
CSS Mastery
Advanced Web Standards Solutions
—
Third Edition
—
Andy Budd
Emil Björklund

THE E XPER T ’S VOICE® IN W E B D E V E L O P M E N T

www.allitebooks.com

http://www.allitebooks.org

 CSS Mastery
 Advanced Web Standards Solutions

Third Edition

 Andy Budd

 Emil Björklund

www.allitebooks.com

http://www.allitebooks.org

CSS Mastery: Advanced Web Standards Solutions, Third Edition

Andy Budd Emil Björklund
Brighton, United Kingdom Malmo, Sweden

ISBN-13 (pbk): 978-1-4302-5863-6 ISBN-13 (electronic): 978-1-4302-5864-3

DOI 10.1007/978-1-4302-5864-3

Library of Congress Control Number: 2016944612

Copyright © 2016 by Andy Budd and Emil Björklund.

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter
developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly
analysis or material supplied specifically for the purpose of being entered and executed on a computer system,
for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only
under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use
must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Acquisitions Editor: Ben Renow-Clarke
Development Editor: Matthew Moodie
Technical Reviewers: Anna Debenham and Andy Hume
Editorial Board: Steve Anglin, Pramila Balen, Louise Corrigan, James DeWolf, Jonathan Gennick,

Robert Hutchinson, Celestin Suresh John, Nikhil Karkal, James Markham, Susan McDermott,
Matthew Moodie, Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing

Coordinating Editor: Nancy Chen
Copy Editor: Bill McManus
Compositor: SPi Global
Indexer: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com ,
or visit www.springer.com . Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science +
Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com , or visit www.apress.com .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook
Licensing web page at www.apress.com/bulk-sales .

Any source code or other supplementary materials referenced by the author in this text is available to readers at
 www.apress.com . For detailed information about how to locate your book’s source code, go to
 www.apress.com/source-code/ .

Printed on acid-free paper

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
www.springer.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/
http://www.allitebooks.org

 This book is dedicated to all my colleagues at Clearleft—both past and present.
Were it not for their support and wisdom, this book would never have happened.

 —Andy Budd

 Dedicated to the memory of my grandfather: the engineer, artist, and life-long
tinkerer Sven Forsberg (1919–2016).

 —Emil Björklund

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Authors ..xvii

About the Technical Reviewers ..xix

Acknowledgments ..xxi

Introduction ..xxiii

 ■Chapter 1: Setting the Foundations ... 1

 ■Chapter 2: Getting Your Styles to Hit the Target ... 17

 ■Chapter 3: Visual Formatting Model Overview .. 39

 ■Chapter 4: Web Typography ... 61

 ■Chapter 5: Beautiful Boxes .. 101

 ■Chapter 6: Content Layout ... 143

 ■Chapter 7: Page Layout and Grids ... 185

 ■Chapter 8: Responsive Web Design & CSS ... 223

 ■Chapter 9: Styling Forms and Data Tables... 263

 ■Chapter 10: Making It Move: Transforms, Transitions, and Animations 299

 ■Chapter 11: Cutting-edge Visual Effects .. 335

 ■Chapter 12: Code Quality and Workfl ow .. 371

Index ... 403

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

About the Authors ..xvii

About the Technical Reviewers ..xix

Acknowledgments ..xxi

Introduction ..xxiii

 ■Chapter 1: Setting the Foundations ... 1

Structuring your Code .. 1

Maintainability .. 2

A Brief History of Markup ... 2

Progressive Enhancement .. 5

Creating Structurally and Semantically Rich HTML .. 7

Class and ID Attributes ... 9

Structural Elements .. 10

Using Divs and Spans ... 11

Presentational Text Elements, Redefi ned ... 12

Extending the Semantics of HTML .. 12

Validation .. 15

Summary .. 15

 ■Chapter 2: Getting Your Styles to Hit the Target ... 17

CSS Selectors ... 17

Child and Sibling Selectors ... 18

The Universal Selector .. 20

Attribute Selectors .. 21

Pseudo-Elements.. 22

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS

viii

Pseudo-Classes .. 24

Structural Pseudo-Classes ... 25

Form Pseudo-Classes ... 27

The Cascade ... 29

Specifi city ... 29

Order of Rules when Resolving the Cascade .. 30

Managing Specifi city .. 31

Specifi city and Debugging .. 33

Inheritance ... 34

Applying Styles to your Document ... 35

The Link and Style Elements .. 35

Performance ... 36

Summary .. 38

 ■Chapter 3: Visual Formatting Model Overview .. 39

Box Model Recap .. 39

Box-Sizing .. 40

Minimum and Maximum Values ... 44

The Visual Formatting Model .. 44

Anonymous Boxes .. 46

Margin Collapsing ... 46

Containing Blocks ... 48

Relative Positioning .. 49

Absolute Positioning ... 49

Fixed Positioning .. 50

Floating ... 51

Formatting Contexts ... 56

Intrinsic and Extrinsic Sizing .. 58

Other CSS Layout Modules ... 58

Flexible Box Layout ... 58

Grid Layout ... 59

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS

ix

Multi-Column Layout .. 59

Regions ... 59

Summary .. 59

 ■Chapter 4: Web Typography ... 61

Basic Typesetting in CSS .. 61

Text Color .. 63

Font-Family .. 64

Font Size and Line Height ... 65

Line Spacing, Alignment, and the Anatomy of Line Boxes .. 68

Font Weights ... 70

Font Style .. 71

Transforming Case and Small-Cap Variants ... 71

Changing the Space Between Letters and Words ... 72

Measure, rhythm, and rag .. 73

Text Indent and Alignment .. 74

Hyphenation .. 76

Setting Text in Multiple Columns .. 77

Web Fonts .. 81

Licensing .. 82

The @font-face rule .. 83

Web Fonts, Browsers, and Performance... 87

Loading Fonts with JavaScript ... 89

Advanced Typesetting Features .. 91

Numerals .. 93

Kerning Options and Text Rendering .. 94

Text Effects ... 95

Using and Abusing Text Shadows ... 95

Using JavaScript to Enhance Typography ... 98

Further Type Inspiration .. 99

Summary .. 99

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS

x

 ■Chapter 5: Beautiful Boxes .. 101

Background Color ... 101

Color Values and Opacity .. 102

Background Image Basics .. 104

Background Images vs. Content Images .. 105

Simple Example Using Background Images ... 105

Loading Images (and other fi les) .. 108

Image Formats.. 109

Background Image Syntax ... 109

Background Position ... 109

Background Clip and Origin .. 113

Background Attachment ... 114

Background Size ... 115

Background Shorthand ... 117

Multiple Backgrounds .. 117

Borders and Rounded Corners ... 119

Border Radius: Rounded Corners.. 119

Creating Circles and Pill Shapes with Border Radius ... 122

Border Images .. 123

Box-Shadow ... 125

Spread Radius: Adjusting the Size of the Shadow .. 126

Inset Shadows .. 126

Multiple Shadows ... 127

Using CSS Gradients ... 128

Browser Support and Browser Prefi xes.. 129

Linear Gradients ... 129

Radial Gradients ... 131

Repeating Gradients ... 133

Gradients as Patterns ... 133

 ■ CONTENTS

xi

Styling Embedded Images and other Objects .. 136

The Flexible Image Pattern ... 137

New Object-Sizing Methods ... 138

Aspect-Ratio Aware Flexible Containers ... 139

Reducing Image File Sizes.. 141

Summary .. 142

 ■Chapter 6: Content Layout ... 143

Using Positioning .. 143

Absolute Positioning Use Cases ... 144

Positioning and z-index: Stacking Context Pitfalls ... 149

Horizontal Layout ... 150

Using Floats .. 150

Inline Block as a Layout Tool .. 153

Using Table Display Properties for Layout .. 159

Pros and Cons of the Different Techniques ... 160

Flexbox ... 161

Browser Support and Syntax .. 161

Understanding Flex Direction: Main and Cross Axis ... 161

Alignment and Spacing... 163

Flexible Sizes .. 168

Wrapping Flexbox Layouts .. 173

Column Layout and Individual Ordering .. 177

Nested Flexbox Layouts .. 180

Flexbox Fallbacks ... 182

Flexbox Bugs and Gotchas ... 183

Summary .. 184

 ■ CONTENTS

xii

 ■Chapter 7: Page Layout and Grids ... 185

Planning your Layout .. 185

Grids ... 185

Layout Helper Classes .. 187

Using Ready-Made Design Grids and Frameworks .. 187

Fixed, Fluid, or Elastic ... 188

Creating a Flexible Page Layout ... 189

Defi ning a Content Wrapper .. 191

Row Containers .. 193

Creating Columns ... 194

Fluid Gutters ... 199

Enhanced Columns: Wrapping and Equal Heights .. 204

Flexbox as a General Tool for Page Layout ... 207

The CSS Grid Layout Module: 2D Layout .. 209

Understanding the Grid Terminology .. 210

Defi ning Rows and Columns ... 211

Placing Items on the Grid ... 213

Automatic Grid Placement .. 216

Grid Template Areas .. 219

Summary .. 222

 ■Chapter 8: Responsive Web Design & CSS ... 223

A Responsive Example ... 223

Starting Simple ... 223

Introducing Our First Media Query ... 224

Finding Further Breakpoints ... 226

The Roots of Responsiveness .. 228

Responsive beyond CSS ... 229

How Browser Viewports Work .. 230

Nuances of the Viewport Defi nition .. 230

Confi guring the Viewport .. 232

 ■ CONTENTS

xiii

Media Types and Media Queries ... 234

Media Types .. 234

Media Queries ... 234

Structuring CSS for Responsive Design ... 237

Mobile First CSS ... 238

Where to Place Your Media Queries .. 240

More Responsive Patterns ... 241

Responsive Text Columns ... 241

Responsive Flexbox without Media Queries ... 242

Responsive Grids with Grid Template Areas ... 244

Going beyond Layout .. 248

Responsive Background Images .. 248

Responsive Embedded Media .. 251

Responsive Typography .. 257

Summary .. 261

 ■Chapter 9: Styling Forms and Data Tables... 263

Styling Data Tables ... 263

Table-Specifi c Elements ... 265

Styling the Table Element ... 267

Responsive Tables .. 270

Styling Forms ... 274

A simple Form Example .. 275

Clear Form Feedback and Help Texts ... 285

Advanced Form Styling ... 288

Summary .. 298

 ■ CONTENTS

xiv

 ■Chapter 10: Making It Move: Transforms, Transitions, and Animations 299

How it all Fits Together ... 299

A Note on Browser Support .. 300

2D Transforms .. 300

Transform Origin ... 303

Translation .. 304

Multiple Transformations .. 305

Scale and Skew .. 307

2D Matrix Transformations ... 309

Transforms and performance ... 310

Transitions .. 311

Transition Timing Functions .. 313

Different Transitions for Forward and Reverse Directions .. 316

“Sticky” Transitions .. 316

Delayed Transitions ... 316

What you can and can’t Transition .. 317

CSS Keyframe Animations .. 319

Animating the Illusion of Life .. 319

Animating Along Curved Lines .. 323

3D Transforms .. 326

Getting some Perspective ... 326

Creating a 3D widget .. 328

Advanced Features of 3D Transforms ... 332

Summary .. 333

 ■ CONTENTS

xv

 ■Chapter 11: Cutting-edge Visual Effects .. 335

Breaking Out of the Box: CSS Shapes .. 337

Inside and Outside Shapes ... 337

Clipping and Masking ... 344

Clipping ... 344

Masking .. 349

Transparent JPEGs with SVG Masking .. 351

Blend Modes and Compositing ... 354

Colorizing a Background Image .. 355

Blending Elements .. 357

Image Processing in CSS: Filters .. 361

Adjustable Color Manipulation Filters ... 361

Advanced Filters and SVG ... 367

Order of Application for Visual Effects .. 369

Summary .. 370

 ■Chapter 12: Code Quality and Workfl ow .. 371

Debugging CSS: External Code Quality ... 371

How Browsers Interpret CSS .. 372

Optimizing Rendering Performance .. 376

CSS for Humans: Internal Code Quality .. 379

Understanding the Shape of CSS .. 380

Code Quality: an Example ... 381

Managing the Cascade ... 384

Structured Naming Schemes and CSS Methodologies ... 385

Managing Complexity ... 388

Code is for People ... 391

 ■ CONTENTS

xvi

Tooling and Workfl ow ... 391

Preprocessors and Sass ... 391

Workfl ow Tools ... 394

Static Analysis and Linters ... 394

Build Tools .. 395

The Future of CSS Syntax and Structure .. 398

Custom Properties—Variables in CSS .. 398

HTTP/2 and Server Push ... 399

Web Components .. 400

CSS and the Extensible Web ... 401

Summary .. 402

Index ... 403

xvii

 About the Authors

 Andy Budd is one of the founding partners at digital design consultancy, Clearleft. An early champion of
web standards in the UK, the first edition of this book played a small but important role in the eventual
adoption of CSS. These days, Andy is primarily focused on advancing the field of user experience design.
He does this by consulting with clients, writing articles, mentoring new designers, and speaking at events
like SXSW, An Event Apart, and The Next Web. Andy founded the long running dConstruct conference,
and currently curates the popular UX London conference. In 2011 Andy co-founded the Brighton Digital
Festival, which now sees 40,000 visitors attend 190 events in the city of Brighton each September.

 As an active member of the design community, Andy has helped judge a number of international design
awards, and is a mentor at Seedcamp. He is also the driving force behind Silverback, a low-cost usability-testing
tool for the Mac. An avid Twitter user, Andy occasionally finds time to blog at andybudd.com .

 Never happier than when he’s diving in some remote tropical atoll, Andy is a qualified PADI dive
instructor and retired shark wrangler.

 Emil Björklund is the Technical Director at digital design consultancy
inUse, where he’s usually busy building websites—or helping clients
and co-workers better their craft. Emil created his first HTML page on
Geocities in 1997, but got confused by the mess of table tags. Coming back
to the Web in 2001, he found this magical thing called CSS and has been
fascinated by it ever since.

 For the last decade, Emil has been building websites professionally,
hacking on anything from
client-side JavaScript to server-side Python, but always with a special place
in his heart for good old HTML and CSS. Emil’s writing and advice on CSS
has been published in Net Magazine and on CSS Tricks. He also writes
about (mostly) web-related stuff on his blog at thatemil.com .

 Emil lives with his girlfriend and their cat in Malmö, Sweden, far from
any sharks.

xix

 About the Technical Reviewers

 Andrew Hume is a web developer from Brighton in the UK. He’s spent the
last fifteen years leading front-end teams for websites like Twitter, Bing,
and The Guardian. As a consultant for Clearleft, he helped figure out large,
scalable CSS systems for clients like the BBC, eBay, and Mozilla.

 Anna Debenham is a Freelance Front-end Developer living and working in London in the UK. In 2013,
she was awarded Netmag’s Young Developer of the Year award. She’s the author of Front-end Style Guides,
a Technical Editor for A List Apart, and every December, she co-produces 24 Ways.

xxi

 Acknowledgments

 We would like to thank the tireless work of Jeffrey Zeldman, Eric Meyer, and Tantek Çelik, without whom the
web standards movement would never have happened. We’d like to thank those who followed. People like
John Allsopp, Rachel Andrew, Mark Boulton, Doug Bowman, Dan Cederholm, Andy Clarke, Simon Collison,
Jon Hicks, Molly E. Holzschlag, Aaron Gustafson, Shaun Inman, Jeremy Keith, Peter-Paul Koch, Ethan
Marcotte, Drew McLellan, Cameron Moll, Dave Shea, Nicole Sullivan, and Jason Santa-Maria, who answered
the challenge and helped take CSS mainstream. Finally, we’d like to thank all those tireless designers and
developers who have subsequently picked up the baton, and have helped turn CSS into the modern design
language we know today. There are too many to list everybody, but some of the people who have made
the biggest impact on our practice in later years include Chris Coyier, Vasilis van Gemert, Stephen Hay, Val
Head, Paul Lewis, Rachel Nabors, Harry Roberts, Lea Verou, Ryan Seddon, Jen Simmons, Sara Soueidan,
Trent Walton, and Estelle Weyl. We’d also like to thank all the designers and developers who constantly help
and inspire us by bouncing ideas about CSS on Twitter and various Slack teams.

 We want to thank everybody who helped get this book over the finish line, including inUse who
sponsored part of the work. A special thanks to technical editor Anna Debenham—if there are any errors in
the book, it’s more than likely we put them in there when she was looking the other way. We’d also like to
thank Andy Hume, who contributed his expertise during the early phases of writing, setting the direction
for this new edition. Furthermore, we’d like to thank Charlotte Jackson, Peter-Paul Koch, Paul Lloyd, Mark
Perkins, and Richard Rutter for reading early drafts, bouncing ideas, and giving invaluable feedback.

 Photos in the book or in examples are in most instances taken by us or gathered from Public Domain
sources. The following images are licensed via the Creative Commons Attribution 2.0 license (https://
creativecommons.org/licenses/by/2.0/): “Portrait” by Jeremy Keith (https://flic.kr/p/dwFRgH) and
“A Long Night Falls on Saturn’s Rings” by NASA Goddard Space Flight Center (https://flic.kr/p/7ayNkz).

 Finally, we’d both like to thank our partners for patience and support during the considerable time it
took to produce these pages.

https://creativecommons.org/licenses/by/2.0/
https://creativecommons.org/licenses/by/2.0/
https://flic.kr/p/dwFRgH
https://flic.kr/p/7ayNkz

xxiii

 Introduction

 When I started writing the first edition of CSS Mastery way back in 2004, there were already two CSS books
in the market, so I wasn’t sure the world needed a third. After all, CSS was still a relatively niche subject back
then; largely the preserve of bloggers and web standards enthusiasts. The majority of sites were still being
built using tables and frames, and the folks on my local developer mailing list thought I was mad, and CSS
was just a pipe dream. Little did they know we were on the verge of a web standards revolution and the field
exploded around the time the book was published, pushing the book to the top of my publisher’s bestselling
chart for years to come.

 By the time the second edition came out, CSS was now firmly established. The role of the book changed
from exposing new people to the power of CSS, to helping make them more efficient and effective. So we
scoured the Web for the latest techniques, workarounds, and hacks, and created a book we hoped would
become the definitive guide for web designers and front-end developers everywhere. It felt like we’d reached
a stable point in the development of the language, and the book would remain relevant for a long time. How
wrong we were.

 Rather than becoming stagnant, CSS of recent years feels like it has finally started to live up to its original
promise. We entered the golden age of web standards; an age where browser support was good enough for us
to finally move focus away from hacks, instead putting our efforts into writing elegant, well-crafted, and highly
maintainable code for the largest and most complicated sites around.

 So it was time to write a third edition; to bring together all these new tools, techniques, and ways of
thinking into a single reference. To help in this task I drew upon the skills of my good friend, Emil Björklund,
a developer of rare skill and ability. What Emil brings to the book is a deep understanding of modern CSS
practices; how to craft highly flexible code using the latest techniques that works across the widest range of
browsers, screens, and platforms, in the most elegant way possible.

 Together we’ve almost completely rewritten the book from the ground up, adding new chapters on web
typography, animation, layout, responsive design, how to structure your code, and much more. This new
edition follows in the footsteps of previous editions, offering a mix of practical examples, language reference,
and cross-browser workarounds for tricky techniques. The sign of CSS mastery is no longer about knowing
all the arcane hacks to make CSS work at all, or knowing all properties by heart. CSS today consists of several
dozen specifications, encompassing hundreds of properties—there’s probably no one who knows it all!
Instead, this book emphasizes flexibility and robustness, making sure your code works in the ever-changing
landscape of different browsers, devices, and usage situations. We won’t cover every single language
feature, but you will find a good overview of what’s available, some lesser-known old-school tricks, and the
occasional glimpse into the future of CSS.

 To enjoy the book fully, you should have at least some small grasp of how CSS works—maybe you have
played with it for a while, or even worked on a website or two. The book starts with three short introductory
chapters on the very foundations of creating and styling web pages, so even if you’re rusty, you’ll get a recap.
After that, each chapter introduces new features of the language and progressively more complex examples.
Even if you’re a seasoned CSS practitioner, you should find plenty of interesting and useful techniques for
solving common web design problems, in which case you should feel free to jump to the chapters that pique
your interest.

 Regardless of your previous understanding of the language, we hope the resulting book will help you
unlock some of the secrets of CSS and become a true CSS Master.

1© Andy Budd and Emil Björklund 2016
A. Budd and E. Björklund, CSS Mastery, DOI 10.1007/978-1-4302-5864-3_1

 CHAPTER 1

 Setting the Foundations

 The human race is a naturally inquisitive species. We just love tinkering with things. When we got our new
Parrot AR Drone at the office, we had it in pieces before we’d even looked at the instructions. We enjoy
working things out ourselves and creating our own mental models of how we think things behave. We
muddle through and only turn to the manual when something goes wrong or defies our expectations.

 One of the best ways to learn Cascading Style Sheets (CSS) is to jump right in and start tinkering.
In fact, this is likely how many of you learned to code; by picking up tips from blogs, viewing source to see
how your favorite designers had achieved a particular effect, and by browsing open source repositories for
snippets of code. You almost certainly didn’t start out by reading the full specification, which is enough to
put anyone to sleep.

 Tinkering is a great way to start, but if you’re not careful, you may end up misunderstanding a crucial
concept or building in problems for later on. We know; we’ve done so several times. In this chapter, we’re
going to review some basic but often misunderstood concepts and show you how to keep your HTML and
CSS clear and well structured.

 In this chapter you will learn about:

• The importance of maintainability

• Different versions of HTML and CSS

• Strategies for future-friendly and backward-compatible code

• Adding meaning to your HTML and using newer HTML5 elements

• Adding appropriate styling hooks to HTML

• Extending HTML semantics with ARIA, microformats, and microdata

• Browser engine modes and validation

 Structuring your Code
 Most people don’t think about the foundations of a building. However, without solid foundations the
majority of buildings wouldn’t stay standing. While this book is about CSS techniques and concepts,
much of what you are about to learn would not be possible (or at least would be very difficult) without a
well-structured and valid HTML document to work with.

 In this section you will learn why well-structured and meaningful HTML is vital to standards-based
development. You will learn how you can add more meaning and flexibility to your documents, and by
doing so, make your job as a developer easier. But first up is a topic of the utmost importance no matter what
language we happen to be working in.

Electronic supplementary material The online version of this chapter (doi: 10.1007/978-1-4302-5864-3_1)
contains supplementary material, which is available to authorized users.

http://dx.doi.org/10.1007/978-1-4302-5864-3_1

CHAPTER 1 ■ SETTING THE FOUNDATIONS

2

 Maintainability
 Maintainability is arguably the most important characteristic of any good code base. If your code begins
to lose structure and becomes hard to read, then lots of things become difficult. Adding new features,
fixing bugs, and improving performance all become more complicated and frustrating if you’re struggling
with unreadable and brittle code. In some cases it gets so bad that developers will resist making changes
altogether, because nearly every time they do, something breaks. This can lead to a situation where no
one enjoys working on the website or, in very bad circumstances, to a strict change control process where
releases can only be carried out once a week or even once a month!

 If you are building websites that are to be handed off to a client or another development team,
maintainability is even more important. It’s critical that you provide code that is easy to read, explicit in its
intent, and optimized for change . “The only constant is change” is a particularly appropriate cliché to invoke
here, because whose project doesn’t have continually changing requirements, along with constant feature
requests and bug fixes?

 CSS is one of the hardest languages to keep maintainable as a codebase grows, and the style sheets
for even a relatively small site can get out of hand quickly. Other modern programming languages have
features like variables, functions, and namespaces built in; all features which help keep code structured and
modular by default. CSS doesn’t have these features, so we need to build them into the way that we use the
language and structure our code. As we discuss different topics throughout the book, you’ll see the theme of
maintainability evident across nearly all of them.

 A Brief History of Markup

 The power of the Web is in its universality. Access by everyone regardless of disability is an
essential aspect.

 —Tim Berners-Lee

 Tim Berners-Lee created HTML in 1990, for the purpose of formatting scientific research documents. It was
a simple markup language that enabled text to be given basic structure and meaning, such as headings, lists,
and definitions. These documents were typically presented with little or no visual embellishment, and could
be easily indexed by computers and read by people using a text-only terminal, a web browser, or screen
reader if necessary.

 However, humans are very visual creatures, and as the World Wide Web gained in popularity, HTML
started to acquire features for creating presentational effects. Instead of using heading elements for page
headlines, people would use a combination of font and bold tags to create a specific visual effect. Tables got
co-opted as a layout tool rather than a way of displaying data, and people would use blockquote elements to
indent text rather than to indicate quotations. Very quickly HTML lost its primary purpose of giving structure
and meaning to content, and became a jumble of font and table tags. Web designers came up with a name
for this kind of markup; they called it tag soup (see Figure 1-1).

CHAPTER 1 ■ SETTING THE FOUNDATIONS

3

 The Web had become a mess, and CSS was created to help tidy things up. The primary purpose of CSS
was to allow the presentational rules that had found their way into HTML to be extracted and put into their
own system; to separate content and presentation . This encouraged meaning and semantics to creep back
into HTML documents. Presentational tags like the font tag could be ditched, and layout tables could be
slowly replaced. This was a boon for the accessibility and speed of much of the Web, but CSS also provides a
number of benefits for web designers and developers:

• A language specifically designed to control visual style and layout

• Styles that can be more easily reused across one site

• Improved code structure through separation of concerns

 SEPARATION OF CONCERNS

 The concept of separation of concerns is common in software development. On the Web, it can be
applied not only to the separation of markup and style, but also to how the styles are written. In fact, it’s
one of the main methods for ensuring maintainable code.

 There’s a phrase common in the Unix development community that expresses this concept through the
mantra “Small pieces, loosely joined.” A “small piece” is a focused module of code that does one thing
really well. And because it is “loosely joined” to other components, that module can be easily reused in
other parts of the system. A “small piece” in Unix could be a word count function, which will work with any
piece of text you feed into it. In web development, a “small piece” could be a product-list component,
which if loosely coupled will be reusable across multiple pages of a site, or in different parts of the layout.

 You could think of these small pieces of code as LEGO bricks. Each brick is incredibly simple, but they can
be joined together in numerous ways to create objects of immense complexity. Towards the end of the
book, in Chapter 12 , we will return to this topic, and examine how to use this strategy in a structured way.

 Figure 1-1. The markup for the lead story from abcnews.com on August 14, 2000, uses tables for layout and
large, bold text for headings. The code lacks structure and is difficult to understand

http://dx.doi.org/10.1007/978-1-4302-5864-3_12

CHAPTER 1 ■ SETTING THE FOUNDATIONS

4

 Different Versions of HTML and CSS
 CSS comes in various versions, or “levels”, and it’s good to have some historical context around what
these versions mean and how they impact what features of CSS you should or shouldn’t use. The World
Wide Web Consortium (W3C) is the organization that looks after standardizing web technology, and
each of its specifications goes through a number of phases of development before it finally becomes a
W3C recommendation. CSS 1 became a W3C recommendation at the end of 1996 and contains very basic
properties such as fonts, colors, and margins. CSS 2 became a recommendation in 1998 and added advanced
concepts such as floating and positioning, as well as new selectors like the child, adjacent sibling, and
universal selectors.

 CSS 3 is a slightly different beast. In fact, there is no CSS 3 as such, but a collection of modules each
 leveled independently. When a module specification continues to improve an existing concept, it starts at
level 3. If it’s an entirely new technology it starts at level 1. When the term CSS 3 is used, it usually refers to
anything new enough to be part of a module specification. Examples of modules include “CSS Backgrounds
and Borders Level 3,” “Selectors Level 4,” and “CSS Grid Layout Level 1.” This modular approach allows
different specifications to move at different speeds, and some level 3 specifications, such as “CSS Color
Level 3”, have already been published as recommendations. Others are in candidate recommendation status,
and many are still in working draft status.

 Although work began on CSS 3 at about the time CSS 2 was published, progress on these new
specifications was initially slow. For that reason, in 2002, the W3C published CSS 2 Revision 1. CSS 2.1
fixes errors in CSS 2, removes features that were poorly supported or nonexistent in browsers, and
generally cleans things up to provide a more accurate picture of browser implementations. CSS 2.1 reached
recommendation status in June 2011, over a decade after work on CSS 3 had started. That gives you an
idea of how long it can take for standards bodies and browser makers to nail down exactly how these
technologies work. That being said, browsers often ship experimental support for features when the features
are in the draft stage, and at the candidate recommendation stage things are usually quite stable. The date
when something becomes a usable technology is usually much earlier than the date when it becomes a
recommendation.

 The history of HTML is no less complex. HTML 4.01 became a recommendation in 1999, at which point
the W3C switched its attention to XHTML 1.0. XHTML 1.1 was meant to follow, but the level of strictness it
imposed proved impractical and it fell out of favor among members of the web development community.
Essentially, progress on the main language of the Web stalled.

 In 2004, a group of companies formed the Web Hypertext Application Technology Working Group
(WHATWG) and started working on a new set of specifications. The W3C acknowledged the need for this
work in 2006, and joined in on the fun. In 2009, the W3C gave up on XHTML completely, and formally
embraced the new standard from the WHATWG that had become known as HTML5. Initially, both the
WHATWG and the W3C harmonized their work on the standards, but somewhere along the line, their
relationship status turned complicated. Today, they edit two separate standards, the one from the WHATWG
being known as just HTML, and the one from the W3C known as HTML5. Yes, we know, it’s all a bit nuts.
Fortunately, the two standards are very close to each other, so speaking of HTML5 as a single thing still
makes sense.

 What Version Should I Use?
 Designers and developers often ask which version of HTML or CSS they should use, but there’s no simple
answer to this. Although the specifications provide a focal point for standards and the work that goes on in
developing web technology, they are largely irrelevant to designers and developers on a day-to-day basis.
What is important is knowing what parts of HTML and CSS have been implemented in browsers, and how
robust and bug-free those implementations are. Are they experimental features that should be used with
caution? Or are they robust and well tested, with matching implementations across a large number of
browsers?

CHAPTER 1 ■ SETTING THE FOUNDATIONS

5

 Understanding the state of browser support is one of the trickiest parts of writing CSS and HTML today.
Sometimes it can seem like things move very fast, and you have to work hard to keep up. At other times it
can feel frustratingly slow. Throughout this book you will see browser support notes for various features
of HTML and CSS, along with tips as to how and when you should consider using them. Inevitably the
information printed here will become outdated, so it is important to keep up with this information yourself.

 There are several good places to start learning about browser support. For CSS properties, the “Can
I use” website (http://caniuse.com) allows you to search for a property or suite of properties, complete
with statistics on what percent of browsers support it, across both desktop and mobile browsers. Another
ambitious initiative is http://webplatform.org , a collaboration between the W3C and several browser
makers and industry giants, attempting to collect and merge all their respective documents on support for
CSS, HTML, JavaScript APIs, and so forth. However, as large projects are prone to do, putting together this
canonical web technology documentation is taking a lot of time. While that’s happening, Mozilla’s developer
documentation, MDN (http://developer.mozilla.org), is generally considered the gold standard.

 When discussing browser support, it’s important to accept that not all browsers are created equal; and
they never will be. Some CSS 3 features are supported by very few browsers today. For example, Flexible Box
Layout (or flexbox for short) was not correctly supported in Internet Explorer until version 11 and in Safari
until version 6.1. Even if you need to support legacy browsers, it does not mean that flexbox is of no use at all.
You might avoid using flexbox for the core layout of your site, but you could still choose to use it in a specific
component where its powerful features are extremely useful, and make sure that there is an acceptable
fallback in browsers that don’t understand the properties. The ability to make judgment calls on backward
compatibility vs. future-friendly code is part of what defines the true CSS Master.

 Progressive Enhancement
 The ability to balance backward compatibility with the latest HTML and CSS features involves a strategy
known as progressive enhancement . What this stands for is basically “start by making it work well for
the lowest common denominator, but feel free to take things further where they are supported.” Using
progressive enhancement means you’ll write your code in “layers,” where each successive enhancement is
only applied if it’s supported or deemed appropriate. This may sound complicated, but the good news is that
both HTML and CSS partly have this built in.

 For HTML, this means that unknown elements or attributes generally cause no trouble for the browser;
it will gobble them up without complaining but might not apply the resulting changes to how the page
works. As an example, you could use the new types of input elements that are defined in HTML5. Say you
have a form field for an e-mail address that’s marked up like this:

 <input type="text" id="field-email" name="field-email">

 You could change the value of the type attribute like this:

 <input type="email" id="field-email" name="field-email">

 Browsers that haven’t implemented the new field types will simply respond “I have no idea what that
means” and fall back to the default type value, which is "text" , just like in the first example. Newer browsers
that do understand the "email" type will know what kind of data the user is supposed to enter into this field.
On many mobile devices, the software keyboard will adjust to show a view optimized for inputting e-mail
addresses, and if you’re using the built-in support for form validation in newer browsers, this will pick up on
that too. We have progressively enhanced the page, with no downside for users on older browsers.

http://caniuse.com/
http://webplatform.org/
http://developer.mozilla.org/

CHAPTER 1 ■ SETTING THE FOUNDATIONS

6

 Another simple change is to update the document type declaration to the new, shorter version from the
HTML5 standard. The document type, or doctype for short, is the bit at the top of an HTML document that’s
supposed to be a machine-readable hint about the version of the markup language used in the document.
It used to be a long and complicated affair in older versions of HTML and XHTML, but in HTML5 it’s been
simplified down to just this:

 <!DOCTYPE html>

 You can safely switch to writing your HTML documents with this doctype because the HTML5 syntax
and doctype are backward compatible. We’ll have a closer look at some of the new elements available in
HTML5 in upcoming sections, but if you need more in-depth information on how to start writing HTML5
markup today, check out Jeremy Keith’s HTML5 for Web Designers at http://html5forwebdesigners.com .

 Progressive enhancement in CSS works in a similar manner when it comes to how the browser
interprets new properties. Any property or value that the browser doesn’t recognize causes it to discard that
declaration, so adding new properties has no ill effects as long as you provide a sensible fallback.

 As an example, many modern browsers support the rgba functional notation for color values. It allows
you to specify colors using separate values for the red, green, and blue channels as well as a transparency
value, called the alpha channel. We can use it like this:

 .overlay {
 background-color: #000;
 background-color: rgba(0, 0, 0, 0.8);
 }

 This rule states that elements with the overlay class name should have a black background color,
but then immediately redeclares the background color to be a slightly transparent black using rgba . For
browsers that don’t understand the rgba notation, the second statement will be ignored, and the element
will have a solid black background color. For browsers that do understand the rgba notation, the second
statement overwrites the first. So even if rgba notation isn’t supported everywhere, we can still use it,
provided we use a fallback declaration that comes first.

 Vendor Prefixes
 Browser makers use the same principle to introduce experimental features into their browsers. They do
this by prefixing the property name or value with a special string, so that only their own browser engine will
apply it and other browsers will ignore it. This allows browser makers to introduce new features while the
specifications are missing or immature. Style sheet authors can try them out without risk of breaking their
pages if the different browsers interpret new features differently. For example:

 .myThing {
 -webkit-transform: translate(0, 10px);
 -moz-transform: translate(0, 10px);
 -ms-transform: translate(0, 10px);
 transform: translate(0, 10px);
 }

 This applies a transformation to the element (something we will look at in Chapter 10) with a couple of
different prefixes. Those starting with -webkit- apply to the WebKit-based browsers such as Safari. Google
Chrome and Opera are based on the Blink engine, which in turn was initially based on WebKit, so the
 -webkit -prefix often works for them as well. The -moz- prefix applies to Mozilla-based browsers like Firefox,
and the -ms- prefix applies to Microsoft’s Internet Explorer.

www.allitebooks.com

http://html5forwebdesigners.com/
http://dx.doi.org/10.1007/978-1-4302-5864-3_10
http://www.allitebooks.org

CHAPTER 1 ■ SETTING THE FOUNDATIONS

7

 Finally, we’ve added the unprefixed version, so that browsers that support the standardized version
of the property don’t miss out. Historically, developers have been sloppy with adding the standardized
versions. This has gone so far that some browser makers have started supporting the prefixes of competing
engines, just to make sure popular sites work on their browser. As a consequence of this confusion, most
browser makers are turning away from vendor prefixes. Experimental features are instead hidden behind
preference flags, or in special preview releases.

 Examples in the book will mostly use only the standardized properties without prefixes, so you are
advised to check with websites like http://caniuse.com to make sure how the current support situation
looks.

 Conditional Rules and Detection Scripts
 For more advanced cases where we’d want completely different solutions based on the CSS support
available, there’s the @supports -block. This special block, known as a conditional rule , checks the
declaration inside the parentheses, and only applies the rules inside this block if the declaration is
supported:

 @supports (display: grid) {
 /* rules for when grid layout is supported go here */
 }

 The problem with this is that this rule is fairly new in itself, so we can only use it for bleeding-edge
features not implemented in any legacy browser (for example, we’ll look at grid layout in Chapter 7). For
other cases, we can use JavaScript to figure out if something is supported. This type of feature test is available
in several JavaScript libraries, the most popular being Modernizr (http://modernizr.com). It works by
appending support hints to the HTML, which you can then base your CSS on.

 We’ll look more closely at strategies and tools like this in upcoming chapters, but the important
takeaway is that progressive enhancement can help us break free from worrying about version numbers and
specifications too much. With careful application, we can use the new shiny toys where they’re appropriate,
without leaving behind users on older browsers.

 Creating Structurally and Semantically Rich HTML
 Semantic markup is the foundation of any good HTML document. Semantics is the scientific study of
meaning. In the context of a made-up language with a formal set of symbols, such as HTML and its elements
and attributes, semantics refers to what we mean by using a certain symbol. Put simply, semantic markup is
the practice of using the right element in the right place, resulting in meaningful documents.

 Meaningful documents help ensure that content is accessible to the greatest number of people possible,
whether they’re using the latest version of Google Chrome, running a text-only browser like Lynx, or relying
on assistive technology such as a screen reader or braille display. Whatever fancy graphics or interactions
might be required later in the project, the fundamental semantics of the document should never, and need
never, be compromised.

 Good structural markup also means that your content is more easily consumed by machines—
specifically, search engine spiders such as Googlebot, which indexes and ranks pages for inclusion in
Google’s search results. The more rich data Googlebot can get from your pages, the better chance it has
of indexing and ranking them correctly. As a result, you will most likely benefit by higher positions in the
search rankings.

 More importantly in the context of CSS, meaningful markup provides you with a simple way of targeting
the elements you wish to style. It adds structure to a document and creates an underlying framework for you
to build on.

http://caniuse.com/
http://dx.doi.org/10.1007/978-1-4302-5864-3_7
http://modernizr.com/

CHAPTER 1 ■ SETTING THE FOUNDATIONS

8

 In fact, many modern approaches to crafting CSS suggest starting with a set of “base” styles for your
site. The style guide page by Paul Lloyd shown in Figure 1-2 contains every plausible element he is likely to
need on his personal blog. It describes how and when to use them, and his style sheet ensures that whatever
element he adds to his pages over time will be appropriately styled without having to do further work.

 Figure 1-2. Style guide for paulrobertlloyd.com, found at http://paulrobertlloyd.com/about/styleguide/

 Paul’s style guide contains all the obvious meaningful elements such as:

• h1 , h2 , and so on

• p , ul , ol , and dl

• strong and em

• blockquote and cite

• pre and code

• time , figcaption , and caption

 It also includes base styles for forms and tables with their associated elements, including:

• fieldset , legend , and label

• caption , thead , tbody , and tfoot

 The value of having this base set of styles cannot be overstated. Clearly you’ll need to begin inheriting
and overriding them pretty soon in the design and development process, but having a solid foundation
of element styles to build on sets you up very nicely for future work. It can also serve as a proof sheet. As
you make changes to the CSS, you can scan the components in your style guide and verify that you haven’t
unintentionally overridden certain styles as you work on others.

http://paulrobertlloyd.com/about/styleguide/

CHAPTER 1 ■ SETTING THE FOUNDATIONS

9

 Class and ID Attributes
 Meaningful elements provide an excellent foundation, but they won’t provide you with all the “hooks” you’ll
need to apply every visual effect. Nine times out of ten you’ll want to adjust the styles of your base elements
depending on their context. We need a way of providing other styling “hooks” into our document, and one
common approach is to use ID and class attributes.

 Adding an ID or class attribute doesn’t inherently add meaning or structure to your document. Adding
these attributes is a general-purpose way of allowing other things to interact with and parse your document,
and CSS is one thing that can take advantage of them. The value of these attributes is that they can contain
names that you define.

 It sounds trivial, but naming something is one of the most important (and often most difficult) parts
of writing code. Choosing a name allows you to state what something is , and hint at its purpose or how
it should be used. When you are writing code, clarity and explicitness is absolutely critical. So let’s take a
simple list of links and give it a class attribute with a nice readable and useful value:

 <ul class="product-list">
 Product 1
 Product 2
 Product 3

 Here we’ve used the class attribute to create a product-list module in our document. In CSS we
think of class names as a way of defining what a thing is. The product-list class name gives us a way of
designating any list we’d like to be of this type. Once we’ve created the CSS to style our product list, we can
use it not only here, but in any other context in the website—like a blueprint, or template.

 Even if we’re adding a class name as an explicit hook for styling, we should normally avoid using a name
that indicates what it will look like visually (we’ll cover if and when to break this rule in Chapter 12). Instead,
we should choose a name that indicates what type of component it is. For example, here we’ve chosen
 product-list rather than a generic name such as large-centered-list .

 You’ll notice that we’ve chosen to use a class attribute rather than an ID attribute in the previous
example. There are some important differences between ID and class attributes when used for styling, but
the most applicable at this point is that a single ID name can be applied to only one element on a page. This
means it can’t be used as easily to define a reusable “template” for a module such as our product-list . If we
had used an ID attribute, we wouldn’t be able to reuse product-list more than once per page.

 We prefer to use an ID attribute to identify a single instance of a particular module. For example, one
instance of our product-list module might appear as follows:

 <ul id="primary-product-list" class="product-list">
 Product 1
 Product 2
 Product 3

 This is another instance of our product-list that picks up its styles due to the class attribute, but here
it has also been defined as the primary product-list. It seems reasonable that you can have only one primary
product-list per page, and so the ID attribute might be an appropriate choice. The ID could then be used to
add extra overriding styles to the module, or it could be used to add some interaction to it with JavaScript, or
serve as an in-page anchor for navigation.

 In reality, using the ID attribute as a hook for CSS often isn’t particularly valuable. You’ll usually create
simpler and more maintainable code if you favour classes for styling, and only use IDs to identify elements in
your document for purposes other than styling. We’ll cover this topic in more detail in Chapter 12 .

http://dx.doi.org/10.1007/978-1-4302-5864-3_12
http://dx.doi.org/10.1007/978-1-4302-5864-3_12

CHAPTER 1 ■ SETTING THE FOUNDATIONS

10

 Structural Elements
 HTML5 introduced a whole new family of structural elements :

 section
 header
 footer
 nav
 article
 aside
 main

 These elements were introduced to create logical sections of an HTML document. You can use them
to denote sections containing stand-alone content (article), navigation components (nav), headers for a
particular section (header), and so forth. The main element is the newest addition of the bunch, highlighting
the area that holds the main content for the page. A good resource where you can dive into the correct use of
all these new elements is http://html5doctor.com .

