visit the commission’s web site at www.iczn.org.

Most discoverers base the name on themselves, but some have started selling the rights
to raise money towards conservation efforts. In 2005, the online casino GoldenPalace.Com
paid $650,000 to name a new primate Callicebus aureipalati. Aureipalatii means “golden
palace” in Latin.

The German non-profit group Biopat sells naming rights to new species for a €2,600 Euro
donation (currently around $2,870 U.S.). Visit the group’s website at http://biopat.de/en
for details.

http://www.iczn.org
http://biopat.de/en
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Workshop
Now that you’ve learned about expressions and statements, it is time for you to answer a few 
questions and do a couple of exercises to firm up your knowledge about these topics. 

Quiz
1. What is the difference between x++ and ++x?

A. They increment the value of x at different times.

B. The second form is not permitted in C++.

C. One is a cat running left, the other a cat running right.

2. What is the difference between an l-value and an r-value?

A. Only r-values can be used in expressions.

B. Some r-values cannot be l-values, but all l-values can be r-values.

C. Both a and b.

3. What does the modulo operator % do?

A. It performs integer division.

B. It produces the remainder of an integer division.

C. It produces the square root of a number.

Answers
1. A. The first uses the postfix operator and the second uses the prefix operator. Postfix

evaluates x before incrementing it, whereas prefix increments x before it is evaluated. The
choice of postfix or prefix affects the value of x when it is used in an expression.

2. B. An l-value appears on the left side of an = assignment operator, whereas an r-value
appears on the right. All l-values also can appear on the right side of the operator, but
some r-values (such as literals) cannot act as l-values.

3. B. It calculates the remainder after performing integer division on the supplied operands.

Activities
1. Create a version of the NewGrader program that does not include the return statements,

except for the final one. Run it with numerous test values until you spot the bug, and then
figure out why it’s happening.

2. Write a program that asks for a user’s grade from 1 to 100, asks what the passing grade is
on the same scale, and reports whether the user passed.

To see solutions to these activities, visit this book’s website at http://cplusplus.cadenhead.org.

http://cplusplus.cadenhead.org
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What You’ll Learn in This Hour:

 What a function does

 How to declare and define functions

 How to call functions with arguments

 How to return a value from a function

What Is a Function?
A function is a section of a program that can act on data and return a value. Every C++ program 

has at least one function, the main() function called automatically when the program runs. 

This function can contain statements that call other functions, some of which might call others, 

and so on.

Each function has a name that’s used to call the function. The execution of the program 

 branches to the first statement in that function and continues until it reaches a return 

 statement or the last statement of the function. At that point, execution resumes at the place 

where the function was called.

A well-designed function performs a specific task. Complicated tasks should be broken down into 

multiple functions, each of which can be called in turn. This makes your code easier to 

understand and maintain.

Declaring and Defining Functions
Before you can write the code for a function, you must declare it.

A function declaration tells the compiler the function’s name, the type of data the function 

produces, and the types of any parameters received by the function. A function’s declaration, 

which also is called its prototype, contains no code.
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The declaration tells the compiler how the function works. The function prototype is a single 

statement, which ends with a semicolon.

The parameter list identifies each parameter and its type, separated by commas.

Here’s a declaration for a function that determines a rectangle’s area using length and width 

parameters: 

int findArea(int length, int width);

The three parts of the declaration are the following:

 The return type, int

 The name, findArea

 The type and name of two parameters, an int named length and an int named 

width

The function prototype must match the three elements of the function or the program won’t 

compile. The only thing that does not need to match are the names of the parameters. A func-

tion declaration doesn’t need to name parameters at all. The previous declaration could be 

rewritten as follows:

int findArea(int, int);

Although this is permitted, it makes the function prototype less clear than if parameter names 

had been used.

The function’s name is a short identifier that describes the task it performs. Because the name 

cannot contain spaces, a common convention is to capitalize each word in the name except for 

the first. That’s why the A is capitalized in the name findArea.

All functions are structured the same as a program’s main() function. The statements in the 

function are enclosed within an opening { brace and a closing } brace. If the function returns 

a value, there should be at least one return statement that returns a literal or variable of the 

proper return type. In a new feature of C++14, the auto keyword lets the compiler choose the 

data type returned by a function.

Any C++ data type can be returned by a function. If a function doesn’t produce a value, the 

declaration should use void as the type. A function that returns void does not need a return 

statement, although one can still be used, as in this statement:

return;

Unlike the function declaration, the statement naming the function must not end with a 

semicolon.
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Here’s a definition of findArea() that determines the area of a rectangle by multiplying its 

length by its width:

int findArea(int length, int width) 

{

    return length * width;

}

The only statement in the function returns the value of the two parameters multiplied by each other.

The Area program in Listing 5.1 uses this function.

LISTING 5.1 The Full Text of Area.cpp

 1: #include <iostream>

 2:   

 3: int findArea(int length, int width); // function prototype

 4:   

 5: int main()

 6: {

 7:     int length;

 8:     int width;

 9:     int area;

10:   

11:     std::cout << "\nHow wide is your yard? ";

12:     std::cin >> width;

13:     std::cout << "\nHow long is your yard? ";

14:     std::cin >> length;

15:   

16:     area = findArea(length, width);

17:   

18:     std::cout << "\nYour yard is ";

19:     std::cout << area;

20:     std::cout << " square feet\n\n";

21:     return 0;

22: }

23:  

24: // function definition

25: int findArea(int l, int w) 

26: {

27:      return l * w;

28: }

When the program is compiled and run, it produces the following output:

How wide is your yard? 32

How long is your yard? 25

Your yard is 800 square feet
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The function prototype for the findArea() function is on line 3. The code for the function is 

contained on lines 25–28. Compare the prototype’s name, return type and parameter types: They 

are the same, but the names of the parameters are length and width in the prototype and 

l and w in the function. This distinction does not matter because the parameter types match.

NOTE

If the definition of the function in Area.cpp was to be moved above its invocation, no prototype 
would be needed. Although this is a workable solution in small programs like the ones created in 
this book, on larger programming projects it will be more cumbersome to ensure that all functions 
are defined before they are used. Declaring all functions with prototypes frees you from having to 
think about this issue.

Using Variables with Functions
A function works with variables in several different ways. Variables can be specified as arguments 

when calling a function. Variables can be created in a function and cease to exist when the 

function completes. Variables also can be shared by the function and the rest of a program.

Local Variables
A variable created in a function is called a local variable because it exists only locally within the 

function itself. When the function returns, all of its local variables are no longer available for 

use in the program.

Local variables are created like any other variable. The parameters received by the function are 

also considered local variables. The Temperature program in Listing 5.2 uses local variables to 

convert a temperature value expressed in Fahrenheit scale to one using Celsius.

LISTING 5.2 The Full Text of Temperature.cpp

 1: #include <iostream>

 2:   

 3: float convert(float);

 4:   

 5: int main()

 6: {

 7:     float fahrenheit;

 8:     float celsius;

 9:   

10:     std::cout << "Please enter the temperature in Fahrenheit: ";

11:     std::cin >> fahrenheit;

12:     celsius = convert(fahrenheit);

13:     std::cout << "\nHere's the temperature in Celsius: ";
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14:     std::cout << celsius << "\n";

15:     return 0;

16: }

17:   

18: // function to convert Fahrenheit to Celsius

19: float convert(float fahrenheit)

20: {

21:     float celsius;

22:     celsius = ((fahrenheit — 32) * 5) / 9;

23:     return celsius;

24: }

Here’s output produced by running the program three times with the user input Fahrenheit 

values 77, 32, and 85:

Please enter the temperature in Fahrenheit: 77

Here's the temperature in Celsius: 25

Please enter the temperature in Fahrenheit: 32

Here's the temperature in Celsius: 0

Please enter the temperature in Fahrenheit: 85

Here's the temperature in Celsius: 29.4444

This program has a convert() function defined in lines 19–24 that takes one argument: a 

float value called fahrenheit.

A local variable named celsius is declared in line 21 and assigned a value in line 22. The 

value is determined using the three-step formula for converting Fahrenheit to Celsius:

1. Subtract 32 from the number.

2. Multiply the result by 5.

3. Divide that result by 9.

The converted value is returned by the function in line 23. When the function ends, the local 

variables fahrenheit and celsius cease to exist and no longer can be used.

In the main() method, a variable named fahrenheit is created to hold the value input by a 

user. A variable named celsius holds the converted version of that temperature. These 

variables have the same names as the local variables in the convert() function, but they are 

different variables.

The reason they are not the same is because they are created in a different scope. The scope 

of a variable is the portion of the program in which a variable exists. Scope determines how long 

a variable is available to your program and where it can be accessed. Variables declared within 
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a block have the scope of that block. When the block ends with an ending } brace, the variable 

becomes unavailable.

You can declare variables within any block, such as an if conditional statement or a function.

Global Variables
Variables can be defined outside of all functions in a C++ program, including the main() 

 function. These are called global variables because they are available everywhere in the program.

Variables defined outside of any function have global scope and thus are available from any 

function in the program, including main().

The Global program in Listing 5.3 is a revised version of Temperature that makes use of global 

variables.

LISTING 5.3 The Full Text of Global.cpp

 1: #include <iostream>

 2:   

 3: void convert();

 4:   

 5: float fahrenheit;

 6: float celsius;

 7: 

 8: int main()

 9: {

10:   

11:     std::cout << "Please enter the temperature in Fahrenheit: ";

12:     std::cin >> fahrenheit;;

13:     convert();

14:     std::cout << "\nHere's the temperature in Celsius: ";

15:     std::cout << celsius << "\n";

16:     return 0;

17: }

18:   

19: // function to convert Fahrenheit to Celsius

20: void convert()

21: {

22:     celsius = ((fahrenheit — 32) * 5) / 9;

23: }

When compiled and run, this program performs exactly like the Temperature program, despite 

the fact that the code has several significant differences.

The float variables fahrenheit and celsius are declared in lines 5–6, outside the main() 

function and convert() function. This makes them global variables that can be used anywhere 

without regard to scope.
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Because the variables are global, the convert() function takes no parameters and uses the 

global fahrenheit to convert a Celsius value. The function also returns no value, using void 

as its return type, because it stores the converted temperature in the global celsius.

Although global variables might seem useful in this example, taking this approach is asking for 

trouble in more complex programs that you create. Global variables lend themselves to errors 

that are difficult to find. A value of a global variable can be changed on any statement in the 

program, so if there’s an error you must check line by line until the error is found.

One of the advantages of variable scope is that it limits the section of a program that must be 

checked when a variable either contains a value you weren’t expecting or has been used 

improperly.

The Global program is the only one in this book that makes use of global variables. Now that 

you know about them, forget everything you just learned.

Function Parameters
A function receives information in the form of function parameters. There can be more than 

one parameter as long as they are separated by commas, or a function can be called with no 

parameters at all. The parameters sent to a function don’t have to be of the same data type. 

A function can be called with an integer, two longs, and a character as parameters, for instance.

Any valid C++ expression can be a function parameter, including constants, mathematical and 

logical expressions, and other functions that return a value.

The parameters passed to a function are local variables within that function, even if they have 

the same name as variables within the scope of the statement calling the function.

Consider the following sample code, which appears to swap the values of two variables:

int x = 4, y = 13;

swap(x, y);

void swap(int x, int y) {

    int temp = x;

    x = y;

    y = temp;

}

Contrary to what you might expect, the swap() function does not swap the variable values so 

that x equals 13 and y equals 4. Instead, the variables keep their original values. The reason is 

that the parameters received by the swap() function are local variables within that function. 

Changing their values does not affect the variables with the same name that were created right 

before swap() was called.
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Changes made to function parameters do not affect the values in the calling function. This is 

called passing by value because values are passed to the function and a local copy is made of 

each parameter. These local copies are treated just like any other local variables.

The swap() function swaps the local variables received by the function as parameters, leaving 

the variables used to call swap() unchanged.

Because variables are passed by value to functions, the swap() function does not work.

Beginning in Hour 10, “Creating Pointers,” you’ll learn several alternatives to passing by value 

that enable functions to change variables passed to them.

Returning Values from Functions
Functions return a value or void.

To return a value from a function, the keyword return is followed by the value to return. The 

value can be a literal, a variable, or an expression, because all expressions produce a value. 

Here are some examples:

return 5;

return (x > 5);

return (convert(fahrenheit));

These are all permitted return statements, assuming that convert() returns a value. The 

value returned in the second statement is false if x is less than or equal to 5, true otherwise.

When a return statement is executed, program execution returns immediately to the statement 

that called the function. Any statements following return are not executed.

It is permissible to have more than one return statement in a function. This is demonstrated by 

the LeapYear program in Listing 5.4.

LISTING 5.4 The Full Text of LeapYear.cpp

 1: #include <iostream>

 2: 

 3: bool isLeapYear(int year);

 4: 

 5: int main()

 6: {

 7:     int input;

 8:     std::cout << "Enter a year: ";

 9:     std::cin >> input;

10:     if (isLeapYear(input))

11: std::cout << input << " is a leap year\n";

12:     else
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13: std::cout << input << " is not a leap year\n";

14:     return 0;

15: }

16: 

17: bool isLeapYear(int year)

18: {

19:     if (year % 4 == 0)

20:     {

21: if (year % 100 == 0)

22: {

23: if (year % 400 == 0)

24: return true;

25: else

26: return false;

27: }

28: else

29: return true;

30:     }

31:     else

32: return false;

33: }

The LeapYear program determines whether a year is a leap year. Here’s the output from four 

successive runs with different user input: 

Enter a year: 2016

2016 is a leap year

Enter a year: 2017

2017 is not a leap year

Enter a year: 2100

2100 is not a leap year

Enter a year: 2000

2000 is a leap year

Leap years, which have 366 days rather than 365, follow three rules:

 If the year is divisible by 4, it is a leap year,

 Unless the year is also divisible by 100, in which case it is not a leap year,

 Unless the year is divisible by 400, and it’s a leap year after all.

The isLeapYear() function in lines 17–33 uses several if and else statements to carry 

out these rules. The function returns the bool value true if a year is a leap year and false 

 otherwise. The function takes an integer argument, the year to check.
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There are four different return statements in the function, each of which ends the execution 

of the function in a different circumstance. Unlike other functions, the last line is not a return 

statement executed automatically. It is part of a conditional.

Default Function Parameters
When a function is declared in a prototype to receive one or more parameters, the function only 

can be called with parameters of the proper data types. Consider a function that takes one integer:

bool isLeapYear(int year);

The isLeapYear() function must take an integer as the parameter, a requirement the compiler 

will check. Calling a function with a missing or invalid value causes a compiler error.

There’s one exception to this rule: If the function prototype declares a default value for a 

parameter, the function can be called without that parameter. The default value is used whenever 

the parameter is omitted. Here’s a revised prototype of isLeapYear() that includes a default year:

bool isLeapYear(int year = 2016);

If the isLeapYear() function is called without specifying a year, the default of 2016 is used.

A function’s definition does not change when default parameters are declared in the prototype.

When a function has more than one parameter, default values are assigned based on the 

order of the parameters. Any parameter can be assigned a default value, with one important 

restriction: If a parameter does not have a default value, no previous parameter may have a 

default value.

Here’s a prototype with four parameters:

long set4DPoint(int x, int y, int z, int t);

The following change is not permitted:

long set4DPoint(int x, int y, int z = 1, int t);

The reason it doesn’t work is because the t parameter lacks a default value. Here’s a permitted 

prototype:

long set4DPoint(int x, int y, int z = 1, int t = 2000);

The function created from this prototype could be called with this statement:

set4DPoint(130, 85);

The argument values would be 130 for x, 85 for y, 1 for z, and 2000 for t.



ptg18189307

Default Function Parameters 71

The AreaCube program in Listing 5.5 calculates the area of a three-dimensional cube, using 

default function parameter values for two of the dimensions.

LISTING 5.5 The Full Text of AreaCube.cpp

 1: #include <iostream>

 2: 

 3: int findArea(int length, int width = 20, int height = 12);

 4: 

 5: int main()

 6: {

 7:     int length = 100;

 8:     int width = 50;

 9:     int height = 2;

10:     int area;

11: 

12:     area = findArea(length, width, height);

13:     std::cout << "First area: " << area << "\n\n";

14: 

15:     area = findArea(length, width);

16:     std::cout << "Second area: " << area << "\n\n";

17: 

18:     area = findArea(length);

19:     std::cout << "Third area: " << area << "\n\n";

20:     return 0;

21: }

22: 

23: int findArea(int length, int width, int height)

24: {

25:     return (length * width * height);

26: }

The program produces the following output:

First area: 10000

Second area: 60000

Third area: 24000

On line 3, the findArea() prototype specifies that the function takes three integer parameters, 

the last two with default values.

The function computes the area of a cube. If no height is provided, a height of 12 is used. If 

no width is provided, a width of 20 and height of 12 are used. It is not possible to provide a 

height without providing a width.
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On lines 7–9, the dimensions length, height, and width are initialized. They are passed to the 

findArea() function on line 12. The values are computed, and the result is displayed.

On line 15 findArea() is called again with no value for height. The default value is used and 

the area of the computed cube is displayed.

On line 18, findArea() is called with neither width nor height. Execution branches off for 

a third time to the function. The default values for both are used and the cube’s area is 

displayed.

Overloading Functions
In C++, more than one function can have the same name as long as there are differences in 

their arguments, a practice called function overloading. The functions must have different data 

types for parameters, a different number of parameters, or both. Here are three prototypes for 

overloaded functions:

int store(int, int);

int store(long, long);

int store(long);

The store() function is overloaded with three different parameter lists. The first and second 

 differ in the data types and the third differs in the number of parameters.

The parameters the function is called with determine which function will be called.

The return types for overloaded functions do not factor into whether they are different. Several 

overloaded functions can have the same return type, as in the preceding example, or  different 

types. You can’t overload by making the return different, however. The parameter types or 

 number of parameters must differ.

Function overloading also is called function polymorphism.

Overloading makes it possible to create a function that performs a similar task on different types 

of data without creating unique names for each function. If your program needs to average 

two numbers expressed in different formats, it could have functions named averageInts(), 

 averageDoubles(), and averageFloats().

To simplify, an overloaded function called average() could be used with these prototypes:

int average(int, int);

long average(long, long);

float average(float, float);

You just pass in the right data when calling average() and the proper function is called.
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Inline Functions
When you define a function, the C++ compiler creates just one set of instructions in memory. 

Execution of the program jumps to those instructions when the function is called and jumps 

back after the function returns to the next line in the calling function. If the program calls the 

function 10 times, it jumps to the same set of instructions each time. There only is one copy of 

the instructions that make up the function, not 10 copies.

Some performance overhead is required to jump in and out of functions. When a function 

consists of a small number of statements, you can gain some efficiency if the program avoids 

making the jumps. The program runs faster if the function call can be avoided.

If a C++ function is declared with the keyword inline, the compiler does not create a real 

 function. Instead, it copies the code from the inline function directly into the place where the 

function was called. It is just as if you had written the statements of the function right there.

If an inline function is called 10 times, the inline code is copied all 10 times. The tiny 

 improvement in speed could be swamped by the increase in size of the executable program.

NOTE

The inline keyword is a hint to the compiler that you would like the function to be inlined. The 
compiler is free to ignore the hint and make a real function call. Current compilers do a terrific job 
on their own of making C++ code execute quickly, so there’s often little to be gained from declaring 
a function inline.

The inline keyword is used in the function prototype:

inline int double(int);

The function itself does not change:

int double(int target)

{

    return 2 * target;

}

Auto-Typed Return Values
One of the features added to C++ with version C++14 is the automatic deduction of a  function’s 

return type with the auto keyword. You already could create variables with auto whose 

data type was figured out by the compiler based on the value assigned to it. This takes that 

 convenience a step further.
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To make a function’s return type determined by deduction, use auto where the return type is 

specified, as in this simple function:

auto subtract(int x, int y)

{

    return x — y;

}

Because both x and y are integers, the sum of subtracting one from the other also is an int.

There are a few things to keep in mind when using this capability.

If a function has more than one return statement, they all must return the same data type.

The function must be defined above the code that makes use of it.

LISTING 5.6 The Full Text of AutoCube.cpp

 1: #include <iostream>

 2: 

 3: auto findArea(int length, int width = 20, int height = 12);

 4: 

 5: auto findArea(int length, int width, int height)

 6: {

 7:     return (length * width * height);

 8: }

 9: 

10: int main()

11: {

12:     int length = 100;

13:     int width = 50;

14:     int height = 2;

15:     int area;

16: 

17:     area = findArea(length, width, height);

18:     std::cout << "First area: " << area << "\n\n";

19: 

20:     area = findArea(length, width);

21:     std::cout << "Second area: " << area << "\n\n";

22: 

23:     area = findArea(length);

24:     std::cout << "Third area: " << area << "\n\n";

25:     return 0;

26: }

27:
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Because the program makes use of a new feature introduced in C++14, you may need to compile 

it with the flag --std=c++14, as in this command:

g++ -o AutoCube.exe --std=c++14 AutoCube.cpp

In Listing 5.6, the auto keyword appears in the function prototype in line 5 and the function 

declaration two lines later. The function was moved above the main() function in the source 

code. If it hadn’t been, the compiler would have halted with the following error message:

AreaCube.cpp:12:12: error: use of 'auto findArea(int, int, int)'

before deduction of auto

The program produces the same output as AreaCube.

Summary
Functions are the workhorses of a C++ program. Every task a program performs is represented 

by a function. When that task can be broken down into smaller tasks, each of those can be a 

function, as well.

All functions should be declared using function prototypes, which are statements that identify 

the function’s name, the order and data type of parameters, and the data type that it returns. 

A function’s return type can be figured out by the compiler by putting auto in its place, a new 

capability of C++.

The functions in this hour’s programs are named like commands: findArea(), convert(), 

and average(). Functions are commands. You’re telling the computer to do something, such as 

find an area, convert a value, or average two numbers.

Each function that you write in a program is a discrete task. The more specific the task, the 

shorter the function will be.

Function overloading makes it possible to use the same function name on several related 

 functions. The data type and number of parameters to the function are used to differentiate 

between them. The C++ compiler figures out which function to execute based on these differences. 

Q&A
Q. Why not make all variables global?

A. Although this used to be common in programming, as programs became more complex it
became extremely difficult to find bugs in programs with globally accessible variables. The
reason is because data could be misused in any part of the program. To minimize the
chance of error and make debugging easier, data should be kept in as local a scope as
possible.

Q&A
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Q. Why aren’t changes to the value of function parameters reflected in the calling function?

A. Parameters passed to a function are passed by value. That means that the parameter
received by the function is actually a copy of the original value, even if it shares the same
variable name. You learn how to pass a changeable parameter to a function when you begin
working with pointers and references in Hour 10.

Q. What happens if I have the following two functions?

int findArea(int width, int length = 1);

int findArea(int size);

Will these overload? There are a different number of parameters, but the first one has a 

default value.

A. The declarations will compile, but calling the findArea() with one parameter will
cause a compile-time error about “ambiguity between findArea(int, int) and
findArea(int).”

Q. Why doesn’t anyone ever use a No. 1 pencil?

A. Pencils are produced according to a grading system that rates them based on how soft
the lead is, which dictates the darkness of the mark it produces. The softer the lead,
the darker the mark.

The grades of pencils sold in the United States are No. 1, 2, 2.5, 3, and 4.

The No. 1 produces the darkest mark, but the soft lead breaks more easily and requires
sharpening more often. The No. 4 has the hardest lead and produces the faintest mark.

No. 2, by striking a balance between lead softness and mark darkness, is so popular that
most people aren’t aware any of the others exist.

The others can be found at art supply stores, though they may use another grading system
entirely that uses “B” for the softest leads and “H” for the hardest. The range goes “9B”,
“8B”, “7B” on down to a middle value of “B”, then goes from “H” to “2H”, “3H”, “4H” up
to a maximum of “9H”.

Also, pencil leads aren’t made of lead. They’re graphite.

Who knew pencils were so complicated? If you need to take notes while you figure all of this
out, use a No. 2 pencil.

Workshop
Now that you’ve had the chance to see functions, you can answer a few questions and do a 
couple of exercises to firm up your knowledge of function prototypes and function parameters. 
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Quiz
1. What happens when a variable is a parameter received by a called function?

A. A copy of the variable is passed to the function.

B. The actual variable is passed to the function.

C. A compiler error occurs.

2. When three overloaded functions have the same name, how does C++ know which
one to call?

A. The function’s return types are different.

B. The functions parameters are different.

C. The order of the function from top to bottom.

3. How many values can a return statement return?

A. One

B. One or more

C. None or one

Answers
1. A. A copy is made of the variable, which is called passing by value. Any changes to the

 variable within the function do not affect the original variable.

2. B. Overloaded functions must have parameters of different types or a different number
of parameters. The compiler uses this difference to determine which function to call. The
return type of the functions does not matter.

3. C. A function can return no more than one value, although the function can have several
return statements to return that value. When a function does not return any value, the
void data type indicates this fact.

Activities
1. Write a program that converts a temperate from Celsius to Fahrenheit. The formula to do

this is to multiply the Celsius temperate by 9, divide the result by 5, and then add 32.

2. Write a program that can calculate the average of two integers, two long integers or two
floating-point values using an overloaded function named average().

To see solutions to these activities, visit this book’s website at http://cplusplus.cadenhead.org.

http://cplusplus.cadenhead.org
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HOUR 6
Controlling the Flow 

of a Program

What You’ll Learn in This Hour:

 What loops are and how they are used

 How to build various loops

 Using switch-case for complex conditional tests

Looping
One of the things that a computer excels at is doing the same thing over and over again. 

Software doesn’t get tired.

Many tasks in a program are accomplished by doing the same thing either a fixed number of 

times or until a specific condition is met. A block of code that’s executed more than once in a 

row in a program is called a loop. Each pass through the loop is called an iteration.

These terms will come in handy as you learn during this hour about while loops, do-while 

loops, and for loops.

while Loops
A while loop causes a program to repeat a group of statements as long as a starting condition 

remains true. The while keyword is followed by an expression in parentheses. If the expression 

is true, the statements inside the loop block are executed. They are executed repeatedly until 

the expression is false.

Here’s a while loop that displays the numbers 0 through 99:

int x = 0;

while (x < 100)

{

    std::cout << x << "\n";

    x++;

}
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The while keyword is followed by an expression within parentheses. This statement does not 

end in a semicolon. The statements inside the loop are a block statement surrounded by 

{ and } braces.

The loop has the conditional expression x < 100. Each time that x is less than 100, the body of 

the loop is executed, and the value of x is displayed.

When x is equal to 100, the loop ends.

Without the x++ increment statement, the value of x would remain 0, and the loop would never 

end. This is called an infinite loop.

The Thirteens program in Listing 6.1 uses a while loop to display all multiples of 13 lower 

than 500.

LISTING 6.1 The Full Text of Thirteens.cpp

 1: #include <iostream>

 2:

 3: int main()

 4: {

 5:     int counter = 0;

 6:   

 7:     while (counter < 500)

 8:     {

 9: counter++;

10: if (counter % 13 == 0)

11: {

12: std::cout << counter << " ";

13: }

14:     }

15:

16:     std::cout << "\n";

17:     return 0;

18: }

This program produces the following output:

13 26 39 52 65 78 91 104 117 130 143 156 169 182 195

208 221 234 247 260 273 286 299 312 325 338 351 364

377 390 403 416 429 442 455 468 481 494 

The Thirteens program demonstrates the fundamentals of the while loop. A condition is tested 

and the body of the while loop is executed while it is true. The condition tested on line 7 is 

whether the counter variable is less than 500. For as long as the condition is true, the body of 

the loop is executed.
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On line 9, the counter is incremented. On line 10, an if statement checks whether the current 

value of counter is evenly divisible by 13. If it is, the value is displayed.

The conditional on line 7 is false when counter is no longer less than 500, causing the while 

loop to end. Program execution skips lines 9–13 and continues with line 16.

Breaking Out of Loops
The break statement causes a loop to end immediately, instead of waiting for its condition to 

be false. This statement appears inside a loop and is demonstrated in the Fourteens program in 

Listing 6.2, which displays the first 20 multiples of 14.

LISTING 6.2 The Full Text of Fourteens.cpp

 1: #include <iostream>

 2: 

 3: int main()

 4: {

 5:     int counter = 0;

 6:     int multiples = 0;

 7: 

 8:     while (true)

 9:     {

10: counter++;

11: if (counter % 14 == 0)

12: {

13: std::cout << counter << " ";

14: multiples++;

15: }

16: if (multiples > 19)

17: break;

18:     }

19: 

20:     std::cout << "\n";

21:     return 0;

22: }

This program produces this output:

14 28 42 56 70 84 98 112 126 140 154 168 182 196 210 224

238 252 266 280

This program is similar to the Thirteens program. A counter variable is incremented from 0 

upward, and every time the variable is evenly divisible by 14 (line 11), its value is displayed.

The while conditional in line 8 of the program has an unusual conditional expression:

while (true)
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Because a while loop executes as long as its condition is true, this loop is designed to loop 

 forever.

The break statement in line 17 is what causes the loop to end. A multiples variable tracks 

the number of times a multiple of 14 has been displayed. When this variable exceeds 19, break 

ends the loop.

CAUTION

Infinite loops such as while(true) can cause a program to run forever if the exit condition 
is never reached. Press Ctrl+C to end execution of a program that isn’t ending on its own. Use 
while(true) with care and test the code thoroughly.

Continuing to the Next Loop
A continue statement is another way to alter the performance of a loop. When a continue 

is encountered within a loop, the execution skips all remaining statements and begins a new 

 iteration of the loop.

The Fifteens program in Listing 6.3 displays the first 20 multiples of 15 using a continue 

 statement inside the while loop.

LISTING 6.3 The Full Text of Fifteens.cpp

1: #include <iostream>

 2:   

 3: int main()

 4: {

 5:     int counter = 0;

 6:     int multiples = 0;

 7:   

 8:     while (multiples < 19)

 9:     {

10: counter++;

11: if (counter % 15 != 0)

12: continue;

13: std::cout << counter << " ";

14: multiples++;

15:     }

16: 

17:     std::cout << "\n";

18:     return 0;

19: }
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Here’s the program’s output:

15 30 45 60 75 90 105 120 135 150 165 180 195

210 225 240 255 270 285

The Fifteens program uses a while loop to iterate through a counter variable, like the 

 preceding two projects of the hour. The while statement in line 8 causes the loop to keep going 

until 20 multiples of 15 have been displayed.

The counter variable is incremented in line 10.

An if statement in line 11 tests whether the counter variable is not evenly divisible by 15. If 

this condition is true, the continue statement in line 12 is executed, and the rest of the loop is 

skipped. Execution of the program resumes with line 8.

If the counter variable is evenly divisible by 15, continue is ignored and lines 13–14 of the loop 

are executed. The value of counter is displayed and the multiples variable is incremented.

As loops demonstrate, C++ often offers several different ways to accomplish the same task. As long 

as the program that you write does what’s needed, you can choose the technique that you prefer.

do-while Loops
The while loop tests a conditional expression before executing the statements in the loop. If the 

condition is never true, the statements never execute.

A loop can test the condition at the end of the loop with the do-while statement.

Consider the following loop:

int x = 60;

do 

{

    std::cout << x << "\n";

    x++;

} while (x < 50);

This loop’s conditional only is true when x < 50. Because x begins with an initial value of 60, 

this condition is never met. 

In spite of this, the body of the loop executes once and the x value of 60 is displayed. This occurs 

because the do-while loop does not consider the condition for the first time until after the loop’s 

statements are executed.

A do-while loop always executes the body at least once.

The Badger program in Listing 6.4 uses one of these loops to display a word a user-selected 

 number of times.
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LISTING 6.4 The Full Text of Badger.cpp

 1: #include <iostream>

 2: 

 3: int main()

 4: {

 5:     int badger;

 6:     std::cout << "How many badgers? ";

 7:     std::cin >> badger;

 8: 

 9:     do

10:     {

11: std::cout << "Badger ";

12: badger––;

13:     } while (badger > 0);

14:     

15:     std::cout << "\n";

16:     return 0;

17: }

When you run the program, it asks the question “How many badgers?” and displays the word 

Badger that many times.

How many badgers? 5

Badger Badger Badger Badger Badger

Run this program a second time and enter 0. You will see this output:

How many badgers? 0

Badger

The user is prompted for a starting value on line 7, which is stored in the integer variable 

badger. In the do-while loop, the body of the loop is entered before the condition is tested, and 

therefore guaranteed to be executed at least once. On line 11, the word “Badger” is displayed, on 

line 12 the counter is decremented, and on line 13 the condition is tested. If the condition is true, 

execution jumps to the top of the loop on line 11; otherwise, it falls through to line 14.

The continue and break statements work in a do-while loop exactly as they do in a while 

loop. The only difference between a while loop and a do-while loop is when the condition is 

tested.

for Loops
When using loops in a program, you often find yourself setting up a counter variable, testing to 

see whether the counter meets a condition and changing the variable’s value each time through 

the loop, as in this sample while loop:
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int x = 0;

while (x < 13)

{

    std::cout << "X";

    x++;

}

std::cout << "\n";

This code displays an “X” 13 times on one line of output.

A for loop is a sophisticated loop that combines all three of these steps together into a single 

statement. The statement consists of the keyword for followed by a pair of parentheses. Within 

the parentheses are three statements separated by semicolons:

 The initialization of the counter

 The conditional test

 The change to the counter

The following code rewrites the preceding while loop to produce the same output:

for (int x = 0; x < 13; x++)

{

    std::cout << "X";

}

std::cout << "\n";

The first section of a for loop is the initialization. Any C++ statement can be put here, but 

 typically it is used to create and initialize a counter variable.

The second section is the test, which can be any legal C++ expression. This serves the same 

 purpose as the condition in a while or do-while loop.

The third section is the action that changes the counter. This typically is a statement that 

 increments or decrements the counter’s value, but any legal C++ statement can be used here.

The MultTable program in Listing 6.5 creates a multiplication table for a user-selected number. 

The first 10 multiples of that number are displayed using a for loop.

LISTING 6.5 The Full Text of MultTable.cpp

 1: #include <iostream>

 2:

 3: int main()

 4: {

 5:     int number;

 6:     std::cout << "Enter a number: ";
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 7:     std::cin >> number;

 8:     

 9:     std::cout << "\nFirst 10 Multiples of " << number << "\n";

10:     

11:     for (int counter = 1; counter < 11; counter++)

12:     {

13: std::cout << number * counter << " ";

14:     }

15:     std::cout << "\n";

16:

17:     return 0;

18: }

Here’s sample output for the user input 11:

Enter a number: 11

The First 10 Multiples of 11:

11 22 33 44 55 66 77 88 99 110

The for statement on line 11 combines on one line the initialization of the integer variable 

counter, the test that counter is less than 11, and the action to increment to counter all into 

one line. The body of the for loop is line 13. 

CAUTION

A common mistake is using a comma (,) instead of a semicolon (;) to separate the sections of a 
for statement, which results in a compiler error. Another common mistake is to place a semicolon 
(;) after the closing parenthesis of the for statement. This makes the loop do nothing but loop. 
Because there are times it makes sense to do this, the compiler does not report an error.

Advanced for Loops
A for loop can be powerful and flexible. It is not uncommon to initialize more than one 

 variable, test a compound logical expression, and execute more than one statement.

When the initialization and action sections contain more than one statement, they are separated 

by commas. Here’s an example:

for (int x = 0, y = 0; x < 10; x++, y++)

{

    std::cout << x * y << "\n";

}

This loop has an initialization section that sets up two integer variables: x and y. Take note of 

the comma between the two declarations.

www.allitebooks.com

http://www.allitebooks.org
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The loop’s test section tests whether x < 10.

The loop’s action section increments both integer variables, using a comma between the 

s tatements.

The body of the loop displays the product of multiplying the variables together.

Each section of a for loop also can be empty. The semicolons are still there to separate sections, 

but some of them contain no code. Here’s an example:

int x = 0;

int y = 0;

for ( ; x < 10; x++, y++)

{

    std::cout << x * y << "\n";

}

Nested Loops
Loops can be nested with one loop sitting in the body of another. The inner loop will be executed 

in its entirety for every execution of the outer loop.

The BoxMaker program in Listing 6.6 uses one for loop nested inside another to display a box 

made of a user-selected character with a user-specified height and width.

LISTING 6.6 The Full Text of BoxMaker.cpp

 1: #include <iostream>

 2:

 3: int main()

 4: {

 5:     int rows, columns;

 6:     char character;

 7: 

 8:     std::cout << "How many rows? ";

 9:     std::cin >> rows;

10:     std::cout << "How many columns? ";

11:     std::cin >> columns;

12:     std::cout << "What character to display? ";

13:     std::cin >> character;

14: 

15:     std::cout << "\n";

16:     for (int i = 0; i < rows; i++)

17:     {

18: for (int j = 0; j < columns; j++)

19: {

20: std::cout << character;

21: }
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22: std::cout << "\n";

23:     }

24:     return 0;

25: }

When you run the program, you are asked to select the row and column width of the rectangle. 

Next, you’re asked what character to use when drawing the box.

Here’s output for a 10-by-15 rectangle made up of asterisks:

How many rows? 10

How many columns? 15

What character? *

***************

***************

***************

***************

***************

***************

***************

***************

***************

***************

The first for loop, on line 16, initializes a counter named i to 0 and then the body of the loop is 

run.

On line 18, the first line of the outer for loop, an inner for loop is established. This loop 

 initializes a counter named j to 0, and the body of the inner for loop is executed. On line 20, 

the chosen character is printed, and control returns to the header of the inner for loop.

The inner for loop is only one statement, which displays the character. The condition is tested 

(j < columns); if it evaluates to true, j is incremented and the next character is displayed. This 

continues until j equals the number of columns.

When the inner for loop fails its test, in the preceding example after 15 asterisks are printed, 

execution falls through to line 22, and a new line is printed. The outer for loop now returns to 

its header, where its condition (i < rows) is tested. If this evaluates to true, i is incremented 

and the body of the loop is executed.

In the second iteration of the outer for loop, the inner for loop is started over. Thus, j is 

 reinitialized to 0, and the entire inner loop is run again.

When you use a nested loop, the inner loop is executed for each iteration of the outer loop. 

Therefore, the character is printed columns times for each row.
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switch Statements
When you use a series of if or if-else conditionals on the same variable, your C++ code can 

become excessively confusing and cumbersome. An alternative is to use switch, a conditional 

that tests one expression for multiple values to decide which of several blocks of code to execute.

A switch statement consists of the keyword switch followed by an expression to test one or 

more case sections with possible values of that expression, and possibly a default section 

when no case matches.

The following switch statement displays a singular or plural ending to the word “zombie,” 

depending on how many zombies you have killed:

std::cout << "You have killed " << zombies << " zombie";

switch (zombies)

{

    case 0:

std::cout << "s\n";

break;

    case 1:

std::cout << "\n";

break;

    default:

std::cout << "s\n";

}

The switch expression is the variable zombies. The two case sections catch different values of 

zombies. If the value is 0, the character ‘s’ makes the display text “You have killed 0 zombies” 

with the trailing s. If the value is 1, the text is “You have killed 1 zombie” with no trailing s.

The default section handles all other values for zombies, displaying “You have killed” followed 

by the number and the word zombies.

The evaluation in the case sections of a switch statement only can be for equality. There’s 

no way to test relational operators or Boolean operations. If one of the case values matches 

the expression, execution jumps to those statements and continues to the end of the switch 

block unless a break statement is encountered. If nothing matches, execution branches to 

the  optional default statement. If there is no default and no matching value, execution falls 

through the switch statement, and the statement ends.

TIP

It’s good programming practice to have a default case in switch statements even when you don’t 
have a reason to employ one. The default can be used to display an error when a value defies 
your expectations and doesn’t match any of the case sections.
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In the preceding example, each case section ends with a break statement that exits the 

switch statement. If there is no break statement at the end of a case section, execution falls 

through to the next case, and its section is executed also. Although it comes in handy in  limited 

situations to execute multiple cases, in most situations you will want a break ending each 

 section.

The BadTeacher program in Listing 6.7 uses a switch statement to deliver a custom comment to 

a student in response to the grade received on a test.

LISTING 6.7 The Full Text of BadTeacher.cpp

 1: #include <iostream>

 2:

 3: int main()

 4: {

 5:     char grade;

 6:     std::cout << "Enter your letter grade (ABCDF): ";

 7:     std::cin >> grade;

 8:     switch (grade)

 9:     {

10:     case 'A':

11: std::cout << "Finally!\n";

12: break;

13:     case 'B':  

14: std::cout << "You can do better!\n";

15: break;

16:     case 'C':  

17: std::cout << "I'm disappointed in you!\n";

18: break;

19:     case 'D':  

20: std::cout << "You're not smart!\n";

21: break;

22:     case 'F':  

23: std::cout << "Get out of my sight!\n";

24: break;

25:     default: 

26: std::cout << "That's not even a grade!\n";

27: break;

28:     }

29:     return 0;

30: }
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This program asks a user to report a letter grade of A, B, C, D, or F, and then responds to this 

input with an abusive response. Here are three examples of output:

Enter your letter grade (ABCDF): C

I'm disappointed in you!

Enter your letter grade (ABCDF): F

Get out of my sight!

Enter your letter grade (ABCDF): Z

That's not even a grade!

The user is prompted for a letter. That letter is tested in the switch statement in line 8. The 

case statement on line 10 tests for the character ‘A’. If it’s a match, line 11 is executed, and the 

comment “Finally!” is displayed, and the break on the following line ends the statement.

The other four letter grades are tested in their own case sections. If none of these matches, the 

default section on lines 26–27 is executed.

Summary
The loops and conditionals you learned about during this hour add considerable brainpower to 

C++ programs.

The while loop runs a block of code until a condition is no longer true. If the condition is never 

true, the code is never executed.

By contrast, the do-while loop runs a block of code at least once, even if the tested condition is 

never true.

A for loop is designed using initialization, test, and action sections. These sections make it 

 possible to create a counter variable, test its value, and change its value all within the for 

statement that creates the loop.

Sophisticated loops can be developed with the continue statement, which skips to the 

 beginning of the next iteration through a loop, and the break statement, which ends a loop 

entirely.

The switch-case conditional simplifies the process of checking the same variable for a set of 

different equality values. Although the same task could be achieved by a series of if or if-else 

conditionals, switch is simpler to develop and debug. 
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Q&A
Q. How do you choose between if-else and switch?

A. If there’s more than one or two else clauses and all are testing the same value, consider
using a switch statement. If you need to compare relationships (a > b for instance), you
cannot use the switch statement. Otherwise, you can choose any conditional. There’s no
wrong answer as long as your program works.

Q. How do you choose between while and do-while?

A. If the body of the loop always should execute at least once, consider a do-while loop;
otherwise, use the while loop.

Q. How do you choose between while and for?

A. If you are executing a statement (or block of statements) a fixed number of times based
on the value of a variable that is being incremented, consider the for loop. If your variable
is already initialized or is not incremented on each loop, a while loop might be the better
choice.

Q. Why is an airplane’s black box orange?

A. The boxes are painted fluorescent orange to make them easier to spot in the wreckage of a
plane crash. It is a historical misnomer to describe them as black, since even the earliest
prototypes were brightly colored. One of the first was nicknamed the “red egg.”

The boxes are normally placed at the spot most likely to survive a crash: the rear of the
plane near the juncture of the fuselage and the upper tail fin. They are designed to endure
a temperature of 1,100 degrees Celsius for 30 minutes and an impact force 3,500 times
as strong as gravity. There’s actually two boxes—a flight data recorder and cockpit voice
recorder.

The inventor of the device, Australian aeronautical engineer David Warren, was nine years
old when his father died in a plane crash in the 1930s.

Efforts are underway to make black boxes obsolete by transmitting flight data and pilot
voice recordings to satellites throughout a flight.

As to why they’re called black boxes, that appears to be borrowed from an early type of
flight data recorder. Francois Hussenot and Paul Beaudouin devised a recorder in France
that used photographic film and a thin ray of light in a pitch-black box.

Workshop
You learned about some complex program flow this hour, and you should answer a few questions 
and do a couple of exercises to firm up your knowledge of the topic. 
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Quiz 
1. What data type should be used in a for loop?

A. Integer

B. Integer or float

C. Any type is acceptable

2. Which loop cannot use the break or continue statements?

A. for

B. for or while

C. None

3. What does the break command do within a switch statement?

A. Skip to the next case

B. End the switch statement

C. Skip to the default section

Answers
1. C. Most programmers limit their use of the for statement to integers. But that is not a

 limitation of the language; you can work with floats or strings or other data types.

2. C. The break and continue statements can be used in any type of loop, although they
are less common in for loops. The reason is that those loops often loop a fixed number of
times.

3. B. Within a switch statement, the break command causes execution to resume outside
of the body of the switch statement. Without it, commands are executed from the first
case condition that is true until the end of the switch body.

Activities
1. Write a program that displays the first 100 multiples of 16.

2. Modify the BadTeacher program so that it handles the grades E and G through H, displaying
abusive responses tailored to such ignorant prattle.

To see solutions to these activities, visit this book’s website at http://cplusplus.cadenhead.org.

http://cplusplus.cadenhead.org


ptg18189307

This page intentionally left blank 



ptg18189307

HOUR 7
Storing Information in Arrays 

and Strings

What You’ll Learn in This Hour:

 How to store related data in arrays

 How to declare arrays

 How to create strings from character arrays

 How to copy strings

What Is an Array?
An array is a collection of related data of the same data type. An array can be envisioned as a 

series of data storage locations. Each storage location is called an element of the array.

An array is declared by writing the data type and array name followed by the number of 

 elements the array holds inside square brackets. Here’s an example:

long peaks[25];

The peaks array holds 25 long integers. This declaration causes the compiler to set aside 

enough memory to hold all 25 elements. Because each long integer requires 4 bytes, this 

 declaration sets aside 100 contiguous bytes of memory.

Array elements are numbered from 0 up to the largest element, so the peaks array holds 

 elements from 0 through 24. Each element is accessed by using its number in square braces. 

This statement assigns a value to the first peaks element:

peaks[0] = 29029;

This statement assigns a value to the last:

peaks[24] = 7804;

The number of an array element also is called its subscript.
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The zero-based numbering of array elements can be confusing—an array with three elements 

has elements numbered 0, 1, and 2 (not 1, 2, and 3).

The WeightGoals program in Listing 7.1 uses an array to calculate weight-loss milestones for a 

dieting person. The array holds floating-point values that represent progress of 10%, 25%, 50%, 

and 75% toward the dieter’s goal weight.

LISTING 7.1 The Full Text of WeightGoals.cpp

 1: #include <iostream>

 2: 

 3: int main()

 4: {

 5:     float goal[4];

 6:     goal[0] = 0.9;

 7:     goal[1] = 0.75;

 8:     goal[2] = 0.5;

 9:     goal[3] = 0.25;

10:     float weight, target;

11: 

12:     std::cout << "Enter current weight: ";

13:     std::cin >> weight;

14:     std::cout << "\nEnter goal weight: ";

15:     std::cin >> target;

16:     std::cout << std::endl;

17:  

18:     for (int i = 0; i < 4; i++)

19:     {

20: float loss = (weight - target) * goal[i];

21: std::cout << "Goal " << i << ": ";

22: std::cout << target + loss << std::endl;

23:     }

24: 

25:     return 0;

26: }

This program asks a user’s current weight and goal weight, and then displays four intermediate 

weight milestones:

Enter current weight: 265

Enter goal weight: 220

Goal 0: 260.5

Goal 1: 253.75

Goal 2: 242.5

Goal 3: 231.25
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The program stores the user’s current weight in the variable weight and the user’s target in the 

variable target. Both hold floating-point variables.

The goal array holds four values that will be used to calculate the weight milestones. The 

four-element array is created (line 5) and values of 0.9, 0.75, 0.5, and 0.25 are assigned to those 

 elements (lines 6–9).

A for loop iterates through the elements of the array. The amount to reach a milestone is stored 

in the loss variable (line 20). This variable is the total amount of weight to lose multiplied by 

the percentage.

The loss total is added to target and displayed as a milestone (line 21).

NOTE

The fact that arrays count up from 0 rather than 1 is a common cause of bugs in programs  written 
by C++ novices. When you use an array, remember that an array with 10 elements counts from 
array[0] to array[9]. 

Writing Past the End of Arrays
When you assign a value to an array element, the compiler computes where to store the value 

in memory based on the size of each element and its subscript. If you store a new value in 

goal[3], the compiler multiplies the offset of 3 by the size of each element, which for long 

integers is four bytes. The compiler then moves that many bytes, 12, from the beginning of the 

array and stores the new value at that location.

The goal array in the WeightGoals program only has four elements. If you try to store some-

thing in goal[4], the compiler ignores the fact that there is no such element. Instead, it stores 

it in memory 20 bytes past the beginning of the first element, replacing whatever data is at 

that location. This can be almost any data, so writing the new out-of-bounds value might have 

unpredictable results, such as the program crashing or running with strange results.

These errors can be difficult to spot as a program runs, so it’s important to pay attention to the 

size of arrays when they are accessed.

It is so common to write data one element past the end of an array that the bug has its own 

name: a fence post error. The name refers to the problem of counting how many posts you need 

for a 10-foot fence if you need one post for every foot. Some people answer 10, but you need 11, 

as shown in Figure 7.1.
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1ft

1 2 3 4 5 6 7 8 9 10 11

2ft 3ft 4ft 5ft 6ft 7ft 8ft 9ft 10ft

FIGURE 7.1
Counting fence posts.

This sort of “off by one” mistake can be the bane of any programmer’s life. Over time, 

however, you’ll get used to the idea that a 25-element array counts only to element 24 and 

that  everything counts from zero.

Initializing Arrays
You can initialize a simple array of built-in types, such as integers or  characters, when you first 

declare the array. After the array name, put an equal sign and a list of comma-separated values 

enclosed in braces:

int post[10] = { 0, 10, 20, 30, 40, 50, 60, 70, 80, 90 };

This declares post to be an array of 10 integers. It assigns post[0] the value 0, post[1] the 

value 10, and so forth up to post[9] equaling 90.

If you omit the size of the array, an array just big enough to hold the initialization is created. 

Consider this statement:

int post[] = { 10, 20, 30, 40, 50 };

An integer array with five elements is created with post[0] equal to 10, post[1] equal to 20, 

and so on.

The built-in C++ function sizeof() can be used to count the number of elements in an array:

const int size = sizeof(post) / sizeof(post[0]);

This example obtains the size of the post array by dividing the size of the entire array by the 

size of an individual element in the array. The result is the number of members in the array.

You cannot initialize more elements than you’ve declared for the array. This statement generates 

a compiler error:

int post[5] = { 10, 20, 30, 40, 50, 60 };

The error occurs because a five-element array has been initialized with six values. It is permitted 

to initialize an array with fewer values than it holds, as in this statement:

int long[5] = { 10, 20 };



ptg18189307

Multidimensional Arrays 99

Multidimensional Arrays
An array can be thought of as a single row of data. A second dimension could be  conceptualized 

as a grid of data consisting of rows and columns. This is a two-dimensional array of data, with 

one dimension representing each row and the second dimension representing each column. 

A three-dimensional array could be a cube, with one dimension representing width, a second 

dimension representing height, and a third dimension representing depth. You even can have 

arrays of more than three dimensions, although they are harder to imagine as objects in space. 

When you declare arrays, each dimension is represented as a subscript in the array. A two-

dimensional array has two subscripts:

int grid[5, 13];

A three-dimensional array has three subscripts:

int cube[5, 13, 8];

Arrays can have any number of dimensions, although it is likely that most of the arrays you 

create will have one or two dimensions.

A good example of a two-dimensional array is a chessboard. One dimension represents the eight 

rows; the other dimension represents the eight columns. Figure 7.2 illustrates this idea.
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76543210

765432
2 1

765432
3 1

765432
4 1

765432
5 1

765432
6 1

765432
7 1

76543211

FIGURE 7.2
A chessboard is a two-dimensional array of squares.

Suppose that you have an array of char values named board that represents the board. 

Each element could equal ‘w’ if a white piece occupies the square, ‘b’ if a black piece does and ‘’ 

(no character) otherwise. The following statement creates the array:

int board[8][8];
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You also could represent the same data with a one-dimensional, 64-square array:

int board[64];

This doesn’t correspond as closely to the real-world object as the two-dimensional array, however. 

When the game begins, the king is located in the fourth position in the first row. Counting from zero, 

that position corresponds to board[0][3], assuming that the first subscript corresponds to row 

and the second to column. The layout of positions for the entire board is illustrated in Figure 7.2.

CAUTION

Multidimensional arrays can rapidly grow to exceed available memory, so keep that in mind when 
creating large arrays with multiple dimensions.

Initializing Multidimensional Arrays
You can initialize multidimensional arrays with values just like single-dimension arrays. Values 

are assigned to array elements in order, with the last array subscript changing and each of the 

former ones holding steady. Here’s an example:

int box[5][3] = { 8, 6, 7, 5, 3, 0, 9, 2, 1, 7, 8,

    9, 0, 5, 2 };

The first value is assigned to box[0][0], the second to box[0][1], and the third to box[0][2]. 

The next value is assigned to box[1][0], then box[1][1] and box[1][2].

This is demonstrated in the Box program in Listing 7.2.

LISTING 7.2 The Full Text of Box.cpp

 1: #include <iostream>

 2:  

 3: int main()

 4: {

 5:     int box[5][3] = { 8, 6, 7, 5, 3, 0, 9, 2, 1, 7, 8,

 6: 9, 0, 5, 2 };

 7:

 8:     for (int i = 0; i < 5; i++)

 9:     {

10: for (int j = 0; j < 3; j++)

11: {

12: std::cout << "box[" << i << "]";

13: std::cout << "[" << j << "] = ";

14: std::cout << box[i][j] << "\n";

15: }

16:     }

17: }
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The program’s output displays the contents of each array element, which can be compared to 

the assignment statement in lines 5–6:

box[0][0] = 8

box[0][1] = 6

box[0][2] = 7

box[1][0] = 5

box[1][1] = 3

box[1][2] = 0

box[2][0] = 9

box[2][1] = 2

box[2][2] = 1

box[3][0] = 7

box[3][1] = 8

box[3][2] = 9

box[4][0] = 0

box[4][1] = 5

box[4][2] = 2

The box variable holds a two-dimensional array that has five integers in the first dimension and 

two integers in the second. This creates a 5-by-3 grid of elements.

Two for loops are used to cycle through the array, displaying each array element and its value.

For the sake of clarity, you could group the initializations with braces, organizing each row on its 

own line:

int box[5][3] = {

    {8, 6, 7},

    {5, 3, 0},

    {9, 2, 1},

    {7, 8, 9},

    {0, 5, 2} };

The compiler ignores the inner braces. This makes it easier to see how the numbers are 

distributed.

Each value must be separated by a comma without regard to the braces. The entire initialization 

set must be within braces, and it must end with a semicolon.

A Word About Memory
When you declare an array, you tell the compiler exactly how many elements you expect to store 

in it. The compiler sets aside the proper amount of memory for an array given the size of the 

data type and the number of elements it contains. Arrays are suitable for data that consists of a 

known number of elements, such as squares on a chessboard (64) or years in a century (100).
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When you have no idea how many elements are needed, you must use more advanced data 

structures.

Future hours of this book cover arrays of pointers, arrays built on the heap, and other structures. 

In Hour 19, “Storing Information in Linked Lists,” you learn about an advanced data structure 

known as a linked list.

Character Arrays
Familiarity with arrays makes it possible to work with longer text than the single characters 

represented by the char data type. A string is a series of characters. The only strings you’ve 

worked with up to this point have been string literals used in std::cout statements:

std::cout << "Solidum petit in profundis!\n";

In C++, a string is an array of characters ending with a null character, a special character 

coded as '\0'. You can declare and initialize a string like any other array:

char yum[] = { 'Z', 'o', 'm', 'b', 'i', 'e', 

    ' ','E','a','t',' ', 'B', 'r', 'a', 'i', 'n',

    's', '\0' };

The last character, '\0', is the null character that terminates the string.

Because this character-by-character approach is difficult to type and admits too many opportuni-

ties for error, C++ enables a shorthand form of string initialization using a literal:

char yum[] = "Zombie Eat Brains";

This form of initialization doesn’t require the null character; the compiler adds it automatically.

The string “Zombie Eat Brains” is 18 bytes, including null.

You also can create uninitialized character arrays, which are called buffers. As with all arrays, it 

is important to ensure that you don’t put more into the buffer than there is room for.

Buffers can be used to store input typed by a user. Several programs created in past hours used 

the std::cin object to collect user input and store it in a variable:

std::cin >> yum;

Although this approach works, two major problems arise. First, if the user enters more  characters 

than the size of the buffer, cin writes past the end of the buffer, making the program run 

improperly and causing security concerns. Second, if the user enters a space, cin treats it as the 

end of the string and stops writing to the buffer.
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To solve these problems, you must call a function of the cin object called getline() with two 

arguments:

 The buffer to fill

 The maximum number of characters to get

NOTE

You may be wondering how a function can be called by adding a period “.” to something called an 
object, because objects have yet to be fully introduced in this book. A function that refers to an 
object followed by a period and a name, like std::cin.getline(), is called a member function. 
This concept will be covered in Hour 8, “Creating Basic Classes.”

The following statement stores user input of up to 18 characters (including null) and stores it in 

the yum character array:

std::cin.getline(yum, 18);

The method also can be called with a third argument, the delimiter that terminates input:

std::cin.getline(yum, 18, ' ');

This statement terminates input at the first space. When the third argument is omitted, the 

newline character ('\n') is the delimiter.

The BridgeKeeper program in Listing 7.3 asks three famous questions from a classic movie, 

storing them in buffers.

LISTING 7.3 The Full Text of BridgeKeeper.cpp

 1: #include <iostream>

 2: 

 3: int main()

 4: {

 5:     char name[50];

 6:     char quest[80];

 7:     char velocity[80];

 8: 

 9:     std::cout << "\nWhat is your name? ";

10:     std::cin.getline(name, 49);

11: 

12:     std::cout << "\nWhat is your quest? ";

13:     std::cin.getline(quest, 79);

14: 

15:     std::cout << "\nWhat is the velocity of an unladen swallow? ";

16:     std::cin.getline(velocity, 79);
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17: 

18:     std::cout << "\nName: " << name << std::endl;

19:     std::cout << "Quest: " << quest << std::endl;

20:     std::cout << "Velocity: " << velocity << std::endl;

21:     return 0;

22: }

This program produces output like the following:

What is your name? Rogers Cadenhead

What is your quest? Time-based C++ tutelage

What is the airspeed velocity of an unladen

swallow? I don't know-- aagh!

Name: Rogers Cadenhead

Quest: Time-based C++ tutelage

Velocity: I don't know-- aagh!

Line 10 calls the function getLine() of cin. The buffer declared in line 5 is passed in as the 

first argument. The second argument is the maximum number of characters to allow as input. 

Because the name buffer can hold 50 characters, the argument must be 49 to allow for the termi-

nating null. There is no need to provide a terminating character as a third argument because 

the default value of newline is sufficient.

The film in question, if you haven’t recognized it already (or even if you did), is Monty Python and 

the Holy Grail. The Bridge of Death is guarded by a bridgekeeper who demands that three 

questions be answered correctly. Get one wrong and you are thrown off to your doom.

The correct answers, in case you ever run into this problem on your travels:

 It is Arthur, King of the Britons

 To seek the Holy Grail

 What do you mean? An African or European swallow?

Copying Strings
C++ inherits from C a library of functions for dealing with strings. This library can be incorpo-

rated in a program by including the header file string.h:

#include <string.h>

Among the many functions provided are two for copying one string into another: strcpy_s() 

and strncpy_s().
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The strcpy_s() function copies the entire contents of one string into a designated buffer, as 

demonstrated by the StringCopier program in Listing 7.4.

LISTING 7.4 The Full Text of StringCopier.cpp

 1: #include <iostream>

 2: #include <string.h>

 3:

 4: int main()

 5: {

 6:     char string1[] = "Free the bound periodicals!";

 7:     char string2[80];

 8:

 9:     strcpy_s(string2, string1);

10:

11:     std::cout << "String1: " << string1 << std::endl;

12:     std::cout << "String2: " << string2 << std::endl;

13:     return 0;

14: }

Run this program to eyeball the following output:

String1: Free the bound periodicals!

String2: Free the bound periodicals!

A character array is created on Line 6 and initialized with the value of a string literal. The 

strcpy() function on Line 9 takes two character arrays: a destination that will receive the copy 

and a source that will copy it. If the source array is larger than the destination, strcpy() writes 

data past the end of the buffer.

To protect against this, the standard library also includes the function strncpy(). This version 

takes a third argument that specifies the maximum number of characters to copy:

strncopy(string1, string2, 80);

Reading Arrays with Foreach Loops
One disadvantage of C++ relative to languages such as Java has been the amount of code 

required to do one of the most common tasks in programming. When you loop through the 

elements of an array (or other data structures), the code is a bit cumbersome.

A recent addition to C++ is a new for loop that can loop through every element in an array. It’s 

commonly called a foreach loop because it iterates through a loop once for each element.

This foreach loop uses the keyword for, just like other for loops. Unlike other for loops, the 

foreach has two sections separated by a colon ( : ) instead of three separated by semicolons.
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The first section is a variable that will hold an element of the array. The second is the name of 

the array.

The Production program in Listing 7.5 uses a foreach loop to display the contents of an integer 

array, five totals that represent one year’s production of a commodity.

LISTING 7.5 The Full Text of Production.cpp

 1: #include <iostream>

 2: 

 3: int main()

 4: {

 5:   int production[] = { 10500, 16000, 5800, 4500, 13900 };

 6: 

 7:   for (int year : production)

 8:   {

 9:     std::cout << "Output: " << year << std::endl;

10:   }

11: }

Because this program uses a recent addition to C++, you may need to use the std=c++14 flag 

when you compile it.

Run it to see this output:

Output: 10500

Output: 16000

Output: 5800

Output: 4500

Output: 13900

The program defines a production array of integers in line 5 with five elements. They are 

assigned values in the same statement.

In line 7, a loop is declared that will iterate once for each element in production. The  element’s 

value is stored in an int variable named year.

This value is displayed in line 9.

As you learn about data structures more advanced than arrays, you will find more uses for the 

foreach loop.

Summary
One thing that makes software so useful is the ability to process large amounts of similar data. 

Arrays are collections of data that share the same data type. This hour demonstrated them with 

only the simple data types, but you learn in upcoming hours that arrays can be put to use on 

more complex forms of data.
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Although strings are just character arrays in C++, they’re commonly referred to as strings 

because they serve so many useful purposes. Strings can collect user input, present text, and 

store textual data from files, web documents, and other sources.

There are many other ways to represent data in C++ more sophisticated than simple data types 

and arrays. 

Q&A
Q. What happens if I write to element 25 in a 24-member array?

A. The end of the world as we know it. Not really, but it’s pretty bad. When you store a value
past the end of an array, you write to other memory with potentially disastrous effects on
your program. Memory used by the program could be overwritten and the software could run
improperly.

This mistake is called a buffer overflow. According to security experts, the most common
software exploit used by malicious programmers is to write data past a buffer and use this
error to execute new code. The new code often can do anything, such as altering or deleting
files, granting system privileges to untrusted users, and replicating viruses.

Q. What is in an uninitialized array element?

A. An array element that has not been assigned a value. The value is whatever happens to
be in memory at a given time. The results of using this element without assigning a value
are unpredictable.

Q. Why did the number 13 become associated with bad luck?

A. Thirteen has been getting bad press since the Middle Ages, partially from the observation
that the presence of Judas made the Last Supper a table for 13.

Additionally, the Norse god Loki arrived at a party attended by 12 of his colleagues and
ruined the proceedings, according to one myth.

Furthermore, when ancient calendars in Sumer and Babylon ventured too far off the mark, a
thirteenth month was added to bring things into line with the seasons. This kludge affected
planting schedules and crop yield, so month 13 was not welcome.

Thirteen is also one past a dozen and 12 is considered to be a suitable number for a
wide variety of things. This makes 13 one too many and represents transgression
and discord.

The number 13 is so terrifying there’s a word to describe the fear of it: triskaidekaphobia.

As a person whose birthday falls on April 13, I think the number gets a bad rap.
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Workshop
You just spent the past hour learning about arrays. Now is the time to answer a few questions 
and perform a couple of exercises to firm up your knowledge of them.

Quiz 
1. What is the minimum array subscript for a particular array?

A. 0

B. 1

C. There’s a two-drink minimum.

2. What happens if you try to store data beyond the maximum allowed array subscript?

A. The compiler reports an error.

B. The data is ignored.

C. The data is written in memory past the array.

3. What is another name for a character array that does not have an initial value?

A. A string

B. A buffer

C. A null character

Answers
1. A. All arrays start with zero. The last element is the size of the array minus 1, so the array

brains[50] would hold 49.

2. C. The data is written to the address right after the end of the array. It is difficult to tell
what will happen. If you are lucky, the data is stored in an area of memory the computer
doesn’t want you to access, and an error results. If you are unlucky, another variable is
changed in some strange way that is difficult to debug.

3. B. A buffer can be used to store user input or any other character data.

Activities
1. Write a program that asks a user’s first and last name and displays it as part of a sentence

greeting the user.

2. Modify the WeightGoals program to use a foreach loop and add a new milestone for 10%.

To see solutions to these activities, visit this book’s website at http://cplusplus.cadenhead.org.

http://cplusplus.cadenhead.org
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What You’ll Learn in This Hour:

 What types are

 What classes and objects are

 How to define a new class and create objects of that class

What Is a Type?
One of the things that distinguishes humans is our ability to categorize. We don’t see hundreds 

of vague shapes in nature; we see animals, rocks, insects, and trees. We don’t just see animals; 

we see bears, foxes, chupacabras, sasquatches, and so forth. We divide things into various classes 

that tell us what type of thing they are.

A sasquatch is a type of mammal. A mammal is a type of animal. An animal is a type of living 

thing.

In C++, a type is an object with data and a set of abilities. You’ve worked with built-in types such 

as int, long, and float numbers. You also can create your own types, as you discover this hour.

Computer programs are written to solve real-world problems, such as keeping track of employee 

paychecks or scheduling the games in a childrens soccer league. One of the best ways to write a 

program to accomplish large, complex tasks is to create representations of the objects that work 

together to perform the task.

So, if you’re creating a league schedule, you could have objects to represent each team in the 

league, each day that games can be played and each game on the schedule. The closer these 

objects correspond to reality, the easier it is to write the program.
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Creating New Types
As you work with built-in types in C++, each variable’s type tells you quite a bit about it. For 

example, if you write a program with height and width declared as unsigned short integers, 

you know that each variable one can hold a number between 0 and 65,535.

The type also tells you capabilities of the variable. Short integers can be added together, so by 

declaring height and width as that type, you know they can be added together.

The type of a variable tells you several things:

 Its size in memory

 The information it can hold

 The actions that can be performed on it

In C++ you define your own types to model a problem you are trying to solve. The mechanism 

for declaring a new type is to create a class. A class is a definition of a new type.

Classes and Members
A C++ class is a template used to create objects. After you define a class, objects created from 

that class can be put to use like any other data type.

A class is a collection of related variables and functions bundled together. The variables can be 

of any other type, including other classes.

Variables make up the data in the class, and functions perform tasks using that data. Bundling 

these together is called encapsulation.

This will make more sense in relation to a real object, such as the red tricycle my parents 

left behind during a move from Wichita Falls, Texas, to Dallas when I was four years old. 

(The U-Haul ran out of room. This is a touchy subject for me.)

One way to think about a tricycle is that it’s a collection of objects connected together—wheels, 

a seat, handlebars, and pedals. Another way is in terms of what it can do: move, accelerate, 

stop, and impress other four-year-olds.

Combining these together—the physical aspects and performance—is encapsulating the object.

Encapsulation of a class makes it possible for other programs to use the class without knowing 

how it works. Users of your class only need to know what it does, not how it does it.

The variables of the class are called its member variables. A Tricycle class might have member 

variables representing the wheel size, top speed, and the height of its fluorescent orange safety 

flag.
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Member variables, also known as data members or instance variables, are part of your class, just 

like the wheel and brake are part of a trike.

The functions in the class use and modify the member variables. They are called the  member 

functions (or methods) of the class. Member functions of the Tricycle class might include 

pedal() and brake().

Member functions are as much a part of your class as member variables. They determine what 

the objects of your class can do.

Declaring a Class
To declare a class, use the class keyword followed by information about the member variables 

and member functions of the class. An opening brace and closing brace enclose the class definition. 

Here’s an example for a Tricycle class:

class Tricycle

{

public:

    unsigned int speed;

    unsigned int wheelSize;

    pedal();

    brake();

};

This code creates a class called Tricycle with two member variables, speed and  wheelSize, 

and two member functions, pedal() and brake(). All four can be used by other classes 

because the public keyword precedes them in the class definition. You learn more about this 

keyword later in the hour.

Declaring this class does not allocate memory for a Tricycle. It just tells the compiler what the 

Tricycle class is, what data it contains (speed and wheelSize) and what it can do (pedal() 

and brake()).

It also tells the compiler how much room the compiler must set aside for each of the Tricycle 

objects that you create. In this example, if an integer is four bytes, Tricycle is only eight bytes 

total: speed is four bytes and wheelSize is another four. The two functions take up no room 

because no storage space is set aside for member functions.

Defining an Object
An object is created from a class by specifying its class and a variable name, just as you’ve done 

with built-in types in the preceding seven hours. For example:

Tricycle wichita;
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This statement creates a Tricycle object named wichita. The Tricycle class is used as a 

template for the object. The object will have all member variables and member functions defined 

for the class.

C++ differentiates between the class Tricycle, which is the concept of a tricycle, and each 

individual Tricycle object.

An object is just an individual instance of a class. When you create an object, you are said to 

“instantiate” it from the class.

NOTE

Because C++ is case sensitive, all class names should follow the same convention to  minimize 
errors. Instead of having to remember whether a class is called Tricycle, tricycle, or 
TRICYCLE, if you always capitalize the first letter of a class name you’ll know it is Tricycle. Some 
programmers prefix every class name with a particular lowercase letter (for example,  cTricycle 
or cSkateboard). The convention used in this book is initial capitalization, as in Tricycle and 
Sasquatch.

Member variables and functions also should follow the same naming rules. This book begins both 
with lowercase letters, as in speed and pedal(), and a capital letter beginning each subsequent 
word (if any), as in bringMyTrike().

Accessing Class Members
After you create an object, you use the dot operator (.) to access the member functions and 

variables of that object. As you might recall, the Tricycle class has a member variable called 

speed. To set this variable, use the dot operator:

Tricycle wichita;

wichita.speed = 6;

After the member function pedal() function has been defined, the dot operator is used to call it:

wichita.pedal();

Private Versus Public Access
The Tricycle class has two public member variables and two public member functions. The 

public keyword makes these parts of the class available to the public—in other words, other 

classes and programs that use Tricycle objects.
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All member variables and functions are private by default. Private members can be accessed 

only within functions of the class itself. Public members can be accessed everywhere else. Here’s 

a modified definition of Tricycle:

class Tricycle

{

    unsigned int speed;

    unsigned int wheelSize;

    pedal();

    brake();

};

When the public keyword appears in a class definition, all member variables and functions 

after the keyword are public:

class Tricycle

{

    int model = 110;

public:

    unsigned int speed;

    unsigned int wheelSize;

    pedal();

    brake();

};

The preceding code declares everything in the Tricycle class public except for the model 

 member variable.

There’s also a private keyword to make all subsequent member variables and functions 

 private.

Each use of public or private changes access control from that point on to the end of the 

class or until the next access control keyword.

Keeping member data private limits access and controls how their values can be changed.

Although member variables can be public, it’s a good idea to keep them all private and make 

them available only via functions.

A function used to set or get the value of a private member variable is called an accessor. Other 

classes must call the accessor instead of working directly with the variable.

Accessors enable you to separate the details of how the data is stored from how it is used. If you 

later change how the data is stored, you don’t need to rewrite functions that use the data.

You create accessors in the next section.
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Implementing Member Functions
Every class member function that you declare also must be defined.

A member function definition begins with the name of the class followed by the scope resolution 

operator (::) and the name of the function. Here’s an example:

void Tricycle::pedal()

{

    std::cout << "Pedaling trike\n";

}

Class functions have the same capabilities as functions; they can have parameters and return a 

value.

The Tricycle program in Listing 8.1 defines a Tricycle class and takes it for a test drive.

LISTING 8.1 The Full Text of Tricycle.cpp

 1: #include <iostream>

 2: 

 3: class Tricycle

 4: {

 5: public:

 6:     int getSpeed();

 7:     void setSpeed(int speed);

 8:     void pedal();

 9:     void brake();

10: private:

11:     int speed;

12: };

13:

14: // get the trike's speed

15: int Tricycle::getSpeed()

16: {

17:     return speed;

18: }

19:

20: // set the trike's speed

21: void Tricycle::setSpeed(int newSpeed)

22: {

23:     if (newSpeed >= 0)

24:     {

25:         speed = newSpeed;

26:     }

27: }

28:

29: // pedal the trike
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30: void Tricycle::pedal()

31: {

32:     setSpeed(speed + 1);

33:     std::cout << "\nPedaling; tricycle speed " << speed << " mph\n";

34: }

35: 

36: // apply the brake on the trike

37: void Tricycle::brake()

38: {

39:     setSpeed(speed — 1);

40:     std::cout << "\nBraking; tricycle speed " << speed << " mph\n";

41: }

42:

43: // create a trike and ride it

44: int main()

45: {

46:     Tricycle wichita;

47:     wichita.setSpeed(0);

48:     wichita.pedal();

49:     wichita.pedal();

50:     wichita.brake();

51:     wichita.brake();

52:     wichita.brake();

53:     return 0;

54: }

The Tricycle program creates a Tricycle object, sets its initial speed to 0 and calls the pedal() 

and brake() member functions several times. These functions increase and decrease the speed, 

respectively. Here’s the output:

Pedaling; tricycle speed 1 mph

Pedaling; tricycle speed 2 mph

Braking; tricycle speed 1 mph

Braking; tricycle speed 0 mph

Braking; tricycle speed 0 mph

Lines 3–12 contain the definition of the Tricycle class. Line 5 contains the keyword public, 

which tells the compiler that what follows is a set of public members. Line 6 has the declaration 

of the public accessor getSpeed(), which provides access to the private member variable speed 

declared on line 11. Line 7 has the public accessor setSpeed(), which takes an integer as an 

parameter and sets speed to the value of that parameter.

Line 10 begins the private section, which includes only the declaration of the private member 

variable speed.
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Lines 15–18 contain the definition of the member function getSpeed(). This function takes 

no parameters; it returns an integer. Note that class member functions include the class 

name followed by two colons and the function’s name. This syntax tells the compiler that the 

getSpeed() function you are defining here is the one that you declared in the Tricycle class. 

With the exception of this header line, the getSpeed() function is created like any function.

The getSpeed() function is only one statement, which returns the value in the member 

 variable speed. The program’s main() function cannot access speed because it is private in the 

Tricycle class. The main() function has access to the public function getSpeed(). Because 

getSpeed() is a function of the class, it has full access to its speed variable. This access 

enables the function to return the value of speed to main().

Lines 21–27 contain the definition of the setSpeed() function. It takes an integer parameter 

and sets the value of speed to the value of that parameter, but only if the parameter is greater 

than or equal to 0. By using an accessor and making speed private, the class controls how 

the variable is set. This restriction against negative speeds is an example of that.

Line 30 begins the pedal() function. This function increases the speed of the trike by 1 by 

 calling setSpeed() and displays the current speed after acceleration.

Line 37 begins the brake() function, which decreases the speed by 1 with a call to 

setSpeed() and displays the current speed. The attempt to decrease the speed fails if speed 

equals 0, because 0 miles per hour is the slowest the trike can travel.

Line 44 begins the body of the program with the main() function. A Tricycle object named 

wichita is created and given an initial speed of 0. The Tricycle object’s pedal() and 

brake() function are called to change the rate of speed.

The last call to brake() in line 52 shows that the speed won’t go below 0. The trike already had 

stopped as of line 51, as the output illustrates.

Creating and Deleting Objects
There are two ways to define built-in types such as integers. One way is to define the variable 

and then assign a value to it later in the program:

int weight;

weight = 7;

Alternatively, you can define the integer and immediately initialize it:

int weight = 7;

Initialization combines the definition of the variable with its initial assignment. Nothing stops you 

from changing that value later, but initialization ensures that the variable always has a value.



ptg18189307

Creating and Deleting Objects 117

Classes have a special member function called a constructor that is called when an object of the 

class is instantiated. The job of the constructor is to create a valid object of the class, which often 

includes initializing its member data. The constructor is a function with the same name as the 

class but no return value. Constructors may or may not have parameters, just like any other 

function of the class.

Here’s a constructor for the Tricycle class:

Tricycle::Tricycle(int initialSpeed)

{

    setSpeed(initialSpeed);

}

This constructor sets the initial value of the speed member variable using a parameter.

When you declare a constructor, you also should declare a destructor. Just as constructors create 

and initialize objects of your class, destructors clean up after objects and free any memory that 

was allocated for them. A destructor always has the name of the class preceded by a tilde (~). 

Destructors take no parameters and have no return value.

Here’s a Tricycle destructor:

Tricycle::~Tricycle()

{

    // do nothing

}

As currently written, the class requires no special actions to free up memory, so the destructor 

only includes a comment.

Default Constructors
There are several ways to call constructors when setting up an object.

One is to specify one or more parameters in parentheses:

Tricycle wichita(5);

The parameter (or parameters) is sent to the constructor. In this example, it sets the initial speed 

of the trike.

You also can set an object up without specifying parameters:

Tricycle wichita;

This calls the default constructor of the class, which is a constructor with no parameters. 
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Constructors Provided by the Compiler
If you declare no constructors, as you did in the Tricycle program in Listing 8.1, the compiler 

creates a default constructor.

The default constructor the compiler provides takes no action; it is as if you declared a 

constructor with no parameters whose body was empty.

There are two important points to note:

 The default constructor is any constructor that takes no parameters. You can define it 

yourself or be provided one as a default from the compiler.

 If you define any constructor (with or without parameters), the compiler does not provide a 

default constructor for you. In that case, if you want a default constructor, you must define 

it yourself.

If you fail to define a destructor, the compiler also provides one of those, which also has an 

empty body and does nothing.

If you define a constructor, it’s a good practice to define a destructor even if your destructor 

does nothing. This helps you remember to make use of the destructor when you need to take 

explicit steps to free memory.

The NewTricycle program in Listing 8.2 rewrites the Tricycle class to use a constructor to  initialize 

the object, setting its speed to an initial value. It also demonstrates where the destructor is called.

LISTING 8.2 The Full Text of NewTricycle.cpp

 1: #include <iostream>

 2:

 3: class Tricycle

 4: {

 5: public:

 6:     Tricycle(int initialAge);

 7:     ~Tricycle();

 8:     int getSpeed();

 9:     void setSpeed(int speed);

10:     void pedal();

11:     void brake();

12: private:

13:     int speed;

14: };

15:  

16: // constructor for the object

17: Tricycle::Tricycle(int initialSpeed)

18: {

19:     setSpeed(initialSpeed);
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20: }

21:  

22: // destructor for the object

23: Tricycle::~Tricycle()

24: {

25:     // do nothing

26: }

27: 

28: // get the trike's speed

29: int Tricycle::getSpeed()

30: {

31:     return speed;

32: }

33:   

34: // set the trike's speed

35: void Tricycle::setSpeed(int newSpeed)

36: {

37:     if (newSpeed >= 0)

38:     {

39:         speed = newSpeed;

40:     }

41: }

42:   

43: // pedal the trike

44: void Tricycle::pedal()

45: {

46:     setSpeed(speed + 1);

47:     std::cout << "\nPedaling; tricycle speed " << getSpeed() << " mph\n";

48: }

49: 

50: // apply the brake on the trike

51: void Tricycle::brake()

52: {

53:     setSpeed(speed — 1);

54:     std::cout << "\nBraking; tricycle speed " << getSpeed() << " mph\n";

55: }

56:   

57: // create a trike and ride it

58: int main()

59: {

60:     Tricycle wichita(5);

61:     wichita.pedal();

62:     wichita.pedal();

63:     wichita.brake();

64:     wichita.brake();

65:     wichita.brake();

66:     return 0;

67: }
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This program produces the following output, which reflects an initial trike speed of 5 mph:

Pedaling; tricycle speed 6 mph

Pedaling; tricycle speed 7 mph

Braking; tricycle speed 6 mph

Braking; tricycle speed 5 mph

Braking; tricycle speed 4 mph

The Tricycle class definition in Listing 8.2 has two new additions: a declaration for a 

 constructor that takes an integer parameter and a declaration for a constructor.

Lines 17–20 show the implementation of the constructor, which is similar to the implementation 

of the SetAge() accessor function. There is no return value.

Lines 23–26 show the implementation of the destructor ~Tricycle().

A Tricycle object is created in Line 60 and given an initial value of 5 with a parameter to the 

constructor.

Summary
Over the history of computer programming there have been several popular methodologies for 

creating programs. The one introduced in this hour is called object-oriented programming (OOP) 

because of how it conceives of programs.

In OOP, a program consists of one or more objects, each of which has its own data in the form 

of member data and functions in the form of functions. The objects are separate from each other 

and specialize in a specific and narrow purpose.

By designing objects to be independent of each other, you create code that’s more easily reused 

elsewhere. If you created a Printer class in a program to print documents, that class can be 

used by other programs you write if they need printing capabilities.

You learn more about OOP in the next hour as you delve deeper into classes. 



ptg18189307

121Workshop

Q&A
Q. How big is a class object?

A. A class object’s size in memory is determined by the sum of the sizes of its member
 variables. Class functions don’t take up room as part of the memory set aside for the object.

Some compilers align variables in memory in such a way that two-byte variables actually
consume somewhat more than two bytes.

Q. Why shouldn’t I make all the member data public?

A. Making member data private enables the client of the class to use the data without
 worrying about how it is stored or computed. For example, if the Tricycle class has a
member function getSpeed(), clients of the Tricycle class can ask for the trike’s speed
without knowing if the trike stores its speed in a member variable or computes it on-the-fly.
Public data is like global data—any code that uses the object can access the data. So if it
becomes changed, there’s often a difficult time figuring out where it happened.

Q. Why do lawn gnomes protect our yards instead of lawn elves, lawn dwarves, lawn halflings,

lawn half-elves, or lawn half-orcs?

A. Lawn gnomes date back to 19th century Germany, where in the village of Thuringia the
ceramic artisan Phillip Griebel created the first yard protectors in honor of local myths about
how gnomes protected gardens at night.

The gnomes proved popular enough to spread all over Germany, then over to England, and
finally the world. They’re typically bearded males with a red hat who smoke pipes.

A popular prank in recent years is “gnoming,” which is stealing someone’s lawn gnome and
having him photographed at remote locations, perhaps even on a foreign vacation. In France
in the late 1990s, a group calling itself the Garden Gnome Liberation Front stole more than
150 in a bid to give them their freedom.

Workshop
Now that you’ve gotten to see classes and objects, you can answer a few questions and  complete 
a couple of exercises to firm up your knowledge and understanding.

Quiz 
1. Which of the following does not take up computer memory?

A. Class

B. Object

C. Both
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2. What keyword prevents some member data and functions from being used outside of the
class?

A. public

B. private

C. Neither

3. Why did the author’s parents leave his tricycle behind when he was four?

A. Cruel indifference

B. A moving truck ran out of room

C. Because adversity builds character

Answers
1. A. A class occupies no memory because it is just a definition of how an object would be

created. An object is the implementation of that class.

2. B. Private data and functions can be accessed only within the class itself. Public data and
functions can be accessed outside of the class. You generally want to keep all your class
data items private and the functions public (so they can be called).

3. B. The U-Haul van they were renting ran out of room. I’ve been told I received a new tricycle
shortly after we arrived in Dallas, but I don’t remember it. Watch the movie Citizen Kane to
understand more about toy-based childhood lamentation.

Activities
1. Modify the Tricycle application to add a second trike. Give it an initial value and try the

pedal() and brake() member functions on it.

2. Modify the NewTricycle application to add a member variable called wheelSize that
must be at least 4 in value when set with an accessor.

To see solutions to these activities, visit this book’s website at http://cplusplus.cadenhead.org.

http://cplusplus.cadenhead.org
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Classes

What You’ll Learn in This Hour:

 What constant member functions are

 How to separate the class interface from its implementation

 How to manage your classes

 How to find and avoid bugs

const Member Functions
If you declare a member function to be constant with the const keyword, it indicates that the 

function won’t change the value of any members of the class. To declare a function as constant, 

put the keyword const after the parentheses, as in this example:

void displayPage() const;

Accessors used to retrieve a variable’s value, which also are called getter functions, often are 

constant functions. The Tricycle class from the preceding hour had two accessors:

void setSpeed(int newSpeed);

int getSpeed();

The setSpeed() function cannot be const because it changes the member variable speed. 

The getSpeed() function, on the other hand, can be const because it doesn’t change the 

class at all. It simply returns the current value of the member variable speed. Therefore, the 

 declaration of the function can become this:

int getSpeed() const;

If you declare a function to be const and the implementation of that function changes the 

object by changing the value of any of its members, the compiler will flag it as an error.

It is good programming practice to declare as many functions to be const as possible. When 

you do, this enables the compiler to catch unintended changes to member variables, instead of 

letting these errors show up when your program is running.
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Interface Versus Implementation
The parts of a program that create and use objects are the clients of the class. The class 

declaration serves as a contract with these clients. The contract tells clients what data the class 

has available and what the class can do.

For example, in the Tricycle class declaration, you promise in the contract that every 

Tricycle object will be able to retrieve its speed, that you can initialize the speed at  construction 

and set or retrieve it later, and that every Tricycle will know how to pedal() and brake().

If you make getSpeed() a const function, the contract also promises that it won’t change the 

Tricycle on which it is called in that function.

Organizing Class Declarations 
and Function Definitions
Class definitions often are kept separate from their implementations in the source code of C++ 

programs. Each function that you declare for your class must have a definition. Like functions, 

the definition of a class function has a header and a body.

The definition must be in a file that the compiler can find. Most C++ compilers expect that file to 

end with .cpp.

Although you can put the declaration in the source code file, a convention that most 

 programmers adopt is putting the declaration in a header file with the same name ending with 

the file extension .hpp (or less commonly .h or .hp).

So if you put the declaration of the Tricycle class in a file named Tricycle.hpp, the 

 definition of the class functions would be in Tricycle.cpp. The header file can be incorporated 

into the .cpp file with a preprocessor directive:

#include "Tricycle.hpp"

The reason to separate them is because clients of a class don’t care about the implementation 

specifics. Everything they need to know is in the header file.

Inline Implementation
Just as you can tell the compiler to make a regular function inline, you can make member 

functions inline. The keyword inline appears before the return value, as in this example:

inline int Tricycle::getSpeed()

{

    return speed;

}
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You also can put the definition of a function in the declaration of the class, which automatically 

makes that function inline. Here’s an example:

class Tricycle

{

public:

    int getSpeed() const { return speed; }

    void setSpeed(int newSpeed);

};

The getSpeed() definition has changed. Instead of a semicolon after the keyword const, 

there’s a short block of code within braces. The body of the inline function begins  immediately 

after the declaration of the member function; there’s no semicolon after the parentheses. 

Whitespace doesn’t matter, so the declaration could be formatted like this:

class Tricycle

{

public:

   int getSpeed() const

   {

return speed;

   }

   void setSpeed(int newSpeed);

};

Listings 9.1 and 9.2 re-create the Tricycle class, moving the declaration to Tricycle.hpp

and the implementation of the functions to Tricycle.cpp. Listing 9.1 also changes the 

getSpeed() accessor and the pedal() and brake() functions to inline.

LISTING 9.1 The Full Text of Tricycle.hpp

 1: #include <iostream>

 2: 

 3: class Tricycle

 4: {

 5: public:

 6:     Tricycle(int initialSpeed);

 7:     ~Tricycle();

 8:     int getSpeed() const { return speed; }

 9:     void setSpeed(int speed);

10:     void pedal()

11:     {

12: setSpeed(speed + 1);

13: std::cout << "Pedaling " << getSpeed() << " mph\n\n";

14:     }

15:     void brake()

16:     {

17: setSpeed(speed - 1);
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18: std::cout << "Pedaling " << getSpeed() << " mph\n";

19:     }

20: private:

21:     int speed;

22: }; 

LISTING 9.2 The Full Text of Tricycle.cpp

 1: #include "Tricycle.hpp"

 2: 

 3: // constructor for the object

 4: Tricycle::Tricycle(int initialSpeed)

 5: {

 6:     setSpeed(initialSpeed);

 7: }

 8: 

 9: // destructor for the object

10: Tricycle::~Tricycle()

11: {

12:     // do nothing

13: }

14: 

15: // set the trike's speed

16: void Tricycle::setSpeed(int newSpeed)

17: {

18:     if (newSpeed >= 0)

19:         speed = newSpeed;

20: }

21: 

22: // create a trike and ride it

23: int main()

24: {

25:     Tricycle wichita(5);

26:     wichita.pedal();

27:     wichita.pedal();

28:     wichita.brake();

29:     wichita.brake();

30:     wichita.brake();

31:     return 0;

32: }

Pedaling 6 mph

Pedaling 7 mph

Pedaling 6 mph

Pedaling 5 mph

Pedaling 4 mph
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The getSpeed() function is declared on line 8 of Listing 9.1 and its inline implementation is 

provided. Lines 9–19 provide more inline functions.

Line 1 of Listing 9.2 is a preprocessor directive to include the header file Tricycle.hpp in the 

source code.

Classes with Other Classes as Member Data
It is not uncommon to build a complex class by declaring simpler classes and including them 

in the declaration of the more complicated class.

For example, you might declare the classes Wheel, Motor, Transmission, and so forth, then 

combine them together in a Car class. This arrangement declares a “has-a” relationship: A car 

has a motor, it has a set of wheels, and it has a transmission.

Consider a second example. A rectangle is composed of four lines. Each line is defined by two 

points. A point is defined by x and y coordinates. Listing 9.3 shows a complete declaration of a 

Rectangle class as it might appear in Rectangle.hpp.

Because a rectangle is defined as four lines connecting four points, and each point refers to a 

coordinate on a graph, a Point class is first declared to hold the x and y coordinates of each 

point. Listing 9.4 shows a complete declaration of both classes.

LISTING 9.3 The Full Text of Rectangle.hpp

 1: #include <iostream>

 2: 

 3: class Point

 4: {

 5:     // no constructor, use default

 6: public:

 7:     void setX(int newX) { x = newX; }

 8:     void setY(int newY) { y = newY; }

 9:     int getX() const { return x; }

10:     int getY() const { return y; }

11: private:

12:     int x;

13:     int y;

14: };

15: 

16: class  Rectangle

17: {

18: public:

19:     Rectangle(int newTop, int newLeft, int newBottom, int newRight);

20:     ~Rectangle() {}

21: 

22:     int getTop() const { return top; }
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23:     int getLeft() const { return left; }

24:     int getBottom() const { return bottom; }

25:     int getRight() const { return right; }

26: 

27:     Point getUpperLeft() const { return upperLeft; }

28:     Point getLowerLeft() const { return lowerLeft; }

29:     Point getUpperRight() const { return upperRight; }

30:     Point getLowerRight() const { return lowerRight; }

31: 

32:     void setUpperLeft(Point location);

33:     void setLowerLeft(Point location);

34:     void setUpperRight(Point location);

35:     void setLowerRight(Point location);

36: 

37:     void setTop(int newTop);

38:     void setLeft (int newLeft);

39:     void setBottom (int newBottom);

40:     void setRight (int newRight);

41: 

42:     int getArea() const;

43: 

44: private:

45:     Point upperLeft;

46:     Point upperRight;

47:     Point lowerLeft;

48:     Point lowerRight;

49:     int top;

50:     int left;

51:     int bottom;

52:     int right;

53: }; 

LISTING 9.4 The Full Text of Rectangle.cpp

  1: #include "Rectangle.hpp"

  2: 

  3: Rectangle::Rectangle(int newTop, int newLeft, int newBottom, int newRight)

  4: {

  5:     top = newTop;

  6:     left = newLeft;

  7:     bottom = newBottom;

  8:     right = newRight;

  9: 

 10:     upperLeft.setX(left);

 11:     upperLeft.setY(top);

 12: 

 13:     upperRight.setX(right);

 14:     upperRight.setY(top);
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 15: 

 16:     lowerLeft.setX(left);

 17:     lowerLeft.setY(bottom);

 18: 

 19:     lowerRight.setX(right);

 20:     lowerRight.setY(bottom);

 21: }

 22: 

 23: void Rectangle::setUpperLeft(Point location)

 24: {

 25:     upperLeft = location; 

 26:     upperRight.setY(location.getY());

 27:     lowerLeft.setX(location.getX());

 28:     top = location.getY();

 29:     left = location.getX();

 30: }

 31: 

 32: void Rectangle::setLowerLeft(Point location)

 33: {

 34:     lowerLeft = location; 

 35:     lowerRight.setY(location.getY());

 36:     upperLeft.setX(location.getX());

 37:     bottom = location.getY();

 38:     left = location.getX();

 39: }

 40: 

 41: void Rectangle::setLowerRight(Point location)

 42: {

 43:     lowerRight = location; 

 44:     lowerLeft.setY(location.getY());

 45:     upperRight.setX(location.getX());

 46:     bottom = location.getY();

 47:     right = location.getX();

 48: }

 49: 

 50: void Rectangle::setUpperRight(Point location)

 51: {

 52:     upperRight = location; 

 53:     upperLeft.setY(location.getY());

 54:     lowerRight.setX(location.getX());

 55:     top = location.getY();

 56:     right = location.getX();

 57: }

 58:   

 59: void Rectangle::setTop(int newTop)

 60: {

 61:     top = newTop;

 62:     upperLeft.setY(top);
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 63:     upperRight.setY(top);

 64: }

 65: 

 66: void Rectangle::setLeft(int newLeft)

 67: {

 68:     left = newLeft;

 69:     upperLeft.setX(left);

 70:     lowerLeft.setX(left);

 71: }

 72: 

 73: void Rectangle::setBottom(int newBottom)

 74: {

 75:     bottom = newBottom;

 76:     lowerLeft.setY(bottom);

 77:     lowerRight.setY(bottom);

 78: }

 79: 

 80: void Rectangle::setRight(int newRight)

 81: {

 82:     right = newRight;

 83:     upperRight.setX(right);

 84:     lowerRight.setX(right);

 85: }

 86: 

 87: int Rectangle::getArea() const

 88: {

 89:     int width = right - left;

 90:     int height = top - bottom;

 91:     return (width * height);

 92: }

 93: 

 94: // compute area of the rectangle by finding corners,

 95: // establish width and height and then multiply

 96: int main()

 97: {

 98:     // initialize a local Rectangle variable

 99:     Rectangle myRectangle(100, 20, 50, 80);

100: 

101:     int area = myRectangle.getArea();

102: 

103:     std::cout << "Area: " << area << std::endl;

104:     std::cout << "Upper Left X Coordinate: ";

105:     std::cout << myRectangle.getUpperLeft().getX() << std::endl;

106:     return 0;

107: }
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When the Rectangle program in Listing 9.4 is run, here’s the output:

Area: 3000

Upper Left X Coordinate: 20

Lines 3–14 in Listing 9.3 declare the class Point, which is used to hold a specific x, y coordinate 

on a graph.

The member variables x and y are declared in lines 12–13 to hold the values of the coordinates. 

Under the Cartesian coordinate system this class uses, as the x coordinate increases, the point 

moves to the right on the graph. As the y coordinate increases, the point moves upward. Other 

graphs use different systems.

The Point class uses inline accessors to get and set the x and y points declared in lines 7–10. 

Because the Point class uses the default constructor and destructor, their coordinates must be set 

explicitly.

Line 16 begins the declaration of a Rectangle class. A Rectangle consists of four points that 

represent the corners of the Rectangle.

The constructor for the Rectangle (line 19) takes four integers, called newTop, newLeft, 

 newBottom, and newRight. The four parameters to the constructor are copied into four member 

variables, and then the four Points are established.

In addition to the accessor functions, Rectangle has a function named getArea() declared in 

line 42. Instead of storing the area as a variable, the getArea() function computes the area in 

lines 87–92 of Listing 9.4. To do this, it computes the width and the height of the rectangle and 

then multiplies those two values.

Getting the x coordinate of the upper-left corner of the rectangle requires that you access 

the upperLeft point and ask that point for its x value. Because getUpperLeft() is a 

 function of Rectangle, it can directly access the private data of Rectangle, including the 

 upperLeft  member variable. Because upperLeft is a Point and a point’s x value is private, 

 getUpperLeft() cannot directly access this data. Instead, it must use the public accessor 

getX() to obtain the value.

Line 96 of Listing 9.4 is the beginning of the body of the actual program. Until line 99, no 

memory has been allocated and nothing has been executed. The only thing accomplished in the 

preceding lines is to tell the compiler how to make Point and Rectangle objects, in case they 

are ever needed.

A Rectangle is defined in line 99 by passing in values for top, left, bottom, and right.

In line 101, a local integer variable, area, is declared. This variable holds the area of the 

Rectangle that was created, initializing it with the value returned by Rectangle's getArea() 

function.
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A client of Rectangle could create a Rectangle object and get its area without ever looking at 

the implementation of getArea().

By looking at the header file in Listing 9.3, which contains the declaration of the Rectangle 

class, a programmer knows that getArea() returns an int. How getArea() accomplishes this 

is not a concern to users of class Rectangle. In fact, the author of Rectangle could change the 

function without affecting programs that use the Rectangle class.

Summary
A C++ programmer doesn’t have to use classes or objects at all. Programs could consist simply 

of variables and functions, removing the need to master the complex concepts of object-oriented 

programming.

Few programmers go this route. Why? Because you can be much more effective if you design a 

program as a series of classes that interact with each other.

Developing classes makes code more reusable. If an object that’s useful in one program would 

be useful in another, the class can be reused. A word processor’s Spellchecker class could 

be added to a web browser or any other tool where users write text. The spell-checking object’s 

capabilities would work the same in any program.

Classes also make code more reliable. The tasks a program requires are packaged with the data 

necessary to get that work done. By thinking of a program as a set of objects that each have 

 specific tasks to perform, the work is spread out and organized. When problems crop up, it’s 

easier to determine the class where the error occurs. 

Q&A
Q. If using a const function to change a class may cause a compiler error, why shouldn’t I just

leave out the word const and be sure to avoid errors?

A. If your function logically shouldn’t change the class, using the keyword const is a good
way to enlist the compiler in helping you find silly mistakes. For example, consider what
happens if the getSpeed() function has this line

if (speed = 100) std::cout << “Maximum speech reached\n”;

This code contains an error that the compiler will catch if the getSpeed() function is
declared const. The statement, which is supposed to check whether speed equals 100,
accidentally assigns the value 100 to the member variable. (The assignment operator = is
used by mistake instead of the equality operator ==.) Because this assignment changes
the class in a constant function, the compiler will find the error.

This kind of mistake can be tough to find simply by scanning the code—the eye often sees
only what it expects to see. More importantly, the program might appear to run correctly,
but speed has now been set to a bogus number.
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Q. How did grasshopper ice cream get its name, considering the fact that insects would be

 disgusting dessert ingredients?

A. Blame a drink from New Orleans.

The term grasshopper has been used to describe several different green foods and liquids,
including desserts, pies, and cocktails. If you go to a bar and order a grasshopper, you get
a deep-green drink flavored by crème de menthe, crème de cacao, and fresh cream.

A grasshopper pie is made with Oreo cookies, melted marshmallows, crème de menthe,
crème de cacao, and whipped cream.

Grasshopper milkshakes and ice cream are made with crème de menthe-flavored mint ice
cream.

The origin for all these grasshoppers is Tujague’s, the second-oldest restaurant in New
Orleans and the place the cocktail was first mixed. When Philibert Guichet invented the
drink in 1919, he chose the name because of its “grasshopper green” color.

Workshop
You learned even more about classes in this hour, and it is time for you to answer a few 
questions and do a couple of exercises to firm up your knowledge.

Quiz 
1. Which of the following is not a common filename extension for C++ header files?

A. .hpp

B. .cpp

C. .h

2. What happens in Rectangle.cpp and Rectangle.hpp if the Point class is not defined?

A. A compiler error occurs.

B. The program runs incorrectly.

C. The results vary.

3. Where can you make a class function inline?

A. In the class declaration

B. In the class implementation

C. Both
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Answers
1. B. C++ header files usually end in .hpp (and less commonly .h). C++ programs end in .cpp.

2. A. Assuming that Point is not defined somewhere else, the compiler reports an error
about an undefined reference. It is common to have classes rely on other classes and build
on them.

3. C. A class function that’s included in a class declaration automatically is an inline function.
Otherwise, a class function must include the inline keyword to request that the method
be executed inline for faster performance.

Activities
1. Split the Point class out of Rectangle.hpp into its own header file and include it in

Rectangle.hpp. How does this change the compilation of Rectangle.cpp? Do the
results change?

2. Create a Line class that consists of two connected points, using the Point class.

To see solutions to these activities, visit this book’s website at http://cplusplus.cadenhead.org.

http://cplusplus.cadenhead.org
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What You’ll Learn in This Hour:

 What pointers are

 How to declare and use pointers

 What the heap is and how to manipulate memory

Understanding Pointers and Their Usage
One of the most powerful tools available to a C++ programmer is the pointer. Pointers provide 

the capability to manipulate computer memory directly. That power comes at a price: Pointers 

are one of the most difficult aspects of C++ for beginners to learn.

A variable is an object that can hold a value. An integer variable holds a number. A character 

variable holds a letter. A pointer is a variable that holds a memory address.

Okay, so what is a memory address? To fully understand this, you must know a little about 

computer memory.

Computer memory is where variable values are stored. By convention, computer memory is 

divided into sequentially numbered memory locations. Each of these locations is a memory 

address.

Every variable of every type is located at a unique address in memory. Figure 10.1 shows a 

schematic representation of the storage of an unsigned long integer variable, theAge.
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theAge

100 101 102 103 104 105 106 107 108 109 110 111 112 113

each location = 1 byte

unsigned long int theAge = 4 bytes = 32 bits
variable name theAge points to 1st byte
the address of theAge is 102

10110101 01110110 11110110 11101110

Memory

FIGURE 10.1
A schematic representation of theAge.

Different computers number the memory using different complex schemes. Usually, programmers 

don’t need to know the particular address of any given variable because the compiler handles the 

details. If you want this information, you can use the address-of operator &, which is demonstrated 

in the Addresser program in Listing 10.1.

LISTING 10.1 The Full Text of Addresser.cpp

 1: #include <iostream>

 2: 

 3: int main()

 4: {

 5:     unsigned short shortVar = 5;

 6:     unsigned long  longVar = 65535;

 7:     long sVar = –65535;

 8: 

 9:     std::cout << "shortVar:\t" << shortVar;

10:     std::cout << "\tAddress of shortVar:\t" << &shortVar << "\n";

11:     std::cout << "longVar:\t"  << longVar;

12:     std::cout << "\tAddress of longVar:\t"  << &longVar  << "\n";

13:     std::cout << "sVar:\t\t"   << sVar;

14:     std::cout << "\tAddress of sVar:\t"     << &sVar     << "\n";

15: 

16:     return 0;

17: }
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Addresser produces output like the following:

shortVar: 5 Address of shortVar: 0x60fe9e

longVar: 65535 Address of longVar: 0x60fe98

sVar: –65535 Address of sVar: 0x60fe94

The actual address of each pointer will differ because each computer stores variables at different 

addresses, depending on what else is in memory and how much memory is available.

NOTE

The special character \t in lines 9–14 of Listing 10.1 causes a tab character to be inserted in 
the output. This is a simple way of creating columns. There are other useful characters like this in 
addition to the newline character \n.

The \\ character is used to display a backslash.

The \" character is used to display a double quote.

The \' character is used to display a single quote.

Three variables are declared and initialized: a short in line 5, an unsigned long in line 6, 

and a long in line 7. Their values and addresses are displayed in lines 9–14 by using the 

address-of operator &.

The value of shortVar is 5 (as expected), and its address is 0x60fe9e. This complicated address 

is computer-specific and can change slightly each time the program is run. Your results will 

differ. What doesn’t change, however, is that the difference in the first two addresses is four bytes 

if your computer uses four-byte short integers. The difference between the second and third is 

four bytes if your computer uses four-byte long integers. Figure 10.2 illustrates how the variables 

in this program would be stored in memory. (Note that on some computers the difference will be 

four bytes on both, depending on how your compiler is configured.)

shortVar

fff4

longVar

sVar

fff3

fff2

fff1

fff0

ffef

ffee

ffed

ffec

ffeb

ffea

ffe9

ffe8

ffe7

ffe6

ffe5

ffe4

ffe3

5

0000 0000
0000 0101

0000
0000

0000
0000

1111
1111

1111
1111

1000
0000

0000
0000

1111
1111

1111
1111

65.535 -65.535

FIGURE 10.2
Illustration of variable storage.
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There is no reason why you would need to know the actual numeric value of the address of each 

variable. What you care about is that each one has an address and that the right amount of 

memory is set aside.

How does the compiler know how much memory each variable needs? You tell the compiler how 

much memory to allow for your variables by declaring the variable’s type.

Therefore, if you declare your variable to be of type unsigned long, the compiler knows to set 

aside four bytes of memory because every unsigned long takes four bytes. The compiler 

takes care of assigning the actual address.

When a pointer is allocated, the compiler assigns enough memory to hold an address in 

your hardware and operating system environment. The size of a pointer might or might not be 

the same size as an integer, so be sure you make no assumptions.

Storing the Address in a Pointer
Every variable has an address. Even without knowing the specific address of a given variable, 

you can store that address in a pointer.

For example, suppose that the variable howOld is an integer. To declare a pointer called pAge to 

hold its address, you write the following statement:

int *pAge = nullptr;

This declares pAge to be a pointer to int. That is, pAge is declared to hold the address of 

an int.

Pointers can have any name that is legal for other variables. This book follows the convention of 

naming all pointers with an initial p and a second letter capitalized, as in pAge or pHeap.

Note that pAge is a variable like any other variable. When you declare an integer variable, it 

is set up to hold an integer. When you declare a pointer variable like pAge, it is set up to hold 

an address. A pointer is just a special type of variable that holds the address of an object in 

 memory; in this case, pAge is holding the address of an integer variable.

You declare the type of variable you want the pointer to point to. This tells the compiler 

how to treat the memory at the location the pointer points to. The pointer itself contains an 

address.

In this example, pAge is initialized to nullptr, which represents a pointer whose address points 

to nothing in C++. A pointer with this value is called a null pointer. All pointers, when they are 

created, should be initialized to something. If you don’t know what you want to assign to the 

pointer, assign nullptr. A pointer that is not initialized is called a wild pointer. Wild pointers are 

dangerous, because they cause a program to have unpredictable results when the pointer is used.
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You also might see pointers initialized to 0, like this:

int *pAge = 0;

The result should be the same as if you initialized it to nullptr, but technically 0 is an integer 

constant, and nullptr is an address constant equivalent to NULL.

TIP

In earlier versions of C++, pointers without an address were set to NULL instead of nullptr. The 
result was largely the same, but there were some minor issues for developers of C++ libraries that 
were resolved by being more precise. If you are using a C++ compiler that does not support C++14 
or C++11, use NULL instead of 0 or nullptr.

If you initialize the pointer to nullptr, you must specifically assign the address of howOld to 

pAge. Here’s code to do that:

int howOld = 50;     // make a variable

int *pAge = nullptr; // make a pointer

pAge = &howOld; // put howOld's address in pAge

The first line creates a variable howOld, whose type is unsigned short int, and initializes it 

with the value 50. The second line declares pAge to be a pointer to type unsigned short int 

and initializes the address to nullptr. You know that pAge is a pointer because of the asterisk 

(*) after the variable type and before the variable name.

The third line assigns the address of howOld to the pointer pAge. You can tell that the address 

of howOld is being assigned to the pointer because of the address-of operator &. If the address-of 

operator was not used, the value of howOld would be assigned instead of its address. That value 

might be a valid address somewhere in memory, but that would be entirely a coincidence.

NOTE

Assigning a non-pointer to a pointer variable is a common error. Fortunately, the compiler will detect 
this and fail with an “invalid conversion” error.

At this point, pAge has as its value the address of howOld and howOld has the value 50. You 

could have accomplished this with fewer steps:

unsigned short int howOld = 50; // make a variable

unsigned short int *pAge = &howOld;   // make pointer to howOld

pAge is a pointer that now contains the address of the howOld variable. Using pAge, you can 

determine the value of howOld, which in this case is 50. Accessing howOld by using the pointer 
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pAge is called indirection because you are indirectly accessing howOld by means of pAge. Later 

this hour you see how to use indirection to access a variable’s value.

Indirection accesses the value at the address held by a pointer. The pointer provides an indirect 

way to get the value held at that address.

The Indirection Operator, or Using Pointers Indirectly
The indirection operator * also is called the dereference operator. When a pointer is dereferenced, 

the value at the address stored by the pointer is retrieved. Consider the following statements to 

assign one variable’s value to another:

unsigned short int howOld = 50;    

unsigned short int yourAge;

yourAge = howOld;

A pointer provides indirect access to the value of the variable whose address it stores. To assign 

the value in howOld to the new variable yourAge by way of the pointer pAge, you write the 

following:

unsigned short int howOld = 50; // create the variable howOld

unsigned short int *pAge = &howOld;    // pAge points to the address of howOld

unsigned short int yourAge; // create another variable

yourAge = *pAge; // assign value at pAge (50) to yourAge

The indirection operator * in front of the variable pAge means “the value stored at.” This 

assignment says, “Take the value stored at the address in pAge and assign it to yourAge.” 

Another way of thinking about it is “don’t affect the pointer, affect the item stored at the address 

in the pointer.”

NOTE

The indirection operator * is used in two distinct ways with pointers: declaration and dereference. 
When a pointer is declared, the star indicates that it is a pointer, not a normal variable. 
For example:
unsigned short *pAge = nullptr; // make a pointer to an unsigned short

When the pointer is dereferenced, the indirection operator indicates that the value at the memory 
location stored in the pointer is to be accessed, rather than the address itself:
*pAge = 5; // assign 5 to the value at pAge

Also note that this same character (*) is used as the multiplication operator. The compiler knows 
which operator to call based on context.
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We deal with indirection in our daily lives all the time. If you want to call a friend, you pick 

their name in your phone’s list of contacts (or tell your phone to call that person). The name is 

a reference to the actual phone number, which the phone dials. When you do that, you rely on 

indirection.

Pointers, Addresses, and Variables
It is important to distinguish between a pointer, the address that the pointer holds, and the value 

at the address held by the pointer. This is the source of much of the confusion about pointers.

Consider the following code fragment:

int theVariable = 5;

int *pPointer = &theVariable;

theVariable is declared to be an integer variable initialized with the value 5. pPointer is 

declared to be a pointer to an integer; it is initialized with the address of theVariable. The 

address that pPointer holds is the address of theVariable. The value at the address that 

pPointer holds is 5. Figure 10.3 shows a schematic representation of theVariable and 

pPointer.
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FIGURE 10.3
A schematic representation of memory.

Manipulating Data by Using Pointers
After a pointer is assigned the address of a variable, you can use that pointer to access the data 

in that variable. The Pointer program in Listing 10.2 demonstrates how the address of a local 

variable is assigned to a pointer and how the pointer manipulates the values in that variable.
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LISTING 10.2 The Full Text of Pointer.cpp

 1: #include <iostream>

 2: 

 3: int main()

 4: {

 5:     int myAge; // a variable

 6:     int *pAge = nullptr;  // a pointer

 7: 

 8:     myAge = 5;

 9:     pAge = &myAge;     // assign address of myAge to pAge

10:     std::cout << "myAge: " << myAge << "\n";

11:     std::cout << "*pAge: " << *pAge << "\n\n";

12: 

13:     std::cout << "*pAge = 7\n";

14:     *pAge = 7;         // sets myAge to 7

15:     std::cout << "*pAge: " << *pAge << "\n";

16:     std::cout << "myAge: " << myAge << "\n\n";

17: 

18:     std::cout << "myAge = 9\n";

19:     myAge = 9;

20:     std::cout << "myAge: " << myAge << "\n";

21:     std::cout << "*pAge: " << *pAge << "\n";

22: 

23:     return 0;

24: }

Because the program uses nullptr, a recent addition to the C++ language, it must be compiled 

with the flag ––std=c++14. Here’s this program’s output:

myAge: 5

*pAge: 5

*pAge = 7

*pAge: 7

myAge: 7

myAge = 9

myAge: 9

*pAge: 9

This program declares two variables: an int myAge and a pointer pAge, which is a pointer to an 

int and holds the address of myAge. myAge is assigned the value 5 in line 8; this is verified by 

the output.

In line 9, pAge is assigned the address of myAge. In line 11, pAge is dereferenced and displayed, 

showing that the value at the address that pAge stores is the 5 stored in myAge. In line 14, the 
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value 7 is assigned to the variable at the address stored in pAge. This sets myAge to 7, and the 

output confirms this.

In line 19, the value 9 is assigned to the variable myAge. This value is obtained directly in line 

20 and indirectly—by dereferencing pAge—in line 21.

Examining Addresses Stored in Pointers
Pointers enable you to manipulate addresses without ever knowing their real value. After this 

hour, you’ll take it on faith that when you assign the address of a variable to a pointer, the 

pointer really has the address of that variable as its value. But just this once, why not check to 

make sure? The PointerCheck program in Listing 10.3 puts a pointer to the test.

LISTING 10.3 The Full Text of PointerCheck.cpp

 1:  #include <iostream>

 2:  

 3:  int main()

 4:  {

 5: unsigned short int myAge = 5, yourAge = 10;

 6: unsigned short int *pAge = &myAge;  // a pointer

 7:  

 8: std::cout << "myAge:\t" << myAge;

 9: std::cout << "\t\tyourAge:\t" << yourAge << "\n";

10: std::cout << "&myAge:\t" << &myAge;

11: std::cout << "\t&yourAge:\t" << &yourAge <<"\n";

12:  

13: std::cout << "pAge:\t" << pAge << "\n";

14: std::cout << "*pAge:\t" << *pAge << "\n\n";

15:  

16: pAge = &yourAge; // reassign the pointer

17:  

18: std::cout << "myAge:\t" << myAge;

19: std::cout << "\t\tyourAge:\t" << yourAge << "\n";

20: std::cout << "&myAge:\t" << &myAge;

21: std::cout << "\t&yourAge:\t" << &yourAge <<"\n";

22:  

23: std::cout << "pAge:\t" << pAge << "\n";

24: std::cout << "*pAge:\t" << *pAge << "\n\n";

25:  

26: std::cout << "&pAge:\t" << &pAge << "\n";

27: return 0;

28:  }
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This program produces the following output:

myAge: 5 yourAge: 10

&myAge: 0x60fe9e &yourAge: 0x60fe9c

pAge: 0x60fe9e

*pAge: 5

myAge: 5 yourAge: 10

&myAge: 0x60fe9e &yourAge: 0x60fe9c

pAge: 0x60fe9c

*pAge: 10

&pAge: 0x60fe98

Your output will differ because each computer stores variables at different addresses, depending 

on what else is in memory and how much memory is available.

In line 5, myAge and yourAge are declared to be variables of type unsigned short integer. In 

line 6, pAge is declared to be a pointer to an unsigned short integer, and it is initialized 

with the address of the variable myAge.

Lines 8–11 print the values and the addresses of myAge and yourAge. Line 13 displays the contents 

of pAge, which is the address of myAge. Line 14 displays the result of dereferencing pAge, which 

displays the value at pAge—the value in myAge, or 5.

This is the essence of pointers. Line 13 shows that pAge stores the address of myAge, and line 14 

shows how to get the value stored in myAge by dereferencing the pointer pAge. Make sure that 

you understand this fully before you go on. Study the code and look at the output.

In line 16, pAge is reassigned to point to the address of yourAge. The values and addresses are 

displayed again. The output shows that pAge now has the address of the variable yourAge, and 

that dereferencing obtains the value in yourAge.

Line 26 displays the address of pAge itself. Like any variable, it too has an address, and that 

address can be stored in a pointer. (Assigning the address of a pointer to another pointer will be 

discussed shortly.)

Why Use Pointers?
So far, you’ve seen step-by-step details of assigning a variable’s address to a pointer. In practice, 

though, you would never do this. After all, why bother with a pointer when you already have 

a variable with access to that value? The only reason for this kind of pointer manipulation of a 

variable is to demonstrate how pointers work.
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Now that you are comfortable with the syntax of pointers, you can put them to better use. 

Pointers are employed most often for three tasks:

 Managing data on the heap

 Accessing class member data and functions

 Passing variables by reference to functions

The rest of this hour focuses on managing data on the heap and accessing class member data 

and functions. In Hour 12, “Creating References,” you learn about passing variables by reference.

The Stack and the Heap
Programmers generally deal with five areas of memory:

 Global name space

 The heap

 Registers

 Code space

 The stack

Local variables are on the stack, along with function parameters. Code is in code space, of course, 

and global variables are in global name space. The registers are used for internal housekeeping 

functions, such as keeping track of the top of the stack and the instruction pointer. Just about all 

remaining memory is given over to the heap, which is sometimes referred to as the free store.

The limitation of local variables is that they don’t persist. When the function returns, the local 

variables are thrown away. Global variables solve that problem at the cost of being accessible 

without restriction throughout the program, which leads to the creation of bug-prone code that is 

more difficult to understand and maintain. Putting data in the heap solves both of these problems.

You can think of the heap as a massive section of memory in which thousands of sequentially 

numbered cubbyholes lie waiting for your data. You can’t label these cubbyholes, though, as 

you can with the stack. You must ask for the address of the cubbyhole that you reserve and then 

stash that address away in a pointer.

One way to think about this is with an analogy: While camping, to avoid getting lost you set the 

location of your tent in a GPS device and give it the descriptive name “Camp.” The device saves 

the latitude and longitude of that location, but you don’t memorize them yourself.

When you use the device later, you don’t know the exact latitude and longitude, only that the 

name Camp will lead you to that place.
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The name Camp is your data on the heap. You don’t know where it is, but you know how to get 

to it. You access it by using its address. You don’t have to know that number; you just have to 

put it into a pointer. The pointer gives you access to your data without bothering you with the 

details.

The stack is cleaned automatically when a function returns. All the local variables go out of 

scope, and they are removed from the stack. The heap is not cleaned until your program ends, 

and it is your responsibility to free any memory that you’ve reserved when you are done with it. 

Leaving items hanging around in the heap when you no longer need them is known as a 

memory leak, a topic covered later in this hour.

The advantage to the heap is that the memory you reserve remains available until you 

explicitly free it. If you reserve memory on the heap while in a function, the memory is still 

available when the function returns.

The advantage of accessing memory in this way, rather than using global variables, is that only 

functions with access to the pointer have access to the data. This provides a tightly controlled 

interface to that data, and it eliminates the problem of one function changing that data in 

unexpected and unanticipated ways.

For this to work, you must be able to create a pointer to an area on the heap. The following 

sections describe how to do this.

Using the new Keyword
You allocate memory on the heap in C++ by using the new keyword followed by the type of the 

object that you want to allocate so that the compiler knows how much memory is required. 

Therefore, new unsigned short int allocates two bytes in the heap, and new long 

allocates four.

The return value from new is a memory address. It must be assigned to a pointer. To create an 

unsigned short on the heap, you might write the following:

unsigned short int *pPointer;

pPointer = new unsigned short int;

You can, of course, initialize the pointer at its creation:

unsigned short int *pPointer = new unsigned short int;

In either case, pPointer now points to an unsigned short int on the heap. You can use 

this like any other pointer to a variable and assign a value into that area of memory:

*pPointer = 72;

This means “put 72 at the value in pPointer” or “assign the value 72 to the area on the heap 

to which pPointer points.”
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If new cannot create memory on the heap—because memory is a limited resource—it throws 

an exception. Exceptions are error-handling objects covered in detail in Hour 24, “Dealing with 

Exceptions and Error Handling.”

NOTE

Some older compilers return a pointer that equals NULL. If you have an older compiler, check your 
pointer for NULL each time you request new memory. All modern compilers can be counted on to 
throw an exception.

Using the delete Keyword
When you have finished with your area of memory, you must call delete on the pointer, which 

returns the memory to the heap. Remember that the pointer itself—as opposed to the memory it 

points to—is a local variable. When the function in which it is declared returns, that pointer goes 

out of scope and is lost. The memory allocated with the new operator is not freed automatically, 

however. That memory becomes unavailable. This situation is called a memory leak because 

that memory can’t be recovered until the program ends. It is as though the memory has leaked 

out of your computer.

To restore the memory to the heap, you use the keyword delete. For example:

delete pPointer;

When you delete the pointer, what you are really doing is freeing up the memory whose address 

is stored in the pointer. You are saying, “Return to the heap the memory that this pointer points 

to.” The pointer is still a pointer, and it can be reassigned.

When you call delete on a pointer, the memory it points to is freed. Calling delete on that 

pointer again will crash your program! When you delete a pointer, set it to nullptr. Calling 

delete on a null pointer is guaranteed to be safe. For example:

Animal *pDog = new Animal;

delete pDog; // frees the memory

pDog = nullptr; // sets pointer to null

// ...

delete pDog; // harmless

Don’t worry if the preceding code looks confusing. We’ll look at allocating objects on the heap in 

the next hour. This also works with data types like int, as shown here:

int *pNumber = new int;

delete pNumber; // frees the memory

pNumber = nullptr; // sets pointer to null

// ...

delete pNumber; // harmless
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The Heap program in Listing 10.4 demonstrates allocating a variable on the heap, using that 

variable, and deleting it.

LISTING 10.4 The Full Text of Heap.cpp

 1: #include <iostream>

 2: 

 3: int main()

 4: {

 5:     int localVariable = 5;

 6:     int *pLocal= &localVariable;

 7:     int *pHeap = new int;

 8:     if (pHeap == nullptr)

 9:     {

10: std::cout << "Error! No memory for pHeap!!";

11: return 1;

12:     }

13:     *pHeap = 7;

14:     std::cout << "localVariable: " << localVariable << "\n";

15:     std::cout << "*pLocal: " << *pLocal << "\n";

16:     std::cout << "*pHeap: " << *pHeap << "\n";

17:     delete pHeap;

18:     pHeap = new int;

19:     if (pHeap == nullptr)

20:     {

21: std::cout << "Error! No memory for pHeap!!";

22: return 1;

23:     }

24:     *pHeap = 9;

25:     std::cout << "*pHeap: " << *pHeap << "\n";

26:     delete pHeap;

27:     return 0;

28: }

The program has the following output:

localVariable: 5

*pLocal: 5

*pHeap: 7

*pHeap: 9

Line 5 declares and initializes a local variable. Line 6 declares and initializes a pointer with the 

address of the local variable. Line 7 declares another pointer but initializes it with the result 

obtained from calling new int. This allocates space on the heap for an int. Line 13 assigns the 

value 7 to the newly allocated memory. Line 14 displays the value of the local variable, and 

line 15 prints the value pointed to by pLocal. As expected, these are the same. Line 16 prints 

the value pointed to by pHeap. It shows that the value assigned in line 13 is, in fact, accessible.
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In line 17, the memory allocated in line 7 is returned to the heap by a call to delete. This frees 

the memory and disassociates the pointer from that memory location. pHeap is now free to 

point to other memory. It is reassigned in lines 18 and 24, and line 25 displays the result. 

Line 26 again restores that memory to the heap.

NOTE

Although line 26 is redundant (the end of the program would have returned that memory), it is a 
good idea to free this memory explicitly. If the program changes or is extended, it will be beneficial 
that this step was already taken care of.

Avoiding Memory Leaks
Another way you might inadvertently create a memory leak is by reassigning your pointer 

before deleting the memory to which it points. Consider this code:

1: unsigned short int *pPointer = new unsigned short int;

2: *pPointer = 72;

3: pPointer = new unsigned short int;

4: *pPointer = 84;

Line 1 in this fragment creates pPointer and assigns it the address of an area on the heap. 

Line 2 stores the value 72 in that area of memory. Line 3 reassigns pPointer to another area 

of memory. Line 4 places the value 84 in that area. The original area—in which the value 72 

is now held—is unavailable because the pointer to that area of memory has been reassigned. 

There is no way to access that original area of memory, nor is there any way to free it before the 

program ends.

The code should have been written like this:

1: unsigned short int *pPointer = new unsigned short int;

2: *pPointer = 72;

3: delete pPointer;

4: pPointer = new unsigned short int;

5: *pPointer = 84;

Now the memory originally pointed to by pPointer is deleted—and thus freed—in line 3 of the 

preceding fragment.

NOTE

For every time in your program that you call new, there should be a call to delete. It is important to 
keep track of which pointer owns an area of memory and to ensure that the memory is returned to 
the heap when you are done with it.
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Null Pointer Constant
As you learned earlier this hour, it’s important when using pointers to make sure they always 

have a value. A pointer that is not initialized could be pointing to anything in memory. These 

wild pointers pose a security and stability risk to your programs.

In earlier versions of C++, a pointer was assigned a null value when created by using either 0 or 

NULL as the value, as in these statements:

int *pBuffer = 0;

int *pBuffer = NULL;

These accomplish the same thing because NULL is a preprocessor macro that is converted to 

either 0 (an integer) or 0L (a long).

Setting null pointers like this worked well in almost all circumstances, but it created an ambiguity 

when a class relies on function overloading. Consider an overloaded function that takes either a 

character pointer or an integer as an argument: 

void displayBuffer(char *);

void displayBuffer(int);

If this function is called with a null pointer, the displayBuffer(int) member function will be 

called, despite the fact that this is probably not what the programmer intended.

The nullptr keyword you already have been using solves this pointer problem:

int *pBuffer = nullptr;

The constant 0 also remains valid as a null pointer value, for reasons of backward compatibility, 

but nullptr is preferred.

A nullptr value is not implicitly converted to integer types, except for bool values, where a 

nullptr converts to the value false.

The Swapper program (Listing 10.5) gives one variable the value of another using a pointer.

LISTING 10.5 The Full Text of Swapper.cpp

 1: #include <iostream>

 2:

 3: int main()

 4: {

 5:    int value1 = 12500;

 6:    int value2 = 1700;

 7:    int *pointer2 = nullptr;

 8: 

 9:    // give pointer the address of value2

10:    pointer2 = &value2;
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11:    // dereference the pointer and assign to value1

12:    value1 = *pointer2;

13:    pointer2 = 0;

14: 

15:    std::cout << "value1 = " << value1 << "\n";

16:    

17:    return 0;

18: }

This program must be compiled with the ––std=c++14 flag because nullptr is a new addition 

to C++. After you successfully compile it, run Swapper to produce the following output:

value1 = 1700

The pointer2 variable is initialized as a null pointer, then assigned the address of the value2 

variable on line 10. This is dereferenced and stored in value1 (line 12), replacing its original 

value.

Summary
This hour was the first of two devoted to pointers, a subject that trips up more beginning 

C++ programmers than any other aspect of the language.

Variable values are stored in computer memory, which is organized into sequential memory 

locations. Each location is a memory address. Pointers are special variables to one of those 

addresses.

Pointers make it possible to manipulate computer memory directly in a program. When you 

know the memory address of data, you don’t have to use a variable to access that data. You can 

work with a pointer to that address instead.

There are tasks where it makes more sense to use pointers than variables. Pointers are one of the 

most powerful parts of the C++ language.

If they’re still a point of confusion, you should find they make more sense the further you 

progress through the book. 

Q&A
Q. Why are pointers so important?

A. As you saw during this hour, pointers are important because they are used to hold the
address of objects on the heap and pass arguments by reference. In addition, in Hour 14,
“Calling Advanced Functions,” you’ll see how pointers are used in a technique called class
polymorphism.
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Q. Why should I bother to declare anything on the heap?

A. Objects on the heap persist after the return of a function. In addition, the capability to
store objects on the heap enables you to decide at runtime how many objects you need,
instead of having to declare this in advance. This is explored in greater depth in Hour 11,
“Developing Advanced Pointers.”

Q. If George Washington had accepted the offer to become the king of the United States, who

would be the country’s king today?

A. Assuming that the United States followed the same rules of succession as England, for
many years the king of America was Paul Emery Washington, a building supply company
manager in San Antonio, Texas.

George Washington had no blood descendants, so when he died in 1799 the throne
would pass to one of his brothers’ children. Some other Washingtons in the line also died
childless or had no living male descendants, so the issue becomes complicated.

When the genealogical web site Ancestry.Com researched the American king succession
in 2008, they found 8,000 of George Washington’s relatives could factor into the decision.
There were four likely succession paths, and Paul Washington was at the end of two of
them.

“I doubt if I’d be a very good king,” Paul told NBC’s Today Show. “We’ve done so well as a
country without a king, so I think George made the best decision.”

Though he rejected his monarchial birthright, Paul started calling his oldest son Bill “Prince
William.” When Paul died in 2014 at age 87, Bill ascended to the hypothetical throne.

Workshop
Now that you’ve learned about pointers, you can answer a few questions and complete a couple 
of exercises to firm up your knowledge. 

Quiz 
1. What is the difference between 0 and nullptr when initializing a pointer?

A. nullptr creates a null pointer.

B. 0 creates a null pointer.

C. Both create null pointers.

2. What is it called when you don’t free heap space after you’re done with it?

A. A memory leak

B. A memory hole

C. I forgot the question
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3. How do I free up memory allocated with new?

A. return

B. delete

C. *

Answers
1. C. Both 0 and nullptr initialize a pointer to no address, making it a null pointer. Using

nullptr is more clear because it’s obviously a pointer, while the value 0 serves many
other purposes in C++. When supported, the new constant nullptr should be used
instead of either 0 or NULL.

2. A. Memory leak. The program continues to allocate new space as it needs it, but less and
less memory is available.

3. B. Use the delete keyword. It is good practice to delete as soon as you are done with
the contents of a variable on the heap.

Activities
1. Modify the PointerCheck program to multiply yourAge and *pAge and store the result in

a new variable. Display that variable. Think about how the compiler can tell the difference
between the * operator for multiplication and * for dereferencing pAge.

2. Further modify PointerCheck to use dereferenced pointer *pAge to change the contents of
myAge or yourAge.

To see solutions to these activities, visit this book’s website at http://cplusplus.cadenhead.org.

http://cplusplus.cadenhead.org
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HOUR 11
Developing Advanced Pointers

What You’ll Learn in This Hour:

 How to create objects on the heap

 How to use pointers effectively

 How to prevent memory problems when using pointers

Creating Objects on the Heap
One of the most powerful tools available to a C++ programmer is the capability to directly 

manipulate computer memory by using pointers. 

Just as you can create a pointer to an integer, you can create a pointer to any object. If you 

have declared an object of type Cat, you can declare a pointer to that class and instantiate a 

Cat object on the heap, just as you can make one on the stack. The syntax is the same as for 

 integers:

Cat *pCat = new Cat;

This calls the default constructor—the constructor that takes no parameters. A constructor is 

called whenever an object is created on the stack or on the heap.

Deleting Objects
When you call delete on a pointer to an object on the heap, the object’s destructor is called 

before the memory is released. This gives your class a chance to clean up, just as it does for 

objects destroyed on the stack.

The HeapCreator program in Listing 11.1 shows how to create and delete objects on the heap.
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LISTING 11.1 The Full Text of HeapCreator.cpp

 1: #include <iostream>

 2: 

 3: class SimpleCat

 4: {

 5: public:

 6:     SimpleCat();

 7:     ~SimpleCat();

 8: private:

 9:     int itsAge;

10: };

11: 

12: SimpleCat::SimpleCat()

13: {

14:     std::cout << "Constructor called\n";

15:     itsAge = 1;

16: }

17: 

18: SimpleCat::~SimpleCat()

19: {

20:     std::cout << "Destructor called\n";

21: }

22: 

23: int main()

24: {

25:     std::cout << "SimpleCat Frisky ...\n";

26:     SimpleCat Frisky;

27: 

28:     std::cout << "SimpleCat *pRags = new SimpleCat ...\n";

29:     SimpleCat * pRags = new SimpleCat;

30: 

31:     std::cout << "delete pRags ...\n";

32:     delete pRags;

33: 

34:     std::cout << "Exiting, watch Frisky go ...\n";

35:     return 0;

36: }

The program displays the following output:

SimpleCat Frisky ...

Constructor called

SimpleCat *pRags = new SimpleCat ...

Constructor called

delete pRags ...

Destructor called

Exiting, watch Frisky go ...

Destructor called
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Lines 3–10 declare the stripped-down class SimpleCat. On line 26, Frisky is created on the 

stack, which causes the constructor to be called. On line 29, the SimpleCat pointed to by pRags 

is created on the heap; the constructor is called again. On line 32, delete is called on pRags, 

and the destructor is called. When the function ends, Frisky goes out of scope, and the 

destructor is called.

Accessing Data Members Using Pointers
Data members and functions are accessed by using the dot operator (.) for Cat objects created 

locally. To access the Cat object on the heap, you must dereference the pointer and call the 

dot operator on the object pointed to by the pointer. Therefore, to access the GetAge member 

 function, you write the following:

(*pRags).GetAge();

Parentheses are used to assure that pRags is dereferenced before GetAge() is accessed.

Because this is cumbersome, C++ provides a shorthand operator for indirect access: the points-to 

operator ->, which is created by typing a dash followed by the greater than symbol. C++ treats 

this as a single symbol.

The HeapAccessor program in Listing 11.2 demonstrates accessing member variables and 

 functions of objects created on the heap.

LISTING 11.2 The Full Text of HeapAccessor.cpp

 1: #include <iostream>

 2: 

 3: class SimpleCat

 4: {

 5: public:

 6:     SimpleCat() { itsAge = 2; }

 7:     ~SimpleCat() {}

 8:     int GetAge() const { return itsAge; }

 9:     void SetAge(int age) { itsAge = age; }

10: private:

11:     int itsAge;

12: };

13: 

14: int main()

15: {

16:     SimpleCat *Frisky = new SimpleCat;

17:     std::cout << "Frisky is " << Frisky->GetAge()

18: << " years old" << std::endl;

19: 

20:     Frisky->SetAge(5);
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21:     std::cout << "Frisky is " << Frisky->GetAge() 

22: << " years old" << std::endl;

23: 

24:     delete Frisky;

25:     return 0;

26: }

HeapAccessor produces this output:

Frisky is 2 years old

Frisky is 5 years old

On line 16, a SimpleCat object is instantiated on the heap. The default constructor in line 6 sets 

its age to 2, and the GetAge() member function is called on line 17. Because this is a pointer, 

the points-to operator -> is used to access the member data and functions. On line 20, the 

SetAge() function is called, and GetAge() is accessed again on line 21.

Member Data on the Heap
One or more of the data members of a class can be a pointer to an object on the heap. The 

memory can be allocated in the class constructor or in one of its functions, and it can be deleted 

in its destructor, as the DataMember program in Listing 11.3 illustrates.

LISTING 11.3 The Full Text of DataMember.cpp

 1: #include <iostream>

 2: 

 3: class SimpleCat

 4: {

 5: public:

 6:     SimpleCat();

 7:     ~SimpleCat();

 8:     int GetAge() const { return *itsAge; }

 9:     void SetAge(int age) { *itsAge = age; }

10: 

11:     int GetWeight() const { return *itsWeight; }

12:     void setWeight (int weight) { *itsWeight = weight; }

13: 

14: private:

15:     int *itsAge;

16:     int *itsWeight;

17: };

18: 

19: SimpleCat::SimpleCat()

20: {

21:     itsAge = new int(2);
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22:     itsWeight = new int(5);

23: }

24: 

25: SimpleCat::~SimpleCat()

26: {

27:     delete itsAge;

28:     delete itsWeight;

29: }

30: 

31: int main()

32: {

33:     SimpleCat *Frisky = new SimpleCat;

34:     std::cout << "Frisky is " << Frisky->GetAge() 

35: << " years old" << std::endl;

36: 

37:     Frisky->SetAge(5);

38:     std::cout << "Frisky is " << Frisky->GetAge() 

39: << " years old" << std::endl;

40: 

41:     delete Frisky;

42:     return 0;

43: }

This program produces the following output:

Frisky is 2 years old

Frisky is 5 years old

The class SimpleCat has two member variables—both of which are pointers to integers. The 

constructor (lines 19–23) initializes the pointers to memory on the heap and to the default 

 values.

The destructor (lines 25–29) cleans up the allocated memory. Because this is the destructor, there 

is no point in assigning these pointers to nullptr because they will no longer be accessible. This 

is one of the safe places to break the rule that deleted pointers should be assigned to nullptr, 

although following the rule doesn’t hurt.

The calling function—in this case, main()—is unaware that itsAge and itsWeight are pointers 

to memory on the heap. main() continues to call GetAge() and SetAge() and the details of 

the memory management are hidden in the implementation of the class, as they should be.

When Frisky is deleted on line 41, its destructor is called. The destructor deletes each of its 

member pointers. If these in turn point to objects of other user-defined classes, their destructors 

are also called.

This is an excellent example of why to write your own destructor rather than use the compiler’s 

default. By default, the delete statements on lines 27–28 would not happen. Without those 
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deletes, the object goes away with the delete on line 41 (including the pointers to the heap)—but 

not the entries on the heap itself. Without the destructor, there would be a memory leak.

The this Pointer
Every class member function has a hidden parameter: the this pointer, which points to the 

individual object in which the function is running. So in each call to GetAge() or SetAge(), 

the this pointer for the object can be referenced.

The job of the this pointer is to point to the individual object whose function has been invoked. 

Usually, you don’t need this; you just call functions and set member variables. Occasionally, 

however, you need to access the object itself (perhaps to return a pointer to the current object). 

It is at that point that the this pointer becomes so helpful.

Normally, you don’t need to use the this pointer to access the member variables of an object 

from within functions of that object. You can, however, explicitly call the this pointer if you 

want to. The This program in Listing 11.4 illustrates how to make use of the this pointer.

LISTING 11.4 The Full Text of This.cpp

 1: #include <iostream>

 2: 

 3: class Rectangle

 4: {

 5: public:

 6:     Rectangle();

 7:     ~Rectangle();

 8:     void SetLength(int length) { this->itsLength = length; }

 9:     int GetLength() const { return this->itsLength; }

10:     void SetWidth(int width) { itsWidth = width; }

11:     int GetWidth() const { return itsWidth; }

12: 

13: private:

14:     int itsLength;

15:     int itsWidth;

16: };

17: 

18: Rectangle::Rectangle()

19: {

20:     itsWidth = 5;

21:     itsLength = 10;

22: }

23: 

24: Rectangle::~Rectangle()

25: {}

26: 



ptg18189307

Stray or Dangling Pointers 161

27: int main()

28: {

29:     Rectangle theRect;

30:     std::cout << "theRect is " << theRect.GetLength() 

31: << " feet long." << std::endl;

32:     std::cout << "theRect is " << theRect.GetWidth() 

33: << " feet wide." << std::endl;

34: 

35:     theRect.SetLength(20);

36:     theRect.SetWidth(10);

37:     std::cout << "theRect is " << theRect.GetLength()

38: << " feet long." << std::endl;

39:     std::cout << "theRect is " << theRect.GetWidth()

40: << " feet wide." << std::endl;

41:   

42:     return 0;

43: }

When you run the program, the following output is displayed:

theRect is 10 feet long.

theRect is 5 feet wide.

theRect is 20 feet long.

theRect is 10 feet wide.

The SetLength() and GetLength() accessor functions in lines 8–9 explicitly use the this 

pointer to access the member variables of the Rectangle object. The SetWidth and GetWidth 

accessors in lines 10–11 do not. There is no difference in their behavior, although the function 

without the this pointer may be easier to read. 