 All of these new elements except the main element can be used multiple times in a document, giving it a
better chance of being interpreted correctly by machine and human alike. Before these new elements arrived
you would often see div elements with similar class names, for example when marking up a blog post:

 <div class="article">
 <div class="header">
 <h1>How I became a CSS Master</h1>
 </div>
 <p>Ten-thousand hours.</p>
 </div>

 Those div elements don’t provide any real semantic value to the document; they were likely included
simply as styling hooks, using the class names. The only part of the preceding fragment with any real
meaning is the h1 and the p , but with our newfound HTML5 elements we can improve things:

 <article>
 <header>
 <h1>How I became a CSS Master</h1>
 </header>
 <p>Ten-thousand hours.</p>
 </article>

 We’ve improved the semantics of our HTML with this change, but with unexpected side effects. The
only hooks we have for styling are now the article and header elements. CSS selectors for styling them
could look something like this:

 article {
 /* styles here */
 }
 article header {
 /* other styles here */
 }

http://html5doctor.com/

CHAPTER 1 ■ SETTING THE FOUNDATIONS

11

 Both the article and header elements could be reused elsewhere in the page, for other purposes
than showing a blog post. If they were reused now, and we attached the styles directly to the elements in
the selector, they would pick up the styling rules that we’d intended for the blog post, whether they were
appropriate for the new situation or not. A more flexible and forward-thinking approach would be to
combine the two examples:

 <article class="post">
 <header class="post-header">
 <h1>How I became a CSS Master</h1>
 </header>
 <p>Ten-thousand hours.</p>
 </article>

 The associated CSS rule could then use the class names to hook into this structure:

 .post {
 /* styles here */
 }
 .post-header {
 /* other styles here */
 }

 With that simple change we’ve actually demonstrated quite an important concept. We’ve decoupled
the semantics of our document from the way that it is styled, making it more portable, clearer in purpose,
and therefore more maintainable. If we now decide that an article isn’t the most appropriate element to
contain this content, or we find that our content management system (CMS) constrains us to using a div
for some reason, we don’t need to make any further changes. The styles that we’ve hooked to the class
attributes will work perfectly well whatever elements we choose (or are forced) to use.

 OLD INTERNET EXPLORERS AND NEW ELEMENTS

 In most browsers, using these new elements works fine, but Internet Explorer 8 and older doesn’t apply
styles to elements it doesn’t know about. Luckily, this can be remedied using a snippet of JavaScript
known as a “shim” or “polyfill” script.

 You can find one version of such a script at https://github.com/aFarkas/html5shiv .

 It is also included in the previously mentioned Modernizr library, which we’ll be coming back to in
upcoming chapters.

 If you expect that a significant part of your users are on very old browsers, you should be careful in
relying heavily on these new elements, since it results in an additional JavaScript dependency to make
things work as intended.

 Using Divs and Spans
 All these fancy new semantic elements don’t mean that our old workhorse the div element is redundant just
yet. A div is an appropriate element to use for grouping content when there is no other more semantically
correct element that suits your purpose. Sometimes you need to add an extra element to your document purely
for styling purposes, such as a wrapper around the entire page to assist with creating a centered layout.

https://github.com/aFarkas/html5shiv

CHAPTER 1 ■ SETTING THE FOUNDATIONS

12

 If you can use one of the more semantic elements to structure your content, then always do so, and
give it an appropriate class attribute if it needs styling. But if you need a nonsemantic element as an extra
styling hook, use a div . There’s an old term known as “divitis” which refers to HTML authors’ inclination to
litter their markup with div s, or use div s for everything, regardless of whether there’s a more appropriate
element. Only add div s where they are necessary to provide simple and clear styling hooks, but don’t feel
embarrassed or ashamed that you’ve had to add a few. We’ll look at some specific examples in later chapters
where some extra nonsemantic div s become extremely valuable in creating clean, maintainable code.

 An associate of the div element is the span . Like div , it has no semantic meaning and can be used
purely for adding presentational hooks to your document. span is distinct from div in that it is a text-
level element , and is used to provide structure within the flow of a piece of text. Again, before using the
nonsemantic span , always ensure that there is not a richly semantic HTML element that can be used in its
place. For example, time should be used for marking up times and dates, q for quotations, and the usual
suspects em for stress emphasis and strong for strong importance:

 <p>At <time datetime="20:07">7 minutes past eight</time> Harry shouted, <q>Can we just end
this, now!</q> He was very angry.</p>

 Presentational Text Elements, Redefined
 The and <i> elements, remnants of the days of presentational markup, are used to stand for bold and
italicized text, respectively. You’d think that they would have been culled from the new HTML5 specification,
but they’re actually still in there. Since they are widely occurring in older content around the Web, or content
created via subpar WYSIWYG editors, the editors of the HTML5 specification decided to leave them in there,
and instead update their definition.

 Today, the <i> element stands for content that is different from its surrounding context, and would
generally be typographically styled as italic. Examples from the HTML5 specification include expressions in
a different language or the name of a ship.

 The element has almost the exact same definition, but for content that traditionally would be
boldface. Examples here include a product name or category.

 It all sounds a bit fuzzy, but the important takeaway is that these two elements are different from their
cousins and in that they don’t say anything about the emphasis of the content within them.
Most of the time you’d want or , since they are the semantically correct choices for emphasis
and strong emphasis in a piece of text.

 Extending the Semantics of HTML
 For a long time web developers have been exploring ways of adding new semantics and structure to the
limited vocabulary of HTML. Richer expression of meaning within content opens up all sorts of possibilities
for the Web and the tools built around it. Although progress toward the Nirvana of a Semantic Web hasn’t
been blindingly fast, there have been some positive steps in allowing authors of HTML to add more granular
and expressive semantics to their documents.

 ARIA Role Attributes
 Many of the new HTML5 elements open up the possibility for accessibility benefits. For instance, if assistive
technologies such as screen readers can understand what and where a nav element is in a page, they can
help users to skip this navigation to get to the content, or return to the navigation when needed.

CHAPTER 1 ■ SETTING THE FOUNDATIONS

13

 Another way to achieve this is to make use of Accessible Rich Internet Applications (ARIA), which acts
as a complementary specification to HTML. ARIA allows you to provide even more semantic meaning for
assistive technology, by specifying what different elements of a document contain or what functionality they
provide. For example, role="navigation" is what’s known as a “landmark role” attribute and declares an
element to have a navigational role. Other landmark roles include:

• banner

• form

• main

• search

• complementary

• contentinfo

• application

 A full list of ARIA roles and their definitions can be found in the ARIA specification http://www.w3.org/
TR/wai-aria/roles#role_definitions .

 If you need a short breakdown of when to use landmark roles, Steve Faulkner of the Paciello Group has
published an overview of how and when to use them at http://blog.paciellogroup.com/2013/02/using-
wai-aria-landmarks-2013/ .

 ARIA also allows developers to specify more complex pieces of content or interface elements. For
example, when recreating a volume control slider widget in HTML, it would contain a role attribute with a
value of slider :

 <div id="volume-label">Volume</div>
 <div class="volume-rail">
 <a href="#" class="volume-handle" role="slider" aria-labelledby="volume-label"
aria-valuemin="1" aria-valuemax="100" aria-valuenow="67" >

 </div>

 The extra attributes aria-labelledby , aria-valuemin , aria-valuemax , and aria-valuenow all
provide extra information that assistive technology can use to help users with visual impairments, motor
deficiencies, or differing abilities that could prevent them using a slider widget.

 Adding extra semantic information about what role the various components of an HTML page play is
also a great way to provide hooks for scripting and styling, so it’s a classic win-win.

 Microformats
 The most widely adopted way of extending the semantics of HTML so far is microformats , a set of
standardized naming conventions and markup patterns to represent specific types of data. These naming
conventions are based on existing data formats such as vCard and iCalendar. For example, here are some
contact details, marked up in the hCard format:

 <section class="h-card">
 <p>Andy Budd
 Clearleft Ltd
 info@andybudd.com
 </p>

http://www.w3.org/TR/wai-aria/roles#role_definitions
http://www.w3.org/TR/wai-aria/roles#role_definitions
http://blog.paciellogroup.com/2013/02/using-wai-aria-landmarks-2013/
http://blog.paciellogroup.com/2013/02/using-wai-aria-landmarks-2013/

CHAPTER 1 ■ SETTING THE FOUNDATIONS

14

 <p class="p-adr">
 Brighton,
 England
 </p>
 </section>

 Contact details marked up with microformats make it easier for developers to write tools that extract
this data. For example, a browser plug-in could find microformats in pages you are browsing and allow
you to download contacts into your address book or add events to your calendar application. There are
microformats for a range of data types: contact details, events, recipes, blog posts, resumés and so forth.
Microformats can also be used to express relationships between for example a piece of content and another
URL that the content links to.

 Microformats gained traction partly because of their ease of implementation, and have since been
adopted by publishers including Yahoo! and Facebook as well as added directly into publishing tools such
as WordPress and Drupal. A study of structured data implementations in 2012 (http://microformats.
org/2012/06/25/microformats-org-at-7) found that microformats have the greatest adoption across the
Web, but there are alternatives that have started making significant inroads in more recent times, such as
microdata.

 Microdata
 Microdata was introduced with HTML5, and provides another way of adding structured data to HTML. Its
purpose and goals are very similar to microformats, but the details of embedding microdata into content are
somewhat different. Let’s look at how we might mark up the same type of contact details from the previous
section using microdata:

 <section itemscope itemtype="http://schema.org/Person">
 <p>Emil Björklund</p>
 <span itemprop="affiliation" itemscope

itemtype="http://schema.org/Organization">
 inUse Experience AB

 emil@thatemil.com
 </p>
 <p itemprop="address" itemscope itemtype="http://schema.org/PostalAddress">
 Malmö,
 Sweden
 </p>
 </section>

 As this example shows, the microdata syntax is a little more verbose than the corresponding
microformat; but there’s a good reason for that. Microdata is designed to be extensible so that it can
represent any type of data required. It simply provides some syntax for expressing data structures, but
doesn’t define any particular vocabularies itself. This is in contrast to microformats, which define specific
types of structured data, such as hCard or hCalendar.

 Microdata leaves it to others to define and document particular formats. The format we’ve used in
the previous example is one of the vocabularies defined by http://schema.org , which was created by
representatives of Bing, Google, and Yahoo! These search engines use it to help them index and rank pages,
meaning these vocabularies are another way of helping the search spiders index your content richly and
efficiently.

http://microformats.org/2012/06/25/microformats-org-at-7
http://microformats.org/2012/06/25/microformats-org-at-7
http://schema.org/

CHAPTER 1 ■ SETTING THE FOUNDATIONS

15

 Validation
 Even if the core of your markup is well thought-out and semantically sound, there’s still the risk that a typo or
formatting mistake can cause you unforeseen trouble up ahead. This is where validation comes in.

 Most HTML documents in the real world are not in fact valid HTML. To use the parlance of the spec
writers, they are nonconformant . These documents have elements that are incorrectly nested, contain
unencoded ampersands, and are missing required attributes. Browsers deal with these kinds of errors
extremely gracefully and always attempt to guess the intent of the author. In fact, rules for dealing with
invalid HTML are included in the HTML specification to ensure browser makers deal with error handling in
a consistent way.

 The fact that browsers are so good at dealing with our mistakes is a blessing for the Web as a whole, but
does not abdicate us from responsibility in this area. As much as possible, we should attempt to create valid
documents. Doing so will help us catch bugs more quickly, or stop them being introduced altogether. If you
have a rendering or layout bug that doesn’t have an immediate and obvious fix, a good first step is to validate
the HTML, to ensure you are attempting to style a correctly formatted document.

 Many tools exist to help you validate HTML. You can use the HTML validator on the W3C site itself
(http://validator.w3.org/), or one of the many browser plug-ins that communicate with it. The Web
Developer extension (http://chrispederick.com/work/web-developer/), for instance, is available for
Mozilla Firefox, Opera, and Google Chrome, and has options for validating both publicly available sites and
local sites (as well as other really useful features!). Alternatively, if your projects have any kind of automated
build or test process, you can include HTML validation as a step here.

 CSS validation is also possible. The W3C has a CSS validator available at http://jigsaw.w3.org/css-
validator/ . One could argue that validating CSS files is not as important as validating HTML—errors in
your CSS are perhaps not as likely to cause JavaScript to fail or make your page inaccessible for people using
assistive technology such as screen readers. Still, you should make sure that you check your CSS now and
again, to ensure you’re not making any simple mistakes like forgetting to add a unit to a measurement.

 Depending on the settings you choose in the CSS validator, you will get a lot of warnings or errors about
using vendor prefixes in your code. These are nonstandard properties or values that browser makers allow
you to set as stand-ins for the real thing when they implement experimental support for a CSS feature. For
example, the -webkit-flex value for the display property is the experimental version for the flex property
in WebKit-based browsers. This is likely flagged by the validator as a warning or an error, but your file works
fine even if the validator yells at you a bit. You just have to make sure you understand why it flags things as
problematic.

 Validation isn’t an end unto itself, and many otherwise good pages fail to validate due to content from
third parties, unwieldy CMS systems, or experimental CSS features that you might want to use. There’s also
the risk that the validator hasn’t actually kept up with the standards and browser implementations. So don’t
be militant about validation, but use it as a means to catch errors that are simple to fix before they cause too
many knock-on effects.

 Summary
 In this chapter we looked at some of the ways you can make sure you have a solid foundation to build on,
both in terms of HTML and CSS. You learned a little bit about the history of HTML and CSS, how to keep up
with changes, and how you can make your code both backward compatible and future friendly. You now
know the importance of writing maintainable code, as well as some methods for structuring HTML so that it
is easily and consistently styled with CSS.

 In the next chapter, we will recap some of the basic CSS selectors and then move on to a host of more
advanced selectors from the Level 3 and Level 4 Selectors specification. You’ll learn about specificity,
inheritance, and the cascade, and how to put them to use in creating efficient style sheets.

http://validator.w3.org/
http://chrispederick.com/work/web-developer/
http://jigsaw.w3.org/css-validator/
http://jigsaw.w3.org/css-validator/

17© Andy Budd and Emil Björklund 2016
A. Budd and E. Björklund, CSS Mastery, DOI 10.1007/978-1-4302-5864-3_2

 CHAPTER 2

 Getting Your Styles to Hit the Target

 A valid and well-structured document provides the foundation to which your styles are applied. You may
already have added appropriate styling “hooks” to your HTML, or you may return to add more as the design
requirements for a page evolve. In this chapter we will look at the range of selectors we have available to
target that HTML and the extra hooks we can use to gain more control. We’ll cover:

• Common selectors

• Bleeding-edge selectors for now and the future

• The wonderful world of specificity and the cascade

• Applying styles to your pages

 CSS Selectors
 The most basic selectors are type and descendant selectors . Type selectors are used to target a particular type
of element, such as a paragraph (as shown next) or a heading element. You do this by simply specifying the
name of the element you wish to style. Type selectors are sometimes also referred to as element selectors.

 p {
 color: black;
 }

 Descendant selectors allow you to target the descendants of a particular element or group of elements.
A descendant selector is indicated by a space between two other selectors. In this example, only paragraph
elements that are descendants of a block quote will be indented, while all other paragraphs will remain
unchanged:

 blockquote p {
 padding-left: 2em;
 }

 These two selectors are great for applying base styles across the board. To be more specific and target
selected elements, you can use ID and class selectors. As the names suggest, these selectors will target
elements with the corresponding ID attribute or class name value. ID selectors are identified using a hash
character; class selectors are identified with a period. The first rule in this example will make the text in the
introductory paragraph bold, and the second rule will make the date gray:

 #intro {
 font-weight: bold;

CHAPTER 2 ■ GETTING YOUR STYLES TO HIT THE TARGET

18

 }
 .date-posted {
 color: #ccc;
 }
 <p id="intro">Happy Birthday, Andy</p>
 <p class="date-posted">20/1/2013</p>

 Sometimes, rather than adding ID or class attributes to every element you want to target, it’s useful to
combine ID and class selectors with type and descendant selectors:

 #latest h1 {
 font-size: 1.8em;
 }
 #latest .date-posted {
 font-weight: bold;
 }
 <article id="latest">
 <h1>Happy Birthday, Andy</h1>
 <p class="date-posted"><time datetime="2013-01-20">20/1/2013</time></p>
 </article>

 These are all very simple and obvious examples. However, you will be surprised by how many elements
you can successfully target using just the four selectors discussed so far. Often, these are the real workhorses
of a maintainable CSS system. Other advanced selectors can be extremely useful, but they’re not as flexible
and powerful as these more simple and common selectors.

 Child and Sibling Selectors
 On top of these basic selectors, CSS contains a number of more advanced selectors. The first of these
advanced selectors is the child selector. Whereas a descendant selector will select all the descendants of an
element, a child selector only targets the element’s immediate descendants, or children. In the following
example, the list items in the outer list will be given a custom icon while list items in the nested list will
remain unaffected (see Figure 2-1).

 #nav > li {
 background: url(folder.png) no-repeat left top;
 padding-left: 20px;
 }
 <ul id="nav">
 Home
 Services

 Design
 Development
 Consultancy

 Contact Us

CHAPTER 2 ■ GETTING YOUR STYLES TO HIT THE TARGET

19

 Sometimes, you may want to style an element based on its proximity to another element. The adjacent
sibling selector allows you to target an element that is preceded by another element that shares the same
parent. Using the adjacent sibling selector , you could make the first paragraph following a top-level heading
bold, gray, and slightly larger than the subsequent paragraphs (see Figure 2-2):

 h2 + p {
 font-size: 1.4em;
 font-weight: bold;
 color: #777;
 }

 Figure 2-1. The child selector styles the children of the list but not its grandchildren

 Figure 2-2. The first paragraph following an h2 is styled differently

 This can be a useful technique, but bear in mind that styling the opening paragraph with its own class
value, such as intro-text , might lead to simpler and more flexible CSS. This intro-text class could then be
used to style other paragraphs that don’t immediately follow an h2 .

 The > and + tokens are known as combinators , because they characterize the way that the two sides of
the rule combine. We’ve seen examples of the child combinator (>) and the adjacent sibling combinator (+),
but there is a third combinator that we should look at—the general sibling combinator (~). Going back to the
previous example, you could use the general sibling combinator to target every paragraph element that has a
preceding sibling h2 .

 h2 ~ p {
 font-size: 1.4em;
 font-weight: bold;
 color: #777;
 }

CHAPTER 2 ■ GETTING YOUR STYLES TO HIT THE TARGET

20

 ■ Note You might have noticed that the adjacent sibling and general sibling combinators don’t allow you to
select a previous sibling—e.g., not a paragraph that is followed by an h2 . The reason why there is resistance
against such a useful selector is a bit complex, but has to do with page rendering performance.

 Generally, the browser styles elements as they come into existence on the page, and at the time the paragraph
is supposed to be styled, the h2 , which is further along in the HTML source, might not exist yet. A previous
sibling combinator would mean that the browser would have to keep track of these selectors, and then perform
additional passes of applying styles when processing the document.

 There is, however, a proposed version of the previous sibling selector that is being considered for standardization,
but so far the idea is to restrict its validity to special uses of CSS selectors, like when they are being evaluated
in JavaScript, so even when that standard is shipped in browsers, it might not work the way you hope.

 The Universal Selector
 The universal selector acts like a wildcard, matching any element. Like wildcards in other languages, the
universal selector is denoted by an asterisk. Used by itself, the universal selector matches every element in
the page. It could be tempting to use it to remove the default browser padding and margin on every element
using the following rule:

 * {
 padding: 0;
 margin: 0;
 }

 This can have a number of unforeseen circumstances, particularly in the formatting of form UI elements
such as the button and select elements. It is better to be more explicit about what you are resetting, as in
this example:

 h1, h2, h3, h4, h5, h5, h6,
 ul, ol, li, dl, p {
 padding: 0;
 margin: 0;
 }

 Fortunately, there are a number of small, open source libraries that can deal with this for you. Good
examples are Eric Meyer’s CSS Reset (http://meyerweb.com/eric/tools/css/reset/) and Nicolas
Gallagher’s Normalize.css (http://necolas.github.com/normalize.css/). The latter takes a slightly
different approach: rather than resetting margins and padding to 0, Normalize.css ensures that all elements
start off with a consistent styling across browsers. We consider this to be a slightly safer set of defaults than
simply resetting everything to 0.

 Of course, you don’t have to use the universal selector only for setting properties on every element in
the document. You can also use it together with combinators where you want to target specific nesting levels,
where the nesting level is important but not the type of element. As an example:

 .product-section > * {
 /* ... */
 }

http://meyerweb.com/eric/tools/css/reset/
http://necolas.github.com/normalize.css/

CHAPTER 2 ■ GETTING YOUR STYLES TO HIT THE TARGET

21

 This would target any elements that are direct descendants of elements with the product-section
class name, but without caring about the type or attributes of the descendants of product-section . This
technique is useful when you want to target these elements without increasing specificity—we will address
specificity further ahead in this chapter.

 Attribute Selectors
 As the name suggests, the attribute selector allows you to target an element based on the existence of an
attribute or the attribute’s value. This allows you to do some very interesting and powerful things.

 For example, when you hover over an element with a title attribute, most browsers will display a
tooltip. You can use this behavior to expand the meaning of things such as acronyms and abbreviations,
represented by the <abbr> element:

 <p>The term <abbr title="self-contained underwater breathing apparatus">SCUBA</abbr> is an
acronym rather than an abbreviation as it is pronounced as a word.</p>

 However, there is no way to tell that this extra information exists without hovering over the element.
To get around this problem, you can use the attribute selector to style abbr elements with titles differently
from other elements—in this case, by giving them a dotted bottom border. You can provide more contextual
information by changing the cursor from a pointer to a question mark when the cursor hovers over the
element, indicating that this element is different from most.

 abbr[title] {
 border-bottom: 1px dotted #999;
 }

 abbr[title]:hover {
 cursor: help;
 }

 In addition to styling an element based on the existence of an attribute, you can apply styles based on
a particular value. For instance, this could be used to fix an inconsistency in which cursor browsers display
when hovering on a submit button. With the following rule in place, all input elements with a type attribute
value of submit will display a hand pointer when the mouse is over them:

 input[type="submit"] {
 cursor: pointer;
 }

 Since we might be interested in patterns in the values of the attribute rather than the exact value, the
attribute selector allows for more granular ways of matching these attributes. By adding a special character
before the equals-sign, we can indicate what type of matching we are interested in.

 To match a value at the beginning of an attribute, use a caret character (^) before the equals-sign.

 a[href^="http:"]

 To match a value at the end of an attribute, use a dollar-sign ($) .

 img[src$=".jpg"]

CHAPTER 2 ■ GETTING YOUR STYLES TO HIT THE TARGET

22

 To match a value anywhere in an attribute, use an asterisk (*) .

 a[href*="/about/"]

 To match a value in a space-separated list of strings (such as values in rel attributes), use a
tilde-character (~) .

 a[rel~=next]

 There’s also an attribute selector that selects elements where the start of the value matches, either by
itself or immediately followed by a dash. For this kind of matching, use a pipe-character (|) .

 a[hreflang|=en]

 This example will match both attribute values en and en-us and hints at the intention with this selector:
it’s handy for selecting elements with a specific language code in the attribute value, since these are dash-
separated. Technically, you could use it with the class attribute to match class names, such as message and
 message-error respectively, but that wouldn’t be very portable: if you put another class before the message
class in your HTML, like class="box message" , the selector wouldn’t work.

 Pseudo-Elements
 There are times when you would like to target a part of the page that is not represented by an element, but
you don’t want to litter your page with extra markup. CSS provides a short list of ways to do this, for some of
the most common cases. These are known as pseudo-elements .

 To start with, you can target the first letter of a piece of text by using the ::first-letter pseudo-
element. The first line of each piece of text can be targeted with the ::first-line version.

 There are also pseudo-elements corresponding to a hypothetical element that exists at the beginning
and end of a piece of content, using the ::before and ::after pseudo-elements respectively. This is
extremely useful for inserting small symbols and typographic embellishments, and generally acts as a hook
for creating visual effects that you’d otherwise attach to a real element. One way of doing this is to insert
content in the form of text with the content property, but feel free to style the pseudo-element just as you
would style any other element, using backgrounds, borders, etc.

 ■ Caution Be careful when using pseudo-elements to inject content! Don’t use them for adding any form
of text content that your users couldn’t do without, in case your CSS doesn’t load correctly. Also be aware
that screen readers don’t have a standard way to interpret the content of pseudo-elements: some ignore it,
others read it.

 Putting these pseudo-elements together into an example can give us something like Figure 2-3 with a
minimum of markup.

CHAPTER 2 ■ GETTING YOUR STYLES TO HIT THE TARGET

23

 Here’s an abbreviated version of the HTML and CSS to achieve this.
 HTML:

 <h1>A Study In Scarlet</h1>
 <section class="chapter">
 <p>In the year 1878 I took my degree of Doctor of Medicine of the University of London,
and proceeded to Netley to go through the course prescribed for surgeons in the army. Having
completed my studies there, I was duly attached to the Fifth Northumberland Fusiliers as
Assistant Surgeon.</p>
 </section>

 CSS:

 .chapter::before {
 content: '”';
 font-size: 15em;
 }
 .chapter p::first-letter {
 float: left;
 font-size: 3em;
 font-family: Georgia, Times, "Times New Roman", serif;
 }

 .chapter p::first-line {
 font-family: Georgia, Times, "Times New Roman", serif;
 text-transform: uppercase;
 }

 As you can see, we’ve used the ::first-letter pseudo-element to create a drop-cap letter in a
different font at the beginning of the paragraph. The first line is transformed into uppercase and is also
using a different font with the ::first-line pseudo-element. We’ve also added a decorative quote mark
inside the chapter container, using the ::before pseudo-element. All of this without having to add a single
superfluous element! Handy indeed.

 We’ll take a closer look at more typographic techniques in Chapter 4 .

 Figure 2-3. The opening paragraph from the Sherlock Holmes novel A Study in Scarlet , given some
typographic treatment with the help of pseudo-elements

http://dx.doi.org/10.1007/978-1-4302-5864-3_4

CHAPTER 2 ■ GETTING YOUR STYLES TO HIT THE TARGET

24

 ■ Tip Pseudo-elements are supposed to use the double-colon syntax that we’ve seen so far, to distinguish
them from pseudo-classes, which you will see in the next section use a single colon. However, pseudo-
elements were introduced with single-colon syntax in older browsers, and still work written that way. So for
compatibility’s sake, you can still use the single-colon syntax for some pseudo-elements, and we have done so
where appropriate for the examples in this book.

 Pseudo-Classes
 There are instances where you may want to style an element based on something other than the structure of
the document—for instance, the state of a hyperlink or form element. This can be done using a pseudo-class
selector. These selectors, starting with a colon character (:) are used to target a specific state or relationship
found in the element you apply them to.

 Some of the most common pseudo-class selectors can be used for styling links, as follows, and should
always be included in your basic set of styles targeting the most common HTML elements:

 /* makes all unvisited links blue */
 a:link {
 color: blue;
 }
 /* makes all visited links green */
 a:visited {
 color: green;
 }
 /* makes links red on mouse hover, keyboard focus */
 a:hover,
 a:focus {
 color: red;
 }
 /*...and purple when activated. */
 a:active {
 color: purple;
 }

 The order of these pseudo-class selectors is important. The :link and :visited rules need to come
first, followed by those related to a user’s interaction. The :hover and :focus selectors will override :link
and :visited as the user hovers over or gives keyboard focus to the links, finally followed by :active as
they click or select the link with a keyboard. Links are interactive content, and can be focused and activated
by default. There are plenty of other elements that are interactive by default, like form fields and buttons,
so these pseudo-classes work for them too. You can also make other elements interactive by using JavaScript.

 Finally, you can use the :hover pseudo-class for pretty much any element, but keep in mind that input
methods like touchscreens and keyboards don’t really have hover states—so don’t use :hover for essential
functionality.

CHAPTER 2 ■ GETTING YOUR STYLES TO HIT THE TARGET

25

 Targets and Negations
 Another useful pseudo-class is : target , which matches any element that has an ID attribute that is currently
represented in the URL hash of the page. If we were to go to http://example.com/blog/1/#comment-3 and
find a comment on that page marked up as <article class="comment" id="comment-3">...</article> ,
we could highlight that comment with a pale yellow background using the following rule:

 .comment:target {
 background-color: #fffec4;
 }

 Now, what if we wanted to highlight that comment, but only if it’s not one of those grayed-out,
downvoted comments whose contents are hidden? Well, there’s a selector for excluding certain selectors
as well. Meet the negation pseudo-class, or :not() selector! Provided we have a special class name on
comments that are marked as “downvoted,” we could change our rule to this:

 .comment:target:not(.comment-downvoted) {
 background-color: #fffec4;
 }

 The negation pseudo-class works with pretty much any type of selector you throw into the parentheses,
except for pseudo-elements and itself.

 Structural Pseudo-Classes
 CSS 3 introduced a host of new pseudo-classes relating to document structure. The most common of these is
the nth-child selector, which could be used to style alternate rows of a table:

 tr:nth-child(odd) {
 background: yellow;
 }

 This would style the first and then every alternate row in a table with a yellow background. The nth-
child selector acts as a function that can accept a number of different expressions as arguments. It will accept
the keywords odd and even , as indicated in the preceding example. It can also be a number representing the
ordinal position of the targeted elements, such as in the following example, which will set the third row of all
tables in a bold font:

 tr:nth-child(3) {
 font-weight: bold;
 }

 Things start to get a little more complex at this point when we look at the support for number
expressions; for example:

 tr:nth-child(3n+4) {
 background: #ddd;
 }

http://example.com/blog/1/#comment-3

CHAPTER 2 ■ GETTING YOUR STYLES TO HIT THE TARGET

26

 The number 4 in the previous expression relates to the ordinal position of the first element we want to
target, in this case the fourth table row. The number 3 relates to the ordinal position of every element to target
after the first. So in the previous example the nth-child selector would match the fourth, seventh, tenth, and so
on rows in the table, as shown in Figure 2-4 . To get a little bit into the math here, the n inside the parentheses
in the expression is replaced with a number, starting with zero and then increasing by 1 until there are no
more elements to match.

 Figure 2-4. A table where the rows are styled using :nth-child(3n+4) . The expression is evaluated with n as a
number, starting with 0 and then increasing by 1 as long as there are matches

 You can do all sorts of crazy stuff with these expressions. For example, instead of adding a number, you
could subtract a number—so we could do :nth-child(3n-4) and get a different result. The same goes for
the number before the n , or n itself—changing that to negative can give you some interesting results. For
example, the expression :nth-child(-n+3) would select only the first three elements!

 There are other pseudo-class selectors that support these types of expressions, such as the following:

 :nth-last-child(N)

 The :nth-last-child selector operates in a very similar way to the :nth-child selector, except that it
counts back from the last child element, rather than counting up from the first.

 Back in CSS 2.1 there was a pseudo-element for the first child, sensibly named :first-child , so :nth-
child(1) can be written more simply using that. The Level 3 selectors specification adds a corresponding
one for the last child, named (you guessed it) :last-child, corresponding to :nth-last-child(1) . There’s also
 :only-child and :only-of-type . The :only-of-type selector applies to an element if it is the only child
element that is of a particular element type. We can get more advanced with targeting elements of a certain
type by using these pseudo-class selectors:

 :nth-of-type(N)
 :nth-last-of-type(N)

 These two pseudo-class selectors behave in the same way as the :nth-child selectors, except they
ignore (and do not count) any element that is not of the element type they have been applied to. This gives
us opportunities to create some incredibly efficient patterns, without tying the selectors too hard to the
markup.

CHAPTER 2 ■ GETTING YOUR STYLES TO HIT THE TARGET

27

 Getting Clever with Structural Pseudo-Classes
 You can do a lot using just the structural pseudo-classes: they give you a great deal of precision when
selecting elements based on their position in the document and their environment. For example, it’s
possible to select items based on how many child elements of a certain type there are, which makes it
possible to style things like grid columns based on the total number of items. This is achieved by using a
combination of the :nth-last-of-type pseudo-selector and the :first-child selector. Here’s an example
that matches when something contains four “columns”, providing the columns have the same element type:

 .column:nth-last-of-type(4):first-child,
 .column:nth-last-of-type(4):first-child ~ .column {
 /* Rules for when there is exactly four .column elements */
 }

 When this selector matches, it means that the fourth element from the end is also the first element, ergo
there are four elements of the same type with the .column class. We also include the adjacent sibling selector
to make sure we select all of the rest of the columns. Pretty neat, huh?

 Note that the numbered matching does not count only elements with the class name column : it selects
all elements with that class name, and then counts items based on them having the same element type .
In the Selectors Level 4 spec, there is a proposal for filtering matches, using the of keyword followed by a
selector inside the parentheses:

 :nth-child(2 of .column):first-child {}

 Sadly, this arguably more useful flavor of the structural pseudo-classes is not widely available in
browsers yet.

 Structural selectors in general have wide support, but are missing in Internet Explorer 8 and earlier. If
you need to support these legacy browsers, you may want to restrict this technique to small enhancements,
and instead use markup hooks to target elements for overall layout patterns.

 For some further inspiration on styling based on element count, see Heydon Pickering’s article
”Quantity Queries for CSS” (http://alistapart.com/article/quantity-queries-for-css).

 Form Pseudo-Classes
 There are a number of pseudo-classes specifically for targeting elements within forms. These can be used to
reflect the state of certain form inputs depending on how the user interacts with them.

 For instance, HTML5 introduced several new attributes for form inputs, some of which we looked at in
Chapter 1 . One of these new attributes is the required attribute:

 <label for="field-name">Name: </label>
 <input type="text" name="field-name" id="field-name" required >

 If you wanted to visually highlight the required field to make it more obvious to users, you could use
the :required pseudo-class to target form elements with the required attribute, and make the border of the
input a different color (see Figure 2-5):

 input:required {
 outline: 2px solid #000;
 }

www.allitebooks.com

http://alistapart.com/article/quantity-queries-for-css
http://dx.doi.org/10.1007/978-1-4302-5864-3_1
http://www.allitebooks.org

CHAPTER 2 ■ GETTING YOUR STYLES TO HIT THE TARGET

28

 Similarly, we can style inputs that don’t have the required attribute using

 input:optional {
 border-color: #ccc;
 }

 We also have pseudo-classes to help style valid and invalid fields. If an input element requires a specific
valid type such as an e-mail address, there are a range of different input types defined in HTML5 that we can
use in the type attribute:

 <input type="email" />

 This element can then be styled based on the validity of the current value of the input using the
following styles (Figure 2-6 shows an example of invalid input):

 /* When the field contains a valid email address: */
 input[type="email"]:valid {
 border-color: green;
 }
 /* When the contents are not a valid email address: */
 input[type="email"]:invalid {
 border-color: red;
 }

 Figure 2-6. The last field is not a valid e-mail address and is given a distinctly different outline with the
 :invalid pseudo-class. On screen you will see this invalid e-mail address outlined in red

 Figure 2-5. Using the :required pseudo-class to give required fields a darker border

CHAPTER 2 ■ GETTING YOUR STYLES TO HIT THE TARGET

29

 There are also numerous other pseudo-classes for forms, such as :in-range and :out-of-range for
targeting inputs with a type of number , :read-only for inputs with a readonly attribute, and :read-write
for inputs with no readonly attribute. To learn more about these pseudo-classes, you can get the goods from
MDN at https://developer.mozilla.org/docs/Web/CSS/Pseudo-classes .

 The Cascade
 With even a moderately complicated style sheet, it is likely that two or more rules will target the same
element. CSS handles such conflicts through a process known as the cascade , a concept important enough
that it’s right there in the name—Cascading Style Sheets. The cascade works by assigning an importance
to each rule. Author style sheets are those written by the site developers and are considered the most
important. Users can apply their own styles via the browser settings, and these styles are considered the
next most important. Finally, the default style sheets used by your browser or user agent are given the least
importance, so you can always override them. To give users more control, they can override any rule by
specifying it as !important , even a rule flagged as !important by the author. The !important annotation is
added to the end of a property declaration, and looks like this when used in a rule:

 p {
 font-size: 1.5em !important;
 color: #666 !important;
 }

 The reason for letting users override rules using !important is to support specific accessibility needs,
such as allowing users with certain forms of dyslexia to use a medium-contrast user style sheet.

 So the cascade works in the following order of importance:

• User styles flagged as !important

• Author styles flagged as !important

• Author styles

• User styles

• Styles applied by the browser/user agent

 Rules are then ordered by how specific the selector is. Rules with more specific selectors override those
with less specific ones. If two rules are equally specific, the last one defined takes precedence.

 Specificity
 To calculate how specific a rule is, each type of selector is assigned a numeric value. The specificity of a rule
is then calculated by adding up the value of each of its selectors. Unfortunately, specificity is not calculated in
base 10 but a high, unspecified, base number, meaning that ten class selectors (or forty-three, for that matter)
is not equal or greater in specificity than one ID selector. This is to ensure that a highly specific selector, such
as an ID, is never overridden by lots of less specific selectors, such as type selectors. However, if you have
fewer than ten selectors in a specific rule, you can calculate specificity in base 10 for simplicity’s sake.

 The specificity of a selector is broken down into four constituent levels: a, b, c and d.

• If the style is an inline style, a equals 1.

• b equals the total number of ID selectors.

https://developer.mozilla.org/docs/Web/CSS/Pseudo-classes

CHAPTER 2 ■ GETTING YOUR STYLES TO HIT THE TARGET

30

• c equals the number of class, pseudo-class, and attribute selectors.

• d equals the number of type selectors and pseudo-element selectors.

 Using these rules, it is possible to calculate the specificity of any CSS selector. Table 2-1 shows a series of
selectors, along with their associated specificity.

 Table 2-1. Specificity examples

 Selector Specificity Specificity in Base 10

 Style="" 1,0,0,0 1000

 #wrapper #content {} 0,2,0,0 200

 #content .datePosted {} 0,1,1,0 110

 div#content {} 0,1,0,1 101

 #content {} 0,1,0,0 100

 p.comment .datePosted {} 0,0,2,1 21

 p.comment{} 0,0,1,1 11

 div p {} 0,0,0,2 2

 p {} 0,0,0,1 1

 At first glance, all this talk of specificity and high but undefined based numbers may seem a little
confusing, so here’s what you need to know. Essentially, a rule written in a style attribute will always be more
specific than any other rule. A rule with an ID will be more specific than one without an ID, and a rule with
a class selector will be more specific than a rule with just type selectors. Finally, if two rules have the same
specificity, the last one defined prevails, due to the cascade coming into effect.

 ■ Note The universal selector (*) always has a specificity of 0, regardless of how many times or where it
appears in a chain of selectors. We will show an example of how this can produce some unexpected results in
the “Inheritance” section a bit later.

 Order of Rules when Resolving the Cascade
 The fact that the last rule defined takes precedent when two rules have the same specificity is an important
one. It means that you have to consider where to place your rules in your style sheets, and the order of your
selectors.

 A good example of the cascade in action is when using pseudo-classes on the link element as described
earlier. Because each of the selectors has the same specificity, the order in which they are declared becomes
important. If you had the a:visited selector after the a:hover selector, once you had visited the link, the
hover style would not show up again due to it being overridden by the :visited style. This does not seem
intuitive until you understand the details of specificity and the cascade. A handy mnemonic to remember
the order in which link pseudo-classes should go is “ L ord V ader H ates F urry A nimals.” So you should start
with the :link pseudo-class, followed by :visited , :hover , :focus , and finally :active .

CHAPTER 2 ■ GETTING YOUR STYLES TO HIT THE TARGET

31

 Managing Specificity
 Understanding specificity is crucial to writing good CSS, and it’s one of the most difficult aspects to control
and manage on larger sites. Specificity allows you to set general styles for common elements and then
override them for more specific elements. In the following example we’ve set some rules for different types
of introductory text. We have a basic introductory text color of gray, overriding the default of black on the
body. On the homepage, the intro text is black with a light-gray background, and links inside it are green.

 body {
 color: black;
 }
 .intro {
 padding: 1em;
 font-size: 1.2em;
 color: gray;
 }
 #home .intro {
 color: black;
 background: lightgray;
 }
 #home .intro a {
 color: green;
 }

 This has introduced a number of rules with a wide range of specificity to them. This isn’t likely to cause
any problems on a smaller site, but as a codebase grows and more and more styles effect a page, these kind
of rules can get difficult to manage, because to apply any further rules to the homepage intro text requires a
selector with at least one ID and a class.

 For example, let’s say we have another component with a call-to-action link that is styled to look a bit
more like a button, simply by using a background color and some padding:

 a.call-to-action {
 text-decoration: none;
 background-color: green;
 color: white;
 padding: 0.25em;
 }

 What happens if we want to add a call-to-action link inside the homepage intro? Well, it would look
bad, to put it mildly, since the text wouldn’t be visible: the selector for links in the homepage intro would
override our “button” styles and create green text on a green background (see Figure 2-7).

CHAPTER 2 ■ GETTING YOUR STYLES TO HIT THE TARGET

32

 To mitigate this, we would need to increase the specificity in some way, possibly with another, more
powerful selector on the call-to-action component:

 a.call-to-action,
 #home .intro a.call-to-action {
 text-decoration: none;
 background-color: green;
 color: white;
 padding: 10px;
 }

 Having to one-up your rules like this as a style sheet grows can result in a specificity arms race that ends
up overcomplicating your code.

 A better approach would be to simplify your selectors and reduce their specificity:

 body {
 color: black;
 }
 .intro {
 font-size: 1.2em;
 color: gray;
 }

 .intro-highlighted {
 color: black;
 background: lightgray;
 }
 .intro-highlighted a {
 color: green;
 }
 a.call-to-action {
 text-decoration: none;
 background-color: green;
 color: white;
 padding: 10px;
 }

 Figure 2-7. The call-to-action component inside the home page intro. The link styling for the intro (#home .intro a)
is more specific than the styling for the component (a.call-to-action), giving us green text on a green background

CHAPTER 2 ■ GETTING YOUR STYLES TO HIT THE TARGET

33

 We’ve done two things by rewriting the previous code. First, we’ve removed the ID selector, which
reduces the specificity of these selectors to a minimum. We’ve also removed any reference to the context of
an intro. Instead of talking about an intro on the homepage, we’ve made the homepage intro (renamed to
“highlighted intro”) a more specific version of the original intro. You’d now use those intro classes like this:

 <p class="intro">A general intro</p>
 <p class="intro intro-highlighted">We might need to use this on the homepage, or in the
future, on a promo page.</p>

 This simpler and more targeted approach gives authors fine-grained control over their styles. The intro-
highlighted links no longer override the call-to-action link color, and you have the added benefit of being
able to reuse the intro-highlighted component on other pages without changing the CSS.

 Specificity and Debugging
 Specificity can be extremely important when fixing bugs, as you need to know which rules take precedence
and why. For instance, say you had the following set of rules. What color do you think the two headlines
would be, at a quick glance?

 #content #main h2 {
 color: gray;
 }

 div > #main > h2 {
 color: green;
 }

 #content > [id="main"] .news-story:nth-of-type(1) h2.first {
 color: hotpink;
 }
 :root [id="content"]:first-child > #main h2:nth-last-child(3) {
 color: gold;
 }

 The HTML:

 <div id="content">
 <main id="main">
 <h2>Strange Times</h2>
 <p>Here you can read bizarre news stories from around the globe.</p>
 <div class="news-story">
 <h2 class="first">Bog Snorkeling Champion Announced Today</h2>
 <p>The 2008 Bog Snorkeling Championship was won by Conor Murphy
 with an impressive time of 1 minute 38 seconds.</p>
 </div>
 </main>
 </div>

CHAPTER 2 ■ GETTING YOUR STYLES TO HIT THE TARGET

34

 The answer, surprisingly, is that both headlines are gray. The first selector has the highest specificity
because it’s made up of two ID selectors. Some of the later selectors may look more complicated, but
because they contain only one ID, they will always lose out against the more specific selectors. It’s worth
noting that even if some of the selectors contain references to the ID attribute of the HTML, they are still only
attribute selectors, and have a lower specificity. This can be a useful tool if you only have ID attributes to
hook your styles into, and don’t want to give your rules a specificity that is too high.

 Debugging specificity issues can be a tricky business, but fortunately there are tools that can help you
out. All modern browsers have developer tools built into them that make it very clear how specificity is
being applied to a particular element. In Chrome, the Developer Tools (DevTools) allow you to “inspect an
element” and will list all of the CSS selectors and rules that match it, including browser defaults. Figure 2-8
shows the second h2 from the previous example code, proving that the second heading is in fact gray due to
the very first most specific selector.

 Figure 2-8. Taking a look at what rules actually get applied, via the Google Chrome Developer Tools

 Inheritance
 People often confuse inheritance with the cascade. Although they seem related at first glance, the two
concepts are actually quite different. Luckily, inheritance is a much easier concept to grasp. Certain
properties, such as color or font size, are inherited by the descendants of the elements those styles are
applied to. For instance, if you were to give the body element a text color of black, all the descendants of the
 body element would also have black text. The same would be true of font sizes.

 If you set the font size on the body , you will notice that this style is not picked up by any headings on the
page. You may assume that headings do not inherit text size. But it is actually the browser default style sheet
that sets the heading size. Any style applied directly to an element will always override an inherited style.
This is because inherited styles have a null specificity.

 Inheritance is very useful, as it lets you avoid having to add the same style to every descendant of an
element. If the property you are trying to set is an inherited property, you may as well apply it to the parent
element. After all, what is the point of writing:

 p, div, h1, h2, h3, ul, ol, dl, li {color: black;}

 when you can just write the following?

 body {color: black;}

CHAPTER 2 ■ GETTING YOUR STYLES TO HIT THE TARGET

35

 Inherited property values have no specificity at all, not even zero. This means that properties set via the
universal selector, which has a specificity of zero, will override inherited properties. This gives us the perhaps
unexpected situation shown in Figure 2-9 , where the color set by the universal selector overrides the color
inherited from the heading:

 * {
 color: black;
 }
 h2 {
 color: red;
 }

 <h2>The emphasized text will be black</h2>

 Setting a basic color on the body element instead would have been a better choice for this situation, so
that color was inherited rather than set for all other elements.

 Just as sensible use of the cascade can help simplify your CSS, good use of inheritance can help to
reduce the number and complexity of the selectors in your code. It you have lots of elements inheriting
various styles, though, determining where the styles originate can become confusing.

 Applying Styles to your Document
 As you are writing CSS you need to know how to apply those styles to a given HTML document. There are
various methods of doing this, each with its own advantages and disadvantages .

 The Link and Style Elements
 You can add styles directly to the head of a document by placing them in a style element :

 <style>
 body {
 font-family: Avenir Next, SegoeUI, sans-serif;
 color: grey;
 }
 </style>

 Sometimes this is useful if you have a small number of styles that you want applied to the page immediately,
and you don’t want the overhead of the browser downloading a separate file. However, you’ll typically want
to apply styles from an external style sheet that can be easily reused across other pages. There are two ways to
attach external style sheets to a web page. The most common approach is to use the link element:

 <link href="/c/base.css" rel="stylesheet" />

 Figure 2-9. The universal selector has a specificity of 0, but it still beats inherited properties

CHAPTER 2 ■ GETTING YOUR STYLES TO HIT THE TARGET

36

 This directs the browser to download the base.css file and apply any styles it contains to the page. You
can add this to as many HTML pages as you wish, so it is a good way of reusing a set of styles across multiple
pages, and even across multiple sites.

 You can also use the @import directive to load an external CSS file:

 <style>
 @import url("/c/modules.css");
 </style>

 The @import directive can be used in a style block in the head of your HTML document, or alternatively
it can be used inside an external style sheet itself. The latter use means including one external CSS file on
your page might result in subsequent CSS files being loaded in by the browser.

 Using the link element or the @import directive achieves much the same result on the face of it, but
there are some important considerations that make link preferable to @import that we’ll discuss in the
upcoming section on performance.

 When adding styles to your page, don’t forget that order matters for the cascade: when two or more
rules with the same specificity compete over setting properties on an element, the one declared last wins.

 When you add several link elements referencing style sheets to your HTML, or add style elements,
their place in terms of declaration order is determined by their order in the HTML source. Consider the
following snippet from the head of an HTML element, where all of the referenced style sheets and style
elements declare a different color for the h1 element, with the same specificity:

 <link rel="stylesheet" href="css/sheet1.css">
 <style>
 @import 'css/sheet3.css';

 h1 {
 color: fuchsia;
 }
 </style>
 <link rel="stylesheet" href="css/sheet2.css">

 In this scenario, the order of declarations would be like this:

 1. Declaration from sheet1.css

 2. Declaration from sheet3.css, imported inside the style element

 3. Declaration from inside the style element

 4. Declaration from sheet2.css

 The winning declaration would be the one in sheet2.css , since it’s the last one in the list.

 Performance
 Which way you choose to load CSS into the page is the single biggest option you have for controlling how
quickly your page will be displayed by browsers (assuming the HTML page itself loads fast!).

 An important metric in web performance is the time it takes for content to begin being displayed on the
screen. This is sometimes called “time to render” or “time to glass.”

 Modern browsers need a minimum of two things before they start rendering content on the screen:
HTML and CSS. This means that getting the browser to download the HTML and all the CSS as quickly as
possible is extremely important.

CHAPTER 2 ■ GETTING YOUR STYLES TO HIT THE TARGET

37

 Don’t be tempted to delay CSS loading by putting it in the body or near the footer. Browsers respond
best when they have up front all the CSS information they need to lay out a page. That way they can start to
understand what the page will look like and render the page to the screen in one go, rather than constantly
having to readjust as new styles are loaded in.

 Reducing HTTP Requests
 It is important when linking to external style sheets that you keep the number of files to a minimum.
Each additional file results in an extra HTTP request , and the act of requesting a file from the server adds
significant overhead to the time it takes for the browser to download and apply all the styles. An extra HTTP
request means extra data being sent from the browser, such as cookies and request headers. The server then
has to send back response headers for each request. Two files will always result in more data being sent
between the browser and the server than one file with the same actual CSS content.

 Always try and keep the number of CSS files you deliver in a live website to just one or two. Using just
one link element to load a CSS file and then using @import inside that one does not mean that the browser
only uses one request: on the contrary, it means it needs one request for the linked file, and then subsequent
requests to fetch all the imported files. So avoid using @import (at least on a live site).

 Compressing and Caching Content
 It’s also very important that any files you use on a live site are compressed using GZIP. CSS compresses very
effectively because it has many repeated patterns such as property names and values. In many cases it’s
possible to reduce the size of a CSS file by 70–80%, and that can lead to significant reductions in bandwidth
and load time for users. Most web servers have a mechanism for enabling automatic compression of content
to browsers that support it.

 Similarly, it’s important that you direct your web server to set appropriate cache times for your CSS files.
Ideally you want users’ browsers to download a CSS file once, and never again until it changes. The strategies
for this involve setting various HTTP headers that instruct the browser to cache the files for a very long time,
and then “cache busting” by updating the name of the file if anything changes.

 The details of how this works is somewhat outside of the scope of this book. You may need the
support of your hosting provider or your company’s system administrators to help configure servers, but
compressing and correctly caching content are the two most important things you can do to improve
performance for your sites.

 Avoid Render-Blocking JavaScript
 When you add a <script> element in the <head> element of your HTML document, the browser has to
download that file before it can start showing your HTML content to the user. As the evaluation of HTML and
CSS is completely stopped until the script is downloaded and executed; this is known as ” render-blocking ”.
This can considerably slow down how fast your site appears to load.

 This has led to the recommendation of loading JavaScript at the bottom of the HTML page immediately
before the closing </body> tag:

 <!-- Load scripts last -->
 <script src="/scripts/core.js"></script>
 </body>

CHAPTER 2 ■ GETTING YOUR STYLES TO HIT THE TARGET

38

 A more modern approach is to use the <script> tag inside of <head> together with the async and defer
attributes. A <script> tag that has the async attribute set will download the source file while the HTML
continues to be evaluated, but stops HTML evaluation to execute the script once it’s downloaded. The defer
attribute will have a similar effect, but waits until the HTML evaluation is completely done until it executes
the downloaded script. Which one is right depends on what the script itself does.

 <head>
 <!-- will load asynchronously, but execute immediately when downloaded -->
 <script src="/scripts/core.js" async></script>
 <!-- will load asynchronously, but execute after HTML is done-->
 <script src="/scripts/deferred.js" defer></script>
 </head>

 By using either of these methods to load JavaScript, you ensure that both the HTML content and the
CSS can be parsed and displayed by the browser without being delayed by requests for JavaScript files.
Which method you choose is mostly a matter of browser support: the async and defer attributes are part
of the HTML5 standard, and thus newer. Most notably, Internet Explorer prior to version 10 has missing or
partial support.

 Summary
 In this chapter you have reacquainted yourself with the common CSS selectors as well as learned about
some powerful new selectors you may not have come across before. You now have a better understanding
of how specificity works and how you can use the cascade to structure your CSS rules and help them hit
the target. We had a first look at how you can avoid getting into a specificity arms race, and how to use your
understanding of specificity, the cascade, and inheritance to your advantage. You have also learned about
how to apply CSS to a document and some of the ways this can impact the performance of your web pages.

 In the next chapter, you will learn about the CSS box model, how and why margins collapse, and how
floating and positioning really work.

39© Andy Budd and Emil Björklund 2016
A. Budd and E. Björklund, CSS Mastery, DOI 10.1007/978-1-4302-5864-3_3

 CHAPTER 3

 Visual Formatting Model Overview

 Some of the most important CSS concepts to grasp are floating, positioning, and the box model. These
concepts control the way elements are arranged and displayed on a page and form the basis of many layout
techniques. More recently, new standards specifically designed to control layout have been introduced,
and we will look at these individually in forthcoming chapters. However, the concepts that you learn in
this chapter will help you fully grasp the intricacies of the box model, the difference between absolute
and relative positioning, and how floating and clearing actually work. Once you have a firm grasp of these
fundamentals, developing sites using CSS becomes that much easier.

 In this chapter you will learn about:

• The intricacies of the box model

• How and why margins collapse

• The different positioning properties and values

• How floating and clearing work

• What a formatting context is

 Box Model Recap
 The box model is one of the cornerstones of CSS and dictates how elements are displayed and, to a certain
extent, how they interact with each other. Every element on the page is considered to be a rectangular box
made up of the element’s content, padding, border, and margin (see Figure 3-1).

CHAPTER 3 ■ VISUAL FORMATTING MODEL OVERVIEW

40

 Padding is applied around the content area. If you add a background to an element, it will be applied
to the area formed by the content and padding. As such, padding is often used to create a gutter around
content so that it does not appear flush to the side of the background. Adding a border applies a line to the
outside of the padded area. These lines come in various styles such as solid, dashed, or dotted. Outside the
border is a margin. Margins are the transparent space outside of the visible parts of the box, allowing you to
control the distance between elements in the page.

 Another property that can be applied to boxes, but does not affect their layout, is the outline property,
which draws a line around an element’s border box. It does not affect the box’s width or height, and can be
useful when debugging complex layouts or demonstrating a layout effect.

 Padding, borders, and margins are optional and default to zero. However, many elements will be given
margins and padding by the user-agent style sheet. For example, headings always receive some margins by
default, although these vary depending on the browser. You can of course override these browser styles in your
own style sheets, either on specific elements or by employing a reset style sheet, as discussed in Chapter 2 .

 Box-Sizing
 By default, the width and height properties of a box refer to the width and height of the content box —the
rectangle formed by the edges of an element’s rendered content. Adding borders and padding will not
affect the size of the content box but will increase the overall size of an element’s box. If you wanted a box
with a 5-pixel border and a 5-pixel padding on each side to be 100 pixels total width, you would need to set
the width of the content to be 80 pixels, as shown next. If the box also has a margin around it of 10 pixels, it
would occupy a space that is 120 pixels wide in total (see Figure 3-2).

 .mybox {
 width: 80px;
 padding: 5px;
 border: 5px solid;
 margin: 10px;
 }

Content Area

Padding

Border

Margin

 Figure 3-1. An illustration of the box model

http://dx.doi.org/10.1007/978-1-4302-5864-3_2

CHAPTER 3 ■ VISUAL FORMATTING MODEL OVERVIEW

41

 You can change the way the width of a box is calculated using the box-sizing property. The default
value for box-sizing is content-box and applies the behavior described so far. However, it is very useful
to be able to have the width and height properties affect more than just the content box, particularly in
responsive layouts.

 ■ Note some form control elements (like input) may have different box-sizing default values in some
browsers. This is due to compatibility with legacy behavior where it wasn’t possible to change things like
padding or borders.

 If you set the box- sizing property to a value of border-box , as shown next, then the width and height
properties will include the space required for the padding and borders of the box (see Figure 3-3). The margin
still affects the overall size the element occupies on the page, but is still not included in the measurement
given by the width . You could achieve the same overall layout show in Figure 3-2 with these rules:

 .mybox {
 box-sizing: border-box;
 width: 100px;
 padding: 5px;
 border: 5px;
 margin: 10px;
 }

padding: 5px

border: 5px

margin: 10px

120px

10px 5px 10px5px 5px 5px

100px

80px

width: 80px

 Figure 3-2. The default box model. The width property applies to the content area

CHAPTER 3 ■ VISUAL FORMATTING MODEL OVERVIEW

42

 So why is this useful? Well, in many ways this is a much more intuitive way of dealing with boxes, and
in fact was the way that the box model worked in old versions of Internet Explorer before IE6. It is “intuitive”
because, when you think about it, this is how boxes work in the real world.

 Imagine a CSS box as being like a packing crate. The walls of the box act as a border and provide visual
definition, while the padding goes on the inside to protect the contents. If the box needs to be a specific
width, adding more padding or increasing the thickness of the walls eats into the available content space.
Now if you need to space the boxes out before you stack them, the space between each box (effectively
the margin) has no effect on the width of the box itself, or indeed the amount of available content space.
This feels like a more logical solution, so it’s a shame that the browser developers, including Microsoft in
subsequent versions of IE, decided to go in a different direction.

 Fortunately, the box-sizing property allows us to override the default behavior and simplify some
common patterns in CSS layout. Take the following example:

 <div class="group">
 <article class="block">
 </article>
 </div>

 If we want to ensure that the width of any .block inside our .group is always one-third of the width of
its containing column, we could apply the following rule:

 .group .block {
 width: 33.3333%;
 }

padding: 5px

border: 5px

margin: 10px

120px

10px 5px 10px5px 5px 5px

100px

80px

width: 100px

 Figure 3-3. The box model when the box-sizing property is set to border-box. The width property now
corresponds to the entire width of the visible parts of the element

CHAPTER 3 ■ VISUAL FORMATTING MODEL OVERVIEW

43

 This would work fine, until we start adding gutters using padding on the sides of our .block so that
its content stands away from the visible edges. Now our .block element is one-third of the parent .group
element’s width plus the padding, which could potentially break our intended layout. Figure 3-4 illustrates
the difference.

.block

.group

.block

.group

width: 33.3333% width: 33.3333%; padding: 20px;

 Figure 3-4. Assuming we want the . block element to be one-third of the .group element, we might get
unexpected results when we add padding to it

.block

.group

box-sizing: border-box; width: 33.3333%; padding: 20px;

 Figure 3-5. Adding box-sizing: border-box keeps our box at 33.3333% width, even if padding is added

 We could solve this problem, for example, by adding an extra inner element to which we add our
padding—or we could choose a different box-sizing property to alter how the width is calculated
(see Figure 3-5):

 .group .block {
 width: 33.3333%;
 box-sizing: border-box;
 padding: 20px;
 }

CHAPTER 3 ■ VISUAL FORMATTING MODEL OVERVIEW

44

 Now our . block element is exactly one-third of the width of the parent element, just as we declared, no
matter how much padding or borders we add to it.

 Padding, borders, and margins can be applied to all sides of an element or to individual sides. Margins
can also be given a negative value. This can be used in a number of interesting ways to pull elements in and
out of positions of the page. We’ll explore some of these techniques in later chapters.

 You can use any measurement of length (like pixels, ems, and percentages) from the CSS specification
to add padding and margins to an element. Using percentage values has some peculiarities that deserve
mentioning. Assuming the markup is the same as in the previous example, what does the 5% actually
represent in this example?

 .block {
 margin-left: 5%;
 }

 The answer is that in this case, it’s 5% of the width of the parent . group element . If we assume that our
 .group element is 100 pixels wide, it would have a 5-pixel margin to the left.

 When it comes to using these measurements for padding or margins on the top and bottom sides of an
element, you’d be forgiven for guessing that the percentage is derived from the parent element’s height . That
seems only logical at first—however, since the height is normally not declared, and can vary wildly with the
height of the content, the CSS specification states that the top and bottom values for padding and margins
also take their values from the width of the containing block . In this instance, the containing block is the
parent, but this can change—we’ll sort out what that means a little bit further ahead in the chapter.

 Minimum and Maximum Values
 Sometimes it may be useful to apply the min-width and max-width properties to an element. Doing so can
be especially helpful when practicing responsive design, as it allows a block-level box to automatically fill the
width of its parent element by default, but not shrink smaller than the value specified in min-width or grow
larger than the value specified in max-width . (We will come back to responsive web design and how it relates
to CSS in Chapter 8 .)

 Similarly, min-height and max-height properties also exist, although you should be cautious when
applying any height values in CSS, because elements are nearly always better off left deriving their height
implicitly from the content they contain. Otherwise, if the amount of content grows, or the text size changes,
the content could flow out of the fixed-height box. If you do need to set a default height measurement for
some reason, using min-height is usually better, since it lets your boxes expand with their content.

 The Visual Formatting Model
 With an understanding of the box model, we can start to explore some of the visual formatting and
positioning models.

 People often refer to elements such as p , h1 , and article as block-level elements. This means they
are elements that are visually displayed as blocks of content, or block boxes . Conversely, elements such as
 strong , span , and time are described as inline-level elements because their content is displayed within lines
as inline boxes .

 It is possible to change the type of box generated by using the display property . This means you can
make an inline-level element such as span behave like a block-level element by setting its display property
to block . It is also possible to cause an element to generate no box at all by setting its display property to
 none . The box, and thus all the content, is no longer displayed and takes up no space in the document.

http://dx.doi.org/10.1007/978-1-4302-5864-3_8

CHAPTER 3 ■ VISUAL FORMATTING MODEL OVERVIEW

45

 There are a number of different positioning models in CSS, including floats, absolute positioning and
relative positioning. Unless specified, all boxes start life being positioned in the normal flow and have the
default property of static . As the name suggests, the position of an element’s box in the normal flow will be
dictated by the element’s position in the HTML.

 Block-level boxes will appear vertically one after the other; the vertical distance between boxes is
calculated by the boxes’ vertical margins.

 Inline boxes are laid out in a line horizontally, following the text flow and wrapping to a new line when
the text wraps. Their horizontal spacing can be adjusted using horizontal padding, borders, and margins
(see Figure 3-6). However, vertical padding, borders, and margins will have no effect on the height of an
inline box. Similarly, setting an explicit height or width on an inline box will have no effect either.

 The horizontal box formed by one line of text is called a line box , and a line box will always be tall
enough for all the inline boxes it may contain. The only way you can alter the dimensions of a line box is
by changing the line height, or setting horizontal borders, padding, or margins on any inline boxes inside
it. Figure 3-6 shows the block box of a paragraph with two lines of text, where one of the words is inside a
 element displayed inline.

<p>

</p>

It can get once you start

looking into it.

very complicated

line-height

padding

 element, inline box
marginanonymous inline box

line boxes

<p> element, block box

 Figure 3-6. The inline components inside a paragraph block box

 You can also set the display property of an element to be inline-block . As the name suggests, this
declaration makes the element line up horizontally as if it were an inline box. However, the inside of the
box behaves as though the box were block level, including being able to explicitly set width, height, vertical
margins, and padding.

 When you use table markup (the table , tr , th and td elements, and so forth), the table itself behaves
as a block, but the contents of the table will line up according to the generated rows and columns. It is also
possible to set the display property of other elements so that they adopt the layout behavior of tables. By
applying the values table , table-row , and table-cell in the correct way, you can achieve some of the
properties of an HTML table without using tables in the markup.

 Modules like Flexible Box Layout (also known as flexbox) and Grid Layout, which we will cover in later
chapters, have further extended the display property. Often, these new layout modes create boxes that act
as blocks in their outer context, but create new rules for how the content inside the box is treated.

 This division between outer and inner display modes (seen across both inline-block , table and
new values like flex or grid) is now being standardized in the Display Level 3 module. There, the existing
properties and keywords for display modes are being expanded, to allow for more granular control. The
important takeaway is that inline-level boxes and block-level boxes are still fundamental to the default
behavior of HTML elements, but the reality is slightly more nuanced.

CHAPTER 3 ■ VISUAL FORMATTING MODEL OVERVIEW

46

 Anonymous Boxes
 In the same way that HTML elements can be nested, boxes can contain other boxes. Most boxes are formed from
explicitly defined elements. However, there is one situation where a block-level element is created even if it has
not been explicitly defined—when you add some text at the start of a block-level element such as a section , as
shown next. Even though you have not defined the “ some text ” bit as a block-level element, it is treated as such.

 <section>
 some text
 <p>Some more text</p>
 </section>

 In this situation, the box is described as an anonymous block box , since it is not associated with a
specifically defined element.

 A similar thing happens with the line boxes of text inside a block-level element. Say you have a
paragraph that contains three lines of text. Each line of text forms an anonymous line box . You cannot style
anonymous block boxes or line boxes directly, except through the use of the :first-line pseudo-element,
which obviously has limited use and only allows you to change certain properties related to typography and
color. However, it is useful to understand that everything you see on your screen creates some form of box.

 Margin Collapsing
 When it comes to normal block boxes, there have a behavior known as margin collapsing . Margin collapsing
is a relatively simple concept. In practice, however, it can cause a lot of confusion when you’re laying out a
web page. Put simply, when two or more vertical margins meet, they will collapse to form a single margin.
The height of this margin will equal the height of the larger of the two collapsed margins.

 When two elements are above one another, the bottom margin of the first element will collapse with the
top margin of the second element (see Figure 3-7).

Before After

Content area Content area

Content area
Content area

margin-bottom: 30px margin-bottom: 30px

margin-top: 20px
} Margins will collapse

to form a single margin.

 Figure 3-7. Example of an element’s top margin collapsing with the bottom margin of the preceding element

CHAPTER 3 ■ VISUAL FORMATTING MODEL OVERVIEW

47

 When one element is contained within another element, assuming there is no padding or border
separating margins, their top and/or bottom margins will also collapse together (see Figure 3-8).

Before After

Content area

margin-top: 30px
margin-top: 20px

Content area

margin-top: 30px} Margins will collapse
to form a single margin.

 Figure 3-8. Example of an element’s top margin collapsing with the top margin of its parent element

 It may seem strange at first, but margins can even collapse on themselves. Say you have an empty
element with a margin but no border or padding. In this situation, the top margin is touching the bottom
margin, and they collapse together (see Figure 3-9).

Before After

margin-top: 20px

margin-bottom: 20px

margin-top: 20px} Margins will collapse
to form a single margin.

 Figure 3-9. Example of an element’s top margin collapsing with its bottom margin

 If this margin is touching the margin of another element, it will collapse itself (see Figure 3-10).

Before After

margin-top: 20px

margin-bottom: 20px

margin-top: 20pxmargin-top: 20px } Margins will collapse
to form a single margin.

 Figure 3-10. Example of an empty element’s collapsed margin collapsing with another empty element’s margins

CHAPTER 3 ■ VISUAL FORMATTING MODEL OVERVIEW

48

 This is why a series of empty paragraph elements take up very little space, as all their margins collapse
together to form a single small margin.

 Margin collapsing may seem strange at first, but it actually makes a lot of sense. Take a typical page
of text made up of several paragraphs (see Figure 3-11). The space above the first paragraph will equal the
paragraph’s top margin. Without margin collapsing, the space between all subsequent paragraphs will be the
sum of their two adjoining top and bottom margins. This means that the space between paragraphs will be
double the space at the top of the page. With margin collapsing, the top and bottom margins between each
paragraph collapse, leaving the spacing the same as everywhere else.

Without Margin Collapsing With Margin Collapsing

The space between paragraphs is
double the space at the top.

The space between paragraphs is
the same as the space at the top.

 Figure 3-11. Margins collapse to maintain consistent spacing between elements

 Margin collapsing only happens with the vertical margins of block boxes in the normal flow of the
document. Margins between things like inline boxes, floated boxes, or absolutely positioned boxes never
collapse.

 Containing Blocks
 The concept of what gives an element its containing block is important because it decides how various
properties are interpreted, like the case with padding and margin set in percentages that we saw earlier.

 The containing block of an element depends on how the element is positioned. If the element has
a static position (same as no position property declared) or a relative position, its containing block is
calculated to the edges of its nearest parent that has a display property set to something that causes a block-
like context, including block , inline-block , table-cell , list-item and so forth.

 By default, declarations of width , height , margin , and padding are calculated from the dimensions
of this parent element when set in percentages. This changes when you change the element to have a
positioning model of absolute or fixed. Next up we’ll go through the different models and how they interact
with the concept of a containing block.

CHAPTER 3 ■ VISUAL FORMATTING MODEL OVERVIEW

49

 With relative positioning, the element continues to occupy the original space in the flow of the page,
whether or not it is offset. As such, offsetting the element can cause it to overlap other boxes.

 Absolute Positioning
 Relative positioning is actually considered part of the normal-flow positioning model, as the element is
relative to its position in the normal flow. By contrast, absolute positioning takes the element out of the flow
of the document, thus taking up no space. Other elements in the normal flow of the document will act as
though the absolutely positioned element was never there (see Figure 3-13).

 Relative Positioning
 When you set the position property of an element to relative , it will initially stay exactly where it is. You
can then shift the element relative to its starting point by setting a vertical or horizontal position, using the
 top , right , bottom , and left properties. If you set the top position to be 20 pixels, the box will appear 20
pixels below the top of its original position. Setting the left position to 20 pixels, as shown next, will create a
20-pixel space on the left of the element, moving the element to the right (see Figure 3-12).

 .mybox {
 position: relative;
 left: 20px;
 top: 20px;
 }

Box 1

Containing element

Box 2

Box 3

top: 20px

position: relative

left: 20px

 Figure 3-12. Relatively positioning an element

CHAPTER 3 ■ VISUAL FORMATTING MODEL OVERVIEW

50

 An absolutely positioned element’s containing block is its nearest positioned ancestor, meaning any
ancestor element that has the position property set to anything other than static . If the element has no
positioned ancestors, it will be positioned in relation to the root element of the document, the html element.
This is also known as the initial containing block .

 As with relatively positioned boxes, an absolutely positioned box can be offset from the top, bottom, left,
or right of its containing block. This gives you a great deal of flexibility. You can literally position an element
anywhere on the page.

 Because absolutely positioned boxes are taken out of the flow of the document, they can overlap other
elements on the page. You can control the stacking order of these boxes by setting a numeric property called
 z-index . The higher the z-index , the higher up the box appears in the stack. There are various intricacies to
take into account when stacking items with z-index : we will sort those out in Chapter 6 .

 Although absolute positioning can be a useful tool for laying out elements of your pages, it is rarely
used for creating high-level layouts anymore. The fact that absolutely positioned boxes don’t participate
in the flow of the document makes it quite the hassle to create layouts that adapt and respond to the
viewport at various widths and varying lengths of content. The nature of the Web just doesn’t easily
allow us to specify exact measurements as to where on the page our elements sit. As we have become
more proficient with other layout techniques in CSS, the use of absolute positioning has become quite
uncommon for page layout.

 Fixed Positioning
 Fixed positioning is a subcategory of absolute positioning. The difference is that a fixed element’s containing
block is the viewport. This allows you to create floating elements that always stay at the same position in the
window. Many sites use this technique to keep parts of their navigation in view at all times, by fixing them
in position in a side column or top bar (Figure 3-14). This can help improve usability because the user never
has to look far to get back to an important part of the interface.

Box 1

Relatively positioned ancestor

Box 2

Box 3

top: 20px

position: absolute

left: 20px

 Figure 3-13. Absolutely positioning an element

http://dx.doi.org/10.1007/978-1-4302-5864-3_6

CHAPTER 3 ■ VISUAL FORMATTING MODEL OVERVIEW

51

 Floating
 Another important visual model is the float model. A floated box can be shifted either to the left or the right
until its outer edge touches the edge of its containing block or another floated box. Because floated boxes
aren’t in the normal flow of the document, block boxes in the regular flow of the document behave almost as
if the floated box wasn’t there. We’ll explain the “almost” in a minute.

 As shown in Figure 3-15 , when you float Box 1 to the right, it’s taken out of the flow of the document
and moved to the right until its right edge touches the right edge of the containing block. Its width will also
shrink to the smallest width needed to contain its content, unless you’ve explicitly told it otherwise by setting
a particular width or min-width / max-width .

 Figure 3-14. The top bar and side navigation on the Google Developer documentation stays fixed as you
scroll down

CHAPTER 3 ■ VISUAL FORMATTING MODEL OVERVIEW

52

 If the containing element is too narrow for all the floated elements to fit horizontally, the remaining
floats will drop down until there is sufficient space (see Figure 3-17). If the floated elements have different
heights, it is possible for floats to get “stuck” on other floats when they drop down.

 In Figure 3-16 , when you float Box 1 to the left, it is taken out of the flow of the document and moved left
until its left edge touches the left edge of the containing block. Because it is no longer in the flow, it takes up
no space and actually sits on top of Box 2, obscuring it from view. If you float all three boxes to the left, Box 1
is shifted left until it touches its containing block, and the other two boxes are shifted left until they touch the
preceding floated box.

Box 1

No boxes floated Box 1 floated right

Box 2

Box 2 Box 3

Box 3

Box 1

 Figure 3-15. Example of an element being floated right

Box 2 hidden

Box 1 floated left All three boxes floated left

under Box 1
Box 1 Box 1 Box 3Box 2

Box 3

 Figure 3-16. Example of elements being floated left

CHAPTER 3 ■ VISUAL FORMATTING MODEL OVERVIEW

53

 Line Boxes and Clearing
 You learned in the previous section that floating an element takes it out of the flow of the document where
it no longer exerts an effect on non-floated items. Actually, this isn’t strictly true. If a floated element is
followed by an element in the flow of the document, the element’s box will behave as if the float didn’t exist.
However, the textual content of the box retains some memory of the floated element and moves out of the
way to make room. In technical terms, a line box next to a floated element is shortened to make room for
the floated element, thereby flowing around the floated box. In fact, floats were created to allow text to flow
around images (see Figure 3-18).

Not enough horizontal space Different height boxes

Box 1

Box 3

Box 3 drops

Box 3

Box 3 gets “stuck”
on Box 1

Box 2 Box 2Box 1

 Figure 3-17. If there is not enough available horizontal space, floated elements will drop down until there is

Line boxes shorten
to make room for the
floated box

No boxes floated Image floated left

 Figure 3-18. Line boxes shorten when next to a float

CHAPTER 3 ■ VISUAL FORMATTING MODEL OVERVIEW

54

 To stop line boxes from flowing around the outside of a floated box, you need to apply a clear property
to the element that contains those line boxes. The clear property can be left , right , both , or none , and it
indicates which side of the box should not be next to a floated box. Many people think the clear property
simply removes some flag that negates the previous float. However, the reality is much more interesting.
When you clear an element, the browser adds enough margin to the top of the element to push the element’s
top border edge vertically down, past the float (see Figure 3-19). This can sometimes be confusing when you
try and apply your own margin to “cleared” elements, because the value will have no effect until it reaches
and goes beyond the value added automatically by the browser.

Second paragraph cleared

Margin added to clear float.

Second paragraph cleared

 Figure 3-19. Clearing an element’s top margin to create enough vertical space for the preceding float

 As you’ve seen, floated elements are taken out of the flow of the document and have no effect on
surrounding elements apart from shortening line boxes enough to make space for the floated box. However,
clearing an element essentially clears a vertical space for all the preceding floated elements. This can
be useful when using floats as a layout tool, as it allows surrounding elements to make space for floated
elements.

 Let’s look at how you might create a simple component layout using floats. Say you have a picture
that you want to float to the left of a title and a small block of text to the right, often called a “media object”
because of the common pattern of having a piece of media (such as a figure, image, or video) and a piece of
accompanying text. You want this picture and text to be contained in another element with a background
color and border. You could probably try something like this:

 .media-block {
 background-color: gray;
 border: solid 1px black;
 }
 .media-fig {
 float: left;
 width: 30%; /* leaves 70% for the text */
 }
 .media-body {
 float: right;
 width: 65%; /* a bit of "air" left on the side */
 }

CHAPTER 3 ■ VISUAL FORMATTING MODEL OVERVIEW

55

 <div class="media-block">

 <div class="media-body">
 <h3>Title of this</h3>
 <p>Brief description of this</p>
 </div>
 </div>

 However, because the floated elements are taken out of the flow of the document, the wrapper div with
a class of .media-block takes no space—it has only floating content, and thus nothing to give it a height in
the document flow. How do you visually get the wrapper to enclose the floated element? You need to apply a
 clear somewhere inside that element, which as we saw earlier creates enough vertical margin on the cleared
element to allow room for the floated elements (see Figure 3-20). Unfortunately, as there are no existing
elements in the example to clear, you could add an empty element before the closing div tag, and clear that:

 /* Added CSS: */
 .clear {
 clear: both;
 }
 <div class="media-block">

 <div class="media-body">
 <h3>Title of this</h3>
 <p>Brief description of this</p>
 </div>
 <div class="clear"></div><!-- added extra empty div -->
 </div>

Empty clearing divFloats take up no space

Container does not enclose floats Container now encloses floats

 Figure 3-20. Adding a clearing div forces the container to enclose floats

CHAPTER 3 ■ VISUAL FORMATTING MODEL OVERVIEW

56

 This gets the result we want, but at the expense of adding extraneous code to our markup. Often there
will be an existing element you can apply the clear to, but sometimes you may have to bite the bullet and
add meaningless markup for the purpose of layout. In this case, however, we can do better.

 The way we can do this is to simulate the extra clearing element using the :after pseudo-element, as
shown next. By applying this to the containing element of your floated elements, an extra box will be created
that you can apply the clear rule to.

 .media-block:after {
 content: " ";
 display: block;
 clear: both;
 }

 This approach and some variations of it are best demonstrated in a small code snippet by Nicholas
Gallagher known as the micro clearfix, presented at http://nicolasgallagher.com/micro-clearfix-hack/ .

 Formatting Contexts
 CSS has a number of different sets of rules that apply to how elements interact with each other as they flow
horizontally or vertically across the page. The technical name for one of these sets of rules is a formatting
context . We have already seen some of the rules for the inline formatting context —for example, the fact that
vertical margins have no effect on inline boxes. Similarly, certain rules apply to how block boxes stack up,
like we saw in the section on collapsing margins.

 Other rules define how the page must automatically contain any floats sticking out at the end (otherwise
the contents inside the floated element might end up outside of the scrollable area) and all block boxes by
default have their edge aligned with the left edge of the containing block (or the right edge, depending on the
text direction). This set of rules is called the block formatting context .

 Some rules allow elements to establish their own, internal block formatting contexts. These include the
following:

• Elements whose display property is set to a value that creates a block-like context
for the contents of the element, like inline-block or table-cell .

• Elements whose float property is anything but none .

• Elements that are absolutely positioned.

• Elements that have the overflow property set to anything but visible .

 As we discussed previously, the rule that says that the edge of a block touches the edge of its containing
block applies even for content that is preceded by a float. The float is removed from the page flow, and
creates the visual effect of making room for itself by triggering the line boxes in elements following it to
shorten. The element itself still stretches underneath the float as far as it needs to.

 When an element has rules that trigger a new block formatting context and is next to a float, it will
ignore the rule that says that it has to have its edge up against the side of its containing block. Instead, it will
shrink to fit—and not just the line boxes, but the whole thing. This can be used to re-create the .media-block
example in the previous section but with simpler rules:

 .media-block {
 background-color: gray;
 border: solid 1px black;
 }

http://nicolasgallagher.com/micro-clearfix-hack/

CHAPTER 3 ■ VISUAL FORMATTING MODEL OVERVIEW

57

No block formatting context
.media-fig floated left

.media-body extends under .media-fig .media-body shrinks to fit

With block formatting context

 Figure 3-21. If only the .media-fig element is floated and the text is long enough, some lines will wrap under
the float and end up to the left. Creating a new block formatting context forces .media-body to shrink

 .media-fig {
 float: left
 margin-right: 5%;
 }
 .media-block, .media-body {
 overflow: auto;
 }
 <div class="media-block">

 <div class="media-body">
 <h3>Title of this</h3>
 <p>Brief description of this</p>
 </div>
 </div>

 In setting overflow: auto; on both the containing .media-block and our .media-body elements,
we established new block formatting contexts for them. This has a couple of effects (see comparison
in Figure 3-21):

• It contains the floated image inside the .media-block component without the need
for clearing rules, since block formatting contexts also automatically contain floats.

• As an added bonus, it allows us to ditch the rules for width as well as the float on
our .media-body element if we want—it will simply adjust to the remaining space
next to the float and still keep a nice straight edge next to the image. If there wasn’t
a new formatting context and the text was a bit longer, any line boxes that were
beneath the floated .media-fig would stretch beneath it, ending up flush to the
left beneath the image.

CHAPTER 3 ■ VISUAL FORMATTING MODEL OVERVIEW

58

 Creating layouts with as predictable and simple behavior as possible reduces the complexity of your
code and increases the robustness of your layouts, so knowing when to apply tricks like this to avoid
complicated interaction between floats and clearing elements is A Good Thing. Luckily, even better
techniques for doing layout are gaining ground fast.

 Intrinsic and Extrinsic Sizing
 The CSS module “ Intrinsic and Extrinsic Sizing Level 3” defines a list of keywords that can be applied to
the (min- and max-) width and height properties, instead of lengths in pixels or percentages, etc. These
represent explicit lengths that are derived from either the surrounding context (extrinsic) or the content of
the element (intrinsic), but letting the browser figure out the final value—as opposed to the implicit values
of either setting the property to auto or using floats or block formatting contexts to create shrink-to-fit
scenarios without setting a width at all.

 We won’t go into the details of the different keywords here, but it’s interesting to note that among them
we find contain-floats . This keyword should do pretty much what you’d expect; for example, you could
make an element contain any floats by using this code:

 .myThing {
 min-height: contain-floats;
 }

 So far, support for the various keywords in this module is weak—most notably, no versions of IE support
any of them at the time of writing. Still, it’s something that could be potentially very useful in the future for
creating robust sizing without resorting to more involved techniques.

 Other CSS Layout Modules
 We’ve covered the fundamentals and most common parts of the CSS visual formatting model, but there are
some other areas to briefly mention.

 You would imagine that a robust and flexible layout model would be a key part of a visual presentation
tool like CSS. You’d be right; but unfortunately it has taken us a very long time to get one. Historically we’ve
used whatever features are available in the language to achieve our goals, even if they are far from the ideal tool
for the job. Initially this included adopting data tables because of their useful layout characteristics—despite
their bloated markup and inappropriate semantics. More recently we’ve been coercing floats and absolute
positioning to achieve most of our complex page layout, but again, neither of these features is designed for
laying out web pages. Both have serious constraints, most of which we just trained ourselves to live with.

 Thankfully, more recent CSS modules have introduced new content models specifically designed for
creating flexible and robust page layouts. At the time of writing, these modules are all in different states of
readiness, and some don’t have interoperable cross-browser implementations. We’ll look at some of these
in detail and some of the more useful techniques they enable in upcoming chapters, but this is a quick
summary of the kind of functionality they offer.

 Flexible Box Layout
 The Flexible Box Layout Module, or flexbox , that we’ve touched on previously is a model of layout introduced
in CSS 3. Flexbox allows you to lay out children of a box either horizontally or vertically and determine
the size, spacing and distribution of those children. It also allows you to change the order of elements
as rendered on the page, regardless of their place in the HTML source. Flexbox acts as an upgrade of the
normal flow model (inline and block), offering a balance of precise control and flexibility with regards to the
content itself and how it affects sizing.

CHAPTER 3 ■ VISUAL FORMATTING MODEL OVERVIEW

59

 Flexbox is widely implemented, but support is most notably missing or incomplete in older versions of
Internet Explorer. The good news is that it is constructed in such a way that you can combine it with other
methods, like floats, to create very robust layouts. We will take a closer look at flexbox in Chapter 6 .

 Grid Layout
 Grid layout is the first fully fledged high-level layout tool for CSS, with a goal of replacing complex page
layouts that have historically been created with floats and positioned elements. It offers complete separation
of layout from source order, and abstracts the idea of a grid system away from the structure of content and
presentation of individual modules. Where flexbox is “micro”, grid layout is “macro”, so these two methods
complement each other well.

 Grid layout is not yet widely supported, but browser makers are racing to implement it at the time this
book is being written. We will get acquainted with this powerful new module in Chapter 7 .

 Multi-Column Layout
 The Multi-column Layout Module is a fairly straightforward way of allowing content to flow into separate
columns; for example, creating a newspaper-like layout where the text of its paragraphs flow into a number
of vertical columns. This module allows you to choose either a set number of columns or a preferred width,
leaving the number of columns to follow based on available space. You can also control the space of the gaps
between columns and apply border-like visual effects to these gaps. As multi-column layout is more a tool
for typography than general layout, we will work with it in Chapter 4 .

 Regions
 CSS Regions allows you to specify how content flows between elements on a page. One element acts as
a source of content, but instead of the normal block flow, this content can flow into other placeholder
elements elsewhere on the page. This means layouts are no longer impacted by the source order of HTML,
and again, the layout presentation becomes decoupled from the structure of the content.

 CSS Regions allow for layouts that have previously been impossible using CSS alone, and may drive
adoption of certain print-based layout patterns in the future. However, few browser makers have shown any
love for CSS Regions, and there is a risk that this type of layout won’t be mature enough to use for some time.
For that reason, we will not cover Regions in any further detail in this book.

 Summary
 In this chapter, you learned about the box model and how padding, margin, width, and height affect the
dimensions of a box. You also learned about the concept of margin collapsing and how this can affect layout.
You were introduced to the various formatting models of CSS, such as normal flow, absolute positioning,
and floating. You learned the difference between inline and block boxes, how to absolutely position an
element within a relatively positioned ancestor, and how clearing really works.

 Now that you are armed with these fundamentals, let’s start putting them to good use. In the following
chapters of this book, you will be introduced to a number of core CSS concepts and you’ll see how they can
be used in a variety of useful and practical techniques. So launch your favorite editor and let’s get coding.

http://dx.doi.org/10.1007/978-1-4302-5864-3_6
http://dx.doi.org/10.1007/978-1-4302-5864-3_7
http://dx.doi.org/10.1007/978-1-4302-5864-3_4

61© Andy Budd and Emil Björklund 2016
A. Budd and E. Björklund, CSS Mastery, DOI 10.1007/978-1-4302-5864-3_4

 CHAPTER 4

 Web Typography

 Typography has been a fundamental part of graphic design since the invention of the printing press, so you’d
expect it to play a central role in the field of web design. Some have gone as far as to say that web design
is 95% typography. As such, it is surprising that browsers have only recently allowed us to fully embrace
typography and typesetting on the Web. This opens up the possibility for us to learn from hundreds of years
of typographic history, and create richly styled content that is a delight to read.