NOTE

If that’s all there were to the this pointer, there would be little point in bothering you with it. But 
because this is a pointer, it stores the memory address of an object and can be a powerful tool.

You’ll see a practical use for the this pointer in Hour 15, “Using Operator Overloading.”

You don’t have to worry about creating or deleting the this pointer. The C++ compiler takes care 
of that.

Stray or Dangling Pointers
A source of bugs that are nasty and difficult to find is stray pointers. A stray pointer is created 

when you call delete on a pointer—thereby freeing the memory that it points to—and later try 

to use that pointer again without reassigning it.
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It is as though someone on your camping trip moved your tent, so even if you press the Camp 

button on your GPS device, you won’t be taken to the correct location.

Take care not to use a pointer after you have called delete on it. The pointer still points to the 

old area of memory, but the compiler is free to put other data there; using the pointer can cause 

your program to crash. Worse, your program might proceed merrily on its way and crash several 

minutes later. This is called a time bomb, and it is no fun. To be safe, after you delete a pointer, 

set it to nullptr. This disarms the pointer.

NOTE

Stray pointers are often called wild pointers or dangling pointers.

const Pointers
You can use the keyword const for pointers before the type, after the type, or in both places. For 

example, all the following are legal declarations:

const int *pOne;

int * const pTwo;

const int * const pThree;

These three statements do not all mean the same thing. pOne is a pointer to a constant integer. 

The value that is pointed to can’t be changed using this pointer. That means you can’t write the 

following:

*pOne = 5;

If you try to do so, the compiler fails with an error.

pTwo is a constant pointer to an integer. The integer can be changed, but pTwo can’t point to 

anything else. A constant pointer can’t be reassigned. That means you can’t write this:

pTwo = &x;

pThree is a constant pointer to a constant integer. The value that is pointed to can’t be changed 

and pThree can’t be changed to point to anything else.

Draw an imaginary line just to the right of the asterisk. If the word const is to the left of the 

line, that means the object is constant. If the word const is to the right of the line, the pointer 

itself is constant:

const int *p1;   // the int pointed to is constant

int * const p2;  // p2 is constant, it can't point to anything else
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const Pointers and const Member Functions
In Hour 8, “Creating Basic Classes,” you learned that you can apply the const keyword to a 

member function. When a function is declared as const, the compiler flags as an error any 

attempt to change data in the object from within that function.

If you declare a pointer to a const object, the only functions that you can call with that pointer 

are const functions. The ConstPointer program in Listing 11.5 illustrates this.

LISTING 11.5 The Full Text of ConstPointer.cpp

 1: #include <iostream>

 2: 

 3: class Rectangle

 4: {

 5: public:

 6:     Rectangle();

 7:     ~Rectangle();

 8:     void SetLength(int length) { itsLength = length; }

 9:     int GetLength() const { return itsLength; }

10: 

11:     void SetWidth(int width) { itsWidth = width; }

12:     int GetWidth() const { return itsWidth; }

13: 

14: private:

15:     int itsLength;

16:     int itsWidth;

17: };

18: 

19: Rectangle::Rectangle():

20: itsWidth(5),

21: itsLength(10)

22: {}

23: 

24: Rectangle::~Rectangle()

25: {}

26: 

27: int main()

28: {

29:     Rectangle* pRect =  new Rectangle;

30:     const Rectangle *pConstRect = new Rectangle;

31:     Rectangle * const pConstPtr = new Rectangle;

32: 

33:     std::cout << "pRect width: "

34: << pRect->GetWidth() << " feet\n";

35:     std::cout << "pConstRect width: "

36: << pConstRect->GetWidth() << " feet\n";



ptg18189307

164 HOUR 11: Developing Advanced Pointers

37:     std::cout << "pConstPtr width: "

38: << pConstPtr->GetWidth() << " feet\n";

39:   

40:     pRect->SetWidth(10);

41:     // pConstRect->SetWidth(10);

42:     pConstPtr->SetWidth(10);

43:   

44:     std::cout << "pRect width: "

45: << pRect->GetWidth() << " feet\n";

46:     std::cout << "pConstRect width: "

47: << pConstRect->GetWidth() << " feet\n";

48:     std::cout << "pConstPtr width: "

49: << pConstPtr->GetWidth() << " feet\n";

50:     return 0;

51: }

This program displays the following output:

pRect width: 5 feet

pConstRect width: 5 feet

pConstPtr width: 5 feet

pRect width: 10 feet

pConstRect width: 5 feet

pConstPtr width: 10 feet

Lines 3–17 declare Rectangle. Line 12 declares the GetWidth() member function const. 

Line 29 declares a pointer to a Rectangle. Line 30 declares pConstRect, which is a pointer to 

a constant Rectangle. Line 31 declares pConstPtr, which is a constant pointer to Rectangle.

Lines 33–38 print the values of the widths.

In line 40, pRect is used to set the width of the rectangle to 10. In line 41, pConstRect would 

be used, but it was declared to point to a constant Rectangle. Therefore, it cannot legally call 

a non-const member function and is commented out. On line 31, pConstPtr is declared to 

be a constant pointer to a rectangle. In other words, the pointer is constant and cannot point to 

 anything else, but the rectangle is not constant.

NOTE

When you declare an object to be const, you are, in effect, declaring that the this pointer is a 
pointer to a const object. A const this pointer can be used only with const member functions.

Constant objects and constant pointers are discussed again in the next hour, when references to 
constant objects are discussed.
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Summary
Pointers can be created to point to simple data types like integers and to objects as well.

Objects can be created and deleted on the heap. If you have declared an object, you can declare 

a pointer to that class and instantiate the object on the heap.

Data members of a class can be pointers to objects on the heap. Memory can be allocated in the 

class constructor or one of its functions and deleted in the destructor.

The ability to directly access computer memory by using pointers is one of the most powerful 

tools available to a C++ programmer. 

Q&A
Q. Why should I declare an object as const if it limits what I can do with it?

A. As a programmer, you want to enlist the compiler in helping you find bugs. One serious bug
that is difficult to find is a function that changes an object in ways that aren’t obvious to
the calling function. Declaring an object const prevents such changes.

Q. Why should I bother to declare anything on the heap?

A. Objects on the heap persist after the return of a function. They also are dynamic—you can
allocate as many as you need for a particular application or set of input data. In addition,
objects declared on the heap can be used to create complex data structures as explored in
Hour 19, “Storing Information in Linked Lists.”

Q. Why do people have creepy red eyes in photographs?

A. That happens when the camera’s bright flash reflects off a person’s retinas, revealing the
red color of blood vessels that nourish the eyes and giving pupils a demonic appearance.

Some cameras offer a “red eye reduction” feature that reduces this effect by firing two
flashes—one before the picture is taken. The first flash causes the photo subject’s pupils
to contract, minimizing the red-eye effect.

Pupils that appear white in a photo are a possible indicator of eye disease such as
retinoblastoma, a highly treatable cancer if detected early. If a photo shows a white-eye effect,
the subject should see an ophthalmologist to ensure his or her eyes are healthy.

Workshop
We spent the past hour advancing your knowledge of pointers, and it is now time for you to 
answer a few questions and complete a couple of exercises to firm up that knowledge.



ptg18189307

166 HOUR 11: Developing Advanced Pointers

Quiz
1. What keywords are used to allocate and release space from the heap in C++?

A. alloc and dealloc

B. public and private

C. new and delete

2. When is an object deleted (the destructor called) if you do not issue the delete yourself?

A. When the program ends

B. When the object’s scope ends

C. Never

3. What is a pointer called that is used after a delete was performed on that pointer?

A. A null pointer

B. A stray pointer

C. A pointer sister

Answers
1. C. new is used to allocate space on the heap and delete is used to release it.

2. B. When the scope for an object is exited, that object is automatically deleted. If an object
is created in main() and not deleted by the programmer, when main() is exited, the
destructor is called. The output from Listing 11.1 shows this happening.

3. B. A stray pointer. You don’t really know what that memory location is being used for!

Activities
1. Add a cat named Spooky to the HeapCreator program.

2. Modify the HeapAccessor program so that it does not use the points-to operator.

To see solutions to these activities, visit this book’s website at http://cplusplus.cadenhead.org.

http://cplusplus.cadenhead.org
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What You’ll Learn in This Hour:

 What references are

 How references differ from pointers

 How to create and use references

 What the limitations of references are

 How to pass values and objects into and out of functions by reference

What is a Reference?
In the past two hours, you learned how to use pointers to manipulate objects on the heap and 

refer to those objects indirectly. References, the topic of this hour, give you almost all the power 

of pointers with a much easier syntax.

A reference is an alias. When you create a reference, you initialize it with the name of another 

object, the target. From that moment on, the reference acts as an alternative name for the target, 

and anything you do to the reference is really done to the target.

You might read elsewhere that references are pointers, but that is not correct. Although 

 references are often implemented using pointers, that is a matter of concern only to creators of 

compilers; as a programmer, you must keep these two ideas distinct.

Pointers are variables that hold the address of another object. References are aliases to an object.

Creating a Reference
You create a reference by writing the type of the target object, followed by the reference  operator &, 

followed by the name of the reference. References can use any legal variable name, but in this 
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book all reference names are prefixed with r and the second letter is capitalized. So, if you have 

an integer variable named someInt, you can make a reference to that variable with the  following 

statement:

int &rSomeRef = someInt;

This is read as “rSomeRef is a reference to an integer that is initialized to refer to someInt.” 

The Reference program in Listing 12.1 shows how references are created and used.

LISTING 12.1 The Full Text of Reference.cpp

 1: #include <iostream>

 2: 

 3: int main()

 4: {

 5:     int intOne;

 6:     int &rSomeRef = intOne;

 7: 

 8:     intOne = 5;

 9:     std::cout << "intOne: " << intOne << std::endl;

10:     std::cout << "rSomeRef: " << rSomeRef << std::endl;

11: 

12:     rSomeRef = 7;

13:     std::cout << "intOne: " << intOne << std::endl;

14:     std::cout << "rSomeRef: " << rSomeRef << std::endl;

15:     return 0;

16: }

Reference produces the following output:

intOne: 5

rSomeRef: 5

intOne: 7

rSomeRef: 7

On line 5, a local int variable, intOne, is declared. On line 6, a reference to an int, 

 rSomeRef, is declared and initialized to refer to intOne. If you declare a reference but don’t 

initialize it, you get a compiler error. References must be initialized.

On line 8, intOne is assigned the value 5. On lines 9–10, the values in intOne and rSomeRef 

are displayed, and are the same because rSomeRef is simply the reference to intOne.

On line 12, 7 is assigned to rSomeRef. Because this is a reference, it is an alias for intOne, and 

therefore the 7 is really assigned to intOne, as is shown by the display on lines 13–14.
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NOTE

The reference operator & is the same symbol as the one used for the address-of operator. In this 
case, it is used in the declaration.

Remember, with pointers, an asterisk (*) in the declaration means that the variable is a pointer. In a 
statement, it is the indirection operator when used with pointers or the multiplication operator when 
used in a mathematical expression.

Using the Address of Operator on References
If you ask a reference for its address, it returns the address of its target. That is the nature of 

references—they are aliases for the target.

The Reference2 program in Listing 12.2 demonstrates this concept.

LISTING 12.2 The Full Text of Reference2.cpp

 1: #include <iostream>

 2: 

 3: int main()

 4: {

 5:     int  intOne;

 6:     int &rSomeRef = intOne;

 7: 

 8:     intOne = 5;

 9:     std::cout << "intOne: " << intOne << std::endl;

10:     std::cout << "rSomeRef: " << rSomeRef << std::endl;

11: 

12:     std::cout << "&intOne: "  << &intOne << std::endl;

13:     std::cout << "&rSomeRef: " << &rSomeRef << std::endl;

14: 

15:     return 0;

16: }

Here’s the output for the Reference2 program:

intOne: 5

rSomeRef: 5

&intOne: 0x60fe98

&rSomeRef: 0x60fe98

Once again, rSomeRef is initialized as a reference to intOne. This time the addresses of the 

two variables are displayed and they are identical. C++ gives you no way to access the address 

of the reference itself because it is not meaningful, as it would be if you were using a pointer or 
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other variable. References are initialized when created and always act as a synonym for their 

target, even when the address-of operator is applied.

For example, if you have a class called President, you might declare an instance of that class 

as follows:

President Millard_Fillmore;

You might then declare a reference to President and initialize it with this object:

President &Fillmore = Millard_Fillmore;

There is only one President; both identifiers refer to the same object of the same class. Any 

action you take on Fillmore will be taken on Millard_Fillmore, as well.

Be careful to distinguish between the & symbol on line 6 of Listing 12.2, which declares a 

 reference to int named rSomeRef, and the & symbols on lines 12 and 13, which return the 

addresses of the integer variable intOne and the reference rSomeRef.

Normally, when you use a reference, you do not use the address-of operator. You just use the 

 reference as you would use the target variable. This is shown on line 10.

Even experienced C++ programmers, who know the rule that references cannot be reassigned 

and are always aliases for their target, can be confused by what happens when you try to 

 reassign a reference: What appears to be a reassignment turns out to be the assignment of a new 

value to the target.

This is demonstrated by the Assignment program in Listing 12.3.

LISTING 12.3 The Full Text of Assignment.cpp

 1: #include <iostream>

 2: 

 3: int main()

 4: {

 5:     int intOne;

 6:     int &rSomeRef = intOne;

 7: 

 8:     intOne = 5;

 9:     std::cout << "intOne:\t" << intOne << std::endl;

10:     std::cout << "rSomeRef:\t" << rSomeRef << std::endl;

11:     std::cout << "&intOne:\t"  << &intOne << std::endl;

12:     std::cout << "&rSomeRef:\t" << &rSomeRef << std::endl;

13: 

14:     int intTwo = 8;

15:     rSomeRef = intTwo; // not what you think!

16:     std::cout << "\nintOne:\t" << intOne << std::endl;

17:     std::cout << "intTwo:\t" << intTwo << std::endl;



ptg18189307

What Can Be Referenced? 171

18:     std::cout << "rSomeRef:\t" << rSomeRef << std::endl;

19:     std::cout << "&intOne:\t"  << &intOne << std::endl;

20:     std::cout << "&intTwo:\t"  << &intTwo << std::endl;

21:     std::cout << "&rSomeRef:\t" << &rSomeRef << std::endl;

22:     return 0;

23: }

The program displays this output:

intOne: 5

rSomeRef: 5

&intOne: 0x60fe98

&rSomeRef: 0x60fe98

intOne: 8

intTwo: 8

rSomeRef: 8

&intOne: 0x60fe98

&intTwo: 0x60fe94

&rSomeRef: 0x60fe98

Once again, an integer variable and a reference to an integer are declared, on lines 5–6. 

The integer is assigned the value 5 on line 8, and the values and their addresses are printed on 

lines 9–11.

On line 14 a new variable, intTwo, is created and initialized with the value 8. On line 15, the 

program tries to reassign rSomeRef to now be an alias to the variable intTwo, but that is not 

what happens.

Instead, rSomeRef continues to act as an alias for intOne, so this assignment is exactly 

 equivalent to the following:

intOne = intTwo;

Sure enough, when the values of intOne and rSomeRef are displayed (lines 16–18) they are the 

same as intTwo. In fact, when the addresses are printed on lines 19–21, you see that rSomeRef 

continues to refer to intOne and not intTwo.

What Can Be Referenced?
Any object can be referenced, including user-defined objects. Note that you create a reference to 

an object, not to a class or a data type such as int. You do not write this:

int &rIntRef = int; // wrong
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You must initialize rIntRef to a particular integer, such as this:

int howBig = 200;

int &rIntRef = howBig;

In the same way, you don’t initialize a reference to a Cat:

Cat &rCatRef = Cat; // wrong

You must initialize rCatRef to a particular Cat object:

Cat Frisky;

Cat &rCatRef = Frisky;

References to objects are used just like the object itself. Member data and functions are accessed 

using the normal class member access operator (.). As with the built-in types, the reference acts 

as an alias to the object.

Null Pointers and Null References
When pointers are not initialized, or when they are deleted, they ought to be assigned to 

nullptr. This is not true for references. In fact, a reference cannot be null, and a program with 

a reference to a null object is considered an invalid program. When a program is invalid, just 

about anything can happen. It can appear to work, run with an insignificant error, or erase 

important files on your hard drive. All are possible outcomes of an invalid program.

Most compilers support null references without much complaint, crashing only if you try to use 

the reference in some way. Taking advantage of this, however, is not a good idea. When you 

move your program to another computer or a different compiler, mysterious bugs might occur if 

you have null references.

Passing Function Arguments by Reference
In Hour 5, “Calling Functions,” you learned that functions have two limitations: Arguments are 

passed by value and the return statement only can return one value.

Passing values to a function by reference can overcome both of these limitations. In C++,  passing 

by reference is accomplished in two ways: using pointers and using references. The syntax is 

 different, but the net effect is the same: Rather than a copy being created within the scope of the 

function, the actual original object is passed into the function.

Passing an object by reference enables the function to change the object being referred to.

The ValuePasser program in Listing 12.4 creates a swap function and passes in its parameters 

by value.
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LISTING 12.4 The Full Text of ValuePasser.cpp

 1: #include <iostream>

 2: 

 3: void swap(int x, int y);

 4: 

 5: int main()

 6: {

 7:     int x = 5, y = 10;

 8: 

 9:     std::cout << "Main. Before swap, x: " << x 

10: << " y: " << y << std::endl;

11:     swap(x,y);

12:     std::cout << "Main. After swap, x: " << x 

13: << " y: " << y << std::endl;

14:     return 0;

15: }

16: 

17: void swap (int x, int y)

18: {

19:     int temp;

20: 

21:     std::cout << "Swap. Before swap, x: " << x 

22: << " y: " << y << std::endl;

23:   

24:     temp = x;

25:     x = y;

26:     y = temp;

27:   

28:     std::cout << "Swap. After swap, x: " << x

29: << " y: " << y << std::endl;

30:   

31: }

The following output is displayed:

Main. Before swap, x: 5 y: 10

Swap. Before swap, x: 5 y: 10

Swap. After swap, x: 10 y: 5

Main. After swap, x: 5 y: 10

This program initializes two variables in main() and then passes them to the swap() 

 function, which appears to swap them. But when they are examined again in main(), they are 

unchanged!
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The problem here is that x and y are being passed to swap() by value. Local copies were made 

in the function and those copies were swapped, but the originals remained unchanged. What 

you want to do is pass x and y by reference.

There are two ways to solve this problem in C++: You can make the parameters of swap() 

 pointers to the original values or you can pass in references to the original values.

Making swap() Work with Pointers
When you pass in a pointer, you pass in the actual address of the object. Thus, the function can 

manipulate the value at that address.

To make swap() change the actual values using pointers, the function should be declared to 

accept two int pointers. Then, by dereferencing the pointers, the values of x and y will, in fact, 

be swapped. The PointerSwap program in Listing 12.5 demonstrates this idea.

LISTING 12.5 The Full Text of PointerSwap.cpp

 1: #include <iostream>

 2:   

 3: void swap(int *x, int *y);

 4: 

 5: int main()

 6: {

 7:     int x = 5, y = 10;

 8:   

 9:     std::cout << "Main. Before swap, x: " << x 

10: << " y: " << y << std::endl;

11:     swap(&x, &y);

12:     std::cout << "Main. After swap, x: " << x 

13: << " y: " << y << std::endl;

14:     return 0;

15: }

16:   

17: void swap(int *px, int *py)

18: {

19:     int temp;

20:   

21:     std::cout << "Swap. Before swap, *px: " << *px 

22: << " *py: " << *py << std::endl;

23:   

24:     temp = *px;

25:     *px = *py;

26:     *py = temp;

27:   

28:     std::cout << "Swap. After swap, *px: " << *px 

29: << " *py: " << *py << std::endl;

30: }
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The PointerSwap program demonstrates the results of the swap attempt in the output:

Main. Before swap, x: 5 y: 10

Swap. Before swap, *px: 5 *py: 10

Swap. After swap, *px: 10 *py: 5

Main. After swap, x: 10 y: 5

Success! On line 3, the prototype of swap() is changed to indicate that its two parameters will be 

pointers to int rather than int variables. The asterisk between the variable type and its name 

indicates that it’s a pointer.

When swap() is called on line 11, the addresses of x and y are passed as the arguments.

On line 19, the local variable temp is declared in the swap() function. There’s no need for temp 

to be a pointer; it will just hold the value of *px (the value of x in the calling function) for the 

life of the function. After the function returns, temp is no longer needed.

On line 24, temp is assigned the value at px. On line 25, the value at px is assigned to 

the value at py. On line 26, the value stashed in temp (that is, the original value at px) is 

put into py.

The values in the calling function, whose address was passed to swap(), are swapped.

Implementing swap() with References
The preceding program works, but the syntax of the swap() function is cumbersome in two 

ways. First, the repeated need to dereference the pointers in the swap() function makes it 

 error-prone and hard to read. Second, the need to pass the address of the variables in the calling 

function makes the inner workings of swap() overly apparent to its users.

A useful goal in C++ is to prevent the caller of a function from worrying about how it works, 

instead of just focusing on what it does and the value it returns. Passing by pointers puts the 

burden on the calling function, which is not where it belongs. The calling function must know to 

pass in the address of the object it wants to swap.

The burden of understanding reference semantics should be on the function implementing the 

swap. To accomplish this, you use references. The ReferenceSwap program in Listing 12.6 rewrites 

the swap() function using references.

Now the calling function just passes in the object, and because the parameters are declared to 

be references, the semantics are passed by reference. The calling function doesn’t need to do 

 anything special.
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LISTING 12.6 The Full Text of ReferenceSwap.cpp

 1: #include <iostream>

 2: 

 3: void swap(int &x, int &y);

 4: 

 5: int main()

 6: {

 7:     int x = 5, y = 10;

 8: 

 9:     std::cout << "Main. Before swap, x: " << x 

10: << " y: " << y << std::endl;

11:     swap(x, y);

12:     std::cout << "Main. After swap, x: " << x 

13: << " y: " << y << std::endl;

14:     return 0;

15: }

16:   

17: void swap(int &rx, int &ry)

18: {

19:     int temp;

20:   

21:     std::cout << "Swap. Before swap, rx: " << rx 

22: << " ry: " << ry << std::endl;

23:   

24:     temp = rx;

25:     rx = ry;

26:     ry = temp;

27:   

28:     std::cout << "Swap. After swap, rx: " << rx 

29: << " ry: " << ry << std::endl;

30: }

In the program’s output, the success of the swap is demonstrated:

Main. Before swap, x: 5 y: 10

Swap. Before swap, rx: 5 ry: 10

Swap. After swap, rx: 10 ry: 5

Main. After swap, x: 10 y: 5

Just as in the example with pointers, two variables are declared (line 7), and their values are 

 displayed on lines 9–10. On line 11 the function swap() is called, but note that x and y are 

passed, not their addresses. The calling function simply passes the variables.

When swap() is called, program execution jumps to line 17, where the variables are identified 

as references by the reference operator & between the argument’s type and name. The values of 

x and y are displayed on lines 21–22, but note that no special operators are required. These are 

aliases for the original values and can be used as such.



ptg18189307

177Returning Multiple Values

On lines 24–26 the values are swapped, then they’re displayed on lines 28–29. Program  execution 

jumps back to the calling function, and on lines 12–13 the values are displayed in main(). 

Because the parameters to swap() are declared to be references, the values from main() are 

passed by reference, and thus are changed in main(), as well.

References provide the convenience and ease of use of normal variables with the power and 

pass-by-reference capability of pointers.

Understanding Function Headers 
and Prototypes
The swap() function that takes references is easier to use and the code is easier to read. But how 

does the calling function know if the values are passed by reference or by value? As a user of 

swap(), the programmer must ensure that swap() will in fact change the parameters.

This is another use for the function prototype. By examining the parameters declared in the 

 prototype, which is typically in a header file along with all the other prototypes, the  programmer 

knows that the values passed into swap() are passed by reference and thus will be swapped 

properly.

If swap() had been a member function of a class, the class declaration, also available in a 

header file, would have supplied this information.

In C++, users of classes (any other class’s function using the class) rely on the header file 

to tell all that is needed. This file acts as the interface to the class or function. The actual 

 implementation is hidden from the client, which enables the programmer to focus on the 

 problem at hand and to use the class or function without concern for how it is implemented.

Returning Multiple Values
As discussed, functions can return only one value. What if you need to get two values back from 

a function? One way to solve this problem is to pass two objects into the function by  reference. 

The function then can fill the objects with the correct values. Because passing by  reference 

enables a function to change the original objects, this effectively lets the function return two 

pieces of information. This approach bypasses the return value of the function, which then can 

be reserved for reporting errors.

Once again, this can be done with references or pointers. The ReturnPointer program in 

Listing 12.7 demonstrates a function that returns three values, two as pointer parameters and 

one as the return value of the function.
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LISTING 12.7 The Full Text of ReturnPointer.cpp

 1: #include <iostream>

 2:   

 3: short factor(int, int*, int*);

 4: 

 5: int main()

 6: {

 7:     int number, squared, cubed;

 8:     short error;

 9: 

10:     std::cout << "Enter a number (0 – 20): ";

11:     std::cin >> number;

12: 

13:     error = factor(number, &squared, &cubed);

14: 

15:     if (!error)

16:     {

17: std::cout << "number: " << number << "\n";

18: std::cout << "square: " << squared << "\n";

19: std::cout << "cubed: "  << cubed   << "\n";

20:     }

21:     else

22:         std::cout << "Error encountered!!\n";

23:     return 0;

24: }

25: 

26: short factor(int n, int *pSquared, int *pCubed)

27: {

28:     short value = 0;

29:     if (n > 20)

30:     {

31: value = 1;

32:     }

33:     else

34:     {

35: *pSquared = n*n;

36: *pCubed = n*n*n;

37: value = 0;

38:     }

39:     return value;

40: }

The ReturnPointer program produces the following output:

Enter a number (0 – 20): 13

number: 13

square: 169

cubed: 2197
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On line 7, number, squared, and cubed are defined as int. number is assigned a value based 

on user input. This number and the addresses of squared and cubed are passed to the function 

factor().

factor() examines the first parameter, which is passed by value. If it is greater than 20 

(the maximum value this function can handle), it sets value to a simple error value. Note that 

the return value from factor() is reserved for either this error value or the value 0, indicating 

all went well. The function returns this value on line 39.

The actual values needed by users calling the function, the square and cube of number, are 

returned not through the return mechanism, but rather by changing the values directly using 

the pointers that were passed into the function.

On lines 35 and 36, the pointers are assigned their return values. On line 37, value is assigned 

a success value of 0. On line 39, value is returned.

One improvement to this program might be to declare the following:

enum ERR_CODE { SUCCESS, ERROR };

Then, rather than returning 0 or 1, the program could return SUCCESS or ERROR. Enumerated 

constants are given integer values based on their order unless otherwise specified, so the first 

enumerated value (SUCCESS) is given the value 0 and the second is given the value 1.

Returning Values by Reference
Although the ReturnPointer program works, it can be made easier to read and maintain by 

using references rather than pointers. The ReturnReference program in Listing 12.8 shows the 

same program rewritten to use references and to incorporate the ERR_CODE enumeration.

LISTING 12.8 The Full Text of ReturnReference.cpp

 1: #include <iostream>

 2: 

 3: enum ERR_CODE { SUCCESS, ERROR };

 4: 

 5: ERR_CODE factor(int, int&, int&);

 6: 

 7: int main()

 8: {

 9:     int number, squared, cubed;

10:     ERR_CODE result;

11: 

12:     std::cout << "Enter a number (0–20): ";

13:     std::cin >> number;

14: 

15:     result = factor(number, squared, cubed);
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16: 

17:     if (result == SUCCESS)

18:     {

19: std::cout << "number: " << number << "\n";

20: std::cout << "square: " << squared << "\n";

21: std::cout << "cubed: "  << cubed   << "\n";

22:     }

23:     else

24:     {

25:         std::cout << "Error encountered!!\n";

26:     }

27:     return 0;

28: }

29: 

30: ERR_CODE factor(int n, int &rSquared, int &rCubed)

31: {

32:     if (n > 20)

33:     {

34:         return ERROR;   // simple error code

35:     }

36:     else

37:     {

38: rSquared = n * n;

39: rCubed = n * n * n;

40: return SUCCESS;

41:     }

42: }

Here’s sample output for the ReturnReference program:

Enter a number (0–20): 15

number: 15

square: 225

cubed: 3375

The ReturnReference program is identical to the ReturnPointer program aside from two 

differences: First, the ERR_CODE enumeration makes the error reporting a bit more explicit 

on lines 34 and 40, and the error handling on line 17.

The larger change is that factor() is now declared to take references to squared and cubed 

rather than pointers. This makes the manipulation of these parameters much  simpler and easier 

to understand.
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Summary
During this hour, you worked with references, which serve a similar purpose to pointers and are 

sometimes mistaken for them. The difference is that pointers are variables holding the address of 

an object, whereas references are aliases to an object.

It’s important to understand how pointers and references are distinct.

A reference is an alias to another object, which is called the target. The reference serves as an 

alternate name for the target. Any actions taken to the reference actually affect the target.

References provide the power of pointers with simpler syntax. 

Q&A
Q. Why use references if pointers can do everything references can?

A. References are easier to use and understand. The indirection is hidden, and there is no
need to repeatedly dereference the variable.

Q. Why use pointers if references are easier?

A. References cannot be NULL and they cannot be reassigned. Pointers offer greater flexibility
but are more difficult to use.

Q. Is it true that a species went extinct at Disney World?

A. The Discovery Island nature preserve at Disney World in Orlando, Florida, was the last home
of the Dusky Seaside Sparrow, a non-migratory bird whose primary habitat was Florida’s
Merritt Island and the St. Johns River.

The spraying of the pesticide DDT, intentional flooding to control mosquitos and highway
construction all devastated the bird’s habitat, reducing its population over the second half
of the 20th century. By 1979, only six of the sparrows were known to exist—and all of them
were males.

The last four sparrows were taken to Disney’s nature preserve for a crossbreeding program
with Scott’s Seaside Sparrows, but it was not successful.

The species was declared extinct in 1990.
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Workshop
Now that you’ve had the chance to see references in action, you can answer a few questions and 
complete a couple of exercises to check your knowledge.

Quiz 
1. What is a reference?

A. An alias

B. A synonym

C. Both a and b

2. What operator is used to create a reference?

A. –>

B. &

C. *

3. What is the default mechanism for passing variables to a called function in C++? What are
some of the techniques to override that mechanism?

A. Pass by value

B. Pass by reference

C. Pass the salad

Answers
1. C. A reference is an alias or synonym for another variable or object.

2. B. The ampersand (&) is used when declaring a reference. References must be initialized
when declared. You cannot have a null reference like you can with pointers.

3. A. Pass by value, where a copy of the variable is passed to the function, not the
original—which prevents the function from changing the original value. Pointers are one
way to get around pass by value because the address of the original value is passed.
References are another because the alias for the original variable is passed.

Activities
1. Modify the ReturnPointer program to use references rather than pointers.

2. Rewrite the ReferenceSwap program to swap three numbers.

To see solutions to these activities, visit this book’s website at http://cplusplus.cadenhead.org.

http://cplusplus.cadenhead.org
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HOUR 13
Developing Advanced 

References and Pointers

What You’ll Learn in This Hour:

 How to use pass by reference to make your programs more efficient

 How to decide when to use references and when to use pointers

 How to avoid memory problems when using pointers

 How to avoid the pitfalls of using references

Passing by Reference for Efficiency
Each time you pass an object into a function by value, a copy of the object is made. Each time 

you return an object from a function by value, another copy is made.

With large, user-created objects, the cost of these copies is substantial. You’ll use more memory 

than you need to and your program will run more slowly.

The size of a user-created object on the stack is the sum of each of its member variables. These, 

in turn, can each become user-created objects. Passing such a massive structure by copying it 

onto the stack can be expensive in terms of performance and memory consumption.

There is another cost, too. With the classes you create, each of these temporary copies is created 

when the compiler calls a special constructor: the copy constructor.

In Hour 14, “Calling Advanced Functions,” you learn how copy constructors work and how you 

can make your own. For now, it is enough to know that the copy constructor is called each time 

a temporary copy of the object is put on the stack. When the temporary object is destroyed, 

which happens when the function returns, the object’s destructor is called. If an object is 

returned by value, a copy of that object also must be made and destroyed.

With large objects, these constructor and destructor calls can be expensive in speed and use of 

memory. To illustrate this idea, the ObjectRef program in Listing 13.1 creates a stripped-down, 

user-created object: SimpleCat. A real object would be larger and more expensive, but this is 

sufficient to show how often the copy constructor and destructor are called.



ptg18189307

184 HOUR 13: Developing Advanced References and Pointers

The program creates the SimpleCat object and then calls two functions. The first function 

receives the Cat by value and then returns it by value. The second one takes its argument by 

reference, meaning it receives a pointer to the object, rather than the object itself, and returns a 

pointer to the object.

Passing by reference avoids creating the copy and calling the copy constructor, and is therefore 

generally more efficient. On the other hand, it also passes the object itself, and thus exposes that 

object to change in the called function.

LISTING 13.1 The Full Text of ObjectRef.cpp

 1: #include <iostream>

 2: 

 3: class SimpleCat

 4: {

 5: public:

 6:     SimpleCat(); // constructor

 7:     SimpleCat(SimpleCat&);     // copy constructor

 8:     ~SimpleCat(); // destructor

 9: };

10:   

11: SimpleCat::SimpleCat()

12: {

13:     std::cout << "Simple Cat Constructor ..." << std::endl;

14: }

15:   

16: SimpleCat::SimpleCat(SimpleCat&)

17: {

18:     std::cout << "Simple Cat Copy Constructor ..." << std::endl;

19: }

20:   

21: SimpleCat::~SimpleCat()

22: {

23:     std::cout << "Simple Cat Destructor ..." << std::endl;

24: }

25:   

26: SimpleCat FunctionOne(SimpleCat theCat);

27: SimpleCat* FunctionTwo(SimpleCat *theCat);

28:   

29: int main()

30: {

31:     std::cout << "Making a cat ..." << std::endl;

32:     SimpleCat Frisky;

33:     std::cout << "Calling FunctionOne ..." << std::endl;

34:     FunctionOne(Frisky);

35:     std::cout << "Calling FunctionTwo ..." << std::endl;

36:     FunctionTwo(&Frisky);
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37:     return 0;

38: }

39:   

40: // FunctionOne, passes by value

41: SimpleCat FunctionOne(SimpleCat theCat)

42: {

43:     std::cout << "Function One. Returning ..." << std::endl;

44:     return theCat;

45: }

46:   

47: // functionTwo, passes by reference

48: SimpleCat* FunctionTwo (SimpleCat *theCat)

49: {

50:     std::cout << "Function Two. Returning ..." << std::endl;

51:     return theCat; 

52: }

The following output is displayed when the program is run:

 1: Making a cat ...

 2: Simple Cat Constructor ...

 3: Calling FunctionOne ...

 4: Simple Cat Copy Constructor ...

 5: Function One. Returning ...

 6: Simple Cat Copy Constructor ...

 7: Simple Cat Destructor ...

 8: Simple Cat Destructor ...

 9: Calling FunctionTwo ...

10: Function Two. Returning ...

11: Simple Cat Destructor ...

NOTE

The line numbers shown here do not display in the program output. They are added for the purpose 
of discussion in this section.

A simplified SimpleCat class is declared on lines 3–9. The constructor, copy constructor, and 

destructor all print an informative message so that you can tell when they’ve been called.

On line 31, main() prints out a message; you can see it on output line 1. On line 32, a 

SimpleCat object is instantiated. This causes the constructor to be called, and the output from 

the constructor is shown on line 2 of the output.

On line 33, main() reports that it is calling FunctionOne(), which creates output line 3. 

Because FunctionOne() is called passing the SimpleCat object by value, a copy of the 

SimpleCat object is made on the stack as an object local to the called function. This causes the 

copy constructor to be called, which creates output line 4.
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Program execution jumps to line 43 in the called function, which prints an informative message 

(output line 5). The function then returns, returning the SimpleCat object by value. This creates 

yet another copy of the object, calling the copy constructor and producing line 6.

The return value from FunctionOne() is not assigned to any object, so the temporary object 

created for the return is thrown away, calling the destructor, which produces output line 7. 

Because FunctionOne() has ended, its local copy goes out of scope and is destroyed, calling the 

destructor and producing line 8.

Program execution returns to main(), and FunctionTwo() is called, but the parameter is 

passed by reference. No copy is produced, so there’s no output. FunctionTwo() prints the 

 message that appears as output line 10 and then returns the SimpleCat object, again by 

 reference, and so again produces no calls to the constructor or destructor.

Finally, the program ends and Frisky goes out of scope, causing one final call to the destructor 

and printing output line 11.

The call to FunctionOne(), because it passed the cat by value, produced two calls to the copy 

constructor and two to the destructor, although the call to FunctionTwo() produced none.

Passing a const Pointer
Though passing a pointer to FunctionTwo() is more efficient, it is dangerous. FunctionTwo() 

is not supposed to change the SimpleCat object it is passed, yet it is given the address of the 

object. This exposes the object to impermissible change and defeats the protection offered in 

passing by value.

Passing by value is like giving a museum a photograph of your masterpiece rather than the real 

thing. If vandals mark it up, no harm occurs to the original. Passing by reference is like sending 

your home address to the museum and inviting guests to come over and look at the real thing.

If you want to provide the security of pass by value and the efficiency of pass by reference, the 

solution is to pass a const pointer to SimpleCat. Doing so prevents calling any non-const 

member function on SimpleCat, and thus protects the object from change. The ConstPasser 

program in Listing 13.2 demonstrates this idea.

LISTING 13.2 The Full Text of ConstPasser.cpp

 1: #include <iostream>

 2:   

 3: class SimpleCat

 4: {

 5: public:

 6:     SimpleCat();

 7:     SimpleCat(SimpleCat&);
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 8:     ~SimpleCat();

 9:   

10:     int GetAge() const { return itsAge; }

11:     void SetAge(int age) { itsAge = age; }

12:   

13: private:

14:     int itsAge;

15: };

16:   

17: SimpleCat::SimpleCat()

18: {

19:     std::cout << "Simple Cat Constructor ..." << std::endl;

20:     itsAge = 1;

21: }

22:   

23: SimpleCat::SimpleCat(SimpleCat&)

24: {

25:     std::cout << "Simple Cat Copy Constructor ..." << std::endl;

26: }

27:   

28: SimpleCat::~SimpleCat()

29: {

30:     std::cout << "Simple Cat Destructor ..." << std::endl;

31: }

32: 

33: const SimpleCat * const 

34: FunctionTwo (const SimpleCat *const theCat);

35:   

36: int main()

37: {

38:     std::cout << "Making a cat ..." << std::endl;

39:     SimpleCat Frisky;

40:     std::cout << "Frisky is ";

41:     std::cout << Frisky.GetAge() << " years old" << std::endl;

42:     int age = 5;

43:     Frisky.SetAge(age);

44:     std::cout << "Frisky is ";

45:     std::cout << Frisky.GetAge() << " years old" << std::endl;

46:     std::cout << "Calling FunctionTwo ..." << std::endl;

47:     FunctionTwo(&Frisky);

48:     std::cout << "Frisky is ";

49:     std::cout << Frisky.GetAge() << " years old" << std::endl;

50:     return 0;

51: }

52:   

53: // functionTwo, passes a const pointer

54: const SimpleCat * const 

55: FunctionTwo (const SimpleCat * const theCat)
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56: {

57:     std::cout << "Function Two. Returning ..." << std::endl;

58:     std::cout << "Frisky is now " << theCat->GetAge();

59:     std::cout << " years old \n";

60:     // theCat->SetAge(8); const!

61:     return theCat;

62:  }

Here’s the output:

Making a cat ...

Simple Cat Constructor ...

Frisky is 1 years old

Frisky is 5 years old

Calling FunctionTwo ...

Function Two. Returning ...

Frisky is now 5 years old 

Frisky is 5 years old

Simple Cat Destructor ...

SimpleCat has added two accessor functions: GetAge() on line 10, which is a const function; 

and SetAge() on line 11, which is not. It also has added the member variable itsAge on 

line 14.

The constructor, copy constructor, and destructor are still defined to display their messages. The 

copy constructor never is called, however, because the object is passed by reference and no copies 

are made. On line 39, an object is created, and its default age is printed on lines 40 and 41.

On line 43, itsAge is set using the accessor SetAge(), and the result is displayed on lines 43 

and 44. FunctionOne() is not used in this program, but FunctionTwo() is called.

FunctionTwo() has changed slightly; the parameter and return value are now declared, on lines 

33 and 34, to take a constant pointer to a constant object and to return a constant pointer to a 

constant object.

Because the parameter and return value are still passed by reference, no copies are made, and 

the copy constructor is not called. The pointer in FunctionTwo(), however, is now constant 

and, therefore, cannot call the non-const member function, SetAge(). If the call to SetAge() 

on line 60 was not commented out, the program would not compile.

Note that the object created in main() is not constant, and Frisky can call SetAge(). 

The address of this non-constant object is passed to FunctionTwo(), but because the 

FunctionTwo() declaration declares the pointer to be a constant pointer, the object is treated 

as if it were constant.
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References as an Alternative to Pointers
The ConstPasser program solves the problem of making extra copies, saving the calls to the copy 

constructor and destructor. It uses constant pointers to constant objects, thereby solving the prob-

lem of the called function making impermissible changes to the objects passed in as parameters. 

The method is still somewhat cumbersome, however, because the objects passed to the function 

are pointers.

Because you know the parameters never will be NULL, it is easier to work with the function if 

references are passed in rather than pointers. The RefPasser program in Listing 13.3 rewrites the 

previous project to use references rather than pointers. 

LISTING 13.3 The Full Text of RefPasser.cpp

 1: #include <iostream>

 2:   

 3: class SimpleCat

 4: {

 5: public:

 6:     SimpleCat();

 7:     SimpleCat(SimpleCat&);

 8:     ~SimpleCat();

 9:   

10:     int GetAge() const { return itsAge; }

11:     void SetAge(int age) { itsAge = age; }

12:   

13: private:

14:     int itsAge;

15: };

16:   

17: SimpleCat::SimpleCat()

18: {

19:     std::cout << "Simple Cat Constructor ..." << std::endl;

20:     itsAge = 1;

21: }

22:   

23: SimpleCat::SimpleCat(SimpleCat&)

24: {

25:     std::cout << "Simple Cat Copy Constructor ..." << std::endl;

26: }

27:   

28: SimpleCat::~SimpleCat()

29: {

30:     std::cout << "Simple Cat Destructor ..." << std::endl;

31: }

32:   

33: const SimpleCat & FunctionTwo (const SimpleCat & theCat);
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34:   

35: int main()

36: {

37:     std::cout << "Making a cat ..." << std::endl;

38:     SimpleCat Frisky;

39:     std::cout << "Frisky is " << Frisky.GetAge() 

40: << " years old" << std::endl;

41:   

42:     int age = 5;

43:     Frisky.SetAge(age);

44:     std::cout << "Frisky is " << Frisky.GetAge() 

45: << " years old" << std::endl;

46:   

47:     std::cout << "Calling FunctionTwo..." << std::endl;

48:     FunctionTwo(Frisky);

49:     std::cout << "Frisky is " << Frisky.GetAge() 

50: << " years old" << std::endl;

51:     return 0;

52: }

53:    

54: // functionTwo passes a ref to a const object

55: const SimpleCat & FunctionTwo (const SimpleCat & theCat)

56: {

57:     std::cout << "Function Two. Returning..." << std::endl;

58:     std::cout << "Frisky is now " << theCat.GetAge()

59: << " years old" << std::endl;

60:     // theCat.SetAge(8);   const!

61:     return theCat;

62: }

This program has the following output:

Making a cat ...

Simple Cat Constructor ...

Frisky is 1 years old

Frisky is 5 years old

Calling FunctionTwo...

Function Two. Returning...

Frisky is now 5 years old

Frisky is 5 years old

Simple Cat Destructor ...

The output is identical to that produced by the previous program. The only significant change 

is that FunctionTwo() in lines 55–62 now takes and returns a reference to a constant object. 

Once again, working with references is somewhat simpler than working with pointers; and the 

same savings and efficiency, and the safety provided by using const, are achieved.
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When to Use References and When 
to Use Pointers
Generally, C++ programmers strongly prefer references to pointers because they are cleaner and 

easier to use. References cannot be reassigned, however. If you need to point first to one object 

and then to another, you must use a pointer. References cannot be NULL, so if there is any 

chance that the object in question might be, you must use a pointer rather than a reference. If 

you want to allocate dynamic memory from the heap, you have to use pointers as discussed in 

previous hours.

References to Objects Not in Scope
After C++ programmers learn to pass by reference, they have a tendency to go wild. It is possible, 

however, to overdo it. Remember that a reference always is an alias that refers to some other 

object. If you pass a reference into or out of a function, be sure to ask yourself, “What is the 

object I’m aliasing, and will it still exist every time it’s used?”

The ReturnRef program in Listing 13.4 illustrates the danger of returning a reference to an object 

that no longer exists.

LISTING 13.4 The Full Text of ReturnRef.cpp

 1: #include <iostream>

 2:   

 3: class SimpleCat

 4: {

 5: public:

 6:     SimpleCat(int age, int weight);

 7:     ~SimpleCat() {}

 8:     int GetAge() { return itsAge; }

 9:     int GetWeight() { return itsWeight; }

10: private:

11:     int itsAge;

12:     int itsWeight;

13: };

14:   

15: SimpleCat::SimpleCat(int age, int weight):

16: itsAge(age), itsWeight(weight) {}

17:   

18: SimpleCat &TheFunction();

19:   

20: int main()

21: {

22:     SimpleCat &rCat = TheFunction();
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23:     int age = rCat.GetAge();

24:     std::cout << "rCat is " << age << " years old!" << std::endl;

25:     return 0;

26: }

27:   

28: SimpleCat &TheFunction()

29: {

30:     SimpleCat Frisky(5,9);

31:     return Frisky;

32: }

When you build this program, you are confronted with an error about how a reference to the 

local variable Frisky is being returned.

CAUTION

Some compilers are smart enough to see the reference to a null object and report a compile error. 
Other compilers will compile and even run. This is a bad coding practice that you should not take 
advantage of it when your compiler allows you to do this.

On lines 3–13, SimpleCat is declared. On line 22, a reference to SimpleCat is initialized with 

the results of calling TheFunction(), which is declared on line 18 to return a reference to a 

SimpleCat.

The body of TheFunction() declares a local object of type SimpleCat and initializes its 

age and weight. It then returns that local object by reference. Some compilers are smart enough 

to catch this error and don’t let you run the program. Others let you run the program, but with 

unpredictable results. When TheFunction() returns, the local object, Frisky, is destroyed. 

The reference returned by this function is to a non-existent object, and this is a bad thing.

Returning a Reference to an Object 
on the Heap
You might be tempted to solve the problem in RefReturn by having TheFunction() create 

Frisky on the heap. That way, when you return from TheFunction(), Frisky still exists.

The problem with the approach is this: What do you do with the memory allocated for Frisky 

when you have finished with it? The Leak program in Listing 13.5 illustrates this problem.
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LISTING 13.5 The Full Text of Leak.cpp

 1: #include <iostream>

 2:   

 3: class SimpleCat

 4: {

 5: public:

 6:     SimpleCat (int age, int weight);

 7:     ~SimpleCat() {}

 8:     int GetAge() { return itsAge; }

 9:     int GetWeight() { return itsWeight; }

10:   

11: private:

12:     int itsAge;

13:     int itsWeight;

14: };

15:   

16: SimpleCat::SimpleCat(int age, int weight):

17: itsAge(age), itsWeight(weight) {}

18:   

19: SimpleCat & TheFunction();

20:   

21: int main()

22: {

23:     SimpleCat &rCat = TheFunction();

24:     int age = rCat.GetAge();

25:     std::cout << "rCat is " << age << " years old!" << std::endl;

26:     std::cout << "&rCat: " << &rCat << std::endl;

27:     // How do you get rid of that memory?

28:     SimpleCat *pCat = &rCat;

29:     delete pCat;

30:     // Uh oh, rCat now refers to ??

31:     return 0;

32: }

33:   

34: SimpleCat &TheFunction()

35: {

36:     SimpleCat *pFrisky = new SimpleCat(5,9);

37:     std::cout << "pFrisky: " << pFrisky << std::endl;

38:     return *pFrisky;

39: }

Here’s the output: 

pFrisky: 0x7918b0

rCat is 5 years old!

&rCat: 0x7918b0
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This compiles, links, and appears to work. But it is a time bomb waiting to go off.

The function TheFunction() has been changed so that it no longer returns a reference 

to a local variable. Memory is allocated on the heap and assigned to a pointer on line 36. 

The address that the pointer holds is displayed, and then the pointer is dereferenced and the 

SimpleCat object is returned by reference.

On line 23, the return of TheFunction() is assigned to a reference to a SimpleCat, and that 

object is used to obtain the cat’s age, which is displayed on line 25.

To prove that the reference declared in main() is referring to the object put on the heap in 

TheFunction(), the address of operator is applied to rCat. Sure enough, it displays the address 

of the object it refers to, and this matches the address of the object on the heap.

So far, so good. But how will that memory be freed? You can’t call delete on the reference. One 

clever solution is to create another pointer and initialize it with the address obtained from rCat. 

This does delete the memory and plugs the memory leak. One small problem, though: What 

is rCat referring to after line 29? As stated earlier, a reference always must be an alias for an 

actual object. If it references a null object (as this does now), the program is invalid.

CAUTION

It cannot be overemphasized that a program with a reference to a null object might compile, but it is 
invalid and its performance is unpredictable.

There are actually two solutions to this problem. The first is to return a pointer to the memory 

created on line 36. Then the calling function can delete the pointer when it is done. To do this, 

change the return value of TheFunction to a pointer (rather than reference) and return the 

pointer, rather than the dereferenced pointer:

SimpleCat *TheFunction()

{

    SimpleCat *pFrisky = new SimpleCat(5,9);

    std::cout << "pFrisky: " << pFrisky << "\n";

    return pFrisky; // return the pointer

}

A better solution is to declare the object in the calling function and then pass it to 

TheFunction() by reference. The advantage of this approach is that the function that allocates 

the memory (the calling function) is also the function responsible for deallocating it.



ptg18189307

Q&A 195

Pointer, Pointer, Who Has the Pointer?
When your program allocates memory on the heap, a pointer is returned. It is imperative that 

you keep a pointer to that memory, because after the pointer is lost, the memory cannot be 

deleted and becomes a memory leak.

As you pass this block of memory between functions, one of the functions “owns” the pointer. 

Typically, the value in the block is passed using references, and the function that created the 

memory block is the one that deletes it. But this is a general rule, not an ironclad one.

It is dangerous for one function to create space in memory and another to free it, however. 

Ambiguity about which owns the pointer can lead to one of two problems: forgetting to delete a 

pointer or deleting it twice. Either one can cause serious problems in your program. It is safer to 

build your functions so that they delete the memory spaces they created.

If you write a function that needs to create a block of memory and then pass it back to the 

calling function, consider changing your interface. Have the calling function allocate the memory 

and then pass it into your function by reference. This moves all memory management out of your 

function and back to the function that is prepared to delete it.

Summary
With the completion of this hour, you now should be comfortable with how pointers and 

references are created in C++ and understand their strengths and weaknesses.

A pointer is a variable that holds a memory address, whereas a reference is an alias.

Both provide forms of indirection that enable functions to be more, well, functional. In many 

cases, however, you’ll find that references are the better choice. 

Q&A
Q. Why have pointers if references are easier?

A. References cannot be NULL and cannot be reassigned. Pointers offer greater flexibility,
but are slightly more difficult to use.

Q. Why would you ever return by value from a function?

A. If the object being returned is local, you must return by value or you will be returning a
 reference to a non-existent object.

Q. Given the danger in returning by reference, why not always return by value?

A. There is much greater efficiency in returning by reference. Memory is saved, and the
 program runs faster.
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Q. Where can I go to college to become a clown?

A. One place to go is the Ohio College of Clowning Arts, an institution of higher learning
“ dedicated to teaching students the ancient and honorable art of the clown.” The school,
located in Louisville, Ohio, offers 30 weeks of instruction.

Courses include Clown Characterization, Physical Clowning, and Balloons and Magic.
Students progress from Associate Clown to Contributing Clown to Functional Clown to
Master of Clowning. Alumni include Gumball, Bojangles, and Rufus D. Dufus.

The college is revamping its curriculum, but in the past cost from $1,295 to $1,495. Visit
www.ohiocollegeofclowningarts.com for more information.

Workshop
Now that you’ve had the chance to learn about advanced pointer and reference topics, you can 
answer a few questions and complete a couple of exercises to firm up your knowledge.

Quiz 
1. When dealing with large amounts of data, which approach is better?

A. Pass by reference

B. Pass by value

C. Keep right except to pass

2. What keyword prevents a called function from changing the value of a pointer?

A. static

B. enum

C. const

3. Can you create a reference to a pointer variable?

A. Yes

B. No

C. None of your business

http://www.ohiocollegeofclowningarts.com
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Answers
1. A. Pass by reference, because pass by value causes a copy to be made of the variables

being passed. For a large object, this could take considerable time and memory.

2. C. Using the const keyword tells the compiler to prevent the called function from changing
the value of the pointer. You get the protection of pass by value without paying the cost of
making copies.

3. A. Yes, but you might want to be careful in doing so though because it can get to be
confusing—especially considering that pointers are confusing to begin with.

Activities
1. Modify the Leak program to use pointers in the call to TheFunction() and use the proper

deletion method to prevent memory leaks.

2. Modify the ObjectRef and RefPasser programs to display the addresses of the variables
before the function calls and afterward. This will give insight into the mechanism involved.

To see solutions to these activities, visit this book’s website at http://cplusplus.cadenhead.org.

http://cplusplus.cadenhead.org
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HOUR 14
Calling Advanced Functions

What You’ll Learn in This Hour:

 How to overload member functions

 How to support classes with dynamically allocated variables

 How to initialize objects

 How to create copy constructors

Overloaded Member Functions
In Hour 5, “Calling Functions,” you learned how to implement function overloading by writing 

multiple functions with the same name but different parameters. Member functions also can be 

overloaded.

This is demonstrated by the Rectangle program in Listing 14.1, which implements a 

Rectangle class that has two drawShape() functions. One takes no parameters and draws 

the Rectangle based on the object’s current values. The other takes two values, width and 

length, and draws a rectangle using those values, ignoring the current values.

LISTING 14.1 The Full Text of Rectangle.cpp

 1: #include <iostream>

 2: 

 3: class Rectangle

 4: {

 5: public:

 6:     Rectangle(int width, int height);

 7:     ~Rectangle() {}

 8: 

 9:     void drawShape() const;

10:     void drawShape(int width, int height) const;

11: 

12: private:
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13:     int width;

14:     int height;

15: };

16: 

17: Rectangle::Rectangle(int newWidth, int newHeight)

18: {

19:     width = newWidth;

20:     height = newHeight;

21: }

22: 

23: void Rectangle::drawShape() const

24: {

25:     drawShape(width, height);

26: }

27: 

28: void Rectangle::drawShape(int width, int height) const

29: {

30:     for (int i = 0; i < height; i++)

31:     {

32: for (int j = 0; j < width; j++)

33: std::cout << "*";

34: std::cout << std::endl;

35:     }

36: }

37: 

38: int main()

39: {

40:     Rectangle box(30, 5);

41:     std::cout << "drawShape():" << std::endl;

42:     box.drawShape();

43:     std::cout << "\ndrawShape(40, 2):" << std::endl;

44:     box.drawShape(40, 2);

45:     return 0;

46: }

The Rectangle program displays two rectangles consisting of asterisks:

drawShape():

******************************

******************************

******************************

******************************

******************************

drawShape(40, 2):

****************************************

****************************************
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On lines 9–10, the drawShape() function is overloaded. The implementation for these 

overloaded class functions is on lines 23–36.

The version of drawShape() that takes no parameters works by calling the version that takes 

two parameters, passing in the current member variables. This avoids duplicating similar code 

in two overloaded functions. When code is duplicated to perform the same task, a change you 

make later to one function could be overlooked in the other, introducing errors to your program.

The main function on lines 38–46 creates a Rectangle object and calls drawShape() twice, 

first with no parameters and then with two integers.

The compiler decides which function to call based on the number and type of parameters 

entered. A potential third overloaded function named drawShape() could take one dimension 

and use it for both width and height.

Using Default Values
Just as ordinary functions can have one or more default values, so can each function of a class. 

The same rules apply for declaring the default values, as illustrated by the Rectangle2 

program in Listing 14.2.

LISTING 14.2 The Full Text of Rectangle2.cpp

 1: #include <iostream>

 2: 

 3: class Rectangle

 4: {

 5: public:

 6:    Rectangle(int width, int height);

 7:     ~Rectangle(){}

 8:     void drawShape(int aWidth, int aHeight, 

 9: bool useCurrentValue = false) const;

10: private:

11:     int width;

12:     int height;

13: };

14:   

15: Rectangle::Rectangle(int aWidth, int aHeight)

16: {

17:     width = aWidth;

18:     height = aHeight;

19: }

20: void Rectangle::drawShape(

21:     int aWidth,

22:     int aHeight,

23:     bool useCurrentValue
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24: ) const

25: {

26:     int printWidth;

27:     int printHeight;

28:   

29:     if (useCurrentValue == true)

30:     {

31: printWidth = width;

32: printHeight = height;

33:     }

34:     else

35:     {

36: printWidth = aWidth;

37: printHeight = aHeight;

38:     }

39:   

40:     for (int i = 0; i < printHeight; i++)

41:     {

42: for (int j = 0; j < printWidth; j++)

43: std::cout << "*";

44: std::cout << std::endl;

45:     }

46: }

47:   

48: int main()

49: {

50:     Rectangle box(20, 5);

51:     std::cout << "drawShape(0, 0, true) ..." << std::endl;

52:     box.drawShape(0, 0, true);

53:     std::cout <<"drawShape(25, 4) ..." << std::endl;

54:     box.drawShape(25, 4);

55:     return 0;

56: }

This program produces the following output:

drawShape(0, 0, true) ...

********************

********************

********************

********************

********************

drawShape(25, 4) ...

*************************

*************************

*************************

*************************
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Listing 14.2 replaces the overloaded drawShape() function with a single function that has 

default parameters. The function is declared on lines 8–9 to take three parameters. The first two, 

aWidth and aHeight, are integers. The third, useCurrentValue, is a bool value that 

defaults to false.

The implementation for this function begins on lines 20–24. The third parameter, 

 useCurrentValue, is evaluated. If it is true, the member variables width and height are 

used to set the local variables printWidth and printHeight.

If useCurrentValue is false, either because it defaulted to false or was set by the user to that 

value, the first two parameters are used to set printWidth and printHeight.

NOTE

The Rectangle and Rectangle2 programs accomplish the same thing, but the overloaded 
functions in 14.1 are simpler to understand and more natural to use. Also, if a additional variation 
are needed—perhaps the user supplies either the width or the height, but not both—it is easier 
to extend  overloaded functions. The default values approach quickly becomes too complex as new 
variations are added.

Initializing Objects
Constructors, like member functions, can be overloaded. The capability to overload constructors 

is powerful and flexible.

A rectangle object could have two constructors. One takes a length and width as parameters 

and makes a rectangle of that size. The second takes no parameters and makes a rectangle of a 

default size specified by the class. The compiler chooses the right constructor based on the num-

ber and type of the parameters.

You can overload constructors, but you can’t overload destructors. Destructors always have the 

same signature: the name of the class prepended by a tilde (~) and no parameters.

Until now, you have set the member variables of objects in the body of the constructor.

Constructors are created in two stages: the initialization stage and the body of the constructor. 

A member variable can be set during the initialization or by assigning it a value in the body of 

the constructor. The following example shows how to initialize member variables:

Tricycle::Tricycle():

speed(5),

wheelSize(12)

{

    // body of constructor

}
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To assign values in a constructor’s initialization, put a colon after the closing parentheses of the 

constructor’s parameter list. After the colon, list the name of a member variable followed by a pair 

of parentheses. Inside the parentheses, put an expression that initializes the member variable. 

If more than one variable is being set in this manner, separate each one with a comma.

The preceding example sets the speed member variable to 5 and the wheelSize variable to 12.

CAUTION

Because references and constants cannot be assigned values, they must be initialized using this 
technique.

To understand why it is more efficient to initialize member variables than assign to them values, 

you must understand the copy constructor.

The Copy Constructor
In addition to providing a default constructor and destructor, the compiler provides a default 

copy constructor. The copy constructor is called every time a copy of an object is made.

When you pass an object by value, either into a function or as a function’s return value, 

a temporary copy of that object is made. If the object is a user-defined object, the class’s copy 

constructor is called.

All copy constructors take one parameter: a reference to an object of the same class. It is a good 

idea to make it a constant reference, because the constructor will not have to alter the object 

passed in. For example:

Tricycle(const Tricycle &trike);

In this statement the Tricycle constructor takes a constant reference to an existing Tricycle 

object. The goal of the copy constructor is to make a copy of trike.

The default copy constructor simply copies each member variable from the object passed as a 

parameter to the member variables of the new object. This is called a shallow (or member-wise) 

copy. Though this is fine for most member variables, it does not work for member variables that 

are pointers to objects on the heap.

A shallow copy copies the exact values of one object’s member variables into another object. 

Pointers in both objects end up pointing to the same memory. A deep copy, on the other hand, 

copies the values allocated on the heap to newly allocated memory.

An example illustrates the problem: If the Tricycle class includes a member variable 

called durability pointing to an integer on the heap, the default copy constructor copies the 
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passed-in Tricycle's durability member variable to the new Tricycle's durability 

member variable. The two objects then point to the same memory, as illustrated in Figure 14.1.

5

durability

old Tricycle

durability

new Tricycle

Free Store

FIGURE 14.1
Using the default copy constructor.

This leads to a disaster when either Tricycle object goes out of scope. That object’s destructor is 

called and attempts to clean up the allocated memory.

The other object is still pointing to that memory, however. If it tries to access that memory, the 

program crashes.

The solution to this problem is to define your own copy constructor and allocate memory prop-

erly in the copy. Creating a deep copy allows you to copy the existing values into new memory. 

The DeepCopy program in Listing 14.3 illustrates how to do this.

LISTING 14.3 The Full Text of DeepCopy.cpp

 1: #include <iostream>

 2:   

 3: class Tricycle

 4: {

 5: public:

 6:     Tricycle(); // default constructor

 7:     Tricycle(const Tricycle&); // copy constructor

 8:     ~Tricycle(); // destructor

 9:     int getSpeed() const { return *speed; }

10:     void setSpeed(int newSpeed) { *speed = newSpeed; }

11:     void pedal();

12:     void brake();

13:   

14: private:

15:     int *speed;

16: };

17:   

18: Tricycle::Tricycle()

19: {
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20:     speed = new int;

21:     *speed = 5;

22: }

23:   

24: Tricycle::Tricycle(const Tricycle& rhs)

25: {

26:     speed = new int;

27:     *speed = rhs.getSpeed();

28: }

29:   

30: Tricycle::~Tricycle()

31: {

32:     delete speed;

33:     speed = NULL;

34: }

35: 

36: void Tricycle::pedal()

37: {

38:     setSpeed(*speed + 1);

39:     std::cout << "\nPedaling " << getSpeed() << " mph" << std::endl;

40: }

41: void Tricycle::brake()

42: { 

43:     setSpeed(*speed – 1);

44:     std::cout << "\nPedaling " << getSpeed() << " mph" << std::endl;

45: }

46:   

47: int main()

48: {

49:     std::cout << "Creating trike named wichita ...";

50:     Tricycle wichita;

51:     wichita.pedal();

52:     std::cout << "Creating trike named dallas ..." << std::endl;

53:     Tricycle dallas(wichita);

54:     std::cout << "wichita's speed: " << wichita.getSpeed() << std::endl;

55:     std::cout << "dallas's speed: " << dallas.getSpeed() << std::endl;

56:     std::cout << "setting wichita to 10 ..." << std::endl;

57:     wichita.setSpeed(10);

58:     std::cout << "wichita's speed: " << wichita.getSpeed() << std::endl;

59:     std::cout << "dallas's speed: " << dallas.getSpeed() << std::endl;

60:     return 0;

61: }

This program creates two Tricycle objects and takes them for a ride:

Creating trike named wichita ...

Pedaling 6 mph

Creating trike named dallas ...
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wichita's speed: 6

dallas's speed: 6

setting wichita to 10 ...

wichita's speed: 10

dallas's speed: 6

On lines 3–16, the Tricycle class is declared. A default constructor (line 6) and copy 

constructor (line 7) are declared for the class.

On line 15, the speed member variable is declared as a pointer to an integer. Typically, there is 

little reason for a class to store int member variables as pointers, but this helps illustrate how to 

manage member variables on the heap.

The default constructor on lines 24–28 allocates room on the heap for an int variable and 

assigns a value to it.

The copy constructor begins on line 24. The parameter’s name is rhs, which stands for 

 right-hand side and is a common naming convention for the parameter of a copy constructor. 

Memory is allocated on the heap (line 26) and the value at the new memory location is assigned 

the value of the speed variable from the existing Tricycle (line 27).

The parameter rhs is a Tricycle passed into the copy constructor as a constant reference. 

The member function rhs.getSpeed() returns the value stored in the memory pointed to by 

rhs’s member variable speed. As a Tricycle object, rhs has all the member variables of any 

other Tricycle.

Figure 14.2 diagrams what is happening here. The values pointed to by the existing Tricycle 

are copied to the memory allocated for the new Tricycle.

5

5

speed

old Tricycle

speed

new Tricycle

Free Store

FIGURE 14.2
An illustration of deep copying.



ptg18189307

208 HOUR 14: Calling Advanced Functions

On line 50, a Tricycle is created called wichita. The trike’s pedal() function is called, which 

increases the speed by 1 and displays the new speed. On line 53, a new Tricycle is created 

called dallas using the copy constructor and passing in wichita. Had wichita been passed 

as a parameter to a function, this same call to the copy constructor would have been made by 

the compiler.

On lines 54–55, the current speed of both Tricycles is displayed. This verifies that a copy was 

made because dallas has the same speed as wichita, 6, not the default speed of 5. On line 57, 

wichita’s speed is set to 10, and the speeds of both objects are displayed again. This time  dallas 

has a speed of 10, while wichita remains 6, demonstrating that they are stored in separate areas 

of memory.

When the Tricycle objects fall out of scope, their destructors are automatically invoked. 

The implementation of the Tricycle destructor is shown on lines 30–34. delete is called on 

the pointer and for safety it is reassigned to NULL.

Compile-Time Constant Expressions
C++ compilers do everything they can to make programs run faster, optimizing the code that 

you’ve written wherever possible. One simple opportunity for increased efficiency is when two 

constants are added together, as in this sample code:

const int decade = 10;

int year = 2016 + decade;

Because both halves of the expression 2016 + decade are constants, compilers evaluate the 

expression and store it in compiled form as the result 2026. The compiler acts as if year was 

assigned the value 2026.

Functions can use the const keyword to return a constant value, as in this simple example:

const int getCentury()

{

    return 100;

}

For this reason, you might conclude that the following expression has the potential to be 

optimized:

int year = 2016 + getCentury();

Although the member function returns a constant, the function itself might not be constant. It 

might change global variables or call non-constant member functions.
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Constant expressions were added to recent versions of C++ with the constexpr keyword:

constexpr int getCentury()

{

    return 100;

}

The constant expression must have a non-void return type and return an expression as its 

contents. The expression returned only can contain literal values, calls to other constant 

 expressions or variables that also have been defined with constexpr.

The following statements define a constant called century and a constant expression called 

year using the constexpr keyword:

const int century = 100;

constexpr year = 2016 + century;

The Circle program (Listing 14.4) makes use of a constant expression to represent the value of PI, 

using it to calculate the area of a circle based on a radius value entered by the user.

LISTING 14.4 The Full Text of Circle.cpp

 1: #include <iostream>

 2:

 3:// get an approximate value of PI

 4: constexpr double getPi() {

 5:     return (double) 22 / 7;

 6: }

 7: 

 8: int main()

 9: {

10:     float radius;

11: 

12:     std::cout << "Enter the radius of the circle: ";

13:     std::cin >> radius;

14: 

15:     // the area equals PI * the radius squared

16:     double area = getPi() * (radius * radius);

17: 

18:     std::cout << "\nCircle's area: " << area << std::endl;

19: 

20:     return 0;

21: }

Here’s sample output for the program for a radius of 19:

Enter the radius of the circle: 19

Circle's area: 1134.57
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C++ does not have a keyword for the value PI. A reasonable approximation of its value suitable 

for some uses is to divide 22 by 7. When stored as a double in C++ it equals 3.14286, the value 

of PI rounded to five places.

The Circle program calculates 22 / 7 as a constant expression. The function can do this because 

it contains only one statement, return followed by an expression, and only includes literals, 

constants, or constant expressions.

Summary
During this hour, you learned how to achieve more control over the creation and destruction of 

objects in C++.

Constructors, like functions, can be overloaded. The number and type of parameter to the 

constructor enable the compiler to determine which one should be called by users of the class.

A constructor may have default values just like member functions and ordinary functions.

When an object is copied, all member variables are copied by the default copy constructor. 

This creates problems when member variables are pointers to objects on the heap. Both the 

original object and the copy point to the same object. When one object goes out of scope and 

is destroyed, the other still has an active pointer to that object. Any attempt to use that pointer 

results in a crash of the program.

This problem can be fixed by writing your own copy constructor for a class. The constructor takes 

one parameter: the original object that will be copied. In the constructor, care can be taken so 

that the pointer uses new heap memory. 

Q&A
Q. Why would you ever use default values when you can overload a function?

A. Because it’s easier to maintain one function than two and easier to understand a function
with default parameters than to study the bodies of two functions. Furthermore, updating
one of the functions and neglecting to update the second is a common source of bugs.

Q. Given the problems with overloaded methods, why not always use default values instead?

A. Overloaded methods supply capabilities not available with default variables, such as varying
the list of parameters by type rather than just by number.