 Previous editions of CSS Mastery did not contain a separate chapter on web typography, so perhaps
that gives you some indication of the advancement in this area over the last few years. There are a number of
areas we will cover in this chapter:

• How to apply solid typographic rules, using the basic CSS font and text properties

• Controlling measure, multi-column text, and hyphenation

• Working with custom web fonts and advanced font features

• Text effects using shadows and other tricks

 Basic Typesetting in CSS
 One of the first things most designers will do is add the basic typographic styles. Starting with the body
element and working down into more and more specific rules, we set the basics for readability, clarity,
and tone. As our first example in this chapter, we’ll do just that: take an example page and apply a basic
typographic treatment.

 Figure 4-1 shows a very simple HTML document (a text about the Moon, reproduced from Wikipedia)
displayed in the browser with no added styles. The fact that it still renders as a readable document is due to
the default style sheet in the browser, where a few relatively sane typographic rules are set.

CHAPTER 4 ■ WEB TYPOGRAPHY

62

 Our simple document contains a couple of headings and some paragraphs of text (with some inline
elements to enhance the text where applicable), sitting in an article element:

 <article>
 <h1>The Moon</h1>
 <p> The Moon (in Greek: σελήνη...</p>
 ...
 <h2>Orbit</h2>
 <p>The Moon is in synchronous…</p>
 ...
 <h3>Gravitational pull & distance</h3>
 <p>The Moon's gravitational...</p>
 <h2>Lunar travels</h2>
 <p>The Soviet Union's Luna programme...</p>
 <p class="source">Text fetched from...</p>
 </article>

 While the unstyled document is readable, it’s far from ideal. Our goal is to create a relatively short style
sheet to help improve the legibility and aesthetics of the page. In Figure 4-2 we see the final result we’re
aiming at.

 Figure 4-1. A simple HTML document with no styles yet applied

CHAPTER 4 ■ WEB TYPOGRAPHY

63

 Let’s go through each rule, breaking down the terminology, why the rule was made, and how the CSS
mechanics behind the basic typesetting properties work.

 Text Color
 Text color is perhaps one of the most basic things we set for a document, but it’s easy to overlook its effects.
By default, the browser renders most text as black (except for links, of course; those are a vibrant blue),
which is a very high contrast against the white background. Sufficient contrast is crucial for accessibility, but
can also go too far in the other direction. In fact, screens are so high-contrast that black-on-white text can be
overly intensive for longer runs of text, affecting the readability.

 We’ll leave our headings as the default black, and set paragraphs to display as a very dark blue-gray
shade. Links will also still be blue, but we’ll dial down the vibrancy a bit.

 p {
 color: #3b4348;
 }
 a {
 color: #235ea7;
 }

 Figure 4-2. Our document with the new font properties applied

CHAPTER 4 ■ WEB TYPOGRAPHY

64

 Font-Family
 The font- family property allows you to list which typefaces you would like to use, in order of preference:

 body {
 font-family: 'Georgia Pro', Georgia, Times, 'Times New Roman', serif;
 }
 h1, h2, h3, h4, h5, h6 {
 font-family: Avenir Next, SegoeUI, arial, sans-serif;
 }

 The body element (and thus almost every other element, as font-family is inherited) has a font stack
of 'Georgia Pro', Georgia, Times, 'Times New Roman', serif . Georgia is a nearly universally available
serif typeface, where the newer Georgia Pro variant is installed on some versions of Windows 10. If neither
version of Georgia is available, the Times and Times New Roman fallbacks exist on many systems as well.
Finally, we fall back to the generic system serif font.

 For headings, we have listed Avenir Next as our first preference, a typeface with many variations that
comes preinstalled with modern Mac OS X computers and iOS devices. If this typeface isn’t available,
the browser looks for Segoe UI, a similar versatile sans-serif font that exists on most versions of Windows
computers and Windows Phone devices. Should the browser fail to find that, it will try to use Arial (which is
available on a wide variety of platforms), and then finally any generic sans-serif font that is set as the default
for the current platform.

 Figure 4-3 shows how these fonts look in Safari 9 on Mac OS X compared to Microsoft Edge on Windows 10.

 Figure 4-3. Our page as it renders with Avenir Next and Georgia on Safari 9 (left) vs. Segoe UI and Georgia on
Microsoft Edge (right)

CHAPTER 4 ■ WEB TYPOGRAPHY

65

 ■ Note Serifs are the small angled shapes at the end of the strokes of a glyph, found in many classical
typefaces. Sans-serif simply refers to fonts without serifs.

 This fallback mechanism is a vital feature of the font-family property because different operating
systems and mobile devices don’t all have the same fonts available to them. The choice of font is also more
complex than just whether the font exists or not: if the preferred font is missing glyphs used in the text, such
as accented characters, the browser will fall back in the font stack for those individual characters as well.

 Some research around which default fonts are available on various operating systems can help you
choose the right stack for your project. You can find a good starting point at http://cssfontstacks.com .

 The sans-serif and serif font families defined at the end of our lists are known as a generic families ,
and act as a catch-all option. We could also have chosen cursive , fantasy , and monospace . The serif and
 sans-serif generic families are probably the most common ones to use for text. When selecting typefaces
for preformatted text such as code examples, monospace tries to pick a font where all the characters have
the same width, aligning characters across lines. The fantasy and cursive generic families are a bit more
uncommon, but map to more elaborately ornamented or handwriting-like typefaces, respectively.

 ■ Note You don’t strictly need to place in quote marks font-family names containing spaces, but it’s a
good idea to do so. The spec only demands use of quote marks if the font-family name is the same as a
generic family name, but also recommends it for names containing nonstandard symbols that may trip up the
browser. If nothing else, syntax highlighters in code editors often seem to handle names with spaces in them
better if they are quoted.

 The Relation Between Fonts and Typefaces
 The terminology around things like typefaces, font families, and fonts can get very confusing. A typeface
(also known as a font family) is a collection of shapes (known as glyphs) for letters, numbers, and other
characters that share a style. Typefaces can have several different variations for each glyph, including bold,
normal, and light weights, italic styles, different ways of displaying numbers, ligatures that combine several
characters into one glyph, and other variations.

 Originally, the font (or font face) was a collection of all the glyphs from a specific variation of a typeface,
cast into pieces of metal. This collection was then used in a mechanical printing press. In the digital world,
we use the word to mean the file that holds the representation of a typeface. The hypothetical typeface “CSS
Mastery” could be just a single font file, or it could be made up from several font files containing
“CSS Mastery Regular,” “CSS Mastery Italic,” “CSS Mastery Light,” and so on.

 Font Size and Line Height
 The default font-size value in nearly every browser in existence is 16 pixels, unless the user has changed
their preferences. We’ve kept the default font-size , choosing instead to adjust the size of specific elements
using the em unit:

 h3 {
 font-size: 1.314em; /* 21px */
 }

http://cssfontstacks.com/

CHAPTER 4 ■ WEB TYPOGRAPHY

66

 The em unit when used in font-size is a scaling factor of the elements inherited font-size . For our
 h3 elements, for example, the size is 1.314 * 16 = 21px. We could have set the font-size to 21px as well, but
ems are a little more flexible. Most browsers allow users to zoom the entire page, which works fine even
with pixels. With ems, the measurements also scales if the user only changes the default font-size in their
preferences.

 As the em unit scales based on inherited size, we can also scale the font-size for just a part of a page
by sizing a parent element. The flipside of this—and the tricky part of using ems—is that we don’t want to
accidentally scale something just because of its position in the markup. Consider the following hypothetical
style rules:

 p {
 font-size: 1.314em;
 }
 article {
 font-size: 1.314em;
 }

 The preceding set of rules means that both p and article elements have a font-size of 21px , by
default. But it also means that p elements that are children of article elements will have a font-size of
 1.314em × 1.314em , which calculates as around 1.73em or 28px . This probably wasn’t what was intended in
the design, so when using relative lengths, you need to keep track of the sizing math.

 We could have used percentages in place of ems when it comes to font-size . Setting 133.3% is exactly
the same as using 1.333em , and which one you use is a matter of personal preference. As a final flexible
measurement, we can use the rem unit. It is a scaling factor, just like the em , but always scales based on the
 root element em size (hence the name rem), meaning the font-size set on the html element. We’ve used the
 rem unit to get a consistent margin-top value for all headings:

 h1, h2, h3, h4, h5, h6 {
 margin-top: 1.5rem; /* 24px */
 }

 When ems are used for box-model dimensions, it relates not to inherited font-size , but the calculated
 font-size of the element itself. Thus, this measurement would have been different for all heading levels. To
get a consistent (but flexible) value, we need to either use the rem , or calculate margins in ems individually
for each heading level.

 The rem unit is relatively new, and works in all modern browsers. As a fallback for older browsers like
Internet Explorer 8 (and earlier), we can use the fault tolerance of CSS to our advantage and declare a pixel
measurement for our margin before the rem -based declaration:

 h1, h2, h3, h4, h5, h6 {
 margin-top: 24px; /* non-scalable fallback for old browsers */
 margin-top: 1.5rem; /* 24px, will be ignored by old browsers */
 }

 ■ Caution There are also absolute measurement units based on physical dimensions like mm , cm , in , and pt ,
which are intended primarily for print style sheets. These should not be used for screen styles. We won’t cover
print style sheets here, but will cover how to target different media types in Chapter 8 .

http://dx.doi.org/10.1007/978-1-4302-5864-3_8

CHAPTER 4 ■ WEB TYPOGRAPHY

67

 Font Sizing with Scales
 When deciding on which font-size to use, there are no hard rules on which sizes to pick. Mostly it’s a
matter of making sure the text is large enough to be readable, and then trying to find sizes that make sense
in the current context. Some people like to eyeball it, whereas others believe in basing measurements on
mathematical relationships.

 We’ve loosely based our three heading sizes on a mathematical scale known as the “perfect fourth.”
Each increased heading level is one-fourth of its own size larger than the previous level, or (expressed as the
inverse relationship) 1.3333333… times the level below it. The sizes have then been rounded to match the
nearest pixel size and truncated to three decimal places:

 h1 {
 font-size: 2.315em; /* 37px */
 }
 h2 {
 font-size: 1.75em; /* 28px */
 }
 h3 {
 font-size: 1.314em; /* 21px */
 }

 A scale like this can be a great help when starting work on a design, even if you end up setting the final
measurements by feel. You can play around with a bunch of different preset scales in the Modular Scale
calculator at http://www.modularscale.com/ (see Figure 4-4).

 Figure 4-4. The Modular Scale calculator allows you to play with combinations of fonts and mathematical
sizing scales

http://www.modularscale.com/

CHAPTER 4 ■ WEB TYPOGRAPHY

68

 Line Spacing, Alignment, and the Anatomy of Line Boxes
 As we set additional measurements for our text, we are going to start to see relationships between various
typographic concepts. For this reason, a deeper look at the CSS inline formatting model is necessary, along
with some more typographic terminology—at least as it applies to Western writing systems. Figure 4-5
illustrates the various pieces that make up a line of text, using the first two words from the first paragraph of
our example.

 <p>The Moon…[etc]</p>

 We saw the high-level view of inline formatting in Chapter 3 . Each line of text generates a line box . This
box may be further split in to several inline boxes , by representing inline elements (like the element
in this case), or the anonymous inline boxes in-between them.

 Text is drawn in the middle of the inline boxes, on what is known as the content area . The height of
the content area is the definition of the font-size measurement—behind the end of the word “Moon” in
Figure 4-5 , we see a 1em × 1em square, and how it relates to the size of the glyphs themselves. The traditional
typographic term “em” that gave the em unit its name has its origins in the size of the uppercase letter “M,”
but as we can see, this is not a correct definition in web typography.

 The upper edge of lowercase letters such as “x” determines what’s known as the x-height . This height
can vary significantly between typefaces, which explains why it’s hard to give a general recommendation
around exact font sizes—you need to test with the actual font to see what the perceived size is. In Georgia,
which we’re using here, the x-height is rather tall, making it appear larger than many other fonts at the same
 font-size measurement.

 The actual glyphs are then placed as to appear vertically balanced somewhere inside the content area,
so that each inline box by default aligns on a common line close to the bottom, called the baseline . Glyphs
are not necessarily constrained by the content area either: for example, a lowercase “g” could stick out
underneath the content area in some fonts.

 Finally, the line height defines the total height of the line box. This is more commonly known as line
spacing , or in typographic terms, leading (pronounced as “ledding”) due to the blocks of lead typesetters
used to separate lines of characters on a printing press. Unlike in mechanical type, the leading in CSS is
always applied to both the top and bottom of line boxes.

 The font-size is subtracted from the total line height, and the resulting measurement is divided in two
equal parts (known as half-leading). If the font-size is 21px and the line-heigh t is 30px , each strip of half-
leading will be 4.5px tall.

The Moon
Half-leading Anonymous inline box Inline box, element Line-height

Content areas 1em squareBaselinex-height Line box

 Figure 4-5. Constituent parts and technical terms of the inline formatting model

http://dx.doi.org/10.1007/978-1-4302-5864-3_3

CHAPTER 4 ■ WEB TYPOGRAPHY

69

 ■ Note If a line box contains inline boxes of varying line height, the line height for the line box as a whole
will be at least as tall as the tallest inline box.

 Setting Line Height
 When setting line height , we need to consider what makes sense for the current font. In our article
example, we’ve set a base font-family of Georgia and a line-height of 1.5 for the body element:

 body {
 font-family: Georgia, Times, 'Times New Roman', serif;
 line-height: 1.5;
 }

 Line height usually ends up somewhere between 1.2 and 1.5. As you tweak the value, you need to find
where the lines are neither too cramped nor too spaced apart and disconnected. As a general rule, text with
a larger x-height can tolerate more line spacing, as is the case with our text set in Georgia. The length and
 font-size of the text also matters: shorter runs of smaller text can usually handle a tighter line-height
value.

 We set line-height with a unitless 1.5 , which simply means 1.5 times the current font size. The
 font-size on the body worked out to be 16px , giving us a default line-height of 24px .

 It is possible to set line-height using pixels, percentages, or ems, but remember that all children of the
 body will inherit this value. A possible “gotcha” is that even for percentages and ems, the inherited line-
height is the computed pixel value of the line-height , which is not the case for unitless values. By leaving
out the unit we ensure that the line-height for a particular element is inherited as a multiplier, always in
proportion to its font-size .

 Vertical Alignment
 In addition to line-height , inline boxes can be affected by the vertical-align property. The default value
is baseline , which means that the baseline of the element will align with the baseline of the parent. At the
end of our article, we have a reference to the date when we looked it up on Wikipedia, where the ordinal “rd”
suffix is marked up with a span :
 <time datetime="2016-02-23">the 23 rd of February 2016.</time>

 We’ll set a superscript alignment for this text (along with a slightly smaller font size) by using
 vertical-align and the super keyword:

 .ordinal {
 vertical-align: super;
 font-size: smaller;
 }

 Other possible keywords are sub , top , bottom , text-top , text-bottom , and middle . They all have more
or less complicated relationships to the content area and parent line box. Just to give you an example, text-
top or text-bottom aligns the top or bottom of the content area with the content area of the parent line
box—which only has any effect if the font-size or line-height of the inline box is different from the parent.
Like we said: complicated.

CHAPTER 4 ■ WEB TYPOGRAPHY

70

 Perhaps more intuitive is to shift the vertical alignment of an element’s baseline up or down from the
parent baseline by a set length—either in px or a length relative to the font size (em or % , for example). It’s
worth noting that not only line-height values influence the final line spacing of a piece of text. If there is an
item in the line box that is shifted using vertical-align , that element will push out the final line box height.
Figure 4-6 shows what would happen to a line of text in our article when shifting elements by different
 vertical-align values.

 ■ Note Inline blocks and images react slightly differently to vertical alignment compared to inline text, as
they don’t necessarily have a single baseline of their own. We’ll use this to our advantage when looking at some
layout tricks in Chapter 6 .

 Font Weights
 Next, we set the weight for headings using the font-weight property . Some fonts have numerous variations,
like Helvetica Neue Light, Helvetica Neue Bold, Helvetica Neue Black, and more. Rather than declaring the
name of a font variation, we use keywords— normal , bold , bolder , and lighter —or numeric values. The
numeric values are written as even hundreds, starting at 100 , then 200 , 300 , 400 , and so on, up to 900 .

 The default value of normal is mapped to 400 , and bold is 700 —these are the most common weights
found in most typefaces. The keywords bolder and lighter work a little differently, and are used to make
text heavier or lighter than the inherited value.

 Values of 100 – 300 usually map to fonts with “Thin” or “Hairline,” “Ultra Light,” and “Light” in their names,
respectively. Conversely, values of 800 or 900 will map to fonts in the typeface with names including “Ultra Bold,”
“Heavy,” or “Black” in their names. In between those are 500 (Medium) and 600 (Semi-bold or Demi-bold).

 As the default for headings, we’ve set a medium weight of 500 , with variations for ultra bold h1 elements
and semi-bold h2 elements:

 h1, h2, h3, h4, h5, h6 {
 font-weight: 500;
 }
 h1 {
 font-weight: 800;
 }
 h2 {
 font-weight: 600;
 }

 Figure 4-6. The various keywords and values that can be used with vertical-align . Note how the top and
bottom of the line box are pushed out by the most extreme values, increasing the overall line height for
that line

http://dx.doi.org/10.1007/978-1-4302-5864-3_6

CHAPTER 4 ■ WEB TYPOGRAPHY

71

 Both Avenir Next and Segoe UI (our top preferred typefaces) contain lots of weight variations. If a font is
missing the desired weight, it may try to emulate bolder weights, but not anything lighter than normal. The
results of artificially bolded fonts are sadly often less ideal.

 Font Style
 Setting the declaration font- style : italic picks the italic style from the typeface, if one is present. If not,
the browser will try to fake it by slanting the typeface—again, with often less than ideal results. Italic style
is often used for either emphasis or to distinguish things usually said with a different tone of voice. In our
example, we’ve wrapped the Latin and Greek names for the Moon with the <i> tag. This tag is originally a
remnant of presentational markup from early HTML implementations, but has been redefined in HTML5 for
the purpose of marking up conventionally italicized runs of text, like names.

 <p>The Moon (in Greek: σελήνη <i lang="el">Selene</i> , in Latin:
 <I lang="la">Luna</i>)

 While the tag doesn’t mean italic, the browser default style sheet sets the font-style to italic :

 i {
 font-style: italic;
 }

 Had we wanted to, we could have redefined this element to display as bold, nonitalicized text:

 i {
 font-weight: 700;
 font-style: normal;
 }

 Apart from the italic and default normal values, you can also use the oblique keyword (which is
another variation of slanted text), but this is rarely used because few fonts come with an oblique style.

 Transforming Case and Small-Cap Variants
 Sometimes the design calls for text that is shown in a different case than how the HTML source was written.
CSS allows you some control over this, via the text-transform property. In our example, the h1 is written as
capitalized (with uppercase initial letters) in the markup, but forced to display as uppercase via CSS
(see Figure 4-7):

 h1 {
 text-transform: uppercase;
 }

 Figure 4-7. Our h1 is displayed as uppercase

CHAPTER 4 ■ WEB TYPOGRAPHY

72

 In addition to the uppercase value, you can also specify lowercase to make all letters lowercase,
 capitalize to make the first letter of each word uppercase, or none to revert the case to the default as
authored in the HTML.

 Using Font-Variant
 CSS also has a property called font-variant that allows you to pick what’s known as small-caps for your
font. Small-caps is a variation in the typeface where the lowercase letters are shown as if the shapes of the
uppercase (or capital) letters have been “shrunk” to their size. Proper small-caps variations do this with
a greater respect for the letter shapes than just plain shrinking them, but these are mostly found in more
exclusive font families. Browsers will attempt to fake this for you if no such font is available. We can illustrate
this on the abbr tag containing the abbreviation “NASA” in our document (see Figure 4-8):

 <abbr title="National Aeronautics and Space Administration">NASA</abbr>

 We’ll apply it alongside a text-transform: lowercase rule, as the letters are already uppercase in the
HTML source. One final tweak is to set the abbr element with a slightly smaller line-height , as the small-
caps variant seems to push the content box down in some browsers, affecting the overall line box height.

 abbr {
 text-transform: lowercase;
 font-variant: small-caps;
 line-height: 1.25;
 }

 The CSS 2.1 spec defined small-caps as the only valid value for the font-variant property. In the CSS
Fonts Module Level 3 spec, this has been expanded to include a large number of values representing ways to
select alternate glyphs. Browsers have been slow to adopt these, but luckily there are better-supported ways
to achieve this; we’ll look at them in the upcoming section on advanced typesetting techniques.

 Changing the Space Between Letters and Words
 Changing the space between words and individual characters is often best left to the designers of the
typeface. CSS does allow you some crude tools to change this though.

 The word-spacing property is seldom used, but as you can probably guess it affects the spacing
between words. The value you give it specifies how much to add or take away from the default spacing ,
decided by the blank space character width in the current font. The following rule would add 0.1em to the
default spacing between words in paragraphs:

 p {
 word-spacing: 0.1em;
 }

 Figure 4-8. Using the font-variant keyword small-caps makes the browser shrink the uppercase glyphs
down to the x-height

CHAPTER 4 ■ WEB TYPOGRAPHY

73

 Similarly, you can affect the space between each letter with the letter-spacing property. On lowercase
text, this is generally a bad idea—most typefaces are designed to let you recognize the shapes of whole words
at a time when reading, so messing with the spacing can make text hard to read. Uppercase (or small-cap)
glyphs are much better suited to interpret individually, like the case with acronyms. A little extra spacing can
actually make them easier to read. Let’s try this by adding a little bit of letter-spacing to our abbr tags
(see Figure 4-9):

 abbr {
 text-transform: lowercase;
 font-variant: small-caps;
 letter-spacing: 0.1em;
 }

 That’s the last of our font-related settings and small typographic tweaks. Next up, we’ll focus on how the
text is laid out, to further ensure a good reading experience.

 Measure, rhythm, and rag
 Our next area of focus is a crucial factor in making text enjoyable to read: the line length. In typographic
terms, this is known as the measure . Overly long or short lines disrupt the eye movements across the text and
can cause the reader to lose their place or even abandon the text altogether.

 There is no exact answer as to what the perfect line length is. It depends on the size of the font, the size
of the screen, and the type of text content that is being displayed. What we can do is look to the research and
historical advice on general rules for line length, and try to apply them sensibly to our page.

 Robert Bringhurst’s classic book The Elements of Typographic Style notes that body text is usually set
between 45 and 75 characters, with the average being around 66 characters. In translating this advice to the
Web, typography expert Richard Rutter found that this range works out well there too—at least for larger
screens. In the case of very small screens (or large screens viewed far away, like TVs or projections), the size
in combination with the distance to the screen may warrant a measure as short as 40 characters.

 ■ Note We’ll come back to typographic challenges specific to responsive web design in Chapter 8 .

 Applying constraints to line length can be done by setting a width either on elements enclosing the text
or on the headings, paragraphs, etc. themselves.

 In the case of our body text, the Georgia typeface has relatively wide letter forms, as a consequence
of the generous x-height. This means we can probably get away with a measure in the higher range. We’ve
gone for the easy option and set a maximum width of 36em on the article element (one character being on
average 0.5em), centering it on the page. Should the viewport be narrower than that, the element will shrink
down automatically.

 Figure 4-9. A tiny amount of letter-spacing applied to the abbr element

http://dx.doi.org/10.1007/978-1-4302-5864-3_8

CHAPTER 4 ■ WEB TYPOGRAPHY

74

 article {
 max-width: 36em;
 margin: 0 auto;
 }

 This results in a line length for our paragraph text of about 77 characters on wider viewports, as seen in
Figure 4-10 . We’ve chosen to apply the width using ems so that the measure scales nicely even if we—or the
user—decide to change the font size.

 Text Indent and Alignment
 By default, our text will be set aligned to the left. Having the left edge of the text straight helps the eye find
the next line, keeping the reading pace. For paragraphs following upon paragraphs, it’s common to either
use a margin in-between of one line space, or indent the text by a small amount to emphasize the shift from
one paragraph to the next. We’ve opted for the latter in setting our article text, using the adjacent sibling
combinator and the text-indent property:

 p + p {
 text-indent: 1.25em;
 }

 The right edge of the text is very uneven (see previous Figure 4-9), and we’ll leave it that way—for
now. This uneven shape is known in typographic terms as the “rag” (as in “ragged”). Having the end edge
ragged is not a disaster, but you should think very carefully before using for example centered alignment
for anything but very short runs of text. Centered text works best for small pieces of user interface copy (like
buttons) or short headings, but having both edges ragged destroys readability.

 Figure 4-10. The article element is constrained by a max-width of 36em , even if we bump the font size up

CHAPTER 4 ■ WEB TYPOGRAPHY

75

 We have, however, centered the h1 of our sample page. We’ve also given it a bottom border to anchor it
visually to the article text below, seen in Figure 4-11 .

 h1 {
 text-align: center;
 border-bottom: 1px solid #c8bc9d;
 }

 The text-align property can take several keyword values including left , right , center , and justify .
The CSS Text Level 3 specification defines a few additional values, including start and end . These two
 logical direction keywords correspond to the writing mode of the text: most Western languages are written
from left to right, so if the document language is English, the start value would represent left alignment and
 end would be right-aligned. In a right-to-left language such as Arabic, this would be inverted. Most browsers
will also automatically reverse the default text-direction if you set the dir="rtl" attribute on a parent
element, to indicate right-to-left text.

 The text-align property can also use the value justify , distributing the space between words so that the
text aligns to both the left and right edges, eliminating the ragged right. This is a common technique in printed
media, where the copy, hyphenation, and font properties can be trimmed to match the space on a page.

 The Web is a different medium, where the exact rendering is up to factors outside our control. Different
screen sizes, differing fonts installed, and different browser engines are all things that can affect how the
user views our page. If you use justified text, it might end up looking bad and becoming very hard to read,
as in Figure 4-12 . “Rivers” of whitespace may form running through your text, especially as the measure
decreases.

 The default method browsers use to justify text is a rather clumsy algorithm, with less-refined results
than what’s found in desktop publishing software. The type of algorithm used can be altered with the text-
justify property, but the support for the various values is poor and mostly relates to how to justify the
letterforms and words of other types of languages than most Western writing systems.

 Interestingly, Internet Explorer supports the nonstandard value newspaper for this property, which
seems to use a much more clever algorithm, distributing whitespace both between letters and between words.

 Figure 4-11. We’ve center aligned our h1

 Figure 4-12. A paragraph of text where text-align: justify causes “rivers” between words

CHAPTER 4 ■ WEB TYPOGRAPHY

76

 Hyphenation
 If you’re still set on having justified text in your pages, hyphenation may help in eliminating rivers to some
degree. You can manually insert what’s known as soft hyphens using the ­ HTML entity in your markup.
This hyphen will only be visible if the browser needs to break it to fit the line (see Figure 4-13):

 <p>The Moon […] is Earth's only natural satel ­ lite.[…]

 For a longer text like an article, it’s unlikely that you’ll go through and manually hyphenate every word.
With the hyphens property, we can let the browser do the work. It’s still a relatively new feature, so most
browsers that support it require vendor prefixes. Versions of Internet Explorer before version 10, the stock
WebKit browser on Android devices, and, surprisingly, Blink-based browsers like Chrome and Opera (at the
time of writing) don’t support hyphenation at all.

 If you want to activate automatic hyphenation, you need two pieces of code. First, you need to make
sure the language code for the document is set, most often on the html element:

 <html lang="en" >

 Next, set the hyphens property to auto for the relevant elements. Figure 4-14 shows the result as it
appears in Firefox.

 p {
 hyphens: auto;
 }

 To switch hyphenation off, you can set the hyphens property to a value of manual . The manual mode still
respects soft hyphens.

 Figure 4-14. Activating automatic hyphenation shows a more straight right rag in Firefox

 Figure 4-13. Manual hyphenation with soft hyphens

CHAPTER 4 ■ WEB TYPOGRAPHY

77

 Setting Text in Multiple Columns
 While the 36em restriction on the overall article width helps limit the measure, it does waste a lot of space on
larger screens. So much unused whitespace! Sometimes, it could make sense to set text in multiple columns,
in order to use wider screens more efficiently while keeping a sensible measure. The properties from the CSS
Multi-column Layout Module give us tools to do this, dividing the content into equal columns.

 The name “Multi-column Layout” can be slightly misleading, as this set of properties does not refer to
creating general-purpose layout grids with columns and gutters for separate parts of a page , but rather refers
to having a part of the page where the content flows in columns like in a newspaper. Trying to use it for other
purposes is definitely possible, but perhaps not desirable.

 If we were to increase the max-width to something like 70em , we could fit three columns in. We can tell
the article to automatically flow the content into columns by setting the columns property to the desired
minimum column width (see Figure 4-15). Gaps between columns are controlled with the column-gap
property:

 article {
 max-width: 70em;
 columns: 20em;
 column-gap: 1.5em;
 margin: 0 auto;
 }

 Figure 4-15. The article contents now flow automatically into as many columns as can fit inside the 70em
maximum width, as long as they are a minimum of 20em wide

CHAPTER 4 ■ WEB TYPOGRAPHY

78

 The columns property is shorthand for setting the column-count and column-width properties. If you
set only a column count, the browser will generate a set number of columns, regardless of width. If you set
a column width and a count, the column width acts as a minimum, while the count acts as a maximum
number of columns.

 columns: 20em; /* automatic number of columns as long as they are at least 20em */

 column-width: 20em; /* same as above */

 columns: 3; /* creates 3 columns, with automatic width */

 column-count: 3; /* same as above */

 columns: 3 20em; /* at most 3 columns, at least 20em wide each */

 /* the following two combined are the same as the above shorthand: */
 column-count: 3;
 column-width: 20em;

 Fallback Width
 To avoid excessive line lengths in browsers lacking support for the multi-column properties, we can add
rules that set a max-width on the paragraphs themselves. Older browsers will then show a single column but
still comfortably readable fallback :

 article > p {
 max-width: 36em;
 }

 Column Spans
 In the preceding example, all elements in the article wrapper flow into the columns . We can choose to opt
out some elements from that flow, forcing them to stretch across all columns. In Figure 4-16 , the article title
and the last paragraph (containing the source link) span across all columns:

 .h1,
 .source {
 column-span: all; /* or column-span: none; to explicitly turn off. */
 }

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 4 ■ WEB TYPOGRAPHY

79

 Should we instead choose to let an element in the middle of the flow span all columns, the text will be
divided into several vertically stacked column-based flows. In Figure 4-17 , the h2 elements are added to the
previous rule, showing how the text before and after the heading flows across its own set of columns.

 Figure 4-16. The first heading and the last paragraph span all columns

 Figure 4-17. An element with column-span: all will divide the column flow into several vertically stacked
sets of columns

CHAPTER 4 ■ WEB TYPOGRAPHY

80

 The multi-column layout properties are supported in almost every browser, with notable exceptions
being IE9 and earlier. Some caveats apply though:

• Almost every browser requires the proper vendor prefix to apply the column
properties.

• Firefox does not support the column-span rule at all at the time of writing.

• There are quite a few bugs and inconsistencies across browsers. Mostly, things like
margin collapse and border rendering happen oddly when elements flow across
columns. Zoe Mickley Gillenwater has an article on this and other pitfalls:
 http://zomigi.com/blog/deal-breaker-problems-with-css3-multi-columns/ .

 Vertical Rhythm and Baseline Grids
 We’ve mentioned how having some mathematical relationships between sizing in typography can help it
come together. For example, we used the “perfect fourth” sizing scale as a basis for our heading sizes. We
also set a common margin-top value for all headings as 1.5rem , equal to the height of one line of body text,
and used the same measurement again for the gaps between columns. Some designers swear by these types
of harmonious measurements, letting the base line height act as a metronome for the rest of the design.

 In print design, it’s common to follow this rhythm closely, so that lines of body text fall on a baseline
grid , even if headings, quotes, or other pieces break the rhythm now and again. Not only does it help the eye
movements when scanning the page, it also helps prevent the printed lines on the other side of the (thin)
paper to shine through in double-sided print, as the same baseline grid applies to both.

 On the Web, it’s much more finicky to get a baseline grid right—especially when dealing with fluid sizes
and user-generated content like images. It does make sense to at least try in some circumstances, like with
multi-column text. In Figure 4-18 , we can see that the baselines of the columns do not quite line up with
respect to each other, due to the headings.

 Figure 4-18. Our multi-column layout, with a baseline grid superimposed. Some parts fall out of rhythm

http://zomigi.com/blog/deal-breaker-problems-with-css3-multi-columns/

CHAPTER 4 ■ WEB TYPOGRAPHY

81

 Let’s tweak the margins of the headings so that the sum of the top margin, line height, and bottom
margin for the two heading levels all add up to a multiple of our base line-height value. That way, the
baselines should line up across all three columns.

 h2 {
 font-size: 1.75em; /* 28px */
 line-height: 1.25; /* 28*1.25 = 35px */
 margin-top: 1.036em; /* 29px */
 margin-bottom: .2859em; /* 8px */
 }
 h3 {
 font-size: 1.314em; /* 21px */
 line-height: 1.29; /* 1.29*21 = 27px */
 margin-top: .619em; /* 13px */
 margin-bottom: .38em;/* 8px */
 }

 Originally, the headings all had a line-height value of 1.25 , but we’ve overridden that where necessary
to simplify the math. Overall, the division between margin-top and margin-bottom is done somewhat by feel.
The important thing is that both of these rules sum to a multiple of the base line height: 72px for the h2 , and
 48px for the h3 . The baselines for body text in all three columns should now line up nicely (see Figure 4-19).

 Web Fonts
 So far in this chapter we’ve limited ourselves to fonts that are installed locally on a user’s computer.
Common web fonts like Helvetica, Georgia, and Times New Roman are common precisely because they have
traditionally been available on popular operating systems like Windows and Mac OS X.

 Figure 4-19. The multi-column article, now with a vertical rhythm set so that all paragraphs fall on the
baseline grid

CHAPTER 4 ■ WEB TYPOGRAPHY

82

 For many years designers wanted the ability to embed remote fonts from the Web, in much the same
way as they could embed an image into a web page. The technology to do this has been available since the
release of Internet Explorer 4 in 1997, but there hadn’t been good cross-browser support until 2009 when
Firefox, Safari, and Opera introduced similar technology.

 Since then, there has been huge adoption of web fonts. Initially quite experimentally on small blogs
and personal sites, this has been followed by large corporations and even government organizations
(see Figure 4-20 , for example) adopting custom web fonts.

 Licensing
 The other complication when dealing with web fonts is licensing . Initially, type foundries were very cautious
about allowing their fonts on the Web for individual browsers to download. The fear was this would lead to
uncontrollable piracy of their typefaces, and it’s taken a few years for this fear to abate.

 Most foundries that make their fonts available on the Web require certain security restrictions about
how they are served. For example, they might only allow fonts to be downloaded when linked to from a site
with a specific domain name, or require that the name of the font on the server changes regularly to avoid
hot-linking of fonts.

 Figure 4-20. The http://www.gov.uk website using a custom font designed by Margaret Calvert and Henrik
Kubel

http://www.gov.uk/

CHAPTER 4 ■ WEB TYPOGRAPHY

83

 WEB FONT HOSTING SERVICES

 The simplest way of experimenting with custom fonts if you haven’t yet started doing so is to use a
web font service. Commercial services like Adobe Typekit (http://typekit.com), Cloud.typography
(http://www.typography.com/cloud), and Fonts.com (http://www.fonts.com) look after all the nitty-
gritty of hosting and serving web fonts. There’s also Google Fonts (https://www.google.com/fonts),
where Google collects and hosts free-to-use fonts from a range of type foundries.

 These online services handle the different licensing deals with foundries and the difficult job of
converting fonts to the correct file formats, ensuring the correct character sets are included and are well
optimized. They then host and serve these fonts from their reliable and high-speed servers.

 Choosing a hosted service allows you to license fonts either individually for one-off use or as part of a
subscription to a library of fonts. Hosted services take a huge amount of the pain out of dealing with
web fonts and allow you to focus on the design and use of them within your web pages.

 The @font-face rule
 The key to embedded web fonts is the @font-face rule . This rule allows you to specify the location of a font
on a web server for a browser to download, and then lets you reference that font elsewhere in your style sheet:

 @font-face {
 font-family: Vollkorn;
 font-weight: bold;
 src: url("fonts/vollkorn/Vollkorn-Bold.woff") format('woff');
 }
 h1, h2, h3, h4, h5, h6 {
 font-family: Vollkorn, Georgia, serif;
 font-weight: bold;
 }

 The code in the preceding @font-face block declares that this rule applies when the style sheet uses the
 font-family value Vollkorn with a bold weight, and then provides a URL for the browser to download the
Web Open Font Format (WOFF) file containing the bold font.

 Once this new Vollkorn font has been declared, you can use it in a normal CSS font-family property
later on in your style sheet. In the previous example, we’ve chosen to use the bold Vollkorn font for all
heading elements on the page.

 Font File Formats
 Although support for web fonts is now very good across all the main browsers, what’s less good is support
for consistent font file formats . The history of font formats is long, complicated, and tightly bound to the
history of companies like Microsoft, Apple, and Adobe. Luckily, all browser makers are now on board
with the standardized WOFF format, with some even supporting the new and more efficient WOFF2. If
you need support for IE8 and earlier, ancient versions of Safari, or older Android devices, you may have to
complement your code with additional file formats like SVG fonts, EOT, and TTF.

http://typekit.com/
http://www.typography.com/cloud
http://www.fonts.com/
https://www.google.com/fonts

CHAPTER 4 ■ WEB TYPOGRAPHY

84

 ■ Tip If you have a font licensed for web font usage, you can create these additional formats using online
tools like Font Squirrel (http://fontsquirrel.com).

 To deal with this inconsistent support, the @font-face rule is able to accept multiple values for the src
descriptor (much like how font-family works) along with the format() hint, leaving it to the browser to
decide which file is most appropriate to download.

 Using this feature, we can get almost universal cross-browser support for web fonts, with a @font-face
rule such as the following:

 @font-face {
 font-family: Vollkorn;
 src: url('fonts/Vollkorn-Regular.eot#?ie') format('embedded-opentype'),
 url('fonts/Vollkorn-Regular.woff2') format('woff2'),
 url('fonts/Vollkorn-Regular.woff') format('woff'),
 url('fonts/Vollkorn-Regular.ttf') format('truetype'),
 url('fonts/Vollkorn-Regular.svg') format('svg');
 }

 This covers all browsers that support EOT, WOFF (including WOFF2), TTF, and SVG, which means
pretty much every browser in use today. It even accounts for quirky behavior in IE6–8, by declaring the first
 src value with a querystring parameter attached. This pattern, known as the “Fontspring @font-face syntax,”
is documented in detail at http://www.fontspring.com/blog/further-hardening-of-the-bulletproof-
syntax , along with the formats and edge cases it accounts for.

 ■ Note There are some further gotchas when using web fonts in IE6–8, in particular when using several
variations of the same typeface. We won’t go into the specifics here, but you can find more background in this
article from Typekit: http://blog.typekit.com/2011/06/27/new-from-typekit-variation-specific-font-
family-names-in-ie-6-8/ . We have also documented workarounds in the code samples that come with the book.

 In the rest of the examples where we’re using web fonts, we’ll be using only the WOFF and WOFF2
formats—by using those, we get support for the large majority of browsers while keeping the code simple.

 Font Descriptors
 The @font-face rule accepts a number of declarations, most of them optional. The most commonly used are

• font-family : Required, the name of the font family.

• src : Required, the URL, or list of URLs, where the font can be obtained.

• font-weight : Optional weight of the font. Defaults to normal .

• font-style : Optional style of the font. Defaults to normal .

 It’s important to understand that these are not the same font properties you apply to regular rule sets—
they’re actually not the normal properties at all, but font descriptors . We are not changing anything about the
font, but rather explaining which values of these properties, when used in the style sheet, should trigger the
use of this particular font file.

http://fontsquirrel.com/
http://www.fontspring.com/blog/further-hardening-of-the-bulletproof-syntax
http://www.fontspring.com/blog/further-hardening-of-the-bulletproof-syntax
http://blog.typekit.com/2011/06/27/new-from-typekit-variation-specific-font-family-names-in-ie-6-8/
http://blog.typekit.com/2011/06/27/new-from-typekit-variation-specific-font-family-names-in-ie-6-8/

CHAPTER 4 ■ WEB TYPOGRAPHY

85

 If font-weight is set to bold here, it means “use the file inside this block when something set in this
 font-family has font-weight set to bold .” One pitfall is that if this is the only instance of Vollkorn available,
it will be used for other weights as well, despite not being the correct weight. This is part of the spec for how
browsers load and select fonts: the correct font-family is outranking the correct weight.

 Many typefaces have different fonts for the various weights, styles, and variants, so you could have
several different @font-face blocks referencing the font-family name Vollkorn pointing to different files.
In the following example, we’re loading two different typefaces, and declaring for which weights and styles
each should be used:

 @font-face {
 font-family: AlegreyaSans;
 src: url('fonts/alegreya/AlegreyaSans-Regular.woff2') format('woff2'),
 url('fonts/alegreya/AlegreyaSans-Regular.woff') format('woff');
 /* font-weight and font-style both default to "normal". */
 }
 @font-face {
 font-family: Vollkorn;
 src: url('fonts/vollkorn/Vollkorn-Medium.woff') format('woff'),
 url('fonts/vollkorn/Vollkorn-Medium.woff') format('woff');
 font-weight: 500;
 }
 @font-face {
 font-family: Vollkorn;
 font-weight: bold;
 src: url('fonts/vollkorn/Vollkorn-Bold.woff') format('woff'),
 url('fonts/vollkorn/Vollkorn-Bold.woff') format('woff');
 }

 We can then use the correct font file elsewhere in our style sheet by declaring which variation we’re after:

 body {
 font-family: AlegreyaSans, Helvetica, arial, sans-serif;
 }
 h1, h2, h3, h4, h5, h6 {
 font-family: Vollkorn, Georgia, Times, 'Times New Roman', serif;
 font-weight: bold; /* will use the Vollkorn Bold font. */
 }
 h3 {
 font-weight: 500; /* will use the Vollkorn Medium font. */
 }

 Applying these styles to the same markup we used in the Moon article example, we get a different
look where the Alegreya sans-serif font family used for body text contrasts with the serif Vollkorn used for
headings (see Figure 4-21). The h1 and h2 are now using the Vollkorn Bold font file, whereas the h3 uses
Vollkorn Medium automatically as the font-weight matches 500 .

CHAPTER 4 ■ WEB TYPOGRAPHY

86

 ■ Caution A common mistake when loading web fonts is to load a bold font inside a @font-face block with
its font-weight descriptor set to normal , and then use it for an element that has its font-weight property
set to bold . This causes some browsers to assume that the font doesn’t have a proper bold variant and makes
them apply a “faux bold” on top of the original bolding.

 Figure 4-21. The article example with our new fonts applied

CHAPTER 4 ■ WEB TYPOGRAPHY

87

 We can see in the preceding example how the mechanics of font-family work in combination with our
new typeface: it turns out that the Alegreya Sans typeface does not contain any Greek letters, which appear
in the translated name of the Moon (see Figure 4-22). For these glyphs, the fallback font is used—in this case
Helvetica. This is apparent from the differing x-height in the two fonts.