Q. When writing a class constructor, how do you decide what to put in the initialization and

what to put in the body of the constructor?

A. A simple rule of thumb is to do as much as possible in the initialization phase and
 initialize all member variables there. Some things such as computations and std::cout
 statements must be in the body of the constructor.
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Q. Can an overloaded method have a default parameter?

A. Yes. There is no reason not to combine these powerful features. One or more of the
overloaded methods can have their own default values, following the normal rules for default
variables in any method.

Q. Why is horseradish hot?

A. It contains isothiocyanate.

A root native to Russia and Hungary that belongs to the mustard family, horseradish
 contains the mustard-like oil isothiocyanate that brings tears to your eyes, pain to your nose,
and spicy flavor to your tastebuds. This only happens when the cells of the horseradish are
crushed. Vinegar stops this reaction and stabilizes the flavor.

Both the fumes and the heat deteriorate rapidly upon exposure to air, so horseradish freshly
diced has the maximum capability to inflict culinary suffering. As it gets older, it loses both
taste and bite.

The smell of wasabi, also called Japanese horseradish, is so sharply painful that it has
been used in experimental smoke detectors for the deaf.

Workshop
For the past hour, you have worked some more with member functions. You should answer a few 
questions and complete a couple of exercises to reinforce your knowledge of the topic.

Quiz
1. With overloaded functions, how does the compiler know which version to call?

A. The function’s name

B. The function’s number and type of parameters

C. The function’s return type

2. Can you use overloaded functions with defaults?

A. Yes

B. No

C. I don’t need this kind of pressure; I test poorly.

3. When destroying a pointer in a destructor, what should be assigned to the pointer for
safety?

A. nullptr

B. 0

C. Either a or b
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Answers
1. B. The compiler ignores the name and return type. Only the name, number, and parameter

type matter.

2. A. Absolutely, as long as the number and types of parameters remain unique among
 versions of the functions (because that’s how the compiler figures out which one to call).

3. C. Setting it to nullptr or 0 has the same effect, making it a null pointer.

Activities
1. Modify the Rectangle program to create another drawShape() method with two integer

parameters that include default values.

2. Modify the DeepCopy program to change dallas's speed after wichita's speed has
been changed. Does a change to dallas affect wichita? You’ve already seen that
changing wichita does not affect dallas.

To see solutions to these activities, visit this book’s website at http://cplusplus.cadenhead.org.

http://cplusplus.cadenhead.org
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Using Operator Overloading

What You’ll Learn in This Hour:

 How to overload operators in member functions

 How to overload the assignment operator to manage memory

 How to support classes with dynamically allocated variables

Operator Overloading
The built-in types in C++ work with operators such as addition (+) and multiplication (*), 

 making it easy to use these types in expressions:

int x = 17, y = 12, z;

z = x * (y + 5);

The C++ compiler knows to multiply and add integers when the * and + operators appear in 

an expression. The preceding code adds 5 to y, then multiplies the result by x. The z integer is 

assigned the value 289.

A class could provide the same functionality with multiply() and add() member  functions, 

but the syntax is a lot more complicated. Here’s a snippet of code for a Number class that 

 represents integers and performs the same work as the preceding example:

Number x(17);

Number y(12);

Number z, temp;

temp = y.add(5);

z = x.multiply(temp);

This code adds 5 to y and multiplies the result by x. The result is still 289.

As you can see, the code is longer and more complex. For a simpler approach, classes can be 

manipulated with operators by using a technique called operator overloading.
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Operator overloading defines what happens when a specific operator is used with an object of 

a class. Almost all operators in C++ can be overloaded.

Expressions written using operators are easier to read and understand.

For your first exploration of operator overloading, the Counter program in Listing 15.1 creates 

a class of that name. A Counter object will be used in counting, loops, and other tasks where a 

number must be incremented, decremented, or monitored.

LISTING 15.1 The Full Text of Counter.cpp

 1: #include <iostream>

 2:  

 3: class Counter

 4: {

 5: public:

 6:     Counter();

 7:     ~Counter(){}

 8:     int getValue() const { return value; }

 9:     void setValue(int x) { value = x; }

10:   

11: private:

12:     int value;

13: };

14:   

15: Counter::Counter():

16: value(0)

17: {}

18:   

19: int main()

20: {

21:     Counter c;

22:     std::cout << "The value of c is " << c.getValue() 

23: << std::endl;

24:     return 0;

25: }

This program creates a counter and displays its current value:

The value of c is 0

As it stands, this is pretty plain-vanilla stuff. The class is defined in lines 3–13 and has only one 

member variable, an int named value. The default constructor, which is declared on line 6 

and implemented on lines 15–17, initializes the member variable to 0.

Unlike a built-in int, the Counter object can’t be incremented, decremented, added, assigned, 

or manipulated with operators. It can’t display its value easily, either.

The following sections address these shortcomings.
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Writing an Increment Method
Operator overloading provides functionality that would otherwise be missing in user-defined 

classes such as Counter. When you implement an operator for a class, you are said to be 

 overloading that operator.

The most common way to overload an operator in a class is to use a member function. The 

 function declaration takes this form:

returnType operatorsymbol(parameter list)

{

   // body of overloaded member function

}

The name of the function is operator followed by the operator being defined, such as 

+ or ++. The returnType is the function’s return type and the parameter list holds zero, one, or two

 parameters (depending on the operator).

The Counter2 program in Listing 15.2 illustrates how to overload the increment operator ++.

LISTING 15.2 The Full Text of Counter2.cpp

 1: #include <iostream>

 2:  

 3: class Counter

 4: {

 5: public:

 6:     Counter();

 7:     ~Counter(){}

 8:     int getValue() const { return value; }

 9:     void setValue(int x) { value = x; }

10:     void increment() { ++value; }

11:     const Counter& operator++();

12:   

13: private:

14:     int value;

15: };

16:   

17: Counter::Counter():

18: value(0)

19: {}

20: 

21: const Counter& Counter::operator++()

22: {

23:     ++value;

24:     return *this;

25: }
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26:   

27: int main()

28: {

29:     Counter c;

30:     std::cout << "The value of c is " << c.getValue() 

31: << std::endl;

32:     c.increment();

33:     std::cout << "The value of c is " << c.getValue()

34: << std::endl;

35:     ++c;

36:     std::cout << "The value of c is " << c.getValue() 

37: << std::endl;

38:     Counter a = ++c;

39:     std::cout << "The value of a: " << a.getValue();

40:     std::cout << " and c: " << c.getValue() << std::endl;

41:     return 0;

42: }

This program increments the Counter object several times and creates a second object, displaying 

the values as it proceeds:

The value of c is 0

The value of c is 1

The value of c is 2

The value of a: 3 and c: 3

On line 35, you can see that the increment operator is invoked on an object of the Counter 

class:

++c;

This is interpreted by the compiler as a call to the implementation of operator++ shown on 

lines 21–25. This member function increments the member variable value and then dereferences 

the this pointer to return the current object. Because it returns the current object, it can be 

assigned to the variable a in line 38.

If the Counter object allocated memory, it would be important to override the copy constructor. 

In this case, the default copy constructor works fine.

Note that the value returned is a Counter reference, thereby avoiding the creation of an extra 

temporary object. It is a const reference because the value is not changed by the function using 

the object.
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Overloading the Postfix Operator
The preceding project used the prefix version of the ++ increment operator, which raises the 

 question of how the postfix operator could be overloaded. The prefix and postfix operators are 

both ++, so the name of the overloaded member function is not useful to distinguish between 

the two.

The way to handle this and overload the postfix operator is to include a int variable as the only 

parameter to the operator++() member function. The integer won’t be used; it’s just a signal 

that the function defines the postfix operator.

As you learned in an earlier hour, the prefix operator changes a variable’s value before returning 

it in expressions. The postfix operator returns the value before incrementing or decrementing it.

To do this, in an overloaded member function, a temporary object must be created to hold the 

original value while the value of the original object is incremented. The temporary object is 

returned because the postfix operator requires the original value, not the incremented value.

The temporary object must be returned by value and not by reference. Otherwise, it goes out of 

scope as soon as the function returns.

The Counter3 program in Listing 15.3 demonstrates how to overload the prefix and the postfix 

operators.

LISTING 15.3 The Full Text of Counter3.cpp

 1: #include <iostream>

 2:  

 3: class Counter

 4: {

 5: public:

 6:     Counter();

 7:     ~Counter(){}

 8:     int getValue() const { return value; }

 9:     void setValue(int x) { value = x; }

10:     const Counter& operator++();   // prefix

11:     const Counter operator++(int); // postfix

12:   

13: private:

14:     int value;

15: };

16:   

17: Counter::Counter():

18: value(0)

19: {}

20: 

21: const Counter& Counter::operator++() // prefix
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22: {

23:     ++value;

24:     return *this;

25: }

26: 

27: const Counter Counter::operator++(int) // postfix

28: {

29:     Counter temp(*this);

30:     ++value;

31:     return temp;

32: }

33:   

34: int main()

35: {

36:     Counter c;

37:     std::cout << "The value of c is " << c.getValue() 

38: << std::endl;

39:     c++;

40:     std::cout << "The value of c is " << c.getValue() 

41: << std::endl;

42:     ++c;

43:     std::cout << "The value of c is " << c.getValue() 

44: << std::endl;

45:     Counter a = ++c;

46:     std::cout << "The value of a: " << a.getValue();

47:     std::cout << " and c: " << c.getValue() << std::endl;

48:     a = c++;

49:     std::cout << "The value of a: " << a.getValue();

50:     std::cout << " and c: " << c.getValue() << std::endl;

51:     return 0;

52: }

This program overloads the prefix and postfix increment operators and uses them in several 

statements:

The value of c is 0

The value of c is 1

The value of c is 2

The value of a: 3 and c: 3

The value of a: 3 and c: 4

The postfix operator is declared on line 11 and implemented on lines 27–32. Note that the int 

parameter in the function declaration on line 27 is not used in any fashion. It isn’t even given a 

variable name.
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Overloading the Addition Operator
The increment operator is a unary operator, which means that it takes only one operand. The 

addition operator (+) is a binary operator which adds two operands together, which adds a new 

wrinkle to how overloading works.

The next version of the Counter class will be able to add two Counter objects together using 

the + operator:

Counter var1, var2, var3;

var3 = var1 + var2;

Although you could write an add() method that takes two Counter objects and returns a 

Counter that contains their sum, a better technique is to overload the + operator. The Counter4 

program in Listing 15.4 shows how to do this.

LISTING 15.4 The Full Text of Counter4.cpp

 1: #include <iostream>

 2:  

 3: class Counter

 4: {

 5: public:

 6:     Counter();

 7:     Counter(int initialValue);

 8:     ~Counter(){}

 9:     int getValue() const { return value; }

10:     void setValue(int x) { value = x; }

11:     Counter operator+(const Counter&);

12:   

13: private:

14:     int value;

15: };

16:   

17: Counter::Counter(int initialValue):

18: value(initialValue)

19: {}

20: 

21: Counter::Counter():

22: value(0)

23: {}

24: 

25: Counter Counter::operator+(const Counter &rhs)

26: {

27:     return Counter(value + rhs.getValue());

28: }

29: 

30: int main()
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31: {

32:     Counter alpha(4), beta(13), gamma;

33:     gamma = alpha + beta;

34:     std::cout << "alpha: " << alpha.getValue() << std::endl;

35:     std::cout << "beta: " << beta.getValue() << std::endl;

36:     std::cout << "gamma: " << gamma.getValue() 

37: << std::endl;

38:     return 0;

39: }

The program adds two Counter objects, storing the sum in a third:

alpha: 4

beta: 13

gamma: 17

As you can see from the output, the gamma object contains the sum of alpha plus beta.

The addition operator is invoked on line 33:

gamma = alpha + beta;

The compiler interprets the statement as if you had written the following code:

gamma = alpha.operator+(beta);

Line 33 invokes the operator+ member function declared on line 11 and defined on lines 25–28.

There are two operands in an addition expression. The left operand is the object whose 

operator+() function is called. The right operand is the parameter of this method.

If you had written an add() method to add two objects together, it could have been called with 

a statement of this kind:

gamma = alpha.add(beta);

Operator overloading makes programs easier to use and understand by replacing explicit 

function calls.

Limitations on Operator Overloading
Although operator overloading is one of the most powerful features in the C++ language, it has 

limits.

Operators for built-in types such as int cannot be overloaded. The precedence order cannot 

be changed, and the arity of the operator—whether it is unary, binary, or trinary—cannot be 

altered, either. You also cannot make up new operators, so there’s no way to do something such 

as declaring ** to be the exponentiation (power of) operator.
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Operator overloading is one of the aspects of C++ most overused and abused by new programmers. 

It is tempting to create new and interesting uses for some of the more obscure operators, but these 

often lead to code that is confusing and difficult to read.

CAUTION

Doing counterintuitive things like making the + operator subtract and the * operator add is amusing 
the first time you try it, but no one would do that in their code.

The real danger lies in the well-intentioned but idiosyncratic use of an operator, such as using + to 
concatenate a series of letters or / to split a string. There is good reason to consider these uses, 
but better reason to proceed with caution. The goal of overloading operators is to increase usability 
and understanding.

operator=
The C++ compiler provides each class with a default constructor, destructor, and copy constructor. 

A fourth member function supplied by the compiler, when one has not been specified in the class, 

defines the assignment operator.

The assignment operator’s overloaded function takes the form operator=() and is called when 

you assign a value to an object, as in this code:

Tricycle wichita;

wichita.setSpeed(4);

Tricycle dallas;

dallas.setSpeed(13);

dallas = wichita;

The Tricycle object named wichita is created and its member variable speed given the 

value 4, followed by the Tricycle dallas with the value 13. The final statement uses the 

assignment operator =.

Because of this assignment, dallas’s speed variable is assigned the value of that variable from 

wichita. After this statement executes, dallas.speed will have the value 4 rather than 13.

In this case, the copy constructor is not called because dallas already exists, so there’s no need 

to construct it. The compiler calls the assignment operator instead.

Hour 14, “Calling Advanced Functions,” described the difference between a shallow (member-

wise) copy and a deep copy. A shallow copy just copies the members, making both objects point 

to the same area on the heap. A deep copy allocates the necessary memory.

The same issue crops up here, with an added wrinkle. Because the object dallas already exists 

and has memory allocated, that memory must be deleted to prevent a memory leak.
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For this reason, the first thing you must do when overloading the assignment operator is delete 

the memory assigned to its pointers with statements such as this:

delete speed;

This works, but what happens if you assign dallas to itself:

dallas = dallas;

No programmer is likely to do this on purpose, but the class must be able to handle this 

situation because it can happen by accident. References and dereferenced pointers might hide 

the fact that an object is being assigned to itself.

If you don’t guard against this problem, the self-assignment causes dallas to delete its own 

memory allocation. After it does, when it’s ready to copy the memory from the right side of the 

assignment, that memory is gone.

This can be prevented if the assignment operator checks to see whether the right side of the 

assignment operator is the object itself using the this pointer.

The Assignment class in Listing 15.5 uses overloading to define a custom assignment operator 

and avoids the same-object problem.

LISTING 15.5 The Full Text of Assignment.cpp

 1: #include <iostream>

 2:   

 3: class Tricycle

 4: {

 5: public:

 6:     Tricycle(); 

 7:     // copy constructor and destructor use default

 8:     int getSpeed() const { return *speed; }

 9:     void setSpeed(int newSpeed) { *speed = newSpeed; }

10:     Tricycle operator=(const Tricycle&);

11:   

12: private:

13:     int *speed;

14: };

15:   

16: Tricycle::Tricycle()

17: {

18:     speed = new int;

19:     *speed = 5;

20: }

21:   

22: Tricycle Tricycle::operator=(const Tricycle& rhs)
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23: {

24:     if (this == &rhs)

25: return *this;

26:     delete speed;

27:     speed = new int;

28:     *speed = rhs.getSpeed();

29:     return *this;

30: }

31:   

32: int main()

33: {

34:     Tricycle wichita;

35:     std::cout << "Wichita's speed: " << wichita.getSpeed() 

36: << std::endl;

37:     std::cout << "Setting Wichita's speed to 6 ..." << std::endl;

38:     wichita.setSpeed(6);

39:     Tricycle dallas;

40:     std::cout << "Dallas' speed: " << dallas.getSpeed() 

41: << std::endl;

42:     std::cout << "Copying Wichita to Dallas ..." << std::endl;

43:     wichita = dallas;

44:     std::cout << "Dallas' speed: " << dallas.getSpeed() 

45: << std::endl;

46:     return 0;

47: }

Assignment produces this output when run:

Wichita's speed: 5

Setting Wichita's speed to 6 ...

Dallas' speed: 5

Copying Wichita to Dallas ...

Dallas' speed: 5

Listing 15.5 brings back the Tricycle class, omitting the copy constructor and destructor 

to save room. On line 10, the assignment operator is declared, and on lines 22–30, it is defined.

On line 24, the current object (the Tricycle being assigned to) is tested to see if it is the same 

as the Tricycle being assigned. This is done by checking whether the address of rhs is the 

same as the address stored in the this pointer.

The equality operator (==) also can be overloaded, enabling you to determine for yourself what 

it means for your objects to be equal.
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NOTE

On lines 26–27 of Listing 15.5, the member variable speed is deleted and recreated on the heap. 
Although this is not strictly necessary, it is good programming practice that avoids memory leaks 
when working with variable-length objects that do not overload their assignment operators.

Conversion Operators
What happens when you try to assign a variable of a built-in type, such as int or unsigned 

short, to an object of a user-defined class? Listing 15.6 brings back the Counter class and 

attempts to assign a variable of type int to a Counter object.

CAUTION

Listing 15.6 will not compile, for reasons you’ll learn after preparing it.

LISTING 15.6 The Full Text of Counter5.cpp

 1: #include <iostream>

 2:   

 3: class Counter

 4: {

 5: public:

 6:     Counter();

 7:     ~Counter() {}

 8:     int getValue() const { return value; }

 9:     void setValue(int newValue) { value = newValue; }

10: private:

11:     int value;

12: };

13:   

14: Counter::Counter():

15: value(0)

16: {}

17:   

18: int main()

19: {

20:     int beta = 5;

21:     Counter alpha = beta;

22:     std::cout << "alpha: " << alpha.getValue() << std::endl;

23:     return 0;

24: }
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When you attempt to compile this program, it fails with an error about trying to convert an int 

to a Counter object in line 21.

The Counter class declared on lines 3–12 only has a default constructor. It declares no particular 

member function for turning an int into a Counter object, so line 21 triggers a compile error. 

The compiler cannot figure out, absent such a function, that an int should be assigned to the 

object’s member variable value.

The Counter6 program (Listing 15.7) corrects this by creating a conversion operator: a constructor 

that takes an int and produces a Counter object.

LISTING 15.7 The Full Text of Counter6.cpp

 1: #include <iostream>

 2:   

 3: class Counter

 4: {

 5: public:

 6:     Counter();

 7:     ~Counter() {}

 8:     Counter(int newValue);

 9:     int getValue() const { return value; }

10:     void setValue(int newValue) { value = newValue; }

11: private:

12:     int value;

13: };

14:   

15: Counter::Counter():

16: value(0)

17: {}

18: 

19: Counter::Counter(int newValue):

20: value(newValue)

21: {}

22:   

23: int main()

24: {

25:     int beta = 5;

26:     Counter alpha = beta;

27:     std::cout << "alpha: " << alpha.getValue() << std::endl;

28:     return 0;

29: }

This code compiles successfully and produces the following line of output:

alpha: 5



ptg18189307

226 HOUR 15: Using Operator Overloading

The important change is on line 8, where the constructor is overloaded to take an int, and on 

lines 19–21, where the constructor is implemented. The effect of this constructor is to create a 

Counter out of an int.

Given this constructor, the compiler knows to call it when an integer is assigned to a Counter 

object in line 26.

The int() Operator
The preceding project demonstrated how to assign a built-in type to an object. It’s also possible 

to assign an object to a built-in value, which is attempted in this code:

Counter gamma(18);

int delta = gamma;

cout << "delta : " << delta  << "\n";

If this code was added to the Counter6 program, it would not compile successfully. The class 

knows how to create a Counter from an integer, but it does not know how to accomplish the 

reverse and create an integer from a Counter.

C++ provides conversion operators that can be added to a class to specify how to do implicit 

 conversions to built-in types. The Counter7 program in Listing 15.8 illustrates this.

LISTING 15.8 The Full Text of Counter7.cpp

 1: #include <iostream>

 2:   

 3: class Counter

 4: {

 5: public:

 6:     Counter();

 7:     ~Counter() {}

 8:     Counter(int newValue);

 9:     int getValue() const { return value; }

10:     void setValue(int newValue) { value = newValue; }

11:     operator unsigned int();

12: private:

13:     int value;

14: };

15:   

16: Counter::Counter():

17: value(0)

18: {}

19: 

20: Counter::Counter(int newValue):

21: value(newValue)

22: {}
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23: 

24: Counter::operator unsigned int()

25: {

26:     return (value);

27: }

28:   

29: int main()

30: {

31:     Counter epsilon(19);

32:     int zeta = epsilon;

33:     std::cout << "zeta: " << zeta << std::endl;

34:     return 0;

35: }

This program produces the following output:

zeta: 19

On line 11, the conversion operator is declared. Note that it has no return value. The implemen-

tation of this function is on lines 24–27. Line 26 returns the value of the object’s value member 

variable. The integer returned by the function matches the type in the function declaration.

Now the compiler knows how to turn integers into Counter objects and vice versa, so they can 

be assigned to one another freely.

Note that conversion operators do not specify a return value, despite the fact that they are 

returning a converted value.

Summary
Operator overloading is one of the most powerful aspects of the C++ language. By defining 

how operators behave in the classes that you design, you make it easier to work with objects of 

those classes.

Almost all operators in C++ can be overloaded.

As you have seen in working with built-in types, using operators to manipulate objects is 

considerably easier than calling member functions. It also results in programs that are easier 

to comprehend.

This assumes, of course, that the behavior of overloaded operators is consistent with how they 

work on built-in types. 
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Q&A
Q. Why would you overload an operator when you can just create a member function?

A. It is easier to use overloaded operators when their behavior is well understood. Less code
is required to accomplish the same task, and your classes can mimic the functionality of
the built-in types.

Q. What is the difference between the copy constructor and the assignment operator?

A. The copy constructor creates a new object with the same values as an existing object. The
assignment operator changes an existing object so that it has the same values as another
object.

Q. What happens to the int used in the postfix operators?

A. Nothing. That int is never used, except as a flag to overload the postfix and prefix operators.

Q. Who was the former boyfriend that Alanis Morissette was singing about in “You Oughta

Know”?

A. The incendiary breakup song from her 1995 album Jagged Little Pill, which reached No. 1
and has sold more than 33 million copies, was about a real person she dated. Morissette
admitted that much in interviews but has never publicly identified the person.

The No. 1 suspect in the press has been the actor Dave Coulier, who played Joey in the
sitcom Full House and its 2016 version Fuller House. He broke up with Morissette shortly
before the release of the album.

In 2008, Coulier told the Calgary Herald that the song was about him. Describing what
it was like when he first heard it on the radio, Coulier revealed, “I said, ‘Wow, this girl is
angry.’ And then I said, ‘Oh man, I think it’s Alanis.’ I listened to the song over and over
again, and I said, ‘I think I have really hurt this person.’”

He oughta know.

Workshop
Now that you’ve worked with overloaded operators, you can answer a few questions and do a 
couple of exercises to firm up your knowledge of the hour.

Quiz 
1. Why can’t you create totally new operators like ** for exponentiation?

A. That operator isn’t part of the language.

B. Because it uses an existing operator, *.

C. The premise of your question is questionable. You can create new operators.
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2. Why is the overload syntax different for prefix and postfix increment and decrement
operations?

A. Because prefix and postfix return different values

B. Because one uses ++ and the other uses ––

C. The syntax is not different.

3. What do conversion operators do?

A. Convert objects to built-in types

B. Convert built-in types to objects

C. Both a and b

Answers
1. A. Adding new operators such as ** requires a change to the compiler, because ** is not

part of the language and so the compiler would not know what to do with it.

2. A. The behavior differs totally depending on whether the ++ or –– operator appears before
or after a variable, so the code must follow the same behavior. Technically, it doesn’t have
to mimic the behavior, but users of your class will expect it to work that way.

3. A. They convert from the object type to a built-in type.

Activities
1. Modify the Assignment program (Listing 15.6) to overload the equality operator (==). Use

that operator to compare two Tricycle object’s speeds.

2. Modify the Counter2 program (Listing 15.5) to also overload the minus operator and use it
to perform simple subtraction.

To see solutions to these activities, visit this book’s website at http://cplusplus.cadenhead.org.

http://cplusplus.cadenhead.org
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HOUR 16
Extending Classes with 

Inheritance

What You’ll Learn in This Hour:

 What inheritance is

 How to derive one class from another

 How to access base member functions from derived classes

 How to override base member functions

 What protected access is and how to use it

What Is Inheritance?
It is a fundamental aspect of human intelligence to seek out, recognize, and create relationships 

among concepts. We build hierarchies, networks, and other interrelationships to explain and 

understand the ways that things interact. C++ embodies this in inheritance hierarchies, making 

it possible for a class to inherit from another class.

Concepts can be categorized in many different ways. When you look at your dog, what do you 

see? A biologist sees a network of interacting organs, a physicist sees atoms and forces at work, a 

taxonomist sees a representative of the species canine domesticus, and a child sees a companion 

and protector.

Each category often can be divided further into subcategories. To a taxonomist, a dog is 

a canine. A canine is a kind of mammal. A mammal is a kind of animal—and so forth. 

Taxonomists divide the world of living things into kingdom, phyla, class, order, family, genus, 

and species.

The taxonomist’s hierarchy establishes an “is a” relationship—a dog is a canine. There are “is a” 

relationships everywhere. A Nissan Leaf is a kind of car, which is a kind of vehicle. A cannoli is 

a kind of dessert, which is a kind of food.

When something is described as a kind of something else, this means it is a specialization of 

that thing. That is, a car is a special kind of vehicle. Cars and buses are both vehicles. They are 

distinguished by their specific characteristics but share things in common with each other and 

other vehicles.
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Inheritance and Derivation
These relationships are conveyed by inheritance. The concept of a dog inherits all the features 

of a mammal. Because it is a mammal, it moves and breathes air; by definition, all  mammals 

move and breathe air. The concept of a dog adds to that definition the idea of barking, a 

 wagging tail, and so forth. A dog has traits unique to dogs and traits common to all mammals.

Dogs can be divided further into hunting dogs and terriers; terriers can be divided into Yorkshire 

Terriers, Dandie Dinmont Terriers, and so forth.

A Yorkshire Terrier is a kind of terrier; therefore, it is a kind of dog; therefore, a kind of mammal; 

therefore, a kind of animal; and, therefore, a kind of living thing.

C++ attempts to represent these relationships by defining classes that derive from one another. 

Derivation is a way of expressing the “is a” relationship. You derive a new class, Dog, from 

the class Mammal. You don’t have to state explicitly that dogs move because they inherit that 

from Mammal. Because it derives from Mammal, Dog automatically moves.

A class that adds new functionality to an existing class is said to derive from that original class. 

The original class is said to be the new class’s base class.

If the Dog class derives from the Mammal class, Mammal is a base class of Dog. Derived classes are 

supersets of their base classes. Just as in the real world dogs add certain features to the idea of a 

mammal, the Dog class will add certain member functions or data to the Mammal class.

A base class can have more than one derived class. Just as dogs, cats, and horses are all types of 

mammals, their classes would all derive from the Mammal class.

Animals and Inheritance
To facilitate the discussion of derivation and inheritance, this section focuses on the relationships 

among a number of classes representing animals. Imagine that you have been asked to design 

a children’s game—a simulation of a farm.

The game will have a whole set of farm animals, including horses, cows, dogs, cats, sheep, and 

so forth. You will create member functions for these classes so that they can act in the ways the 

child might expect, but for now you’ll stub out each function with a simple cout statement.

Stubbing out a function means to write only enough to show that the function was called, leaving 

the details for later. The stub function serves as a placeholder. You do not have to fill in all the 

details as you work on the problem.
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The Syntax of Derivation
To create a class that inherits from another class in C++, in the class declaration, put a colon 

after the class name and specify the access level of the class (public, protected, or private) 

and the class from which it derives.

Access control will be covered later. Here’s an example class declaration with an access level of 

public:

class Dog : public Mammal

This statement creates a derived class called Dog that inherits from the base class Mammal. The 

Mammal1 program in Listing 16.1 creates a full Dog class derived from Mammal.

LISTING 16.1 The Full Text of Mammal1.cpp

 1: #include <iostream>

 2:   

 3: enum BREED { YORKIE, CAIRN, DANDIE, SHETLAND, DOBERMAN, LAB };

 4:   

 5: class Mammal

 6: {

 7: public:

 8:     // constructors

 9:     Mammal();

10:     ~Mammal();

11:   

12:     // accessors

13:     int getAge() const;

14:     void setAge(int);

15:     int getWeight() const;

16:     void setWeight();

17:   

18:     // other member functions

19:     void speak();

20:     void sleep();

21:   

22: protected:

23:     int age;

24:     int weight;

25: };

26:   

27: class Dog : public Mammal

28: {

29: public:

30:     // constructors

31:     Dog();

32:     ~Dog();
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33:   

34:     // accessors

35:     BREED getBreed() const;

36:     void setBreed(BREED);

37:   

38:     // other member functions

39:     // wagTail();

40:     // begForFood();

41:   

42: protected:

43:     BREED itsBreed;

44: };

45: 

46: int main()

47: {

48:     return 0;

49: }

This program will compile but it has no output; it is only a set of class declarations without 

implementations. Nonetheless, there is much to see here.

On lines 5–25, the Mammal class is declared. Because all mammals have an age and weight, 

these attributes are represented in this class by the member variables age and weight.

Six member functions are defined in the Mammal class: four accessor member functions, 

speak(), and sleep().

The Dog class inherits from Mammal, as indicated on line 27. Every Dog object has three member 

variables: age, weight, and breed. Note that the class declaration for Dog in lines 27–44 does 

not include two of these variables, age and weight. Dog objects inherit these variables from 

the Mammal class along with all of Mammal’s member functions except for the copy operator, 

the  constructors, and the destructor.

Private Versus Protected
A new access keyword, protected, has been introduced on lines 22 and 42 of the Mammal1 

program in Listing 16.1. Previously, class data had been declared private. However, private 

members are not available to derived classes. You could make the age and weight member 

variables public, but that is not desirable. You don’t want other classes accessing these data 

members directly.

What you want is to make the data visible to this class and its derived classes, which is 

 accomplished by protected. Protected data members and functions are fully visible to derived 

classes, but are otherwise private.
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There are three access specifiers: public, protected, and private. If a function has an 

instance of a class, it can access all the public member data and functions of that class. The 

member functions of a class, however, can access all the private data members and functions of 

any class from which they derive.

Therefore, the function Dog::wagTail() can access the private data breed and can access the 

protected data in the Mammal class.

Even if other classes are layered into the hierarchy between Mammal and Dog (for example, 

DomesticAnimals), the Dog class will still be able to access the protected members of Mammal, 

assuming that these other classes have public inheritance. 

The Mammal2 program in Listing 16.2 demonstrates how to create objects of type Dog and 

access its data and member functions.

LISTING 16.2 The Full Text of Mammal2.cpp

 1: #include <iostream>

 2:   

 3: enum BREED { YORKIE, CAIRN, DANDIE, SHETLAND, DOBERMAN, LAB };

 4:   

 5: class Mammal

 6: {

 7: public:

 8:     // constructors

 9:     Mammal(): age(2), weight(5) {}

10:     ~Mammal(){}

11:   

12:     // accessors

13:     int getAge() const { return age; }

14:     void setAge(int newAge) { age = newAge; }

15:     int getWeight() const { return weight; }

16:     void setWeight(int newWeight) { weight = newWeight; }

17:   

18:     // other member functions

19:     void speak() const { std::cout << "Mammal sound!\n"; }

20:     void sleep() const { std::cout << "Shhh. I'm sleeping.\n"; }

21:   

22: protected:

23:     int age;

24:     int weight;

25: };

26:   

27: class Dog : public Mammal

28: {

29: public:

30:     // constructors
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31:     Dog(): breed(YORKIE) {}

32:     ~Dog() {}

33:   

34:     // accessors

35:     BREED getBreed() const { return breed; }

36:     void setBreed(BREED newBreed) { breed = newBreed; }

37:   

38:     // other member functions

39:     void wagTail() { std::cout << "Tail wagging ...\n"; }

40:     void begForFood() { std::cout << "Begging for food ...\n"; }

41:   

42: private:

43:     BREED breed;

44: };

45:   

46: int main()

47: {

48:     Dog fido;

49:     fido.speak();

50:     fido.wagTail();

51:     std::cout << "Fido is " << fido.getAge() << " years old\n";

52:     return 0;

53: }

When you run Mammal2, this output appears:

Mammal sound!

Tail wagging ...

Fido is 2 years old

On lines 5–25, the Mammal class is declared with several inline member functions. On lines 

27–44, the Dog class is declared as a derived class of Mammal. These declarations give all Dog 

objects an age, weight, and breed.

On line 48, a Dog is declared called fido which inherits all the attributes of a Mammal and the 

attributes of a Dog. Thus, fido knows how to wagTail(), speak(), and sleep().

Constructors and Destructors
An important aspect to understand about inheritance in C++ is that more than one constructor 

is called when an object of a derived class is created.

Dog objects are Mammal objects. When fido was created in the Mammal2 program, his base 

class constructor was called first, creating a Mammal, and then the Dog constructor was called, 

completing the construction of the Dog object. Because fido was created with no parameters, 

the default constructor was called in each case.
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When the fido object is destroyed, the Dog destructor is called first, followed by the destructor 

for the Mammal part of Fido. Each destructor is given an opportunity to clean up after its own 

part of the object. Constructors are called in order of inheritance. Destructors are called in reverse 

order of inheritance.

The Mammal3 program in Listing 16.3 demonstrates how constructors and destructors are called 

for objects belonging to derived classes.

LISTING 16.3 The Full Text of Mammal3.cpp

 1: #include <iostream>

 2:   

 3: enum BREED { YORKIE, CAIRN, DANDIE, SHETLAND, DOBERMAN, LAB };

 4:   

 5: class Mammal

 6: {

 7: public:

 8:     // constructors

 9:     Mammal();

10:     ~Mammal();

11:   

12:     // accessors

13:     int getAge() const { return age; }

14:     void setAge(int newAge) { age = newAge; }

15:     int getWeight() const { return weight; }

16:     void setWeight(int newWeight) { weight = newWeight; }

17:   

18:     // other member functions

19:     void speak() const { std::cout << "Mammal sound!\n"; }

20:     void sleep() const { std::cout << "shhh. I'm sleeping.\n"; }

21:   

22: protected:

23:     int age;

24:     int weight;

25: };

26:   

27: class Dog : public Mammal

28: {

29: public:

30:     // constructors

31:     Dog();

32:     ~Dog();

33:   

34:     // accessors

35:     BREED getBreed() const { return breed; }

36:     void setBreed(BREED newBreed) { breed = newBreed; }

37:   
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38:     // other member functions

39:     void wagTail() { std::cout << "Tail wagging ...\n"; }

40:     void begForFood() { std::cout << "Begging for food ...\n"; }

41:   

42: private:

43:     BREED breed; 

44: };

45:   

46: Mammal::Mammal():

47: age(3),

48: weight(5)

49: {

50:     std::cout << "Mammal constructor ...\n";

51: }

52:   

53: Mammal::~Mammal()

54: {

55:     std::cout << "Mammal destructor ...\n";

56: }

57:   

58: Dog::Dog():

59: breed(YORKIE)

60: {

61:     std::cout << "Dog constructor ...\n";

62: }

63:   

64: Dog::~Dog()

65: {

66:     std::cout << "Dog destructor ...\n";

67: }

68:   

69: int main()

70: {

71:     Dog fido; // create a dog

72:     fido.speak();

73:     fido.wagTail();

74:     std::cout << "Fido is " << fido.getAge() << " years old\n";

75:     return 0;

76: }

Here’s the program’s output:

Mammal constructor ...

Dog constructor ...

Mammal sound!

Tail wagging ...

Fido is 3 years old

Dog destructor ...

Mammal destructor ...
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The Mammal3 program displays a line of text as constructors and destructors are called. 

When fido is created in line 71, Mammal's constructor is called, followed by Dog's constructor. 

At that point the Dog fully exists, and its member functions can be called. When fido goes 

out of scope as the main() function ends on line 76, Dog’s destructor is called, followed by a call 

to Mammal’s destructor.

Passing Arguments to Base Constructors
As you work on the classes developed during this hour, it is possible that you’ll want to overload 

the constructor of Mammal to set a specific age and overload the Dog constructor to set a breed. 

How do you get the age and weight parameters passed up to the right constructor in Mammal? 

What if Dog needs to initialize weight but Mammal doesn’t?

Base class initialization can be performed during class initialization by writing the base class 

name followed by the parameters expected by the base class, as demonstrated in the Mammal4 

program (Listing 16.4).

LISTING 16.4 The Full Text of Mammal4.cpp

  1: #include <iostream>

  2:   

  3: enum BREED { YORKIE, CAIRN, DANDIE, SHETLAND, DOBERMAN, LAB };

  4:   

  5: class Mammal

  6: {

  7: public:

  8:     // constructors

  9:     Mammal();

 10:     Mammal(int age);

 11:     ~Mammal();

 12:   

 13:     // accessors

 14:     int getAge() const { return age; }

 15:     void setAge(int newAge) { age = newAge; }

 16:     int getWeight() const { return weight; }

 17:     void setWeight(int newWeight) { weight = newWeight; }

 18:   

 19:     // other member functions

 20:     void speak() const { std::cout << "Mammal sound!\n"; }

 21:     void sleep() const { std::cout << "Shhh. I'm sleeping.\n"; }

 22:   

 23: protected:

 24:     int age;

 25:     int weight;

 26: };
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 27:   

 28: class Dog : public Mammal

 29: {

 30: public:

 31:     // constructors

 32:     Dog();

 33:     Dog(int age);

 34:     Dog(int age, int weight);

 35:     Dog(int age, BREED breed);

 36:     Dog(int age, int weight, BREED breed);

 37:     ~Dog();

 38:   

 39:     // accessors

 40:     BREED getBreed() const { return breed; }

 41:     void setBreed(BREED newBreed) { breed = newBreed; }

 42:   

 43:     // other member functions

 44:     void wagTail() { std::cout << "Tail wagging ...\n"; }

 45:     void begForFood() { std::cout << "Begging for food ...\n"; }

 46:   

 47: private:

 48:     BREED breed;

 49: };

 50:   

 51: Mammal::Mammal():

 52: age(1),

 53: weight(5)

 54: {

 55:     std::cout << "Mammal constructor ...\n";

 56: }

 57:   

 58: Mammal::Mammal(int age):

 59: age(age),

 60: weight(5)

 61: {

 62:     std::cout << "Mammal(int) constructor ...\n";

 63: }

 64:   

 65: Mammal::~Mammal()

 66: {

 67:     std::cout << "Mammal destructor ...\n";

 68: }

 69:   

 70: Dog::Dog():

 71: Mammal(),

 72: breed(YORKIE)

 73: {

 74:     std::cout << "Dog constructor ...\n";
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 75: }

 76:   

 77: Dog::Dog(int age):

 78: Mammal(age),

 79: breed(YORKIE)

 80: {

 81:     std::cout << "Dog(int) constructor ...\n";

 82: }

 83:   

 84: Dog::Dog(int age, int newWeight):

 85: Mammal(age),

 86: breed(YORKIE)

 87: {

 88:     weight = newWeight;

 89:     std::cout << "Dog(int, int) constructor ...\n";

 90: }

 91:   

 92: Dog::Dog(int age, int newWeight, BREED breed):

 93: Mammal(age),

 94: breed(breed)

 95: {

 96:     weight = newWeight;

 97:     std::cout << "Dog(int, int, BREED) constructor ...\n";

 98: }

 99:   

100: Dog::Dog(int age, BREED newBreed):

101: Mammal(age),

102: breed(newBreed)

103: {

104:     std::cout << "Dog(int, BREED) constructor ...\n";

105: }

106:   

107: Dog::~Dog()

108: {

109:     std::cout << "Dog destructor ...\n";

110: }

111: 

112: int main()

113: {

114:     Dog fido;

115:     Dog rover(5);

116:     Dog buster(6, 8);

117:     Dog yorkie (3, YORKIE);

118:     Dog dobbie (4, 20, DOBERMAN);

119:     fido.speak();

120:     rover.wagTail();

121:     std::cout << "Yorkie is " 

122: << yorkie.getAge() << " years old\n";
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123:     std::cout << "Dobbie weighs " 

124: << dobbie.getWeight() << " pounds\n";

125:     return 0;

126: }

The Mammal4 program displays the following output, which has line numbers added so that 

they can be referenced in this section:

 1: Mammal constructor ...

 2: Dog constructor ...

 3: Mammal(int) constructor ...

 4: Dog(int) constructor ...

 5: Mammal(int) constructor ...

 6: Dog(int, int) constructor ...

 7: Mammal(int) constructor ...

 8: Dog(int, BREED) constructor ...

 9: Mammal(int) constructor ...

10: Dog(int, int, BREED) constructor ...

11: Mammal sound!

12: Tail wagging ...

13: Yorkie is 3 years old

14: Dobbie weighs 20 pounds

15: Dog destructor ...

16: Mammal destructor ...

17: Dog destructor ...

18: Mammal destructor ...

19: Dog destructor ...

20: Mammal destructor ...

21: Dog destructor ...

22: Mammal destructor ...

23: Dog destructor ...

24: Mammal destructor ...

In Listing 16.4, Mammal’s constructor has been overloaded on line 10 to take an integer, the 

Mammal object’s age. The implementation on lines 58–63 initializes age with the value passed 

into the constructor and weight with the value 5.

Dog has overloaded five constructors on lines 32–36. The first is the default constructor. The 

 second takes the age, which is the same parameter that the Mammal constructor takes. The third 

constructor takes both the age and the weight; the fourth takes the age and breed; and the fifth 

takes the age, weight, and breed.

NOTE

Note that on line 71 of Listing 16.4, Dog’s default constructor calls Mammal’s default constructor. 
Although it is not strictly necessary to do this, it serves to demonstrate that you intended to call the 
base constructor, which takes no parameters. The base constructor would be called in any case, but 
actually doing so makes your intentions explicit.
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The implementation for the Dog constructor, which takes an integer, is on lines 77–82. In its 

 initialization phase, Dog initializes its base class, passing in the parameter; and then it initializes 

its breed.

Another Dog constructor is on lines 84–90. This one takes two parameters. It initializes its base 

class by calling the appropriate constructor, but this time also assigns weight to its base class’s 

variable weight. Note that you cannot assign to the base class variable in the initialization 

phase. So, you cannot write this code:

Dog::Dog(int age, int newWeight):

Mammal(age),

breed(YORKIE),

weight(newWeight) // error!

{

    std::cout << "Dog(int, int) constructor ...\n";

}

Why? You are not allowed to initialize a value in the base class. Similarly, you may not write the 

following:

Dog::Dog(int newAge, int newWeight):

Mammal(newAge, newWeight), // error!

breed(YORKIE)

{

    std::cout << "Dog(int, int) constructor ...\n";

}

Mammal does not have a constructor that takes the weight parameter. You must do this 

assignment within the body of the Dog constructor.

Dog::Dog(int newAge, int weight):

Mammal(newAge), // base constructor

breed(YORKIE) // initialization

{

    weight = weight; // assignment

}

Walk through the remaining constructors to make sure you are comfortable with how they work. 

Take note of what is initialized and what must wait for the body of the constructor.

The output has been numbered so that each line can be referred to in this analysis. Lines 1–2 of 

the output represent the instantiation of fido, using the default constructor.

In the output, lines 3–4 represent the creation of rover. Lines 5–6 represent buster. Note that 

the Mammal constructor that was called is the constructor that takes one integer, but the Dog 

 constructor is the constructor that takes two integers.
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After all the objects are created, they are used and then go out of scope. As each of the five 

objects is destroyed, first the Dog destructor and then the Mammal destructor is called.

This is an example of overloading base class member functions within a derived class.

Overriding Functions
A Dog object has access to all the member functions in class Mammal, as well as to any  member 

functions, such as wagTail(), that the declaration of the Dog class might add. It also can 

 override a base class function. Overriding a function means changing the implementation of a 

base class function in a derived class. When you make an object of the derived class, the correct 

function is called.

When a derived class creates a member function with the same return type and signature as a 

member function in the base class, but with a new implementation, it is said to be overriding 

that function.

When you override a function, it must agree in return type and in signature with the function 

in the base class. The signature is the function prototype other than the return type: that is, the 

name, the parameter list, and the keyword const, if used.

The signature of a function is its name, and the number and type of its parameters. The 

 signature does not include the return type.

The Mammal5 program (Listing 16.5) illustrates what happens when the Dog class overrides 

the speak() member function in the Mammal class. To save room, the accessor functions 

have been left out of these classes.

LISTING 16.5 The Full Text of Mammal5.cpp

 1: #include <iostream>

 2:   

 3: enum BREED { YORKIE, CAIRN, DANDIE, SHETLAND, DOBERMAN, LAB };

 4:   

 5: class Mammal

 6: {

 7: public:

 8:     // constructors

 9:     Mammal() { std::cout << "Mammal constructor ...\n"; }

10:     ~Mammal() { std::cout << "Mammal destructor ...\n"; }

11:   

12:     // other member functions

13:     void speak() const { std::cout << "Mammal sound!\n"; }

14:     void sleep() const { std::cout << "Shhh. I'm sleeping.\n"; }

15:   

16: protected:
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17:     int age;

18:     int weight;

19: };

20:   

21: class Dog : public Mammal

22: {

23: public:

24:     // constructors

25:     Dog() { std::cout << "Dog constructor ...\n"; }

26:     ~Dog() { std::cout << "Dog destructor ...\n"; }

27:   

28:     // other member functions

29:     void wagTail() { std::cout << "Tail wagging ...\n"; }

30:     void begForFood() { std::cout << "Begging for food ...\n"; }

31:     void speak() const { std::cout << "Woof!\n"; }

32:   

33: private:

34:     BREED breed;

35: };

36:   

37: int main()

38: {

39:     Mammal bigAnimal;

40:     Dog fido;

41:     bigAnimal.speak();

42:     fido.speak();

43:     return 0;

44: }

Here’s the output of Mammal5:

Mammal constructor ...

Mammal constructor ...

Dog constructor ...

Mammal sound!

Woof!

Dog destructor ...

Mammal destructor ...

Mammal destructor ...

On line 31, the Dog class overrides the speak() member function of the Mammal class, causing 

Dog objects to say “Woof!” when the function is called. On line 39, a Mammal object is created, 

causing the first line of output to be displayed when the Mammal constructor is called. On line 40, 

a Dog object is created, causing the next two lines of output, where the Mammal constructor and 

then the Dog constructor are called.
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On line 41, the Mammal object calls its speak() function. On line 42, the Dog object calls its 

speak() function. The output reflects that the correct functions were called. Finally, the two 

objects go out of scope and their destructors are called.

Overloading Versus Overriding
The terms overloading and overriding sound similar and do similar things in C++. When you 

 overload a member function, you create more than one function with the same name but with 

different signatures. When you override a member function, you create a function in a derived 

class with the same name as a function in the base class and with the same signature.

Hiding the Base Class Member Function
In the Mammal5 program you just created, the Dog class’s member function speak() hides the 

base class’s function. This is just what is wanted, but it can have unexpected results. If Mammal 

has a move() member function that is overloaded, and Dog overrides that function, the Dog 

function hides all the Mammal functions with that name.

If Mammal overloads move() as three functions—one that takes no parameters, one that takes 

an integer, and one that takes an integer and a direction—and Dog overrides just the move() 

function which takes no parameters, it will not be easy to access the other two functions using a 

Dog object. The Mammal6 program in Listing 16.6 illustrates this problem.

LISTING 16.6 The Full Text of Mammal6.cpp

 1: #include <iostream>

 2:   

 3: class Mammal

 4: {

 5: public:

 6:     void move() const { std::cout << "Mammal moves one step\n"; }

 7:     void move(int distance) const 

 8: { std::cout << "Mammal moves " << distance <<" steps\n"; }

 9: protected:

10:     int age;

11:     int weight;

12: };

13:   

14: class Dog : public Mammal

15: {

16: public:

17:     void move() const { std::cout << "Dog moves 5 steps\n"; }

18: }; // you may receive a warning that you are hiding a function!

19:   

20: int main()

21: {
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22:     Mammal bigAnimal;

23:     Dog fido;

24:     bigAnimal.move();

25:     bigAnimal.move(2);

26:     fido.move();

27:     // fido.move(10);

28:     return 0;

29: }

The Mammal6 program produces this output when run:

Mammal moves one step

Mammal moves 2 steps

Dog moves 5 steps

All the extra member functions and data have been removed from these classes. On lines 6–8, 

the Mammal class declares the two overloaded move() functions. On line 17, Dog overrides the 

version of move() with no parameters. These are invoked on lines 24–26, and the output reflects 

this as executed.

Line 27, however, is commented out because it would causes a compiler error. Although the 

Dog class could have called the move(int) function if it had not overridden the version of 

move() without parameters, now that it has done so it must override both to use both. This 

is  reminiscent of the rule that if you supply any constructor the compiler will no longer  supply 

a default constructor.

It is a common mistake to hide a base class member function, when you intend to override it, by 

forgetting to include the keyword const. That keyword is part of the signature, and leaving it off 

changes the signature and thus hides the member function instead of overriding it.

Some compilers will give you a warning as you write the Mammal6 program somewhere 

around lines 14–18. Although you are allowed to hide base class member functions from derived 

classes, it often is done by mistake, prompting some compilers to issue a warning.

Calling the Base Member Function
If you have overridden a base member function, it is still possible to call it by fully qualifying the 

name of the function. You do this by writing the base name, followed by two colons, and then 

the function name. For example:

Mammal::move()

It would have been possible to rewrite line 27 in Listing 16.6 so that it would compile:

27:     fido.Mammal::move(10);
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This calls the Mammal member function explicitly. This hour’s final project, the Mammal7 

 program in Listing 16.7, illustrates this idea.

LISTING 16.7 The Full Text of Mammal7.cpp

 1: #include <iostream>

 2:   

 3: class Mammal

 4: {

 5: public:

 6:     void move() const { std::cout << "Mammal moves one step\n"; }

 7:     void move(int distance) const 

 8: { std::cout << "Mammal moves " << distance << " steps\n"; }

 9: protected:

10:     int age;

11:     int weight;

12: };

13:   

14: class Dog : public Mammal

15: {

16: public:

17:     void move() const;

18: };

19:   

20: void Dog::move() const

21: {

22:     std::cout << "Dog moves ...\n";

23:     Mammal::move(3);

24: }

25:   

26: int main()

27: {

28:     Mammal bigAnimal;

29:     Dog fido;

30:     bigAnimal.move(2);

31:     fido.Mammal::move(6);

32:     return 0;

33: }

Mammal7 produces this output when run:

Mammal moves 2 steps

Mammal moves 6 steps

On line 28, a Mammal object is created; and on line 29, a Dog object is created. The member 

function call on line 30 invokes the move() function of Mammal, which takes an integer.
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If you wanted to invoke move(int) on the Dog object, there’s a problem. Dog overrides the 

move() function but doesn’t overload it and does not provide a version that takes an int. 

This is solved by the explicit call to the base class move(int) function on line 31.

Summary
If this is your first introduction to class inheritance, you might find yourself wondering if 

the work of creating base classes and derived classes is worth the effort. Deciding where to 

put  member variables and functions among a set of related classes can take some time and 

planning.

The reason to do the work is that it makes your classes more powerful and reusable.

When you’ve designed a set of related classes well, you can extend a base class and design a new 

derived class much more easily. You only have to focus on the things that make the new class 

different from its parent. 

Q&A
Q. Are inherited members and functions passed along to subsequent generations? If Dog

derives from Mammal and Mammal derives from Animal, does Dog inherit Animal’s

 functions and data?

A. Yes. As derivation continues, derived classes inherit the sum of all the functions and data
in all their base classes.

Q. Can a derived class make a public base function private?

A. Yes, and it will then remain private for all subsequent derivations.

Q. When did Constantinople become Istanbul?

A. The city of Istanbul, Turkey, became known as Constantinople during the reign of the
East Roman emperor Theodosius II from 408 to 450. The name honored the emperor
Constantine the Great, who had made the city the eastern capital of the Roman empire.

Some centuries later, the name Istanbul began to be used as well, which roughly translates
to mean “The City.”

After the creation of the Republic of Turkey, a law was passed in 1930 that asked the rest
of the world to start calling the city Istanbul. To put some teeth in the request, the Turkish
postal service began rejecting packages addressed to Constantinople.

The name change inspired the 1953 song “Istanbul (Not Constantinople),” performed by the
Four Lads, and a 1990 remake by They Might Be Giants.

“Why did Constantinople get the works?” the song asks. “That’s nobody’s business but
the Turks.”
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Workshop
Now that you’ve had the chance to work with inheritance, you can answer a few questions and do 
a couple of exercises to firm up your knowledge.

Quiz 
1. What access keyword limits a member variable to an object and its derived classes?

A. public

B. private

C. protected

 2 In what order are constructors called in a derived class?

A. In order of inheritance downward

B. In order of inheritance upward

C. In order the classes are defined in the source code

3. Why would you want to hide a base class member function in a derived class?

A. To prevent it from being used

B. To call that function

C. There’s no reason to do this

Answers
1. C. The protected keyword limits access to member variables and member functions so

that derived classes can use them but no other classes can.

2. A. The base class constructor is called first, followed by the derived class constructor.

3. A. Sometimes the behavior of the derived class is different enough from the base that
some of the base member functions are inappropriate. Because it is not always possible
to modify the base class (if you do not have the source for it, for example), this is the
 mechanism to use.

Activities
1. In the Mammal6 program (Listing 16.6), uncomment line 27. What happens? What do you

have to do to make it work?

2. Modify the Mammal2 program (Listing 16.2) to use a text string rather than an enumerated
data type as the breed.

To see solutions to these activities, visit this book’s website at http://cplusplus.cadenhead.org.

http://cplusplus.cadenhead.org
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HOUR 17
Using Polymorphism and 

Derived Classes

What You’ll Learn in This Hour:

 What virtual member functions are

 How to use virtual destructors and copy constructors

 How virtual member functions enable you to use your base classes polymorphically

 The costs and dangers in using virtual member functions

Polymorphism Implemented with Virtual 
Member Functions
The previous hour emphasized the fact that a Dog object is a Mammal object. This meant that the 

Dog object inherited the attributes (data) and capabilities (member functions) of its base class. 

The relationship between a base class and derived class runs deeper than that in C++.

Polymorphism allows derived objects to be treated as if they were base objects. For example, 

suppose you create specialized Mammal types such as Dog, Cat, Horse, and so forth. All these 

derive from Mammal, and Mammal has a number of member functions factored out of the derived 

classes. One such function is speak(), which implements the capability of all mammals to 

make noise.

You’d like to teach each of the derived types to specialize how they speak. A dog says “woof,” 

a cat says “meow,” and so forth. Each class must be able to override how it implements the 

speak() member function. 

At the same time, when you have a collection of Mammal objects such as a Farm with Dog, Cat, 

Horse, and Cow objects, you want the farm to be able to tell each of these objects to speak() 

without knowing or caring about the details of how they implement the speak() function. 

When you treat these objects as if they are all mammals by calling the Mammal.speak() 

 function, you are treating them polymorphically.
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NOTE

Polymorphism is an unusual word that means the ability to take many forms. It comes from the 
roots poly, which means many, and morph, which means form. You are dealing with Mammal in its 
many forms.

You can use polymorphism to declare a pointer to Mammal and assign to it the address of a Dog 

object you create on the heap. Because a Dog “is a” Mammal, the following is perfectly legal:

Mammal* pMammal = new Dog;

You then can use this pointer to invoke any member function on Mammal. What you would like 

is for those functions that are overridden in Dog to call the correct function.

Virtual member functions let you do that. When you treat these objects polymorphically, you 

call the member function on the Mammal pointer and don’t know or care what the actual object 

is or how it implements its function.

A virtual member function is declared with the virtual keyword. Here’s an example from this 

hour’s first project:

virtual void speak() const { std::cout << "Mammal speak!\n"; }

The Mammal8 program in Listing 17.1 illustrates how virtual functions implement polymorphism. 

LISTING 17.1 The Full Text of Mammal8.cpp

 1: #include <iostream>

 2:   

 3: class Mammal

 4: {

 5: public:

 6:     Mammal():age(1) { std::cout << "Mammal constructor ...\n"; }

 7:     ~Mammal() { std::cout << "Mammal destructor ...\n"; }

 8:     void move() const { std::cout << "Mammal, move one step\n"; }

 9:     virtual void speak() const { std::cout << "Mammal speak!\n"; }

10:   

11: protected:

12:     int age;

13: };

14:   

15: class Dog : public Mammal

16: {

17: public:

18:     Dog() { std::cout << "Dog constructor ...\n"; }

19:     ~Dog() { std::cout << "Dog destructor ..\n"; }

20:     void wagTail() { std::cout << "Wagging tail ...\n"; }
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21:     void speak() const { std::cout << "Woof!\n"; }

22:     void move() const { std::cout << "Dog moves 5 steps ...\n"; }

23: };

24:   

25: int main()

26: {

27:     Mammal *pDog = new Dog;

28:     pDog->move();

29:     pDog->speak();

30:     return 0;

31: }

Mammal8 displays this output:

Mammal constructor ...

Dog constructor ...

Mammal, move one step

Woof!

On line 9, Mammal is provided a virtual member function called speak(). The designer of 

the class thereby signals that she expects this class to eventually be another class’s base type. 

The derived class will probably want to override this function.

On line 27, a pointer to Mammal is created, pDog, but it is assigned the address of a new Dog 

object. Because a Dog is a Mammal, this is a legal assignment. The pointer then is used to call the 

move() function. Because the compiler knows pDog only to be a Mammal, it looks to the Mammal 

object to find the move() function.

Next, the pointer calls the speak() function. Because speak() is virtual, the speak() function 

overridden in Dog is invoked.

As far as the calling function knew, it had a Mammal pointer, but a function of Dog was called. 

In fact, if you have an array of pointers to Mammal, each of which points to a subclass of 

Mammal, you can call each in turn and the correct function is called. The Mammal9 program 

(Listing 17.2) illustrates this idea.

LISTING 17.2 The Full Text of Mammal9.cpp

 1: #include <iostream>

 2:   

 3: class Mammal

 4: {

 5: public:

 6:     Mammal():age(1) {  }

 7:     ~Mammal() { }

 8:     virtual void speak() const { std::cout << "Mammal speak!\n"; }

 9: protected:
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10:     int age;

11: };

12:   

13: class Dog : public Mammal

14: {

15: public:

16:     void speak() const { std::cout << "Woof!\n"; }

17: };

18:   

19: class Cat : public Mammal

20: {

21: public:

22:     void speak() const { std::cout << "Meow!\n"; }

23: };

24:   

25: class Horse : public Mammal

26: {

27: public:

28:     void speak() const { std::cout << "Whinny!\n"; }

29: };

30:   

31: class Pig : public Mammal

32: {

33: public:

34:     void speak() const { std::cout << "Oink!\n"; }

35: };

36: 

37: int main()

38: {

39:     Mammal* array[5];

40:     Mammal* ptr;

41:     int choice, i;

42:     for (i = 0; i < 5; i++)

43:     {

44: std::cout << "(1) dog (2) cat (3) horse (4) pig: ";

45: std::cin >> choice;

46: switch (choice)

47: {

48: case 1: 

49: ptr = new Dog;

50: break;

51: case 2: 

52: ptr = new Cat;

53: break;

54: case 3: 

55: ptr = new Horse;

56: break;
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57: case 4: 

58: ptr = new Pig;

59: break;

60: default: 

61: ptr = new Mammal;

62: break;

63: }

64: array[i] = ptr;

65:     }

66:     for (i=0; i < 5; i++)

67:     {

68: array[i]->speak();

69:     }

70:     return 0;

71: }

Here’s a sample run of the Mammal9 program:

(1) dog (2) cat (3) horse (4) pig: 1

(1) dog (2) cat (3) horse (4) pig: 3

(1) dog (2) cat (3) horse (4) pig: 4

(1) dog (2) cat (3) horse (4) pig: 2

(1) dog (2) cat (3) horse (4) pig: 5

Woof!

Whinny!

Oink!

Meow!

Mammal speak!

This stripped-down program, which provides only the barest functionality to each class, 

illustrates virtual member functions in their purest form. Four classes are declared (Dog, Cat, 

Horse, and Pig), all derived from Mammal.

On line 8, Mammal’s speak() function is declared to be virtual. On lines 16, 22, 28, and 34, the 

four derived classes override the implementation of speak().

The user is prompted to pick which objects to create, and the pointers are added to the array in 

the for loop that begins on line 42.

NOTE

Note that at compile time it is impossible to know which objects will be created, and therefore, 
which speak() member functions will be invoked. The pointer ptr is bound to its object at runtime. 
This is called late binding or runtime binding, as opposed to static binding or compile-time binding.
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How Virtual Member Functions Work
When a derived object, such as a Dog object, is created, first the constructor for the base class 

is called, and then the constructor for the derived class is called. Figure 17.1 shows what the 

Dog object looks like after it is created. Note that the Mammal part of the object is contiguous in 

 memory with the Dog part.

Mammal

Dog

Dog Object

Mammal Part

FIGURE 17.1
The Dog object after it is created.

When a virtual function is created in an object, the object must keep track of that function. Many 

compilers build a virtual function table, called a v-table. One of these is kept for each type, and 

each object of that type keeps a virtual table pointer (called a v-pointer or vptr), which points to 

that table.

Each object’s v-pointer points to the v-table that, in turn, has a pointer to each of the virtual 

member functions. When the Mammal part of the Dog is created, the v-pointer is initialized to 

point to the virtual member functions for Mammal, as shown in Figure 17.2.

Mammal

Move

VPTR

&

Speak&

FIGURE 17.2
The v-table of a Mammal.



ptg18189307

How Virtual Member Functions Work 257

When the Dog constructor is called and the Dog part of this object is added, the v-pointer is 

adjusted to point to the virtual function overrides (if any) in the Dog object, as illustrated 

in Figure 17.3.

Mammal

Dog

Mammal: Move ( )

VPTR

&

Dog: Speak ( )&

FIGURE 17.3
The v-table of a Dog.

When a pointer to a Mammal is used, the v-pointer continues to point to the correct function, 

depending on the real type of the object. Thus, when speak() is invoked, the correct function 

is invoked.

You Can’t Get There from Here
If the Dog object had a member function called wagTail() that was not in the Mammal class, 

you couldn’t use the pointer to Mammal to access that function (unless you cast it to be a pointer 

to Dog). Because wagTail() is not a virtual function and is not in a Mammal object, you can’t 

get there without either a Dog object or a Dog pointer.

Although you can transform the Mammal pointer into a Dog pointer, there usually are better 

and safer ways to call the wagTail() member function. C++ frowns on explicit casts because 

they are error-prone. This subject is addressed in depth when multiple-inheritance is covered 

in Hour 18, “Making Use of Advanced Polymorphism,” and again when templates are covered in 

Hour 24, “Dealing with Exceptions and Error Handling.”

Slicing
Note that the virtual function magic only operates on pointers and references. Passing an object 

by value will not enable the virtual member functions to be invoked. The Mammal10 program 

in Listing 17.3 illustrates this problem.

LISTING 17.3 The Full Text of Mammal10.cpp

 1: #include <iostream>

 2:   

 3: class Mammal

 4: {
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 5: public:

 6:    Mammal():age(1) {  }

 7:     ~Mammal() { }

 8:     virtual void speak() const { std::cout << "Mammal speak!\n"; }

 9: protected:

10:     int age;

11: };

12:   

13: class Dog : public Mammal

14: {

15: public:

16:     void speak() const { std::cout << "Woof!\n"; }

17: };

18:   

19: class Cat : public Mammal

20: {

21: public:

22:     void speak()const { std::cout << "Meow!\n"; }

23: };

24:   

25: void valueFunction(Mammal);

26: void ptrFunction(Mammal*);

27: void refFunction(Mammal&);

28:   

29: int main()

30: {

31:     Mammal* ptr=0;

32:     int choice;

33:     while (1)

34:     {

35: bool fQuit = false;

36: std::cout << "(1) dog (2) cat (0) quit: ";

37: std::cin >> choice;

38: switch (choice)

39: {

40: case 0: 

41: fQuit = true;

42: break;

43: case 1: 

44: ptr = new Dog;

45: break;

46: case 2: 

47: ptr = new Cat;

48: break;

49: default: 

50: ptr = new Mammal;

51: break;

52: }
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53: if (fQuit)

54: {

55:             break;

56: }

57: ptrFunction(ptr);

58: refFunction(*ptr);

59: valueFunction(*ptr); 

60:     }

61:     return 0;

62: }

63:   

64: void valueFunction(Mammal mammalValue)  // This function is called last

65: {

66:     mammalValue.speak();

67: }

68:   

69: void ptrFunction (Mammal *pMammal)

70: {

71:     pMammal->speak();

72: }

73:   

74: void refFunction (Mammal &rMammal)

75: {

76:     rMammal.speak();

77: }

Here’s a sample run and the corresponding output:

(1) dog (2) cat (0) quit: 2

Meow!

Meow!

Mammal speak!

(1) dog (2) cat (0) quit: 1

Woof!

Woof!

Mammal speak!

(1) dog (2) cat (0) quit: 0

On lines 3–23, stripped-down versions of the Mammal, Dog, and Cat classes are declared. Three 

functions are declared: ptrFunction(), refFunction(), and valueFunction(). They take a 

pointer to a Mammal, a Mammal reference, and a Mammal object, respectively. All three functions 

then do the same thing: They call the speak() member function.

The user is prompted to choose a Dog or Cat; based on the choice he makes, a pointer to the 

 correct type is created in the switch statement in lines 38–52.
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In the first line of the output, the user chooses Dog. The Dog object is created on the heap in 

line 44. The Dog then is passed as a pointer, as a reference, and by value to the three functions. 

The pointer and references all invoke the virtual member functions, and the Dog->speak() 

member function is invoked. This is shown on the first two lines of output after the user’s choice.

The dereferenced pointer is passed by value, however. The function expects a Mammal object, 

so the compiler slices down the Dog object to just the Mammal part. At that point, the Mammal 

speak() function is called, as reflected in the third line of output after the user’s choice.

This experiment then is repeated for the Cat object, with similar results.

Virtual Destructors
It is permitted and even common in C++ to pass a pointer to a derived object when a pointer to 

a base object is expected. What happens when that pointer to a derived object is deleted? If the 

destructor is virtual, as it should be, the right thing happens—the derived class’s destructor is 

called. Because the derived class’s destructor will automatically invoke the base class’s destructor, 

the entire object will be properly destroyed.

The rule of thumb is this: If any of the functions in your class are virtual, the destructor also 

should be virtual.

Virtual Copy Constructors
As previously stated, no constructor can be virtual. Nonetheless, there are times when your 

program desperately needs to pass in a pointer to a base object and have a copy of the correct 

derived object that is created. A common solution to this problem is to create a clone member 

function in the base class and to make it virtual. A clone function creates a new copy of the 

current object and returns that object.

Because each derived class overrides the clone function, a copy of the derived class is created. 

The Mammal11 program (Listing 17.4) shows how this is used.

LISTING 17.4 The Full Text of Mammal11.cpp

 1: #include <iostream>

 2:   

 3: class Mammal

 4: {

 5: public:

 6:     Mammal():age(1) { std::cout << "Mammal constructor ...\n"; }

 7:     virtual ~Mammal() { std::cout << "Mammal destructor ...\n"; }

 8:     Mammal (const Mammal &rhs);

 9:     virtual void speak() const { std::cout << "Mammal speak!\n"; }

10:     virtual Mammal* clone() { return new Mammal(*this); } 

11:     int getAge() const { return age; }

12:   
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13: protected:

14:     int age;

15: };

16:   

17: Mammal::Mammal (const Mammal &rhs):age(rhs.getAge())

18: {

19:     std::cout << "Mammal copy constructor ...\n";

20: }

21:   

22: class Dog : public Mammal

23: {

24: public:

25:     Dog() { std::cout << "Dog constructor ...\n"; }

26:     virtual ~Dog() { std::cout << "Dog destructor ...\n"; }

27:     Dog (const Dog &rhs);

28:     void speak() const { std::cout << "Woof!\n"; }

29:     virtual Mammal* clone() { return new Dog(*this); }

30: };

31:   

32: Dog::Dog(const Dog &rhs):

33: Mammal(rhs)

34: {

35:     std::cout << "Dog copy constructor ...\n";

36: }

37:   

38: class Cat : public Mammal

39: {

40: public:

41:     Cat() { std::cout << "Cat constructor ...\n"; }

42:     virtual ~Cat() { std::cout << "Cat destructor ...\n"; }

43:     Cat (const Cat&);

44:     void speak() const { std::cout << "Meow!\n"; }

45:     virtual Mammal* Clone() { return new Cat(*this); }

46: };

47:   

48: Cat::Cat(const Cat &rhs):

49: Mammal(rhs)

50: {

51:     std::cout << "Cat copy constructor ...\n";

52: }

53:   

54: enum ANIMALS { MAMMAL, DOG, CAT};

55: const int numAnimalTypes = 3;

56: int main()

57: {

58:     Mammal *array[numAnimalTypes];

59:     Mammal *ptr;



ptg18189307

262 HOUR 17: Using Polymorphism and Derived Classes

60:     int choice, i;

61:     for (i = 0; i < numAnimalTypes; i++)

62:     {

63: std::cout << "(1) dog (2) cat (3) mammal: ";

64: std::cin >> choice;

65: switch (choice)

66: {

67: case DOG: 

68: ptr = new Dog;

69: break;

70: case CAT: 

71: ptr = new Cat;

72: break;

73: default: 

74: ptr = new Mammal;

75: break;

76: }

77: array[i] = ptr;

78:     }

79:     Mammal *otherArray[numAnimalTypes];

80:     for (i=0; i < numAnimalTypes; i++)

81:     {

82: array[i]->speak();

83: otherArray[i] = array[i]->clone();

84:     }

85:     for (i=0; i < numAnimalTypes; i++)

86:     {

87: otherArray[i]->speak();

88:     }

89:     return 0;

90: }

The following output demonstrates one run of the program:

 1: (1) dog (2) cat (3) mammal: 3

 2: Mammal constructor ...

 3: (1) dog (2) cat (3) mammal: 1

 4: Mammal constructor ...

 5: Dog constructor ...

 6: (1) dog (2) cat (3) mammal: 2

 7: Mammal constructor ...

 8: Cat constructor ...

 9: Mammal speak!

10: Mammal copy constructor ...

11: Woof!

12: Mammal copy constructor ...

13: Dog copy constructor ...

14: Meow!
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15: Mammal copy constructor ...

16: Mammal speak!

17: Woof!

18: Mammal speak!

Listing 17.4 is similar to the previous two listings, except that a new virtual function has been 

added to the Mammal class: clone(). This function returns a pointer to a new Mammal object by 

calling the copy constructor, passing in itself (*this) as a const reference.

Dog and Cat both override the clone() function, initializing their data and passing in copies of 

themselves to their own copy constructors. Because clone() is virtual, this effectively creates a 

virtual copy constructor, as shown in line 83.

The user is prompted to choose dogs, cats, or mammals, and these are created in lines 65–76. 

A pointer to each choice is stored in an array on line 77.

As the program iterates over the array, each object has its speak() and clone() functions 

called, in turn, in lines 82–83. The result of the clone() call is a pointer to a copy of the object, 

which then is stored in a second array in line 83.

On line 1 of the output, the user is prompted and responds with 3, choosing to create a 

 mammal. The Mammal constructor is called. On line 3, the user chooses 1 and a dog is  created. 

The Mammal and Dog constructors are invoked. Finally, on line 6, the user chooses 2 for 

a cat. The Mammal and Cat constructors are called.

Line 9 of the output represents the call to speak() on the first object, the Mammal from line 

82 (within the first for loop). The virtual speak() function is called, and the correct version of 

speak() is invoked. The clone() function then is called, and as this is also virtual, Mammal’s 

clone() function is invoked, causing the Mammal constructor to be called.

The same is repeated for Dog in lines 11–13 of the output, and then for Cat in lines 14–16. 

Finally, the new array is iterated (output lines 14–18, code lines 85–88), and each of the new 

objects has speak() invoked.

The difference between this approach and the use of a copy constructor is that you, as the 

 programmer, must explicitly call the clone() function. The copy constructor is called 

 automatically when an object is copied. Remember that you always can override the copy 

 function in a derived class. But that approach reduces the flexibility you have.

The Cost of Virtual Member Functions
Because objects with virtual member functions must maintain a v-table, some overhead is 

required to employ them. If you have a small class from which you do not expect to derive other 

classes, there might be no reason to have any virtual functions at all.
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After you declare any functions virtual, you’ve paid most of the price of the v-table (although 

each entry does add a small memory overhead). At that point, you want the destructor to be 

virtual, and the assumption will be that all other functions probably will also be virtual. Take a 

long hard look at any non-virtual functions, and be certain you understand why they are 

not virtual.

Summary
Polymorphism enables the same interface to be implemented with different member functions in 

a set of classes related by inheritance.

This makes it possible for related objects to be used in the same manner, even if each object 

implements the behavior differently.

Polymorphism achieves an important goal in object-oriented programming by letting similar 

objects handle related functionality by reusing an interface. 

Q&A
Q. Why not make all class functions virtual?

A. There is overhead with the first virtual function in the creation of a v-table. After that, the
overhead is trivial. Many C++ programmers feel that if one function is virtual, all others
should be. Other programmers disagree, believing that there should always be an explicit
reason for what you do in a program.

Q. If a function someFunc() is virtual in a base class and also is overloaded so as to take

either an integer or two integers, and the derived class overrides the function taking one

integer, what is called when a pointer to a derived object calls the two-integer function?

A. This causes the compiler to balk with an error. The overriding of the one-integer form of
the function hides the entire base class function. The compiler fails with a message stating
that the function requires only one integer.

Q. What is the origin of “Rudolph the Red-Nosed Reindeer”?

A. “Rudolph the Red-Nosed Reindeer” began as a 1939 poem by Robert May, a 34-year-old
copywriter for the Montgomery Ward department store in Chicago. May’s boss wanted
 something to give children in the store, and it became so popular that five million copies
were distributed in the ‘30s and ‘40s.

The poem was written when May’s wife was seriously ill. Like Rudolph, May’s four-year-old
daughter felt left out—her mother couldn’t do things with her like other mothers could.
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In 1949, Johnny Marks and singer Gene Autry recorded the song based on the poem, and 
it became one of the top-selling singles of all time.

The reindeer almost wasn’t named Rudolph. Two other names May proposed were Rollo 
and Reginald.

Workshop
You spent the past hour learning about polymorphism and derived classes. Now you should 
answer a few questions and do a couple of exercises to firm up that knowledge.

Quiz 
1. How does a C++ program know which virtual function to call when the objects are stored

in a variable of the base class type?

A. The function has a virtual keyword.

B. A v-table is used.

C. That’s not possible.

2. What type of member function cannot be virtual?

A. Constructor

B. Destructor

C. Clone

3. What is it called when a pointer is bound to an object at runtime, as in polymorphism?

A. Late binding

B. Static binding

C. Dereferencing

Answers
1. B. The v-table keeps track of this information for you. It is the overhead associated with this

table that makes virtual functions slightly more expensive to use than regular functions.

2. A. The constructor (including the copy constructor).

3. A. Late binding is when it occurs at runtime. Static binding is when it occurs during
 compilation.
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Activities
1. Modify the Mammal8 program by commenting out line 21: the speak() member function

within dog. Can you think of examples where it makes sense to do this?

2. Modify the Mammal10 program to remove the virtual on line 8 (definition of speak() in
the base class)? Can you see why the override functions are never called?

To see solutions to these activities, visit the book’s website at http://cplusplus.cadenhead.org.

http://cplusplus.cadenhead.org
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HOUR 18
Making Use of Advanced 

Polymorphism

What You’ll Learn in This Hour:

 What casting down is and why you might want to do it

 What abstract data types are

 What pure virtual functions are

Problems with Single Inheritance
In previous hours, derived objects were treated polymorphically with their base classes. 

You saw that if the base class has a member function speak() that is overridden in the derived 

class, a pointer to a base object that is assigned to a derived object will do the right thing. 

The Mammal12 program in Listing 18.1 illustrates this idea.

LISTING 18.1 The Full Text of Mammal12.cpp

 1: #include <iostream>

 2: 

 3: class Mammal

 4: {

 5: public:

 6:     Mammal():age(1) { std::cout << "Mammal constructor ...\n"; }

 7:     virtual ~Mammal() { std::cout << "Mammal destructor ...\n"; }

 8:     virtual void speak() const { std::cout << "Mammal speak!\n"; }

 9: protected:

10:     int age;

11: };

12: 

13: class Cat : public Mammal

14: {

15: public:

16:     Cat() { std::cout << "Cat constructor ...\n"; }

17:     ~Cat() { std::cout << "Cat destructor ...\n"; }

18:     void speak() const { std::cout << "Meow!\n"; }
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19: };

20: 

21: int main()

22: {

23:     Mammal *pCat = new Cat;

24:     pCat->speak();

25:     return 0;

26: }

When you run the Mammal12 program, the following output displays:

Mammal constructor ...

Cat constructor ...

Meow! 

On line 8, speak() is declared to be a virtual member function, then it is overridden on line 

18 and invoked on line 24. Note again that pCat is declared to be a pointer to Mammal, but the 

address of a Cat is assigned to it. As discussed in Hour 17, “Using Polymorphism and Derived 

Classes,” this is the essence of polymorphism.

What happens, however, if you want to add a member function to Cat that is inappropriate for 

Mammal? Suppose you want to add a function called purr(). Cats purr, but other mammals do 

not. You would declare your class like this:

class Cat: public Mammal

{

public:

    Cat() { std::cout << "Cat constructor ...\n"; }

    ~Cat() { std::cout << "Cat destructor ...\n"; }

    void speak() const { std::cout << "Meow!\n"; }

    void purr() const { std::cout << "Rrrrrrrr!\n"; }

};

The problem is this: If you now call purr() using your pointer to Mammal, you get a compiler 

error stating that “‘Purr’ is not a member of Mammal.”

When your compiler tries to resolve purr() in its Mammal virtual table, there is no entry. 

You can move this function up to the base class, but that is a bad idea. Although it works as an 

expedient, populating your base class with functions that are specific to derived classes is poor 

programming practice and a recipe for difficult-to-maintain code.

In fact, this entire problem is a reflection of bad design. Generally, if you have a pointer to 

a base class that is assigned to a derived class object, it is because you intend to use that object 

polymorphically, and in this case, you ought not even try to access functions that are specific to 

the derived class.
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The problem is not that you have such specific functions; it is that you are trying to get at them 

with the base class pointer. In an ideal world, when you have such a pointer you would not try 

to get at those functions.

But this is not an ideal world, and at times, you find yourself with a collection of base objects—for 

example, a zoo full of mammals. At one point or another, you might realize you have a Cat object 

and you want the darn thing to purr. In this case, there might be only one thing to do: cheat.

To cheat, cast your base class pointer to your derived type. You say to the compiler, “I know this 

is really a cat, so go and do what I tell you.”

To make this work, you’ll use the dynamic_cast operator. This operator ensures that when you 

cast, you cast safely.

Here’s how it works: If you have a pointer to a base class, such as Mammal, and you assign to it 

a pointer to a derived class, such as Cat, you can use the Mammal pointer polymorphically to 

access virtual functions. Then, if you need to get at the Cat object to call the purr() member 

function, you create a Cat pointer using the dynamic_cast operator to do so. At runtime, the 

base pointer is examined. If the conversion is proper, your new Cat pointer is fine. If the 

conversion is improper—you didn’t really have a Cat object after all—your new pointer will 

be null. The Mammal13 program in Listing 18.2 illustrates this.

LISTING 18.2 The Full Text of Mammal13.cpp

 1: #include <iostream>

 2: 

 3: class Mammal

 4: {

 5: public:

 6:     Mammal():age(1) { std::cout << "Mammal constructor ...\n"; }

 7:     virtual ~Mammal() { std::cout << "Mammal destructor ...\n"; }

 8:     virtual void speak() const { std::cout << "Mammal speak!\n"; }

 9: protected:

10:     int age;

11: };

12: 

13: class Cat: public Mammal

14: {

15: public:

16:     Cat() { std::cout << "Cat constructor ...\n"; }

17:     ~Cat() { std::cout << "Cat destructor ...\n"; }

18:     void speak() const { std::cout << "Meow!\n"; }

19:     void purr() const { std::cout << "Rrrrrrrrrrr!\n"; }

20: };

21: 

22: class Dog: public Mammal
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23: {

24: public:

25:     Dog() { std::cout << "Dog constructor ...\n"; }

26:     ~Dog() { std::cout << "Dog destructor ...\n"; }

27:     void speak() const { std::cout << "Woof!\n"; }

28: };

29: 

30: int main()

31: {

32:     const int numberMammals = 3;

33:     Mammal* zoo[numberMammals];

34:     Mammal* pMammal;

35:     int choice, i;

36:     for (i = 0; i < numberMammals; i++)

37:     {

38: std::cout << "(1) Dog (2) Cat: ";

39: std::cin >> choice;

40: if (choice == 1)

41: pMammal = new Dog;

42: else

43: pMammal = new Cat;

44: 

45: zoo[i] = pMammal;

46:     }

47: 

48:     std::cout << "\n";

49: 

50:     for (i = 0; i < numberMammals; i++)

51:     {

52: zoo[i]->speak();

53: 

54: Cat *pRealCat =  dynamic_cast<Cat *> (zoo[i]);

55: 

56: if (pRealCat)

57: pRealCat->purr();

58: else

59: std::cout << "Uh oh, not a cat!\n";

60: 

61: delete zoo[i];

62: std::cout << "\n";

63:     }

64: 

65:     return 0;

66: }
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When you run Mammal13, you’re asked three times to create either a Dog object or Cat 

object. After the third response, each object is tested by calling either speak() or speak() and 

purr(). Here’s sample output:

(1) Dog (2) Cat: 1

Mammal constructor ...

Dog constructor ...

(1) Dog (2) Cat: 2

Mammal constructor ...

Cat constructor ...

(1) Dog (2) Cat: 1

Mammal constructor ...

Dog constructor ...

Woof!

Uh oh, not a cat!

Dog destructor ...

Mammal destructor ...

Meow!

Rrrrrrrrrrr!

Cat destructor ...

Mammal destructor ...

Woof!

Uh oh, not a cat!

Dog destructor ...

Mammal destructor ...

On lines 38–45, the user is asked to choose to add either a Cat or a Dog object to the array of 

Mammal pointers. The for loop that begins in line 50 walks through the array and on line 52, each 

object’s virtual speak() member function is called. These functions respond polymorphically: Cats 

meow, and dogs say woof!

Cat objects should purr, but the purr() function must not be called on Dog objects. 

The dynamic_cast operator in line 54 ensures that the object is a Cat. When it is, the pointer 

will not equal null and passes the conditional test on line 56.

Abstract Data Types
Often, you will create a hierarchy of classes together. For example, you might create a Shape 

class as a base class to derive a Rectangle and a Circle. From Rectangle, you might derive 

Square as a special case of Rectangle.

Each of the derived classes overrides the draw() member function, the getArea() function, and 

so forth. Listing 18.3 illustrates a bare-bones implementation of the Shape class and its derived 

Circle and Rectangle classes.
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LISTING 18.3 The Full Text of Shape.cpp

  1: #include <iostream>

  2: 

  3: class Shape

  4: {

  5: public:

  6:     Shape() {}

  7:     virtual ~Shape() {}

  8:     virtual long getArea() { return -1; } // error

  9:     virtual long getPerim() { return -1; }

 10:     virtual void draw() {}

 11: };

 12: 

 13: class Circle : public Shape

 14: {

 15: public:

 16:     Circle(int newRadius):radius(newRadius) {}

 17:     ~Circle() {}

 18:     long getArea() { return 3 * radius * radius; }

 19:     long getPerim() { return 9 * radius; }

 20:     void draw();

 21: private:

 22:     int radius;

 23:     int circumference;

 24: };

 25: 

 26: void Circle::draw()

 27: {

 28:     std::cout << "Circle drawing routine here!\n";

 29: }

 30: 

 31: class Rectangle : public Shape

 32: {

 33: public:

 34:     Rectangle(int newLen, int newWidth):

 35: length(newLen), width(newWidth) {}

 36:     virtual ~Rectangle() {}

 37:     virtual long getArea() { return length * width; }

 38:     virtual long getPerim() { return 2 * length + 2 * width; }

 39:     virtual int getLength() { return length; }

 40:     virtual int getWidth() { return width; }

 41:     virtual void draw();

 42: private:

 43:     int width;

 44:     int length;

 45: };

 46: 
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 47: void Rectangle::draw()

 48: {

 49:     for (int i = 0; i < length; i++)

 50:     {

 51:         for (int j = 0; j < width; j++)

 52:             std::cout << "x ";

 53: 

 54:         std::cout << "\n";

 55:     }

 56: }

 57: 

 58: class Square : public Rectangle

 59: {

 60: public:

 61:     Square(int len);

 62:     Square(int len, int width);

 63:     ~Square() {}

 64:     long getPerim() { return 4 * getLength(); }

 65: };

 66: 

 67: Square::Square(int newLen):

 68:     Rectangle(newLen, newLen)

 69: {}

 70: 

 71: Square::Square(int newLen, int newWidth):

 72:     Rectangle(newLen, newWidth)

 73: {

 74:     if (getLength() != getWidth())

 75: std::cout << "Error, not a square ... a rectangle?\n";

 76: }

 77: 

 78: int main()

 79: {

 80:     int choice;

 81:     bool fQuit = false;

 82:     Shape * sp;

 83: 

 84:     while (1)

 85:     {

 86: std::cout << "(1) Circle (2) Rectangle (3) Square (0) Quit: ";

 87: std::cin >> choice;

 88: 

 89: switch (choice)

 90: {

 91: case 1:

 92: sp = new Circle(5);

 93: break;

 94: case 2:
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 95: sp = new Rectangle(4, 6);

 96: break;

 97: case 3:

 98: sp = new Square(5);

 99: break;

100: default:

101: fQuit = true;

102: break;

103: }

104: if (fQuit)

105: break;

106: 

107: sp->draw();

108: std::cout << "\n";

109:     }

110:     return 0;

111: }

When run, this program asks the user one or more times to choose between creating a circle, 

rectangle, or square. When 0 is chosen rather than a shape, it exits. Here’s a look at the output 

for a run:

(1) Circle (2) Rectangle (3) Square (0) Quit: 3

x x x x x

x x x x x

x x x x x

x x x x x

x x x x x

(1) Circle (2) Rectangle (3) Square (0) Quit: 2

x x x x x x

x x x x x x

x x x x x x

x x x x x x

(1) Circle (2) Rectangle (3) Square (0) Quit: 0

On lines 3–11, the Shape class is declared. The getArea() and getPerim() member functions 

return an error value, and draw() takes no action. Only specific types of shapes such as circles 

and rectangle can be drawn; shapes as an abstraction cannot be drawn.

Circle derives from Shape and overrides the three virtual member functions. Note that there 

is no reason to add the word virtual, because that is part of their inheritance. But there is no 

harm in doing so either, as shown in the Rectangle class on lines 36–41.

Square derives from Rectangle, and it too overrides the getPerim() member function, 

inheriting the rest of the functions defined in Rectangle.
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It is troubling, though, that it is possible to instantiate a Shape object, and it might be desirable 

to make that impossible. The Shape class exists only to provide an interface for the classes derived 

from it. It is an abstract data type, or ADT.

An abstract data type represents a concept (like a shape) rather than an object (like a circle). 

In C++, an ADT is always the base class to other classes, and it is not valid to make an instance 

of an ADT. Therefore, if you make Shape an ADT, it is not possible to make an instance of a 

Shape object.

Pure Virtual Functions
C++ supports the creation of abstract data types with pure virtual functions. A pure virtual 

function is a virtual function that must be overridden in the derived class. A virtual function is 

made pure by initializing it with 0, as in the following statement:

virtual void draw() = 0;

Any class with one or more pure virtual functions is an ADT, and it is illegal to instantiate 

an object of a class that is an ADT. Trying to do so causes a compile-time error. Putting a pure 

virtual function in your class signals two things to clients of your class:

 Don’t make an object of this class; derive from it.

 Make sure to override the pure virtual function.

Any class that derives from an ADT inherits the pure virtual function as pure, so it must  override 

every pure virtual function if it wants to instantiate objects. Therefore, if Rectangle inherits 

from Shape, and Shape has three pure virtual functions, Rectangle must override all three or 

it, too, will be an ADT.

A virtual function is declared to be abstract by writing = 0 after the function declaration, as in 

this statement:

virtual long getArea() = 0;

Here’s a rewrite of the Shape class to be an abstract data type:

class Shape

{

public:

     Shape() {}

     virtual ~Shape() {}

     virtual long getArea() = 0; 

     virtual long getPerim() = 0;

     virtual void draw() = 0;

private:

};
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If this definition of Shape were substituted in lines 3–11 of Listing 18.3, it would become impossible 

to make an object of class Shape.

Implementing Pure Virtual Functions
Typically, the pure virtual functions in an abstract base class are never implemented. Because 

no objects of that type are ever created, there is no reason to provide implementations, and the 

ADT works purely as the definition of an interface to objects that derive from it.

It is possible, however, to provide an implementation to a pure virtual function. The function 

then can be called by objects derived from the ADT, perhaps to provide common functionality to 

all the overridden functions.

The Shape2 program in Listing 18.4 defines Shape as an ADT and includes an implementation 

for the pure virtual function draw(). The Circle class overrides draw(), as it must, and then 

chains up to the base class function for additional functionality.

In this example, the additional functionality is simply an additional message displayed. A more 

robust graphical class could set up a shared drawing mechanism, perhaps setting up a window 

that all derived classes will use.

LISTING 18.4 The Full Text of Shape2.cpp

  1: #include <iostream>

  2: 

  3: class Shape

  4: {

  5: public:

  6:     Shape() {}

  7:     virtual ~Shape() {}

  8:     virtual long getArea() = 0;

  9:     virtual long getPerim()= 0;

 10:     virtual void draw() = 0;

 11: private:

 12: };

 13: 

 14: void Shape::draw()

 15: {

 16:     std::cout << "Abstract drawing mechanism!\n";

 17: }

 18: 

 19: class Circle : public Shape

 20: {

 21: public:

 22:     Circle(int newRadius):radius(newRadius) {}

 23:     ~Circle() {}

 24:     long getArea() { return 3 * radius * radius; }
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 25:     long getPerim() { return 9 * radius; }

 26:     void draw();

 27: private:

 28:     int radius;

 29:     int circumference;

 30: };

 31: 

 32: void Circle::draw()

 33: {

 34:     std::cout << "Circle drawing routine here!\n";

 35:     Shape::draw();

 36: }

 37: 

 38: class Rectangle : public Shape

 39: {

 40: public:

 41:     Rectangle(int newLen, int newWidth):

 42: length(newLen), width(newWidth) {}

 43:     virtual ~Rectangle() {}

 44:     long getArea() { return length * width; }

 45:     long getPerim() { return 2 * length + 2 * width; }

 46:     virtual int getLength() { return length; }

 47:     virtual int getWidth() { return width; }

 48:     void draw();

 49: private:

 50:     int width;

 51:     int length;

 52: };

 53: 

 54: void Rectangle::draw()

 55: {

 56:     for (int i = 0; i < length; i++)

 57:     {

 58: for (int j = 0; j < width; j++)

 59: std::cout << "x ";

 60: 

 61:         std::cout << "\n";

 62:     }

 63:     Shape::draw();

 64: }

 65: 

 66: class Square : public Rectangle

 67: {

 68: public:

 69:     Square(int len);

 70:     Square(int len, int width);

 71:     ~Square() {}

 72:     long getPerim() {return 4 * getLength();}

 73: };
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 74: 

 75: Square::Square(int newLen):

 76:     Rectangle(newLen, newLen)

 77: {}

 78: 

 79: Square::Square(int newLen, int newWidth):

 80:     Rectangle(newLen, newWidth)

 81: {

 82:     if (getLength() != getWidth())

 83: std::cout << "Error, not a square ... a rectangle?\n";

 84: }

 85: 

 86: int main()

 87: {

 88:     int choice;

 89:     bool fQuit = false;

 90:     Shape * sp;

 91: 

 92:     while (1)

 93:     {

 94: std::cout << "(1) Circle (2) Rectangle (3) Square (0) Quit: ";

 95: std::cin >> choice;

 96: 

 97: switch (choice)

 98: {

 99: case 1:

100: sp = new Circle(5);

101: break;

102: case 2:

103: sp = new Rectangle(4, 6);

104: break;

105: case 3:

106: sp = new Square(5);

107: break;

108: default:

109: fQuit = true;

110: break;

111: }

112: if (fQuit)

113: break;

114: sp->draw();

115: std::cout << "\n";

116:     }

117:     return 0;

118: }
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Again, the user is asked which shapes to create. Here’s sample output:

(1) Circle (2) Rectangle (3) Square (0) Quit: 3

x x x x x

x x x x x

x x x x x

x x x x x

x x x x x

Abstract drawing mechanism!

(1) Circle (2) Rectangle (3) Square (0) Quit: 2

x x x x x x

x x x x x x

x x x x x x

x x x x x x

Abstract drawing mechanism!

(1) Circle (2) Rectangle (3) Square (0) Quit: 0

On lines 3–12, the abstract data type Shape is declared, with all three of its accessors declared 

to be pure virtual. Note that this is not necessary. If any one were declared pure virtual, the class 

would have been an ADT. But it’s good programming practice not to count on this: Declare all 

functions in an ADT virtual that are virtual.

The getArea() and getPerim() member functions are not implemented, but draw() is. 

Circle and Rectangle both override draw() and both chain up to the base member function, 

taking advantage of shared functionality in the base class.

Complex Hierarchies of Abstraction
At times, you will derive ADTs from other ADTs. It might be that you want to make some of the 

derived pure virtual functions non-pure and leave others pure.

If you create the Animal class, you can make eat(), sleep(), move(), and reproduce() 

pure virtual functions. Perhaps you derive Mammal and Fish from Animal.

On examination, you could decide that every Mammal will reproduce in the same way, and 

so you make Mammal::reproduce()non-pure but leave eat(), sleep(), and move() as pure 

virtual functions.

From Mammal you derive Dog, and Dog must override and implement the three remaining pure 

virtual functions so that you can make objects of type Dog.

What you say, as class designer, is that no Animal or Mammal objects can be instantiated, 

but that all Mammal objects can inherit the provided reproduce() member function without 

 overriding it.
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The Animal class in Listing 18.5 illustrates this technique with a bare-bones implementation of 

these classes.

LISTING 18.5 The Full Text of Animal.cpp

  1: #include <iostream>

  2: 

  3: enum COLOR { Red, Green, Blue, Yellow, White, Black, Brown } ;

  4: 

  5: class Animal // common base to both horse and bird

  6: {

  7: public:

  8:     Animal(int);

  9:     virtual ~Animal() { std::cout << "Animal destructor ...\n"; }

 10:     virtual int getAge() const { return age; }

 11:     virtual void setAge(int newAge) { age = newAge; }

 12:     virtual void sleep() const = 0;

 13:     virtual void eat() const = 0;

 14:     virtual void reproduce() const = 0;

 15:     virtual void move() const = 0;

 16:     virtual void speak() const = 0;

 17: private:

 18:     int age;

 19: };

 20: 

 21: Animal::Animal(int newAge):

 22: age(newAge)

 23: {

 24:     std::cout << "Animal constructor ...\n";

 25: }

 26: 

 27: class Mammal : public Animal

 28: {

 29: public:

 30:     Mammal(int newAge):Animal(newAge)

 31: { std::cout << "Mammal constructor ...\n";}

 32:     virtual ~Mammal() { std::cout << "Mammal destructor ...\n";}

 33:     virtual void reproduce() const

 34: { std::cout << "Mammal reproduction depicted ...\n"; }

 35: };

 36: 

 37: class Fish : public Animal

 38: {

 39: public:

 40:     Fish(int newAge):Animal(newAge)

 41: { std::cout << "Fish constructor ...\n";}
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 42:     virtual ~Fish()

 43: { std::cout << "Fish destructor ...\n";  }

 44:     virtual void sleep() const

 45: { std::cout << "Fish snoring ...\n"; }

 46:     virtual void eat() const

 47: { std::cout << "Fish feeding ...\n"; }

 48:     virtual void reproduce() const

 49: { std::cout << "Fish laying eggs ...\n"; }

 50:     virtual void move() const

 51: { std::cout << "Fish swimming ...\n";   }

 52:     virtual void speak() const { }

 53: };

 54: 

 55: class Horse : public Mammal

 56: {

 57: public:

 58:     Horse(int newAge, COLOR newColor):

 59: Mammal(newAge), color(newColor)

 60: { std::cout << "Horse constructor ...\n"; }

 61:     virtual ~Horse()

 62: { std::cout << "Horse destructor ...\n"; }

 63:     virtual void speak() const

 64: { std::cout << "Whinny!\n"; }

 65:     virtual COLOR getcolor() const

 66: { return color; }

 67:     virtual void sleep() const

 68: { std::cout << "Horse snoring ...\n"; }

 69:     virtual void eat() const

 70: { std::cout << "Horse feeding ...\n"; }

 71:     virtual void move() const

 72: { std::cout << "Horse running ...\n";}

 73: 

 74: protected:

 75:     COLOR color;

 76: };

 77: 

 78: class Dog : public Mammal

 79: {

 80: public:

 81:     Dog(int newAge, COLOR newColor ):

 82: Mammal(newAge), color(newColor)

 83: { std::cout << "Dog constructor ...\n"; }

 84:     virtual ~Dog()

 85: { std::cout << "Dog destructor ...\n"; }

 86:     virtual void speak() const

 87: { std::cout << "Whoof!\n"; }
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 88:     virtual void sleep() const

 89: { std::cout << "Dog snoring ...\n"; }

 90:     virtual void eat() const

 91: { std::cout << "Dog eating ...\n"; }

 92:     virtual void move() const

 93: { std::cout << "Dog running...\n"; }

 94:     virtual void reproduce() const

 95: { std::cout << "Dogs reproducing ...\n"; }

 96: 

 97: protected:

 98:     COLOR color;

 99: };

100: 

101: int main()

102: {

103:     Animal *pAnimal = 0;

104:     int choice;

105:     bool fQuit = false;

106: 

107:     while (1)

108:     {

109: std::cout << "(1) Dog (2) Horse (3) Fish (0) Quit: ";

110: std::cin >> choice;

111: 

112: switch (choice)

113: {

114: case 1:

115: pAnimal = new Dog(5, Brown);

116: break;

117: case 2:

118: pAnimal = new Horse(4, Black);

119: break;

120: case 3:

121: pAnimal = new Fish(5);

122: break;

123: default:

124: fQuit = true;

125: break;

126: }

127: if (fQuit)

128: break;

129: 

130: pAnimal->speak();

131: pAnimal->eat();

132: pAnimal->reproduce();

133: pAnimal->move();

134: pAnimal->sleep();
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135: delete pAnimal;

136: std::cout << "\n";

137:     }

138:     return 0;

139: }

Here’s sample output from a run of the program:

(1) Dog (2) Horse (3) Fish (0) Quit: 1

Animal constructor ...

Mammal constructor ...

Dog constructor ...

Whoof!

Dog eating ...

Dogs reproducing ...

Dog running...

Dog snoring ...

Dog destructor ...

Mammal destructor ...

Animal destructor ...

(1) Dog (2) Horse (3) Fish (0) Quit: 0

On lines 5–19, the abstract data type Animal is declared. Animal has non-pure virtual  accessors 

for age, which are shared by all Animal objects. It has five pure virtual functions: sleep(), 

eat(), reproduce(), move(), and speak().

Mammal derives from Animal and is declared on lines 27–35. It adds no data. It overrides 

reproduce(), however, providing a common form of reproduction for all Mammal objects. 

Fish must override reproduce() because Fish derives directly from Animal and cannot take 

 advantage of Mammal reproduction.

Mammal classes no longer have to override the reproduce() function, but they are free to do so 

if they choose (as Dog does on lines 94–95). Fish, Horse, and Dog all override the remaining 

pure virtual functions so that objects of their type can be instantiated.

In the body of the program, an Animal pointer is used to point to the various derived objects in 

turn. The virtual member functions are invoked and the correct function is called in the derived 

class, based on the runtime binding of the pointer.

It would cause a compile-time error to try to instantiate an Animal or a Mammal, because both 

are abstract data types.

Which Types Are Abstract?
In one program, the class Animal is abstract; in another it is not. What determines whether to 

make a class abstract?
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The answer to this question is decided not by any real-world, intrinsic factor, but by what makes 

sense in the design of your program. If you are writing a program that depicts a farm or a zoo, 

you might want Animal to be an abstract data type but Dog to be a class from which you can 

instantiate objects.

On the other hand, if you are making an animated kennel, you might want to keep Dog as 

an abstract data type and only instantiate types of dogs: retrievers, terriers, and so forth. 

The level of abstraction is a function of how finely you need to distinguish your types.

Summary
During this hour, you learned about abstract data types and pure virtual functions, two aspects 

of the C++ language that make its support for object-oriented programming more robust.

An abstract data type is a class that cannot be implemented as an object. Instead, it defines 

common member variables and functions for its derived classes.

A function becomes a pure virtual function by adding = 0 to the end of its declaration. If a class 

contains at least one pure function, the class is an abstract data type.

The compiler will not allow objects of an abstract data type to be instantiated. 

Q&A
Q. Why is dynamic casting bad?

A. The point of virtual functions is to let the virtual table, rather than the programmer,
 determine the runtime type of the object.

Q. Why bother making an abstract data type? Why not just make it non-abstract and avoid

 creating any objects of that type?

A. The purpose of many of the conventions in C++ is to enlist the compiler in finding bugs
to avoid runtime bugs in completed code. Making a class abstract by giving it pure
virtual functions causes the compiler to flag any objects created of that abstract type as
errors. It also means that you can share the abstract data types with other applications or
programmers.

Q. Has anyone ever studied Silbo, the whistling language used on Gomera in the Canary

Islands?

A. The best reference on the topic of Silbo Gomero and similar forms of speech is Whistled
Languages, a 1976 book by R. G. Busnel and A. Classe that’s available at many public
libraries.

Silbo allows shepherds to communicate over deep ravines and narrow valleys at distances
of 3 miles or more. The language has fallen into disuse on the island of 21,000.
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The disappearance of rural society and the introduction of the phone reduced the Gomeran 
whistle to being used primarily in demonstrations (although these days schoolchildren 
are being taught it).

A speaker of Silbo Gomero is referred to in Spanish as a silbador.

Workshop
After learning more about polymorphism, answer a few questions and do a couple of exercises to 
firm up your knowledge.

Quiz
1. Is there a difference between a virtual member function and an overridden member function

in the base class?

A. Yes

B. No

C. Reply hazy, try again

2. What makes an abstract data type abstract?

A. The abstract keyword

B. It has at least one pure virtual function

C. It has all pure virtual functions

3. Is it OK to supply base class member functions that apply only to specific derived classes?

A. Yes

B. No

C. It varies

Answers
1. A. A virtual function expects to be overridden in the derived classes. An overridden function

does not have to be in derived classes.

2. B. The class is abstract because it has at least one pure virtual function that cannot be
called directly. Because of that function, you cannot create a concrete example of that class
and must derive a class from the abstract with the proper member functions and instantiate
from the derived class.

3. B. Base class member functions that apply only to some classes make it much harder to
use derived objects. The function only can be called after checking the data type of
each object.
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Activities
1. Modify the Animal program in Listing 18.5 to instantiate an object of Animal or Mammal

type. What does the compiler tell you and why?

2. Modify the Mammal13 program in Listing 18.2 to see what happens if you remove the
if test in lines 56–59 and call the purr() member function in all cases. Which objects
work properly and which fail?

To see solutions to these activities, visit this book’s website at http://cplusplus.cadenhead.org.

http://cplusplus.cadenhead.org
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HOUR 19
Storing Information in 

Linked Lists

What You’ll Learn in This Hour:

 What a linked list is

 How to create a linked list

 How to encapsulate functionality through inheritance

Linked Lists and Other Structures
Arrays are like boxes for mailing items. They are useful containers, but are each a fixed size. 

If you pick a container that is too large, you waste space and may even be charged more. If you 

pick one that is too small, there’s not enough room to hold what you need to ship.

In programming, it’s useful to have a container that’s exactly the right size for the data it 

contains. One way to accomplish this is with a linked list.

A linked list is a data structure that consists of small containers that connect together. Containers, 

in this context, are classes that contain the objects to be held in the list. The idea is to write a class 

that holds one object of your data—such as one Cat or one Rectangle—and knows how to point 

to the next container in the list. You create one container for each object and chain them together.

These linked containers are called nodes. The first node in the list is called the head, and the last 

node in the list is called the tail.

Lists come in three fundamental forms. From simplest to most complex, they are:

 Singly linked

 Doubly linked

 Trees

In a singly linked list, each node points to the next one forward, but not backward. To find 

a particular node, you start at the top and go from node to node in sequence. A doubly linked list 
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enables you to move backward and forward to the next node and previous node. A tree is 

a  complex structure built from nodes, each of which can point in two or three directions. 

Figure 19.1 shows these three fundamental structures.

Data
Singly
Linked

Doubly
Linked

Trees

Data

Data Data Data Data

Data Data Data

Ø

Ø

Ø Ø Ø Ø Ø Ø Ø

Ø

Data

Data Data

Ø Ø

Data Data

Data

Data

FIGURE 19.1
Linked lists.

Computer scientists have created even more complex and clever data structures, most of which 

rely on interconnecting nodes.
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Linked List Case Study
In this section, we examine a linked list in detail as a case study into how to use inheritance, 

polymorphism, and encapsulation to manage large projects. It’s also a chance to explore how 

to create complex structures in C++.

Delegation of Responsibility
A fundamental premise of object-oriented programming is that each object does one thing very 

well and delegates to other objects anything that is not part of its mission.

A car is a demonstration of this idea. The engine’s job is to produce the power. Distribution of 

that power is not the engine’s job; that is up to the transmission. Turning is not the job of the 

engine or the transmission; that is delegated to the wheels.

A well-designed machine has lots of small, well-understood parts, each doing its own job and 

working together to accomplish a greater good. A well-designed program is much the same: 

Each class sticks to its own assignment, but together they create a functioning program.

Component Parts
The linked list will consist of nodes. The node class itself will be abstract; we’ll use three sub-

types to accomplish the work. There will be a head and tail node to manage those parts of the 

list and zero or more internal nodes. The internal nodes will keep track of the actual data to be 

held in the list.

Note that the data and the list are quite distinct. You can save any type of data you like 

in a list. It isn’t the data that is linked together; it is the node that holds the data that is linked.

A program doesn’t actually know about the nodes; it only works with the list. The list does little 

work, simply delegating to the nodes.

This hour’s first project, the LinkedList program, demonstrates an object-oriented approach to 

linked lists. The program has three primary classes: Data, Node, and LinkedList. When it 

is run, the program asks the user for a series of integers, storing each in an object of the Data 

class. These objects are stored in a LinkedList object and displayed in numerical order, even if 

they weren’t entered in that order.

The LinkedList class uses a HeadNode class that’s one of three implementations of the 

abstract class Node. The other two are TailNode and InternalNode. Only the InternalNode 

objects hold data.

The full program is in Listing 19.1. The source code is heavily commented to better explain how 

each part works. To develop an understanding of how it works, read it beginning where the main() 

function starts in line 170 and hop to each constructor and member function. The comments should 

give you a good idea of what is taking place even before you enter the code yourself.
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LISTING 19.1 The Full Text of LinkedList.cpp

  1: #include <iostream>

  2: 

  3: enum { kIsSmaller, kIsLarger, kIsSame };

  4: 

  5: // Any class in this linked list must support two

  6: // functions: show (displays the value) and compare

  7: // (returns relative position).

  8: class Data

  9: {

 10: public:

 11:     Data(int newVal):value(newVal) {}

 12:     ~Data() {}

 13:     int compare(const Data&);

 14:     void show() { std::cout << value << "\n"; }

 15: private:

 16:     int value;

 17: };

 18: 

 19: // A function that decides where in the list a

 20: // particular object belongs.

 21: int Data::compare(const Data& otherData)

 22: {

 23:     if (value < otherData.value)

 24: return kIsSmaller;

 25:     if (value > otherData.value)

 26: return kIsLarger;

 27:     else

 28:         return kIsSame;

 29: }

 30: 

 31: // forward class declarations

 32: class Node;

 33: class HeadNode;

 34: class TailNode;

 35: class InternalNode;

 36: 

 37: // An ADT representing the node object in the list.

 38: // Every derived class must override insert() and show().

 39: class Node

 40: {

 41: public:

 42:     Node() {}

 43:     virtual ~Node() {}

 44:     virtual Node* insert(Data* data) = 0;

 45:     virtual void show() = 0;

 46: private:

 47: };
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 48: 

 49: // A node to hold objects of type Data.

 50: class InternalNode : public Node

 51: {

 52: public:

 53:     InternalNode(Data* data, Node* next);

 54:     virtual ~InternalNode() { delete next; delete data; }

 55:     virtual Node* insert(Data* data);

 56:     virtual void show()

 57: { data->show(); next->show(); } // delegate!

 58: 

 59: private:

 60:     Data* data;  // the data itself

 61:     Node* next;  // points to next node in the linked list

 62: };

 63: 

 64: // a simple constructor

 65: InternalNode::InternalNode(Data* newData, Node* newNext):

 66: data(newData), next(newNext)

 67: {

 68: }

 69: 

 70: // A function to store a new object in the list.

 71: // The object is passed to the node which figures out

 72: // where it goes and inserts it into the list.

 73: Node* InternalNode::insert(Data* otherData)

 74: {

 75:     // is the new object bigger or smaller than me?

 76:     int result = data->compare(*otherData);

 77: 

 78:     switch (result)

 79:     {

 80:     // if it is the same as me it goes first

 81:     case kIsSame: // fall through

 82:     case kIsLarger:    // new data comes before me

 83: {

 84: InternalNode* dataNode =

 85: new InternalNode(otherData, this);

 86: return dataNode;

 87: }

 88: 

 89:     // it is bigger, so pass it on to the next

 90:     // node and let it handle it.

 91:     case kIsSmaller:

 92: next = next->insert(otherData);

 93: return this;

 94:     }
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 95:     return this; // appease the compiler

 96: }

 97: 

 98: // The last node in the list

 99: class TailNode : public Node

100: {

101: public:

102:     TailNode() {}

103:     virtual ~TailNode() {}

104:     virtual Node* insert(Data* data);

105:     virtual void show() {}

106: private:

107: };

108: 

109: // If data comes to me, it must be inserted before me

110: // since nothing goes after the tail

111: Node* TailNode::insert(Data* data)

112: {

113:     InternalNode* dataNode = new InternalNode(data, this);

114:     return dataNode;

115: }

116: 

117: // The head node, which holds no data but instead points

118: // to the beginning of the list.

119: class HeadNode : public Node

120: {

121: public:

122:     HeadNode();

123:     virtual ~HeadNode() { delete next; }

124:     virtual Node* insert(Data* data);

125:     virtual void show() { next->show(); }

126: private:

127:     Node* next;

128: };

129: 

130: // The first node in the list, which creates the tail

131: HeadNode::HeadNode()

132: {

133:     next = new TailNode;

134: }

135: 

136: // Since nothing comes before the head, just pass

137: // the data on to the next node

138: Node* HeadNode::insert(Data* data)

139: {

140:     next = next->insert(data);

141:     return this;

142: }
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143: 

144: // I get all the credit and do none of the work

145: class LinkedList

146: {

147: public:

148:     LinkedList();

149:     ~LinkedList() { delete head; }

150:     void insert(Data* data);

151:     void showAll() { head->show(); }

152: private:

153:     HeadNode* head;

154: };

155: 

156: // At birth, I create the head node, which creates

157: // the tail node.

158: LinkedList::LinkedList()

159: {

160:     head = new HeadNode;

161: }

162: 

163: // Delegate to a head node

164: void LinkedList::insert(Data* pData)

165: {

166:     head->insert(pData);

167: }

168: 

169: // put all these classes to the test

170: int main()

171: {

172:     Data* pData;

173:     int val;

174:     LinkedList ll;

175: 

176:     // store user values in a linked list

177:     while (true)

178:     {

179: std::cout << "What value (0 to stop)? ";

180: std::cin >> val;

181: if (!val)

182: break;

183: pData = new Data(val);

184: ll.insert(pData);

185:    }

186: 

187:    // display the list

188:    ll.showAll();

189:    return 0;

190: }
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When you run the LinkedList program, enter a series of numeric values one at a time. These 

values are used as the data stored in each linked list node. After you have entered as many 

values as you want, choose 0 to finish input. The nodes in the linked list will be displayed in 

ascending numeric order, as in this example:

What value (0 to stop)? 7

What value (0 to stop)? 4

What value (0 to stop)? 13

What value (0 to stop)? 8

What value (0 to stop)? 5

What value (0 to stop)? 0

4

5

7

8

13

The first thing to note is the enumerated constant (line 3), which provides three constant values: 

kIsSmaller, kIsLarger, and kIsSame. Every object that might be held in this linked list must 

support a compare() member function. These constants are the result value returned by this 

function.

The Data class is declared on lines 8–17, and the compare() function is implemented on lines 

21–29. A Data object holds a value and can compare itself with other Data objects. It also 

 supports a show() member function to display the value of the Data object.

The easiest way to understand the workings of the linked list is to step through an example of 

using one. On line 170, the main program is declared; on line 172, a pointer to a Data object is 

declared; and on line 174, a linked list is defined.

When the linked list is created, the constructor that begins on line 158 is called. The only work 

done in the constructor is to allocate a HeadNode object and to assign that object’s address to the 

pointer held in the linked list (line 160).

This allocation of a HeadNode invokes the HeadNode constructor shown on line 131. This in 

turn allocates a TailNode and assigns its address to the head node’s next pointer. The creation 

of the TailNode calls the TailNode constructor shown on line 102, an inline function that does 

nothing.

Thus, by the simple act of allocating a linked list on the stack, the list is created, a head and a 

tail node are created and their relationship is established, as illustrated in Figure 19.2.
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Linked List

Head Node Tail Node

myHead myNext

FIGURE 19.2
The linked list after its creation.

Continuing in the main() function, line 177 uses while(true) for an infinite loop. The user is 

prompted for values to add to the linked list. The code on line 181 evaluates the value entered. 

If the value is 0, execution of the program breaks out of the loop.

If the value is not 0, a new Data object is created and inserted into the list (lines 183–184).

For illustration purposes, assume the user runs the program and enters the value 15 as the first 

number. This invokes the insert() member function on line 184.

The linked list immediately delegates responsibility for inserting the object to its head node in 

line 166. This invokes the function insert() on line 138. The head node immediately passes 

the responsibility to whatever node its next variable points to. In this first case, it is pointing to 

the tail node. (When the head node was born, it created a link to a tail node.) This invokes the 

insert() function on line 111.

TailNode::insert() knows that the object it has been handed must be inserted immediately 

before itself, so the new object will be placed in the list right before the tail node. Therefore, on 

line 113 it creates a new InternalNode object, passing in the data and a pointer to itself. This 

invokes the constructor for the InternalNode object, shown on line 65.

The InternalNode constructor does nothing more than initialize its Data pointer with the 

address of the Data object it was passed and its next pointer with the node’s address it was 

passed. In this case, the node it points to is the tail node. (The tail node passed in its own 

this pointer.)

Now that the InternalNode has been created, the address of that internal node is 

assigned to the pointer dataNode on line 113, and that address is in turn returned from the 

TailNode::insert() member function.

This returns us to HeadNode::insert(), where the address of the InternalNode is assigned 

to the HeadNode’s next pointer (on line 140). Finally, the HeadNode’s address is returned to the 

linked list on line 166, although this value is not stored in a variable. Nothing is done with it 

because the linked list already knows the address of the head node.
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Why bother returning the address if it is not used? The insert() function is declared in 

the base class, Node. The return value is needed by the other implementations. If you change the 

return value of HeadNode::insert(), you get a compiler error; it is simpler just to return the 

HeadNode and let the linked list do nothing with it.

Let’s review what happened: The data was inserted into the list. The list passed it to the head. 

The head blindly passed the data to whatever the head happened to be pointing to. In this 

first case, the head was pointing to the tail. The tail immediately created a new internal node, 

 initializing the new node to point to the tail. The tail then returned the address of the new node 

to the head, which reassigned its next pointer to point to the new node.

Presto! The data is in the list in the right place, as illustrated in Figure 19.3.

Linked List

Head Node Tail Node

myHead myNext

Internal Node

myNext

myData Data

Value=15

FIGURE 19.3
The linked list after the first node is inserted.

After inserting the first node, program control resumes at line 179. Once again, the value is 

evaluated. For illustration purposes, assume that the value 3 is entered. This causes a new Data 

object to be created on line 183 and inserted into the list on line 184.

Once again, on line 164 the list passes the data to its HeadNode. The HeadNode::insert() 

function in turn passes the new value to whatever its next happens to be pointing to. 

As you know, it is now pointing to the node that contains the Data object whose value is 15. 

This invokes the InternalNode::insert() function on line 73.

On line 76, the InternalNode uses its data pointer to tell its Data object (the one whose 

value is 15) to call its compare() member function, passing in the new Data object (whose 

value is 3). This invokes the compare() function shown on line 21.
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The two values are compared; and, because value is 15 and otherData.value is 3, the 

returned value is kIsLarger. This causes program flow to jump to lines 84–85.

A new InternalNode is created for the new Data object. The new node points to the 

 current InternalNode object, and the new InternalNode’s address is returned from the 

InternalNode::insert() function to the HeadNode. Thus, the new node, whose object’s 

value is smaller than the current node’s object’s value, is inserted into the list, and the list now 

looks like Figure 19.4.

Data

Linked List

Head Node Tail Node

myHead myNext

Internal Node

myNext

myData Data

Internal Node

myNext

myData

Value=3
Value=15

FIGURE 19.4
The linked list after the second node is inserted.

In the third invocation of the loop, the customer adds the value 8. This is larger than 3 but 

smaller than 15, and so should be inserted between the two existing nodes. Progress is exactly 

like the previous example except that when the node whose object’s value is 3 does the compare, 

rather than returning kIsLarger, it returns kIsSmaller (meaning that the object whose value 

is 3 is smaller than the new object, whose value is 8).

This causes the InternalNode::insert() function to branch to line 92. Instead of creating a 

new node and inserting it, the InternalNode passes the new data on to the Insert function of 

whatever its next pointer happens to be pointing to. In this case, it invokes InsertNode on the 

InternalNode whose Data object’s value is 15.

The comparison is done again, and now a new InternalNode is created. This new 

InternalNode points to the InternalNode whose Data object’s value is 15, and its address is 

passed back to the InternalNode whose Data object’s value is 3, as shown on line 93.

The net effect is that the new node is inserted into the list at the right location.

The end result of all of this is that you have a sorted list of data items—no matter the order in 

which you enter the data.

Linked List Case Study
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Linked Lists as Objects
In object-oriented programming, each individual object is given a narrow and well-defined set 

of responsibilities. The linked list is responsible for maintaining the head node. The HeadNode 

immediately passes any new data on to whatever it currently points to, without regard for what 

that might be.

The TailNode, whenever it is handed data, creates a new node and inserts it. It knows only one 

thing: If this came to me, it gets inserted right before me.

Internal nodes are marginally more complicated; they ask their existing object to compare itself 

with the new object. Depending on the result, either they then insert or they just pass it along.

Note that the InternalNode has no idea how to do the comparison; that is properly left to 

the object itself. All the InternalNode knows is to ask the objects to compare themselves and 

to expect one of three possible answers. Given one answer, it inserts; otherwise, it just passes it 

along, not knowing or caring where it will end up.

So who’s in charge? In a well-designed object-oriented program, no class is in charge. Each object 

does its own job and the net effect is a well-running machine.

The beauty of a linked list is that you can put any data type you would like in the Data of this 

class. In this case, it contained an integer. It could contain multiple built-in data types or even 

other objects (including other linked lists).

The use of dynamic memory allows linked lists to use very little memory when small, and lots 

of memory if they grow large. The important thing is that they only use enough to hold the 

data they now contain. Arrays, on the other hand, are allocated to a specific size, which is both 

wasteful and limiting.

NOTE

Because linked lists are more useful than arrays, you might be wondering why not use them all the 
time? The power comes at a cost. Linked lists are sequential in nature, which means that you have 
to start at one end and work your way to the other end to find the item you want. That access can 
be relatively slow.

Summary
Because there’s so much to learn in C++, the projects undertaken in this book have often been 

short and illustrative. That makes it easier to focus on their functionality.

As you begin your own programming projects, you will find that the classes you create are never 

quite so simple.
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The linked list case study during this hour consisted of five classes: Data, HeadNode, TailNode, 

InternalNode, and LinkedList. True to object-oriented programming methodology, each 

class took care of its own work and relied on the other objects to do theirs.

By understanding how these objects work together, you can develop a better sense of how to 

manage the relationships between objects. 

Q&A
Q. Why should you create a linked list if an array will work?

A. An array must have a fixed size, whereas a linked list can be sized dynamically at
runtime, making a more efficient use of memory.

Q. Why do you separate the data object from the node?

A. This programming practice fosters reuse. After you get your node objects working properly,
you can reuse that code for any number of objects that might want to live in a list.

Q. If you want to add other objects to the list, do you have to create a new list type and a new

node type?

A. For now, yes. But it’s possible to implement a linked list in a more generic way where
the objects it holds are concerned. We’ll solve that when we get to Hour 23, “Creating
Templates.”

Q. What was the name of the Greek who carried a lantern and was looking for an honest man?

A. That was Diogenes, a philosopher who died around 320 B.C. Diogenes stressed
 self-sufficiency and the rejection of luxury, and his teachings caused him to be sent into
exile away from his birthplace of Sinope, Paphlygonia. (I guess he didn’t have tenure.)

In addition to his search for an honest man, which Diogenes conducted with a lit lantern in
broad daylight, there are other apocryphal stories associated with him.

He slept in public buildings, lived in poverty, begged for food and was strongly antifamily.
Diogenes believed that men and women should be promiscuous and that any resulting children
should be raised by the community instead of individual families.

Workshop
Now that you’ve learned how to implement a complex data structure, answer a few questions and 
perform a couple of exercises to link it all together.
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Quiz
1. What’s the first node in a linked list called?

A. The origin

B. The head

C. The top

2. What two things does a linked list node contain?

A. Behavior and data

B. Functions and variables

C. Data and a node pointer

3. How many pointers are needed for a doubly linked list?

A. 2

B. 1

C. Either a or b

Answers
1. B. As the name implies, it contains the head of the linked list. It is very important to know

where the list starts so it can be accessed.

2. C. The data can be any type of object. The pointer indicates the next member of the
linked list.

3. A. Each node in a doubly linked list has two pointers, one for next and one for previous,
so that you can start at either end and work your way toward the opposite end.

Activities
1. Rewrite the LinkedList program (Listing 19.1) to hold Tricycle objects rather than integers.

2. Add a function to the LinkedList class (Listing 19.1) that displays a count of the number
of nodes the list contains.

To see solutions to these activities, visit this book’s website at http://cplusplus.cadenhead.org.

http://cplusplus.cadenhead.org
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HOUR 20
Using Special Classes, 
Functions, and Pointers

What You’ll Learn in This Hour:

 What static member variables and static member functions are

 How to use static member variables and static member functions

 What friend functions and friend classes are

 How to use friend functions to solve special problems

 How to use pointers to member functions

Static Member Data
Until now, you have probably thought of the data in each object as unique to that object and 

not shared among objects in a class. For example, if you have five Robot objects, each has its 

own age, weight, and other data. The age of one does not affect the age of another.

Sometimes you’ll want to keep track of information shared among the many objects of a class. 

For example, you might want to know how many Robot objects have been created and how 

many are still in existence.

Unlike other member variables, static member variables are shared among all instances of a 

class. They occupy the middle ground between global data, which is available to all parts of 

your program, and member data, which usually is available only to each object.

You can think of a static member as belonging to the class rather than to the object. Normal 

member data is one per object, but static members are one per class.

The StaticRobot program in Listing 20.1 declares a Robot object with a static data member, 

howManyRobots. This variable keeps track of how many Robot objects have been created by 

incrementing a static variable. The variable increases with each construction and decreases with 

each destruction.
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LISTING 20.1 The Full Text of StaticRobot.cpp

 1: #include <iostream>

 2: 

 3: class Robot

 4: {

 5: public:

 6:     Robot(int newAge = 1):age(newAge){ howManyRobots++; }

 7:     virtual ~Robot() { howManyRobots--; }

 8:     virtual int getAge() { return age; }

 9:     virtual void setAge(int newAge) { age = newAge; }

10:     static int howManyRobots;

11: 

12: private:

13:     int age;

14: };

15: 

16: int Robot::howManyRobots = 0;

17: 

18: int main()

19: {

20:     const int maxRobots = 5;

21:     Robot *gestalt[maxRobots];

22:     int i;

23:     for (i = 0; i < maxRobots; i++)

24: gestalt[i] = new Robot(i);

25: 

26:     for (i = 0; i < maxRobots; i++)

27:     {

28: std::cout << "There are ";

29: std::cout << Robot::howManyRobots;

30: std::cout << " robots left!\n";

31: std::cout << "Deleting the one which is ";

32: std::cout << gestalt[i]->getAge();

33: std::cout << " years old\n";

34: delete gestalt[i];

35: gestalt[i] = 0;

36:     }

37:     return 0;

38: }

Run the program to see it create five robots and then delete the objects:

There are 5 robots left!

Deleting the one which is 0 years old

There are 4 robots left!

Deleting the one which is 1 years old
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There are 3 robots left!

Deleting the one which is 2 years old

There are 2 robots left!

Deleting the one which is 3 years old

There are 1 robots left!

Deleting the one which is 4 years old

On lines 3–14, the simplified class Robot is declared. On line 10, howManyRobots is declared to 

be a static member variable of type int.

The declaration of howManyRobots does not define an integer; no storage space is set aside. 

Unlike the non-static member variables, no storage space is set aside for static members as a 

result of instantiating a Robot object, because the howManyRobots member variable is not in 

the object. Therefore, on line 16 the variable is defined and initialized.

It is a common mistake to forget to define the static member variables of classes. You don’t need 

to do this for age on line 13 because it is a non-static member variable and is defined each time 

you make a Robot object, which is done here on line 24.

The constructor for Robot increments the static member variable on line 6. The destructor 

 decrements it on line 7. Therefore, at any moment, howManyRobots has an accurate count of 

how many Robot objects were created but not yet destroyed.

The main function that begins on line 18 instantiates five Robot objects and puts them in an 

array. This calls five Robot constructors; thus howManyRobots is incremented from 0 to 5.

The program then loops through each of the five positions in the array and displays the value of 

howManyRobots before deleting the current Robot pointer. The output reflects that the  starting 

value is 5 (after all, five are constructed), and that each time the loop is run, one fewer Robot 

remains.

Note that howManyRobots is public and is accessed directly by main(). It is preferable to make 

it private along with the other member variables and provide a public accessor, as long as 

you always will access the data through an instance of Robot. If you’d like to access this data 

 directly without necessarily having a Robot object available, you have two options: Keep it 

 public or provide a static member function.

Static Member Functions
Static member functions are like static member variables: They exist not in an object but in 

the scope of the class. Therefore, they can be called without having an object of that class, as 

illustrated in Listing 20.2.
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LISTING 20.2 The Full Text of StaticFunction.cpp

 1: #include <iostream>

 2: 

 3: class Robot

 4: {

 5: public:

 6:     Robot(int newAge = 1):age(newAge){ howManyRobots++; }

 7:     virtual ~Robot() { howManyRobots--; }

 8:     virtual int gGetAge() { return age; }

 9:     virtual void setAge(int newAge) { age = newAge; }

10:     static int getHowMany() { return howManyRobots; }

11: private:

12:     int age;

13:     static int howManyRobots;

14: };

15: 

16: int Robot::howManyRobots = 0;

17: 

18: void countRobots();

19: 

20: int main()

21: {

22:     const int maxRobots = 5;

23:     Robot *gestalt[maxRobots];

24:     int i;

25:     for (i = 0; i < maxRobots; i++)

26:     {

27: gestalt[i] = new Robot(i);

28: countRobots();

29:     }

30: 

31:     for (i = 0; i < maxRobots; i++)

32:     {

33: delete gestalt[i];

34: countRobots();

35:     }

36:     return 0;

37: }

38: 

39: void countRobots()

40: {

41:     std::cout << "There are " << Robot::getHowMany()

42: << " robots.\n";

43: }
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The StaticFunction program creates five robots, calling the countRobots() static function each 

time to see how many robots exist, as the output demonstrates:

There are 1 robots.

There are 2 robots.

There are 3 robots.

There are 4 robots.

There are 5 robots.

There are 4 robots.

There are 3 robots.

There are 2 robots.

There are 1 robots.

There are 0 robots.

The static member variable howManyRobots is declared to have private access on line 13 of the 

Robot declaration. The public accessor getHowMany() is declared to be both public and static 

on line 10.

Because getHowMany() is public, it can be accessed by any function. Because it is static, there is 

no need to have an object of type Robot on which to call it. Therefore, on line 41, the function 

countRobots() is able to access the public static accessor even though it has no access to a 

Robot object. Of course, you could have called getHowMany() on any Robot objects available 

in main(), as with any other accessor function.

NOTE

Static member functions do not have a this pointer, so they cannot be declared const. Also, 
because member data variables are accessed in member functions using the this pointer, static 
member functions cannot access any non-static member variables.

Containment of Classes
As you have seen previously, it is possible for the member data of a class to include objects of 

another class. This establishes a “contains” relationship between the enclosing class (outer class) 

and a class used as its member data (inner class). C++ programmers say that the outer class 

contains the inner class. An Employee class might contain String objects for the name of the 

employee as well as integers for the employee’s salary and so forth.

The String class in Listing 20.3 defines a stripped-down but useful class. The file should be saved 

as String.hpp and is used in another program later in this section.
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LISTING 20.3 The Full Text of String.hpp

  1: #include <iostream>

  2: #include <string.h>

  3: 

  4: class String

  5: {

  6: public:

  7:     // constructors

  8:     String();

  9:     String(const char *const);

 10:     String(const String&);

 11:     ~String();

 12: 

 13:     // overloaded operators

 14:     char& operator[](int offset);

 15:     char operator[](int offset) const;

 16:     String operator+(const String&);

 17:     void operator+=(const String&);

 18:     String& operator= (const String &);

 19: 

 20:     // general accessors

 21:     int getLen() const { return len; }

 22:     const char* getString() const { return value; }

 23:     // static int constructorCount;

 24: 

 25: private:

 26:     String(int); // private constructor

 27:     char* value;

 28:     int len;

 29: };

 30: 

 31: // default constructor creates string of 0 bytes

 32: String::String()

 33: {

 34:     value = new char[1];

 35:     value[0] = '\0';

 36:     len = 0;

 37:     // std::cout << "\tDefault string constructor\n";

 38:     // constructorCount++;

 39: }

 40: 

 41: // private (helper) constructor, used only by

 42: // class functions for creating a new string of

 43: // required size. Null filled.

 44: String::String(int len)

 45: {

 46:     value = new char[len + 1];

 47:     int i;
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 48:     for (i = 0; i < len; i++)

 49: value[i] = '\0';

 50:     len = len;

 51:     // std::cout << "\tString(int) constructor\n";

 52:     // constructorCount++;

 53: }

 54: 

 55: String::String(const char* const cString)

 56: {

 57:     len = strlen(cString);

 58:     value = new char[len + 1];

 59:     int i;

 60:     for (i = 0; i < len; i++)

 61: value[i] = cString[i];

 62:     value[len] = '\0';

 63:     // std::cout << "\tString(char*) constructor\n";

 64:     // constructorCount++;

 65: }

 66: 

 67: String::String(const String& rhs)

 68: {

 69:     len = rhs.getLen();

 70:     value = new char[len + 1];

 71:     int i;

 72:     for (i = 0; i < len; i++)

 73: value[i] = rhs[i];

 74:     value[len] = '\0';

 75:     // std::cout << "\tString(String&) constructor\n";

 76:     // constructorCount++;

 77: }

 78: 

 79: String::~String()

 80: {

 81:     delete [] value;

 82:     len = 0;

 83:     // std::cout << "\tString destructor\n";

 84: }

 85: 

 86: // operator equals, frees existing memory

 87: // then copies string and size

 88: String& String::operator=(const String &rhs)

 89: {

 90:     if (this == &rhs)

 91: return *this;

 92:     delete [] value;

 93:     len = rhs.getLen();

 94:     value = new char[len + 1];

 95:     int i;
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 96:     for (i = 0; i < len; i++)

 97: value[i] = rhs[i];

 98:     value[len] = '\0';

 99:     return *this;

100:     // std::cout << "\tString operator=\n";

101: }

102: 

103: // non-constant offset operator, returns

104: // reference to character so it can be

105: // changed!

106: char& String::operator[](int offset)

107: {

108:     if (offset > len)

109:         return value[len - 1];

110:     else

111:         return value[offset];

112: }

113: 

114: // constant offset operator for use

115: // on const objects (see copy constructor!)

116: char String::operator[](int offset) const

117: {

118:     if (offset > len)

119:         return value[len-1];

120:     else

121:         return value[offset];

122: }

123: 

124: // creates a new string by adding current

125: // string to rhs

126: String String::operator+(const String& rhs)

127: {

128:     int totalLen = len + rhs.getLen();

129:     int i, j;

130:     String temp(totalLen);

131:     for (i = 0; i < len; i++)

132: temp[i] = value[i];

133:     for (j = 0; j < rhs.getLen(); j++, i++)

134: temp[i] = rhs[j];

135:     temp[totalLen] = '\0';

136:     return temp;

137: }

138: 

139: // changes current string, returns nothing

140: void String::operator+=(const String& rhs)

141: {

142:     int rhsLen = rhs.getLen();

143:     int totalLen = len + rhsLen;
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144:     int i, j;

145:     String temp(totalLen);

146:     for (i = 0; i < len; i++)

147: temp[i] = value[i];

148:     for (j = 0; j < rhs.getLen(); j++, i++)

149: temp[i] = rhs[i - len];

150:     temp[totalLen] = '\0';

151:     *this = temp;

152: }

153: 

154: // int String::constructorCount = 0;

There’s no main() function in this listing, so it can’t be run as a program.

Any time you need the String class, you can include this code with an #include  preprocessor 

directive. For example, at the top of the Employee program in Listing 20.4, #include 

"string.hpp" appears. This adds the String class to the program.

Note that a number of statements in Listing 20.3 are commented out; they are used later this 

hour in the exercises. On line 23, the static member variable constructorCount is declared, 

and on line 154 it is initialized. This variable is incremented in each String constructor. 

(While these statements are comments, these things don’t happen, of course.)

The Employee program (Listing 20.4) contains an Employee class that makes use of three 

String objects.

LISTING 20.4 The Full Text of Employee.cpp

 1:  #include "String.hpp"

 2:  

 3:  class Employee

 4:  {

 5:  public:

 6: Employee();

 7: Employee(const char*, const char*, const char*, long);

 8: ~Employee();

 9: Employee(const Employee&);

10: Employee& operator=(const Employee&);

11: 

12: const String& getFirstName() const { return firstName; }

13: const String& getLastName() const { return lastName; }

14: const String& getAddress() const { return address; }

15: long getSalary() const { return salary; }

16: 

17: void setFirstName(const String& fName)

18: { firstName = fName; }

19: void setLastName(const String& lName)
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20: { lastName = lName; }

21: void setAddress(const String& newAddress)

22: { address = newAddress; }

23: void setSalary(long newSalary) { salary = newSalary; }

24:  private:

25: String firstName;

26: String lastName;

27: String address;

28: long salary;

29:  };

30: 

31:  Employee::Employee():

32: firstName(""),

33: lastName(""),

34: address(""),

35: salary(0)

36:  {}

37: 

38:  Employee::Employee(const char* newFirstName, const char* newLastName,

39: const char* newAddress, long newSalary):

40: firstName(newFirstName),

41: lastName(newLastName),

42: address(newAddress),

43: salary(newSalary)

44:  {}

45: 

46:  Employee::Employee(const Employee& rhs):

47: firstName(rhs.getFirstName()),

48: lastName(rhs.getLastName()),

49: address(rhs.getAddress()),

50: salary(rhs.getSalary())

51:  {}

52: 

53:  Employee::~Employee() {}

54: 

55:  Employee& Employee::operator=(const Employee& rhs)

56:  {

57:      if (this == &rhs)

58:          return *this;

59: 

60: firstName = rhs.getFirstName();

61: lastName = rhs.getLastName();

62: address = rhs.getAddress();

63: salary = rhs.getSalary();

64: 

65: return *this;

66:  }

67: 

68:  int main()
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69:  {

70: Employee snett("Silver", "Burdett", "800 East 96th St.", 20000);

71: snett.setSalary(50000);

72: String lastName("Snett");

73: snett.setLastName(lastName);

74: snett.setFirstName("Sam");

75: 

76: std::cout << "Name: ";

77: std::cout << snett.getFirstName().getString();

78: std::cout << " " << snett.getLastName().getString();

79: std::cout << ".\nAddress: ";

80: std::cout << snett.getAddress().getString();

81: std::cout << ".\nSalary: " ;

82: std::cout << snett.getSalary() << "\n";

83: return 0;

84:  }

The following output is displayed when the Employee program runs:

Name: Sam Snett.

Address: 800 East 96th St..

Salary: 50000

Listing 20.4 shows the Employee class, which contains three String objects: firstName, 

lastName, and address.

On line 70, an Employee object is created and four values are passed in to initialize it. On line 

71, the Employee access function setSalary() is called, with the literal 50000.

On line 72, a string is created and initialized using a C++ string constant. This string object then 

is used as an argument to setLastName() on line 73.

On line 74, the Employee function setFirstName() is called with another string constant. 

Employee does not have a function setFirstName() that takes a character string as its 

argument; setFirstName() requires a constant string reference.

The compiler resolves this because it knows how to make a String object from a constant 

 character string. It knows this because you told it how to do so on line 9 of Listing 20.3.

Accessing Members of the Contained Class
Employee objects do not have special access to the member variables of String. If the 

Employee object snett tries to access the member variable len of its own firstName member 

variable, this causes a compile-time error. This lack of access is not much of a burden, however. 

The accessor functions provide an interface for the String class. The Employee class need 

not worry about the implementation details any more than it worries about how the integer 

 variable, salary, stores its information.
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Filtering Access to Contained Members
Note that the String class provides operator+. The designer of the Employee class has 

blocked access to operator+ being called on Employee objects by declaring that all the String

accessors, such as getFirstName(), return a constant reference. operator+ can’t be a const 

function because it changes the object it is called on, so attempting to write the following causes 

a compile-time error:

String buffer = snett.getFirstName() + snett.getLastName();

The getFirstName() function returns a constant String; you can’t call operator+ on a 

 constant object.

To fix this, overload getFirstName() to be non-const:

const String& getFirstName() const { return firstName; }

String& getFirstName() { return firstName; }

Note that the return value is no longer const and that the member function itself is no longer 

const. Changing the return value is not sufficient to overload the function name; you must 

change the constancy of the function itself. Because both a const and a non-const version are 

provided, the compiler invokes the const version wherever possible (for example, when a client 

calls getFirstName) and the non-const version as needed (for example, when invoked with 

operator+). 