 The bad news is that we did not load an italic font file for Alegreya, and for missing font styles, the
browser instead uses “faux italics” based on the normal style. This becomes even clearer when we look at the
source reference paragraph last in the article (see Figure 4-23).

 Luckily, Alegreya contains a wide range of variations, so if we add a new @font-face block pointing to
the correct file, this issue should resolve itself for any body text already set as font-style: italic
(see Figure 4-24):

 @font-face {
 font-family: AlegreyaSans;
 src: url('fonts/alegreya/AlegreyaSans-Italic.woff2') format('woff2'),
 url('fonts/alegreya/AlegreyaSans-Italic.woff') format('woff');
 font-style: italic;
 }

 Web Fonts, Browsers, and Performance
 Although web fonts have provided a considerable leap forward for web design, their application comes with
certain disclaimers.

 It should be obvious that by downloading extra fonts you are subjecting your users to an increased total
page weight. Your very first consideration should be limiting how many font files you need to load. It is also
very important that if you are hosting your own custom fonts, you must apply appropriate caching headers
to minimize network traffic. However, there are other considerations in regard to how browsers actually
render the fonts to the screen.

 Figure 4-23. Faux italicized text at the bottom of our article

 Figure 4-24. Now with true italics

 Figure 4-22. The Greek glyphs use the fallback font from the font-family stack. Note how the x-height differs
slightly

CHAPTER 4 ■ WEB TYPOGRAPHY

88

 While web fonts are downloading, the browser has two choices for your textual content. First, it can
block showing text on the screen until the web font has downloaded and is available for use, known as the
 flash of invisible text (or FOIT). This is the behavior that Safari, Chrome, and Internet Explorer exhibit by
default, and it can lead to a scenario where users cannot read the content of your site because the fonts are
slow to download. This could be a particular problem for users browsing on slow network connections, as
you can see in Figure 4-25 .

 The other option for browsers is to show the content in a fallback font while it waits for the browser
to download the web font. This gets around the problem of a slow network blocking content, but there’s a
trade-off in that you get the flash of the fallback font. That flash is sometimes known as the flash of unstyled
text , or FOUT.

 This flash of unstyled text can impact the perceived performance, especially if the metrics of the fallback
font are different from the preferred web font you are trying to load. If the page content jumps around too
much when the font is downloaded and applied, the user can lose their place in the page.

 If you’re using web fonts, you can opt to load the fonts via JavaScript to gain some further control over
which method is used, and how both web font and fallback are displayed.

 Figure 4-25. A page on http://www.nike.com as it would appear while waiting for fonts to download

http://www.nike.com/

CHAPTER 4 ■ WEB TYPOGRAPHY

89

 Loading Fonts with JavaScript
 There is an experimental JavaScript API for loading fonts, defined in the very recent CSS Font Loading
specification. Sadly, browser support is not particularly broad yet. Instead, we need to use third-party
libraries to ensure a consistent font- loading experience.

 Typekit maintain an Open Source JavaScript tool called Web Font Loader (https://github.com/
typekit/webfontloader). This is a small library that uses the native font-loading API behind the scenes
where supported, and emulates the same functionality in other browsers. It comes with support for some of
the common web font providers such as Typekit, Google Fonts, and Fonts.com, but also allows for fonts you
have self-hosted.

 You can download the library or load it from Google’s own servers as detailed at https://developers.
google.com/speed/libraries/#web-font-loader .

 Web Font Loader provides a lot of useful functionality, but one of the most useful is the ability to ensure
a consistent cross-browser behavior for font loading. In this case we want to ensure that slow-loading fonts
never block the user from reading our content. In other words, we want to enable the FOUT behavior across
our other supported browsers.

 Web Font Loader provides hooks for the following events:

• Loading: When fonts begin loading

• Active: When fonts finishing loading

• Inactive: If font loading fails

 In this instance, we’ll move all of our @font-face blocks into a separate style sheet named alegreya-
vollkorn.css , placing it inside a subfolder called css . We’ll then add a small piece of JavaScript to the head
of our example page:

 <script type="text/javascript">
 WebFontConfig = {
 custom: {
 families: ['AlegreyaSans:n4,i4', 'Vollkorn:n6,n5,n7'] ,
 urls: ['css/alegreya-vollkorn.css']
 }
 };
 (function() {
 var wf = document.createElement('script');
 wf.src = 'https://ajax.googleapis.com/ajax/libs/webfont/1/webfont.js';
 wf.type = 'text/javascript';
 wf.async = 'true';
 var s = document.getElementsByTagName('script')[0];
 s.parentNode.insertBefore(wf, s);
 })();
 </script>

 This code will both download the Web Font Loader script itself and configure which fonts and
variations we use (highlighted in bold in the code). The variations we want are described after the font-
family name: n4 stands for “normal style, weight at 400,” and so on. As the fonts found in this style sheet
are loading, the script will automatically add generated class names to the html element. That way, you can
tailor your CSS to the current state of the font loading.

https://github.com/typekit/webfontloader
https://github.com/typekit/webfontloader
https://developers.google.com/speed/libraries/#web-font-loader
https://developers.google.com/speed/libraries/#web-font-loader

CHAPTER 4 ■ WEB TYPOGRAPHY

90

 body {
 font-family: Helvetica, arial, sans-serif;
 }
 .wf-alegreya-n4-active body {
 font-family: Alegreya, Helvetica, arial, sans-serif;
 }

 These two CSS rules mean that before the Alegreya font has loaded, we are showing the fallback font
stack in its place. Then, once Alegreya is done loading, the loader script adds the wf-alegreya-n4-active
class to the html element, and the browser starts using our newly downloaded font. Not only will we now see
a consistent behavior across browsers, but we also have a hook for tweaking the details of our typography for
both fallback fonts and web fonts.

 Matching Fallback Font Size
 With a similar rule applied when the font is loading but not done yet, we can parry differences in font
metrics between the web font and the fallbacks . This is important because when the web font replaces the
fallback font, you want this change in size to be as discreet and unnoticeable as possible.

 In our example, the Alegreya font has a noticeably smaller x-height than Helvetica and Arial (both of
which have similar metrics). By tweaking the font-size and line-height slightly, we can match the height
pretty closely. Similarly, we can adjust for differences in the character widths by tweaking word-spacing
slightly. This way, we end up with a result that much more closely resembles what the text will look like once
the web font has loaded.

 .wf-alegreyasans-n4-loading p {
 font-size: 0.905em;
 word-spacing: -0.11em;
 line-height: 1.72;
 font-size-adjust:
 }

 ■ Tip If you’re using a vertical rhythm, you might have to adjust these kinds of properties in several places
when using this technique, so that the different font sizes still correspond to the base measurement.

 The other thing we’ll be using the Web Font Loader for is to set the font-size-adjust property once
the web font has loaded. This property allows you to specify the aspect ratio between the x-height and the
 font-size . In cases where a glyph is missing in the preferred font, the fallback font will then be adjusted in
size to match that ratio. This usually comes down to about half as tall (a value of 0.5), but it can differ a bit,
making the difference between your fallback fonts and your preferred web font quite noticeable. Instead of
measuring by hand and setting this value to a number, we can set the keyword auto , and let the browser do
the work for us:

 .wf-alegreyasans-n4-active body {
 font-size-adjust: auto;
 }

CHAPTER 4 ■ WEB TYPOGRAPHY

91

 At the time of writing, Firefox is the only browser with shipped support for font-size-adjust , with
Chrome offering experimental support behind a preference flag. If we view the article example in Firefox, as
shown in Figure 4-26 , we can see that the Greek glyphs (seen here in Helvetica) now have the same height as
the surrounding Alegreya.

 Advanced Typesetting Features
 OpenType, a font format developed by Microsoft and Adobe in the 1990s, allows for additional
characteristics and features of fonts to be included in a font file. If you’re using a font file that contains
OpenType features (which can be contained in either .ttf , .otf , or .woff / .woff2 files), you can control a
range of CSS features in most modern browsers. These features include kerning, ligatures, and alternative
numerals, as well as decorative features like the swashes seen in Figure 4-27 .

 The CSS Fonts specification has targeted properties for many OpenType features, like font-kerning ,
 font-variant-numeric , and font-variant-ligatures . Support for these targeted properties is not currently
available cross-browser, but there are methods for accessing these features through another, more low-level
property, font-feature-settings , that does have support across many modern browsers. Often, you’ll do
best to specify both, as some browsers may support the targeted properties but not the low-level settings.

 Figure 4-27. The names of speakers for the Ampersand conference with swash glyphs from the “Fat Face”
typeface

 Figure 4-26. Firefox showing the Greek glyphs in Helvetica with adjusted x-height

CHAPTER 4 ■ WEB TYPOGRAPHY

92

 The font-feature-settings property accepts values that toggle certain feature sets, by passing it four-
letter OpenType codes, optionally with a numeric value. For example, we can enable ligatures—glyphs that
combine two or more characters into one—as shown in Figure 4-28 .

 The typeface designer can specify several categories of ligatures, depending on whether they should be
used generally or in special cases. To enable the two kinds of ligatures present in the Vollkorn typeface called
 standard ligatures and discretionary ligatures , we would use the following rule:

 p {
 font-variant-ligatures: common-ligatures discretionary-ligatures;
 font-feature-settings: "liga", "dlig";
 }

 Standard ligatures are always enabled by default in browsers supporting OpenType using font-
variant-ligatures , so they are left out in the first declaration. Certain browsers support the font-feature-
settings property with a slightly different syntax, and others need a vendor-prefixed version of the property,
so a full rule to turn on common and discretionary ligatures would be

 h1, h2, h3 {
 font-variant-ligatures: discretionary-ligatures;
 -webkit-font-feature-settings: "liga", "dlig";
 -moz-font-feature-settings: "liga", "dlig";
 -moz-font-feature-settings: "liga=1, dlig=1";
 font-feature-settings: "liga", "dlig";
 }

 The syntax differences require a bit of explanation :

• The standard way of affecting an OpenType feature is to use its four-letter code in
quotes, optionally followed by a keyword— on or off —or a number. These codes
indicate the state for the feature, and if you leave them out (like in the preceding
example), they default to on .

• Using 0 for the state also turns the feature off. If the feature only has on and off states,
a value of 1 turns it on. Some features have several “states,” and these can be selected
by using the appropriate numbers for each—what this means depends on the
individual font and type of feature you want to activate.

• When several features are affected at once, they need to be separated by commas.

• Most browsers still implement these features as vendor-prefixed, so make sure to
include these.

 Figure 4-28. Two pieces of text set in Vollkorn, the first without ligatures and the second with ligatures
enabled. Note the difference in the “fi,” “ff,” and “fj” pairs

CHAPTER 4 ■ WEB TYPOGRAPHY

93

• The older syntax for some Mozilla browsers is a bit different: all of the affected
features are named as comma-separated in one quoted string, and the state is
affected by using an equals sign and then the number part.

 A full list of the OpenType feature codes can be found from Microsoft at http://www.microsoft.com/
typography/otspec/featurelist.htm . In the rest of the examples, we’ll only use the standardized forms of
 font-feature-settings along with the targeted feature properties.

 Numerals
 Some typefaces include multiple styles of numerals for use in different situations. Many typefaces, such as
Georgia or Vollkorn, use old-style numerals by default, where numbers have ascenders and descenders the
same way letters do. Vollkorn also includes lining numerals, where numbers sit on the baseline and have the
same general height as capital letters. In Figure 4-29 , we have toggled explicitly between old-style and lining
numerals, using the following code:

 .lining-nums {
 font-variant-numeric: lining-nums;
 font-feature-settings: "lnum";
 }
 .old-style {
 font-variant-numeric: oldstyle-nums;
 font-feature-settings: "onum";
 }

 Most typefaces have numerals with varying width (proportional numerals), just like regular letters. If
you’re using numbers in a table or list where you need them to line up vertically, you may want to switch to
tabular numerals. In Figure 4-30 , we have used them combined with lining numerals, configured as follows:

 table {
 font-variant-numeric: tabular-nums lining-nums;
 font-feature-settings: "tnum", "lnum";
 }

 Figure 4-30. Tabular lining numerals as set in Alegreya Sans. Prices on the right line up vertically, despite
having different widths

 Figure 4-29. Lining numerals (top) vs. old-style numerals (bottom) as set in Vollkorn

http://www.microsoft.com/typography/otspec/featurelist.htm
http://www.microsoft.com/typography/otspec/featurelist.htm

CHAPTER 4 ■ WEB TYPOGRAPHY

94

 Kerning Options and Text Rendering
 High-quality fonts often have data inside them to adjust the space between certain pairs of glyphs. This
process of fine-tuning the spacing is known as kerning . It means that some letter pairs may need extra space
between them to not seem too cramped up with each other, and some even need to overlap slightly so as
not seem too far apart. Some examples of common kerning pairs can be seen in Figure 4-31 , where we have
activated kerning in the Alegreya typeface.

 The text rendering in browsers mostly tries to handle this automatically based on known metrics, but
you can also activate the reading of detailed kerning data from individual fonts in many modern browsers.
We trigger it by setting the font-kerning property, or activating the kern OpenType feature:

 .kern {
 font-kerning: normal;
 font-feature-settings: "kern";
 }

 The keyword normal tells the browser to grab the kerning data from the font, if available. A value of auto
allows the browser to turn it on when deemed appropriate; for example, it might be ignored for very small
text sizes. Finally, you can explicitly turn it off by setting the value to none .

 ■ Note Activating other OpenType features (like ligatures) may automatically trigger use of kerning data
from the font in some browsers, so if you want to turn off kerning but still use ligatures, you need to specify that
explicitly. Conversely, using the " kern " feature may also trigger the application of common or standard ligatures.

 AVOID THE TEXT-RENDERING PROPERTY

 Setting the declaration text-rendering: optimizeLegibility is another trick that activates kerning
as well as common ligatures at the same time. It’s not part of any CSS standard, but is a property from
the SVG specification that tells the browser to pick a method for rendering letter shapes in SVG. It can
prioritize performance (optimizeSpeed), more exact shapes (optimizeGeometricPrecision), or more
readable shapes (optimizeLegibility).

 This property has been around for a while and is fairly well supported, so it’s common to see sites
using it—it was the only method for activating these features in older WebKit-based browsers before
they supported font-feature-settings . However, you should know that there are quite a few serious
rendering bugs associated with using this property, so you’d do best to avoid it.

 Figure 4-31. A sentence without (top) and with (bottom) detailed kerning activated. Notice how the space
shrinks between pairs like “AT,” “Ad,” and “Ta”

CHAPTER 4 ■ WEB TYPOGRAPHY

95

 Text Effects
 While there is still plenty to explore when it comes to the basics of typography on the Web, there are
situations where you want to go nuts with things like headings and logotypes. In this section we’ll look at
some examples of techniques that let you go above and beyond, for creating eye-catching effects that set
your website apart from the rest.

 Using and Abusing Text Shadows
 The CSS text-shadow property lets you draw a shadow behind a piece of text. For longer runs of body text,
this is usually not a very good idea, since it often diminishes the readability of your text. For headings or
other short pieces of text, it does have some good uses, especially for creating “letterpress” like effects or re-
creating the shading of traditional painted signs.

 The syntax for text-shadow is pretty straightforward. You need to supply lengths for the x- and y-axis
offset from the original text (positive or negative), a length for the blur distance (where 0 means a completely
sharp shadow), and a color, all separated by spaces (see Figure 4-32):

 h1 {
 text-shadow: -.2em .4em .2em #ccc;
 }

 In addition to this, you can create several shadows for one piece of text by using a comma-separated list
of shadows. When applying multiple shadows, they are stacked, with the first one defined showing on the
top and the others stacking behind it, increasingly further down the stack in the order they’re defined.

 The ability to add multiple shadows to a single piece of text makes this quite a versatile effect. This is what
lets you emulate a “letterpress” effect, where the type seems either impressed into the page or embossed, by
adding one darker and one lighter shadow, sticking out above or below the text (see Figure 4-33). The offset of
the light vs. dark shadow depends on whether the text is lighter or darker than the background: a darker text
with a light shadow above and a darker shadow below usually appears impressed into the page, and vice versa.

 Figure 4-33. A simple “letterpress” effect

 Figure 4-32. A simple text shadow with some spread applied. Any spread value other than 0 means that the
shadow is blurry

CHAPTER 4 ■ WEB TYPOGRAPHY

96

 The following code sample illustrates the two different effects:

 .impressed {
 background-color: #6990e1;
 color: #31446B;
 text-shadow: 0 -1px 1px #b3d6f9, 0 1px 0 #243350;
 }
 .embossed {
 background-color: #3c5486;
 color: #92B1EF;
 text-shadow: 0 -1px 0 #243350, 0 1px 0 #def2fe;
 }

 Building further on the technique of multiple shadows, we can create lettering that looks like it’s in a
pseudo-3D-shaded kind of style, emulating styles from hand-painted signage. Adding a large number of
sharp shadows, where the diagonal offset between each shadow is one pixel or less, allows us to achieve this
effect:

 h1 {
 font-family: Nunito, "Arial Rounded MT Bold", "Helvetica Rounded", Arial, sans-serif;
 color: #d0bb78;
 text-transform: uppercase;
 font-weight: 700;
 text-shadow:
 -1px 1px 0 #743132,
 -2px 2px 0 #743132,
 -3px 3px 0 #743132,
 /* …and so on, 1px increments */
 -22px 22px 0 #743132,
 -23px 23px 0 #743132;
 }

 This gives us the funky 70s-inspired look we see in Figure 4-34 . The text is set in Nunito, loaded from
Google Fonts.

 To further increase the sense of hand-painted signage, we can apply some effects. First, we could create
an outline effect with a first batch of white shadows, since sign painters often left some space between the
lettering and the shade—this let them work more quickly since the paint in the letters didn’t have to dry
before they could move on to the shading. We’ll need to duplicate the white shadow and use offsets in all
directions to make it go all the way around the letters.

 Figure 4-34. A large number of text shadows with increasing offset creates a diagonal shade from the text

CHAPTER 4 ■ WEB TYPOGRAPHY

97

 Secondly, we can use another trick to make the shade appear to shift in color along with its direction,
creating an even more pseudo-3D look, emulating lighting direction. This is achieved by offsetting the
individual shadows in a staggered way, where the color alternates between a lighter and a darker color. This
way, we’re utilizing the stacking of them to make one color stand out more in the horizontal direction, and
the other in the vertical. The finished result can be seen in Figure 4-35 .

 Here’s how the resulting code for the two tricks described would look:

 h1 {
 /* some properties left out */
 text-shadow:
 /* first, some white outline shadows in all directions: */
 -2px 2px 0 #fff,
 0px -2px 0 #fff,
 0px 3px 0 #fff,
 3px 0px 0 #fff,
 -3px 0px 0 #fff,
 2px 2px 0 #fff,
 2px -2px 0 #fff,
 -2px -2px 0 #fff,
 /* …then some alternating shades that increasingly stick out in either direction: */
 -3px 3px 0 #743b34,
 -4px 3px 0 #a8564d,
 -4px 5px 0 #743b34,
 -5px 4px 0 #a8564d,
 -5px 6px 0 #743b34,
 /* ..and so on… */
 -22px 21px 0 #a8564d,
 -22px 23px 0 #743b34,
 -23px 22px 0 #a8564d,
 -23px 24px 0 #743b34;
 }

 An in-depth article on this technique for shading and old-style signage for the Web can be found at the
Typekit Practice website (http://practice.typekit.com/lesson/using-shades/), which also has a wealth
of other resources for learning the art of web typography.

 Almost all browsers support the text-shadow property, only IE9 and earlier are missing out. As for
performance where they are supported, drawing shadows can be quite the expensive operation, so you
should only apply shadow effects very sparingly in your designs.

 Figure 4-35. Our finished shaded headline

http://practice.typekit.com/lesson/using-shades/

CHAPTER 4 ■ WEB TYPOGRAPHY

98

 Using JavaScript to Enhance Typography
 There are some situations where pure CSS just won’t do the trick. For instance, you can target the first letter of
a piece of text with the :first-letter pseudo-element, but there is no selector for individually targeting the
rest of the letters. Your only option if you would want each letter to have a different color, for example, would
be to wrap each letter with an element (like a , for example) and target those. That approach is not
very viable, especially if you don’t have manual control over the markup for the elements you want to style.

 Luckily, we can treat these kinds of visual effects as an enhancement, and use JavaScript to
automatically create the extra hooks. The lettering.js jQuery plug-in (http://letteringjs.com) will do
just that. One of the people behind this plug-in is designer and developer Trent Walton. Figure 4-36 shows
 lettering.js used in the wild in a heading on his personal website.

 There are a gazillion different other JavaScript-based solutions to help you tweak your text. Here are
some examples:

• fitText.js : A jQuery plug-in from the same folks behind lettering.js (from
agency Paravel) to make text resize in relation to the size of the page
(http://fittext.js).

• BigText.js : A script from Zach Leatherman of Filament Group that tries to make
a line of text as big as possible based on its container (https://github.com/
zachleat/BigText).

• Widowtamer : A script from Nathan Ford of Gridset.com that makes sure to prevent
accidental widows by inserting nonbreaking space characters between words of a
certain distance from the end of a paragraph (https://github.com/nathanford/
widowtamer).

 Figure 4-36. An example of using the lettering.js jQuery plug-in, from http://trentwalton.com

http://letteringjs.com/
http://fittext.js/
https://github.com/zachleat/BigText
https://github.com/zachleat/BigText
https://github.com/nathanford/widowtamer
https://github.com/nathanford/widowtamer
http://trentwalton.com/

CHAPTER 4 ■ WEB TYPOGRAPHY

99

 ■ Note SVG enables some really cool text effects, which are generally outside the scope of this book.
However, in Chapter 12 we will look at some advanced techniques for visual effects, among them a brief look at
scalable text using SVG.

 Further Type Inspiration
 Typography on the Web is an area that is rich for investigating, experimenting, and pushing the limits of
what’s possible. There are many hundreds of years of history and tradition to explore, and to investigate what
we can apply and how we can apply it sensibly in a web context.

 One of the authorities on typography in general is the book The Elements of Typographic Style by Robert
Bringhurst, which documents and explains much of this tradition. It talks about many of the features we’ve
discussed in this chapter, such as vertical rhythm, and the nuances of hyphenation and word spacing.

 The previously mentioned Richard Rutter has spent time thinking about how some of this best practice
that Bringhurst has established can be brought over to the Web. The Elements of Typographic Style applied
to the Web (http://webtypography.net) shows how to apply features of typographic tradition using HTML
and CSS, and is well worth a look if you’re interested in getting more detailed rules and practices into how
you typeset for the Web.

 Another great guide to typographic practice, with explanations for how to translate the advice to CSS, is
 Buttericks’s Practical Typography , available at http://practicaltypography.com/ .

 Finally, Jake Giltsoff’s collection of typography links, “Typography on the Web”
(https://typographyontheweb.com), is a great resource of tips on both design and code.

 Remember, if you’re adding any text to a web page, then you are typesetting.

 Summary
 In this chapter, we’ve gone through the basics of text and font properties in CSS and some tips on how to use
them for maximum readability and flexibility. Using the multi-column layout module, we created text set in
a newspaper-like format. We saw how systematic distances in line height and other spacing properties can
let you set your type to a vertical rhythm.

 We looked at how to load custom fonts using the @font-face rule, and the various parameters that
affect which font file is loaded. We also had a quick look at how to control the perceived performance of font
loading, using the Web Font Loader JavaScript library.

 We took a look at some of the more detailed OpenType options available for increased typographic
control—ligatures, numerals, and kerning—and how the font-feature-settings property allows us low-
level control over how to turn these features on or off.

 Finally, we explored some methods of experimenting with more radical typography techniques for
headings and poster type, using text shadows and some further help from JavaScript.

 In the next chapter, we’ll take a look at how to set the stage for your beautifully typeset pages: using
images, background colors, borders, and shadows.

http://dx.doi.org/10.1007/978-1-4302-5864-3_12
http://webtypography.net/
http://practicaltypography.com/
https://typographyontheweb.com/

101© Andy Budd and Emil Björklund 2016
A. Budd and E. Björklund, CSS Mastery, DOI 10.1007/978-1-4302-5864-3_5

 CHAPTER 5

 Beautiful Boxes

 In previous chapters you learned that every element of an HTML document is made up of rectangular boxes:
from the containers that hold the structural parts of your page, to the lines of text in a paragraph. You then
spent the last chapter learning how to style the text content of your pages.

 Web design wouldn’t be as creative or flexible if we weren’t able enhance the look of these boxes, or
complement them with colors, shapes, and imagery. This is where the CSS properties for backgrounds,
shadows, and borders come in, as well as content images through the img element, and other embedded
objects.

 In this chapter you will learn about

• Background colors and the different kinds of opacity

• Using background images and the different image formats

• Using the calc() function to do mathematical calculations on lengths

• Adding shadow effects to your boxes

• Using simple and advanced border effects

• Generating gradients with CSS

• Styling and sizing content images and other embedded objects

 Background Color
 We’ll start with a very basic example of adding a color to the background of the entire page. The following
code will set our background to a mellow green color:

 body {
 background-color: #bada55;
 }

 We could also set the background color using the shorter background property:

 body {
 background: #bada55;
 }

CHAPTER 5 ■ BEAUTIFUL BOXES

102

 What’s the difference between these two properties? The second, background , is a shorthand property
that allows you to set a whole host of other background-related properties at the same time. In the preceding
example, we only declare a background color in the shorthand, but the other values (for background images)
are affected as well—they are reset to their default values. This could unintentionally override something
that you’ve already specifically set, so be careful with that one—we’ll examine it in detail further ahead in
this chapter.

 Color Values and Opacity
 In the previous color example, we set the value with the hexadecimal notation: a hash character (also known
as an octothorpe , pound sign , or number sign) followed by a six-character string. This string is composed
of three sets of two characters each in the range of 0 to F. Hexadecimal means every “number” can have 16
different values, so 0–9 are complemented with A–F representing the 11th to 16th values:

 0123456789ABCDEF

 These three pairs represent the red, green, and blue (RGB) values for the color. There are 256 different
possible values for each color channel, hence the two characters per color channel (16 × 16 = 256).

 Colors where all three pairs have the same values in both places are allowed to be shortened to three
characters: #aabbcc becomes #abc , #663399 becomes #639 , and so forth.

 ■ Tip You can also specify colors using one of the many available color keywords such as red , black , teal ,
 goldenrod , or darkseagreen . There are some pretty weird color keywords—they have their roots in an old
graphics system called X11, where the developers in turn chose some of the color keywords from a box of
crayons!

 It’s hard to find any good reason why you’d want to use these keywords—apart from possibly wanting to
quickly come up with a color for debugging purposes. We’ll move ahead by using the more exact methods.

 Setting the RGB values can be done in another way, using the rgb() functional notation. Each value for
RGB can be represented as either a number (from 0 to 255) or a percentage (0% to 100%). Here’s what the
example in the previous section would look like using rgb() notation:

 body {
 background-color: rgb(186, 218, 85);
 }

 Hexadecimal and rgb() notation have been around since CSS 1. More recently, we have gotten a few
new ways to handle color: hsl() , rgba() , and hsla() .

 First, there is the hsl() functional notation. Both hexadecimal and RGB notations refer to how
computers work with colors to display them on a screen—a mix of red, green, and blue. The hsl() notation
refers to a different way of describing colors using the hue–saturation–lightness (HSL) model. The hue gets
its value from a hypothetical color wheel (see Figure 5-1), where the colors gradually shift into each other
depending on which degree you choose: red on the top (0 degrees), green one-third of the way around (120
degrees), and blue at two-thirds of the way (240 degrees).

CHAPTER 5 ■ BEAUTIFUL BOXES

103

 If you’ve worked with any type of graphic design software, you’ve probably seen a color wheel in the
color pickers there. To use hsl() syntax, you pass it the degree representing the angle of the circle you’d
like to pick, and two percentages. The two percentages represent first the amount of “pigment” (saturation)
you would like to use in your color mix, and then the lightness. Here’s how the code from earlier would be
written in hsl() notation:

 .box {
 background-color: hsl(74, 64%, 59%);
 }

 It’s important to note that there’s no qualitative difference in choosing either of these ways to write your
color values: they are simply different ways of representing the same thing.

 The next new color notation is the turbo-powered version of RGB, called rgba() . The “a” stands for
 alpha , and it is the alpha channel that controls transparency. Here’s what we would use if we wanted the
same basic background color as the previous example but now want it to be 50% transparent:

 .box {
 background-color: rgba(186, 218, 85, 0.5);
 }

 The fourth value in the arguments for the rgba() function is the alpha value, and it is written as a value
between 1.0 (fully opaque) and 0 (fully transparent).

 Finally, there’s the hsla() notation . It has the same relationship to hsl() as rgb() has to rgba() : you
pass it an extra value for the alpha channel to choose how transparent the color should be.

 .box {
 background-color: hsla(74, 64%, 59%, 0.5);
 }

 Figure 5-1. The HSL color wheel

CHAPTER 5 ■ BEAUTIFUL BOXES

104

 Now that you know how to make colors more or less transparent, it should be noted that there is
another way to control transparency in CSS. It can be done via the opacity property:

 .box {
 background-color: #bada55;
 opacity: 0.5;
 }

 This would make our .box element the same color and level of transparency as in the previous
example. So what is different here? Well, in the previous examples, we made only the background color
transparent, but here we’re making the whole element transparent, including any content inside it . When an
element is set to be transparent using opacity , it is not possible to make child elements inside it be any less
transparent.

 In practice, this means that color values with transparency are great for making semitransparent
backgrounds or text, while lowered opacity makes the whole element fade out.

 ■ Caution Be careful with the contrast between the text and the background color! While this book is
not about design theory per se, we do want to stress that designing for the Web is about your users being
able to take in the information present on the pages you create. Poor choice of color contrast between
background and text affects people visiting your site on their phone out in the sun, people with bad screens,
people with impaired vision, etc. An excellent resource on color contrast is the site Contrast Rebellion at
 http://contrastrebellion.com/ .

 Background Image Basics
 Adding background color is a great tool for creating more interesting pages. Sometimes we want to go
further and use images as backgrounds on our elements, be it subtle patterns, pictograms to explain the user
interface, or a bigger background graphic to give the page some extra character (see Figure 5-2). CSS has
plenty of tools for doing this.

http://contrastrebellion.com/

CHAPTER 5 ■ BEAUTIFUL BOXES

105

 Background Images vs. Content Images
 First things first: when is an image a background image? You might be aware that there is an HTML element
specifically for adding content images to websites: the img element. How do we decide when to use img and
when to use background images in CSS?

 The simple answer is that anything that could be removed from the website and still have it make sense
should probably be applied as a background image. Or to put it another way: anything that would still make
sense if the website had a completely different look and feel should probably be a content image.

 There may be situations where the line is not clear, and you end up bending the rules to achieve a
specific visual effect. Just keep in mind that any content images from img elements that are purely for
decoration on your site may end up in other places where your content would be better left undisturbed: in
feed readers and search results, for example.

 Simple Example Using Background Images
 Imagine we’re designing a page to resemble one of those massive headers on a profile page for a social site
like Twitter or Facebook (see Figure 5-3).

 Figure 5-2. The blog on https://teamtreehouse.com uses a faded and colorized background image

https://teamtreehouse.com/

CHAPTER 5 ■ BEAUTIFUL BOXES

106

 Figure 5-4. Giant header image and profile box with text and profile pic

 Figure 5-3. A profile page on https://twitter.com

 Our page will instead be a social network for cats, and throughout this chapter, we’ll use various
properties to create the beginnings of a header component looking something like Figure 5-4 .

https://twitter.com/

CHAPTER 5 ■ BEAUTIFUL BOXES

107

 We’ll start off by adding a default blue-gray background color and a background image along with some
dimensions to the big header of the page. Adding a default background color is important, should the image
fail to load:

 .profile-box {
 width: 100%;
 height: 600px;
 background-color: #8Da9cf;
 background-image: url(img/big-cat.jpg);
 }

 The HTML for this component could look something like this:

 <header class="profile-box">
 </header>

 The result of this can be seen in Figure 5-5 : our image is loaded and tiled across the entire profile box.

 Figure 5-5. The background image tiled across the profile box in both directions

 Why is it tiled across the whole box like that? Because of the default value of another property related to
background images, named background-repeat . The default value, repeat , means that the image repeats
across both the x axis and y axis. This is very useful for backgrounds containing patterns, but perhaps not
photos. We can constrain this to just either direction by setting the value to repeat-x or repeat-y , but for
now we’ll remove the tiling effect completely by setting it to no-repeat :

 .profile-box {
 background-image: url(img/cat.jpg);
 background-repeat: no-repeat;
 }

CHAPTER 5 ■ BEAUTIFUL BOXES

108

 The Level 3 Backgrounds and Borders specification redefines this feature with an expanded syntax and
new keywords. First, it allows you to specify the repeat value for the two directions with keywords separated
with a space, so the following would be equivalent to setting repeat-x :

 .profile-box {
 background-repeat: repeat no-repeat;
 }

 Second, it defines some new keywords. In supporting browsers you can set space or round as one or
both keywords. Using space means that if the background image fits inside the element two or more times
(without cropping or resizing it), it will be repeated as many times as it fits and spaced apart so that the first
and last “copies” of the background image touch the edges of the element. Using round means that the image
will be resized so that it fits inside the element a whole number of times.

 To be honest, these new background repetition features are probably not massively useful. They can
be handy if you want to use a symbol or repeating pattern as a background and want to retain some sort of
symmetry in the design, but they also make it hard to maintain the aspect ratio of the images. Support is also
spotty: older browsers are missing out, but even modern versions of Firefox are missing support.

 Loading Images (and other files)
 When using the url() functional notation as we did in the previous example, we can use a relative URL—
 url(img/cat.jpg) , for example. The browser will try to find the file cat.jpg in the img subdirectory relative
to the file holding the CSS itself. Had the path started with a slash— /img/cat.jpg —the browser would look
for the image in the top-level img directory, relative to the domain the CSS file was loaded from.

 We could also use an absolute URL. An example of an absolute URL would be if we went as far as to
specify exactly which combination of protocol, domain, and path that leads to the image, like
 http://example.com/img/my-background.jpg .

 Apart from absolute and relative URLs, we could opt to load images (and other resources) without
pointing to any files at all, but instead embed the data directly inside the style sheet. This is done via
something called a data URI , where the binary-encoded data inside a file is converted to a long string of text.
There are numerous tools to do this for you, including online versions like http://duri.me/ .

 You can then paste that text inside the url() function and save the data as part of the style sheet. It
looks something like this:

 .egg {
 background-image:
 url( gAAAAoAQAAAACkhYXAAAAAjElEQVR4AWP…
 /* ...and so on, random (?) data for a long time.. */
 ...4DwIMtzFJs99p9xkOXfsddZ/hlhiY/AYib1vsSbdn+P9vf/1/hv8//oBIIICRz///
r3sPMqHsPcN9MLvn1s6SfIbbUWFl74HkdTB5rWw/w51nN8vzIbrgJDuI/PMTRP7+ByK//68HkeUg8v3//WjkWwj5G0R+
+w5WyV8P1gsxB2EmwhYAgeerNiRVNyEAAAAASUVORK5CYII=);
 }

 The starting bit with data:image/png;base64 tells the browser what kind of data to expect, and the rest
is the actual pixel data of the image converted to a string of characters.

 There are good and bad effects of using embedded data URIs—the main reason for using them is to
reduce the number of HTTP requests, but at the same time they increase the size of your style sheets quite a
bit, so use them very sparingly.

http://example.com/img/my-background.jpg
http://duri.me/

CHAPTER 5 ■ BEAUTIFUL BOXES

109

 Image Formats
 You can use image files of several different formats on the Web, all of them either as content images or
background images. Here’s a brief run-down:

• JPEG: A bitmap format that can be highly compressed but with some quality loss in
details, suitable for photos. No support for transparency.

• PNG: A bitmap format that has a lossless compression, which makes it unsuitable
for photos (it would create very large files) but can achieve quite small file sizes for
“flatter” graphics like icons or illustrations. Can have alpha-transparency.

• GIF: An older bitmap format, similar to PNG, that is mostly used for animated
pictures of cats. To be serious, it has largely been replaced by PNG for everything
except animated images: PNG does have support for that too, but the browser
support is a bit behind. GIF supports transparency, but not with alpha levels, so
edges often look jagged.

• SVG: A vector graphics format that is also its own markup language. SVG can be
either embedded directly into web pages or referenced as the source for background
images or content images.

• WebP: A new format, developed by Google, that has very efficient compression and
combines the features of JPEG (heavily compressable) with those of PNG (alpha
transparency). So far, browser support is very spotty (only Blink-based browsers like
Chrome and Opera), but that may change fast.

 All of these except SVG are bitmap formats, meaning that they contain data pixel by pixel, and have
intrinsic dimensions (meaning a “built-in” width and height). For graphic elements with high levels of
details, like photos or detailed illustrations, that makes sense. But for many uses, the really interesting
format is SVG, which instead contains instructions around how to draw specific shapes on the screen. This
allows SVG images to be resized freely or shown on a screen with any pixel density: they will never lose any
sharpness or level of detail.

 SVG is a topic big enough for several books on its own (and indeed, many such books exist), but we still
hope to give you some glimpses of the flexibility of SVG throughout this book (especially in Chapter 11 , when
we look at some of the more cutting-edge visual effects in CSS). SVG is an old format (it has been around
since 1999), but in recent years browser support has become wide enough to make SVG a viable alternative.
The only holdouts are the somewhat ancient versions of Internet Explorer (version 8 and earlier) and earlier
versions of WebKit browers on Android (version 2 and earlier).

 Background Image Syntax
 Back in Figure 5-5 , we started to create the profile page example with a background image in JPEG format,
since it’s a photo. So far, we’ve placed it in the background of our element, but it doesn’t look very good yet.
We’ll go through the properties that let you adjust a background image.

 Background Position
 We could try positioning our image in the center of the element. The position of a background image is
controlled with the background-position property .

 We have also used a bigger version of the image file to make sure it covers the element even on larger
screens (see Figure 5-6). Sides will get clipped at smaller screens, but at least the image is centered.

http://dx.doi.org/10.1007/978-1-4302-5864-3_11

CHAPTER 5 ■ BEAUTIFUL BOXES

110

 .profile-box {
 width: 100%;
 height: 600px;
 background-color: #8Da9cf;
 background-image: url(img/big-cat.jpg);
 background-repeat: no-repeat;
 background-position: 50% 50%;
 }

 Figure 5-6. Our page with a bigger, centered background image to cover the whole element

 You can set the background-position property value using either keywords or units like pixels, ems, or
percentages. In its simplest form, the value consists of two subvalues: one for the offset from the left, one for
the offset from the top.

 ■ Note Some browsers support the background-position-x and background-position-y properties,
which position the image individually on each axis. These started out as nonstandard properties in IE, but are
being standardized. They are still not supported in Mozilla-based browsers at the time of writing.

 If you set these values using pixels or ems, the top-left corner of the image is positioned from the
top-left corner of the element by the specified number of pixels. So if you were to specify a vertical and
horizontal position of 20 pixels, the top-left corner of the image would appear 20 pixels from the left edge
and 20 pixels from the top edge of the element. Background positioning using percentages works slightly
differently. Rather than positioning the top-left corner of the background image, percentage positioning

CHAPTER 5 ■ BEAUTIFUL BOXES

111

uses a corresponding point on the image. If you set a vertical and horizontal position of 20 percent, you are
actually positioning a point 20 percent from the top and left edges of the image, 20 percent from the top and
left edges of the parent element (see Figure 5-7).

20px

20px

20%

20%

20%

20%

 Figure 5-7. When positioning background images using pixels, the top-left corner of the image is used. When
positioning using percentages, the corresponding position on the image is used

 Keyword alignment works by replacing one or both of the x- and y-axis measurements with left ,
 center , or right for the x axis or top , center , or bottom for the y axis. You should get into the habit of always
declaring these in the order of x first, then y. This is for both consistency and readability, but also to avoid
mistakes: the spec allows you to change the order if you use two keywords (like top left), but disallows this
when one is a keyword and one is a length. The following would be broken:

 .box {
 background-position: 50% left; /* don’t do this */
 }

 The constraints of background positioning have been bugging designers for a long time. Consider the
design in Figure 5-8 : we have some text of an unknown length that has an icon image at the rightmost edge,
with some whitespace around it. Using pixels or ems to position the image would be rather useless, because
we don’t know how far from the left edge the image is supposed to sit.

background-image

 Figure 5-8. A piece of text with an icon as a background image at the right edge

CHAPTER 5 ■ BEAUTIFUL BOXES

112

 Previously, the only solution, apart from giving the icon its own wrapper element and positioning
that instead, would be to use a background image and position it 100% from the left edge and have the
whitespace on the right baked into the image file itself as transparent pixels. This isn’t very elegant, because
it doesn’t give us control over this whitespace by means of CSS. Luckily, the Level 3 Backgrounds and
Borders spec has our backs!

 The new syntax for background-position allows us to do exactly what we hoped for as just
described: we can prefix each distance with the corresponding edge keyword we want to use as
reference. It looks like this:

 <p>
 Activate flux capacitor
 </p>

 .link-with-icon {
 padding-right: 2em;
 background-image: url(img/icon.png);
 background-repeat: no-repeat;
 background-position: right 1em top 50% ;
 }

 The previous example means that we position the image 1 em from the right edge and 50% from the top.
Problem solved! Sadly, this version of the syntax doesn’t work in IE8 or Safari before version 7. Depending
on your use case, it could work as an enhancement, but it’s kind of hard to have it gracefully degrade in
unsupported browsers.

 Introducing Calc
 We could actually achieve the same results with the example in the previous section by introducing another
CSS construct with perhaps slightly wider support: the calc() functional notation. Using calc gives you a
way to leave it to the browser to calculate any sort of number for you (angles, pixels, percentages, etc.). It
even works with mixed units that are not known until the page is rendered! This means you could say
“100% + x number of pixels,” for example—very useful for any situation where something sized or positioned
in percentages collides with other distances set in ems or pixels.

 In the case of the “background image positioned from the right” problem we previously discussed, we
could use the calc() notation to express the same position on the x axis:

 .link-with-icon {
 /* other properties omitted for brevity. */
 background-position: calc(100% - 1em) 50% ;
 }

 ■ Note Internet Explorer 9 does support the calc() notation, but sadly has a serious bug when using it
specifically with background-position , causing the browser to crash. Hence, the previous example will be
mostly theoretical. The calc() function is useful for a lot of other situations though—element sizing, font sizing,
and others.

CHAPTER 5 ■ BEAUTIFUL BOXES

113

 The calc() functional notation works with the four operators for addition (+), subtraction (-),
multiplication (*), and division (/). You can have several values in a calc() expression; the declaration in
the following rule set would be fully valid as well:

 .thing {
 width: calc(50% + 20px*4 - 1em);
 }

 ■ Note When using calc() , you need spaces on both sides of an operator when using addition and
subtraction. This apparently is required to more clearly distinguish the operator from any sign on the number,
such as the length -10 px .

 The calc() notation is defined in the Level 3 Values and Units specification, and it has pretty decent
support. As with the “four-value” background position you saw ealier, IE8 and earlier, along with older
WebKit browsers, are missing out on the fun. Some slightly older versions of WebKit-based browsers do
support it but may require a prefix in the form of -webkit-calc() .

 Background Clip and Origin
 By default, the images you use for backgrounds will be painted across the border box of the element,
meaning that they will potentially cover the element all the way to the visible edge. Note that since they are
painted underneath any border, a semitransparent border will potentially show on top of the image.

 The background-clip property can change this behavior. The default corresponds to background-
clip: border-box . Setting the value padding-box switches to clipping the image inside of the border,
covering the padding box, and the value content-box clips the image inside any padding, to the content box.
Figure 5-9 shows the difference.

 .profile-box {
 border: 10px solid rgba(220, 220, 160, 0.5);
 padding: 10px;
 background-image: url(img/cat.jpg);
 background-clip: padding-box;
 }

 Figure 5-9. The difference between background clipped to border-box (left), padding-box (middle), and
 content-box (right)

CHAPTER 5 ■ BEAUTIFUL BOXES

114

 Even if the background-clip value is changed, the default origin (i.e., the reference point where the
image starts off being positioned) for the background position is still the top-left corner of the padding box,
meaning that the positioning values start from just inside of any border on the element.

 Fortunately, you can affect the origin position too, via the background-origin property. It accepts the
same box-model-related values as background-clip : border-box , padding-box , or content-box .

 Both background-clip and background-origin are part of the Level 3 Backgrounds and Borders spec
mentioned earlier. They have been around for a while but still lack support in really old browsers: again, IE8
is the primary laggard, but this time even older Android browsers have implemented the properties, albeit
with -webkit- prefixes.

 Background Attachment
 Backgrounds are attached to the element they are shown behind. If you scroll the page, the background
scrolls with it. It is possible to change this behavior via the background-attachment property. If we want the
background of our header image to “stick” to the page as the user scrolls down, we can use the following code:

 .profile-box {
 background-attachment: fixed;
 }

 Figure 5-10 tries to capture the behavior of the background as the user scrolls the page: it gives the
appearance of the header getting hidden behind the rest of the page, which can be a cool effect.

 Figure 5-10. Our profile header with a fixed background attachment

 Apart from fixed and the default value, scroll , you can set the background-attachment to local .
It’s hard to illustrate on paper, but the local value affects the attachment inside the scroll position of the
element: it causes it to scroll with the element content when it has scrollbars, via setting the overflow
property to either auto or scroll and having content tall enough to stick out of the element. If we do that on
the header, the background image will scroll with the element as the page is scrolled, but also scroll along
with the content as the internal scroll position changes.

 The local value is relatively well supported across desktop browsers, but more shaky across their
mobile counterparts: it’s reasonable to assume that some mobile browser makers ignore this property (as
well as the fixed value) since element scrolling is unusual and can have usability impacts on small screens
with touch scrolling. Indeed, the spec also allows implementers to ignore background-attachment if it is
deemed inappropriate on the device. Mobile browser expert Peter-Paul Koch has an article on the subject
(as well as a treasure trove of other mobile browser tests) at his site QuirksMode.org
(http://www.quirksmode.org/blog/archives/2013/03/new_css_tests_c_2.html).

http://www.quirksmode.org/blog/archives/2013/03/new_css_tests_c_2.html

CHAPTER 5 ■ BEAUTIFUL BOXES

115

 Background Size
 In the example in the previous section, we used a larger image to cover the profile box. This means it gets
clipped when it’s viewed in a smaller browser window. It might also have gaps to the side when the window
gets really big. Assuming we want to prevent this and have the contents retain their aspect ratio while scaling
with the page, we need to make use of the background- size property.

 By setting background-size to explicit length measurements, you can either resize the background
image to a new, fixed measurement or have it scale with the element.

 If we still had the big file and wanted to display it smaller for some reason, we could give it new pixel
measurements:

 .profile-box {
 background-size: 400px 240px;
 }

 Getting the image to scale along with the box means we need to switch to using percentages. You
could potentially set percentages for both width and height, but these percentages will not be related to
the intrinsic size of the image, but the size of the container: if the height of the container changes with the
content, that might distort the aspect ratio of our image.

 A much more sensible way of using percentages is to use percent for one value and the keyword auto for
the other. For example, if we want the image to be 100% wide (the x axis, the first value) and keep its aspect
ratio (see Figure 5-11), we can use the following:

 .profile-box {
 background-size: 100% auto ;
 }

 Figure 5-11. Setting the background size with percentages and the auto keyword allows the background to
cover the width of the element, regardless of the viewport size

 Using percentages gives us some flexibility, but not for all situations. Sometimes, we may wish to make
sure the background never gets cropped, and in the profile header example, we may wish to make sure the
background always covers the entire area of the element. Luckily, there are some magical keywords that take
care of this for us.

CHAPTER 5 ■ BEAUTIFUL BOXES

116

 As with the properties for clip and origin, background-size is a relatively new background property,
and support levels are similar.

 First off, we can use the keyword contain as our background size. This means that the browser will try
to make the image as large as possible without distorting its aspect ratio or clipping it: it’s almost like the
previous example, but it automatically determines which value should be auto and which one should be
 100% (see Figure 5-12).

 .profile-box {
 background-size: contain;
 }

 Figure 5-12. Using the contain keyword as the background size prevents cropping

 Figure 5-13. Using the cover keyword to completely cover the surface of the element while cropping the
background

 In a tall and narrow element, a square background would be at most 100% wide but could leave vertical
gaps; in a wide element, it would be at most 100% tall but leave horizontal gaps.

 The second keyword value we can use is cover : this means that the image is sized to completely cover
every pixel of the element without distorting the image. This is what we want in our profile page example.
Figure 5-13 shows how a square background on a narrow but tall element would fill the height but clip the
sides, and a wide element would clip the top and bottom while filling the element width, configured as
follows:

 .profile-box {
 background-size: cover;
 }

CHAPTER 5 ■ BEAUTIFUL BOXES

117

 Background Shorthand
 As we saw in the beginning of the chapter, there is a background shorthand syntax for setting many of the
background-related properties at the same time. In general, you can specify the different values in any order
you please—the browser will figure out from the various keywords and syntaxes what you mean. There are a
couple of gotchas though.

 The first is that since length pairs can be used for both background-position and background-size ,
you need to write them together, with background-position first, then background-size , and separate them
with a slash (/) character.

 The second is the *-box keywords for background-origin and background-clip . The following rules
apply:

• If only one *-box keyword is present (border-box , padding-box , or content-box),
both values are set to the declared value.

• If two *-box keywords are present, the first one sets background-origin , and the
second sets background-clip .

 Here’s an example of combining a whole bunch of the various background properties:

 .profile-box {
 background: url(img/cat.jpg) 50% 50% / cover no-repeat padding-box content-box #bada55;
 }

 And as we said at the start of the chapter, be careful with the background shorthand: it automatically
sets all the values you don’t mention back to their default values. If you do use it, put the shorthand
declaration first, then override specific properties as necessary. It may be tempting to use shorthands as
often as possible to save a few keystrokes, but as a general rule for writing code, explicit code is often less
error-prone and easier to follow than implicit code.

 Multiple Backgrounds
 So far, we’ve treated the background image as though you would always use a single image for the
background. This used to be the case, but the background properties defined in the Level 3 Backgrounds
and Borders spec now allow you to specify multiple backgrounds for a single element, with corresponding
multiple values syntax for each of the properties. Multiple values are separated by commas. Here’s an
example, shown in Figure 5-14 :

 .multi-bg {
 background-image: url(img/spades.png), url(img/hearts.png),
 url(img/diamonds.png), url(clubs.png);
 background-position: left top, right top, left bottom, right bottom;
 background-repeat: no-repeat, no-repeat, no-repeat, no-repeat;
 background-color: pink;
 }

CHAPTER 5 ■ BEAUTIFUL BOXES

118

 The background layers are stacked top to bottom as they are declared, the first one on top and the last
one on the bottom. The color layer ends up behind all of them (see Figure 5-15).

 Figure 5-15. Multiple background layers stack top to bottom, in the order declared. The color layer is always
at the bottom

 Figure 5-14. Multiple overlapping backgrounds on one element

 You can also declare multiple background shorthand values:

 .multi-bg-shorthand {
 background: url(img/spades.png) left top no-repeat,
 url(img/hearts.png) right top no-repeat,
 url(img/diamonds.png) left bottom no-repeat,
 url(img/clubs.png) right bottom no-repeat,
 pink;
 }

 With this syntax, you are only allowed to declare a color on the last background layer, which makes
sense considering the order seen in Figure 5-15 .

 If any of the background properties have a list of values that is shorter than the number of background
images, lists of values are cycled. This means that if the value is the same for all of them, you only need to
declare it once: if it alternates between two values, you only need to declare two, etc. So the recurring
 no-repeat in the previous example could have been written as follows:

 .multi-bg-shorthand {
 background: url(img/spades.png) left top,
 url(img/hearts.png) right top,
 url(img/diamonds.png) left bottom,
 url(img/clubs.png) right bottom,

CHAPTER 5 ■ BEAUTIFUL BOXES

119

 pink;
 background-repeat: no-repeat; /* goes for all four */
 }

 Since the multiple-background stuff is from the Level 3 spec, once again it’s not available in some older
browsers. A lot of the time, you can achieve a perfectly acceptable fallback for older browsers by using a
combination of the single-value background syntax:

 .multi-fallback {
 background-image: url(simple.jpg);
 background-image: url(modern.png), url(snazzy.png), url(wow.png);
 }

 Just like in other examples in the book, older browsers will get the simpler first image and discard the
second declaration, while newer browsers will ignore the first since the second one overrides it.

 Borders and Rounded Corners
 We mentioned the humble border as part of the box-model properties in Chapter 3 . In modern browsers, we
have some further control over borders, allowing us to spice them up with images and rounded corners—so
we finally get to create something other than sharp rectangles!

 First a quick recap of the border properties of old:

• You can set the properties for each side of a border separately, or all of them at the
same time.

• You set the width of the whole border with border-width or set a specific side with,
e.g., border-top-width . Remember that the width of the border contributes to the
overall size of the box, unless specifically told otherwise by the box-sizing property.

• Likewise, you set the color of the whole border with border-color or set a specific
side with, e.g., border-left-color .

• The style of the border, border-style (or border-right-style , etc.) is set by
keyword: solid , dashed , or dotted are pretty common ones to use. There are also
some more exotic ones, like double (draws two parallel lines on the surface specified
by border-width), groove , and inset , for example. To be honest, these are seldom
useful: both because they look funky, and because you leave the control of how they
look to the browser—it’s not really specified in the standards. You can also remove
the border completely by setting border-style: none .

• Finally, you can set all of the border properties with the border shorthand. The shorthand
sets width, style, and color of all sides to the same value, like this: border: 2px solid #000; .

 Border Radius: Rounded Corners
 For a long time, rounded corners were at the top of the wish list for developers. We’d spend countless hours
coming up with new hacks using images that were scalable and worked cross-browser. In fact, previous editions
of this book described them in detail. Today, we are fortunately well past that. Just about the only browsers
around that don’t support the border-radius property are old IE versions (8 and down) and Opera Mini. The
thing about rounded corners is that they are most often a nice-to-have feature and not crucial to the usability of
the page, so we think it makes sense to use the standardized property instead of burdening some of the weakest
browsers (in terms of performance) with even more code, to emulate something that exists in all others.

http://dx.doi.org/10.1007/978-1-4302-5864-3_3

CHAPTER 5 ■ BEAUTIFUL BOXES

120

 Border Radius Shorthand
 This time, we’ll start with the shorthand property—since it’s the most common use case—making all of the
corners on a box rounded.

 The border- radius property allows you to set all of the corner at once by simply declaring a length
value. Let’s add a profile photo box to our example and make the corners rounded. First, some markup:

 <header class="profile-box" role="banner">
 <div class="profile-photo">

 <h1 class="username">@CharlesTheCat</h1>
 </div>
 </header>

 Here is the added CSS to size and position our profile photo box to poke out of the bottom of the header
area, as well as give it a border to stand out from the background (see the result in Figure 5-16):

 .profile-box {
 position: relative;
 /* other properties omitted for brevity */
 }

 .profile-photo {
 width: 160px;
 min-height: 200px;
 position: absolute;
 bottom: -60px;
 left: 5%;
 background-color: #fff;
 border: 1px solid #777;
 border-radius: 0.5em;
 }

 Figure 5-16. Rounded corners on the profile photo component

CHAPTER 5 ■ BEAUTIFUL BOXES

121

 More Complex Border-Radius Syntax
 You can also use the shorthand property to set each value individually. This is done by starting with the
top-left corner, then going around clockwise:

 .box {
 border-radius: 0.5em 2em 0.5em 2em;
 }

 Each length value in this declaration is already a shorthand, since it represents the same radius on both
the horizontal and vertical axes of each corner. If you want different values for these—i.e., an asymmetric
corner shape—you can specify each axis as a list of values (first horizontal, then vertical) and separate the
two with a slash:

 .box {
 border-radius: 2em .5em 1em .5em / .5em 2em .5em 1em;
 }

 If values are reflected diagonally across corners, you can leave out the bottom-right and bottom-left
corners; if only two or three values are present, the rest will be filled in:

 .box {
 border-radius: 2em 3em; /* repeated for bottom right and bottom left. */
 }

 In the previous example, the first value sets the top-left and bottom-right corners, and the second
sets the top-right and bottom-left corners. Had we included a third value for the bottom-right corner, the
bottom-left corner would get the same value as the top-right corner.

 Setting a Border Radius on a Single Corner
 You can, of course, set the value for a single corner , using border-top-left-radius , border-top-right-
radius , etc.

 You supply these single-corner properties with the same length(s) for the radius as in the previous
shorthand examples: either one length value, that creates a symmetric corner, or two length values
separated by a slash, where the first sets the horizontal radius and the second sets the vertical radius.

 Here’s the code for a single symmetrical rounded corner as applied to our profile photo box, as seen in
Figure 5-17 :

 .profile-photo {
 border-top-left-radius: 1em;
 }

CHAPTER 5 ■ BEAUTIFUL BOXES

122

 Creating Circles and Pill Shapes with Border Radius
 So far, we’ve been talking about setting the radius using a length value, but you can also use percentages.
When you set the border-radius in percentages, the x radius relates to the width and the y radius relates to
the height of the element. This means we can easily create circular shapes by taking a square element, and
then setting its border radius to at least 50%.

 Why “at least”? Well, there’s really no reason you should set a value higher than 50% for all corners, but
it might be useful to know that when two corner curves start overlapping, both axes are decreased until they
don’t anymore. For symmetric corners on a square, any value higher than 50% will always yield a circle (see
Figure 5-18). Note that a rectangular element with the same border radius would become an oval, as the
radius is decreased proportional to the size in that direction:

 <div class="round"> </div>
 <div class="round oval"></div>

 .round {
 width: 300px;
 height: 300px;
 border-radius: 50%;
 background-color: #59f;
 }
 .oval {
 width: 600px;
 }

 Figure 5-18. A circle and an oval from using border-radius: 50%

 Figure 5-17. A version of our profile photo box with only the top-left corner rounded

CHAPTER 5 ■ BEAUTIFUL BOXES

123

 Figure 5-19. Using a large border-radius to create pill shapes

 Circles are often desired, but ovals not so much. Sometimes, we want a “pill shape”—a rectangular
oblong element with semicircle. The technical term for this shape (shown in Figure 5-19) is an obrund .
Percentages or exact length measurements won’t help us create such a shape, unless we know the exact
measurements of the element, which is rarely the case in web design.

 We can, however, use a quirk of border-radius calculation to create this shape. We saw that the radius
is decreased when it no longer fits. But when it’s set set to a length (not a percentage), the radii don’t relate
to the size of the element, and they end up being symmetric instead. So to create the semicircle edges of an
obrund, we can cheat and use a length that we know is longer than the radius needed to create a half-circle
edge, and the shape will create itself:

 .obrund {
 border-radius: 999em; /* arbitrarily very large length */
 }

 As a final note on border radii, you should be aware of how they affect the shape of the element on the
page. We’ve finally found a way to create something other than rectangles, but alas: they will still behave as if
they were a rectangle covering the original surface of the box, in terms of layout. One thing that has changed
in terms of how the shape of the element is interpreted is that the clickable (or “touchable”) surface of an
element follows the corner shape. Keep this in mind when creating rounded corner buttons, links, etc., so
that the clickable surface doesn’t become too small.

 Border Images
 The Level 3 Backgrounds and Borders spec also allows you to define a single image to act as the border of an
element. What good is a single image, you may ask? The beauty of the border-image property is that it allows
you to slice up that image into nine separate sectors, based on rules for where to “cut,” and the browser will
automatically use the correct sector for the corresponding part of the border. Known as
nine-slice scaling, this technique helps avoid the distortion you’d normally get when resizing images to cover
boxes. It’s a little difficult to visualize, so an example is in order.

 The canonical example of using a border image is perhaps to create something like a picture frame for
an element. The source for the picture frame is a square image with a 120-pixel side length. If you draw lines
40 pixels from the top, right, bottom, and left edges of the box, you will have divided the box up into nine
sectors (see Figure 5-20).

CHAPTER 5 ■ BEAUTIFUL BOXES

124

 The border-image property will automatically use the images in each sector as a background for the
corresponding border part. The image slice in the top-left corner will be used as the image for that corner, the
slice in the top-middle bit will be used for the top border, the slice in the top-right corner for that respective
corner, and so on. The slice in the center is by default discarded, but you can change this behavior as well.

 You can also tell the browser how to treat the top, right, bottom, and left bits when it comes to covering
the border. They can be stretched, repeated, or spaced, rounding the number of whole repetitions that are
shown: it works much like the newer background-repeat keywords. By default, the middle slices on each
side are stretched, which works well for our purposes.

 In order to show the border images, the border width also needs to be set—the measurements will
stretch each slice according to the border width for that particular segment.

 Applying this graphic as a border image, we can create something like the “motto” we see in Figure 5-21 .

 Figure 5-20. The source file for our border image, with the division points drawn on top for illustration purposes

 Figure 5-21. Border images stretched to fit the element

 Here’s how the CSS for this component looks:

 .motto {
 border-width: 40px solid #f9b256;
 border-image: url(picture-frame.png) 40;
 /* ...same as border-image: url(picture-frame.png) 40 40 40 40 stretch; */
 }

 The preceding code will load the image picture-frame.png , slice it 40 pixels from each of the four
edges, and stretch the middle slices on the top, right, bottom, and left sides. Note that the “20 pixels”
measurement for the slicing guides is given without the px unit; this is a quirk having to do with differences
between vector images (SVG) and bitmap images.

CHAPTER 5 ■ BEAUTIFUL BOXES

125

 Another thing worth mentioning about the preceding example is that you need to put the border
shorthand (if used) before the border-image property. The spec demands that the shorthand resets all
border properties, not just the ones it sets by itself.

 As you’d expect, there are specific border image properties to set each value separately. In fact, there’s a
whole heap of values that allows you to control how border images work. The thing is that we could probably
count the number of times we’ve used border-image during our careers on one hand, so we won’t go into
more detail here.

 Border image support was high on the wish list for many web designers a few years back, mostly
because it would make it easy to create rounded corners without hacks. Now that we have border-radius ,
that need is a lot less acute. Of course, depending on the design of your project, border images might be a
good fit—it’s easy to see how a grungier aesthetic might benefit from bitmap images as borders, for example.

 If you want to dive deeper into the intricacies of border image properties, check out Nora Brown’s article
on CSS Tricks: http://css-tricks.com/understanding-border-image/ . Support for the border-image
property is fairly broad—mostly, it’s Internet Explorer 10 and earlier that is missing support. Sadly, there are
quite a few bugs and quirks present even in supporting browsers.

 Box-Shadow
 Leaving background images and borders aside for now, we’ll explore another way to add visual effects to
your page: shadows. It used to be that designers had to jump through hoops to add shadows to their designs,
using extra elements and images. Not any more!

 CSS lets you add shadows using the box-shadow property . It’s very well supported. In fact, pretty much
only really old versions of IE (version 8 and earlier) and Opera Mini are missing out. To support older
Android WebKit browsers (and some other ancient WebKit versions), you need the -webkit- prefix. Firefox
(and other Mozilla-based browsers) has had unprefixed support for long enough to safely skip the -moz- prefix.

 You’ve already seen the syntax for text-shadow in the previous chapter: box-shadow has a very similar
syntax, but adds some extra goodies.

 Let’s add a shadow to the profile photo box to illustrate, using the following markup and CSS (Figure 5-22
shows the result):

 .profile-photo {
 box-shadow: .25em .25em .5em rgba(0, 0, 0, 0.3);
 }

 Figure 5-22. A profile image box with a subtle shadow added

http://css-tricks.com/understanding-border-image/

CHAPTER 5 ■ BEAUTIFUL BOXES

126

 The syntax in this example is exactly the same as the text-shadow version: two values for x and y offsets,
then a blur radius value (how much the edge of the shadow blurs), and finally a color, using rgba() . Note
how the shadow also follows the corner shape of the rounded box!

 Spread Radius: Adjusting the Size of the Shadow
 The box-shadow property is a bit more flexible than text-shadow . For example, you can add a value after the
blur radius that specifies a spread radius : how large the shadow should be. The default value is 0, meaning
the same size as the element it’s applied to. Increasing this value makes the shadow bigger, and negative
values make the shadow smaller (see Figure 5-23).

 .larger-shadow {
 box-shadow: 1em 1em .5em .5em rgba(0, 0, 0, 0.3);
 }
 .smaller-shadow {
 box-shadow: 1em 1em .5em -.5em rgba(0, 0, 0, 0.3);
 }

 Figure 5-23. A box shown with different values of spread radius

 Inset Shadows
 Another extra box-shadow feature that makes it more flexible than text-shadow is the inset keyword.
Applying an inset shadow means that the element is assumed to be the surface that the shadow is cast on,
creating the effect of it being “knocked out” of the background. For example, we could use the inset shadow
effect to make it look like the background of our profile header is a little bit sunken into the page, behind the
profile photo and the rest of the content. We’ll add the following to the profile box ruleset (see Figure 5-24):

 .profile-box {
 box-shadow: inset 0 -.5em .5em rgba(0, 0, 0, 0.3);
 }

CHAPTER 5 ■ BEAUTIFUL BOXES

127

 Multiple Shadows
 Just like with text-shadow , you can apply multiple shadows to a single element, separating the different
values with commas. We’ll look at an example of how this would work combining it with a “flat” shadow
technique and removing the blur radius completely.

 If you leave out the blur radius or set it to 0, you’ll end up with a shadow that has a completely sharp
edge. This can be beneficial as it allows you to step away from the mental model of pseudo-realistic shadows
and start considering them more as generated “extra boxes” behind the element they’re applied to that don’t
affect the layout—very handy for all sorts of effects.

 One useful example is to create multiple “fake borders” on an element. The border property only allows
you to draw one border (except the weird double keyword, but that doesn’t count). Using shadows with a 0
blur radius and a different spread radius, you can create several border-like fields (see Figure 5-25). Since
they don’t affect layout, they act more like the outline property.

 .profile-photo {
 box-shadow: 0 0 0 10px #1C318D,
 0 0 0 20px #3955C7,
 0 0 0 30px #546DC7,
 0 0 0 40px #7284D8;
 }

 Figure 5-24. Detail of the profile header component, showing an inset box shadow on the bottom edge of the
large background

CHAPTER 5 ■ BEAUTIFUL BOXES

128

 Using CSS Gradients
 A common use case in designs is to have color gradients as backgrounds for elements, adding a subtle sense
of depth to the page. Loading image files containing the gradients works fine, but CSS also has a mechanism
to draw gradient images for you. This is done with the various flavors of gradient functional notation, in
combination with any property that accepts images, including background-image . Let’s say we have a profile
page where the user hasn’t uploaded a background image yet (see Figure 5-26), and we want to show a
gradient background as a default:

 .profile-box {
 background-image: linear-gradient(to bottom, #cfdeee 0%, #8da9cf 100%);
 }

 Figure 5-25. Using multiple shadows and the spread radius to draw fake outlines

CHAPTER 5 ■ BEAUTIFUL BOXES

129

 Figure 5-26. A linear gradient applied to the profile box background

 As gradient images created with CSS have no specific size, this gradient will initially cover the entire
element unless you specifically give it measurements using background-size .

 Browser Support and Browser Prefixes
 Gradients are supported in most modern browsers. Internet Explorer 9 (and earlier) and Opera Mini are
the most notable exceptions. Some slightly older WebKit-based browsers only have support for the linear
gradient versions. In the coming sections, we’ll see that there’s more than one type of gradient.

 ■ Note The syntax for CSS gradients has changed several times over the years since they were first
introduced as a nonstandard property in Safari. There are three different syntaxes, and depending on the level
of browser support you need, you might need to use several versions at once, with various vendor prefixes. In
the interest of keeping this section manageable and not too confusing, we’ll go through them with the latest
unprefixed syntax. You can read up on the various syntaxes in this article: http://www.sitepoint.com/using-
unprefixed-css3-gradients-in-modern-browsers/ .

 Linear Gradients
 The previous example uses the linear-gradient() function to draw a gradient along a hypothetical line
going from the top to the bottom of the element. The angle of this line, in this case a keyword pair (to
bottom), is the first argument of the function, followed by a comma-separated list of color stops. The color
stops define points along the gradient line where the color changes, and in this case we start with a lighter
blue-gray at 0% and end with a darker shade of blue at 100% , meaning the bottom of the element.

http://www.sitepoint.com/using-unprefixed-css3-gradients-in-modern-browsers/
http://www.sitepoint.com/using-unprefixed-css3-gradients-in-modern-browsers/

CHAPTER 5 ■ BEAUTIFUL BOXES

130

 We can specify the direction by using the to keyword, followed by a side (top , right , bottom , left) or
a corner (top left , bottom right , etc.), the latter making the gradient diagonal. It starts from the opposite
corner or side, and the gradient line always goes through the center of the image area. We could also use an
angle, written in the deg unit, where 0 degrees means up/north and then increasing clockwise up until 360
degrees, just like the HSL color wheel. In that case, the degree means which direction the gradient is drawn
in, so it still starts opposite of the direction we’re pointing at. Here’s a gradient running at 45 degrees:

 .profile-box {
 background-image: linear-gradient(45deg, #cfdfee, #4164aa);
 }

 Here the gradient line does not start at the edge of the background image area. Instead, it is
automatically scaled so that any colors at 0% and 100% coincide with the corners of the image. Figure 5-27
explains how this works.

#cfdfee 0%

45deg

#4164aa 100%

 Figure 5-27. The position and scale of the gradient line in a diagonal gradient

 Defaults and Color Stop Positions
 Since going from top to bottom (180deg) is the default, and 0% and 100% are implicit for the first and last color
stops, respectively, we could actually shorten our first example (refer to Figure 5-26) like this:

 .profile-box {
 background-image: linear-gradient(#cfdfee, #8da9cf);
 }

CHAPTER 5 ■ BEAUTIFUL BOXES

131

 Any additional color stops without specified positions would end up proportionately spaced in between
 0% and 100% —if there were five colors, they would be at 0% , 25% , 50% , 75% , and 100% :

 .profile-box {
 background-image: linear-gradient(red, green, blue, yellow, purple);
 }

 We can use other measurements than percentages for the color stops, giving us further control over how
the gradient is drawn:

 .profile-box {
 background-image: linear-gradient(#cfdfee, #8da9cf 100px);
 }

 This would draw a gradient that starts light blue at the top, then shifts to the darker blue over 100 pixels,
and then stays that color until the bottom edge of the background image area.

 Radial Gradients
 You can also use radial gradients to create color shifts that happen along a hypothetical gradient ray ,
extending outward in all directions from a central point, in the shape of a circle or an ellipse.

 The syntax for radial gradients is a little more involved. You can specify the following properties:

• Which type of shape: circle or ellipse .

• The radius of the gradient ray, determining the size of the gradient area. Circles only
accept one size measurement (for the radius), while ellipses accept two for the radius
on the x axis and y axis, respectively. Ellipses can use any length or a percentage,
where the percentage is relative to the background image size in that axis. Circles
only accept lengths, not percentages. There are also keywords representing where
the edge of the gradient area ends, so that either the gradient can extend to fit within
the farthest or closest side from the center (closest-side and farthest-side) or the
edge of the gradient shape touches the closest or farthest corner of the image area
(closest-corner or farthest-corner).

• The position of the center of the shape using positional values much like the
 background-position property. These values are preceded by the at keyword, to
differentiate them from the size.

• Color stops (as many as you like) along the way as the shape expands, comma-
separated.

 An example could look like this:

 .profile-box {
 background-image: radial-gradient(circle closest-corner at 20% 30%, #cfdfee, #2c56a1);
 }

 This would give us a circular radial gradient with its center located at 20% on the x axis and 30% on the
y axis, extending so that the circumference of the circle touches the closest corner. Outside of the circle, the
final color-stop color continues to cover the whole background image area (see Figure 5-28).

CHAPTER 5 ■ BEAUTIFUL BOXES

132

 Considering our profile box example shape, we might want a centered radial gradient, with an elliptical
shape. Let’s try something a bit more psychedelic (see Figure 5-29):

 .profile-box {
 background-image: radial-gradient(#cfdfee, #2c56a1, #cfdfee, #2c56a1, #cfdfee, #2c56a1);
 }

 Figure 5-28. Our profile page header with a circular radial gradient, positioned at 20% 30% and sized to
expand to the closest corner

 Figure 5-29. Several repeated color stops in a radial gradient

CHAPTER 5 ■ BEAUTIFUL BOXES

133

 We’ve actually left off the part declaring it an ellipse that is centered and covers the whole element (by
extending to the farthest corner); all those properties are covered by the default values in this case. But it
seems a bit tedious to repeat those color stops like that, doesn’t it? That’s where repeating gradients come in.

 Repeating Gradients
 At some point along the line (or ray) in which they expand and shift colors, normal gradients stop at a final
color. There are also repeating gradient functions, both linear and radial (see Figure 5-30), that repeat the
sequence of color stops for as long as their size allows (via either the background-size property or the
element size). For example, here’s a repeating linear gradient:

 .linear-repeat {
 background-image: repeating-linear-gradient (#cfdfee, #2c56a1 20px);
 }

 Figure 5-30. Repeating gradient functions repeat the list of color stops across the entire background image area

 And here’s a repeating radial gradient:

 .radial-repeat {
 background-image: repeating-radial-gradient(#cfdfee, #2c56a1 20px);
 }

 Gradients as Patterns
 Gradients don’t necessarily need to be smooth transitions over several pixels. They could just as well change
from one pixel to the next, allowing us to create more crisp lines and circles. Combining this with the ability
to layer multiple background images on top of each other gives us a tool to declaratively create simple
background image patterns, without needing to ever open image editing software!

 The trick to creating crisp patterns is to position the color stops the right way. For example, to draw a
simple vertical line, we’ll need to put the adjacent color stops right up next to each other, so there is no space
where the color shifts gradually (see Figure 5-31):

 body {
 background-color: #fff;
 background-image: linear-gradient(
 transparent,

CHAPTER 5 ■ BEAUTIFUL BOXES

134

 transparent 50% ,
 rgba(55, 110, 176, 0.3) 50%
);
 background-size: 40px 40px ;
 }

transparent

rgba(55, 110, 176, 0.3)

transparent

 Figure 5-31. The second and third color stops are both positioned at 50%, creating a sharp shift between colors

 Depending on the browser, you might see that it doesn’t manage to get the line perfectly crisp, but
actually fades over 1 px to either side. This will likely be improved as browsers get better at rendering
gradients, but it should be good enough for more subtle patterns.

 Rather than using a repeating linear gradient across the whole element, we have used a single gradient,
and then sized and repeated the resulting image with the background properties. This lets us control the
scale of the line without affecting the color stops. By adding another gradient image, this time running
horizontally, we can build a “table-cloth” pattern (see Figure 5-32):

 body {
 margin: 0;
 background-color: #fff;
 background-image: linear-gradient(
 transparent,
 transparent 50%,
 rgba(55, 110, 176, 0.3) 50%
),
 linear-gradient(
 to right,
 transparent,
 transparent 50%,
 rgba(55, 110, 176, 0.3) 50%
);
 background-size: 40px 40px;
 }

CHAPTER 5 ■ BEAUTIFUL BOXES

135

 It’s not a huge step to imagine the wealth of shapes you could conjure up using (overlapping) multiples
of the basic shapes of lines, triangles (half-filled diagonal linear gradients), circles, and ellipses.

 A great source of inspiration is Lea Verou’s CSS3 Patterns Gallery at http://lea.verou.me/css3patterns/
(see Figure 5-33).

 Figure 5-32. Drawing a background pattern with two linear gradient lines

 Figure 5-33. Lea Verou’s CSS3 Patterns Gallery

http://lea.verou.me/css3patterns/

CHAPTER 5 ■ BEAUTIFUL BOXES

136

 Drawing with CSS
 Combining gradient patterns with box shadows and pseudo-elements gives you plenty of opportunities for
creative effects without loading a single image . Another inspiring resource is “A Single Div”
(http://a.singlediv.com), a project from artist and designer Lynn Fisher. It is a collection of illustrations
done in CSS, where each piece only requires a single element in the markup, and no images (see Figure 5-34).

 Figure 5-34. Illustrations from “A Single Div”

 Just remember that at some point, the code for these CSS drawings may become less understandable
and maintainable than just creating an SVG (or PNG) image file and using that instead. It’s also worth
keeping in mind that even though gradients avoid loading an external image resource, they can have quite
the performance impact themselves—particularly on resource-constrained devices like phones. Radial
gradients especially are worth keeping to a minimum.

 Styling Embedded Images and other Objects
 When styling images in the flow of a document, you are dealing with content that is different from the other
boxes that make up your page. This is becasue images can have an inherent width and height in pixels, a set
aspect ratio that needs to be respected, or both. In a flexible design, where the content depends on the width
of the browser window, you need to use CSS to tame images and other embedded objects.

 ■ Note Loading a different image for the current rendered size—known as responsive images —is a hugely
important topic for performance, but one we’re leaving aside for now. We’ll come back to it Chapter 8 , on
responsive techniques.

http://a.singlediv.com/
http://dx.doi.org/10.1007/978-1-4302-5864-3_8

CHAPTER 5 ■ BEAUTIFUL BOXES

137

 The Flexible Image Pattern
 Making images flexible without either displaying them larger than their inherent dimensions or distorting
the aspect ratio can be achieved using a technique originally made famous by Richard Rutter
(http://clagnut.com/blog/268/). At its core, you only need the following rule:

 img {
 max-width: 100%;
 }

 The max-width property as applied to images means that the image will shrink to respect the
boundaries of the container it is placed in, but it will not grow outside of its intrinsic size if the container is
wider (see Figure 5-35).

 Figure 5-35. A bitmap image that is 320 pixels wide with max-width: 100% shown at a container width of
100 pixels vs. a container width of 500 pixels

 We can augment this rule to cover a few more bases by extending it to the following:

 img {
 width: auto;
 max-width: 100%;
 height: auto;
 }

 Why the extra rules? Well, sometimes markup authors or content management systems put width and
 height attributes with the image dimensions in the HTML source.

 Setting width and height to auto is there partly to override these attributes, but also to counter a bug in
IE8 where images without a declared width attribute will sometimes not scale correctly.

http://clagnut.com/blog/268/

CHAPTER 5 ■ BEAUTIFUL BOXES

138

 New Object-Sizing Methods
 Sometimes, you end up wanting to apply sizes to img elements and other embedded objects (like video or
 object elements) that have a different aspect ratio to the media that is being displayed inside them. For
example, you may have a rectangular image file as a user avatar placeholder (see Figure 5-36), but you want
to use CSS to display it as a square.

 Figure 5-36. A rectangular user avatar image

 Some new magic properties and keywords that have recently been standardized and are making their
way into browsers allow you to size and position the content of these types of elements in a more flexible
way. Using the property object-fit , we can size the contents of the image much like with the newer
 background-size keywords, preserving the aspect ratio:

 img {
 width: 200px;
 height: 200px;
 }
 img.contain {
 object-fit: contain;
 }
 img.cover {
 object-fit: cover;
 }
 img.none {
 object-fit: none;
 }
 img.scaledown {
 object-fit: scale-down;
 }

 Figure 5-37 illustrates the difference between these keywords, when displaying an image at a set size
that isn’t matched by the intrinsic dimensions.

CHAPTER 5 ■ BEAUTIFUL BOXES

139

 The default behavior for object-fit is fill , meaning that the contents of the image will stretch with
the element dimensions, which may cause the aspect ratio to distort.

 The cover and contain keywords work the same as their counterparts in the background-size
property. When using none , the exact dimensions of the original image are used, regardless of the size of
the element. Finally, there’s scale-down , which chooses automatically between none and contain , picking
the smallest resulting dimensions. The resulting image is centered, but can be positioned using object-
position , in a similar way that you would position a background image.

 So far, support is limited to recent versions of Chrome, Opera, Safari, and Firefox, although Safari
does not support object-position at the time of writing. No versions of IE or Edge support this behavior,
although Edge is likely to follow the rest and support these properties soon.

 Aspect-Ratio Aware Flexible Containers
 For bitmap images, as we saw in previous sections, the aspect ratio is built-in: they have a set width and
height, and as long as you set the height to auto and only change the width (or vice versa), things will still
look right.

 But what happens if the element you’re styling doesn’t have an intrinsic aspect ratio, and you want to
give it one, while still keeping it flexible and resizable?

 This is the case with iframe and object elements and, to a certain extent, SVG content. One common
example is the markup you get when embedding videos from sites like YouTube or Vimeo into a page:

 <iframe width="420" height="315" src="https://www.youtube.com/embed/dQw4w9WgXcQ"
frameborder="0" allowfullscreen></iframe>

 If we set a flexible width like this:

 iframe {
 width: 100%; /* or any other percentage, really…*/
 }

 …that would result in an iframe that is 100% wide, but still 315 pixels high because of the height attribute.
Since the video has a set aspect ratio, we want the height to adjust automatically.

 Setting an auto height or removing the attribute wouldn’t work since the iframe doesn’t have an
intrinsic height—it would most likely become 150 pixels tall instead. Why 150 pixels? Well, the CSS specs
dictate that replaced content (such as iframes, images, object elements, etc.) that doesn’t have a specified
nor intrinsic size fall back to a measurement of 300 pixels wide and/or 150 pixels tall. Weird but true.

fill contain cover none scale-down

 Figure 5-37. Examples of a fixed-size image with contents sized using different keywords of the object-fit
property

CHAPTER 5 ■ BEAUTIFUL BOXES

140

 To get around this, we need to apply some clever CSS trickery. First, we put the iframe in a wrapper element:

 <div class="object-wrapper">
 <iframe width="420" height="315" src="https:////www.youtube.com/embed/dQw4w9WgXcQ"
frameborder="0" allowfullscreen></iframe>
 </div>

 Then, we make the wrapper box have a size that is the same aspect ratio as the object we want to
embed. To figure this out, we take the original height (315 pixels) and divide it by the original width (which is
420 pixels) to get a resulting ratio: 315/420 = 0.75. So the height is 75% of the width.

 Next, we set the height of the wrapper to 0 , but set the padding-bottom to the number we arrived
at—75%:

 .object-wrapper {
 width: 100%;
 height: 0;
 padding-bottom: 75%;
 }

 You might remember from Chapter 3 that when vertical padding and margins are set in percentages,
they actually refer to the width of the containing block —in this case, the width is 100% (same as the
containing block), so the padding is 75%. We have now created a block with a set aspect ratio.

 Finally, we position the embedded object inside the wrapper. Even if the wrapper has a height of 0, we
can use absolute positioning to place elements inside the “aspect ratio–aware” padding box:

 .object-wrapper {
 width: 100%;
 height: 0;
 position: relative;
 padding-bottom: 75%;
 }
 .object-wrapper iframe {
 position: absolute;
 top: 0;
 right: 0;
 bottom: 0;
 left: 0;
 }

 That’s it! Now we have a way to embed flexible objects into our pages, as well as create other aspect
ratio–preserving elements. Figure 5-38 shows the process.

http://dx.doi.org/10.1007/978-1-4302-5864-3_3

CHAPTER 5 ■ BEAUTIFUL BOXES

141

100%

75%

width: 100%;
height: 0;

padding-bottom: 75%; position: absolute;

 Figure 5-38. Creating an aspect ratio–aware container

 One caveat exists: if we wanted the wrapper to be anything other than 100% wide, we would have to
recalculate the padding-bottom measurement. Therefore, it might be a good idea to use yet another wrapper
to achieve further flexibility; we can then size the outer wrapper as wide as we like, set the inner wrapper to
be 100% wide, and be done with it.

 This technique was spearheaded by developer Thierry Koblentz, and you can read an in-depth
explanation of it at http://alistapart.com/article/creating-intrinsic-ratios-for-video .

 Reducing Image File Sizes
 When you use images as part of your design, you need to make sure you don’t send unnecessarily large
images to your users. Sure, you can use CSS to scale and crop them, but every unnecessary pixel incurs a
performance penalty. Downloads taking too long, batteries draining, and processors wasting time resizing
images are all enemies of a good user experience.

 The first step to reducing unnecessary file sizes is to optimize your images. Image files often include
loads of metadata that browsers don’t really need to display the images properly, and there are programs
and services that can help you strip that stuff away from the file. Addy Osmani has a nice roundup at
 https://addyosmani.com/blog/image-optimization-tools/ . Many of the tools he mentions are part of
automated task-runners—we will return to look at these kinds of workflows in Chapter 12 .

 If you’re working with PNG images for simpler graphics, you might also get huge reductions in file sizes
by reducing the number of colors in the image. If you’re using alpha transparency in your images, most
image editing software will only let you export it in the PNG24 format. The fact is that even the simpler (and
much smaller) PNG8 format can contain alpha transparency, so you can get even more gains by converting
your graphics to that. There are web-based services like https://tinypng.com that help you convert PNG
files online, as well as several stand-alone apps for all operating systems. Some professional image editing
programs like Photoshop have this functionality built-in in more recent versions.

 If you’re using SVG graphics, you should know that most image editors that handle SVG export files that
have lots of unnecessary data in them. One very useful tool for optimizing SVG is Jake Archibald’s OMGSVG
(https://jakearchibald.github.io/svgomg/)—an online tool that lets you tweak a range of parameters to
make your files more lean, and it even works offline!

 We’ll dive further into the techniques for analyzing and debugging performance in Chapter 12 .

http://alistapart.com/article/creating-intrinsic-ratios-for-video
https://addyosmani.com/blog/image-optimization-tools/
http://dx.doi.org/10.1007/978-1-4302-5864-3_12
https://tinypng.com/
https://jakearchibald.github.io/svgomg/
http://dx.doi.org/10.1007/978-1-4302-5864-3_12

CHAPTER 5 ■ BEAUTIFUL BOXES

142

 Summary
 In this chapter, we’ve looked at a whole lot of techniques for styling the boxes that make up a page. We
explored how to use the various color syntaxes, and how to use transparency. We’ve looked at how to master
background images and how to position, size, repeat, and crop them in relation to the element box.

 We’ve also shown you how to use borders, and how to break out of the boxy defaults by using border-
radius to create rounded corners, and even circles.

 We had a go at using shadows, both as a means to create depth in a page (as inset or outset shadows
on a box) and as a means to draw “extra rectangles” to create other visual effects. Furthermore, we looked at
how to use linear and radial gradients, both as subtle effects and as a way to make the browser draw image
patterns for you.

 We went through the differences between content images and background images, and how to style
your content images flexibly—as well as other embedded content, including aspect ratio–aware containers.