Copying by Value Versus by Reference
When you pass Employee objects by value, all their contained strings are copied as well, so copy 

constructors are called. This is very expensive; it takes up memory and it takes time.

When you pass Employee objects by reference using pointers or references, all this is saved. This 

is why C++ programmers work hard never to pass anything larger than a few bytes by value.

Friend Classes and Functions
Sometimes you will create classes together, as a set. These paired classes might need access to 

one another’s private members, but you might not want to make that information public.

If you want to expose your private member data or functions to another class, you must declare 

that class to be a friend. This extends the interface of your class to include the friend class.

This friendship cannot be transferred and is not inherited. It also is not commutative. Assigning 

Class1 to be a friend of Class2 does not make Class2 a friend of Class1. (That’s kind of a 

jerk move by Class2, in my opinion.)
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Declarations of friend classes should be used with extreme caution. If two classes are inextricably 

entwined, and one must frequently access data in the other, there might be good reason to use 

this declaration. It is often just as easy to use public accessors instead. Doing so allows you to 

change one class without having to recompile the other.

At times, you will want to grant the friend level of access not to an entire class, but only to one 

or two functions of that class. You can do this by declaring the member functions of the other 

class to be friends, instead of declaring the entire class to be a friend. In fact, you can declare 

any function, whether or not it is a member function of another class, to be a friend function.

Pointers to Functions
Just as an array name is a constant pointer to the first element of the array, a function name 

is a constant pointer to the function. It is possible to declare a pointer variable that points to a 

function and to invoke the function by using that pointer. This can prove very useful; it allows 

you to create programs that decide which functions to invoke based on user input.

The only tricky part about function pointers is understanding the type of the object being 

pointed to. A pointer to int points to an integer variable, and a pointer to a function must 

point to a function of the appropriate return type and signature.

Consider this declaration:

long (*funcPtr)(int);

The funcPtr variable is declared to be a pointer that points to a function which takes an 

 integer parameter and returns a long. The parentheses around *funcPtr are necessary because 

the parentheses around int have higher precedence than the indirection operator (*). Without 

the first parenthesis, this would declare a function that takes an integer and returns a pointer to 

a long.

Examine these two declarations:

long* func(int);

long (*funcPtr)(int);

The first, func(), is a function taking an integer and returning a pointer to a variable of type 

long. The second, funcPtr, is a pointer to a function taking an integer and returning a variable 

of type long.

The declaration of a function pointer always includes the return type and parentheses indicating 

the type of the parameters, if any. The FunctionPointer program in Listing 20.5 illustrates the 

declaration and use of function pointers.
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LISTING 20.5 The Full Text of FunctionPointer.cpp

 1: #include <iostream>

 2: 

 3: void square(int&, int&);

 4: void cube(int&, int&);

 5: void swap(int&, int&);

 6: void getVals(int&, int&);

 7: void printVals(int, int);

 8: 

 9: int main()

10: {

11:     void (*pFunc)(int&, int&);

12:     bool fQuit = false;

13: 

14:     int valOne = 1, valTwo = 2;

15:     int choice;

16:     while (fQuit == false)

17:     {

18: std::cout << "(0) Quit (1) Change Values "

19: << "(2) Square (3) Cube (4) Swap: ";

20: std::cin >> choice;

21: switch (choice)

22: {

23: case 1:

24: pFunc = getVals;

25: break;

26: case 2:

27: pFunc = square;

28: break;

29: case 3:

30: pFunc = cube;

31: break;

32: case 4:

33: pFunc = swap;

34: break;

35: default :

36: fQuit = true;

37: break;

38: }

39: 

40: if (fQuit)

41: break;

42: 

43: printVals(valOne, valTwo);

44: pFunc(valOne, valTwo);

45: printVals(valOne, valTwo);

46:     }
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47:     return 0;

48: }

49: 

50: void printVals(int x, int y)

51: {

52:     std::cout << "x: " << x << " y: " << y << "\n";

53: }

54: 

55: void square(int &rX, int &rY)

56: {

57:     rX *= rX;

58:     rY *= rY;

59: }

60: 

61: void cube(int &rX, int &rY)

62: {

63:     int tmp;

64: 

65:     tmp = rX;

66:     rX *= rX;

67:     rX = rX * tmp;

68: 

69:     tmp = rY;

70:     rY *= rY;

71:     rY = rY * tmp;

72: }

73: 

74: void swap(int &rX, int &rY)

75: {

76:     int temp;

77:     temp = rX;

78:     rX = rY;

79:     rY = temp;

80: }

81: 

82: void getVals(int &rValOne, int &rValTwo)

83: {

84:     std::cout << "New value for valOne: ";

85:     std::cin >> rValOne;

86:     std::cout << "New value for valTwo: ";

87:     std::cin >> rValTwo;

88: }

Here’s the output of FunctionPointer:

 (0) Quit (1) Change Values (2) Square (3) Cube (4) Swap: 1

x: 1 y: 2

New value for valOne: 12

New value for valTwo: 9
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x: 12 y: 9

(0) Quit (1) Change Values (2) Square (3) Cube (4) Swap: 4

x: 12 y: 9

x: 9 y: 12

(0) Quit (1) Change Values (2) Square (3) Cube (4) Swap: 0

On lines 3–6, four functions are declared, each with the same return type and signature, returning 

void and taking two references to integers.

On line 11, pFunc is declared to be a pointer to a function that returns void and takes two 

 integer reference parameters. Any of the previous functions can be pointed to by pFunc. The 

user is repeatedly offered the choice of which functions to invoke, and pFunc is assigned 

 accordingly. On lines 43–45, the current values of the two integers are displayed, the currently 

assigned function is invoked, and then the values are printed again.

The pointer to a function does not need to be dereferenced, although you are free to do so. 

Therefore, if pFunc is a pointer to a function taking an integer and returning a variable of type 

long, and you assign pFunc to a matching function, you can invoke that function with either of 

these:

pFunc(x);

(*pFunc)(x);

The two forms are identical. The former is just a shorthand version of the latter.

Arrays of Pointers to Functions
Just as you can declare an array of pointers to integers, you can declare an array of pointers to 

functions returning a specific value type and with a specific signature. The ArrayFunction 

program in Listing 20.6 demonstrates this.

LISTING 20.6 The Full Text of ArrayFunction.cpp

 1: #include <iostream>

 2: 

 3: void square(int&, int&);

 4: void cube(int&, int&);

 5: void swap(int&, int&);

 6: void getVals(int&, int&);

 7: void printVals(int, int);

 8: 

 9: int main()

10: {

11:     int valOne=1, valTwo=2;

12:     int choice, i;
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13:     const int maxArray = 5;

14:     void (*pFuncArray[maxArray])(int&, int&);

15: 

16:     for (i=0;i < maxArray; i++)

17:     {

18: std::cout << "(1) Change Values "

19: << "(2) Square (3) Cube (4) Swap: ";

20: std::cin >> choice;

21: switch (choice)

22: {

23: case 1:

24: pFuncArray[i] = getVals;

25: break;

26: case 2:

27: pFuncArray[i] = square;

28: break;

29: case 3:

30: pFuncArray[i] = cube;

31: break;

32: case 4:

33: pFuncArray[i] = swap;

34: break;

35: default:

36: pFuncArray[i] = 0;

37:         }

38:     }

39: 

40:     for (i = 0; i < maxArray; i++)

41:     {

42: pFuncArray[i](valOne, valTwo);

43: printVals(valOne, valTwo);

44:     }

45:     return 0;

46: }

47: 

48: void printVals(int x, int y)

49: {

50:     std::cout << "x: " << x << " y: " << y << "\n";

51: }

52: 

53: void square(int &rX, int &rY)

54: {

55:     rX *= rX;

56:     rY *= rY;

57: }

58: 

59: void cube(int &rX, int &rY)



ptg18189307

318 HOUR 20: Using Special Classes, Functions, and Pointers

60: {

61:     int tmp;

62: 

63:     tmp = rX;

64:     rX *= rX;

65:     rX = rX * tmp;

66: 

67:     tmp = rY;

68:     rY *= rY;

69:     rY = rY * tmp;

70: }

71: 

72: void swap(int &rX, int &rY)

73: {

74:     int temp;

75:     temp = rX;

76:     rX = rY;

77:     rY = temp;

78: }

79: 

80: void getVals(int &rValOne, int &rValTwo)

81: {

82:     std::cout << "New value for valOne: ";

83:     std::cin >> rValOne;

84:     std::cout << "New value for valTwo: ";

85:     std::cin >> rValTwo;

86: }

Here’s sample output using five user-selected options:

(1) Change Values (2) Square (3) Cube (4) Swap: 1

(1) Change Values (2) Square (3) Cube (4) Swap: 2

(1) Change Values (2) Square (3) Cube (4) Swap: 3

(1) Change Values (2) Square (3) Cube (4) Swap: 4

(1) Change Values (2) Square (3) Cube (4) Swap: 2

New value for valOne: 2

New value for valTwo: 3

x: 2 y: 3

x: 4 y: 9

x: 64 y: 729

x: 729 y: 64

x: 531441 y: 4096

In the for loop beginning on line 16, the user is asked to pick the functions to invoke. Each 

member of the array is assigned the address of the appropriate function. In the loop on lines 

40–44, each function is invoked in turn. Line 42 executes the function whose address is stored in 

the pFuncArray array. The result is displayed after each invocation.
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CAUTION

As mentioned at the beginning of the book. these projects do not guard against invalid user input. 
If a value other than 1, 2, 3, or 4 is selected in the ArrayFunction program, it tries to call an 
undefined function on line 42 and fails with an error.

Passing Pointers to Functions to 
Other Functions
The pointers to functions (and arrays of pointers to functions, for that matter) can be passed to 

other functions that may take action and then call the right function using the pointer.

For example, you might improve the ArrayFunction program by passing the chosen function 

pointer to another function (outside of main()) that will display the values, invoke the function, 

and then show them again. The FunctionPasser program (Listing 20.7) shows how this is done.

LISTING 20.7 The Full Text of FunctionPasser.cpp

 1: #include <iostream>

 2: 

 3: void square(int&,int&);

 4: void cube(int&, int&);

 5: void swap(int&, int&);

 6: void getVals(int&, int&);

 7: void printVals(void (*)(int&, int&),int&, int&);

 8: 

 9: int main()

10: {

11:     int valOne=1, valTwo=2;

12:     int choice;

13:     bool fQuit = false;

14: 

15:     void (*pFunc)(int&, int&);

16: 

17:     while (fQuit == false)

18:     {

19: std::cout << "(0) Quit (1) Change Values "

20: << "(2) Square (3) Cube (4) Swap: ";

21: std::cin >> choice;

22: switch (choice)

23: {

24: case 1:

25: pFunc = getVals;

26: break;

27: case 2:

28: pFunc = square;

29: break;
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30: case 3:

31: pFunc = cube;

32: break;

33: case 4:

34: pFunc = swap;

35: break;

36: default:

37: fQuit = true;

38: break;

39: }

40: if (fQuit == true)

41: break;

42: printVals(pFunc, valOne, valTwo);

43:     }

44: 

45:     return 0;

46: }

47: 

48: void printVals(void (*pFunc)(int&, int&),int& x, int& y)

49: {

50:     std::cout << "x: " << x << " y: " << y << "\n";

51:     pFunc(x, y);

52:     std::cout << "x: " << x << " y: " << y << "\n";

53: }

54: 

55: void square(int &rX, int &rY)

56: {

57:     rX *= rX;

58:     rY *= rY;

59: }

60: 

61: void cube(int &rX, int &rY)

62: {

63:     int tmp;

64: 

65:     tmp = rX;

66:     rX *= rX;

67:     rX = rX * tmp;

68: 

69:     tmp = rY;

70:     rY *= rY;

71:     rY = rY * tmp;

72: }

73: 

74: void swap(int &rX, int &rY)

75: {

76:     int temp;
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77:     temp = rX;

78:     rX = rY;

79:     rY = temp;

80: }

81: 

82: void getVals(int &rValOne, int &rValTwo)

83: {

84:     std::cout << "New value for valOne: ";

85:     std::cin >> rValOne;

86:     std::cout << "New value for valTwo: ";

87:     std::cin >> rValTwo;

88: }

Here’s a sample run of the program:

(0) Quit (1) Change Values (2) Square (3) Cube (4) Swap: 1

x: 1 y: 2

New value for valOne: 7

New value for valTwo: 9

x: 7 y: 9

(0) Quit (1) Change Values (2) Square (3) Cube (4) Swap: 3

x: 7 y: 9

x: 343 y: 729

(0) Quit (1) Change Values (2) Square (3) Cube (4) Swap: 2

x: 343 y: 729

x: 117649 y: 531441

(0) Quit (1) Change Values (2) Square (3) Cube (4) Swap: 4

x: 117649 y: 531441

x: 531441 y: 117649

(0) Quit (1) Change Values (2) Square (3) Cube (4) Swap: 0

On line 15, pFunc is declared to be a pointer to a function returning void and taking two 

parameters, both of which are integer references. On line 7, printVals is declared to be 

a function taking three parameters. The first is a pointer to a function that returns void but 

takes two integer reference parameters, and the second and third arguments to printVals 

are integer references. The user again is prompted which functions to call, then on line 42 

printVals() is called.

There is a more readable way of writing this with typedef. 

Using typedef with Pointers to Functions
The construct void (*)(int&, int&) in the FunctionPasser program is cumbersome. You can 

use typedef to simplify this, by declaring a type VPF as a pointer to a function returning void 

and taking two integer references:

typedef  void (*VPF) (int&, int&);
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The pFunc variable is declared to be of type VPF:

VPF pFunc;

The member function printVals() is declared to take three parameters, a VPF and two 

integer references:

void printVals(VPF pFunc,int& x, int& y)

Remember that typedef creates a synonym; the only difference is readability.

Pointers to Member Functions
Up to this point, all of the function pointers you’ve created have been for general, non-class 

functions. It also is possible to create pointers to functions that are members of classes.

To create a pointer to member function, use the same syntax as with a pointer to a function, but 

include the class name and the scoping operator (::). Therefore, if pFunc points to a  member 

function of the class Shape, which takes two integers and returns void, the declaration for 

pFunc is the following:

void (Shape::*pFunc)(int, int);

Pointers to member functions are used in exactly the same way as pointers to functions, except 

that they require an object of the correct class on which to invoke them. The MemberPointer 

 program in Listing 20.8 illustrates the use of pointers to member functions.

LISTING 20.8 The Full Text of MemberPointer.cpp

 1: #include <iostream>

 2: 

 3: enum BOOL { FALSE, TRUE };

 4: 

 5: class Mammal

 6: {

 7: public:

 8:     Mammal():age(1) {  }

 9:     virtual ~Mammal() { }

10:     virtual void speak() const = 0;

11:     virtual void move() const = 0;

12: protected:

13:     int age;

14: };

15: 

16: class Dog : public Mammal

17: {

18: public:



ptg18189307

Friend Classes and Functions 323

19:     void speak() const { std::cout << "Woof!\n"; }

20:     void move() const { std::cout << "Walking to heel ...\n"; }

21: };

22: 

23: class Cat : public Mammal

24: {

25: public:

26:     void speak() const { std::cout << "Meow!\n"; }

27:     void move() const { std::cout << "Slinking ...\n"; }

28: };

29: 

30: class Horse : public Mammal

31: {

32: public:

33:     void speak() const { std::cout << "Winnie!\n"; }

34:     void move() const { std::cout << "Galloping ...\n"; }

35: };

36: 

37: int main()

38: {

39:     void (Mammal::*pFunc)() const = 0;

40:     Mammal* ptr = 0;

41:     int animal;

42:     int method;

43:     bool fQuit = false;

44: 

45:     while (fQuit == false)

46:     {

47: std::cout << "(0) Quit (1) Dog (2) Cat (3) Horse: ";

48: std::cin >> animal;

49: switch (animal)

50: {

51: case 1:

52: ptr = new Dog;

53: break;

54: case 2:

55: ptr = new Cat;

56: break;

57: case 3:

58: ptr = new Horse;

59: break;

60: default:

61: fQuit = true;

62: break;

63: }

64: if (fQuit)

65: break;
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66: 

67: std::cout << "(1) Speak (2) Move: ";

68: std::cin >> method;

69: switch (method)

70: {

71: case 1:

72: pFunc = &Mammal::speak;

73: break;

74: default:

75: pFunc = &Mammal::move;

76: break;

77: }

78: 

79: (ptr->*pFunc)();

80: delete ptr;

81:     }

82:     return 0;

83: }

The program asks users to choose a type of object and then the behavior (function) to call on 

that object. Here’s one run:

(0) Quit (1) Dog (2) Cat (3) Horse: 1

(1) Speak (2) Move: 1

Woof!

(0) Quit (1) Dog (2) Cat (3) Horse: 2

(1) Speak (2) Move: 1

Meow!

(0) Quit (1) Dog (2) Cat (3) Horse: 3

(1) Speak (2) Move: 2

Galloping ...

(0) Quit (1) Dog (2) Cat (3) Horse: 0

On lines 5–14, the abstract data type Mammal is declared with two pure virtual member 

 functions, speak() and move(). Mammal is subclassed into Dog, Cat, and Horse, each of which 

overrides speak() and move().

The main() function asks the user to choose which type of animal to create, and then a new 

subclass of Animal is created and assigned to ptr in the switch block on lines 49–63.

The user then is prompted for which function to invoke and that function is assigned to the pointer 

pFunc. On line 79, the function chosen is invoked by the object created, by using the pointer ptr 

to access the object and pFunc to access the function.

Finally, on line 80, delete is called on the pointer ptr to return the memory set aside for the 

object to the heap.
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NOTE

There is no reason to call delete on pFunc because this is a pointer to code, not to an object on 
the heap. In fact, attempting to do so generates a compile-time error.

Arrays of Pointers to Member Functions
As with pointers to functions, pointers to member functions can be stored in an array. The array 

can be initialized with the addresses of various member functions, and those can be invoked by 

offsets into the array. Listing 20.9 illustrates this technique.

LISTING 20.9 The Full Text of MPFunction.cpp

 1: #include <iostream>

 2: 

 3: class Dog

 4: {

 5: public:

 6:     void speak() const { std::cout << "Woof!\n"; }

 7:     void move() const { std::cout << "Walking to heel ...\n"; }

 8:     void eat() const { std::cout << "Gobbling food ...\n"; }

 9:     void growl() const { std::cout << "Grrrrr\n"; }

10:     void whimper() const { std::cout << "Whining noises ...\n"; }

11:     void rollOver() const { std::cout << "Rolling over ...\n"; }

12:     void playDead() const

13: { std::cout << "Is this the end of Little Caesar?\n"; }

14: };

15: 

16: typedef void (Dog::*PDF)() const;

17: 

18: int main()

19: {

20:     const int maxFuncs = 7;

21:     PDF dogFunctions[maxFuncs] =

22: {   &Dog::speak,

23: &Dog::move,

24: &Dog::eat,

25: &Dog::growl,

26: &Dog::whimper,

27: &Dog::rollOver,

28: &Dog::playDead

29:         };

30: 

31:     Dog* pDog =0;

32:     int method;

33:     bool fQuit = false;

34: 



ptg18189307

326 HOUR 20: Using Special Classes, Functions, and Pointers

35:     while (!fQuit)

36:     {

37: std::cout << "(0) Quit (1) Speak (2) Move (3) Eat (4) Growl\n";

38: std::cout << "(5) Whimper (6) Roll Over (7) Play Dead: ";

39: std::cin >> method;

40: if (method == 0)

41: {

42: fQuit = true;

43: break;

44: }

45: else

46: {

47: pDog = new Dog;

48: (pDog->*dogFunctions[method - 1])();

49: delete pDog;

50: }

51: std::cout << std::endl;

52:     }

53:     return 0;

54: }

This program produces the following output:

(0) Quit (1) Speak (2) Move (3) Eat (4) Growl

(5) Whimper (6) Roll Over (7) Play Dead: 3

Gobbling food ...

(0) Quit (1) Speak (2) Move (3) Eat (4) Growl

(5) Whimper (6) Roll Over (7) Play Dead: 5

Whining noises ...

(0) Quit (1) Speak (2) Move (3) Eat (4) Growl

(5) Whimper (6) Roll Over (7) Play Dead: 6

Rolling over ...

(0) Quit (1) Speak (2) Move (3) Eat (4) Growl

(5) Whimper (6) Roll Over (7) Play Dead: 1

Woof!

(0) Quit (1) Speak (2) Move (3) Eat (4) Growl

(5) Whimper (6) Roll Over (7) Play Dead: 0

On lines 3–14, the class Dog is created with seven member functions all sharing the same return 

type and signature. On line 16, a typedef declares PDF to be a pointer to a member function of 

Dog that takes no arguments, returns no values, and is const. This is the signature of the seven 

member functions of Dog.
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On lines 21–29, the array dogFunctions is declared to hold seven such member functions, and 

it is initialized with the addresses of these functions.

On lines 37–39, the user is prompted to pick a function. Unless the user enters 0 to quit, a new 

Dog is created on the heap and the correct function is invoked on the array on line 48.

Summary
This hour covered several ways to make your functions more powerful.

Static member variables serve as a way to store information about an entire class of objects. 

They’re also useful as a technique in which objects of the same class can exchange information 

with each other.

Static member functions provide a place for behavior that fits a class but does not require a 

specific object of that class to operate on.

Friend functions make it possible for one class to expose its private member variables and 

functions to another class that would not otherwise have access. Although normally these things 

are handled via inheritance between a base class and derived class, using friend functions gives 

special access to a class outside of its inheritance hierarchy. 

Q&A
Q. Why use static data when you can use global data?

A. Static data is scoped to the class. It therefore is available only through an object of the
class—through an explicit and full call using the class name if the data is public, or by
using a static member function. Static data is typed to the class type, however, and the
restricted access and strong typing makes static data safer than global data.

Q. Why use static member functions when you can use global functions?

A. Static member functions are scoped to the class and can be called only by using an object
of the class or an explicit full specification (such as ClassName::FunctionName()).

Q. Why not make all classes friends of all the classes they use?

A. Making one class a friend of another exposes the implementation details and reduces
encapsulation. The ideal in object-oriented programming is to keep as many of the details
of each class as possible hidden from all other classes.

Q. Why did Ohio State football coach Woody Hayes punch a player on an opposing team

back in the ‘70s?

A. Hayes, the fiery coach who led the Buckeyes to three national championships, punched a
Clemson Tigers player because he was a notorious bad loser. The player had just intercepted
a pass late in a bowl game.
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In the 1978 Gator Bowl in Jacksonville, Florida, the Buckeyes had the ball and were  trailing 
Clemson 17-15 with a little over two minutes left. Charlie Bauman intercepted an Art 
Schlichter pass and was knocked out of bounds on the Ohio State sideline.

Hayes punched him in the neck and also hit one of his own players who was trying to 
restrain him. The coach was fired one day later and died in 1987.

The coach once explained his competitiveness this way: “Nobody despises losing 
more than I do. That’s what got me into trouble over the years, but it also made a man with 
mediocre ability into a pretty good coach.”

Workshop
Now that you’ve had the chance to learn about static functions and friend functions, you can 
answer a few questions to see how well your brain is functioning. 

Quiz
1. How many copies of a static member variable exist for a class?

A. None

B. One

C. One for each object of the class

2. What keyword makes a member function static?

A. static

B. friend

C. const

3. When should you call delete after you’re done using a function pointer?

A. Always

B. Never

C. Sometimes

Answers
1. B. Only one version is instantiated for all objects of that class.

2. A. The static keyword makes both member variables and functions static for the
entire class.

3. B. Unlike a pointer that holds an address in memory, which should be deleted when no
longer needed, a function pointer points to code and cannot be freed with delete.



ptg18189307

Workshop 329

Activities
1. Take the comments out of the String class in Listing 20.3. Rerun the Employee program

in Listing 20.4 to reveal how often these functions are called.

2. Modify the ArrayFunction program in Listing 20.6 to reject inappropriate input.

To see solutions to these activities, visit this book’s website at http://cplusplus.cadenhead.org.

http://cplusplus.cadenhead.org
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HOUR 21
Using New Features of C++14

What You’ll Learn in This Hour:

 How to create safer null pointers

 How to make constant expressions

 How to assign auto-typed variables

 How to use the new range-based for loop 

The Newest Version of C++
Since the C++ programming language was created by Bjarne Stroustrop in 1979, it has 

undergone several significant revisions.

In 1983, its name was changed from C for Classes to C++, and numerous features such as virtual 

functions, operator overloading, and references were added. Two years later, the first edition of 

Stroustrop’s book The C++ Programming Language was published, offering a full reference to a 

language that had not yet become an official standard.

In 1989, version 2.0 of C++ came out and included such features as multiple inheritance, static 

member functions, and abstract classes.

Nine years later, the C++ standards committee published the standardized version of the 

 language, a version described informally as C++98.

In 2011, C++11 was released after several years in which its sliding schedule led it to be dubbed 

C++0x. (The 0x were a placeholder for the final two numbers in the year.)

The latest and greatest version of the language is C++14. Most current C++ tools fully 

support this version, so you can begin taking advantage of the newest improvements to the 

language.
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Using auto in Function Return Types
C++ is a type-safe language, providing an important assurance that all data will remain in the 

form it takes when its variable is declared. The burden has been on the programmer to use each 

variable according to type. But with each new version of the language, more type safety has 

been ensured by the compiler.

In C++11, the auto keyword could be used in a variable declaration to let the compiler infer the 

data type. This made it possible to do things like this: 

auto length = 50;

auto width = 30;

auto height = 3;

auto area = length * width * height;

std::cout << "Area: " << area << std::endl;

The variables all are integers, which the compiler knows. The length, width, and height 

 variables are integers because they are assigned integer literals as values when they are declared. 

The area variable is an integer because it is the result of an expression multiplying three  integers.

C++ extends this type inference capability by making it possible to use auto as the return type of 

a function.

As the compiler does with variable declarations, the auto keyword causes the function’s return 

type to be determined by the context. This function has auto as the return type:

auto getSalaryMultiple(int years)

{

    if (years < 10)

    {

return 1.1;

    }

    return 1.25;

}

The function takes the years an employee has worked as a parameter, returning a multiplier of 

1.1 for less than 10 years and 1.25 otherwise. This would be multiplied by the employee’s current 

salary to calculate the new salary.

The compiler determines that the function returns a double value because both return 

 statements return literals of that type.

In order for auto to be used as a function’s return type, every return statement in that  function 

must return the same type. If the preceding code was changed so that the final statement 

returned 2 instead of 1.25, compilation fails with this error message:

error: inconsistent deduction for 'auto': 'double' and then 'int'
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This hour’s first project is the AutoArea program in Listing 21.1, which determines the area of a 

3-D rectangle by its length, width, and height.

LISTING 21.1 The Full Text of AutoArea.cpp

 1: #include <iostream>

 2: 

 3: auto findArea(auto length, auto width, auto height) {

 4:  return length * width * height;

 5: }

 6: 

 7: int main()

 8: {

 9:     auto length = 50.0;

10:     auto width = 30.0;

11:     auto height = 3.5;

12:     

13:     auto area = findArea(length, width, height);

14:     

15:     std::cout << "Area: " << area << std::endl;

16:     return 0;

17: }

Like all programs in this hour, AutoArea must be compiled with the command-line option 

––std=c++14 because it uses a new feature of C++14.

When run, it produces a single line of output:

Area: 5250;

This program defines a findArea() function, specifying the function’s return type as auto in 

line 3 in Listing 21.1. It also uses auto as the type of all three parameters to the function.

The compiler figures out the actual type of the parameters and return value in lines 9–11. Those 

statements declare the variables length, width, and height and initialize them with double 

floating-point numbers.

The type of those literals is deduced as double. So when the findArea() function multiplies 

three doubles in line 4 and returns that value, that’s determined to be double as well.

The AutoArea program works with double values without ever explicitly defining a variable to 

be such using the double keyword. This enables the program to be revised in an interesting and 

unusual way.
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Return to your editor and change the values in lines 9–11 so that the statements become the 

following:

auto length = 50;

auto width = 30;

auto height = 3;

All three of the literals are now integers, making the data type deduced by the compiler int 

instead of double.

The program will compile and run successfully:

Area: 4500;

Because of type deduction, the entire program changed its behavior, shifting to employ 

integer values and a multiplication expression that produces an integer. The compiler did this 

work for you.

In a recursive function that calls itself, the recursive call must be preceded by another return 

statement whose type can be determined by the compiler.

In a simple demonstration program like AutoArea the benefit of this flexibility may not seem 

like much to crow about. But in a large C++ program, changing the data type of something can 

cascade to other variables, parameters, and return types, requiring modifications to each that 

account for the new type.

The more your programs use auto-deduction, the more flexible they become as you refactor them.

CAUTION

The auto keyword can be used in a forward declaration of a function, but there’s a catch: 
The function must be defined before any code that calls the function. Otherwise, the compiler will 
fail with an error.

Improved Numeric Literals
Two small changes introduced with the C++14 release are of arguably lesser significance than 

other improvements but are useful nonetheless. Integer literals now can be expressed as binary 

values and can contain digit separators.

To express an integer in binary, precede it with the characters “0b” or “0B”, as in this statement:

int role = 0b11111111;

This gives role the decimal value 255 (a byte with all eight bits set).
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Here’s another example that sets role to decimal 15:

int role = 0b00001111;

Binary literals can be used in expressions as well, such as this statement:

int role = 0b00001111 – 0b00001101;

The result of the expression is decimal 2 (the binary literal 0b00000010).

A digit separator is a character placed in large numbers to make them more readable. One of 

the most common usages is in money, where the number 10000000 is tougher to comprehend at 

a glance than $10,000,000.

In that figure of currency, a comma (,) is the digit separator. One appears every three digits for 

purpose of readability. The separator has no effect on the actual value.

The new digit separator in C++ is the single quote character (‘).

Here’s a statement that uses it:

long long ouch = 19'241'686'248'628;

The variable ouch is the U.S. national debt in whole dollars at the moment this was written 

(around $19.24 trillion and counting). The separator character (‘) is ignored by the C++ compiler. 

If you displayed this variable, the output would be the following:

19241686248628;

At the time of this writing a vigorous campaign is underway to select a new president. One of 

the candidates may even be president by the time you read this. If that’s the case, based on the 

ironclad promises all of them have made on the campaign trail, the above number should be 

much lower.

To check whether that happened, pause this hour for a moment and visit the National Debt 

Clock website at www.brillig.com/debt_clock to compare our 14-digit figure to the current one. 

We’ll wait for you to get back.

[Dramatic pause]

Welcome back. Yes, that is a staggeringly large increase in a short amount of time.

The constexpr Keyword
A constant expression function is a function whose value can be determined by the compiler, 

enabling that constant value to be substituted in place of the function.

http://www.brillig.com/debt_clock
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The function must be preceded by the keyword constexpr and meet three criteria:

 The function must return a value (not void)

 The entire body of the function must be a single return statement that returns an 

expression

 The expression must evaluate to a constant after substitution.

The constant expression cannot be called before it is defined.

Here’s a snippet of code that is a valid constant expression:

constexpr double expand(int original)

{

    return original * 1.5;

}

The use of constexpr improves C++ by enabling a programmer for the first time to signal the 

intent that the code be used as a constant expression.

The keyword says to the compiler that this function is a constant when the parameters to the 

 function all are constants. If any of the parameters is not a constant, it should be evaluated 

dynamically.

One of the most common situations where constexpr comes in handy is in the declaration of 

arrays.

When an array is initialized in C++, the size of that array must be a constant. There often are 

times where it would be convenient to set the size of an array by calling a function. Here’s an 

approach that could be attempted:

const int getArraySize(int hours)

{

    return 60 * 60 * hours;

}

int ticks[getArraySize(24)];

Because the array size set between the [ and ] brackets must be a constant, an older C++ compiler 

will fail with an error “array bound is not an integer constant before ‘]’ token.”

By changing the const keyword in the function declaration to constexpr and compiling the 

program to the C++14 standard, you can solve this problem.

The ArrayMaxer program in Listing 21.2 demonstrates this approach. The program creates 

an array of integers, stores a value in each of the array elements, then displays a value of one 

 element.
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LISTING 21.2 The Full Text of ArrayMaxer.cpp

 1: #include <iostream>

 2: 

 3: constexpr int getArraySize()

 4: {

 5:  return 1024;

 6: }

 7: 

 8: int main()

 9: {

10:

11:     int bolts[getArraySize()];

12:     int boltsSize = sizeof(bolts) / sizeof(bolts[0]);

13:     

14:     for (int i = 0; i < boltsSize; i++)

15:     {

16: bolts[i] = i * boltsSize;

17:     }

18:     

19:     std::cout << "Value of bolts[10]: " << bolts[10] << std::endl;

20:  

21:     return 0;

22: }

Compile the program with the –std=c++14 option and run it to produce the following output:

Value of bolts[10]: 10240;

The constant expression function is defined in lines 3–6 of Listing 21.2. The constexpr keyword 

precedes the function’s return type, name, and parameters.

This function meets the criteria for a constant expression function by returning a value (an 

 integer), consisting of a single return statement, and evaluating to a constant when executed. 

Also, the function is defined before it is called on line 11.

The program iterates through all elements of the bolts array, giving each one a value. The for 

loop in lines 14–17 makes use of the boltSize variable to know when the end of the array has 

been reached.

This variable is declared on line 12 and makes use of the C++ built-in sizeof() function in a 

way you may not have encountered before. As you may recall from Hour 3, “Creating Variables 

and Constants,” sizeof() returns the number of bytes a variable’s data type occupies. It can be 

used on simple data types such as int or long and on entire arrays.

Looping through every element in an array requires some way of knowing when the end of 

the array has been reached. Calling sizeof() on an array returns the total number of bytes 
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that array holds. By dividing this by the sizeof() for a single array element, the result is the 

 number of elements.

The addition of constexpr is a compiler optimization that replaces a lot of approaches that 

were cumbersome and much more complicated.

Lambda Expressions
The most asked-for feature to be added to C++ in recent years is lambda expressions, which 

enable the creation of inline anonymous functions. The syntax can seem a bit confusing at first, 

but as you master their use, you will find they provide powerful functionality that can make 

your source code easier to understand.

A lambda expression resembles a statement and can be defined in a single line of code. The 

expression is stored in a variable and called like a function.

Here’s an example:

auto aarhus = [](){ std::cout << "Solidum petit in profundis!" << std::endl; };

aarhus();

This code produces the following output:

Solidum petit in profundis!

The anonymous function executes the code between the { and } braces. Note that there’s a 

semi-colon at the end of the line following the } brace.

The function is stored in the variable aarhus and run using the same syntax as calling a function.

The lambda expression can have one or more arguments, which are specified within the 

 parenthesis marks after the [ ] square brackets.

This example has two arguments:

auto multiply = [](int x, int y){ std::cout << "Total: " << x * y << std::endl; };

multiply(7, 17);

Here’s the output:

Total: 117

When a lambda expression has no arguments, the parentheses can be left out of the expression. 

The first example didn’t have any, so here’s another version of that expression:

auto aarhus = []{ std::cout << "Solidum petit in profundis!" << std::endl; };
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The expression can return a value by specifying its return type (or auto) after a -> operator.

Here’s a rewrite of the previous example that returns the sum of multiplying x and y.

auto multiply = [](int x, int y) -> int { return x * y; };

int sum = multiply(7, 17);

std::cout << "Total: " << sum << std::endl;

A lambda expression normally does not have access to the variables defined in the scope that 

encloses the expression.

You can change this with the last part of the expression to be put to work: the [ ] square brackets, 

which are called the capture block.

To make one or more variables from the enclosing scope available in the lambda expression, list 

them inside the [ and ] brackets separated by commas.

This code puts the capture block to use:

int x = 7;

auto multiply = [x](int y) -> int { return x * y; };

int sum = multiply(17);

std::cout << "Total: " << sum << std::endl;

The output remains the same.

Summary
Many programmers have begun to use the term Modern C++ to refer to C++14 and its  predecessor 

C++11. With new versions coming out at a much speedier pace than in the past, C++ creator 

Bjarne Stroustrop has expressed enormous excitement about the current state of the language. He 

wrote on his website, “The pieces just fit together better than they used to and I find a higher-level 

style of programming more natural than before and as efficient as ever.”

For more of his thoughts, visit his site at www.stroustrup.com. 

Q&A
Q. Are there any risks to using the auto keyword?

A. One of the biggest is when you’re mistaken about what data type is being assigned by the
statement. A common blunder in C++ is to assume that the literal 3.5 is a float literal.
It’s actually a double. So if you’ve created an auto-typed variable using a value like that
and you don’t realize it’s a double, you could make assumptions about how you can use the
variable in a program.

http://www.stroustrup.com
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Q. With C++11 and C++14 coming just three years apart, when is the next version of C++

expected to come out?

A. The current plan is to produce the next version during the year 2017 as C++17, keeping
the streak of three-year intervals that is dramatically faster than how the language used to
be improved.

The version has not yet been declared “feature complete” at the time of this writing, so it’s 
not yet clear this schedule will be hit.

The working name C++1z has been adopted during development as an indicator it may slide 
to 2018 or 2019 if there are unexpected delays or obstacles to implementation.

For the current status of this version, visit the C++ standardization website at 
https://isocpp.org/std/status. 

Q. Who invented the crossword puzzle?

A. The crossword puzzle was devised by Arthur Wynne in 1913 for the New York World
newspaper. The first one was published on December 21, 1913, and described as a
“Word-Cross.”

Wynne created new puzzles each week for the newspaper. His puzzles had the same rules
as current crossword puzzles but an unusual shape. Words crisscrossed each other on a
diamond shaped grid with black squares in the middle.

Wynne quickly settled on a rectangular shape and the name “Cross-Word.” Eleven years
later in 1924, fledgling book publishers Dick Simon and Lincoln Schuster introduced
crosswords to an international audience by issuing a collection of New York World puzzles
that became a bestseller.

The first crossword puzzle is available online at www.fun-with-words.com/worlds_first_
crossword.html. If you can figure out a seven-letter word for “a written acknowledgment”
that starts with R, I’d appreciate the help.

Workshop
Now that you’ve spent an hour on the future of C++, answer a few questions and undertake 
exercises to see how much knowledge you brought back to the present.

Quiz
1. Which of the following is not an acceptable place to use the auto keyword?

A. Initializing a variable with a literal

B. Returning a value from a function

C. Both A. and B. are acceptable

https://isocpp.org/std/status
http://www.fun-with-words.com/worlds_first_crossword.html
http://www.fun-with-words.com/worlds_first_crossword.html
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2. What types can a nullptr be converted to using casting?

A. int

B. bool

C. none

3. What can the constexpr keyword be used to define?

A. Functions

B. Variables

C. Functions and variables

Answers
1. C. The auto keyword can be used as the type of a variable when it is initialized and the

type of a function parameter.

2. B. The nullptr has the bool value of false after being cast, which C++ supports
because of existing code that relies on the behavior.

3. C. Any variable or function declared with constexpr is implicitly treated as a const.

Activities
1. Write a program that takes the U.S. national debt, adds $2.35 billion a day for 10 days and

displays the result with a lambda expression.

2. Write a program with a square() function that multiplies a number by itself and has two
auto-typed variables as parameters. Call the function multiple times with an int, long,
float, and double. Store the result of the function in an auto-typed variable and display it.

To see solutions to these activities, visit this book’s website at http://cplusplus.cadenhead.org.

http://cplusplus.cadenhead.org
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HOUR 22
Employing Object-Oriented 

Analysis and Design

What You’ll Learn in This Hour:

 How to analyze problems from an object-oriented perspective

 How to design your program from an object-oriented perspective

 How to apply the syntax of C++ to implement design objectives

 How to design for reusability and extensibility

The Development Cycle
Many books and articles have been written about the development cycle. Some propose 

a  waterfall technique, in which designers determine what the program should do. Architects 

determine how the program will be built, what classes will be used, and so forth. Programmers 

implement the design and architecture. By the time the design and architecture are given to 

the programmer, they are complete; all the programmer needs to do is implement the required 

 functionality.

Even if the waterfall technique worked, it would be a poor technique for writing good programs. 

As the programmer proceeds, there is a necessary and natural feedback cycle between what has 

been written so far and what remains to be done. While it is true that good C++ programs are 

designed in great detail before a line of code is written, it is not true that that design remains 

unchanged throughout the cycle.

The amount of design that must be finished up front, before programming begins, is a function 

of the size of the program. A highly complex effort, involving dozens of programmers  working 

for many months, will require a more fully articulated architecture than a quick-and-dirty 

 application written in one day by a single programmer.

This hour focuses on the design of large, complex programs that will be expanded and enhanced 

over many years. Many programmers enjoy working at the bleeding edge of technology; they 

tend to write programs whose complexity pushes at the limits of their tools and understanding. 

In many ways, C++ was designed to extend the complexity that a programmer can manage.
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Simulating an Alarm System
A simulation is a computer model of a real-world system. There are many reasons to build a 

simulation, but a good design must start with an understanding of what questions you hope the 

simulation will answer.

As a starting point, examine this problem: You have been asked to simulate the alarm 

system for a house. The house has four bedrooms, a finished basement, and an under-the-house 

garage.

The downstairs has the following windows: three in the kitchen, four in the dining room, one in 

the half-bathroom, two each in the living room and the family room, and two small windows 

next to the front door. All four bedrooms are upstairs; each bedroom has two windows except for 

the master bedroom, which has four. There are two baths, each with one window. Finally, there 

are four half-windows in the basement and one window in the garage.

Normal access to the house is through the front door. In addition, the kitchen has a sliding glass 

door, and the garage has two doors for the cars and one door for easy access to the basement. 

There also is a cellar door in the backyard.

All the windows and doors have alarms, and there is a panic button on each phone and one 

next to the bed in the master bedroom. The grounds have alarms, as well, although these 

alarms are carefully calibrated so that they are not set off by small animals or birds.

A central alarm system in the basement sounds a warning chirp when the alarm has been 

tripped. If the alarm is not disabled within a set amount of time, the police are called. If a panic 

button is pushed, the police are called immediately.

The alarm also is wired into the fire and smoke detectors and the sprinkler system. The alarm 

system itself is fault tolerant, has its own internal backup power supply, and is encased in a 

 fireproof box.

Conceptualization
In the conceptualization phase, you try to understand what the customer hopes to gain from the 

program: What is this program for? What questions might this simulation answer? For example, 

you might be able to use the simulation to answer these questions: How long might a sensor be 

broken before anyone notices? Is there a way to defeat the window alarms without the police 

being notified?

The conceptualization phase is a good time to think about what is inside the program and what 

is outside. Are the police represented in the simulation? Is control of the actual house alarm in 

the system itself?



ptg18189307

Simulating an Alarm System 345

Analysis and Requirements
The conceptualization phase gives way to the analysis phase. During analysis, your job as 

object-oriented programming analyst is to help the customer understand what she requires from 

the program. Exactly what behavior will the program exhibit? What kinds of interactions can 

the customer expect?

These requirements are typically captured in a series of documents, which might include use 

cases. A use case is a description of how the system will be used. It describes interactions and use 

patterns, helping the programmer capture the design goals of the system.

NOTE

Unified Modeling Language (UML) is one way of representing your requirements and analysis. The 
advantage of using UML to represent your information is twofold: It’s graphical and it follows a 
standard form, so many people will be able to understand it. Although it is beyond the scope of 
this book to teach UML (there are many good books on that topic alone), you should know that it 
includes ways of representing use cases. It is particularly suited for object-oriented development, 
because it supports abstract and other types of classes directly.

A good book for learning UML is Sams Teach Yourself UML in 24 Hours, Third Edition 
(ISBN: 0-672-32640-X), by Joseph Schmuller.

High-Level and Low-Level Design
After the product is fully understood and the requirements have been captured in the 

appropriate documentation, it is time to move on to the high-level design. During this phase of 

the design the programmer doesn’t worry about the platform, operating system, or programming 

language issues. He concentrates, instead, on how the system will work: What are the major 

components? How do they interact with one another?

One way to approach this problem is to set aside issues relating to the user interface, focusing 

only on the components of the problem space.

The problem space is the set of problems and issues your program is trying to solve. The solution 

space is the set of possible solutions to the problems.

As your high-level design evolves you’ll want to begin thinking about the responsibilities of the 

objects you identify—what they do and what information they hold. You also want to think 

about their collaborations—what objects they interact with.

For example, clearly you have sensors of various types, a central alarm system, buttons, wires, 

and telephones. Further thought persuades that you also must simulate rooms, perhaps floors, 

and possibly groups of people such as owners and police.
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The sensors can be divided into motion detectors, trip wires, sound detectors, smoke detectors, 

and so forth. All these are types of sensors, although there is no such thing as a sensor per se. 

This is a good indication that sensor is an abstract data type (ADT).

As an ADT, the class Sensor would provide the complete interface for all types of sensors, and 

each derived type would provide the implementation. Clients of the various sensors would use 

them without regard to which type of sensor they are, and they would each “do the right thing” 

based on their real type.

To create a good ADT, you need to have a complete understanding of what sensors do, rather 

than how they work. For example, are sensors passive devices or are they active? Do they wait 

for some element to heat up, a wire to break, or a piece of caulk to melt, or do they probe their 

environment? Perhaps some sensors have only a binary state (triggered or untriggered), but 

 others have a more analog state (what is the current temperature?). The interface to the abstract 

data type should be sufficiently complete to handle all the anticipated needs of the myriad 

derived classes.

Other Objects
The design continues in this way, teasing out the other classes that are required to meet the 

specification. For example, if a log is to be kept, probably a timer is needed; should the timer 

poll each sensor, or should each sensor file its own report periodically?

The user is going to need to be able to set up, disarm, and program the system, so a terminal of 

some sort is required. You might want a separate object in your simulation for the alarm 

program itself.

Designing the Classes
As you solve these problems, you will begin to design your classes. For example, you already 

have an indication that HeatSensor will derive from Sensor. If the sensor is to make periodic 

reports, it might also derive via multiple inheritance from Timer, or it might have a timer as a 

member variable.

The HeatSensor will probably have member functions, such as currentTemp() and 

setTempLimit(), and probably will inherit functions such as soundAlarm() from its base 

class, Sensor.

A frequent issue in object-oriented design is that of encapsulation. You can imagine a design in 

which the alarm system has a setting for maxTemp. The alarm system asks the heat sensor what 

the current temperature is, compares it to the maximum temperature, and sounds the alarm if it 

is too hot. One could argue that this violates the principle of encapsulation. Perhaps it would be 

better if the alarm system didn’t know or care about the details of temperature analysis—arguably 

that should be in the HeatSensor.
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Whether or not you agree with that argument, it is the kind of decision you want to focus on 

during the analysis of the design. To continue this analysis, one could argue that only the sensor 

and the Log object should know any details of how sensor activity is logged; the Alarm object 

shouldn’t know or care.

Good encapsulation is marked by each class having a coherent and complete set of responsibilities, 

and no other class having the same responsibilities. If the Sensor is responsible for noting the 

current temperature, no other class should have that responsibility.

On the other hand, other classes might help deliver the necessary functionality. For example, 

although it might be the responsibility of the Sensor class to note and log the current 

temperature, it might implement that responsibility by delegating to a Log object the job of 

actually recording the data.

Maintaining a firm division of responsibilities makes your program easier to extend and 

 maintain. When you decide to change the alarm system for an enhanced module, its interface 

to the log and sensors will be narrow and well defined. Changes to the alarm system should not 

affect the Sensor classes, and vice versa.

Should the HeatSensor have a reportAlarm() function? All sensors will need the  capability 

to report an alarm. This is a good indication that reportAlarm() should be a virtual  member 

function of Sensor, and that Sensor might be an abstract base class. It is possible that 

HeatSensor will chain up to Sensor’s more general reportAlarm() member function; the 

overridden function will just fill in the details it is uniquely qualified to supply.

NOTE

For additional information about object-oriented concepts,  consider the Addison-Wesley book 
The Object-Oriented Thought Process, Fourth Edition (ISBN: 0-321-86127-2), by Matt Weisfeld.

Adding More Classes
When your sensors report an alarm condition, they want to provide a lot of information to 

the object that phones the police and to the log. It might well be that you want to create a 

Condition class, whose constructor takes a number of measurements. Depending on the 

 complexity of the measurements, these too might be objects, or they might be simple scalar 

 values such as integers.

It is possible that Condition objects are passed to the central alarm object, or that Condition 

objects are subclassed into Alarm objects, which themselves know how to take emergency action. 

Perhaps there is no central object; instead, there might be sensors that know how to create 

Condition objects. Some Condition objects would know how to log themselves; others might 

know how to contact the police.
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A well-designed, event-driven system need not have a central coordinator. One can imagine 

the sensors all independently receiving and sending message objects to one another, setting 

parameters, taking readings, and monitoring the house. When a fault is detected, an Alarm object 

is created that logs the problem—such as by sending a message to the Log object—and takes the 

appropriate action.

Event Loops
To simulate such an event-driven system, your program needs to create an event loop. An event 

loop is typically an infinite loop such as while(true) that gets messages from the operating 

system (mouse clicks, keyboard presses, and so on) and dispatches them one at a time, returning 

to the loop until an exit condition is satisfied. The SimpleEvent program in Listing 22.1 

implements a rudimentary event loop.

LISTING 22.1 The Full Text of SimpleEvent.cpp

 1: #include <iostream>

 2: 

 3: class Condition

 4: {

 5: public:

 6:     Condition() { }

 7:     virtual ~Condition() {}

 8:     virtual void log() = 0;

 9: };

10: 

11: class Normal : public Condition

12: {

13: public:

14:     Normal() { log(); }

15:     virtual ~Normal() {}

16:     virtual void log()

17: { std::cout << "Logging normal conditions ...\n"; }

18: };

19: 

20: class Error : public Condition

21: {

22: public:

23:     Error() { log(); }

24:     virtual ~Error() {}

25:     virtual void log() { std::cout << "Logging error!\n"; }

26: };

27: 

28: class Alarm : public Condition

29: {
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30: public:

31:     Alarm();

32:     virtual ~Alarm() {}

33:     virtual void warn() { std::cout << "Warning!\n"; }

34:     virtual void log() { std::cout << "General alarm log\n"; }

35:     virtual void call() = 0;

36: };

37: 

38: Alarm::Alarm()

39: {

40:     log();

41:     warn();

42: }

43: 

44: class FireAlarm : public Alarm

45: {

46: public:

47:     FireAlarm() { log();};

48:     virtual ~FireAlarm() {}

49:     virtual void call() { std::cout<< "Calling fire department!\n"; }

50:     virtual void log() { std::cout << "Logging fire call\n"; }

51: };

52: 

53: int main()

54: {

55:     int input;

56:     int okay = 1;

57:     Condition *pCondition;

58:     while (okay)

59:     {

60: std::cout << "(0) Quit (1) Normal (2) Fire: ";

61: std::cin >> input;

62: okay = input;

63: switch (input)

64: {

65: case 0:

66: break;

67: case 1:

68: pCondition = new Normal;

69: delete pCondition;

70: break;

71: case 2:

72: pCondition = new FireAlarm;

73: delete pCondition;

74: break;

75: default:
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76: pCondition = new Error;

77: delete pCondition;

78: okay = 0;

79: break;

80: }

81:     }

82:     return 0;

83: }

The SimpleEvent program takes one of three options as input. Here’s one run of the program:

(0) Quit (1) Normal (2) Fire: 1

Logging normal conditions ...

(0) Quit (1) Normal (2) Fire: 2

General alarm log

Warning!

Logging fire call

(0) Quit (1) Normal (2) Fire: 0

The simple loop on lines 58–81 enables the user to enter input simulating a normal report from 

a sensor and a report of a fire. Note that the effect of this report is to spawn a Condition object 

whose constructor calls various member functions.

Calling virtual member functions from a constructor can cause confusing results if you are not 

mindful of the order of the construction of objects. For example, when the FireAlarm object is 

created on line 72, the order of construction is Condition, Alarm, FireAlarm.

The Alarm constructor calls Log, but it is Alarm’s Log() constructor that is invoked, not 

FireAlarm’s, despite Log() being declared virtual.

This is because at the time Alarm’s constructor runs, there is no FireAlarm object. Later, 

when FireAlarm itself is constructed, its constructor calls Log() again, and this time 

FireAlarm::Log() is called.

PostMaster: A Case Study
Here’s another problem on which to practice your object-oriented analytical skills: You have 

been hired by Defective Software to start a new software project and to hire a team of C++ 

programmers to implement your program. Sam Snett, vice-president of New Product 

Development, is your new boss. He wants you to design and build PostMaster, a utility to read 

email from various  providers. The potential customer is a business person who uses more than 

one email product (for example, Gmail, Yahoo Mail, and Microsoft Outlook).
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The customer will be able to configure PostMaster to connect to each of the email providers. 

PostMaster will get the mail and present it in a uniform manner, enabling the customer 

to organize the mail, reply, forward letters among services, and so forth.

PostMaster Professional, to be developed as version two of PostMaster, already is anticipated. 

It will add an administrative assistant mode that will enable the user to designate another 

person to read some or all of the mail, handle routine correspondence, and so forth. There also 

is  speculation in the marketing department that an artificial-intelligence component might add 

the capability for PostMaster to pre-sort and prioritize the mail based on subject and content 

keywords and associations.

Other enhancements have been talked about, including the capability to handle not only mail 

but discussion groups, such as Internet message boards and mail lists. It is obvious that Defective 

has great hopes for PostMaster, and you are under severe time constraints to bring it to market, 

although you seem to have a nearly unlimited budget.

Measure Twice, Cut Once
You set up your office and order your equipment; your first order of business is to get a good 

specification for the product. After examining the market, you decide to recommend that 

development be focused on a single platform, and you set out to decide among Linux, Mac OS, 

and Windows.

You have many painful meetings with Vice President Snett. It becomes clear that there is no right 

choice, so you decide to separate the front end—that is, the user interface (or UI)—from the back 

end—the communications and database part. To get things going quickly, you decide to write for 

Windows, followed later by Mac OS and perhaps Linux.

This simple decision has enormous ramifications for your project. It quickly becomes obvious 

that you need a class library or a series of libraries to handle memory management, the various 

user interfaces, and perhaps also the communications and database components.

Snett believes strongly that projects live or die by having one person with a clear vision, so he 

asks that you do the initial architectural analysis and design before hiring any programmers. 

You set out to analyze the problem.

Divide and Conquer
It quickly becomes obvious that you have more than one problem to solve. You divide the project 

into these significant subprojects:

 Communications: The capability for the software to dial into the email provider over a 

network.

 Database: The capability to store data and to retrieve it from disk.

PostMaster: A Case Study
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 Email: The capability to read various email formats and to write new messages to each 

system.

 Editing: State-of-the-art editors for the creation and manipulation of messages.

 Platform issues: The various user interface issues presented by each platform.

 Extensibility: Planning for growth and enhancements.

 Organization and scheduling: Managing the programmers and their code 

interdependencies. Each group must devise and publish schedules, then be able to plan 

accordingly. Senior management and marketing need to know when the product 

will be ready.

You decide to hire a manager to handle one of these items: organization and scheduling. You 

hire senior developers to help you analyze and design, and then to manage the implementation 

of the remaining areas. These senior developers will create the following teams:

 Communications: Responsible for network communications. They deal with packets, 

streams, and bits rather than with email messages per se.

 Message format: Responsible for converting messages from each email provider to a 

canonical form (PostMaster standard), and back. It also is this team’s job to write these 

messages to files and to get them back from files as needed.

 Message editors: This group is responsible for the entire UI of the product on each 

platform. It is the editors’ job to ensure that the interface between the back end and the 

front end of the product is sufficiently narrow so that extending the product to other 

platforms does not require duplication of code.

Message Format
You decide to focus on the message format first, setting aside the issues relating to communica-

tions and user interface. These will follow after you understand more fully what it is you are 

dealing with. There is little sense in worrying about how to present the information to the user 

until you understand what kind of information it is.

An examination of the email formats reveals that they have many things in common, despite 

their differences. Each email message has a point of origination, a destination, and a creation 

date. Nearly all such messages have a title or subject line, and a body that might consist of 

simple text, rich text (text with formatting), graphics, and perhaps even sound or other fancy 

additions. Most email services also support attachments so that users can send programs and 

other files.
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You confirm your early decision that you will read each mail message in its original format and 

transform it into PostMaster format. This way you only will have to store one record format, 

and writing to and reading from the disk will be simplified. You also decide to separate the  header 

information (sender, recipient, date, title, and so on) from the body of the message. Often the 

user will want to scan the headers without necessarily reading the contents of all the messages. 

You anticipate that a time might come when users will want to download only the headers from 

the message provider, without getting the text at all, but for now you intend that version one of 

PostMaster always will get the full message, although it might not display it to the user.

Initial Class Design
This analysis of the messages leads you to design the Message class. In anticipation of 

extending the program to non-email messages, you derive EmailMessage from the abstract 

base Message. From EmailMessage you derive PostMasterMessage, InterchangeMessage, 

OutlookMessage, GmailMessage, and so on.

Messages are a natural choice for objects in a program handling mail messages, but finding all 

the right objects in a complex system is the greatest challenge of object-oriented programming. 

In some cases, such as with messages, the primary objects seem to fall out of your understanding 

of the problem. More often, however, you have to think long and hard about what you are 

trying to accomplish to find the right objects.

Don’t despair. Most designs are not perfect the first time. A good starting point is to describe the 

problem out loud. Make a list of all the nouns and verbs you use when describing the project. 

The nouns are good candidates for objects. The verbs might be the functions of those objects 

(or they might be objects in their own right). This is not a foolproof technique, but it is a good 

technique to use when getting started on your design.

Now the question arises, “Should the message header be a separate class from the body?” If so, 

do you need parallel hierarchies—ForumBody and ForumHeader as well as EmailBody and 

EmailHeader?

Parallel hierarchies often are a warning sign of a bad design. It is a common error in 

object-oriented design to have a set of objects in one hierarchy and a matching set of manager 

objects in another. The burden of keeping these hierarchies up-to-date and in sync with each 

other soon becomes overwhelming: a classic maintenance nightmare.

There are no hard-and-fast rules to designing a class hierarchy, of course, and at times parallel 

hierarchies are the most efficient way to solve a particular problem. Nonetheless, if you see your 

design moving in this direction, you should rethink the problem because a more elegant solution 

might be available.

PostMaster: A Case Study
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When the messages arrive from the email provider, they will not necessarily be separated 

into header and body; many will be one large stream of data that your program will have to 

disentangle. Perhaps your hierarchy should reflect that idea directly.

Further reflection on the tasks at hand leads youto list the properties of these messages, with an 

eye toward introducing capabilities and data storage at the right level of abstraction. Listing 

properties of your objects is a good way to find the data members, as well as to shake out other 

objects you might need.

Mail messages will need to be stored, as will the user’s preferences, phone numbers, and so forth. 

Storage clearly needs to be high up the hierarchy. Should the mail messages necessarily share a 

base class with the preferences?

Rooted Hierarchies Versus Non-Rooted
There are two overall approaches to inheritance hierarchies: You can have all, or nearly all, of 

your classes descend from a common root class, or you can have more than one inheritance 

hierarchy. An advantage of a common root class is that you often can avoid multiple inheritance; 

a disadvantage is that many times implementation will climb up into the base class.

A set of classes is rooted if all share a common ancestor. Non-rooted hierarchies do not all share 

a common base class.

Because you know that your product will be developed on many platforms, and because 

multiple inheritance is complex and not necessarily well supported by all compilers on all 

platforms, your first decision is to use a rooted hierarchy and single inheritance. You decide 

to identify those places where multiple inheritance might be used in the future. You then can 

design so that breaking apart the hierarchy and adding multiple inheritance at a later time need 

not be  traumatic to your entire design.

You decide to prefix the name of all your internal classes with the letter p, so that you can easily 

and quickly tell which classes are yours and which are from other libraries.

Your root class will be pObject. Nearly every class you create will descend from this object. 

 pObject itself will be kept fairly simple; only the data that absolutely every item shares will 

appear in this class.

If you want a rooted hierarchy, you should give the root class a fairly generic name 

(like  pObject) and few capabilities. The point of a root object is to be able to create collections 

of all its descendants and refer to them as instances of pObject. The trade-off is that rooted 

 hierarchies often push the interface up into the root class.

The next likely candidates for top-of-the-hierarchy status are pStored and pWired. pStored 

objects are saved to a file at various times (for example, when the program is not in use), and 
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pWired objects are sent over the network. Because nearly all your objects will need to be stored 

to files, it makes sense to push this functionality high up in the hierarchy. All the objects that are 

sent over the network must be stored, but not all stored objects must be sent over the network, so 

it makes sense to derive pWired from pStored.

Each derived class acquires all the knowledge (data) and functionality (member functions) of its 

base class, and each should have at least one discrete additional capability. Thus, pWired might 

add various functions, but all these functions are designed to facilitate transfer of data over a 

modem.

It is possible that all wired objects are stored, or that all stored objects are wired, or that neither 

of those statements is true. If only some wired objects are stored, and only some stored objects 

are wired, you will be forced either to use multiple inheritance or to design around the problem. 

A potential hack for such a situation would be to inherit Wired from Stored, then make the 

stored functions do nothing or return an error for those objects that are sent over a network but 

never stored.

In fact, you realize that some stored objects clearly are not wired (for example, user preferences). 

All wired objects, however, are stored, so your inheritance hierarchy so far is as reflected in 

Figure 22.1.

pWired pPreferences pProvider Info

pMessage

pStored

pObject

FIGURE 22.1
Initial inheritance hierarchy.

PostMaster: A Case Study
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NOTE

One question you will confront throughout the design phase of your program is which routines you 
might buy and which you must write yourself. It is entirely possible that you can take advantage of 
existing commercial libraries to solve some or all of your communications issues. Licensing fees and 
other non-technical concerns must also be resolved.

It often is advantageous to purchase such a third-party library, and to focus your energies on your 
specific program rather than to reinvent the wheel about secondary technical issues. You might even 
want to consider purchasing libraries that were not necessarily intended for use with C++, if they can 
provide fundamental functionality you’d otherwise have to engineer yourself. This can be instrumental 
in helping you hit your deadlines.

Designing the Interfaces
It is important, at this stage of designing your product, to avoid being concerned with 

implementation. You want to focus all your energies on designing a clean interface among the 

classes, then delineating what data and member functions each class will need.

It often is a good idea to have a solid understanding of the base classes before trying to design 

the more derived classes, so you decide to focus first on pObject, pStored, and pWired.

The root class, pObject, only will have those data and functions that are common to  everything 

on your system. Perhaps every object should have a unique identification number. You could 

 create pID (PostMaster ID) and make that a member of pObject; but first you must ask 

 yourself, “Does any object that is not stored and not wired need such a number?” That raises this 

question: Are there any objects that are not stored, but that are part of this hierarchy?

If there are no such objects, you might want to consider collapsing pObject and pStored into 

one class; after all, if all objects are stored, what is the point of the differentiation? Thinking this 

through, you realize that there might be some objects, such as address objects, that would be 

beneficial to derive from pObject but will never be stored on their own; if they are stored it will 

be as part of some other object.

This tells you that, for now, having a separate pObject class would be useful. You can imagine 

that there will be an address book which will be a collection of pAddress objects, and although 

no pAddress ever will be stored on its own, there would be utility in giving each one its own 

unique identification number. You tentatively assign pID to pObject; that means pObject, at 

a minimum, will look like this:

class pOjbect

{

public:

   pObject();

   ~pObject();
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   pID GetID() const;

   void SetID();

private:

   pID itsID;

}

Take note of a number of things about this class declaration. First, this class is not declared to 

derive from any other; this is your root class. Second, there is no attempt to show implementation, 

even for member functions such as GetID() that are likely to have inline implementation when 

you are done.

Third, const member functions already are identified; this is part of the interface, not the 

implementation. Finally, a new data type is implied: pID. Defining pID as a type rather than 

using something such as an unsigned long makes your design more flexible.

Perhaps pID will use an unsigned long internally to represent the PostMaster ID. This is still a 

better approach than making the ID an unsigned long integer in the class pObject. If it turns 

out that you don’t need an unsigned long, or that an unsigned long is not sufficiently large, 

you can modify pID. That modification will affect every place pID is used, and you won’t have 

to track down and edit every file with a pID in it.

For now, you use typedef to declare pID to be ULONG which, in turn, you declare to be 

unsigned long. This raises the question: Where do these declarations go?

When programming a large project, an overall design of the files is needed. A standard 

approach, one that you are following on this project, is that each class appears in its own header 

file and the implementation for the class member functions appears in an associated .cpp 

file. Therefore, you will have a file called Object.hpp and another called Object.cpp. You 

 anticipate having other files such as Message.hpp and Message.cpp with the declaration of 

pMessage and the implementation of its functions, respectively.

Building a Prototype
For a project as large as PostMaster, it is unlikely that your initial design will be complete and 

perfect. It would be easy to become overwhelmed by the sheer scale of the problem, and trying to 

create all of the classes and to complete their interface before writing a line of working code is a 

recipe for disaster.

There are a number of good reasons to try out your design on a prototype—a quick-and-dirty 

working example of your core ideas. There are a number of different types of prototypes, each 

meeting different needs.

An interface design prototype provides the chance to test the look and feel of your product with 

potential users.

PostMaster: A Case Study
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A functionality prototype does not have the final user interface, but enables users to try out 

various features, such as forwarding messages or attaching files.

Finally, an architecture prototype might be designed to give you a chance to develop a smaller 

version of the program and to assess how easily your design decisions will scale up as the 

program is fleshed out.

It is imperative to keep your prototyping goals clear. Are you examining the user interface, 

experimenting with functionality, or building a scale model of your final product? A good 

architecture prototype makes a poor user interface prototype, and vice versa.

It also is important to keep an eye on overengineering  the prototype, or becoming so concerned 

with the investment you’ve made in the prototype that you are reluctant to tear down the code 

and redesign as you progress.

The 80/80 Rule
A good design rule of thumb at this stage is to design for those things that 80% of the people 

want to do 80% of the time, and to set aside your concerns about the remaining 20%. The 

boundary conditions will need to be addressed sooner or later, but the core of your design should 

focus on the 80/80.

Accordingly, you might decide to start by designing the principal classes, setting aside the need 

for the secondary classes. Further, when you identify multiple classes that will have similar 

designs with only minor refinements, you might choose to pick one representative class and 

focus on that, leaving until later the design and implementation of its close cousins.

NOTE

There is another rule, the 80/20 rule, that states this: The first 20 percent of your program will take 
80 percent of your time to code; the remaining 80 percent of your program will take the other 80 
percent of your time!

The real rule is that 80 percent of the time is required to do 20 percent of the work—or that 80 
percent of a company’s profit will come from 20 percent of the customers. This rule has wide 
application.

Designing the PostMasterMessage Class
In keeping with these considerations, you decide to focus on PostMasterMessage, the class 

most directly under your control.

As part of its interface, PostMasterMessage needs to talk with other types of messages, of 

course. You hope to be able to work closely with the other message providers, and to get their 

message format specifications, but for now you can make some smart guesses just by observing 

what is sent to your computer as you use their services.
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In any case, you know that every PostMasterMessage will have a sender, a recipient, a date, 

and a subject, as well as the body of the message and perhaps attached files. This tells you that 

you’ll need accessors for each of these attributes, as well as member functions to report on the 

size of the attached files, the size of the messages, and so forth.

Some of the services to which you will connect use rich text—text with formatting instructions to 

set the font, character size, and attributes such as bold and italic. Other services do not support 

these attributes, and those that do might use their own proprietary scheme for managing 

rich text. Your class needs conversion functions for turning rich text into plain ASCII, and 

 perhaps for turning other formats into PostMaster formats.

The Application Programming Interface
An application programming interface (API) is a set of documentation and functions for using 

a service. Many of the mail providers will give you an API so that PostMaster mail can take 

advantage of their more advanced features, such as rich text and embedding files. You also want 

to publish an API for PostMaster so that other providers can plan for working with PostMaster in 

the future.

Your PostMasterMessage class needs to have a well-designed public interface, and the 

 conversion functions will be a principal component of PostMaster’s API. Listing 22.2 illustrates 

what PostMasterMessage’s interface looks like so far.

CAUTION

Because this listing does not define the base class (MailMessage), it will not compile.

LISTING 22.2 The Full Text of PostMasterMessage.cpp

 1: class PostMasterMessage : public MailMessage

 2: {

 3: public:

 4:     PostMasterMessage();

 5:     PostMasterMessage(

 6: pAddress sender,

 7: pAddress recipient,

 8: pString subject,

 9: pDate creationDate);

10: 

11:     // other constructors here

12:     // remember to include copy constructor

13:     // as well as constructor from storage

14:     // and constructor from wire format

15:     // Also include constructors from other formats

16:     ~PostMasterMessage();
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17:     pAddress& getSender() const;

18:     void setSender(pAddress&);

19:     // other member accessors

20:     // operator functions here, including operator equals

21:     // and conversion routines to turn PostMaster messages

22:     // into messages of other formats.

23: 

24: private:

25:     pAddress sender;

26:     pAddress recipient;

27:     pString  subject;

28:     pDate creationDate;

29:     pDate lastModDate;

30:     pDate receiptDate;

31:     pDate firstReadDate;

32:     pDate lastReadDate;

33: };

Class PostMasterMessage is declared to derive from MailMessage. A number of constructors 

will be provided, facilitating the creation of PostMasterMessage objects from other types of 

mail messages.

A number of accessors are anticipated for reading and setting the various member data, as well 

as operators for turning all or part of a message into other message formats. You anticipate 

 storing these messages to files and reading them from the wire, so accessors are needed for those 

purposes as well.

Programming in Large Groups
Even this preliminary architecture is enough to indicate how your development groups ought to 

proceed. The Communications group can go ahead and start work on the communications back 

end, negotiating a narrow interface with the Message Format group.