 We will come back to some more advanced (but less broadly supported) visual effects in Chapter 11 .
Meanwhile, in the next chapter, we’ll finally combine our knowledge of sizing, styling, and positioning boxes
and text into doing proper layout for the Web, using both old and new techniques and properties.

http://dx.doi.org/10.1007/978-1-4302-5864-3_11

143© Andy Budd and Emil Björklund 2016
A. Budd and E. Björklund, CSS Mastery, DOI 10.1007/978-1-4302-5864-3_6

 CHAPTER 6

 Content Layout

 A web page, at the most basic level, is made up of different blocks of content: headings, paragraphs, links,
lists, images, videos, etc. These elements can be grouped together thematically; a headline, some text, and
an image making up a news story. By controlling the position, size, order, and spacing of the items inside
each component, we can better convey their function and meaning.

 This content is often further grouped into the layout of the page as a whole. We are going to look at how
we can systematically lay out whole pages in the next chapter. In this chapter, we’re going to stay zoomed in
on the individual content blocks and how to lay them out.

 We have already briefly touched on using positioning and floats for layout, and they both have strengths
and weaknesses. You can also coax other properties like table display modes and inline blocks to play their
part in layout, with their own pros and cons. The new Flexible Box Layout Module —or flexbox for short—
provides a whole host of properties to control ordering, orientation, alignment, and sizing. Flexbox is a
powerful tool, and we’ll cover it in detail.

 In this chapter, we’ll look at the following:

• Common use cases for absolute vs. relative positioning, and z-index

• Using floats, inline blocks, and table display for layout purposes

• Mastering vertical alignment and vertical centering

• Orientation, alignment, ordering, and sizing with flexbox

 Using Positioning
 In Chapter 3 , we suggested that positioning is not the best tool for high-level layout, as it takes elements
out of the flow of the page. On the flipside, this is what makes positioning an important part of CSS. In this
section, we’ll briefly examine some scenarios where positioning can be a useful tool.

 As a quick recap from Chapter 3 :

• Elements are initially positioned as static , meaning that block-level elements stack
up vertically.

• We can give elements relative positioning , allowing us to nudge them around relative
to their original position without altering the flow of elements around them. Doing
so also creates a new positioning context for descendant elements. That last fact
is what makes relative positioning really useful. Historically, the ability to nudge
elements around was an important ingredient in many old-school layout hacks, but
these days we can often get by without them.

http://dx.doi.org/10.1007/978-1-4302-5864-3_3
http://dx.doi.org/10.1007/978-1-4302-5864-3_3

CHAPTER 6 ■ CONTENT LAYOUT

144

• Absolute positioning allows us to give an element an exact position with regard to
the nearest positioning context, which is either an ancestor with a positioning other
than static, or the html element. In this model, elements are lifted out of the page
flow, and put back relative to their positioning context. By default, they end up where
they originally should have ended up were they static, but without affecting the
surrounding elements. We can then choose to change their position, relative to the
positioning context.

• Fixed positioning is basically the same as absolute, but the positioning context is
automatically set to the browser viewport.

 Absolute Positioning Use Cases
 The very nature of absolute positioning makes it an ideal candidate for creating things like overlays, tooltips,
and dialog boxes that sit on top of other content. Their position can be given with the top , right , bottom ,
and left properties. There are a couple of things that are good to know about absolute positioning that can
help you write more efficient code.

 Using the Initial Position
 For this example, we’re using an article about spaceships, where we want to introduce some sort of inline
comments . We want to display them as small comment bubbles in the margins, as shown in Figure 6-1 .

 Figure 6-1. Showing in-page comments next to the article

 Each comment is an aside element sitting after the paragraph the comment refers to:

 <p>This is a fake article[...]</p>
 <aside class="comment"> I've never done this. Is that really true?</aside>
 <p>You may think[...]</p>

CHAPTER 6 ■ CONTENT LAYOUT

145

 To get the comment to display right at the end of the paragraph it is referring to, we need to position
it absolutely. The trick is that we don’t have to give it an exact offset from the top of the article container to
position it correctly in the vertical direction.

 Absolutely positioned elements will retain the position they would have as static elements when offsets from
the positioning context are left undefined, so the first step is to just leave the comment where it is (see Figure 6-2):

 .comment {
 position: absolute;
 }

 Figure 6-2. Applying absolute positioning to the comment lifts it out of the flow, but by default leaves it in the
place where it would originally have ended up with a static position

 Now we need to shift the comment up and to the left, so that it sits in the space next to the end of the
preceding paragraph. This nudging sounds like a job for relative positioning, but we can’t have an element be
absolutely positioned and relatively positioned at the same time. If we would use directional offsets (top , right ,
 left , and bottom) to position it, we would be dependent on both the parent positioning context and the exact size
of surrounding elements. Luckily, we don’t have to! Instead, we can use negative margins to nudge the element:

 .comment {
 position: absolute;
 width: 7em;
 margin-left: -9.5em;
 margin-top: -2.5em;
 }

 Negative margins are completely valid in CSS, and have some interesting behaviors:

• A negative margin to the left or top will pull the element in that direction,
overlapping any elements next to it.

• A negative right or bottom margin will pull in any adjacent elements so that they
overlap the element with the negative margin.

• On a floated element, a negative margin opposite the float direction will decrease
the float area, causing adjacent elements to overlap the floated element. A negative
margin in the direction of the float will pull the floated element in that direction.

• Finally, the behavior of negative margins to the sides is slightly moderated when
used on a nonfloating element without a defined width. In that case, negative
margins to the left and right sides both pull the element in that direction. This
 expands the element, potentially overlapping any adjacent elements.

 In the case of our comment bubble, we use negative margins to the left and top to pull the element into
place, much like if we were using relative positioning.

CHAPTER 6 ■ CONTENT LAYOUT

146

 Bonus: Creating Triangles in CSS
 In the comment bubble shown in Figure 6-1 , the little triangle shape pointing to the previous paragraph is
in turn absolutely positioned relative to the comment bubble. It is created as a pseudo-element , and given
a triangular shape using an old clever trick with borders. (It goes back at least as far as 2001—see this page
from Tantek Çelik: http://tantek.com/CSS/Examples/polygons.html .) Figure 6-3 shows how it works.

 .comment:after {
 position: absolute;
 content: '';
 display: block;
 width: 0;
 height: 0;
 border: .5em solid #dcf0ff;
 border-bottom-color: transparent;
 border-right-color: transparent;
 position: absolute;
 right: -1em;
 top: .5em;
 }

0 × 0 px element

 Figure 6-3. Creating an arrowhead with a zero-size element and borders. As the right and bottom edges are
made transparent, a triangle shape is left

 Figure 6-4. Positioning the triangle in relation to the contents of the comment

 Here we are creating a 0 × 0–pixel block that has a .5 em border —but only the top and right border
edges have any color, so we end up with a triangle, since the border edges of the corners are rendered with a
slant. A handy way to generate triangles without images! We then position the triangle so it sticks out of the
top right of the comment box (see Figure 6-4).

http://tantek.com/CSS/Examples/polygons.html

CHAPTER 6 ■ CONTENT LAYOUT

147

 Automatic Sizing Using Offsets
 At the other end of the scale, it helps to know how elements react when they are absolutely positioned with
many or all of the offsets declared. Without any declared size , the absolutely positioned element will fall
back to the size needed to contain the contents within it. When we declare offsets from opposing sides of the
positioning context, the element will stretch to accommodate the size it needs to fulfill these rules.

 For example, we could have a situation where we want to size something at a set distance from the
edges of another element, but without using a specific size on either element. For example, we might have a
box with text in it on top of an image, as shown in Figure 6-5 .

 <header class="photo-header">

 <div class="photo-header-plate">
 <h1>SpaceX unveil the Crew Dragon</h1>
 <p>Photo from SpaceX on

Flickr</p>
 </div>
 </header>

 Figure 6-5. The semitransparent box on top of the image is absolutely positioned relative to the right, bottom,
and left sides. The distance to the top is decided by the content

CHAPTER 6 ■ CONTENT LAYOUT

148

 Assuming we don’t want the semitransparent “plate” holding the heading to take up a specific width,
we can instead position it from the right, bottom, and left sides and let it figure out its measurements as well
as the top edge position by itself:

 .photo-header {
 position: relative;
 }
 .photo-header-plate {
 position: absolute;
 right: 4em;
 bottom: 4em;
 left: 4em;
 background-color: #fff;
 background-color: rgba(255,255,255,0.7);
 padding: 2em;
 }

 Regardless of the dimensions of the image, the plate will now sit at the bottom of the image at 4 ems
from the bottom and sides. This gives us something that works nicely at different screen sizes—the top edge
of the plate will adjust to the content height if there are line breaks (see Figure 6-6).

 Figure 6-6. At a smaller screen size, the text will wrap as the box grows upward

CHAPTER 6 ■ CONTENT LAYOUT

149

 Positioning and z-index: Stacking Context Pitfalls
 One final component of using positioning in a smart way is to have a good grip on z-index : the stacking
order of elements. We mentioned the basics in Chapter 3 : elements with a position other than static are
arranged into stacks based on their depth in the source tree, like playing cards being dealt on top of one
another. Changing the z-index changes their order in the stack.

 Any element that has an explicit z-index declaration set to a positive value is higher in the stack than an
element without one. Elements with negative values are shown behind elements without a z-index .

 But the z-index is not the only thing controlling how elements are stacked. We also have the concept of
a stacking context . Stretching the deck-of-cards analogy a bit, each card can also be its own deck, and cards
can only be sorted in relation to the current deck level. There’s always a root stacking context to begin with,
and positioned elements with a z-index other than auto are sorted inside that. As other contexts are formed,
they create a hierarchy of stacks.

 Specific properties and values create these new stacking contexts. For example, an element with
 position: absolute and a z-index declaration set to anything but auto will form a stacking context for
descendant elements inside it.

 From inside a stacking context, it doesn’t matter how large or small the z-index value is: you can’t
reorder something in relation to another stacking context (see Figure 6-7).

A CB D

opacity: .99;

z-index: 99999;

z-index: 3;

 Figure 6-7. Containers A, B, C, and D are all absolutely positioned, where C is a child element of B.
Containers C and D have z-index applied, but since container B has an opacity lower than 1 , it creates a new
stacking context, separate from the others. The z-index will not place C in front of D, no matter how high the
number

 One of these triggering rules is setting opacity to values lower than 1 . An element with lowered opacity
needs to be rendered separately (together with its descendant elements) before being placed onto the page,
so these rules are there to make sure no outside elements can be interleaved between the semitransparent
elements as this takes place. There is a code example in the files accompanying the book that lets you play
with this very situation.

 Further ahead in the book, we’ll encounter other examples, like the transform and filter properties,
which can also trigger the creation of new stacking contexts. At the end of this chapter, we’ll get to some
peculiarities with using z-index and flexbox.

http://dx.doi.org/10.1007/978-1-4302-5864-3_3

CHAPTER 6 ■ CONTENT LAYOUT

150

 Horizontal Layout
 Generally speaking, a web page grows in the vertical direction as content is added. Any block container
you add (a div , an article , an h1 – h6 , etc.) is going to stack up vertically, since they display as blocks with
an automatic width. Because of this, one of the most basic layout challenges occurs when you want to give
blocks of content a width and space them out horizontally next to each other.

 We have already seen an example of designing a small “media component” in Chapter 3 using floats.
This pattern, with an image (or other kind of media) on one side and a piece of text on the other, is an
excellent example of an atomic pattern of layout: “this thing sits next to this other thing, and they belong
together.” If you look at any website, you are sure to see this pattern repeated again and again (see Figure 6-8).

 Figure 6-8. A screenshot of a section of Wired.com. How many “media objects” can you spot?

 There are a number of other common patterns that appear on a broad range of websites out there.
Many of them have to do with horizontal layout. Newer standards like flexbox have been created to cater for
horizontal layout (and more), but until there’s universal support for flexbox, chances are that you will need
to co-opt floats, inline-block display, or table display modes to create horizontal layout patterns.

 Using Floats
 In the spaceship article, we have an example of the most basic use of floats . The figure floats to the right,
allowing the line boxes of the text to flow around and below it (see Figure 6-9). We have also used a negative
 margin-right to pull the image out some distance from the text.

http://dx.doi.org/10.1007/978-1-4302-5864-3_3

CHAPTER 6 ■ CONTENT LAYOUT

151

 <p>You may think[...]</p>
 <figure>

 <figcaption>The "Dragon" spaceship, created by SpaceX. Image from <a href="https://www.

flickr.com/photos/spacexphotos/16787988882/">Flickr.com</figcaption>
 </figure>
 <p>There's various [...]</p>
 figure {
 background-color: #eee;
 margin: 0;
 padding: 1em;
 float: right;
 max-width: 17em;
 margin-right: -8em; /* pull to the right */
 margin-left: 1em;
 }

 Figure 6-9. Using a floated figure, pulled out using negative margin-right

 In Figure 6-10 , we have removed the negative margin, and constrained the figure to take up 50%
of the width. We’ve also added a second figure immediately following the first. Both figures will now sit
horizontally next to each other.

 figure {
 float: right;
 width: 50%;
 }

CHAPTER 6 ■ CONTENT LAYOUT

152

 This effect—floated items acting as “columns” in a “row”—has formed the basis of countless techniques
for CSS layout. As discussed in Chapter 3 , there are some quirks of floats that can trip you up. Remember,
floats are not actually in the flow of the page, so you may need to have an element that contains the floats.
Usually, that’s accomplished either by applying clear to a (pseudo-)element inside the container, or a rule
to make the container a new block formatting context. Floats will also wrap into multiple rows if necessary,
but can get stuck on preceding floats sticking out from the row above.

 Floats can also offer some limited reordering of horizontal content, independent of the source order.
For example, we can switch places of the figures by floating them left instead of right (see Figure 6-11).

 Figure 6-11. Switching places of the figures by floating in the other direction

 Figure 6-10. Two floated figures at 50% width, sitting next to each other

http://dx.doi.org/10.1007/978-1-4302-5864-3_3

CHAPTER 6 ■ CONTENT LAYOUT

153

 Because of the ubiquitous browser support and relative versatility of floats, they have become the go-to
solution for many variations on horizontal layout. We’ll come back to using them in Chapter 7 , when we
build a small grid system for high-level page layout. But there are other CSS properties that allow us to create
horizontal layout patterns, with different pros and cons of their own, as we’ll see in the upcoming sections.

 Inline Block as a Layout Tool
 Lines of text are a form of horizontal layout in themselves—at least in languages written left-to-right or
right-to-left. When we use inline elements (such as span , time , or a), they line up horizontally in the same
direction as the text. We can also place inline blocks into that flow, creating elements that line up horizontally
but act as blocks in terms of visual formatting and can have other blocks inside them.

 For example, let’s add some metadata to the bottom of our spaceship article, consisting of an author
name with a photo and an e-mail address. We’ve also added a couple of extra span s as styling hooks:

 <p class="author-meta">
 <!-- image from Jeremy Keith on Flickr: https://flic.kr/p/dwFRgH -->

 Written by Arthur C. Lark
 arthur.c.lark@example.
com

 </p>

 The contents of the . author-meta paragraph will now line up, with the bottom edge of the image sitting
on the baseline of the text. Any whitespace character, including for example the line break between the
image and the line where the author info starts, will be rendered as a blank space. The width of that space
depends on the font family and the font size (see Figure 6-12).

 Figure 6-12. Our author metadata. Note the whitespace between image and text.

 Next, we’ll turn the image and the author info into inline blocks:

 .author-image,
 .author-info {
 display: inline-block;
 }

 In terms of rendering, the component looks the same at this stage. The difference is that we can start
treating the image and the info as blocks. For example, we can put the name and e-mail address inside the
author info on separate lines next to the image, by changing them to display as blocks:

 .author-name,
 .author-email {
 display: block;
 }

http://dx.doi.org/10.1007/978-1-4302-5864-3_7

CHAPTER 6 ■ CONTENT LAYOUT

154

 We are now fairly close to the visual result of, for example, a floated image next to a block of text (as in
the “media block” example from Chapter 3). One difference is that the last baseline of the author info block
is aligned with the bottom of the image. We see the result in Figure 6-13 , where we’ve also added a dotted
outline around both image and author info to visualize how the two elements relate.

 Figure 6-13. The baseline of the author info is now aligned with the bottom of the image

 Figure 6-14. Aligning the author info to the top of the image with vertical-align: top

 Figure 6-15. The position of the author info when using vertical-align: middle

 We can now shift the author info relative to the image by changing the vertical-align property. When
the alignment is set to top , the top of the author info block will align with the top of the image (see Figure 6-14).

 Vertical Centering with Inline Block
 Now, let’s say that the design we want is for the author info block to be vertically centered in relation to the
image. It may be tempting to try something like this:

 .author-info {
 vertical-align: middle;
 }

 …but that probably won’t have the effect you expected! Figure 6-15 shows the results.

 This is where it gets somewhat tricky. The keyword middle when applied to inline blocks means “align
the vertical center of this inline block with the middle of the x-height of the line of text.” In this instance,
there is no inline text. Therefore, the image (being the tallest element on the line) is what determines the
height of the line box and where the baseline ends up. The center of the x-height thus ends up just above the
bottom of the image. In order to center the author info on the vertical center of the image, we need to make
both elements refer to the same “middle”:

http://dx.doi.org/10.1007/978-1-4302-5864-3_3

CHAPTER 6 ■ CONTENT LAYOUT

155

 .author-image,
 .author-info {
 vertical-align: middle;
 }

 With the image being an inline block, it too becomes vertically centered on the same vertical point as
the author info, resulting in the layout we wanted, shown in Figure 6-16 .

 Figure 6-16. Applying vertical-align: middle to both image and author info vertically centers them on the
same point

 The rules for how the baseline of line boxes is decided, and how it affects inline and inline-block
elements, are rather complicated. If you want to dive deep, we recommend Christopher Aue’s article “Vertical-
Align: All You Need To Know” (http://christopheraue.net/2014/03/05/vertical-align/). For the purpose
of using inline block display as a layout tool, there are two important takeaways in terms of vertical alignment:

• To make inline blocks align to the top (much like floats do),
set vertical-align: top .

• To vertically center contents with regard to each other, make sure they are all inline
blocks, and then use vertical-align: middle .

 Vertical Centering Inside a Container Element
 That last bullet point in the previous list enables us to vertically center content inside a container of any
height, with a bit of trickery. The only prerequisite is that the height of the container is set to a definite length.

 For example, let’s assume we want to make the author info block 10em tall, and center the author image
and info inside it, vertically and horizontally. First of all, we apply a height to the .author-meta block. We’ll
also add a border to make the changes a little easier to spot (see Figure 6-17).

 .author-meta {
 height: 10em;
 border: 1px solid #ccc;
 }

 Figure 6-17. The .author-meta block with height and border added

http://christopheraue.net/2014/03/05/vertical-align/

CHAPTER 6 ■ CONTENT LAYOUT

156

 The vertical alignment of photo and author info does not yet happen in relation to the container block,
but to the hypothetical line of text they are sitting on. In order to align them vertically we need to add another
inline block element, which takes up 100% of the height. This element will force the alignment point for the
 middle keyword to end up in the middle of the container. For this, we’ll use a pseudo-element. Figure 6-18
shows how the hypothetical baseline gets calculated when this “ghost element” is added.

 .author-meta:before {
 content: '';
 display: inline-block;
 vertical-align: middle;
 height: 100%;
 }

Text on baseline

Pseudo-element, inline-block

Inline block content

 Figure 6-18. Using a 100% tall pseudo-element to force the middle keyword to end up representing the vertical
center of the container

 At this point, the whole .author-meta container will in effect have a single line box taking up the whole
height. As the pseudo-element is an inline block with vertical alignment set to middle , the other inline
blocks will be vertically aligned to the center of the container. All we need to do now is to center the content
horizontally. As inline blocks respond to text alignment, we need to use text-align :

 .author-meta {
 height: 10em;
 text-align: center;
 border: 1px solid #ccc;
 }
 .author-info {
 text-align: left;
 }

 This results in the contents of .author-meta being centered horizontally as well as vertically, as shown
in Figure 6-19 .

CHAPTER 6 ■ CONTENT LAYOUT

157

 In actual fact, the horizontal centering is not exactly right. Remember that any whitespace character
in the line box will be rendered as a single blank space? The pseudo-element will create one such space,
pushing the content to the right by a few pixels. We can negate the width of the blank space by applying a
negative margin to the pseudo-element:

 .author-info:before {
 margin-right: -.25em;
 }

 Why -.25em ? In this instance, it happens to be the width of a whitespace character in the current font.
This is a bit of a “magic number,” and will vary with the font used. As such, it is not very robust, and not
something that we recommend for any systematic layout work. In our next horizontal layout example, we’ll
focus on a more detailed application of inline-block as a layout tool.

 Getting the Details Right: Battling Whitespace
 When dealing with horizontal layouts where each block takes up an exact width, the whitespace issue
becomes much more noticeable. We’ll work through building another common component to highlight how
to fix this issue when using inline blocks, with fewer magic numbers.

 This time we’re creating a navigation bar, consisting of four link items, where each item takes up exactly
one-fourth of the width. We start with the markup:

 <nav class="navbar">

 Home
 Spaceships
 Planets
 Stars

 </nav>

 The CSS gives us some basic styling in terms of colors and fonts, and outlines to highlight the edges
between items. Each item is set to 25% width, so that four items should fit in the navigation bar as a whole:

 .navbar ul {
 font-family: Avenir Next, Avenir, Century Gothic, sans-serif;
 list-style: none;
 padding: 0;
 background-color: #486a8e;
 }

 Figure 6-19. The contents are now horizontally and vertically centered

CHAPTER 6 ■ CONTENT LAYOUT

158

 .navbar li {
 text-transform: uppercase;
 display: inline-block;
 text-align: center;
 box-sizing: border-box;
 width: 25%;
 background-color: #12459e;
 outline: 1px solid #fff;
 }
 .navbar li a {
 display: block;
 text-decoration: none;
 line-height: 1.75em;
 padding: 1em;
 color: #fff;
 }

 We use box-sizing: border-box to make sure that any borders or padding of individual items are
included in the 25% width of each item. The navigation bar itself is given a blue-gray background, while the
items have a slightly darker blue background, with white link text.

 Now to the result, which can be seen in Figure 6-20 .

 Figure 6-20. The list sadly doesn’t fit on one line, and the items are spaced apart

 The linebreaks in the HTML source are rendered as blank space characters, adding to the 25% width
of each item and causing the line to wrap. We could eliminate these whitespace characters, for example, by
putting all of the tags on one line, but such demands on markup formatting are brittle.

 Our preferred method of fixing this is a little brutal. It works by setting a font-size of 0 on the container
itself (thus causing a blank space character to have zero width), and then resetting the size on the items:

 .navbar ul {
 font-size: 0;
 }
 .navbar li {
 font-size: 16px;
 font-size: 1rem;
 }

 This gets rid of the whitespace in a predictable manner, making the items fit nicely into the container, as
shown in Figure 6-21 .

CHAPTER 6 ■ CONTENT LAYOUT

159

 There are a couple of downsides of this technique. The first has to do with inherited font sizes.
Assuming we use a 16-pixel font size on the navbar, we can no longer use em units or percentages to inherit
a flexible font size for the list items—it would only become a multiple of 0 . Instead, we can retain flexible
sizing by basing the size on the root font size using the rem unit. For browsers that don’t support the rem unit
(mostly Internet Explorer 8 and older), the pixel-based measurement acts as a fallback.

 The second downside has to do with slightly older WebKit-based browsers , where a font-size of 0 is
not always respected—the stock WebKit-based browser on early versions of Android 4, for example. As we’ll
see further ahead in the chapter, we often use inline block display only as a fallback for older browsers, and
then layer on more modern techniques like flexbox. As even these older Android browsers support flexbox—
albeit an older flavor—whitespace problems are likely to become a nonissue.

 ■ Tip Should you for some reason need to use the inline block technique with a perfect fallback in these
older Android browsers, there’s a final trick involving fonts. It works by using a tiny custom font, only containing
a blank space character with a zero width, on the parent element. The original font-family is then reset on
the child elements. See this demo by developer Matthew Lein for the details: https://matthewlein.com/
articles/inline-block-no-space-font/ .

 Using Table Display Properties for Layout
 The rows in a table have the exact qualities we’re looking for in the navbar example: a number of “cells”
dividing the space between them, never slipping down on multiple rows. This is one of the reasons why
actual HTML tables were co-opted for layout in the early days of the web. These days, we can borrow the
display modes from tables via CSS, without resorting to table-based markup.

 If we change the navigation bar example to use the display mode of a table for the ul element, and set
each of the items to display as a table cell, we get the same look as when we used inline blocks:

 .navbar ul {

 /* some properties omitted for brevity. */
 width: 100%;
 display: table;
 table-layout: fixed;
 }
 .navbar li {
 width: 25%;
 display: table-cell;
 }

 This gives us the exact same appearance as in the previous inline block example (shown in Figure 6-21).
 Note that we have set the ul element to be 100% wide. This is to make sure the navbar expands to fill its

parent. Unlike regular blocks, tables without a set width have a “shrink to fit” width unless the contents of the
cells push them out to fill their parent container.

 Figure 6-21. A navbar with four equal-width items

https://matthewlein.com/articles/inline-block-no-space-font/
https://matthewlein.com/articles/inline-block-no-space-font/

CHAPTER 6 ■ CONTENT LAYOUT

160

 There are two algorithms for how the width of each column in a table row is calculated. By default, the
browser will use the “auto” algorithm. It is somewhat undefined, standards-wise, but it basically allows the
table to adapt the width of the columns based on the cell contents of the table as a whole.

 The other algorithm is the “fixed” table layout. Using table-layout: fixed , column widths are
determined based on the first row of the table. Any declared widths on the first row encountered “win,” and
if subsequent rows have wider content, that content will wrap into multiple lines inside the cells, or overflow.

 While setting the table-layout to fixed is not technically necessary in this example, it’s common to
use it when using table display modes as a layout tool, to avoid any surprises from the automatic mode.

 When using the table display modes for layout purposes, you should be aware that other quirks of table
rendering apply as well. For example, it’s not possible to apply margins to an element rendered as a table
cell, and the behavior of positioning as applied to table cells is shaky at best. We will come back to HTML
tables and CSS table display modes in Chapter 9 .

 Vertical Alignment in Table Cells
 Another useful aspect of table display modes is that vertical alignment works slightly differently in that
context. Setting vertical-align: middle on an element displaying as a table-cell will align the contents
of the cell to the vertical middle, without any extra trickery. Figure 6-22 shows what happens if we add a set
height to the list displaying as a table, and vertically align the list items to middle .

 .navbar ul {
 display: table;
 height: 100px;
 }
 .navbar li {
 display: table-cell;
 vertical-align: middle;
 }

 Figure 6-22. Adding a height and vertical centering to list items displaying as table cells

 Pros and Cons of the Different Techniques
 When considering floats, inline blocks, and table display modes as tools for horizontal layout as well as
vertical alignment, how do we determine which one to use? There are pros and cons for each method:

• Floats are able to wrap onto multiple lines, as are inline blocks. Floats also “shrink-
wrap” down to a size based on their contents, which can be a useful behavior. On the
negative side, floats may give you grief when it comes to containing or clearing them,
and when floated items get stuck on taller preceding floats. On the other hand, floats
are somewhat source order independent, as you can float some elements on a row
right and the others left.

http://dx.doi.org/10.1007/978-1-4302-5864-3_9

CHAPTER 6 ■ CONTENT LAYOUT

161

• Inline blocks have whitespace issues, but those are solvable, albeit with some hacky
solutions. On the positive side, inline blocks can also wrap onto multiple lines, they
give you some control over vertical alignment, and they have the same “shrink-wrap”
sizing behavior as floats.

• Using table display modes for horizontal layout also works great, but only for
nonwrapping rows of content. They have the same quirks as tables, meaning,
for example, that they are unaffected by margins, and the items inside cannot be
reordered. They also allow simple vertical centering of their contents.

 Flexbox
 The Flexible Box Layout module, known as flexbox, is one of the newer sets of CSS properties we can use to
create layouts. It consists of a number of properties relating to both a container element (the flex container)
and its direct children (flex items), as well as how those child elements behave. Flexbox can control several
aspects of the flex items:

• Size, based on both content and available space

• Direction of the flow: horizontal or vertical, forward or reverse

• Alignment and distribution on both axes

• Ordering, regardless of source order

 If using inline blocks, floats, and table properties for layout felt hacky to you, flexbox is likely the
solution you want. It was developed as a direct response to the various common scenarios we have looked at
so far in this chapter, and more.

 Browser Support and Syntax
 Flexbox is supported in the latest versions of all major browsers. With some adjustment of syntax and vendor
prefixes, you can get it to work for a wide range of slightly older browsers as well.

 To achieve support in IE10 and older WebKit browsers, you’ll need to complement the standard syntax
we use in this chapter with vendor-prefixed and somewhat different properties, as the syntax for flexbox has
changed a lot over various iterations of the spec. There are numerous tools and articles describing how to do
this, such as the “Flexy Boxes” code generator (http://the-echoplex.net/flexyboxes/).

 Note that Internet Explorer 9 and earlier do not support flexbox at all. We will discuss some fallback
strategies for these browsers later in the chapter.

 Understanding Flex Direction: Main and Cross Axis
 Flexbox allows you to define an area of the page where a bunch of elements can be controlled in terms of
order, size, distribution, and alignment. The boxes inside that space line up in one of two directions: by
default horizontally (as a row) or vertically (as a column). That direction is known as the main axis .

 The boxes inside can also be shifted and resized in the direction running perpendicular to the main
axis: this is known as the cross axis (see Figure 6-23). Usually, the most important measurement for creating
layouts with flexbox is the size along the main axis: width for horizontal layouts and height for vertical
layouts. We refer to that size as the main size of the item.

http://the-echoplex.net/flexyboxes/

CHAPTER 6 ■ CONTENT LAYOUT

162

 Going back to the navigation bar example we first saw in Figure 6-20 (a wrapper with an unordered
list containing links), we can easily convert it to a horizontal flex container. Assuming the rest of the styling
(colors, typography, link styles, borders) is the same, we need a minimal amount of CSS. We don’t need any
specific properties on the list items themselves just yet, and there is no width declared on the items
(see Figure 6-24):

 .navbar ul {
 display: flex;
 /* this also implies flex-direction: row; unless told otherwise */
 }

Flexbox row

Cross axis

Cross axis

M
ain axis

Main axis

Main size

Width

Height

Flexbox column

 Figure 6-23. Defining the main axis and the cross axis in row vs. column mode, and their respective main size
properties

 Figure 6-24. The navbar created with flexbox

 As you can see in Figure 6-24 , the items line up horizontally, and shrink to their minimum size based on
the content inside them. One way of looking at it is as if we’ve taken the block flow and rotated it 90 degrees.

 The items also bunch up on the left side, which is the default behavior when the language direction is
left to right. If we change the flex-direction property to row- reverse , the items will start from the right
edge and flow right to left (see Figure 6-25). Note that the order is also reversed!

 .navbar ul {
 display: flex;
 flex-direction: row-reverse;
 }

CHAPTER 6 ■ CONTENT LAYOUT

163

 Items inside a flex container shrink down to this size if no other sizing is in place. This means that items
in rows automatically get a minimum width, and items in columns get a minimum height, both based on the
minimum size of the contents inside each item.

 Alignment and Spacing
 We can use flexbox to distribute the items along the row in various ways. Flexbox calls distribution along the
main axis justification , while distribution on the cross axis is called alignment . (As a memory aid, remember
that the horizontal direction is the default, and text justification, in horizontal writing systems, happens in
the horizontal direction as well. The trick is to remember which one is which when the direction changes.)

 Now we can distribute the items on the main axis with various keywords and the justify-content
property . The default value that causes the items to align in the current text direction (in this case left to
right) is called flex-start . Using flex-end causes them to move over to the other side (see Figure 6-26),
but this time keeping the same order. Figures 6-27 , 6-28 , and 6-29 , respectively, show the other keywords:
 center , space-between , and space-around .

 Figure 6-25. Flowing items in the row-reverse direction

 Figure 6-26. Using justify-content: flex-end to move items over to the right

 Figure 6-27. Centering flex items with justify-content: center . Extra space is placed on the outer sides of
the edge items

 Figure 6-28. Using justify-content: space-between . Extra space is placed in between the items

 Figure 6-29. Using justify-content: space-around . Space is divided equally and placed on both sides of
each item. Note that space between items does not collapse

CHAPTER 6 ■ CONTENT LAYOUT

164

 Flexbox does not allow you to justify individual items with these keywords. However, setting margin
values with the keyword auto has a slightly different meaning when applied to flexbox items, and we can put
that to use here. If an element has margin set to auto on one side and there is space left in the container, that
margin expands to fill the available space. This can be used for patterns where all items except one need to
be arranged to one side. For example, we could place all items to the right, but put the “Home” item to the
left (see Figure 6-30):

 .navbar li:first-child {
 margin-right: auto;
 }

 Figure 6-30. Using margin-right: auto on the first item eats up all the space that’s left, pushing the rest of
the items to the right

 Figure 6-31. The items will stretch to fill the flex container in the cross-axis dimension by default

 Figure 6-32. Using align-items: flex-start

 Note that using an auto margin like this will negate the effects of any justification on the other items,
since there is no space left to distribute. You can still put individual margins on the other elements though.

 Cross-Axis Alignment
 So far we have only approached the basic problem of horizontal layout, which is a breeze with flexbox. Flexbox
also allows us to control how the other axis works. If we increase the height of either the flex container itself or
one of the items, we find that the default properties have an interesting effect (see Figure 6-31):

 .navbar ul {
 min-height: 100px;
 }

 It seems we automatically have equal-height items! The default value for the align-items property,
which controls cross-axis alignment, is stretch . This means that all flex items will fill the available space. We
can also set a value of flex-start , center , or flex-end (see Figures 6-32 to 6-34 , respectively) to make the
items shrink back to their original size and align with the top, middle, or bottom of the navigation bar.

CHAPTER 6 ■ CONTENT LAYOUT

165

 Finally, you can use the baseline keyword to align the baseline of the text inside items to the baseline
of the container, similar to how inline blocks work by default. This can be useful if you have boxes of varying
sizes, where you want them placed differently on the cross-axis but aligned among themselves.

 In Figure 6-35 , we have added a class name representing the currently active item:

 Home
 < li class="navbar-active" >Spaceships
 Planets
 Stars

 Figure 6-34. Using align-items: flex-end

 Figure 6-33. Using align-items: center

 Figure 6-35. Using a class of navbar-active to show the selected state

 The active item has been given a larger font-size and a z-index of 1:

 .navbar .navbar-active {
 font-size: 1.25em;
 }

 The larger active item now determines the baseline, and the other items align themselves accordingly.

CHAPTER 6 ■ CONTENT LAYOUT

166

 Aligning Individual Items
 As well as aligning all the items as a group, you can set an individual alignment on the cross-axis for each
item. We could, for example, have the “Home” item align to the top left, and the rest to the bottom right
(see Figure 6-36):

 .navbar ul {
 min-height: 100px;
 align-items: flex-end;
 }
 .navbar li:first-child {
 align-self: flex-start;
 margin-right: auto;
 }

 Figure 6-36. Individual alignment using align-self

 Vertical Alignment with Flexbox
 Finally, flexbox alignment solves the vertical alignment problem with very little code. When there is a single
item in the container, we only need to set the parent as a flex container and then set the margin declaration
on the item we want to center to auto in all directions. Remember, margins set to auto on flex items will
expand to “fill” in all directions.

 <div class="flex-container">
 <div class="flex-item">
 <h2>Not so lost in space</h2>
 <p>This item sits right in the middle of its container...<p>
 </div>
 </div>

 We can now center the .flex-item horizontally and vertically with the following CSS, regardless
of the size of container or item. In this instance, we make the container be as tall as the viewport (using
 height: 100% on both the html , body and .flex-container elements), just to visualize the result, seen in
Figure 6-37 .

 html, body {
 height: 100%;
 }
 .flex-container {
 height: 100%;
 display: flex;
 }
 .flex-item {
 margin: auto;
 }

CHAPTER 6 ■ CONTENT LAYOUT

167

 When there are several items inside the flex container—like in our author metadata example—we
can cluster them to the horizontal and vertical center using the alignment properties (see Figure 6-38). To
achieve this, we set both justification and alignment to center . (By the way, this works for single items too,
but the margin: auto method requires a bit less code.)

 .author-meta {
 display: flex;
 flex-direction: column;
 justify-content: center;
 align-items: center;
 }

 Figure 6-37. Vertical and horizontal centering with flexbox and auto margin

 Figure 6-38. Easy vertical centering of multiple elements with flexbox

CHAPTER 6 ■ CONTENT LAYOUT

168

 Flexible Sizes
 Flexbox gives us a lot of control over sizing. It’s part of what makes flexbox so great for detailed content
layout, but it is also, by far, the most complex part of flexbox. Don’t worry if this section feels overwhelming
at first—flexible sizing is one of those things you need to work with before it “clicks.”

 The Flexible Sizing Properties
 This is where the “flex” in flexbox comes in, as defined in the three properties flex-basis , flex-grow , and
 flex-shrink . These properties are set on each flex item, not on the container.

• flex-basis regulates what the “preferred” size of the item is on the main axis (width
or height), before it’s corrected based on the available space. It can be set to either a
length (like 18em , for example), a percentage (which is based on the main axis size of
the container), or the keyword auto , which is the default value.

 The auto keyword sounds like it sets width or height to auto , but that’s actually not
the case. Instead, it means that the item will get its main size from the corresponding
property (width or height) if that’s set. If the main size is not set, the element will be
sized according to its contents, a bit like a float or an inline block,

 You can also set the value to content , which also sets the size based on the contents
of the item, but disregarding any main axis size set with width or height (unlike
 auto). Note that the content keyword is a newer addition to flexbox, and support is
spotty at the time of writing.

• flex-grow regulates what will happen if there is space left when each element has
been given its preferred size via flex-basis : you supply it with a number, known
as a flex factor , that works out as a fraction of the extra space. We’ll explain how the
fractions work in a second. The default value for flex-grow is 0 , which means that
items will not grow beyond the size they get from flex-basis .

• flex-shrink works similarly to flex-grow but in reverse: how will the elements
shrink if there isn’t enough room? When flex-shrink comes into play, the
calculation is a little more involved—we’ll revisit it further ahead. The default value
is 1 , meaning that all items will shrink proportionately compared to their preferred
size if there is not enough space.

 Understanding how flex-basis plays with flex-grow and flex-shrink is the tricky part. Flexbox uses
a rather complex algorithm to calculate sizing, but it gets easier to handle if we simplify it down to two steps:

 1. Determine a hypothetical main size by looking at flex-basis .

 2. Determine the actual main size. If there is any space left in the container after
putting the items inside the container with their hypothetical main size, they can
grow. This growth is based on the flex-grow factor. By the same token, if there is
too little space to fit them, the items can shrink down based on the flex-shrink
factor.

 We can piece these properties together by working through an example. In this example, we imagine a
container that is 1000 pixels wide. There are two child items inside the container in the markup. One of them
contains a short word, causing this particular element to take up 200 pixels in width. The other contains
a long word, and takes up 400 pixels in width (see Figure 6-39). The items are not yet placed inside the
container.

CHAPTER 6 ■ CONTENT LAYOUT

169

 If these items have flex-basis set to auto and no explicit width value declared, as follows, they retain
this content-based size when placed into the container (see Figure 6-40), taking up a total of 600 pixels of the
available width. This is the default behavior for flex-basis , and the same as we have seen in the navigation
bar example so far.

 .navbar li {
 flex-basis: auto; /* default value. */
 }

Short Looooooong

(Container)
1000px

200px 400px

 Figure 6-39. A flex container at 1000 pixels wide, and two flex items, not yet placed in the container

Short Looooooong
1000px

200px 400px

400px600px

 Figure 6-40. The items take up a total of 600 pixels of the available 1000 pixels, leaving 400 pixels of unused
space

 As there is space left to distribute, flex-grow comes into play. By default flex-grow is set to 0 , which
does nothing to change the sizes of the items. But what happens when we set flex-grow for both items to 1 ?

 .navbar li {
 flex-basis: auto;
 flex-grow: 1;
 }

 What do the 1 ’s and 0 ’s represent? Well, it’s a bit like in a cocktail recipe: 1 part this, 2 parts this, 3 parts
soda water. It doesn’t represent a specific measurement, only parts of a whole.

 In this case, there are two items. Both will now grow equally, by 1 part of the available space, meaning
they each will grow by half the remaining space, or 200 pixels. This means that the first item will be resized to
a final size of 400 pixels, and the second will be 600 pixels, adding up to fill the container exactly, as shown in
Figure 6-41 .

CHAPTER 6 ■ CONTENT LAYOUT

170

 We could also have set individual flex-grow factors for the items:

 .navbar li:first-child {
 flex-grow: 3;
 }
 .navbar li:last-child {
 flex-grow: 1;
 }

 This would result in the first item receiving three-fourths of the available space and the second item
receiving one-fourth. As a result, both items end up being 500 pixels wide! Figure 6-42 shows how the layout
algorithm works the sizing in this instance.

Short Looooooong

Short Looooooong

flex-grow: 3 flex-grow: 1 = 4 parts

1.

2.
 Figure 6-42. The first item will grow by three-fourths of the available space, while the second only grows by
one-fourth

Short Looooooong

Short Looooooong

flex-grow: 1 flex-grow: 1 = 2 parts

1.

2.
 Figure 6-41. Both items grow by 1 part of the remaining 400 pixels, or 200 pixels each

 The items in this example happened to end up equally wide. If we want items to divide the whole space
proportionally between them regardless of content, there are better flexbox techniques, as we’ll find out next.

 Sizing Purely with Flex Factors
 In the first step of the simplified flexbox layout algorithm we used in the previous section, the items were
sized based on the width of their contents, using a flex-basis of auto and no explicit width declaration. If
we were to assume that the flex-basis was 0 , the consequence would be that no space would be allocated
in the first step. All of the space inside the container would remain in step 2, to be divided according to flex
factors and setting the final size of the items.

CHAPTER 6 ■ CONTENT LAYOUT

171

 In Figure 6-43 , the items have a flex-basis of 0 , and flex-grow set to 1 . This means there are two parts
making up the total space to be divided, so each item will take up exactly half of the allocated space. This
effect is close to calculating and using percentages for layout, with the added bonus that flexbox doesn’t care
how many items there are—they will automatically be resized to fit the total width.

Short Looooooong

Short Looooooong

flex-basis: 0
flex-grow: 1;

flex-basis: 0
flex-grow: 1;

1.

2.
 Figure 6-43. Two items with a flex-basis set to 0 will take up zero space in the first step of the algorithm.
They will then be sized entirely based on their flex-grow factors

 Figure 6-44. Example of navbar where the first item is set to grow by 2 units, and the rest by 1 unit

 This time, we’ll use the flex shorthand for setting flex-grow , flex-shrink , and flex-basis at the
same time, declared in that order and separated by spaces:

 .navbar li {
 flex: 1 0 0%;
 }

 Note the percentage sign after the flex-basis last in the value: the flex-basis in the shorthand can’t
be unitless, so you must use either 0% or another unit like 0px in this instance.

 If we wanted the first item to take up twice as much space as any other item, we could give it a flex-
grow factor of 2 :

 .navbar li {
 flex: 1 0 0%;
 }
 .navbar li:first-child {
 flex-grow: 2;
 }

 Applying this to the navbar markup with four items from earlier, we get a navbar where the first item
takes up two-fifths of the width (or 40%), followed by three items taking up one-fifth (or 20%) each
(see Figure 6-44).