The Message Format group will probably lay out the general interface to the Message classes, a 

process you already began, and then will turn its attention to the question of how to write data 

to a file and read it back. After this file interface is well understood, the team will be in a good 

position to negotiate the interface to the communications layer.

The message editors will be tempted to create editors with an intimate knowledge of the internals 

of the message class, but this would be a bad design mistake. They too must negotiate a very 

narrow interface to the message class; message editor objects should know very little about the 

internal structure of messages.
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Ongoing Design Considerations
As the project continues, you will repeatedly confront this basic design issue: In which class 

should you put a given set of functionality (or information)? Should the message class have this 

function, or should the address class? Should the editor store this information, or should the 

message store it itself?

Your classes should operate on a need-to-know basis, much like international super spies. They 

shouldn’t share any more knowledge than absolutely necessary.

As you progress with your program, you will face hundreds of design issues. They will range 

from the more global questions, “What do we want this to do?” to the more specific, “How do we 

make this work?”

Although the details of your implementation won’t be finalized until you ship the code, and 

some of the interfaces will continue to shift and change as you work, you must ensure that your 

design is well understood early in the process. It is imperative that you know what you are trying 

to build before you write the code. The single most frequent cause of software projects dying on 

the vine must be that there is not sufficient agreement, early enough in the process, about what 

is being built.

To get a feel for what the design process is like, examine this question: What will be on the 

menu? For PostMaster, the first choice is probably New Mail Message, and this raises another 

design issue: When the user selects New Mail Message, what happens? Does an editor get cre-

ated, which in turn creates a mail message, or does a new mail message get created, which then 

creates the editor?

The command you are working with is New Mail Message, so creating a new mail message 

seems like the obvious thing to do. But what happens if the user clicks Cancel after starting to 

write the message? Perhaps it would be cleaner to first create the editor and have it create 

(and own) the new message.

The problem with this approach is that the editor will need to act differently if it is creating a 

message than if it is editing the message. If the message is created first, then handed to the 

editor, only one set of code needs to exist because everything is an edit of an existing message.

If a message is created first, who creates it? Is it created by the menu command code? If so, does 

the menu also tell the message to edit itself, or is this part of the constructor of the message?

It makes sense for the constructor to do this at first glance; after all, every time you create a 

message you’ll probably want to edit it. Nonetheless, this is not a good design idea. First, it is 

possible that the premise is wrong; you might create “canned” messages (for instance, automatic 

error messages mailed to the system operator) that are not put into an editor. Second, and more 
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importantly, a constructor’s job is to create an object; it should do no more and no less than that. 

After a mail message is created, the constructor’s job is done. Adding a call to the edit  function 

just confuses the role of the constructor and makes the mail message vulnerable to failures in 

the editor.

Worse yet, the edit function will call another class—the editor—causing its constructor to be 

called. But the editor is not a base class of the message, nor is it contained within the message. It 

would be unfortunate if the construction of the message depended on successful construction of 

the editor.

Finally, you won’t want to call the editor at all if the message can’t be successfully created; 

yet successful creation would, in this scenario, depend on calling the editor! Clearly, the best 

approach is to fully return from message’s constructor before calling Message::Edit().

This is the kind of design decision you’ll need to make repeatedly, and the designs you make will 

play a major role in whether the software is reliable, error-free, and maintainable.

Working with Driver Programs
One approach to bringing design issues to the surface quickly is to create a driver program early 

in the process. A driver program is one that exists only to test other objects and their member 

functions. For example, the driver program for PostMaster might offer a simple menu that will 

create PostMasterMessage objects, manipulate them, and otherwise exercise some of the 

design. Another term for this is a test harness.

Listing 22.3 illustrates a somewhat more robust definition of the PostMasterMessage class and 

a simple driver program. Because the program is so long, it contains a lot of comments to help 

explain what the code is doing.

LISTING 22.3 The Full Text of Driver.cpp

  1: #include <iostream>

  2: #include <string.h>

  3: 

  4: typedef unsigned long pDate;

  5: 

  6: enum SERVICE { PostMaster, Interchange,

  7:     Gmail, Hotmail, AOL, Internet };

  8: 

  9: class String

 10: {

 11: public:

 12:     // constructors

 13:     String();

 14:     String(const char *const);

 15:     String(const String&);
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 16:     ~String();

 17: 

 18:     // overloaded operators

 19:     char& operator[](int offset);

 20:     char operator[](int offset) const;

 21:     String operator+(const String&);

 22:     void operator+=(const String&);

 23:     String& operator=(const String&);

 24:     friend std::ostream& operator<<

 25: (std::ostream& stream, String& newString);

 26:     // General accessors

 27:     int getLen() const { return len; }

 28:     const char* getString() const { return string; }

 29:     // static int constructorCount;

 30: 

 31: private:

 32:     String(int); // private constructor

 33:     char* string;

 34:     int len;

 35: };

 36: 

 37: // default constructor creates string of 0 bytes

 38: String::String()

 39: {

 40:     string = new char[1];

 41:     string[0] = '\0';

 42:     len = 0;

 43:     // std::cout << "\tDefault string constructor\n";

 44:     // constructorCount++;

 45: }

 46: 

 47: // private (helper) constructor, used only by

 48: // class functions for creating a new string of

 49: // required size.  Null filled.

 50: String::String(int newLen)

 51: {

 52:     string = new char[newLen + 1];

 53:     int i;

 54:     for (i = 0; i <= newLen; i++)

 55: string[1] = '\0';

 56:     len = newLen;

 57:     // std::cout << "\tString(int) constructor\n";

 58:     // constructorCount++;

 59: }

 60: 

 61: // Converts a character array to a String

 62: String::String(const char* const cString)

 63: {
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 64:     len = strlen(cString);

 65:     string = new char[len + 1];

 66:     int i;

 67:     for (i = 0; i < len; i++)

 68: string[i] = cString[i];

 69:     string[len]='\0';

 70:     // std::cout << "\tString(char*) constructor\n";

 71:     // constructorCount++;

 72: }

 73: 

 74: // copy constructor

 75: String::String(const String &rhs)

 76: {

 77:     len = rhs.getLen();

 78:     string = new char[len + 1];

 79:     int i;

 80:     for (i = 0; i < len; i++)

 81: string[i] = rhs[i];

 82:     string[len] = '\0';

 83:     // std::cout << "\tString(String&) constructor\n";

 84:     // constructorCount++;

 85: }

 86: 

 87: // destructor, frees allocated memory

 88: String::~String ()

 89: {

 90:     delete [] string;

 91:     len = 0;

 92:     // std::cout << "\tString destructor\n";

 93: }

 94: 

 95: String& String::operator=(const String &rhs)

 96: {

 97:     if (this == &rhs)

 98: return *this;

 99:     delete [] string;

100:     len = rhs.getLen();

101:     string = new char[len + 1];

102:     int i;

103:     for (i = 0; i < len; i++)

104: string[i] = rhs[i];

105:     string[len] = '\0';

106:     return *this;

107:     // std::cout << "\tString operator=\n";

108: }

109: 

110: //non constant offset operator, returns

111: // reference to character so it can be changed
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112: char &String::operator[](int offset)

113: {

114:     if (offset > len)

115:         return string[len - 1];

116:     else

117:         return string[offset];

118: }

119: 

120: // constant offset operator for use

121: // on const objects (see copy constructor!)

122: char String::operator[](int offset) const

123: {

124:     if (offset > len)

125:         return string[len - 1];

126:     else

127:         return string[offset];

128: }

129: 

130: // creates a new string by adding current

131: // string to rhs

132: String String::operator+(const String& rhs)

133: {

134:     int  totalLen = len + rhs.getLen();

135:     String temp(totalLen);

136:     int i, j;

137:     for (i = 0; i < len; i++)

138: temp[i] = string[i];

139:     for (j = 0; j < rhs.getLen(); j++, i++)

140: temp[i] = rhs[j];

141:     temp[totalLen]='\0';

142:     return temp;

143: }

144: 

145: // changes current string, returns nothing

146: void String::operator+=(const String& rhs)

147: {

148:     int rhsLen = rhs.getLen();

149:     int totalLen = len + rhsLen;

150:     String  temp(totalLen);

151:     int i, j;

152:     for (i = 0; i < len; i++)

153: temp[i] = string[i];

154:     for ( j = 0; j < rhs.getLen(); j++, i++)

155: temp[i] = rhs[i - len];

156:     temp[totalLen]='\0';

157:     *this = temp;

158: }

159: 

PostMaster: A Case Study



ptg18189307

366 HOUR 22: Employing Object-Oriented Analysis and Design

160: // int String::ConstructorCount = 0;

161: 

162: std::ostream& operator<<(std::ostream& stream,

163:                         String& newString)

164: {

165:     stream << newString.getString();

166:     return stream;

167: }

168: 

169: class pAddress

170: {

171: public:

172:     pAddress(SERVICE newService,

173: const String& newAddress,

174: const String& newDisplay):

175: service(newService),

176: addressString(newAddress),

177: displayString(newDisplay)

178:     {}

179:     // pAddress(String, String);

180:     // pAddress();

181:     // pAddress(const pAddress&);

182:     ~pAddress(){}

183:     friend std::ostream& operator<<(

184: std::ostream& stream, pAddress& address);

185:     String& getDisplayString()

186:     { return displayString; }

187: private:

188:     SERVICE service;

189:     String addressString;

190:     String displayString;

191: };

192: 

193: std::ostream& operator<<

194:   ( std::ostream& stream, pAddress& address)

195: {

196:     stream << address.getDisplayString();

197:     return stream;

198: }

199: 

200: class PostMasterMessage

201: {

202: public:

203: //  PostMasterMessage();

204: 

205:     PostMasterMessage(const pAddress& newSender,

206: const pAddress& newRecipient,

207: const String& newSubject,
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208: const pDate& newCreationDate);

209: 

210:      ~PostMasterMessage(){}

211: 

212:     void Edit(); // invokes editor on this message

213: 

214:     pAddress& getSender()  { return sender; }

215:     pAddress& getRecipient()  { return recipient; }

216:     String& getSubject()  { return subject; }

217:     //  void setSender(pAddress& );

218:     // other member accessors

219: 

220:     // operator functions here, including operator equals

221:     // and conversion routines to turn PostMaster messages

222:     // into messages of other formats.

223: 

224: private:

225:     pAddress sender;

226:     pAddress recipient;

227:     String  subject;

228:     pDate creationDate;

229:     pDate lastModDate;

230:     pDate receiptDate;

231:     pDate firstReadDate;

232:     pDate lastReadDate;

233: };

234: 

235: PostMasterMessage::PostMasterMessage(

236:     const pAddress& newSender,

237:     const pAddress& newRecipient,

238:     const String& newSubject,

239:     const pDate& newCreationDate):

240:     sender(newSender),

241:     recipient(newRecipient),

242:     subject(newSubject),

243:     creationDate(newCreationDate),

244:     lastModDate(newCreationDate),

245:     firstReadDate(0),

246:     lastReadDate(0)

247: {

248:     std::cout << "Postmaster message created. \n";

249: }

250: 

251: void PostMasterMessage::Edit()

252: {

253:     std::cout << "Postmaster message edit function called\n";

254: }

255: 
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256: 

257: int main()

258: {

259:     pAddress sender(

260: PostMaster, "james@ekzemplo.com", "James");

261:     pAddress recipient(

262: PostMaster, "sharon@ekzemplo.com","Sharon");

263:     PostMasterMessage postMasterMessage(

264: sender, recipient, "Greetings", 0);

265:     std::cout << "Message review... \n";

266:     std::cout << "From:\t\t"

267: << postMasterMessage.getSender() << "\n";

268:     std::cout << "To:\t\t"

269: << postMasterMessage.getRecipient() << "\n";

270:     std::cout << "Subject:\t"

271: << postMasterMessage.getSubject() << "\n";

272:     return 0;

273: }

Here’s the output:

Postmaster message created. 

Message review... 

From: James

To: Sharon

Subject: Greetings

On line 4, pDate is type-defined to be an unsigned long. It is somewhat uncommon for dates 

to be stored as a long integer, typically as the number of seconds since an arbitrary starting date, 

such as January 1, 1900. In this program, the long integer used as a date is a placeholder; you 

expect to eventually turn pDate into a real class.

On lines 6–7, an enumerated constant, SERVICE, is defined to enable the address objects to keep 

track of what type of address they are, including PostMaster, Gmail, and so forth.

Lines 9–167 represent the interface to and implementation of String, which is close to what 

you have seen for this functionality in previous chapters. The String class is used for a number 

of member variables in all the message classes and in other classes used by messages, and as 

such, it is pivotal in your program. A full and robust String class will be essential to making 

your message classes complete.

On lines 169–191, the pAddress class is declared. This represents only the fundamental 

 functionality of this class, and you would expect to flesh this out after your program is better 

understood. These objects represent essential components in every message: both the sender’s 

address and that of the recipient. A fully functional pAddress object will be able to handle 

 forwarding messages, replies, and so forth.



ptg18189307

369Q&A

It is the pAddress object’s job to keep track of both the display string and the internal routing 

string for its service. One unresolved question for your design is whether there should be one 

pAddress object, or whether it should be subclassed for each service type. For now, the service is 

tracked as an enumerated constant that is a member variable of each pAddress object.

Lines 200–233 represent the interface to the PostMasterMessage class. In this particular 

 listing, this class stands on its own, but soon you’ll want to make this part of its inheritance 

 hierarchy. When you do redesign this to inherit from Message, some of the member variables 

might move into the base classes, and some of the member functions might override base class 

member functions.

Other constructors, accessors, and member functions will be required to make this class fully 

functional. This program shows that your class does not have to be 100% complete before you 

can write a simple driver program to test some of your assumptions.

On lines 251–254, the Edit() function is stubbed out in just enough detail to indicate where the 

editing functionality will be put after this class is fully operational.

Lines 257–273 represent the driver program. Currently, this program does nothing more than 

exercise a few of the accessor functions and the operator<< overload. Nonetheless, this gives 

you the starting point for experimenting with PostMasterMessages and a framework within 

which you can modify these classes and examine the impact.

Summary
Prior to the development of these object-oriented techniques, analysts and programmers tended 

to think of programs as functions that acted on data.

Object-oriented programming focuses on the integrated data and functionality as discrete units 

that have both knowledge (data) and capabilities (functions).

A thorough grounding in the methodology of object-oriented programming, coupled with time 

devoted to the design process for a program before a single line of code is written, is necessary to 

develop robust and efficient C++ software. 

Q&A
Q. Is object-oriented programming finally the silver bullet that will solve all programming

problems?

A. Yes! All of the toughest challenges of programming can be met. Let
there be great rejoicing in the streets, and in the pubs, and in the
computer labs. The glorious age of OOP is upon us and shall last a
thousand and thousand years.

Excuse me. I got a bit carried away there.
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No methodology in programming will solve all problems, of course. But for large, complex 
problems, however, object-oriented analysis, design, and programming can provide the 
programmer with tools to manage enormous complexity in ways that were previously 
impossible.

Q. What is the systematic IUPAC name for a carboxylic acid with a potassium ion in place of

the acid hydrogen?

A. Potassium octanoate, according to professor Henri Favre, the chairman of the Commission
on Nomenclature of Organic Chemistry for IUPAC, the International Union of Pure and
Applied Chemistry.

“There is no specific use for this corrosive acid,” Favre told me.

IUPAC is a scientific council that recommends names for chemicals, atomic weights,
and related areas of study. In 2004, the group participated in the decision to name atomic
element 111 roentgenium after German physicist Wilhelm Conrad Röntgen.

Workshop
You spent the past hour learning about object-oriented analysis and design. You can now answer 
a few questions and undertake exercises to lock in what you have learned.

Quiz
1. What is it called when you determine what end users want a not-yet-developed program

to do?

A. Precoding

B. Requirement gathering

C. Analysis

2. What does API stand for?

A. Automated programming input

B. Application programming interface

C. Awesome Programmers International

3. What function name overrides the insertion operator?

A. operator<<

B. operator>>

C. It cannot be overridden.
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Answers
1. B. A lot needs to be done before coding starts: requirement gathering (what does the end

user want?), analysis (what is needed to fulfill those requirements), and design (how will we
meet those requirements?).

2. B. An API is the set of documentation and functions for using a service. You don’t get to
know how the code is working, just how to use it. The implementation details are hidden
from you.

3. A. The insertion operator << inserts data into an output stream.

Activities
1. In the SimpleEvent program in Listing 22.1, add a std::cout message to each destructor

to find out when the destructors are called.

2. Create a class hierarchy of chess pieces with a base class for each type of move possible
and derived classes for each type of piece.

To see solutions to these activities, visit this book’s website at http://cplusplus.cadenhead.org.

http://cplusplus.cadenhead.org
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HOUR 23
Creating Templates

What You’ll Learn in This Hour:

 What templates are and how to use them

 Why templates are a better alternative to macros

 How to create class templates

What Are Templates?
In Hour 19, “Storing Information in Linked Lists,” you learned how to make a linked list. 

Your linked list was encapsulated: The list knew only about its head pointer; the head pointer 

delegated its work to internal pointers, and so forth.

One design weakness of the linked list was that it only knew how to handle the data types it was 

created to work with. If you wanted to put anything else into your linked list, you couldn’t do it. 

You couldn’t, for example, make a linked list of Car objects, or of Robot objects, or any other 

object that wasn’t of the same type as those in the original list.

The old way of solving this problem was to create new versions of the object for each new data 

type. A more object-oriented way is to create a List base class and derive from it the CarList 

and RobotList classes. You then can cut and paste much of the LinkedList class into the new 

RobotList declaration. In the future, however, when you want to make a list of Car objects, 

you have to make a new class and repeat most of the same code.

Neither of these are satisfactory solutions. Over time, the List class and its derived classes will 

have to be extended. Making sure that all the changes are propagated to all the related classes 

will be a nightmare.

Templates, a relatively new addition to C++, offer a solution to this problem. Unlike 

old-fashioned macros, templates are an integrated part of the language, are type-safe, and very 

flexible.

Templates enable you to create a general class and pass types as parameters to the template to 

build specific instances of the parameterized type.
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Instances of the Template
Templates enable you to teach the compiler how to make a list of any type of thing, instead of 

creating a set of type-specific lists. A PartsList is a list of parts; a RobotList is a list of robots. 

The only way in which they differ is the type of the thing on the list. With templates, the type of 

the thing on the list becomes a parameter to the definition of the class.

The act of creating an object from a class or a specific type from a template is called instantiation, 

and the individual classes are called instances of the template.

Template Definition
You declare a parameterized List object (a template for a list) with the template keyword, as 

in this code:

template <class T> // declare the template and the parameter

class List         // the class being parameterized

{

public:

   List();

   // full class declaration here

};

The keyword template is used at the beginning of every declaration and definition of a 

 template class. The template’s parameters follow the keyword template; they are the items that 

will change with each instance. For example, in the list template shown in this code, the type 

of the objects stored in the list will change. One instance might store a list of Integer objects, 

another a list of Animal objects.

In this code, the keyword class is used, followed by the identifier T. The keyword class 

 indicates that this parameter is a type. The identifier T is used throughout the rest of the template 

definition to refer to the parameterized type. One instance of this class will substitute int 

everywhere T appears, and another will substitute Robot.

To declare an int and a Robot instance of the parameterized list class, you would write the 

 following:

List<int> intList;

List<Robot> robotList;

The object intList is of the type list of integers; the object robotList is a list of Robot objects. 

You now can use the type List<int> anywhere you would normally use a type—as the return 

value from a function, as a parameter to a function, and so forth.
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The ParamList program (Listing 23.1) parameterizes the List object. This is an excellent 

 technique for building templates: Get your object working on a single type, as we did in Hour 19. 

Then by parameterizing, generalize your object to handle any type.

LISTING 23.1 The Full Text of ParamList.cpp

  1: #include <iostream>

  2: 

  3: enum { kIsSmaller, kIsLarger, kIsSame};

  4: 

  5: // Any class in this linked list must support two

  6: // functions: show (displays the value) and compare

  7: // (returns relative position).

  8: class Data

  9: {

 10: public:

 11:     Data(int newVal):value(newVal) {}

 12:     ~Data()

 13:     {

 14: std::cout << "Deleting Data object with value: ";

 15: std::cout << value << "\n";

 16:     }

 17:     int compare(const Data&);

 18:     void show() { std::cout << value << "\n"; }

 19: private:

 20:     int value;

 21: };

 22: 

 23: // A function that decides where in the list a

 24: // particular object belongs.

 25: int Data::compare(const Data& otherObject)

 26: {

 27:     if (value < otherObject.value)

 28: return kIsSmaller;

 29:     if (value > otherObject.value)

 30: return kIsLarger;

 31:     else

 32:         return kIsSame;

 33: }

 34: 

 35: // Another class to put into the linked list.

 36: class Robot

 37: {

 38: public:

 39:     Robot(int newAge): age(newAge) {}

 40:     ~Robot()

 41:     {
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 42:         std::cout << "Deleting ";

 43:         std::cout << age << "-year-old robot.\n";

 44:     }

 45:     int compare(const Robot&);

 46:     void show()

 47:     {

 48:         std::cout << "This robot is ";

 49:         std::cout << age << " years old\n";

 50:     }

 51: private:

 52:     int age;

 53: };

 54: 

 55: // This class compares a different value than Data.

 56: int Robot::compare(const Robot& otherRobot)

 57: {

 58:     if (age < otherRobot.age)

 59: return kIsSmaller;

 60:     if (age > otherRobot.age)

 61: return kIsLarger;

 62:     else

 63:         return kIsSame;

 64: }

 65: 

 66: // An ADT representing the node object in the list.

 67: // Every derived class must override insert() and show().

 68: template <class T>

 69: class Node

 70: {

 71: public:

 72:     Node(){}

 73:     virtual ~Node() {}

 74:     virtual Node* insert(T* object) = 0;

 75:     virtual void show() = 0;

 76: private:

 77: };

 78: 

 79: template <class T>

 80: class InternalNode: public Node<T>

 81: {

 82: public:

 83:     InternalNode(T* object, Node<T>* next);

 84:     ~InternalNode(){ delete next; delete object; }

 85:     virtual Node<T> * insert(T * object);

 86:     virtual void show()

 87:     {

 88: object->show();

 89: next->show();
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 90:     } // delegate!

 91: private:

 92:     T* object;     // the object itself

 93:     Node<T>* next; // points to next node in the linked list

 94: };

 95: 

 96: // a simple constructor

 97: template <class T>

 98: InternalNode<T>::InternalNode(T* newObject, Node<T>* newNext):

 99: object(newObject),next(newNext)

100: {

101: }

102: 

103: // A function to store a new object in the list.

104: // The object is passed to the node which figures out

105: // where it goes and inserts it into the list.

106: template <class T>

107: Node<T>* InternalNode<T>::insert(T* newObject)

108: {

109:     // is the new object bigger or smaller than me?

110:     int result = object->compare(*newObject);

111: 

112:     switch(result)

113:     {

114:     // if it is the same as me it goes first

115:     case kIsSame:   // fall through

116:     case kIsLarger: // new object comes before me

117: {

118: InternalNode<T>* objectNode =

119: new InternalNode<T>(newObject, this);

120: return objectNode;

121: }

122:     // it is bigger, so pass it on to the next

123:     // node and let it handle it.

124:     case kIsSmaller:

125: next = next->insert(newObject);

126: return this;

127:     }

128:     return this;  // appease the compiler

129: }

130: 

131: // The last node in the list

132: template <class T>

133: class TailNode : public Node<T>

134: {

135: public:

136:     TailNode() {}

137:     virtual ~TailNode() {}
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138:     virtual Node<T>* insert(T * object);

139:     virtual void show() { }

140: private:

141: };

142: 

143: // If object comes to me, it must be inserted before me

144: // since nothing goes after the tail

145: template <class T>

146: Node<T>* TailNode<T>::insert(T * object)

147: {

148:     InternalNode<T>* objectNode =

149:     new InternalNode<T>(object, this);

150:     return objectNode;

151: }

152: 

153: // The head node, which holds no data but instead points

154: // to the beginning of the list.

155: template <class T>

156: class HeadNode : public Node<T>

157: {

158: public:

159:     HeadNode();

160:     virtual ~HeadNode() { delete next; }

161:     virtual Node<T>* insert(T * object);

162:     virtual void show() { next->show(); }

163: private:

164:     Node<T> * next;

165: };

166: 

167: // The first node in the list, which creates the tail

168: template <class T>

169: HeadNode<T>::HeadNode()

170: {

171:     next = new TailNode<T>;

172: }

173: 

174: // Since nothing comes before the head, just pass

175: // the object on to the next node

176: template <class T>

177: Node<T> * HeadNode<T>::insert(T* object)

178: {

179:     next = next->insert(object);

180:     return this;

181: }

182: 

183: // I get all the credit and do none of the work.

184: template <class T>

185: class LinkedList



ptg18189307

Template Definition 379

186: {

187: public:

188:     LinkedList();

189:     ~LinkedList() { delete head; }

190:     void insert(T* object);

191:     void showAll() { head->show(); }

192: private:

193:     HeadNode<T> * head;

194: };

195: 

196: // At birth, I create the head node, which creates

197: // the tail node.

198: template <class T>

199: LinkedList<T>::LinkedList()

200: {

201:     head = new HeadNode<T>;

202: }

203: 

204: // Delegate to a head node

205: template <class T>

206: void LinkedList<T>::insert(T* pObject)

207: {

208:     head->insert(pObject);

209: }

210: 

211: // put all these classes to the test

212: int main()

213: {

214:     Robot* pRobot;

215:     Data* pData;

216:     int val;

217:     LinkedList<Robot> listOfRobots;

218:     LinkedList<Data> listOfData;

219: 

220:     // store user values in a linked list

221:     while (true)

222:     {

223: std::cout << "What value (0 to stop)? ";

224: std::cin >> val;

225: if (!val)

226: break;

227: pRobot = new Robot(val);

228: pData = new Data(val);

229: listOfRobots.insert(pRobot);

230: listOfData.insert(pData);

231:     }

232: 

233:     // display the list
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234:     std::cout << "\n";

235:     listOfRobots.showAll();

236:     std::cout << "\n";

237:     listOfData.showAll();

238:     std::cout << "\n ************ \n\n";

239:     return 0;

240: }

The ParamList program asks for a series of values that will be used to set the ages of Robot 

objects. It then uses the same values to create Data objects. The objects are sorted by the integer 

value they hold in ascending order. Here’s the output for a run where 9, 15, and 7 were the 

values entered:

What value (0 to stop)? 9

What value (0 to stop)? 15

What value (0 to stop)? 7

What value (0 to stop)? 0

This robot is 7 years old

This robot is 9 years old

This robot is 15 years old

7

9

15

 ************ 

Deleting Data object with value: 15

Deleting Data object with value: 9

Deleting Data object with value: 7

Deleting 15-year-old robot.

Deleting 9-year-old robot.

Deleting 7-year-old robot.

The program contains a lot of the same code as the LinkedList program in Hour 19.

The biggest change is that each of the class declarations and member functions is now 

preceded by

template class <T>

This tells the compiler that you are parameterizing this list on a type that you will define later, 

when you instantiate the list. For example, the declaration of the Node class now becomes

template <class T>

class Node
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This indicates that Node will not exist as a class in itself, but rather that you will instantiate 

Nodes of Robots and Nodes of Data objects. The actual type you’ll pass in is represented by T.

Thus, InternalNode now becomes InternalNode<T> (read that as “InternalNode of T”). 

And InternalNode<T> points not to a Data object and another Node; rather, it points to a T 

(whatever type of object) and a Node<T>. You can see this on lines 118–119.

Look carefully at the insert() function defined on lines 107–129. The logic is just the same, 

but where we used to have a specific type (Data) we now have T. Thus, on line 107 the param-

eter is a pointer to a T. Later, when we instantiate the specific lists, the T will be replaced by the 

compiler with the right type (Data or Robot).

The important thing is that the InternalNode can continue working, indifferent to the actual 

type. It knows to ask the objects to compare themselves. It doesn’t care whether Robot objects 

compare themselves in the same way Data objects do. In fact, we can rewrite this so that Robot 

objects don’t keep their age. We can have them keep their birth date and compute their relative 

age on-the-fly, and the InternalNode won’t care a bit.

Using Template Items
You can treat template items as you would any other type. You can pass them as parameters, 

either by reference or by value, and you can return them as the return values of functions, also 

by value or by reference.

The TemplateList program in Listing 23.2 demonstrates how to pass Template objects. Compare 

the following listing with the code in Listing 23.1.

LISTING 23.2 The Full Text of TemplateList.cpp

  1: #include <iostream>

  2: 

  3: enum { kIsSmaller, kIsLarger, kIsSame};

  4: 

  5: class Data

  6: {

  7: public:

  8:     Data(int newVal):value(newVal) {}

  9:     ~Data()

 10:     {

 11: std::cout << "Deleting Data object with value: ";

 12: std::cout << value << "\n";

 13:     }

 14:     int compare(const Data&);

 15:     void show() { std::cout << value << "\n"; }

 16: private:
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 17:     int value;

 18: };

 19: 

 20: int Data::compare(const Data& otherObject)

 21: {

 22:     if (value < otherObject.value)

 23: return kIsSmaller;

 24:     if (value > otherObject.value)

 25: return kIsLarger;

 26:     else

 27:         return kIsSame;

 28: }

 29: 

 30: class Robot

 31: {

 32: public:

 33:     Robot(int newAge): age(newAge) {}

 34:     ~Robot()

 35:     {

 36:         std::cout << "Deleting " << age

 37:             << "-year-old robot.\n";

 38:     }

 39:     int compare(const Robot&);

 40:     void show()

 41:     {

 42: std::cout << "This robot is " << age

 43: << " years old\n";

 44:     }

 45: private:

 46:     int age;

 47: };

 48: 

 49: int Robot::compare(const Robot& otherRobot)

 50: {

 51:     if (age < otherRobot.age)

 52: return kIsSmaller;

 53:     if (age > otherRobot.age)

 54: return kIsLarger;

 55:     else

 56: return kIsSame;

 57: }

 58: 

 59: template <class T>

 60: class Node

 61: {

 62: public:

 63:     Node() {}

 64:     virtual ~Node() {}
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 65:     virtual Node* insert(T* object) = 0;

 66:     virtual void show() = 0;

 67: private:

 68: };

 69: 

 70: template <class T>

 71: class InternalNode: public Node<T>

 72: {

 73: public:

 74:     InternalNode(T* theObject, Node<T>* next);

 75:     virtual ~InternalNode(){ delete next; delete object; }

 76:     virtual Node<T>* insert(T* object);

 77:     virtual void show()

 78:     {

 79:         object->show();

 80:         next->show();

 81:     }

 82: private:

 83:     T* object;

 84:     Node<T>* next;

 85: };

 86: 

 87: template <class T>

 88: InternalNode<T>::InternalNode(T* newObject, Node<T>* newNext):

 89: object(newObject), next(newNext)

 90: {

 91: }

 92: 

 93: template <class T>

 94: Node<T>* InternalNode<T>::insert(T* newObject)

 95: {

 96:     int result = object->compare(*newObject);

 97: 

 98:     switch(result)

 99:     {

100:     case kIsSame:

101:     case kIsLarger:

102: {

103: InternalNode<T> * objectNode =

104: new InternalNode<T>(newObject, this);

105: return objectNode;

106: }

107:     case kIsSmaller:

108: next = next->insert(newObject);

109: return this;

110:     }

111:     return this;

112: }
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113: 

114: template <class T>

115: class TailNode : public Node<T>

116: {

117: public:

118:     TailNode() {}

119:     virtual ~TailNode() {}

120:     virtual Node<T>* insert(T* object);

121:     virtual void show() {}

122: private:

123: };

124: 

125: template <class T>

126: Node<T>* TailNode<T>::insert(T* object)

127: {

128:     InternalNode<T>* objectNode =

129: new InternalNode<T>(object, this);

130:     return objectNode;

131: }

132: 

133: template <class T>

134: class HeadNode : public Node<T>

135: {

136: public:

137:     HeadNode();

138:     virtual ~HeadNode() { delete next; }

139:     virtual Node<T>* insert(T* object);

140:     virtual void show() { next->show(); }

141: private:

142:     Node<T>* next;

143: };

144: 

145: template <class T>

146: HeadNode<T>::HeadNode()

147: {

148:     next = new TailNode<T>;

149: }

150: 

151: template <class T>

152: Node<T>* HeadNode<T>::insert(T* object)

153: {

154:     next = next->insert(object);

155:     return this;

156: }

157: 

158: template <class T>
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159: class LinkedList

160: {

161: public:

162:     LinkedList();

163:     ~LinkedList() { delete head; }

164:     void insert(T* object);

165:     void showAll() { head->show(); }

166: private:

167:     HeadNode<T>* head;

168: };

169: 

170: template <class T>

171: LinkedList<T>::LinkedList()

172: {

173:     head = new HeadNode<T>;

174: }

175: 

176: template <class T>

177: void LinkedList<T>::insert(T* pObject)

178: {

179:     head->insert(pObject);

180: }

181: 

182: void myFunction(LinkedList<Robot>& listOfRobots);

183: void myOtherFunction(LinkedList<Data>& listOfData);

184: 

185: int main()

186: {

187:     LinkedList<Robot> listOfRobots;

188:     LinkedList<Data> listOfData;

189: 

190:     myFunction(listOfRobots);

191:     myOtherFunction(listOfData);

192: 

193:     std::cout << "\n";

194:     listOfRobots.showAll();

195:     std::cout << "\n";

196:     listOfData.showAll();

197:     std::cout << "\n ************ \n\n";

198:     return 0;

199: }

200: 

201: void myFunction(LinkedList<Robot>& listOfRobots)

202: {

203:     Robot* pRobot;

204:     int val;
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205: 

206:     while (true)

207:     {

208: std::cout << "\nHow old is your robot (0 to stop)? ";

209: std::cin >> val;

210: if (!val)

211: break;

212: pRobot = new Robot(val);

213: listOfRobots.insert(pRobot);

214:     }

215: }

216: 

217: void myOtherFunction(LinkedList<Data>& listOfData)

218: {

219:     Data* pData;

220:     int val;

221: 

222:     while (true)

223:     {

224: std::cout << "\nWhat value (0 to stop)? ";

225: std::cin >> val;

226: if (!val)

227: break;

228: pData = new Data(val);

229: listOfData.insert(pData);

230:     }

231: }

This is the output of the program:

How old is your robot (0 to stop)? 12

How old is your robot (0 to stop)? 2

How old is your robot (0 to stop)? 6

How old is your robot (0 to stop)? 0

What value (0 to stop)? 3

What value (0 to stop)? 9

What value (0 to stop)? 5

What value (0 to stop)? 0

This robot is 2 years old

This robot is 6 years old

This robot is 12 years old

3

5

9

 ************ 
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Deleting Data object with value: 9

Deleting Data object with value: 5

Deleting Data object with value: 3

Deleting 12-year-old robot.

Deleting 6-year-old robot.

Deleting 2-year-old robot.

This code is much like the previous example, but this time we pass the LinkedList objects by 

reference to their respective functions for processing.

A pointer to a Robot object is created on line 203. After the robot’s age is input by the user on 

line 208, a new Robot object is created and its address is assigned to the pointer.

The linked list’s insert() member function is called with the Robot pointer, causing the object 

referenced by that pointer to be inserted in the list.

The same process is followed in lines 219–229, but this time to add a Data object to the list. 

This is a powerful feature of the C++ language. After the lists are instantiated, they can be treated 

as fully defined types, passed into functions, and returned as values.

Summary
C++ is a popular language to use when creating programming languages. As you are introduced 

to features such as templates, the reason becomes clear. C++ exposes the building blocks of the 

language to modification.

Templates enable the functionality of a class to be adapted to more than one data type without 

repeating code for each type.

With templates, code can be written in the abstract that applies to multiple types of data. 

Q&A
Q. Why use templates when macros will do?

A. Templates are type-safe and built in to the language. The compiler can do a lot more
with templates to ensure they are used correctly, making the resulting program less likely to
contain errors.

Q. What is the difference between the parameterized type of a template function and the

parameters to a normal function?

A. A regular function (non-template) takes parameters on which it may take action. A template
function allows you to parameterize the type of a particular parameter to the function.
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Q. When do you use templates and when do you use inheritance?

A. Use templates when all the behavior or nearly all the behavior is unchanged, but the type
of the item on which your class acts is different. If you find yourself copying a class and
changing only the type of one or more of its members, it might be time to consider using a
template.

 Q Is there any place in the United States you can pan for gold?

 A The Florida company Big Ten has published maps you can use to pan for gold in eight 
states. It sells six gold maps of California and the West Coast and five more for Alabama, 
Georgia, Michigan, North Carolina, South Carolina, and Virginia.

Individual maps sell for around $29, and sets sell for more. Shipping and handling is $5.

To order, write to Big Ten, Box 321231-W, Cocoa Beach, FL 32932-1231, or visit 
http://www.goldmaps.com.

“Usually people will find specks, but sometimes you don’t find anything the first time you’re 
out,’’ map creator Charles Overbey said. “It’s a fun outing.’’

Workshop
Now that you’ve had the chance to learn about templates, you can answer a few questions and 
do a couple of exercises to firm up your knowledge of the topic.

Quiz
1. How does the compiler know you are defining a template rather than a regular class?

A. The preprocessor determines it.

B. The template keyword is used.

C. The T type is used in a statement.

2. In the code template <class T>, what is the T?

A. The parameterized type

B. A member variable

C. A class identifier

3. In the ParamList program (Listing 23.1), how does the compiler know when to destruct the
objects contained within the linked list?

A. It occurs automatically.

B. The linked lists fall out of scope.

C. The linked list must delete them.

http://www.goldmaps.com
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Answers
1. B. The compiler knows because the prefix template <class T> is used.

2. A. The T will appear in the class wherever a specific data type would have appeared in a
normal class.

3. C. When the main function exits, the linked lists fall out of scope, and the destructor for
that class is called. Because the individual (contained) objects are dynamically allocated, it
is up to the linked list to delete them also.

Activities
1. Compare the ParamList program in Listing 23.1 to the LinkedList program in Listing 19.1

and note all the differences.

2. Extend the ParamList program by adding a Cyborg class. Store it in a linked list and treat it
just like Robot objects in the main() function.

To see solutions to these activities, visit this book’s website at http://cplusplus.cadenhead.org.

http://cplusplus.cadenhead.org
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HOUR 24
Dealing with Exceptions 

and Error Handling

What You’ll Learn in This Hour:

 What exceptions are

 How exceptions are used and what issues they raise

 How to create bug-free code

 Where to go from here

Bugs, Errors, Mistakes, and Code Rot
The code in this book was created for illustrative purposes. It has purposely not dealt with errors 

to keep the focus on the central issues being presented. Real-world programs, on the other hand, 

must take error conditions into consideration. In fact, anticipating and handling errors can 

account for the largest part of the code!

The computer scientist Gerald Weinberg once said, “If builders built houses the way 

programmers built programs, the first woodpecker to come along would destroy civilization.” 

Too many commercial programs from some of the biggest vendors in the business have bugs. Too 

many open source programs that are used on millions of Internet computers and other devices 

have bugs. Serious bugs.

Writing robust, bug-free programs should be the number-one priority of anyone serious about 

programming. The biggest expense in major programming efforts often is testing, finding, and 

fixing bugs.

There are a number of discrete kinds of bugs that can trouble a program. The first is poor 

logic: The program does just what you asked, but you haven’t thought through the algorithms 

properly. The second is syntactic: You used the wrong idiom, function, or structure. These two are 

the most common, and they are the ones most programmers are on the lookout for. Far harder 

to find are subtle bugs that pop up only when the user does something unexpected. These little 

logic bombs can lurk until they’re finally encountered and the program blows up.
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Research and real-world experience have consistently shown that the later in the development 

process you find a problem, the more it costs to fix. The least expensive problems to fix are 

the ones you avoid creating. The next cheapest are those that the compiler spots. The C++ 

language standard forces compilers to put a lot of energy into reporting a growing list of errors 

at compile time.

Bugs that are compiled but caught at the first test—those that crash every time—are less 

expensive to find and fix than those that only crash once in a while.

A bigger problem than logic or syntactic bugs is unnecessary fragility: Your program works just 

fine if the user enters a number when you ask for one, but it crashes if the user enters letters. 

Other programs crash if they run out of memory, or if the hard disk is full, or if the Internet 

connection drops.

To combat this fragility, programmers strive to make their programs bulletproof. A bulletproof 

program is one that can handle anything that comes up at runtime, from bizarre user input 

to running out of memory. If you watch out and prepare for these things, you can avoid a crash.

Handling the Unexpected
Programmers use design reviews and exhaustive testing to find logic errors.

A different kind of error that may arise is called an exception.

Exceptions take their name from exceptional circumstances. Some things that may occur in a 

program can’t be eliminated. Instead, you only can prepare for them. For example, computers 

will run out of memory from time to time. That’s not something a programmer can prevent. 

Programs only can respond when it occurs, using one of these approaches:

 Crash the program.

 Inform the user and exit gracefully.

 Inform the user and allow the user to try to recover and continue.

 Take corrective action and continue without alerting the user.

Although it is not necessary or even desirable for every program you write to automatically 

and silently recover from all exceptional circumstances, it is clear that you must do better than 

 crashing.

C++ exception handling provides a type-safe, integrated technique for coping with the predictable 

but unusual conditions that arise while running a program.
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Exceptions
In C++, an exception is an object that is passed from the area of code where a problem occurs to 

the part of the code that is going to handle the problem. When an exception occurs it is said to 

be thrown. When an exception is handled, it is said to be caught.

The type of the exception determines which area of code will handle the problem. The contents of 

the object thrown as an exception may be used to provide feedback on the problem to the user.

The basic idea behind exceptions is fairly straightforward:

 The actual allocation of resources (for example, the allocation of memory or the locking of 

a file) is usually done at a very low level in the program.

 The logic of what to do when an operation fails, memory cannot be allocated, or a file cannot 

be locked is usually high in the program, with the code for interacting with the user.

 Exceptions provide an express path from the code that allocates resources to the code 

that can handle the error condition. If there are intervening layers of functions, they are 

given an opportunity to clean up memory allocations, but are not required to include code 

whose only purpose is to pass along the error condition.

How Exceptions are Used
A try block is created to surround areas of code that might have a problem and throw an 

exception. For example:

try

{

   someDangerousFunction();

}

A catch block is the block immediately following a try block in which exceptions are handled. 

For example:

try

{

   someDangerousFunction();

}

catch (outOfMemory)

{

   // take action to recover from low memory condition

}

catch (fileNotFound)

{

   // take action when a file is not found

}
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The basic steps in using exceptions are these:

1. Identify those areas of the program in which you begin an operation that might raise an

exception, and put them in try blocks.

2. Create catch blocks to catch the exceptions if they are thrown, to clean up allocated

memory, and to inform the user as appropriate. The Exception program in Listing 24.1

illustrates the use of both try blocks and catch blocks.

NOTE

When an exception is thrown (or raised), control transfers to the catch block immediately following 
the current try block.

LISTING 24.1 The Full Text of Exception.cpp

  1: #include <iostream>

  2: 

  3: const int defaultSize = 10;

  4: 

  5: // define the exception class

  6: class XBoundary

  7: {

  8: public:

  9:     XBoundary() {}

 10:     ~XBoundary() {}

 11: private:

 12: };

 13: 

 14: class Array

 15: {

 16: public:

 17:     // constructors

 18:     Array(int size = defaultSize);

 19:     Array(const Array &rhs);

 20:     ~Array() { delete [] pType; }

 21: 

 22:     // operators

 23:     Array& operator=(const Array&);

 24:     int& operator[](int offSet);

 25:     const int& operator[](int offSet) const;

 26: 

 27:     // accessors

 28:     int getSize() const { return size; }

 29: 

 30:     // friend function

 31:     friend std::ostream& operator<<(std::ostream&, const Array&);



ptg18189307

Exceptions 395

 32: 

 33: private:

 34:     int *pType;

 35:     int size;

 36: };

 37: 

 38: Array::Array(int newSize):

 39: size(newSize)

 40: {

 41:     pType = new int[size];

 42:     for (int i = 0; i < size; i++)

 43: pType[i] = 0;

 44: }

 45: 

 46: Array& Array::operator=(const Array &rhs)

 47: {

 48:     if (this == &rhs)

 49: return *this;

 50:     delete [] pType;

 51:     size = rhs.getSize();

 52:     pType = new int[size];

 53:     for (int i = 0; i < size; i++)

 54: pType[i] = rhs[i];

 55:     return *this;

 56: }

 57: 

 58: Array::Array(const Array &rhs)

 59: {

 60:     size = rhs.getSize();

 61:     pType = new int[size];

 62:     for (int i = 0; i < size; i++)

 63: pType[i] = rhs[i];

 64: }

 65: 

 66: int& Array::operator[](int offSet)

 67: {

 68:     int size = getSize();

 69:     if (offSet >= 0 && offSet < size)

 70: return pType[offSet];

 71:     throw XBoundary();

 72:     return pType[offSet];

 73: }

 74: 

 75: const int& Array::operator[](int offSet) const

 76: {

 77:     int size = getSize();

 78:     if (offSet >= 0 && offSet < size)

 79: return pType[offSet];
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 80:     throw XBoundary();

 81:     return pType[offSet];

 82: }

 83: 

 84: std::ostream& operator<<(std::ostream& output,

 85:                          const Array& array)

 86: {

 87:     for (int i = 0; i < array.getSize(); i++)

 88: output << "[" << i << "] " << array[i] << "\n";

 89:     return output;

 90: }

 91: 

 92: int main()

 93: {

 94:     Array intArray(20);

 95:     try

 96:     {

 97: for (int j = 0; j < 100; j++)

 98: {

 99: intArray[j] = j;

100: std::cout << "intArray[" << j

101: << "] OK ..." << "\n";

102: }

103:     }

104:     catch (XBoundary)

105:     {

106: std::cout << "Unable to process your input\n";

107:     }

108:     std::cout << "Done\n";

109:     return 0;

110: }

Running the program produces this output:

intArray[0] OK ...

intArray[1] OK ...

intArray[2] OK ...

intArray[3] OK ...

intArray[4] OK ...

intArray[5] OK ...

intArray[6] OK ...

intArray[7] OK ...

intArray[8] OK ...

intArray[9] OK ...

intArray[10] OK ...

intArray[11] OK ...

intArray[12] OK ...

intArray[13] OK ...
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intArray[14] OK ...

intArray[15] OK ...

intArray[16] OK ...

intArray[17] OK ...

intArray[18] OK ...

intArray[19] OK ...

Unable to process your input

Done

Listing 24.1 presents a somewhat stripped-down Array class, created just to illustrate a simple 

use of exceptions. On lines 6–12, an exception class is declared called XBoundary.

The most important thing to notice about this class is that there is absolutely nothing that 

makes it an exception class. Any class will do just fine to handle exceptions. What makes this an 

exception is that it is thrown, as shown on line 71, and that it is caught, as shown on line 104.

The offset operators throw XBoundary when the client of the class attempts to access data 

 outside the array (lines 71 and 80). This is superior to the way normal arrays handle such a 

request; they just return whatever garbage happens to be in memory at that location, a surefire 

way to crash the program.

On line 95, a try block begins that ends on line 103. Within that try block, 100 integers are 

added to the array that was declared on line 94.

On line 104, the catch block to catch XBoundary exceptions is declared.

Using try and catch Blocks
Figuring out where to put try blocks is the hardest part of using exceptions; it is not always 

obvious which actions might raise an exception. The next question is where to catch the 

 exception. You might want to throw all memory exceptions where the memory is allocated, but 

to catch the exceptions high in the program where you deal with the user interface.

When trying to determine try block locations, look for where you allocate memory or use 

resources. Other things to look for are out-of-bounds errors and illegal input.

Catching Exceptions
Catching exceptions works as follows: When an exception is thrown, the call stack is examined. 

The call stack is the list of function calls created when one part of the program invokes another 

function.

The call stack tracks the execution path. If main() calls the function 

Animal::getFavoriteFood(), and getFavoriteFood() calls 
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Animal::lookupPreferences(), which in turn calls fstream::operator>>(), all these are 

on the call stack. A recursive function might be on the call stack many times.

The exception is passed up the call stack to each enclosing block. As the stack is unwound, the 

destructors for local objects on the stack are invoked and the objects are destroyed.

After each try block are one or more catch statements. If the exception matches one of the 

catch statements, it is considered to be handled by having that statement execute. If it doesn’t 

match any, the unwinding of the stack continues.

If the exception reaches all the way to the beginning of the program (the main() method) and 

still is not caught, the function terminate() is called, which in turn calls abort() to abort the 

program.

It is important to note that the exception unwinding of the stack is a one-way street. As it 

 progresses, the stack is unwound, and objects on the stack are destroyed. There is no going back: 

After the exception is handled, the program continues after the try block of the catch 

statement that handled the exception.

In the Exception program, execution continues on line 104, the first line after the try block of the 

catch statement that handled the XBoundary exception. When an exception is raised, program 

flow continues after the catch block, not after the point where the exception was thrown.

More Than One Catch
It is possible for more than one condition to cause an exception. In this case, catch statements 

can be lined up one after another, much like the conditions in a switch statement. The 

equivalent to the default statement is the “catch everything” statement, indicated by catch().

CAUTION

Be careful about putting in two catch statements where one catch is a base class and the other 
catch is a derived class that is more specific. The code will actually do the steps of both catch 
statements; sometimes you want that behavior and sometimes you don’t, but you should be aware 
that this will happen.

Catching by Reference and Polymorphism
You can take advantage of the fact that exceptions are just classes to use them polymorphically. 

By passing the exception by reference, you can use the inheritance hierarchy to take the 

appropriate action based on the runtime type of the exception.

The PolyException program in Listing 24.2 illustrates using exceptions polymorphically.



ptg18189307

399Using try and catch Blocks

LISTING 24.2 The Full Text of PolyException.cpp

  1:  #include <iostream>

  2: 

  3:  const int defaultSize = 10;

  4: 

  5:  // define the exception classes

  6:  class XBoundary {};

  7: 

  8:  class XSize

  9:  {

 10:  public:

 11: XSize(int newSize):size(newSize) {}

 12: ~XSize(){}

 13: virtual int getSize() { return size; }

 14: virtual void printError()

 15: { std::cout << "Size error. Received: "

 16: << size << "\n"; }

 17:  protected:

 18:      int size;

 19:  };

 20: 

 21:  class XTooBig : public XSize

 22:  {

 23:  public:

 24: XTooBig(int size):XSize(size) {}

 25: virtual void printError()

 26: {

 27: std::cout << "Too big! Received: ";

 28: std::cout << XSize::size << "\n";

 29:      }

 30:  };

 31: 

 32:  class XTooSmall : public XSize

 33:  {

 34:  public:

 35: XTooSmall(int size):XSize(size) {}

 36: virtual void printError()

 37: {

 38: std::cout << "Too small! Received: ";

 39: std::cout << XSize::size << "\n";

 40:      }

 41:  };

 42: 

 43:  class XZero : public XTooSmall

 44:  {

 45:  public:

 46: XZero(int newSize):XTooSmall(newSize){}

 47: virtual void printError()



ptg18189307

400 HOUR 24: Dealing with Exceptions and Error Handling

 48:      {

 49: std::cout << "Zero Received: ";

 50: std::cout << XSize::size << "\n";

 51:      }

 52:  };

 53: 

 54:  class XNegative : public XSize

 55:  {

 56:  public:

 57: XNegative(int size):XSize(size){}

 58: virtual void printError()

 59: {

 60: std::cout << "Negative! Received: ";

 61: std::cout << XSize::size << "\n";

 62:      }

 63:  };

 64: 

 65:  class Array

 66:  {

 67:  public:

 68: // constructors

 69: Array(int size = defaultSize);

 70: Array(const Array &rhs);

 71: ~Array() { delete [] pType; }

 72: 

 73: // operators

 74: Array& operator=(const Array&);

 75: int& operator[](int offSet);

 76: const int& operator[](int offSet) const;

 77: 

 78: // accessors

 79: int getSize() const { return size; }

 80: 

 81: // friend function

 82: friend std::ostream& operator<< (std::ostream&, const Array&);

 83: 

 84: 

 85:  private:

 86: int *pType;

 87: int  size;

 88:  };

 89: 

 90:  Array::Array(int newSize):

 91:  size(newSize)

 92:  {

 93:      if (newSize == 0)

 94:          throw XZero(size);

 95: 

 96:      if (newSize < 0)
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 97:          throw XNegative(size);

 98: 

 99:      if (newSize < 10)

100:          throw XTooSmall(size);

101: 

102:      if (newSize > 30000)

103:          throw XTooBig(size);

104: 

105: pType = new int[newSize];

106: for (int i = 0; i < newSize; i++)

107: pType[i] = 0;

108:  }

109: 

110:  int& Array::operator[] (int offset)

111:  {

112: int size = getSize();

113: if (offset >= 0 && offset < size)

114: return pType[offset];

115: throw XBoundary();

116: return pType[offset];

117:  }

118: 

119:  const int& Array::operator[] (int offset) const

120:  {

121: int size = getSize();

122: if (offset >= 0 && offset < size)

123: return pType[offset];

124: throw XBoundary();

125: return pType[offset];

126:  }

127: 

128:  int main()

129:  {

130: try

131: {

132: int choice;

133: std::cout << "Enter the array size: ";

134: std::cin >> choice;

135: Array intArray(choice);

136: for (int j = 0; j < 100; j++)

137: {

138: intArray[j] = j;

139: std::cout << "intArray[" << j << "] OK ..."

140: << "\n";

141: }

142: }

143: catch (XBoundary)

144: {

145: std::cout << "Unable to process your input\n";
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146: }

147: catch (XSize& exception)

148: {

149: exception.printError();

150: }

151: catch (...)

152: {

153: std::cout << "Something went wrong,"

154: << "but I've no idea what!" << "\n";

155: }

156: std::cout << "Done\n";

157: return 0;

158:  }

The output reflects running the program three times, first passing in an array size of 5, then 

50,000, and finally 12:

Enter the array size: 5

Too small! Received: 5

Done

Enter the array size: 50000

Too big! Received: 50000

Done

Enter the array size: 12

intArray[0] OK ...

intArray[1] OK ...

intArray[2] OK ...

intArray[3] OK ...

intArray[4] OK ...

intArray[5] OK ...

intArray[6] OK ...

intArray[7] OK ...

intArray[8] OK ...

intArray[9] OK ...

intArray[10] OK ...

intArray[11] OK ...

Unable to process your input

Done

Listing 24.2 declares a printError() virtual function in the XSize class that displays an error 

message and the actual size of the class. This is overridden in each of the derived classes.

On line 147, the exception object is declared to be a reference. When printError() is 

called with a reference to an object, polymorphism causes the correct version of printError() 

to be invoked.
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The first time through the user asks for an array of size 5. This causes the XTooSmall exception 

to be thrown; that is the xSize exception caught on line 147.

The second time through the user asks for an array of 50,000, and that causes the XTooBig 

exception to be thrown. This also is caught on line 147, but polymorphism causes the right error 

string to print. When the user finally asks for an array of size 12, the array is populated until the 

XBoundary exception is thrown and caught on line 143.

Writing Professional-Quality Code
With templates and exceptions under your belt, you are prepared to handle the more advanced 

aspects of C++. Before this 24-hour journey ends, it’s worthwhile to take some time to discuss 

writing professional-quality code. When you go beyond hobbyist interest and work as part of a 

development team, you must write code that not only works but can be understood by others. 

Your code also must be maintained and supported by you, as the customer’s demands change, 

and also by others after you leave the project.

Although it doesn’t matter which style you adopt, it is important to adopt a consistent coding 

style. An adherence to style makes it easier to guess what you meant by a particular part of the 

code, and you avoid having to look up whether you spelled the function with an initial cap the 

last time you invoked it.

The following guidelines just one way of doing things, but they’ve been tested by personal 

experience. You can just as easily devise your own, but these will get you started.

Though Ralph Waldo Emerson said, “Foolish consistency is the hobgoblin of small minds,” 

Emerson never had to deliver a 100,000-line C++ web application on deadline. Having some 

consistency in your code is a good thing. It makes your life, and the life of your co-workers, 

easier if you follow the style of your group. That doesn’t mean the style has to be permanently 

fixed (improvements and new ideas come along all the time), but the consistency makes it easier 

for everyone to work together.

Understand that there are many different styles, and you can run into serious disagreements on 

the following topics. Remember that these are guidelines, not absolutes.

Braces
How to align braces can be the most controversial topic between C and C++ programmers. Here 

are the tips I suggest:

 Matching braces should be aligned vertically.

 The outermost set of braces in a definition or declaration should be at the left margin. 

Statements within should be indented. All other sets of braces should be in line with their 

leading statement.
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 For really long blocks, you should put a comment after the close brace identifying the 

purpose of the block. When you look at the close brace and are not sure where the open 

brace is, that is a “really long block.” For example:

if (condition == true)

{

   // many lines of code including other blocks

   // more lines of code including other blocks

   // even more lines of code including other blocks

}  // if (condition == true)

 No code should appear on the same line as a brace. For example:

if (condition == true)

{

   j = k;

   someFunction();

}

m++;

Long Lines
Keep lines to the width that can be displayed on a single screen. Code that is off to the right 

is easily overlooked, and scrolling horizontally is annoying. When a line is broken, indent the 

following lines. Try to break the line at a reasonable place, and try to leave the intervening 

operator at the end of the previous line (as opposed to the beginning of the following line) so that 

it is clear that the line does not stand alone and that there is more coming.

Try to keep your functions short enough to show the entire function on one page.

Tab size should be three or four spaces. Make sure your editor converts each tab to that size.

switch Statements
Indent switch statements as follows to conserve horizontal space:

switch(variable)

{

case ValueOne:

    actionOne();

    break;

case ValueTwo:

    actionTwo();

    break;
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default:

    // bad action!

    break;

}

Program Text
You can follow several tips to create easy-to-read code. Code that is easy to read is easy to maintain:

 Use whitespace to help readability.

 Objects and arrays are really referring to one thing. Don’t use spaces within object references 

(., ->, []).

 Unary operators are associated with their operand, so don’t put a space between them. Do 

put a space on the side away from the operand. Unary operators include !, ~, ++, —, -, * 

(for pointers), & (casts), and sizeof.

 Binary operators should have spaces on both sides: +, =, *, /, %, >>, <<, <, >, ==, !=, &, |, 

&&, ||, ?:, =, +=, and so on.

 Don’t use lack of spaces to indicate precedence (4+ 3*2).

 Put a space after commas and semicolons, not before.

 Parentheses should not have spaces on either side.

 Keywords, such as if, should be set off by a space: if (a == b).

 The body of a comment should be set off from the // with a space.

 Place the pointer or reference indicator next to the type name, not the variable name. Do this:

char* foo;

int& theInt;

rather than this:

char *foo;

int &theInt;

 Do not declare more than one variable on the same line unless they are related.

Identifier Names
Here are some guidelines for working with identifiers:

 Identifier names should be long enough to be descriptive.

 Avoid cryptic abbreviations.

 Take the time and energy to spell things out.
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 Short names (i, p, x, and so on) only should be used where their brevity makes the code 

more readable and where the usage is so obvious that a descriptive name is not needed.

 The length of a variable’s name should be proportional to its scope.

 Make sure identifiers look and sound different from one another to minimize confusion.

 Function (or method) names usually are verbs or verb-noun phrases: search(), reset(), 

findParagraph(), showCursor(). Variable names are usually abstract nouns, 

possibly with an additional noun: count, state, windSpeed, windowHeight. 

Boolean variables should be named appropriately: windowIconized, fileIsOpen.

Spelling and Capitalization of Names
Spelling and capitalization should not be overlooked when creating your own style. Some tips for 

these areas include the following:

 Identifiers should be consistent—use mixed case where appropriate. Function names, 

class, typedef, struct names, data members and locals should begin with a lowercase 

letter with each subsequent word in the identifier capitalized ( as in myVariable or 

closeAllFiles()). This style is called camel case. 

 Enumerated constants should begin with a few lowercase letters as an abbreviation for the 

enum. For example:

enum TextStyle

{

    tsPlain,

    tsBold,

    tsItalic,

    tsUnderscore,

};

Comments
Comments can make it much easier to understand a program. Often, you will not work on a 

program for weeks, months, or even years while you turn your attention to higher-priority 

projects. In this time, you can forget what certain code does or why it has been included. Problems 

in understanding code also can occur when someone else reads your code. Comments that are 

applied in a consistent, well thought-out style can be well worth the effort. There are several tips 

to remember concerning comments:

 Wherever possible, use C++ // comments rather than the /* */ style.

 Higher-level comments are infinitely more important than process details. Add value; do 

not merely restate the code. For example:

n++; // n is incremented by one
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 This comment isn’t worth the time it takes to type it in. Concentrate on the semantics 

of functions and blocks of code. Say what a function does. Indicate side effects, types of 

parameters, and return values. Describe all assumptions that are made (or not made), 

such as “assumes n is non-negative” or “will return –1 if x is invalid.” Within complex 

logic, use comments to indicate the conditions that exist at that point in the code.

 Use complete English sentences with appropriate punctuation and capitalization. The 

extra typing is worth it. Don’t be overly cryptic, and don’t abbreviate. What seems exceed-

ingly clear to you as you write code can be amazingly obtuse in a few months.

 Include comments at the top of your program, functions, and header source modules to 

define the purpose of that module, inputs, outputs, parameters, initial author, and any 

changes (including date and author).

 Use blank lines freely to help the reader understand what is going on. Separate statements 

into logical groups.

Access
The way you access portions of your program also should be consistent. Some tips for access are 

these:

 Always use public:, private:, and protected: labels; don’t rely on the defaults.

 List the public members first, then protected, then private. List the data members in a 

group after the member functions.

 Put the constructors first in the appropriate section, followed by the destructor. List 

overloaded member functions with the same name adjacent to each other. Group accessors 

together when possible.

 Consider alphabetizing the member function names within each group and alphabetizing 

the member variables. Be sure to alphabetize the filenames in include statements.

 Even though the use of the virtual keyword is optional when overriding, use it anyway; 

it helps to remind you that it is virtual, and also keeps the declaration consistent.

Class Definitions
Try to keep the definitions of member functions in the same order as the declarations. It makes 

things easier to find.

When defining a function, place the return type and all other modifiers on a previous line so 

that the class name and function name begin on the left margin. This makes it much easier to 

find functions.
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include Files
Try as hard as you can to keep from including files in header files. The ideal minimum is the 

header file for the class from which the current class. Other mandatory includes will be those for 

objects that are members of the class being declared. Classes that are merely pointed to or 

referenced only need forward references of the form.

Don’t leave out an include file in a header just because you assume that whatever .cpp file 

includes this one also will have the needed include.

const
Use const wherever appropriate: for parameters, variables, and member functions. Often there 

is a need for both a const and a non-const version of a function; don’t leave one out if both 

are needed. Be careful when explicitly casting from const to non-const and vice versa—

sometimes this is the only way to do something—but be certain that it makes sense, and include 

a comment.

Summary
After 24 hours, you’re ready to start tackling your own programming projects with the C++ 

language.

The complexity of the language might still seem daunting—Bjarne Stroustrop created a language 

so powerful that it remains in vogue over 37 years after its creation.

There’s a lot more to be learned about C++, and you could immediately dive into more advanced 

books, courses, and websites.

Don’t do that yet.

The best way to grow your knowledge of C++ is to apply what you’ve learned to your own code. 

Many of the features of the language require familiarity to master, such as operator overloading, 

templates, and object-oriented class hierarchies.

Even a lifetime C++ coder discovers new techniques and capabilities of the language. 

Q&A
Q. Why use try blocks when you can use general exception handling?

A. The try block allows specific exception handling within that section of code. You get to
have general handling for all code and specific handing for the code within the try block.
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Q. Why do the Alabama Crimson Tide have an elephant as their mascot?

A. A fan called them elephants during a 1930 game against Ole Miss and the name stuck.

“At the end of the quarter, the earth started to tremble,’’ sportswriter Everett Strupper
wrote in the October 8, 1930, Atlanta Journal. “Some excited fan in the stands bellowed,
‘Hold your horses, the elephants are coming,’ and out stamped this Alabama varsity.’’
Sportswriters dubbed the team’s linemen the “Red Elephants.”

That 1930 team had a 10-0 record, outscored its opponents 217-13, defeated Washington
State in the Rose Bowl, and was declared national champions.

Q. What should I do now that I’ve reached the end of the book?

A. Keep learning! You can try examples, write code, and read other resources available online
and in print.

Workshop
Now that you’ve finished all 24 hours, you can answer a few final questions on exceptions and 
continue with an exercise to firm up your knowledge of C++.

Quiz
1. What is the purpose of a try block?

A. To run code that might cause an exception

B. To throw exceptions

C. To ignore errors

2. What is the difference between a throw and a try?

A. try might not cause an exception.

B. There’s no difference.

C. try always causes an exception.

3. How do you declare a default catch block?

A. catch (everything)

B. catch (default)

C. catch (...)
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Answers
1. A. The try block contains a set of statements in which the exceptions for those state-

ments will be handled in the attached catch block.

2. A. The try block contains code that might cause an exception to be thrown. The throw
statement automatically throws an exception.

3. C. To define a catch block that will catch anything not already listed in another catch
block (much like the default label in a switch statement), you include three periods inside
the argument list instead of listing an exception name: catch (...).

Activities
1. There is only one exercise for this hour: Go forth and program! Make sure you try the programs

in this book and any samples that might have come with your C++ development tool.

To see solutions to these activities, visit this book’s website at http://cplusplus.cadenhead.org.

http://cplusplus.cadenhead.org
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APPENDIX A
Binary and Hexadecimal

Binary and hexadecimal numbering systems are extremely useful for C++ programmers.

When you look at the number 145, you instantly see “one hundred forty-five” without much 

reflection. In order to understand binary and hexadecimal numbering, you must reexamine the 

number 145 and see it not as a number but as a code for a number.

Consider the relationship between the number three and 3. The numeral 3 is a symbol on a 

piece of paper; the number three is an idea. The numeral is used to represent the number.

The distinction can be made clear by realizing that three, 3, |||, and *** all can be used to 

represent the same idea of three.

In base 10 math, also called decimal math, you use combinations of the numerals 0, 1, 2, 3, 4, 5, 

6, 7, 8, and 9 to represent all numbers. How is the number ten represented?

We could have evolved a strategy of using the letter A to represent ten; or we might have used 

IIIIIIIIII to represent that idea. The Romans used X. The Arabic system, which we use, makes 

use of position in conjunction with numerals to represent values. The first (rightmost) column 

is used for ones, and the next column (to the left) is used for tens. Thus, the number fifteen is 

 represented as 15 (one, five). It is 1 ten and 5 ones.

Certain rules emerge from which generalizations can be made:

1. Base 10 uses the digits 0–9.

2. The columns are powers of ten: 1s, 10s, 100s, and so on.

3. If the third column is 100, the largest number you can make with two columns is 99. More

generally, with n columns you can represent 0 to (10n–1). So with three columns, you can

represent 0 to (103–1), or 0–999.
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Other Bases
It is not an arbitrary choice that we use base 10; after all, our species has 10 fingers. One can 

imagine a different base, however. Using the rules found in base 10, here’s how you can describe 

base 8:

1. The digits in base 8 are 0–7.

2. The columns are powers of 8: 1s, 8s, 64s, and so on.

3. With n columns, you can represent 0 to 8n–1.

To distinguish numbers written in each base, write the base as a subscript next to the number. 

The number fifteen in base 10 would be written as 1510 and read as “one, five, base ten.”

Therefore, to represent the number 1510 in base 8, you would write 178. This is read “one, seven, 

base eight.” Note that it also can be read “fifteen,” because that is the number it continues to 

represent.

Why 17? The 1 means 1 eight, and the 7 means 7 ones. One eight plus seven ones equals fifteen. 

Consider fifteen asterisks:

*****     *****

*****

The natural tendency is to make two groups, a group of ten asterisks and another of five. This would 

be represented in decimal as 15 (1 ten and 5 ones). You also can group the asterisks as follows:

**** *******

****

That is, eight asterisks and seven. That would be represented in base eight as 178. That is, 1 eight 

and 7 ones.

Around the Bases
You can represent the number fifteen in base 10 as 15, or 1510, in base 9 as 169, in base 8 as 

178, in base 7 as 217. Why 217? In base 7, there is no numeral 8. To represent fifteen, 

you need two 7s and one 1.

How do you generalize the process? To convert a base 10 number to base 7, think about the 

 columns: In base 7, they are ones, sevens, forty-nines, three-hundred forty-threes, and so on. Why 

these columns? They represent 70, 71, 72, 73, and so forth. Create a table for yourself:

4 3 2 1

73 72 71 70

343 49 7 1
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NOTE

One of the rules of mathematics is that any value raised to the zero power has a result of one. 
70 = 1, 100 = 1, 217, 549, 3430 = 1.

The first row represents the column number. The second row represents the power of 7. The third 

row represents the decimal value of each number in that row.

To convert from a decimal value to base 7, here is the procedure: Examine the number and 

decide which column to use first. If the number is 200, for example, you know that column 4 

(343) is 0, and you don’t have to worry about it.

To find out how many 49s there are, divide 200 by 49. The answer is 4, so put 4 in column 3 and 

examine the remainder: 4. There are no 7s in 4, so put a 0 in the sevens column. There are 4 

ones in 4, so put a 4 in the 1s column. The answer is 4047.

To convert the number 96810 to base 6:

5 4 3 2 1

64 63 62 61 60

1296 216 36 6 1

There are no 1296s in 968, so column 5 has 0. Dividing 968 by 216 yields 4 with a remainder of 

104. Column 4 is 4. Dividing 104 by 36 yields 2 with a remainder of 32. Column 3 is 2. Dividing

32 by 6 yields 5 with a remainder of 2. The answer, therefore, is 42526..

5 4 3 2 1

64 63 62 61 60

1296 216 36 6 1

0 4 2 5 2

There is a shortcut when converting from a value of one base to a value of another base 

(such as 6) to base 10. You can multiply:

4 * 216 = 864

2 * 36 = 72

5 * 6 = 30

2 * 1 = 2

968
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Binary
Base 2 is the ultimate extension of this idea. There are only two digits: 0 and 1. The columns are 

as follows:

Col: 8 7 6 5 4 3 2 1

Power: 27 26 25 24 23 22 21 20

Value: 128 64 32 16 8 4 2 1

To convert the number 8810 to base 2, you follow the same procedure. There are no 128s, 

so column 8 is 0.

There is one 64 in 88, so column 7 is 1, and 24 is the remainder. There are no 32s in 24, 

so column 6 is 0.

There is one 16 in 24, so column 5 is 1. The remainder is 8. There is one 8 in 8, and so column 4 

is 1. There is no remainder, so the rest of the columns are 0:

0  1  0  1  1  0  0  0

To test this answer, convert it back:

1 * 64 =  64

0 * 32 =   0

1 * 16 =  16

1 *  8 =   8

0 *  4 =   0

0 *  2 =   0

0 *  1 =   0

88

Why Base 2?
The power of base 2 is that it corresponds cleanly to what a computer needs to represent. 

Computers do not know anything at all about letters, numerals, instructions, or programs. At 

their core, they are just circuitry, and at a given juncture, there either is a lot of power or there is 

very little.

To keep the logic clean, engineers do not treat this as a relative scale (a little power, some power, 

more power, or lots of power), but rather as a binary scale (enough power or not enough 

power). This is simplified to “yes” or “no.” Yes or no can be represented as 1 or 0. By convention, 

1 means true or yes.

After you make this great leap of intuition, the power of binary becomes clear: With 1s and 0s, 

you can represent the fundamental truth of every circuit. (There is power or there isn’t.) All a 

computer ever knows is, “Is it on, or is it off?” On equals 1, off equals 0.
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Bits, Bytes, and Nybbles
After the decision is made to represent truth and falsehood with 1s and 0s, binary digits (or bits) 

become very important. Because early computers could send 8 bits at a time, it was natural to 

start writing code using 8-bit numbers (called bytes).

NOTE

Half a byte (4 bits) is called a nybble! You also may see this spelled as nibble.

With 8 binary digits, you can represent up to 256 different values. Why? Examine the columns: 

If all 8 bits are set (1), the value is 255. If none is set (all the bits are clear or zero), the value 

is 0. So 0–255 is 256 possible states.

What’s a KB?
It turns out that 210 (1,024) is roughly equal to 103 (1,000). This coincidence was too good to 

miss, so computer scientists started referring to 210 bytes as 1KB or 1 kilobyte, based on the 

 scientific prefix of kilo for thousand.

Similarly, 1,024 * 1,024 (1,048,576) is close enough to one million to receive the designation 

1MB or 1 megabyte, and 1,024 megabytes is called 1 gigabyte (giga implies thousand-million or 

 billion).

Binary Numbers
Computers use patterns of 1s and 0s to encode everything they do. Machine instructions are 

encoded as a series of 1s and 0s and interpreted by the fundamental circuitry. Arbitrary sets of 1s 

and 0s can be translated back into numbers by computer scientists, but it would be a mistake to 

think that these numbers have intrinsic meaning.

For example, the Intel x86 chip set interprets the bit pattern 1001 0101 as an instruction. You 

certainly can translate this into decimal 149, but that number has no special meaning.

Sometimes the numbers are instructions, sometimes they are values, and sometimes they 

are codes. One important standardized code set is ASCII. In ASCII, every letter and punctuation 

is given a seven-digit binary representation. For example, the lowercase letter a is represented 

by 110 0001. This is not a number, although you can translate it to the number 

9710 (64 + 32 + 1). It is in this sense that people say that the letter a is represented by 9710 in 

ASCII; but the truth is that the binary representation of 9710, 1100001, is the encoding 

of the letter a, and the decimal value 97 is a human convenience.
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Hexadecimal
Because binary numbers are difficult to read, a simpler way to represent the same values is 

sought. Translating from binary to base 10 involves a fair bit of manipulation of numbers; but it 

turns out that translating from base 2 to base 16 is simple, because there is a very good shortcut.

To understand this, you must first understand base 16, which is known as hexadecimal. In base 

16, there are 16 numerals: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F. The last six are arbi-

trary; the letters A–F were chosen because they are easy to represent on a keyboard. The columns 

in hexadecimal are as follows:

4 3 2 1

163 162 161 160

4096 256 16 1

To translate from hexadecimal to decimal, you can multiply. Thus, the number F8C16 represents 

the following:

F * 256 = 15 * 256 =  3840

8 * 16 = 128

C * 1 = 12 * 1 =     12

3980

Translating the number FC16 to binary is best done by translating first to base 10, and then to 

binary:

F * 16 = 15 * 16 =   240

C * 1 = 12 * 1 = 12

252

Converting 25210 to binary requires the chart:

Col:     9     8    7   6    5   4    3    2    1

Power:   28   27   26   25   24 23   22   21   20

Value:   256   128   64  32   16   8    4    2    1

There are no 256s.

1 128 leaves 124

1 64 leaves 60

1 32 leaves 28

1 16 leaves 12

1 8 leaves 4

1 4 leaves 0

0

0

1    1    1    1    1    1    0    0

Thus, the answer in binary is 1111 1100.
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Now, it turns out that if you treat this binary number as two sets of four digits, you can do a 

magical transformation.

The right set is 1100. In decimal, that is 12, or in hexadecimal it is C.

The left set is 1111, which in base 10 is 15, or in hex is F.

Thus, you have the following:

1111 1100

F C

Putting the two hex numbers together is FC, which is the real value of 1111 11002. This shortcut 

always works. You can take any binary number of any length and reduce it to sets of four, 

translate each set of four to hex, and put the hex numbers together to get the result in hex.

You can shortcut the hexadecimal to binary conversion by using the reverse process. Split the 

hexadecimal number into individual digits and convert each of them into four binary digits (bits). 

If you remember that the values of the first four bits are 8, 4, 2, and 1, you can easily convert 

from hexadecimal to binary—because each hex digit can be treated as an individual four bits.

Here’s a much larger number:

1011 0001 1101 0111

The columns are 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, and 32768:

1 x 1 = 1

1 x 2 = 2

1 x 4 = 4

0 x 8 = 0

1 x 16 = 16

0 x 32 = 0

1 x 64 = 64

1 x 128 = 128

1 x 256 = 256

0 x 512 = 0

0 x 1024 = 0

0 x 2048 = 0

1 x 4096 =     4,096

1 x 8192 =     8,192

0 x 16384 =    0

1 x 32768 =    32,768

Total: 45,527

Converting this to hexadecimal requires a chart with the hexadecimal values:

65536    4096    256    16    1
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There are no 65,536s in 45,527, so the first column is 4096. There are 11 4096s (45,056), 

with a remainder of 471. There is one 256 in 471 with a remainder of 215. There are 

13 16s (208) in 215 with a remainder of 7. Thus, the hexadecimal number is B1D7.

Checking the math:

B (11) * 4096 =    45,056

1 * 256 = 256

D (13) * 16 =     208

7 * 1 = 7

Total 45,527

The shortcut version is to take the original binary number, 1011000111010111, and break it 

into groups of four: 1011 0001 1101 0111. Each of the four is then evaluated as a 

hexadecimal number:

1011 =

1 x 1 =  1

1 x 2 =  2

0 x 4 =  0

1 x 8 =  8

Total    11

Hex:     B

0001 =

1 x 1 =    1

0 x 2 =    0

0 x 4 =    0

0 * 8 =    0

Total 1

Hex: 1

1101 =

1 x 1 =    1

0 x 2 =    0

1 x 4 =    4

1 x 8 =    8

Total 13

Hex = D

0111 =

1 x 1 =    1

1 x 2 =    2

1 x 4 =    4

0 x 8 =    0

Total 7

Hex: 7

Total Hex:  B1D7
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This appendix contains definitions for the key terms you will see throughout the book in 

alphabetical order. As you read each hour and see a term you do not recognize, you should be 

able to turn to this appendix and find out more.

A
Abstract data type (ADT): This represents a concept (like shape) rather than an object (like 

circle). As the name implies, it is an abstract form.

Accessor methods: Methods used to access private member variables.

ANSI: The American National Standards Institute is a nonprofit that acts as the guardian 

of standards within the United States. Most countries and many regions (for example, the 

European Union) have similar organizations. In some cases, those organizations are part of the 

 government, but ANSI is not a governmental agency. Go to www.ansi.org for more information.

Arity: How many terms an operator takes. The possible values for a C++ operator’s arity are 

unary, binary, and ternary.

Array: A collection of objects all of the same type.

ASCII (American Standard Code for Information Interchange): A system for encoding the 

characters, numerals, and punctuation used by many computers.

Assignment operator (=): Causes the operand on the left side of the assignment operator to 

have its value changed to the value on the right side of the assignment operator.

B
Binary operator: An operator that takes two terms, such as a+b.

http://www.ansi.org
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C
C++14: The most recent release of the C++ language, which was published on December 15, 

2014, after 19 months of development.

Case sensitive: When uppercase and lowercase letters are considered to be different. 

 (playerScore is not the same as PlayerScore.)

Class: The definition of a new type. A class is implemented as data and related functions.

Clients: Other classes or functions that make use of your class.

Comment: Text that does not affect the operation of your program, but which is added to 

instruct or inform the programmer.

Compiler: Software that can translate a program from human-readable form to machine code, 

producing an object file that will later be linked (see linker) and run.

Compiling: The first step in transforming code from a compiler into what is called object code in 

an object file (.obj).

Compound statement: Replaces a single statement with a series of statements between an 

 opening brace and a closing brace.

Conceptualization: The core idea of the software project.

Constant: Data storage locations whose value will not change while the program is running.

Constant member function: A constant member function promises that it won’t change the 

value of any of the members of the class.

D
Data members: See member variables.

Data hiding: Hiding the state of a class in private member variables.

Decrementing: Decreasing a value by 1 (when applied to the -- operator).

Deep copy: Copies the values of member variables, and creates copies of objects pointed to by 

member pointers.

Default constructor: A constructor with no parameters.

#define: A command that defines a string substitution.

Doubly linked list: A linked list in which nodes point both to the next node in the list and also 

the previous node in the list.

Driver program: A test program.
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E
Efficiency: A topic where major changes to program code are made to save minute amounts 

of time. Although you want to keep this in mind as you write programs, unless you are writing 

real-time systems (controlling medical equipment or missiles), in many situations you should let 

the compiler worry about the details of efficient code.

Encapsulation: Creating self-contained objects so that other objects cannot modify their internal 

state.

Enumerated constants: A named set of constants.

Exception: An object that is passed from the area of code where a problem occurs to the part of 

the code that is going to handle the problem.

Executable program: A program that runs on your operating system.

Expression: Any statement that returns a value.

F
Friend: Keyword to provide another class with access to the current class’s private member 

variables and methods.

Function: A block of code that performs a service, such as adding two numbers or printing to 

the screen.

Function declaration: Tells the compiler the name, return type, and parameters of the function.

Function definition: Tells the compiler how the function works; it is the body of the function.

Function parameter list: The list of all the parameters and their types, separated by commas.

G
Global variables: Variables accessible from anywhere within the program.

H
Heap: The area of memory left over after the code space, global name space, and stack 

are allocated. This also is known as the “free store” and is the source of memory dynamically 

allocated using new or malloc.
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I
Implementation (also called class implementation): The code and declarations of data within 

a class. This is the code that is accessed using the interface. This information is typically stored 

in a .cpp file and compiled into object or library form. In many cases, the interface (in the form 

of a header file) and the compiled code (object or library file) is provided and not the actual class 

code—which prevents it from being modified.

Incrementing: Increasing a value by 1 (when applied to the ++ operator).

Indirection: Accessing the value at an address held by a pointer.

Infinite loop: A loop that has a condition which causes it to loop forever, instead of ending 

after looping a finite number of times. This can be a logic error or an intentional design by a 

 programmer. When it’s intentional, there must be something that causes the loop to end. 

Inheritance: Creating a new type that can extend the characteristics of an existing type.

Instantiation: Creating an object from a class, or a type from a template.

Interface (also called class interface): The definition of data and methods that can be accessed by 

other classes and code. The interface tells how the code is used. This information often is stored 

in a header file and included into the using module.

Interpreter: An interpreter translates a program from human-readable form to machine code 

while the program is running.

ISO: International Organization for Standardization. An international standards body similar to 

ANSI. ISO is not a governmental agency. Go to www.iso.org for more information.

Iteration: Doing the same thing again and again.

L
L-value: An l-value is an operand that can be on the left side of an operator.

Library: A collection of linkable files that were supplied with your compiler, you purchased 

separately, or created yourself.

Linked list: A data structure that consists of nodes linked to one another.

Linker: A program that builds an executable (runnable) file from the object code files produced 

by the compiler.

Linking: The second step in creating an executable file; links together the object files produced 

by a compiler into an executable program.

Literal constant: A value typed directly into the program, such as 35.

Local variables: Variables that exist only within a function.

http://www.iso.org
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M
Member functions (also called member methods): The functions of your class.

Member methods: See member functions.

Member variables (also known as data members): The variables in your class.

Method definition: A definition that begins with the name of the class followed by two colons, 

the name of the function, and its parameters.

O
Object: An instance of a class.

Object oriented: A programming approach that takes the next step beyond procedural and 

 structural programming. As the name implies, it takes advantage of the behavior of objects 

(defined in classes).

OO: See object oriented.

Operand: A mathematical term referring to the part of an expression operated upon by an 

operator.

Operator: A symbol that causes the compiler to take an action.

Overriding: When a derived class creates a member function that changes the implementation 

of a function in the base class. The overridden method must have the same return type and 

signature as the base method. 

P
Pointer: A variable that holds a memory address.

Problem space: The set of problems and issues your program will try to solve.

Procedural programming: A series of actions performed on a set of data.

Polymorphism: The ability to treat many subtypes as if they were of the same base type.

Postfix operator: The postfix operator (zombies++) increments after evaluation in an expression.

Precedence value: The precedence value tells the compiler the order in which to evaluate operators.

Prefix operator: The prefix operator (--zombies) increments before evaluation in an expression.

Preprocessor: A program that runs before your compiler and handles lines that begin with a 

pound (#) symbol.
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Prototype: Declaration of a function.

Private access: Access available only to the methods of the class itself or to methods of classes 

derived from the class.

Public access: Access available to methods of all classes.

Pure virtual function: A virtual function that must be overridden in the derived class because it 

has no code behind it. It is purely abstract with no implementation in the base class.

R
R-value: An r-value is an operand that can be on the right side of an operator.

RAM: Random access memory.

Reference: An alias to an object.

Relational operators: Determine whether two numbers are equal or if one is greater or less than 

the other.

S
Scope: Where a variable is visible and can be accessed.

Shallow copy: Copies the exact values of one object’s member variables to another object. 

Also called a member-wise copy.

Signature: The name of a function and its arguments.

Signed: A variable type that can hold negative and positive values.

Simulation: A computer model of part of a real-world system.

Singly linked list: A linked list in which nodes point to the next node in the list, but not back to 

the previous.

Solution space: The set of possible solutions to the problem.

Spaghetti code: Programs written in a convoluted and difficult-to-read format with limited 

 structure, which gets its name because program flow looks like a plate of spaghetti that 

is difficult to follow.

Stack: A special area of memory allocated for your program to hold the data required by each of 

the functions in your program. Another term for stack is LIFO (last in, first out) queue. The last 

(most recent) item placed in the LIFO is the first one pulled out.
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Statement: A way to control the sequence of execution, evaluate an expression, or do nothing 

(the null statement).

Static member data: Unlike most member data elements within a class, this does not get 

replicated for each object created. Only one copy of these elements exists and can be accessed by 

all the objects of that class. It is typically used to keep track of the number of objects or anything 

else that applies to all member objects.

Static member functions: Like static member data, these exist in the scope of the class, not 

individual objects and can be invoked without referencing a specific object.

Stray pointer (also called a dangling pointer): The name for a pointer that is created when you 

perform delete on it and then try to access the memory that has been freed. This is a 

common bug that is difficult to debug because the fault (accessing the memory improperly) 

typically takes place long after the delete.

String: An array of characters ending with a null character.

Structured programming: A systematic approach to breaking programs down into procedures.

Symbolic constant: A typed and named value marked as constant, such as BoilingPoint.

Stubbing out: Writing only enough of a function to compile, leaving the details for later.

Subscript: Offsets into an array. The fourth element of myArray would be accessed as 

myArray[3].

T
Template: Provides the ability to create a general class or method and pass types as parameters.

Ternary operator: An operator that takes three terms. In C++, there is only one ternary  operator, 

the ? operator, used as

a < b ? true : false;

which will return true if a is less than b, and otherwise will return false.

Token: A string of characters.

Tree: A complex data structure built from nodes, each of which points to one or more child 

nodes.

Type: The size and characteristics of an object.

Typedef: A data type definition, which acts as a synonym for a built-in data type.
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U
UML: Unified Modeling Language. A standard, graphical means of representing requirements 

and design.

Unary operator: An operator that takes only one term, such as a++, as opposed to a binary 

operator, which takes two terms, such as a + b.

Unsigned: A variable type that only can hold positive values.

Use case: A description of how a program will be used.

V
Variable: A named memory location in which you can store a value.

Virtual method: One of the means by which C++ implements polymorphism. This allows you 

to treat derived objects as if they were base objects. 

v-table: The internal mechanism that keeps track of the virtual functions created within

 individual objects.

W
Waterfall: A method in which each stage is completed before the product is passed on to the 

next stage. Each stage is discrete and self-contained. This can be applied to software 

development or any project (including building a house or car or so forth).

Whitespace: Spaces, tabs, and new lines.



ptg18189307

APPENDIX C
This Book’s Website

This book has a website with source code files, answers to reader questions, and more assistance.

If you’re unclear about any of the topics covered in the book, visit the book’s website at 

http://cplusplus.cadenhead.org for assistance.

The book’s website offers the following:

 Error corrections and clarifications: When errors are brought to my attention, they are 

described on the site with the corrected text and any other material that could help.

 Answers to reader questions: If readers have questions that aren’t covered in this 

book’s Q&A sections, many are presented on the site.

 The source code, class files, and resources required for all programs you create during the 

24 hours of this book.

 Sample C++ programs: Working versions of some programs featured in this book are 

available on the site.

 Solutions, including source code, for activities suggested at the end of each hour.

 Updated links to the sites mentioned in this book: If sites mentioned in the book have 

changed addresses and I know about the new link, I’ll offer it here.

You can also send me email by visiting the book’s website. Click the Feedback link on any page.

—Rogers Cadenhead

http://cplusplus.cadenhead.org
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APPENDIX D
Using the MinGW C++ 
Compiler on Windows

This book works with any programming tool or integrated development environment (IDE) that 

supports C++14, the current version of the C++ programming language. If you already have an 

IDE such as Microsoft Visual Studio or C++ Builder and you know it supports C++14, you can use 

it and stop reading this appendix right now.

A popular and free option for Windows users who want to learn C++ is the GCC compiler, part 

of an open source programming toolkit for the language. GCC, which is available for Windows, 

Mac OS, and Linux, is a set of programs that are used in a command window instead of a 

graphical user interface. You edit programs in any text editor you like, then type commands to 

make the C++ compiler and linker create a program’s executable code.

GCC is included in MinGW, a set of programs called Minimalist GNU for Windows. In this 

appendix you learn how to download, install, and set up MinGW to work on a Windows 

computer.

Downloading MinGW-w64
The most up-to-date version of MinGW for Windows is MinGW-64, which can be downloaded 

from the project’s SourceForge repository at http://sourceforge.net/projects/mingw-w64. This site 

holds a lot of files, including the source code for advanced programmers to examine and modify, 

but all you need is the program’s main installation file for Windows.

Click the Files link in the navigation bar (which also includes links such as Summary, Support, 

and Wiki).

A page opens listing the project’s folders and files. Near the top, there should be a line that 

reads “Looking for the latest version?” followed by a link with the text Download Official 

MinGW-w64 installer. Click this link. The MinGW-64 download should begin automatically 

after a few seconds.

(If you can’t find this link, try http://sourceforge.net/projects/mingw-w64/files/latest/

download?source=files.)

http://sourceforge.net/projects/mingw-w64
http://sourceforge.net/projects/mingw-w64/files/latest/download?source=files
http://sourceforge.net/projects/mingw-w64/files/latest/download?source=files
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This download is an installation wizard. Run it to begin installing the software.

The wizard presents you with setup settings such as Version, Architecture, and Build Revision. 

As a new user of MinGW-w64, you can click Next to accept the default values for these settings.

You are asked for a destination folder in which to store the software. Instead of using the default 

value, here’s a better choice: In the Destination Folder text field, type C:\MinGW\, as shown in 

Figure D.1. (This assumes that C:\ is your main drive, as it is for most Windows users.)

FIGURE D.1
Choosing a folder for MinGW.
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Click Next to install the software in the chosen folder. This process is tracked by a progress bar, 

and when it’s complete, click Finish to close the wizard.

After the software has been installed, you must manually configure Path, a Windows 

environment variable.

Setting the Path Environment Variable
The MinGW tools are used in a command window. For these commands to work, Windows must 

know where the GCC compiler and the other tools can be found.

These tools are in the bin subfolder inside the project’s main folder.

If you chose C:\MinGW as the main folder, the tools are in C:\MinGW\mingw32\bin.

This folder must be included in Path, an environment variable that contains a list of folders. 

Windows uses Path to locate programs when you type a command.

There’s an Environment Variables dialog in the Control Panel.

On Windows 10, set the Path variable with these steps:

1. In the Search box on the task bar, enter environment. A list of search results appears

above the box.

2. One of the top search results is Enter environment variables for your account. Click this

result. The System Properties dialog opens.

3. Click the Environment Variables button. A dialog with that title opens.

4. In the System Variables pane, scroll down and choose Path, then click the Edit button

below the System Variables pane. The Edit Environment Variables dialog appears.

5. The Edit Environment Variables dialog lists all the folders in the Path. To add a new folder,

click the New button. An entry opens up at the bottom of the list, as shown in Figure D.2.
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Add MinGW to the path

FIGURE D.2
Editing the Path system variable.

Add MinGW to the Path

6. Enter the location of the MinGW tools, C:\MinGW\mingw32\bin, and hit Enter.

This folder is added to the list at the bottom.

7. Because there might be an older version of GCC on your computer, it’s a good idea to

move it to the top. Select C:\MinGW\mingw32\bin and click the Move Up button

 repeatedly until it is the first item in the list.

8. Click OK to close the dialog, OK to close the Environment Variables dialog, and OK to close

the System Variables dialog.
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The location of MinGW has been added to your path. Proceed to the section “Testing Your 

Installation.”

On earlier versions of Windows, set the Path variable with these steps:

1. On the Start menu, right-click Computer or My Computer, then choose Properties from the

pop-up menu that appears.

2. Click the Advanced system settings link. The System Properties dialog opens.

3. Click the Environment Variables button. The Environment Variables dialog opens.

4. In the System Variables pane, scroll down until you see the Path item.

5. Choose Path, then click the Edit button under the System Variables pane.

6. The Edit System Variable dialog opens (Figure D.3).

FIGURE D.3
Editing the Path system variable.

7. In the Variable Value field, move the cursor all the way to the left.

8. At that cursor position, enter the location of the MinGW tools, C:\MinGW\mingw32\bin,

and click OK.

This adds MinGW to your path.

After changing the path, close any command windows you currently have open and then open 

a new window.

Testing Your Installation
MinGW requires the use of a command window to compile C++ programs, run them, and 

handle other tasks.
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A command window is a way to operate a computer by typing commands using the keyboard, 

rather than using the mouse. Few programs designed for Windows users require the command 

window today.

To get to a command window in Windows, do one of the following:

 On Windows 10, enter Command Prompt in the search box, then click the Command 

Prompt icon.

 On Windows 8, choose Start, click the Search magnifying glass icon at upper-right, enter 

Command Prompt in the search box, and click the Command Prompt icon.

 On Windows 7, Vista, XP, or Server 2003, choose Start, All Programs, Accessories, 

Command Prompt.

 On Windows 98 or Me, choose Start, Programs, MS-DOS Prompt.

 On Windows NT or 2000, choose Start, Programs, Accessories, Command Prompt.

When you open a command window, it displays a line where you can type commands, as seen 

in Figure D.4.

Command line

FIGURE D.4
Using a newly opened command-line window.

Command line

The command window uses commands adopted from MS-DOS, the Microsoft operating 

system that preceded Windows. MS-DOS supports the same functions as Windows—copying, 
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moving, and deleting files and folders; running programs; scanning and repairing a hard drive; 

formatting a floppy disk; and so on.

In the window, a cursor blinks on the command line whenever you can type in a new command. 

In Figure D.4, C:\Users\caden_000> is the command line.

Because MS-DOS can be used to delete files and even format your hard drive, you should learn 

something about the operating system before experimenting with its commands.

However, you need to know only a few things about MS-DOS to use MinGW: how to create a 

folder, how to open a folder, and how to run a program.

Opening Folders in MS-DOS
When you are using MS-DOS on a Windows system, you have access to all the folders you 

normally use in Windows. For example, if you have a Windows folder on your C: hard drive, the 

same folder is accessible as C:\Windows from a command line.

To open a folder in MS-DOS, type the command CD, followed by the name of the folder, and 

press Enter. Here’s an example:

CD C:\Temp

When you enter this command, the Temp folder on your system’s C: drive is opened, if it exists. 

After you open a folder, the command line is updated with the name of that folder, as shown in 

Figure D.5.

MS - DOS Command

FIGURE D.5
Opening a folder in a command-line window.

MS-DOS command
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You also can use the CD command in other ways:

 Type CD \ to open the root folder on the current hard drive.

 Type CD foldername to open a subfolder matching the name you’ve used in place of 

 foldername, if that subfolder exists.

 Type CD .. to open the folder that contains the current folder. For example, if you are in 

C:\Windows\Fonts and you use the CD .. command, C:\Windows is opened.

 It’s helpful to create a folder for the programs you create in this book, such as one named 

Cpp24. If you already have done this, you can switch to that folder by using the following 

commands:

CD \

CD Cpp24

If you haven’t created that folder yet, you can do so using an MS-DOS command.

Creating Folders in MS-DOS
To create a folder from a command line, type the command MD followed by the folder’s name, 

and press Enter, as in the following example:

MD C:\Stuff

The Stuff folder is created in the root folder of the system’s C: drive. To open a newly created 

folder, use the CD command followed by that folder’s name, as shown in Figure D.6.

Creating a folder

Opening the folder

FIGURE D.6
Creating a new folder in a command-line window.
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Creating a folder

Opening the folder

If you haven’t already created a Cpp24 folder, you can do so from a command line:

1. Change to the root folder (using the CD \ command).

2. Type the command MD C:\Cpp24 and press Enter.

After C:\Cpp24 has been created, you can go to it at any time from a command line by using 

this command:

CD \Cpp24

The last thing you need to learn about MS-DOS to use MinGW is how to run programs.

Running Programs in MS-DOS
The simplest way to run a program at the command line is to type its name and press Enter. 

For example, type DIR and press Enter to see a list of files and subfolders in the current folder.

You also can run a program by typing its name followed by a space and some options that 

 control how the program runs. These options are called arguments.

To see an example of this, change to the root folder (using CD \) and type DIR Cpp24. You’ll 

see a list of files and subfolders contained in the Cpp24 folder, if it contains any.

After you have installed MinGW, run the GCC compiler to see that it works. Type the following 

command at a command line:

g++ --version

g++ is the name of the GCC compiler, and --version is an argument that tells it to display its 

version number.

You can see an example of this in Figure D.7, but your version number might be different, 

depending on what version of the kit you have installed.
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Running a program

FIGURE D.7
Running GCC in a command window.

Running a program

If you see an incorrect version number or a “Bad command or filename” error after running 

g++ --version, you need to check that the folder you added to Path for MinGW exists and 

contains the program g++.exe.
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! (exclamation point)

! (NOT) operator, 57

! = (inequality) operator, 52

numeric value, 31

> (greater than) operator, 52

> = (greater than or equals)

operator, 52

# (hash) symbol, 23

++ (increment) operator

explained, 47

overloading

postfix operator, 217–218

prefix operator, 215–216

* (indirection) operator,

140–141, 169

< (less than) operator, 52

< = (less than or equals) 

operator, 52

% (modulus) operator, 46

* (multiplication) operator, 46, 169

{{ (OR) operator, 57

r, 19

& (reference) operator, 169

+ = (self-assigned addition)

operator, 46–47

%= (self-assigned modulus) 

operator, 46–47

Symbols

+ (addition) operator

explained, 46

overloading, 219–220

& (address-of) operator, 169–171

&& (AND) operator, 56–57

= (assignment) operator

compared to copy 

constructor, 228

explained, 33, 45–46

overloading, 221–223

* (asterisk) with pointers, 169

\ (backslash), 137

{ } (braces), 19, 62, 403–404

< > brackets, 18

, (comma), 335

// comment notation, 19, 23

/* */ comment notation, 20, 23

-- (decrement) operator, 47

/ (division) operator, 46

. (dot) operator, 103, 112, 157

“ (double quotes), 137

= = (equality) operator

explained, 52

overloading, 224

Index
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440 * = (self-assigned multiplication) operator

*= (self-assigned multiplication) 

operator, 46–47

- = (self-assigned subtraction)

operator, 46–47

‘ (single quotes)

digit separator, 335

displaying, 137

- (subtraction operator), 46

:: (scope resolution operator), 114

; (semicolon)

common mistakes, 86

in compound statements, 44

with variables, 32

} (tilde), 117, 203

_ (underscore), 32

13, superstitions related to, 107

80/20 rule, 358

80/80 rule, 358

A

Aarhus University, 8

abort() function, 399

abstract data types (ADT)

advantages of, 284

complex hierarchies of, 

279–283

explained, 271–275, 346

when to use, 283–284

access guidelines, 407

accessing

classes

class members, 112–113

contained classes, 311

data members, 157–158

accessors, 113, 123

add() function, 21–23

addition operator (+)

explained, 46

overloading, 219–220

Addresser program, 136–137

addresses

examining in pointers, 143–144

storing in pointers, 138–140

address-of operator (&), 169–171

ADTs. See abstract data 

types (ADT)

advantages of C++, 13–14

airplane black boxes, 92

Alabama Crimson Tide, 409

allocating

linked lists, 294

memory, 146–147

analysis and requirements, 345

angle brackets (<>), 18

Animal program, 280–283

anonymous functions (inline), 

338–339

APIs (application programming 

interfaces), 359–360

apostrophe (‘)

digit separator, 335

displaying, 137

application programming 

interfaces (APIs), 359–360

architecture prototypes, 358

Area program, 63

AreaCube program, 71

arguments

compared to parameters, 23

explained, 21–23

passing by reference, 

172–174

passing to base constructors, 

239–244

ArrayFunction program, 316–318

ArrayMaxer program, 337

arrays

arrays of pointers

to functions, 316–318

to member functions, 

325–327

buffer overflow, 107

character arrays, 102–104

constant expressions, 

335–338

declaring, 95

elements of, 95

explained, 95–97

initializing, 98

memory, 101–102

multidimensional arrays

explained, 99–100

initializing, 100–101

reading with foreach loops, 

105–106

sizeof() function, 337–338

uninitialized array 

elements, 107

writing past end of, 97–98

Assignment class, 222–223

assignment operator (=)

compared to copy 

constructor, 228

explained, 33, 45–46

overloading, 221–223

Assignment program, 170–171
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case sensitivity, 32, 112

casting

dynamic casting, 284

explicit casts, 257

catch blocks, 393–397

catching exceptions

advantages of, 408

definition of, 393

explained, 397–398

multiple catches, 398

polymorphism, 398–403

by reference, 398–403

try/catch blocks, 393–397

char type, 28, 31, 102

character arrays, 102–104

Circle program, 209

classes. See also objects; 

polymorphism

accessing members of, 

112–113

Assignment, 222–223

base classes

base class member 

functions, 246–249

constructors, 239–244

initializing, 239–244

class definitions

organizing, 124

writing, 407

contained classes

accessing members of, 311

copying by value versus 

copying by reference, 312

defining, 305–311

filtering access to, 312

declaring, 111

bool type, 28, 31

Boole, George, 28

Boolean variables, 28

Box program, 100–101

BoxMaker program, 87–88

braces ({ }), 19, 62, 403–404

break statement, 81–82

breaking out of loops, 81–82

BridgeKeeper program, 

103–104

buffer overflow, 107

buffers, 102

bug-free code. See 

professional-quality code, 

writing

bugs. See errors

bulletproof programs, 392

C

.c file extension, 7

C language, 5–6

The C++ Programming Language 

(Stroustrop), 331

C++ standardization website, 340

C++0x, 331

C++1z, 340

C++14, 331, 332, 333

Calculator program, 21–23

calling base class member 

functions, 247–249

CamelCase, 33, 406

Canary Islands, Silbo language in, 

284–285

capitalization of names, 406

asterisk (*), 169

auto keyword

explained, 38, 62

in function return types, 

332–334

risks, 339

AutoArea program, 333

AutoCube program, 74–75

auto-typed return values, 73–75

auto-typed variables, 38–40

Autry, Gene, 265

avoiding memory leaks, 149

B

backslash, displaying, 137

Badger program, 84

BadTeacher program, 90–91

base classes

initializing, 239–244

member functions

calling, 247–249

constructors, passing 

arguments to, 239–244

hiding, 246–247

base constructors, passing 

arguments to, 239–244

BASIC, 13–14

Bauman, Charlie, 328

Beaudouin, Paul, 92

Bell Labs, 5–6

binary integers, 334–335

binary literals, 335

binding, late, 255

black boxes (airplane), 92
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definition of, 7, 16

design

overview, 346–348

PostMaster case study, 

353–354

encapsulation, 110

explained, 110–111

friend classes

disadvantages of, 327

explained, 312–313

HeadNode, 290–297

inheritance

base class initialization, 

239–244

calling base class member 

functions, 247–249

constructors, 236–239

derivation, 232

destructors, 236–239

explained, 16, 231

hiding base class member 

functions, 246–247

overriding functions, 

244–246

protected classes, 

234–236

syntax, 233–234

InternalNode, 290–297

member functions. See 

functions

member variables, 110

Number, 213

object initialization, 203–204

pAddress, 368–369

pObject, 357

Point, 127–128

PostMasterMessage, 358–359

private classes, 112–113, 

234

protected classes, 234–236

public class members, 

112–113, 121

Rectangle, 127–128

String, 306–309

TailNode, 290–297

Tricycle, 111, 125–126, 

205–207

clauses, else, 53–54

clone() function, 260–263

clown colleges, 196

COBOL, 13–14

code listings. See programs

code space, 145

colon (:), 114

Combat program, 39

combining operators, 46–47

comma (,), 335

comments, 19–20, 23, 406–407

Compass program, 37–38

compilers

constructors provided by com-

piler, 118–120

explained, 5–6

GCC, 7

history of, 13–14

type inference, 332–334

warning messages from, 9

compile-time constant expres-

sions, 208–210

compiling

definition of, 14

explained, 5–7

components of linked lists, 

289–297

compound statements

compound if, 54–56

explained, 44

conceptualization, 344

const keyword, 123, 132, 208, 

247, 408

const member functions

classes with other classes as 

member data, 127–132

declaring, 123

explained, 123, 124

inline implementation, 

124–127

interface versus 

implementation, 124

const objects, 165

const pointers

explained, 162–164

passing, 186–188

constant expressions, 335–338

Constantinople, 249

constants

compile-time constant 

expressions, 208–210

defining, 36–37

enumerated constants, 37–38

explained, 36

literal constants, 36

null pointer constant, 

150–151

symbolic constants, 36, 41

constexpr keyword, 209, 335–338

ConstPasser program, 186–188

ConstPointer program, 163–164

constructors

base constructors, passing 

arguments to, 239–244
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constructors provided by 

compiler, 118–120

copy constructors, 228

declaring, 116–117, 210–211

default constructors, 112–117

definition of, 117

explained, 204–208

inheritance, 236–239

overloading, 203

contained classes

accessing members of, 311

copying by value versus 

copying by reference, 312

defining, 305–311

filtering access to, 312

continue statement, 82–83

continuing to next loop, 82–83

conversion operators, 224–226

convert() function, 62, 65

copy constructors

explained, 183, 204–208, 228

virtual copy constructors, 

260–263

copying

deep copying, 204–208

shallow copying, 204

strings, 104–105

Coulier, Dave, 228

Counter program, 214

Counter2 program, 215–216

Counter3 program, 217–218

Counter4 program, 219–220

Counter5 program, 224

Counter6 program, 225

Counter7 program, 226–227

.cp file extension, 7

.cpp file extension, 7

Crimson Tide, 409

crossword puzzles, invention 

of, 340

.cxx file extension, 7

D

dangling pointers, 161–162

data members

accessing with pointers, 

157–158

definition of, 111

data types. See types

DataMember program, 158–159

decimal values, assigning to 

 integers, 41

declaring. See also defining

anonymous functions (inline), 

338–339

arrays, 95

classes, 111

constructors, 116–117, 

210–211

destructors, 117

functions

const member 

functions, 123

example, 61–64

pointers

to functions, 313–316

to variables, 138

pure virtual functions, 

275–276

references, 167–168

virtual function members, 

252–253

decrement operator (- -), 47

deep copying, 204–208

DeepCopy program, 205–207

default constructors, 112–117

default function parameters, 

70–72

default values

advantages/

disadvantages, 210

member functions, 201–203

#define directive, 36

defining. See also declaring

constants, 36–37

contained classes, 305–311

functions, 61–64

objects, 111–112, 116–117

static member variables, 303

templates, 374–381

types, 110

variables, 32–33

delegation of responsibility, 289

delete keyword, 147–149

deleting objects, 116–117, 

155–157

derivation, inheritance and, 232

design

analysis and requirements, 345

classes, 346–348

conceptualization, 344

development cycle, 343

event loops, 348–350

high-level design, 345–346

low-level design, 345–346

PostMaster case study

80/20 rule, 358

80/80 rule, 358
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API (application 

programming interface), 

359–360

driver programs, 362–369

initial class design, 

353–354

interfaces, 356–357

message format, 352–353

ongoing design consider-

ations, 361–362

overview, 350–351

PostMasterMessage class, 

358–359

programming in large 

groups, 360

prototype, 357–358

rooted versus non-rooted 

hierarchies, 354–355

subprojects, 351–352

simulation, 344

third-party libraries, 356

destructors

explained, 117

inheritance, 236–239

overloading, 203

virtual destructors, 260

development cycle, 343

development of C++, 5–6, 331

Diogenes, 299

directives

#define, 36

#include, 104, 309

overview, 17–18

displaying

backslash, 137

quotation marks, 137

division operator (/), 46

dot operator (.), 112, 157

double quotes (“), 137

double type, 31

doubly linked lists, 287–288

do-while loops, 83–84

draw() function, 276, 279

drawShape() function, 201

Driver program, 362–368

driver programs, 362–369

Dusky Seaside Sparrow, 181

dynamic casting, 284

E

easy-to-read code, writing, 405

Edit() function, 369

editors. See text editors

elements of arrays, 95, 107

elephant mascot (Alabama 

Crimson Tide), 409

else clause, 53–54

Emerson, Ralph Waldo, 403

Employee program, 309–311

encapsulation

definition of, 110

explained, 16

enum keyword, 37

enumerated constants, 37–38

enumerations, 37

equality operator (= =)

explained, 52

overloading, 223

errors. See also exceptions

buffer overflow, 107

fence post errors, 97

overview, 391–392

professional-quality code, 

writing

access, 407

braces ({ }), 403–404

class definitions, 407

comments, 406–407

const, 408

identifier names, 405–406

include files, 408

long lines, 404

overview, 403

program text, 405

spelling and capitalization 

of names, 406

switch statements, 

404–405

event loops, 348–350

examining addresses stored in 

pointers, 143–144

Exception program, 394–397

exceptions

catching

advantages of, 408

definition of, 393

explained, 397–398

multiple catches, 398

polymorphism, 398–403

by reference, 398–403

try/catch blocks, 393–397

definition of, 392–393

explained, 393

throwing, 393

try/catch blocks, 393–397

exclamation point (!), 31

explicit casts, 257

Expression program, 45
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expressions

compile-time constant 

expressions, 208–210

constant expressions, 

335–338

explained, 44–45

expression values, 58

lambda expressions, 338–339

F

factor() function, 179, 180

Favre, Henri, 370

Fell, Norman, 41

fence post errors, 97

Fifteens program, 82–83

files. See also programs

header files, 124

include files, 18, 408

names, 7

filtering access to contained 

members, 312

findArea() function, 63, 

71–72, 333

float type, 29, 31

floating-point types, 29, 31

flow control with loops

breaking out of loops, 81–82

continuing to next loop, 82–83

definition of, 79

do-while loops, 83–84

for loops, 84–87

nested loops, 87–88

switch statements, 89–91

while loops, 79–81

Fourteens program, 81

fragility in code, 392

friend classes

disadvantages of, 327

explained, 312–313

friend functions, pointers to

arrays of pointers to functions, 

316–318

arrays of pointers to member 

functions, 325–327

declaring, 313–316

passing to other functions, 

319–321

pointers to member functions, 

322–324

typedef, 321–322

func() function, 313

funcPtr, 313

function polymorphism, 17, 72

functionality prototypes, 358

FunctionPasser program, 

319–321

FunctionPointer program, 

314–316

functions. See also specific 

functions (for example, add() 

function)

accessors, 113, 123

arguments

explained, 21–23

passing by reference, 

172–174

auto-typed return values, 

73–75

base class member functions

calling, 247–249

hiding, 246–247

compile-time constant 

expressions, 208–210

const member functions

classes with other classes 

as member data, 

127–132

declaring, 123

explained, 123

function definitions, 

organizing, 124

inline implementation, 

124–127

interface versus 

implementation, 124

constructors

base constructors, passing 

arguments to, 239–244

definition of, 117

inheritance, 236–239

virtual copy constructors, 

260–263

copy constructors, 

204–208, 228

declaring, 61–64

default values, 201–203

defining, 61–64

definition of, 7, 18, 61, 111

destructors

explained, 117

inheritance, 236–239

virtual destructors, 260

explained, 20–23

friends. See friend functions, 

pointers to

function definitions, 

organizing, 124

function polymorphism, 17

headers, 177

implementing, 114–116

increment methods, 215–216
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inline anonymous functions, 

338–339

inline functions, 73

names, 20

overloading

compared to overriding 

functions, 246

explained, 72, 199–201

overriding

compared to function over-

loading, 246

syntax, 244–246

parameters

default parameters, 70–72

explained, 21, 67–68

passing values to, 319–321

pointers to

arrays of pointers to 

functions, 316–318

arrays of pointers to 

member functions, 

325–327

declaring, 313–316

passing, 319–321

pointers to member 

functions, 322–324

typedef, 321–322

prototypes, 177

return values

auto keyword, 

332–334, 339

multiple values, 177–179

returning by reference, 

179–180

returning values from, 68–70

signatures, 21

static member functions

advantages of, 327

explained, 303–305

variables

explained, 64

global variables, 66–67

local variables, 64–66

virtual function members

cost of, 263–264

declaring, 252–253

how they work, 256–257

polymorphism, 252–255

pure virtual functions, 

275–279

v-tables (virtual function

tables), 256–257

when to use, 264

G

Garden Gnome Liberation 

Front, 121

gathering requirements, 345

GCC compiler, 7

GetAge() function, 188

getArea() function, 131, 274

getArraySize() function, 336

getHowMany() function, 305

getline() function, 103

getPerim() function, 274

getSalaryMultiple() function, 332

getSpeed() function, 115–116, 

123, 125

getter functions, 123

getUpperLeft() function, 131

global name space, 145

Global program, 66

global variables, 66–67

gnomes, lawn, 121

“gnoming”, 121

gold, panning for, 388

goldmaps.com, 388

Grader program, 53

Granholm, Jackson W., 24

grapes, flavor of, 10

grasshopper ice cream, 133

greater than operator (>), 52

greater than or equals operator 

(>  =), 52

Griebel, Phillip, 121

H

.h file extension, 124

hash (#) symbol, 23

Hayes, Woody, 327–328

head (linked lists), 287

headers

function headers, 177

header files, 124

HeadNode class, 290–297

heap

advantages of, 152

allocating memory on, 

146–147

creating objects on, 155

deleting objects on, 155–157

explained, 145–146
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member data on heap, 

158–160

referencing objects on, 

192–194

restoring memory to, 147–149

Heap program, 148

HeapAccessor program, 157–158

HeapCreator program, 156

hiding base class member 

functions, 246–247

high-level design, 345–346

history of C++, 5–6, 331

horseradish, 211

.hp file extension, 124

.hpp file extension, 124

Hussenot, Francois, 92

hyphen (-)

decrement operator (- -), 47

subtraction operator (-), 46

I

IDE (integrated development 

environment), 9

identifier names, 405–406

if-else

expression values, 58

logical operators

explained, 56–57

logical AND, 56–57

logical NOT, 57

logical OR, 57

relational precedence, 57

if-else statements

compound if statements, 

54–56

else clause, 53–54

explained, 52–53

when to use, 92

implementing. See also initializing

member functions

explained, 114–116

inline implementation, 

124–127

interface versus 

implementation, 124

pure virtual functions, 

276–279

#include directive, 104, 309

include files, 18, 408

increment methods, writing, 

215–216

increment operator (+ +), 47

indirection operator (*), 140–141

inequality operator (!=), 52

inferring data type, 332–334

infinite loops, 80, 295

inheritance. See also 

polymorphism

base classes

base class initialization, 

239–244

calling base class member 

functions, 247–249

hiding base class member 

functions, 246–247

constructors, 236–239

derivation, 232

design, 354–355

destructors, 236–239

explained, 16, 231

overriding functions

compared to function 

overloading, 246

syntax, 244–246

protected classes, 234–236

single inheritance, problems 

with, 267–271

syntax, 233–234

when to use, 388

initializing

arrays, 98

base classes, 239–244

multidimensional arrays, 

100–101

objects, 203–204

variables, 33–34

inline anonymous functions, 

338–339

inline functions, 73

inline implementation of const 

member functions, 124–127

inline keyword, 73, 124

insert() function, 295–296, 

381, 387

instance variables, 111

instances of templates, 374

int() operator, 226–227

integers

binary, 334–335

explained, 28, 41

signed versus unsigned, 30

table of, 31

integrated development 

environment (IDE), 9

interface design prototypes, 357
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interfaces

versus implementation, 124

PostMaster case study, 

356–357

InternalNode class, 290–297

International Code of Zoological 

Nomenclature, 59

International Union of Pure and 

Applied Chemistry (IUPAC), 370

interpreters, 13–14

isLeapYear() function, 69–70

isothiocyanate, 211

Istanbul, Turkey, 249

iterations, 79

IUPAC (International Union of Pure 

and Applied Chemistry), 370

J-K

Jagged Little Pill, 228

keywords. See also statements

auto, 38, 62, 332–334, 339

catch, 393–397

const, 123, 132, 208, 

247, 408

constexpr, 209, 335–338

delete, 147–149

enum, 37

inline, 73, 124

new, 146–147

private, 113

protected, 234

public, 112–113

template, 374

try, 393–397

virtual, 252

kludge, 24

Klugman, Jack, 41

L

lambda expressions, 338–339

large groups, programming 

in, 360

late binding, 255

lawn gnomes, 121

Leak program, 193

leaks (memory), 149, 

192–194, 195

LeapYear program, 68–69

less than operator (<), 52

less than or equals (< =) 

operator, 52

libraries, 7, 356

linked lists

advantages of, 299

allocating, 294

component parts, 289–297

cost of, 298

definition of, 287

delegation of 

responsibility, 289

doubly linked lists, 287–288

explained, 287–288

head, 287

infinite loops, 295

LinkedList program, 290–294

nodes, 287

as objects, 298–299

singly linked lists, 287–288

tail, 287

trees, 287–288

weaknesses of, 374

LinkedList program, 290–294

linker, 5–6

linking source code, 5–7

listings. See programs

lists

linked lists

advantages of, 299

allocating, 294

component parts, 

289–297

cost of, 298

definition of, 287

delegation of 

responsibility, 289

doubly linked lists, 

287–288

explained, 287–288

head, 287

infinite loops, 295

LinkedList program, 

290–294

nodes, 287

as objects, 298–299

singly linked lists, 287–288

tail, 287

trees, 287–288

weaknesses of, 374

parameterized List objects, 

374–381

template lists, 381–387

literal constants

binary literals, 335

numeric literals, 334–335

overview, 36

local variables, 64–66, 75
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Log() function, 350

logic errors, 391

logical operators

explained, 56–57

logical AND, 56–57

logical NOT, 57

logical OR, 57

long integers, 28, 41

long lines of code, 404

long long int type, 30, 31

long type, 31

for loops

explained, 84–87, 92

foreach, 105–106

loops

breaking out of, 81–82

continuing to next loop, 82–83

definition of, 79

do-while, 83–84

event loops, 348–350

for

explained, 84–87

foreach, 105–106

infinite loops, 80, 295

for loops, 92

nested loops, 87–88

switch statements, 89–91

while loops, 79–81, 92

low-level design, 345–346

l-values, 45

M

machine code, 6

machine languages, 13

main() function, 18–19

Mammal1 program, 233–234

Mammal2 program, 235–236

Mammal3 program, 237–238

Mammal4 program, 239–242

Mammal5 program, 244–245

Mammal6 program, 246–247

Mammal7 program, 248

Mammal8 program, 252–253

Mammal9 program, 253–255

Mammal10 program, 257–259

Mammal11 program, 260–263

Mammal12 program, 267–268

Mammal13 program, 269–271

Marks, Johnny, 265

mathematical operators, 46

May, Robert, 264–265

member data on heap, 158–160

member functions. See functions

member variables

accessing members of con-

tained classes, 311

definition of, 110

static member variables, 

301–303

MemberPointer program, 322–324

member-wise (shallow) 

copies, 204

memory

allocating on heap, 146–147

arrays, 101–102

code space, 145

function pointers

arrays of pointers, 

316–318

arrays of pointers to mem-

ber functions, 325–327

declaring, 313–316

passing, 319–321

pointers to member 

functions, 322–324

typedef, 321–322

global name space, 145

heap

advantages of, 152

allocating memory on, 

146–147

creating objects on, 155

deleting objects on, 

155–157

explained, 145–146

member data on heap, 

158–160

restoring memory to, 

147–149

memory leaks, 149, 

192–194, 195

pointers

accessing data members 

with, 157–158

advantages of, 144–145

const pointers, 162–164, 

186–188

dangling pointers, 161–162

declaring, 138

distinction between point-

ers and addresses, 141

examining addresses 

stored in, 143–144

explained, 135–138

importance of, 151

indirection operator (*), 

140–141

null pointer constant, 

150–151
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null pointers, 138

references as alternative 

to, 189–190

storing addresses in, 

138–140

stray pointers, 161–162

this pointer, 160–161

when to use, 191

wild pointers, 138

restoring to heap, 147–149

stack, 145–146

storing variables in, 28–30

message format (PostMaster case 

study), 352–353

messages, compiler warnings, 9

mistakes. See errors

Modern C++, 339

modulus operator (%), 46

Morissette, Alanis, 228

Motto program

comments, 19–20

function arguments, 21–23

functions, 20–21

include files, 18

overview, 7–8

preprocessor directives, 

17–18

source code, 18–19

MPFunction program, 325–326

multidimensional arrays

explained, 99–100

initializing, 100–101

multiline comments, 20, 23

multiple exception catches, 398

multiple values, returning, 

177–179

multiplication operator (*), 46

MultTable program, 85–86

N

\n character, 137

names

function names, 20, 62

identifier names, 405–406

source code files, 7, 124

spelling and capitalization, 406

variable names, 32–33

National Debt Clock, 335

negative numbers, 59

nested loops, 87–88

new features (C++14)

auto keyword in function 

return types, 332–334

constexpr keyword, 335–338

lambda expressions, 338–339

numeric literals, 334–335

overview, 331

new keyword, 146–147

NewGrader program, 54–55

NewRectangle program, 35

NewTricycle program, 118–120

nodes (linked lists), 287

not equal operator (! =), 52

NOT operator (logical), 57

Notepad+ +, 6

null character, 102

null pointers, 138, 172

null references, 172

nullptr, 138, 172

Number class, 213

numbers. See also mathematical 

operators

negative numbers, 59

Number class, 213

numeric literals, 334–335

thirteen, superstitions related 

to, 107

numeric literals, 334–335

O

object code, 14

object-oriented programming. 

See OOP (object-oriented 

programming)

The Object-Oriented Thought 

Process, Fourth Edition 

(Weisfeld), 347

ObjectRef program, 184–185

objects. See also classes

const objects, 165

creating

constructors, 116–117

on heap, 155

defining, 111–112

deleting

destructors, 116–117

on heap, 155–157

initializing, 203–204

linked lists as, 298–299

references. See also pointers

address-of operator (&), 

169–171

advantages of, 181
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as alternative to pointers, 

189–190

creating, 167–168

definition of, 167

null references, 172

objects not in scope, 

191–192

objects on heap, 192–194

passing by reference, 

172–174, 183–186

returning values by, 

179–180

swap() function, 175–177

what can be referenced, 

171–172

when to use, 191

size of, 121

template objects, passing, 

381–387

Tricycle, 112

Ohio College of Clowning Arts, 196

OOP (object-oriented 

programming). See also objects; 

polymorphism

advantages of, 369–370

classes

accessing members of, 

112–113

class polymorphism, 17

constructors, 112–117, 

118–120

constructors provided by 

compiler, 118–120

contained classes, 

305–311

declaring, 111

default constructors, 

112–117

definition of, 7, 16

explained, 110–111

inheritance, 16

member functions, 

114–116

private classes, 112–113, 

234

protected classes, 

234–236

public class members, 

112–113

design. See also PostMaster 

case study

analysis and 

requirements, 345

classes, 346–348

conceptualization, 344

development cycle, 343

event loops, 348–350

high-level design, 345–346

low-level design, 345–346

simulation, 344

third-party libraries, 356

encapsulation

definition of, 110

explained, 16

explained, 15–16

inheritance

base class initialization, 

239–244

calling base class member 

functions, 247–249

constructors, 236–239

derivation, 232

destructors, 236–239

explained, 16, 231

hiding base class member 

functions, 246–247

overriding functions, 

244–246

protected classes, 

234–236

syntax, 233–234

objects. See also classes

creating, 116–117

defining, 111–112

deleting, 116–117

operands, 45

AND operator (logical), 56–57

OR operator (logical), 57

operator=, 221–223

operators

addition operator (+), 

219–220

address-of operator (&), 

169–171

assignment operator (=)

compared to copy 

constructor, 228

explained, 33, 45–46

overloading, 221–223

combining, 46–47

conversion operators, 

224–226

decrement operator (- -), 47

definition of, 45

dot operator (.), 112, 157

equality operator (= =), 224

increment operator (+ +), 47

indirection operator (*), 

140–141

int() operator, 226–227

logical operators

logical AND, 56–57

logical NOT, 57
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logical OR, 57

overview, 56–57

mathematical operators, 46

output redirection operator 

(<<), 19

overloading

addition operator (+), 

219–220

advantages of, 228

conversion operators, 

224–226

equality operator (= =), 223

explained, 213–214

with increment method, 

215–216

int() operator, 226–227

limitations, 220–221

operator=221–223

postfix operator (+ +), 

217–218

prefix operator (+ +), 

215–216

postfix operator (+ +)

explained, 47–49, 228

overloading, 217–218

precedence, 49–51, 57, 59

prefix operator (+ +), 47–49, 

215–216

reference operator (&), 169

relational operators, 51–52

scope resolution 

operator (::), 114

self-assignment operators, 

46–47

order of precedence, 49–51

organizing

class definitions, 124

function definitions, 124

output redirection 

operator (<<), 19

Overbey, Charles, 388

overloading

constructors, 203

destructors, 203

functions

compared to overriding 

functions, 246

overview, 72

member functions, 199–201

operators

addition operator (+), 

219–220

advantages of, 228

conversion operators, 

224–226

equality operator (= =), 223

explained, 213–214

with increment method, 

215–216

int() operator, 226–227

limitations, 220–221

operator=, 221–223

postfix operator (+ +), 

217–218

prefix operator (+ +), 

215–216

overriding functions

compared to function 

 overloading, 246

syntax, 244–246

P

pAddress class, 368–369

panning for gold, 388

parameterized List object, 

374–381

parameters

compared to arguments, 23

default parameters, 70–72

explained, 21, 67–68

ParamList program, 375–380

passing values

to base constructors, 

239–244

const pointers, 186–188

contained classes, 312

function pointers to other 

functions, 319–321

by reference, 172–174, 

183–186

template objects, 381–387

by value, 186

pedal() function, 208

pencil grades, 76

period (.), 103, 112, 157

pi, 209–210

pID type, 357

pObject class, 357

Point class, 127–128

Pointer program, 142

PointerCheck program, 143–144

pointers. See also heap; 

references

accessing data members with, 

157–158

advantages of, 144–145, 

181, 195

const pointers, 162–164, 

186–188

dangling pointers, 161–162

declaring, 138
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453professional-quality code, writing

distinction between pointers 

and addresses, 141

examining addresses stored 

in, 143–144

explained, 135–138

to functions

arrays of pointers to 

functions, 316–318

arrays of pointers to 

member functions, 

325–327

declaring, 313–316

passing, 319–321

pointers to member 

functions, 322–324

typedef, 321–322

importance of, 151

indirection operator (∗), 

140–141

manipulating data with, 

141–143

memory leaks, 195

null pointers, 138, 

150–151, 172

references as alternative to, 

189–190

storing addresses in, 

138–140

stray pointers, 161–162

swap() function, 174–175

this pointer, 160–161

v-pointers, 256–257

when to use, 191

wild pointers, 138

PointerSwap program, 174–175

PolyException program, 399–402

polymorphism. See also 

inheritance

abstract data types

advantages of, 284

complex hierarchies of 

abstraction, 279–283

explained, 271–275

when to use, 283–284

exceptions, catching, 

398–403

explained, 16–17, 251

explicit casts, 257

single inheritance, problems 

with, 267–271

virtual copy constructors, 

260–263

virtual destructors, 260

virtual function members

cost of, 263–264

declaring, 252–253

how they work, 256–257

implementing, 252–255

pure virtual functions, 

275–279

slicing, 257–260

v-tables (virtual function

tables), 256–257

when to use, 264

polymorphism (function), 72

postfix operator (+ +)

explained, 47–49, 228

overloading, 217–218

PostMaster case study

80/20 rule, 358

80/80 rule, 358

API (application programming 

interface), 359–360

driver programs, 362–369

initial class design, 353–354

interfaces, 356–357

message format, 352–353

ongoing design 

considerations, 361–362

overview, 350–351

PostMasterMessage class, 

358–359

programming in large groups, 

360

prototype, 357–358

rooted versus non-rooted 

hierarchies, 354–355

subprojects, 351–352

PostMasterMessage class, 

358–359

PostMasterMessage program, 

359–360

potassium octanoate, 370

pound sign (#), 23

precedence (operator), 49–51, 

57, 59

prefix operator (++)

explained, 47–49

overloading, 215–216

preprocessor directives

#define, 36

#include, 104, 309

overview, 17–18

printError() function, 402

private classes, 112–113, 234

private keyword, 113

procedural programming, 14–15

Production program, 106

professional-quality code, writing

access, 407

braces ({ }), 403–404

class definitions, 407
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comments, 406–407

const, 408

identifier names, 405–406

include files, 408

long lines, 404

overview, 403

program text, 405

spelling and capitalization of 

names, 406

switch statements, 404–405

program text, writing, 405

programming in large groups, 360

programming styles, 14–15

programs

Addresser, 136–137

Animal, 280–283

Area, 63

AreaCube, 71

ArrayFunction, 316–318

ArrayMaxer, 337

Assignment, 170–171

AutoArea, 333

AutoCube, 74–75

BadTeacher, 90–91

Box, 100–101

BridgeKeeper, 103–104

bulletproof programs, 392

Calculator, 21–23

Circle, 209

Combat, 39

Compass, 37–38

ConstPasser, 186–188

ConstPointer, 163–164

Counter, 214

Counter2, 215–216

Counter3, 217–218

Counter4, 219–220

Counter5, 224

Counter6, 225

Counter7, 226–227

creating, 7–8

DataMember, 158–159

DeepCopy, 205–207

Driver, 362–368

Employee, 309–311

Exception, 394–397

Expression, 45

Fifteens, 82–83

Fourteens, 81

FunctionPasser, 319–321

FunctionPointer, 314–316

Global, 66

Grader, 53

Heap, 148

HeapAccessor, 157–158

HeapCreator, 156

Leak, 193

LinkedList, 290–294

Mammal1, 233–234

Mammal2, 235–236

Mammal3, 237–238

Mammal4, 239–242

Mammal5, 244–245

Mammal6, 246–247

Mammal7, 248

Mammal8, 252–253

Mammal9, 253–255

Mammal10, 257–259

Mammal11, 260–263

Mammal12, 267–268

Mammal13, 269–271

MemberPointer, 322–324

Motto

comments, 19–20

function arguments, 21–23

functions, 20–21

include files, 18

overview, 7–8

preprocessor directives, 

17–18

source code, 18–19

MPFunction, 325–326

MultTable, 85–86

NewGrader, 54–55

NewRectangle, 35

NewTricycle, 118–120

ObjectRef, 184–185

ParamList, 375–380

Pointer, 142

PointerCheck, 143–144

PointerSwap, 174–175

PolyException, 399–402

PostMasterMessage, 

359–360

Production, 106

Rectangle, 33–34, 128–131, 

199–200

Rectangle2, 201–202

Reference, 168

Reference2, 169

ReferenceSwap, 176

RefPasser, 189–190

ReturnPointer, 178

ReturnRef, 191–192

ReturnReference, 179–180
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Shape, 272–274

Shape2, 276–279

SimpleEvent, 348–350

Sizer, 29–30

StaticFunction, 304–305

StaticRobot, 302–303

StringCopier, 105

structure of

comments, 19–20

function arguments, 21–23

functions, 20–21

overview, 17

preprocessor directives, 

17–18

source code, 18–19

Swapper, 150–151

Temperature, 64–65

TemplateList, 381–387

Thirteens, 80

This, 160–161

Tricycle, 114–116

ValuePasser, 173

Years, 47–49

protected classes, 234–236

protected keyword, 234

prototypes

function prototypes, 177

PostMaster case study, 

357–358

public class members, 

112–113, 121

public keyword, 112–113

pure virtual functions

declaring, 275–276

implementing, 276–279

Q-R

quotation marks

“ (double quotes), 137

‘ (single quotes)

digit separator, 335

displaying, 137

readability of code, 405

reading arrays with foreach loops, 

105–106

Rectangle class, 127–128

Rectangle program, 33–34, 

128–131, 199–200

Rectangle2 program, 201–202

red-eye effect (photographs), 165

reference operator (&), 169

Reference program, 168

Reference2 program, 169

references. See also pointers

address-of operator (&), 

169–171

advantages of, 181

as alternative to pointers, 

189–190

catching exceptions by, 

398–403

creating, 167–168

definition of, 167

null references, 172

objects not in scope, 191–192

objects on heap, 192–194

passing by reference

contained classes, 312

explained, 183–186

function arguments, 

172–174

returning values by, 179–180

swap() function, 175–177

what can be referenced, 

171–172

when to use, 191

ReferenceSwap program, 176

RefPasser program, 189–190

registering your book, 3

relational operators, 51–52

relational precedence, 57

requirement gathering, 345

responsibility, delegation of, 289

restoring memory to heap, 

147–149

return statement, 62

return values

auto keyword, 332–334, 339

auto-typed return values, 

73–75

multiple values, 177–179

obtaining, 68–70

returning by reference, 

179–180

returning by value, 195

ReturnPointer program, 178

ReturnRef program, 191–192

ReturnReference program, 

179–180

reuse through inheritance, 16

rooted versus non-rooted 

 hierarchies, 354–355

“Rudolph the Red-Nosed 

Reindeer”, 264–265

runtime binding, 255

r-values, 45
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S

Sams Teach Yourself UML in 

24 Hours, Third Edition 

(Schmuller), 345

Schlichter, Art, 328

Schuster, Lincoln, 340

scope

explained, 37

objects not in scope, 

191–192

scope resolution operator (::), 114

self-assignment operators, 46–47

semicolon (;)

common mistakes, 86

in compound statements, 44

with variables, 32

SetAge() function, 188

setFirstName() function, 311

setLastName() function, 311

setSalary() function, 311

setSpeed() function, 

115–116, 123

shallow copies, 204

Shape program, 272–274

Shape2 program, 276–279

short integers, 28, 31, 41

signatures (function), 21

signed variables, 30

silbadors, 284–285

Silbo, 284–285

Simon, Dick, 340

SimpleEvent program, 348–350

simulation, 344

single inheritance, problems with, 

267–271

single quotes (‘)

digit separator, 335

displaying, 137

singly linked lists, 287–288

size of objects, 121

sizeof() function, 29–30, 

337–338

Sizer program, 29–30

slicing virtual function members, 

257–260

solution space, 345

source code. See also programs

compiling, 5–7

definition of, 6, 13

filenames, 7

header files, 124

linking, 5–7

space, 345

spelling of names, 406

stack, 145–146

statements. See also loops

break, 81–82

compound statements, 44

continue, 82–83

definition of, 43

expressions, 44–45

if-else

compound if statements, 

54–56

else clause, 53–54

explained, 52–53

expression values, 58

logical operators, 56–57

relational precedence, 57

when to use, 92

return, 62

switch, 89–91, 92, 404–405

whitespace, 43–44, 59

static member functions, 

303–305, 327

static member variables, 

301–303, 327

StaticFunction program, 304–305

StaticRobot program, 302–303

--std=c++14 command-line

option, 333

store() function, 72

storing

addresses in pointers, 

138–140

variables in memory, 28–30

stray pointers, 161–162

strcpy() function, 105

strcpy_s() function, 105

String class, 306–309

StringCopier program, 105

strings

copying, 104–105

definition of, 102

strncpy() function, 105

Stroustrop, Bjarne, 5–6, 47, 

331, 339

structured programming, 14–15

Strupper, Everett, 409

styles of programming, 14–15

subtraction operator (-), 46

swap() function

implementing with pointers, 

174–175

implementing with references, 

175–177

parameters, 67–68
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Swapper, 150–151

switch statements, 89–91, 92, 

404–405

symbolic constants, 36, 41

syntactic errors, 391

T

\t character, 137

tail (linked lists), 287

TailNode class, 290–297

Temperature program, 64–65

template keyword, 374

TemplateList program, 

381–387

templates

advantages of, 387

defining, 374–381

explained, 373

instances of, 374

template objects, passing, 

381–387

when to use, 388

text editors

compared to word  

processors, 9

overview, 6

third-party libraries, 356

thirteen, superstitions 

related to, 107

Thirteens program, 80

this pointer, 160–161

This program, 160–161

throwing exceptions

definition of, 393

try/catch blocks, 393–397

tilde (}), 117, 203

trees, 287–288

Tricycle class, 111, 125–126, 

205–207

Tricycle object, 112

Tricycle program, 114–116

triskaidekaphobia, 107

try blocks, 393–397

type definitions, 34–36

type inference, 332–334

typedef, 34–36, 321–322

types

abstract data types

advantages of, 284

complex hierarchies of 

abstraction, 279–283

explained, 271–275

when to use, 283–284

auto-typed variables, 38–40

creating, 110

explained, 109

integers

explained, 28

signed versus 

unsigned, 30

pID, 357

table of, 31

type definitions, 34–36

type inference, 332–334

void, 62

U

UML (Unified Modeling 

Language), 345

underscore (_), 32

Unified Modeling Language 

(UML), 345

uninitialized array elements, 107

unsigned variables, 30

V

value, passing by

contained classes, 312

explained, 186

ValuePasser program, 173

values

assigning to variables, 33–34

default values, 210

passing by reference

contained classes, 312

explained, 172–174, 

183–186

passing by value

contained classes, 312

explained, 186

passing with const pointers, 

186–188

return values

auto-typed return values, 

73–75

explained, 68–70

multiple values, 177–179

obtaining from functions, 

68–70

returning by reference, 

179–180

returning by value, 195

variables. See also pointers

defining, 32–33

explained, 27
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with functions

explained, 64

global variables, 66–67

local variables, 64–66

initializing, 33–34

local variables, 75

members of contained 

classes, accessing, 311

names, 32–33

signed, 30

static member variables, 

301–303, 327

storing in memory, 28–30

types

auto-typed variables, 

38–40

table of, 31

type definitions, 34–36

unsigned, 30

values, assigning, 33–34

virtual destructors, 

260–263

virtual function members

cost of, 263–264

declaring, 252–253

how they work, 256–257

polymorphism, 252–255

pure virtual functions

declaring, 275–276

implementing, 276–279

v-tables (virtual function

tables), 256–257

when to use, 264

virtual function tables (v-tables), 

256–257

virtual keyword, 252

Visual Studio Community, 7

void type, 62

v-pointers, 256–257

vptrs, 256–257

v-tables (virtual function tables),

256–257

W-X-Y-Z

warnings (compiler), 9

Warren, David, 92

wasabi, 211

Washington, George, 152

Washington, Paul Emory, 152

waterfall technique, 343

Web Edition of book, 3

websites

Bjarne Stroustrop, 339

C++ standardization 

website, 340

first crossword puzzle, 340

goldmaps.com, 388

WeightGoals program, 96

Weinberg, Gerald, 391

while loops, 79–81, 92

Whistled Languages (Busnel and 

Classe), 284–285

white-eye effect 

(photographs), 165

whitespace, 43–44, 59, 405

wild pointers, 138, 161–162

word processors, 9

writing

increment methods, 

215–216

professional-quality code

access, 407

braces ({ }), 403–404

class definitions, 407

comments, 406–407

const, 408

identifier names, 405–406

include files, 408

long lines, 404

overview, 403

program text, 405

spelling and capitalization 

of names, 406

switch statements, 

404–405

writing past end of a rrays, 97–98

Wynne, Arthur, 340

Years program, 47–49
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