CHAPTER 6 ■ CONTENT LAYOUT

172

 Shrinking Flex Items
 When the items to be placed inside a flex container add up to more than the available space, we can allow
them to shrink based on the flex-shrink property . The mechanics are a little more involved than flex-
grow . The idea behind more complex rules for shrinking items is to prevent small items from shrinking down
to nothing just because a larger item causes the total width to overshoot. Allowing an item more space is
fairly straightforward (as we saw with flex-grow), and happens in proportion to the available space. When
shrinking happens, it does so slightly differently.

 Going back to our hypothetical 1000-pixels-wide navigation bar, let’s imagine there are two child items,
each with a preferred size set via flex-basis . Together, they overshoot the width of the container by 300
pixels, as shown in Figure 6-45 .

 .navbar li:first-child {
 flex: 1 1 800px;
 }
 .navbar li:last-child {
 flex: 1 1 500px;
 }

Item 1

Container

Item 2

800px

1000px

500px

 Figure 6-45. Two flex items, whose combined flex-basis overshoots the container width

 The combined preferred width (800 + 500 = 1300) overshoots the size of the container by 300 pixels,
and both items have a flex-shrink value of 1 . You’d be forgiven for thinking both items shrink by 150 pixels
each to make room—but this is not what will happen. Instead, each item will shrink in proportion to both
its flex-shrink factor and the flex-basis . Technically, each item’s flex-shrink factor is multiplied by the
 flex-basis . Next, that value is divided by the sum of multiplying the flex-shrink factor of every item with
its flex-basis . Finally, the result of that division is multiplied by the negative space, giving us the amount of
space to shrink the item by.

 This is a lot to keep in your head, but the gist of it is this: items with a larger preferred size will shrink
more (in relation to the flex-shrink factor) than those with a smaller preferred size. Even if both our items
have a flex-shrink factor of 1 , they will shrink by different amounts. If we work through the calculations for
the first item, the result is this:

 ((800 × 1) / ((800 × 1) + (500 × 1))) * 300 = 184.6

CHAPTER 6 ■ CONTENT LAYOUT

173

 The first item will shrink by 184.6 pixels. Going through the same math for the second item should then
give us the remainder:

 ((500 × 1) / ((800 × 1) + (500 × 1))) * 300 = 115.4

 …which means the second item will shrink by 115.4 pixels, adding up neatly to the 300 pixels of
decreased width needed to fit both inside the flex container (see Figure 6-46).

Item 1

Container

Item 2

Item 1 Item 2

1000px

((800 × 1) / ((800 × 1) + (500 × 1))) * 300 = 184.6 ((500 × 1) / ((800 × 1) + (500 × 1))) * 300 = 115.4

800 - 184.6 = 615.4 500 - 115.4 = 384.6

flex-basis: 500px; flex-shrink: 1flex-basis: 800px; flex-shrink: 1

 Figure 6-46. The rather more complex flex-shrink calculation

 Will you need to know this by heart when using flexbox? Most likely the answer is “no.” But if you’re
struggling to make a layout work, realizing that flex-shrink works differently compared to flex-grow may
prevent you from tearing your hair out.

 Wrapping Flexbox Layouts
 In the navigation bar and author metadata examples, we worked with only one row of content. Just like
inline blocks or floats, flexbox allows us to flow the content into several rows (or columns), but with
increased control.

 ■ Caution The properties for wrapping into multiple rows or columns are from a newer version of the spec.
Browsers supporting the old flexbox spec, such as older versions of Safari, the stock Android browser before
version 4.4, and Firefox before version 28, do not support wrapping.

 This time, we’ll be working with a list of tags, representing categories of planets. It’s an unordered list of
items with links, much like the navigation bar, but where the number of items can be much larger, making it
unfeasible to fit them all on one row. We’re giving each item a background color, and the shaped appearance
of a physical luggage tag using the same kind of pseudo-element trick we used for the comment bubbles
(see Figure 6-47).

CHAPTER 6 ■ CONTENT LAYOUT

174

 The markup is simple enough:

 <ul class="tags">
 Binary planet
 Carbon planet
 <!-- …and so on… -->

 The styling for the tags is a little more involved, but nothing we haven’t seen before:

 .tags {
 border: 1px solid #C9E1F4;
 margin: 0;
 padding: 1em;
 list-style: none;
 }
 .tags li {
 display: inline-block;
 margin: .5em;
 }
 .tags a {
 position: relative;
 display: block;
 padding: .25em .5em .25em .25em;
 background-color: #C9E1F4;
 color: #28448F;
 border-radius: 0 .25em .25em 0;
 line-height: 1.5;
 text-decoration: none;
 text-align: center;
 }
 .tags a:before {
 position: absolute;
 content: '';
 width: 0;
 height: 0;
 border: 1em solid transparent;
 border-right-width: .5em;
 border-right-color: #C9E1F4;
 left: -1.5em;
 top: 0;
 }

 Figure 6-47. Our list of tags

CHAPTER 6 ■ CONTENT LAYOUT

175

 With the preceding styling, the tags are declared as inline blocks, and will wrap nicely. Now it’s time to
layer on the flexbox enhancements. First we turn the list into a flex container, and tell it to allow rows to wrap
using the flex-wrap property set to wrap :

 .tags {
 display: flex;
 flex-wrap: wrap;
 margin: 0;
 padding: 0;
 list-style: none;
 }

 At this point, the list looks pretty much exactly like it did initially. But now we have all the power of
flexbox to control the direction, size, and alignment of rows.

 Wrapping and Direction
 To start with, we can reverse the direction of the rows, just like we did initially with the navigation bar. When
the flex-direction changes to row-reverse , items will start at the top right and flow right to left, wrapping
into right-aligned rows, as shown in Figure 6-48 .

 Figure 6-49. Using the wrap-reverse keyword to flow content from bottom to top

 Figure 6-48. Reversing the flow with flex-direction: row-reverse

 We can also reverse the vertical flow, so that the rows start at the bottom and wrap upward! In Figure 6-49 ,
 flex-direction is set to row-reverse , and flex-wrap is set to wrap-reverse .

 ■ Note Flexbox directions are logical directions , which means they depend on text direction for what
counts as start and end edges. If you’re building, for example, an Arabic language site with right-to-left text,
the horizontal directions will be reversed (providing you set the correct dir attribute in the markup), while the
vertical directions stay the same.

CHAPTER 6 ■ CONTENT LAYOUT

176

 Flexible Sizing in Wrapping Layouts
 Another benefit of flexbox layout in multiple rows is that the flexible sizing allows us to fill rows evenly (see
Figure 6-50). The flex-grow calculation happens on a per-row basis, so items will grow only as much as
needed to fill the current row.

 .tags li {
 flex: 1 0 auto;
 }

 Figure 6-50. Applying a flex-grow factor to create perfectly filled-out rows

 When viewed at a slightly different size, the last item wraps onto the last row, becoming uncomfortably
wide (see Figure 6-51). Unfortunately, there’s no mechanism to address specific rows in a wrapping flexbox
layout. We can’t tell items to become inflexible if they’re on the last row, for example.

 Figure 6-51. The last tag becomes very wide when wrapping onto the last row by itself and growing to fill the
space

 Figure 6-52. By setting a reasonable max-width on the tag items, we can prevent items from growing to
uncomfortable lengths

 We’ll solve the immediate problem by setting a max-width property on the tags, so that they stay flexible
within a certain limit (see Figure 6-52):

 .tags li {
 display: inline-block;
 margin: .5em;
 flex: 1 0 auto;
 max-width: 14em;
 }

CHAPTER 6 ■ CONTENT LAYOUT

177

 Generally, the ability to fill available space is a core strength of flexbox. Combining flex-grow with
 min- and max-width , we can build very smart wrapping flexbox layouts, where items stay within reasonable
measurements no matter the screen size or how many items there are. We’ll dive further into techniques for
this in Chapter 8 , where we discuss responsive web design, and how to adapt layouts to their context.

 Aligning all Rows
 In our earlier review of the cross-axis alignment properties (align-items and align-self), we saw how
flexbox allows us to align items with respect to the flex-start , center , baseline , and flex-end points of a
single row. In a wrapping layout, we can align the rows or columns themselves, with regard to the container.

 If we set a min-height of 300px on the taglist container, the effect of the align-content property
becomes clear. By default, it is set to stretch , meaning each row will stretch to fill its share of the container
height. If we inspect items, we can see that each li element will stretch to fill a third of the height, as shown
in Figure 6-53 .

 .tags {
 display: flex;
 flex-wrap: wrap;
 min-height: 300px;
 /* align-content: stretch; is implied here */
 }

 Figure 6-53. Each row is stretched so that the combination of all rows fills the container

 The effect of align-content is pretty much exactly as how you’d distribute content on the main axis
using justify-content . We can now distribute the content to flex-start (the top of the container), flex-
end (the bottom), center (clustered to the middle), or separated using space-between or space-around .

 Column Layout and Individual Ordering
 With the flexbox order property, you are completely free from source order. You can simply tell the browser
which order you want the boxes in. By default, all items are given the order value of 0 , and items with the
same order value are sorted in the order they appear in the source.

 Flexbox gives us complete control of this ordering. In our next flexbox example, we’ll leave the
horizontal layout techniques, and create a small “article teaser” component, where an excerpt from our
spaceship article is shown, along with the heading, an image, and a link to continue reading the whole thing.
We’ll show this as single column.

http://dx.doi.org/10.1007/978-1-4302-5864-3_8

CHAPTER 6 ■ CONTENT LAYOUT

178

 Starting with the markup, we’ll put each of the component parts in order of importance:

 1. The heading with the article title

 2. The teaser text

 3. An image illustrating the article topic

 4. A link to the article

 <div class="article-teaser">
 <h2>The Dragon and other spaceships</h2>
 <div class="article-teaser-text">
 <p>There are actual spaceships…</p>
 </div>

 <p class="article-teaser-more">
 Read the whole Spaceship article
 </p>
 </div>

 The article teaser can be seen in Figure 6-54 . We’ve added some basic styling for this component,
mostly dealing with margins, colors, and typography. This particular styling is not important for the
example, so we’ll leave it out for now.

 Figure 6-54. The first iteration of our article teaser component

CHAPTER 6 ■ CONTENT LAYOUT

179

 Visually, the design could perhaps benefit from putting the image first, to catch the eye of a potential
reader. But in terms of the markup, it doesn’t quite make sense to put the image first. For example, we may
want users of screen readers to have the article title read as the first element within the teaser.

 To acheive this reordering, we need to turn the . article-teaser container into a flexbox column:

 .article-teaser {
 display: flex;
 flex-direction: column;
 }

 Next, we give the image an order value lower than the default 0 , so that it appears first (see Figure 6-55):

 .article-teaser img {
 order: -1;
 }

 Figure 6-55. Our reordered article teaser

CHAPTER 6 ■ CONTENT LAYOUT

180

 If we had wanted the heading first, for example, we could have set order values on the heading and image:

 .article-teaser h2 {
 order: -2;
 }
 .article-teaser img {
 order: -1;
 }

 …and the rest of the items would remain as they were, as they retain their order value of 0 . The order values
you set don’t have to be sequential (we could have used -99 and -6 for header and image respectively), and
they can be either positive or negative. As long as they are numbers that can be compared, the items will
reorder themselves accordingly. Just remember that 0 is the default.

 ■ Caution It is worth emphasizing that reordering items using flexbox is simply a visual shift. Things like tab
order and the order in which a screen reader speaks the content will not be changed by the order property. For
this reason, it is important to make sure that HTML source is still logical, and not use flexbox as an excuse for
sloppy markup practices.

 Nested Flexbox Layouts
 As our final example, we’ll show that flexbox layout can be nested, with some really useful results.

 We’ll reuse the article teaser example, but this time there’s two teasers that we want to show next to each
other. For this purpose, we’ll add a wrapper element, set to display as a flexbox row:

 <div class="article-teaser-group">
 <div class="article-teaser">
 <!-- first article teaser contents… -->
 </div>
 <div class="article-teaser">
 <!-- second article teaser contents… -->
 </div>
 </div>

 The wrapper element is set to display as a flexbox row:

 .article-teaser-group {
 display: flex;
 }

CHAPTER 6 ■ CONTENT LAYOUT

181

 In Figure 6-56 we can see the now familiar effect that flex items will by default stretch in the cross-axis
direction, creating two equal-height article teasers.

 Figure 6-56. Our two article teasers are now nested flexbox columns, also acting as items inside
the flexbox row

 We’ve seen equal-height items with flexbox before. But when the items are also flexbox containers like
this, we can pull one final trick. We can see that the content in the second teaser is much shorter than in the
first, creating an off-balance impression between the high-contrast “read more” link components in the two
teasers. Flexbox can help us in this situation as well.

 Remember that margins set to auto on flex items eat up any remaining space, in each direction? Setting
 margin-top: auto on the “read more” element will push it to the bottom of the column, making it line up
with the component next to it (see Figure 6-57):

 .article-teaser-more {
 margin-top: auto;
 }

CHAPTER 6 ■ CONTENT LAYOUT

182

 This is a type of layout for dynamic content that would have been a hassle to get right using older
techniques like floats, inline blocks, and positioning. And when flexbox is not supported, it falls back to a
simpler but perfectly workable design—which leads us nicely to our next topic.

 Flexbox Fallbacks
 While flexbox is widely supported in theory, there will still be situations where you will want to fall back on
techniques like floats or inline blocks. You may have to support older versions of Internet Explorer (prior to
IE10). There may be browser bugs preventing you from realizing a flexbox layout even across browsers that
claim support. Or maybe you want a wrapping behavior that works consistently with old Android phones.
You get the picture.

 Luckily, there are some nuggets of wisdom in how flexbox was designed that allow you to implement
these fallbacks.

 First, since flexbox is a display mode on the containers, browsers that don’t understand the flex
keyword will ignore it. This means that you can let nonsupporting browsers display the container itself as a
normal block.

 Second, you can add float declarations to flex items, or set them to display as inline-block without
affecting the flexbox layout. The float and clear properties have no effect on flex items, and setting a
different display value will not affect the layout of the box. This gives you a great opportunity to start using
flexbox for horizontal layouts today. First, you’d create a simple layout that works everywhere, and then
enhance that with flexbox—for example, making use of the automatic margins, vertical alignment, or other
nice-to-have embellishments.

 In some cases, you might want to differentiate solely between browsers that do understand flexbox and
those that don’t. In those cases, we recommend that you use a JavaScript library like Modernizr (http://
modernizr.com) for detecting the capabilities of the browser, giving you class name hooks on which to base
your styles. We’ll take a closer look at the Modernizr technique in Chapter 7 .

 Figure 6-57. Using margin-top: auto on the link pushes it to the bottom of the column, creating a neater
impression

http://modernizr.com/
http://modernizr.com/
http://dx.doi.org/10.1007/978-1-4302-5864-3_7

CHAPTER 6 ■ CONTENT LAYOUT

183

 If you only care about the most modern implementations of the spec in the latest browsers, you can also
use the @supports notation, specifically designed to differentiate styling based on browser support:

 @supports (flex-wrap: wrap) {
 /* flexbox rules here */
 }

 In this instance, we’ve limited the @supports block to browsers that understand both the conditional
rule syntax and the flex-wrap: wrap declaration, which is only present in browsers implementing the latest
syntax. There are plenty of browsers that understand variations of flexbox but not @supports , and vice versa.
This construct can be handy when you only want to apply some very new aspect of flexbox, or work around
bugs in older implementations.

 The important aspect of this technique is to have the simpler fallback solution as your baseline, and
then layer the flexbox enhancements on top of that.

 Flexbox Bugs and Gotchas
 Since flexbox is both fairly new and has gone through several iterations of different syntaxes, there are quite
a few of bugs and inconsistencies to consider.

 To keep track of flexbox bugs in slightly older browsers, check out Philip Walton’s community-curated
“Flexbugs” repository (https://github.com/philipwalton/flexbugs), where both bugs and workarounds
are listed.

 Apart from pure bugs, there are a couple other things that may trip you up:

• The sizing of images, videos, and other objects with an intrinsic aspect ratio is tricky
when they become flex items. The spec has changed with regard to this over time, so
your best bet is probably to add a wrapper element around such objects, letting the
wrapper act as the flex item.

• Flex items also have what’s known as an implied minimum width . In practical terms,
this means that a flex item may refuse to shrink below its content-based size, despite
being told to do so via flexible sizing. Overriding the min-width property or setting
an explicit main size overrides this behavior.

• The painting order of flex items is determined by the order property if present. This
can affect overlapping of items, just like with z-index .

• Furthermore, flex items can be given a z-index without having to give them a
position other than static —unlike normal blocks. If given a z-index , that index will
override the stacking order. A flex item with z-index set also creates a new stacking
context.

• Some elements have rendering models that are a little bit outside the normal. For
example, button and fieldset elements have default rendering that doesn’t quite
follow the normal rules for CSS styling. Trying to make those elements act as flex
containers can fail horribly.

https://github.com/philipwalton/flexbugs

CHAPTER 6 ■ CONTENT LAYOUT

184

 Summary
 In this chapter, we’ve looked at several common content layout patterns and various use cases for them.
We’ve seen how you can use inline blocks, table display modes, and floats for layout purposes, and their
respective trade-offs.

 We also looked at some useful patterns for using absolute or relative positioning, in combination with
margins, to achieve some effective patterns.

 Finally, we took a deep dive into the flexbox standard, finding more efficient ways to distribute, size,
align, and order items horizontally and vertically.

 In the next two chapters, we are going to scale up our efforts in layout-land. First we’ll look at how
to apply layout techniques to layout systems for whole pages, and get to grips with the new Grid module,
specifically created for that scenario. Then we’re going to see how to adapt our designs to varying screen
sizes, using the techniques of responsive web design.

185© Andy Budd and Emil Björklund 2016
A. Budd and E. Björklund, CSS Mastery, DOI 10.1007/978-1-4302-5864-3_7

 CHAPTER 7

 Page Layout and Grids

 This chapter is all about a systematic approach to creating page layouts. In the previous chapter, we focused
on layout from the perspective of individual page components. The priority of and relationships between
the individual components is a good place to start when designing the overall layout of a page. But at some
point, you’ll start to find recurring patterns for the overall structure. This chapter is all about codifying these
structures into reusable solutions: containers, into which you can “pour” your content.

 As you create these containers, you will most likely work with a grid system of predetermined sizes
and ratios. This chapter will explore different ways of creating such a system in CSS. At first we will look at
more traditional techniques, then later enhance them with flexbox. In the second half we will look at the
upcoming CSS Grid Layout specification.

 In this chapter you’ll learn about

• A systematic approach to page layouts

• The terminology around page grids

• Building robust page layouts with floats and inline blocks, enhanced by flexbox

• Using the Grid Layout module

 Planning your Layout
 When it’s time to start turning design into fully functional templates, it can be tempting to jump straight in
and start marking up your page and writing the CSS. The risk is that you can paint yourself into a corner very
quickly. A small amount of planning can save a lot of hassle further down the line. Or, as the saying goes,
“Measure twice; cut once.”

 The important thing at this stage is to find the repeating patterns and the essence of the design system
you are trying to translate into code.

 Grids
 When talking about the overall layout system for a site, the grid is a word that comes up often. It refers to
the basic set of rules that the designer has used to divide the layout into a number of rows and columns
(see Figure 7-1 for an example). Spaces between rows and columns are known as gutters . By talking
about an element that spans three columns with gutters on the left and right sides, both designers and
developers have a more clear picture of what is being built. This systematic approach to layout gives a
certain predictability and stability. It still allows you to step away from the grid and have asymmetric parts
of your layout—but that is usually the exception rather than the rule.

CHAPTER 7 ■ PAGE LAYOUT AND GRIDS

186

 Traditional Grid Terminology
 Grids are far from being an invention of web designers; they have been around in various forms for centuries
in graphic design. In web design, we often simplify the terminology down to just rows, columns, and gutters,
but there is a richer vocabulary for grids used in traditional print design.

 In the more traditional sense, rows and columns are names for whole strips of a grid, spanning the
whole width or height. An individual cell of the grid, spanning one column and one row, is known as a
 unit or module . Units are then combined to form larger areas with certain ratios—one area could be three
columns wide and two rows tall, for example. These combinations of units, vertically and horizontally, are
traditionally called fields or regions .

 The number of units in total across a grid is often based on a number that can be divided in several ways
to create different ratios. For example, a 24-column grid can be further divided into 4 columns, each 6 units
wide, or 3 columns of 8 units each, and so on.

 The traditional meanings of these terms are perhaps not required knowledge to build grids for the Web.
On the other hand, it won’t hurt to have a bit of a grasp on them when communicating with colleagues, or
creating naming conventions for your code. Having a common naming scheme helps greatly in creating a
structured codebase right from the get-go—often you will use them to create helper classes for your design.

 Figure 7-1. Illustrated overlay view of column and gutter sizes used on http://www.theguardian.com . This
view uses mainly a mix of five columns total, and three nested columns in the rightmost four

http://www.theguardian.com/

CHAPTER 7 ■ PAGE LAYOUT AND GRIDS

187

 Layout Helper Classes
 Class names are an obvious candidate as hooks to hang your layout styles on. For a very simple site, you
may end up with just a couple of class names dictating the base of your layout. The class names you use for
controlling a two-column blog layout may look as simple as the following:

 .main-content {}
 .secondary-content {}

 As you work on more complex sites, you may find repeated patterns that are not clearly identifiable as
belonging to a specific content hierarchy. This makes it slightly harder to name your classes in a reusable
way. To create reusable styles, a lot of people use more visually descriptive class names, like the following:

 .column { /* general column styles */ }
 .column-half { /* taking up 50% of the row width */ }
 .row { /* general row styles */ }

 These class names are in a strict sense presentational, which means that you are putting information
about presentation in your HTML. On the other hand, they are highly readable, reusable, and allow you to
solve problems of layout once .

 The alternative at the other end of the spectrum would be to collect all the selectors that have a certain
style in common in a list:

 .thing,
 .other-thing,
 .third-thing,
 .fourth-thing {
 /* styles in common here */
 }

 The benefit of this organization is that you won’t need to hook these styles up with any single name in
HTML, but instead can add and remove from the list of selectors. The risk is that the number of selectors can
get out of hand and tough to scan. It also presents a problem in terms of code organization. When the styles
are split up based on similar styles rather than on the basis of reusable components, you risk having to jump
around in your CSS to an uncomfortable degree when doing edits to a specific part of your site.

 Naming schemes are a hugely challenging part of creating high-quality code, and tying presentation
and markup together is a tricky trade-off. In this chapter, we’ll try to walk the middle road of using a small
number of layout helper classes while keeping the ties to presentation as light as possible. It is a highly
compact way of creating layout systems, allowing for rapid prototyping and consistent styling. We will get
back to the challenges of creating modular and reusable CSS systems in Chapter 12 .

 Regardless of whether you have created the visual design yourself or if you’re coding up someone else’s
design, you will thank yourself down the line for creating something that is robust and well thought out.
Having names for the component parts of the layout system also helps greatly when you need to collaborate
with other designers and developers on a team. If your design is very complex, you might even benefit from
incorporating solutions from ready-made CSS layout frameworks.

 Using Ready-Made Design Grids and Frameworks
 Since CSS layout can be tricky, and the patterns you find when planning them are often found repeatedly
across many site designs, there are a number of ready-made CSS frameworks or libraries that include some
sort of grid system.

http://dx.doi.org/10.1007/978-1-4302-5864-3_12

CHAPTER 7 ■ PAGE LAYOUT AND GRIDS

188

 Many of them work quite well, and allow you to quickly assemble designs that are supported across
browsers. That is a very good thing, and it can potentially save you tons of effort. Especially for layouts with
complex relationships between sizes, tools like Gridset (https://gridsetapp.com) that help you generate
your CSS can be really helpful (see Figure 7-2).

 Figure 7-2. Gridset is a tool that helps you generate grid rules for your layouts

 The downside is that many of the larger CSS frameworks come with a complete set of layout rules for
situations that your design might not need. This means including code in your project that is never used but
still takes up bandwidth both over the wire and in your head—having CSS in your project that you yourself
don’t understand can be a bad thing.

 Whether you should choose third-party code over something that you’ve built yourself always depends
on the situation. If you’re building a quick prototype to test something out, it’s probably fine to use a prebuilt
library. For moderately complex sites, you may find yourself having to modify an existing library so much
that it would actually make more sense to build it yourself.

 Fixed, Fluid, or Elastic
 You might have come across the terms fixed layout , fluid layout , and elastic layout before. These refer to how
we constrain the sizes of the elements in a specific layout.

• Fixed layouts : Layouts where we impose a specific measurement on the layout of
our page. For instance, we could say “Our page is 960 pixels wide and that’s that.”
This was the trend for a long time, as it gave designers and developers a great deal
of control over the design. For years, designers debated which dimensions to base
their layouts on: “Do most users have screens that are 1024 pixels wide, or is it safe to
assume everyone has a 1280-pixel-wide monitor these days?”

https://gridsetapp.com/

CHAPTER 7 ■ PAGE LAYOUT AND GRIDS

189

• Elastic layouts : Layouts where the flexibility comes with sizing the components of
the layout in ems. That way, proportions of the layout are preserved even if the user
resizes the text. This can then be combined with minimum and maximum widths,
so that the page respects the screen size a little better. Even if elastic layouts are
somewhat dated today, borrowing the idea of using a maximum width set in ems is a
good way to constrain fluid layouts.

• Fluid layouts : Also known as liquid layouts , layouts where the elements are sized
with percentages, and ratios between the sizes (and sometimes also the distances
between them) remain constant. The actual size in pixels varies with the size of the
browser window. This is in a way the default mode of the Web, where block-level
elements have no defined width but instead fluidly adjust to the available space.

 People are still building fixed layouts, because of the sense of control they give from the designer’s point
of view. But this control is something being imposed on the person visiting the site, and fixed-width sites
work poorly with the diversity of devices and screen sizes that exist today.

 As you might have guessed, it’s best to avoid fixed-width designs, letting your layout become fluid and
adapt to the device it’s being viewed on. This method of letting the design respond to its environment is one
of the cornerstones of what is known as responsive web design .

 ■ Note Creating responsive layouts requires a few more ingredients. We’ll examine those in Chapter 8 , but in
this chapter, we’ll assume that we are dealing with layout for bigger screens, to keep the examples simple.

 Creating a Flexible Page Layout
 In this section, we’re going to go through some practical tips on how to create a system of styles that helps
you create solid, flexible, and reusable page layouts.

 A lot of the techniques and CSS properties in this section are variations of the same techniques you saw
in Chapter 6 , but with a slightly more high-level perspective.

 We are going to re-create a layout similar to what we find in some sections on http://www.theguardian.com
(see Figure 7-3), which have a few different variations on columns and horizontal sections.

http://dx.doi.org/10.1007/978-1-4302-5864-3_8
http://dx.doi.org/10.1007/978-1-4302-5864-3_6
http://www.theguardian.com/

CHAPTER 7 ■ PAGE LAYOUT AND GRIDS

190

 If we were to break this design down into a simplified sketch of just the major layout patterns, we
would end up with something like what we see in Figure 7-4 . For the rest of this section, we’ll try to
re-create this layout.

 Figure 7-3. The “World news” subsection on http://www.theguardian.com . We can see some variations of
different numbers of columns and different sizes

http://www.theguardian.com/

CHAPTER 7 ■ PAGE LAYOUT AND GRIDS

191

 What’s not showing in the sketch is that the layout as a whole is centered in the page, and is capped by a
maximum width. We’ll start by creating the rules for that kind of wrapper element.

 Defining a Content Wrapper
 It’s very common to use some sort of wrapper element that holds the contents of the page, like this:

 <body>
 <div class="wrapper">
 <h1>My page content</h1>
 </div>
 </body>

 You could use the body element for this—after all, it’s already there (or should be!)—but a lot of the time
you end up wanting more than a single wrapper. There could be a site-wide navigation bar with a different
width outside of the wrapper, or just stacked sections covering the whole screen width that have centered
wrappers inside them.

 Next, we need to set some rules for how this wrapper behaves. We’ll give it a width combined with a
maximum width and center it using automatic margins. For fluid layouts, it’s very common to use a width set
in percentages, slightly less than the full width of the window. The maximum width is then set in relation to
the font size, using ems:

 .wrapper {
 width: 95%;
 max-width: 76em;
 margin: 0 auto;
 }

 Figure 7-4. A sketch of the different size columns in the layout

CHAPTER 7 ■ PAGE LAYOUT AND GRIDS

192

 We are parrying a number of factors that are subject to change. We don’t know how large the screen is,
so we don’t want to tie ourselves down to any specific pixel size for the overall width. We also don’t know
what the user’s font settings are.

 What we do know is that we want a centered wrapper with at least some space on the sides, no matter
the screen size. We also want to cap the layout width at some point, to prevent things like line length getting
out of hand. If the user has a different font size setting than the normal 16px default, the maximum width will
follow.

 The specific measurements you choose will change to accommodate the design you’re working on, but
the principle is the same: find the basic constraints you want to set for the overall content wrapper, but don’t
define them too strictly. Instead, make sure you optimize for a changing environment.

 “Optimize for change” is incidentally a mantra you will hear in all fields of software design. We have
established principles for what our layout wrapper should do, without being overly specific about pixel
measurements. Elements using the wrapper class can now be edited in one go.

 Figure 7-5. Our content wrapper—we’ve temporarily given it a background color and some height to see the
effects of the style

 The body element comes with its own default margin as well, so we’ll need to remove that or it will
interfere with our styles. In Chapter 2 we mentioned “reset” styles like Eric Meyer’s CSS Reset and Nicolas
Gallagher’s Normalize.css: they take care of things like this for you to create a consistent baseline, but
sometimes it’s a good idea to start slowly and build up your own styles. We’ll keep it simple for this example:

 body {
 margin: 0;
 }

 The result in Figure 7-5 gives us a good foundation. We’ve taken a number of decisions in these few
lines of code:

• The main wrapper should normally take up 95% of the viewport width.

• With the shorthand margin: 0 auto , we’ve told it to have no margin at the top or
bottom, and automatically divide the empty space to its left and right (leaving 2.5%
on either side), which centers it on the page.

• At a maximum, the wrapper should be 76 ems wide. This equates to 1216 pixels
based on the default font size of 16 pixels, but will automatically change if the user
bumps up the font size setting in their browser. This 76em number is not any kind of
hard rule: it’s just what looked right when trying out the layout.

http://dx.doi.org/10.1007/978-1-4302-5864-3_2

CHAPTER 7 ■ PAGE LAYOUT AND GRIDS

193

 Figure 7-6. Using the wrapper class to center elements within two stacked page sections

 Row Containers
 Next, we focus on the behavior of horizontal groups of content. The only thing we want them to do at this
stage is to contain any floated elements within. In Chapter 3 , we saw how we can use the overflow property
to achieve float containment, by creating a new block-formatting context. While the overflow method is often
the easiest way for smaller components, in this case we’ll use a clearing pseudo-element instead. These
larger sections of a page are more likely to have positioned content sticking out of the row container, so
messing with overflow may come back to bite us.

 .row:after {
 content: '';
 display: block;
 clear: both;
 height: 0;
 }

 We can make use of the consistency of the wrapper class straight away, using it in three different places.
We’ll add a masthead section for our fictional newspaper, and a navigation bar. These will both be full-width
elements, but with an inner wrapper constraining the content centered within them. The main element
holding the page-specific content comes after those two blocks.

 <header class="masthead">
 <div class="wrapper">
 <h1>Important News</h1>
 </div>
 </header>
 <nav role="navigation" class="navbar">
 <div class="wrapper">
 <ul class="navlist">
 Home
 <!-- ...and so on -->

 </div>
 </nav>
 <main class="wrapper">
 <!-- the main content goes here -->
 </main>

 We won’t go into the styling of the masthead and navbar (see Figure 7-6) here, but the CSS is available
in the code examples for the book, and we have covered how to create a navbar component in Chapter 6 .

http://dx.doi.org/10.1007/978-1-4302-5864-3_3
http://dx.doi.org/10.1007/978-1-4302-5864-3_6

CHAPTER 7 ■ PAGE LAYOUT AND GRIDS

194

 Creating Columns
 We have our row container, and we want to divide it into columns. First things first: pick a method of
horizontal layout. As we saw in the previous chapter, there are a number of ways of doing this. Using floats is
probably the most commonly used technique and has pretty much universal browser support, so let’s start
there. Floating items to the left by default seems a good choice for left-to-right languages.

 In case we want to add borders or padding directly on the column container without changing the
width, we should also set the box-sizing method to border-box :

 .col {
 float: left;
 box-sizing: border-box;
 }

 Next, we need to decide on a method of sizing the columns. A lot of CSS libraries use explicit
presentational size classes to size individual columns:

 .col-1of4 {
 width: 25%;
 }
 .col-1of2 {
 width: 50%;
 }
 /* ...etc */

 That kind of approach is very helpful for quick prototyping, when you’re likely to work at a desktop or
laptop computer. Based on the preceding rules, a three-column layout where the leftmost column occupies
half the width becomes very easy to declare in your markup:

 <div class="row">
 <div class="col col-1of2 "></div>
 <div class="col col-1of4 "></div>
 <div class="col col-1of4 "></div>
 </div>

 The downside of this kind of technique is the heavy emphasis on one particular layout. When we later want
to adjust how the layout responds to various screen sizes, the naming scheme will not make as much sense.

 If we want to retain the strategy of reusable class names for sizing, we will be left with some ties between
markup and presentation. We can choose to make these ties looser by using other class names, without
mentioning the specific width or ratio. Using a metaphor from the musical world, we can, for example,
create a rule for row containers that normally have four equal parts—a quartet :

 .row-quartet > * {
 width: 25%;
 }

CHAPTER 7 ■ PAGE LAYOUT AND GRIDS

195

 We’re targeting direct children of the row container with the universal selector here. This is to keep the
specificity of this general rule low. Since the universal selector has a specificity value of 0 , we can override this width
with a single class name later on. The following markup would now create a row with four equal-width columns:

 <div class="row row-quartet">
 <div class="col"></div>
 <div class="col"></div>
 <div class="col"></div>
 <div class="col"></div>
 </div>

 Any deviation from this “tempo” inside .row-quartet would now get its own overriding class name,
but without a layout-specific class. The example of the three-column layout from before would now look
slightly different:

 <div class="row row-quartet">
 <div class="col my-special-column"></div>
 <div class="col"></div>
 <div class="col"></div>
 </div>
 .my-special-column {
 width: 50%;
 }

 We can now complement the row rules with more “tempo” classes as needed:

 .row-quartet > * {
 width: 25%;
 }
 .row-trio > * {
 width: 33.3333%;
 }

 In the sketch of the layout we’re building, both subcategory sections have a header area that takes up
the leftmost one-fifth of the page, and a content area that takes up the remaining four-fifths. In the first
subsection, there’s also a bigger article column, taking up 50% of the content area.

 .subcategory-content {
 width: 80%;
 }
 .subcategory-header {
 width: 20%;
 }
 .subcategory-featured {
 width: 50%;
 }

CHAPTER 7 ■ PAGE LAYOUT AND GRIDS

196

 The HTML:

 <section class="subcategory">
 <div class="row">
 <header class="col subcategory-header">
 <h2>Sub-section 1</h2>
 </header>
 <div class="col subcategory-content">
 <div class="row row-quartet">
 <div class="col subcategory-featured"></div>
 <div class="col"></div>
 <div class="col"></div>
 </div>
 <div class="row row-quartet">
 <div class="col"></div>
 <div class="col"></div>
 <div class="col"></div>
 <div class="col"></div>
 </div>
 </div>
 </div>
 </section>
 <section class="subcategory">
 <div class="row">
 <header class="col subcategory-header"></header>
 <div class="col subcategory-content">
 <div class="row row-trio">
 <div class="col"></div>
 <div class="col"></div>
 <div class="col"></div>
 </div>
 </div>
 </div>
 </section>

 USING EXTRA WRAPPER ELEMENTS

 In this example, we’ve used extra nested elements with a class of row for the “inner” column groups.
You could also add the row class to the col items themselves. While being sparse with your markup is
a nice feeling and generally a good practice in many circumstances, it can also backfire if conceptually
different rules start to clash. Adding an extra element to separate them in some places minimizes the
risk of this happening, despite being somewhat redundant.

CHAPTER 7 ■ PAGE LAYOUT AND GRIDS

197

 Figure 7-7. Our page layout is now beginning to take shape

 Putting this together with the wrapper and a simple header gets us a long way toward our “page
skeleton.” As listed next and shown in Figure 7-7 , we have also added a few placeholder content headings
and some minimum heights to the columns, as well as an outline. (Outlines are a handy trick for visualizing
and debugging layouts, since they don’t affect the sizing of elements.)

 .col {
 min-height: 100px;
 outline: 1px solid #666;
 }

 Now that we have our grid classes working for us, we can easily combine or extend them with more
measurements to create even more complex layout patterns. Next, we’ll add some dummy content inside
each container and add in the details.

 Here’s how an article with an image looks in markup:

 <div class="col">
 <article class="story">

 <h3>Cras suscipit nec leo id.</h3>
 <p>Autem repudiandae...</p>
 </article>
 </div>

CHAPTER 7 ■ PAGE LAYOUT AND GRIDS

198

 Figure 7-8. Now we have added some content inside the grid cells to see how our layout holds up, along with
some light typographic styling

 We have used an article element with a class name of story inside the column containers. The
extra element separates layout from content and gives us a portable solution instead of overloading the
wrappers themselves.

 The dummy content styling simply consists of a background color, a little bit of padding, and a rule to
make any images inside the stories become fluid to fill up the width of the element:

 .story {
 padding: .6875em;
 background-color: #eee;
 }
 .story img {
 width: 100%;
 }

 Figure 7-8 shows how it looks when we incorporate this dummy content.

CHAPTER 7 ■ PAGE LAYOUT AND GRIDS

199

 If you need to set background colors or images directly on the columns and still want them spaced
apart, it may make sense to use margins as gutters. It also makes sense if you need to cater for really old
browsers like IE7 that don’t even support box-sizing . Considering this is a fluid layout, you will want to use
margins set with percentages, since mixing percentages and other lengths becomes tricky to handle without
using calc() , which is also not supported in older browsers.

 In any case, it’s useful to know how to calculate margins in percentages, to make them play nicely with
other widths. In the previous example, we have used a font size of 16 pixels and a line height of 1.375, which
equals 22 pixels. Let’s say we want the gutters to equal the line height of the text on reasonably wide screens,
connecting the typographic measurement to our grid. We start with the widest point of our layout, 76 ems or
1216 pixels.

 Since margins are relative to the containing block, we calculate the ratio of gutter to the total width in
the same way we calculate a relative font size: divide the desired measurement by the whole width. Dividing
22 by 1216 gives us 0.018092105, so around 1.8% for one whole gutter. Finally, we divide that in half, to give
us the amount of margin to put on either side of each column, and end up with 0.9%:

 .col {
 float: left;
 box-sizing: border-box;
 margin: 0 0.9% 1.375em;
 }

 We have also added a bottom margin to space the rows of content apart by the height of one line of text.
Note that the vertical spacing is set in ems rather than percentages, since the line height is not relative to the
screen size, so we want to keep that relationship intact.

 Taking a look at the example in progress will show us a broken layout (see Figure 7-10) since the
margins add to the measurements of columns. Not even box-sizing: border-box can get us out of that one,
so we’ll need to revise the column widths.

 Figure 7-9. Adding equal amounts of space on both sides of the columns, each one-half of the total gutter width

 Fluid Gutters
 It is now glaringly obvious that we need to add some spacing between our columns, to allow the layout some
breathing room. This is where gutters come in.

 In a fluid layout, you can either go for fluid gutters set in percentages, or gutters that are set in a fixed
length, commonly set relative to the font size. Either way you choose, one of the most common techniques
is to set equal amounts of spacing on both sides of the column element, each side being half as wide as the
intended total gutter size (see Figure 7-9).

CHAPTER 7 ■ PAGE LAYOUT AND GRIDS

200

 Figure 7-10. Our layout is now broken, since the margins make columns add up to more than 100%

 To fix the column width calculations when using margins for fluid gutters, we need to subtract 1.8%
from each column width:

 .row-trio > * {
 width: 31.53333% ;
 }
 .row-quartet > * {
 width: 23.2% ;
 }

 .subcategory-featured {
 width: 48.2% ;
 }
 .subcategory-header {
 width: 18.2% ;
 }
 .subcategory-content {
 width: 78.2% ;
 }

 This gives us the working version we see in Figure 7-11 . In the screenshot, we have narrowed the
browser window slightly, and you can see the gutters narrowing along with it.

CHAPTER 7 ■ PAGE LAYOUT AND GRIDS

201

 Negating the Outer Gutters
 At this point, we have a working system representing rows, fluid columns, and fluid gutters. The remaining
work has to do with getting the details right and minimizing the risk of visual discrepancies.

 First off, the margins that we use to create gutters cause an extra indent on the right and left sides of the
 outer container, which may not be desirable. Nesting columns inside further row containers compounds this
problem (see Figure 7-12). We could negate the left margin on the first item and the right margin on the last
item to counter this situation. But that would further complicate the math involved in calculating column
and gutter widths.

 Figure 7-11. Our page now has fluid gutters, growing and shrinking with the page width

CHAPTER 7 ■ PAGE LAYOUT AND GRIDS

202

 Instead, we’ll use a trick with negative margins to alleviate this problem. We mentioned in Chapter 6
that nonfloating block elements without a specified width expand their width when given negative margins
to the left and right.

 Since we opted to use a separate element to act as our row containers (rather than letting column
elements double as rows for any nested columns), we are in a fine position to use this fact to our advantage.
We amend the grid rules by saying that each row container has a negative margin on each side equal to one-
half the gutter (see Figure 7-13):

 .row {
 margin: 0 -.9%;
 }

 Figure 7-13. Using negative margins on row container elements, we counter the extra indent and compounding
margins of nested rows

 Figure 7-12. The article containers end up being some distance from the right edge of the section border,
because of the outer margins that we apply to each column to create gutters

http://dx.doi.org/10.1007/978-1-4302-5864-3_6

CHAPTER 7 ■ PAGE LAYOUT AND GRIDS

203

 Alternate Gutter Strategies
 In order to further simplify the column width calculations, we can make use of the box-sizing property and
set the gutters using padding instead.

 If we continue using fluid gutters, we only need to shift the gutter measurement to become padding
instead. We can now go back to expressing the measurements of the columns as proper fractions of the
whole again, without factoring in the width of the gutter:

 .col {
 float: left;
 box-sizing: border-box;
 padding: 0 .9% 1.375em;
 }
 .row-trio > * {
 width: 33.33333%;
 }
 .subcategory-featured {
 width: 50%;
 }
 /* ...etc */

 This also leaves the road open to using gutters set with a typographic measurement instead: we can use
ems to set the gutter to be relative to the font size rather than the width of the grid. In the following example
(see Figure 7-14), the gutter size is the same as the line height, creating equal vertical and horizontal spacing
between columns regardless of the width of the grid.

 .col {
 float: left;
 box-sizing: border-box;
 /* one half of the line-height as padding on left and right: */
 padding: 0 .6875em 1.375em;
 }

CHAPTER 7 ■ PAGE LAYOUT AND GRIDS

204

 Figure 7-15. The bottom part of the top subsection contains two rows of stories

 Enhanced Columns: Wrapping and Equal Heights
 So far we’ve used floats as our method of choice for creating the layout. As we saw in the previous chapter,
we have a range of other tools at our disposal. We’ll briefly look at some examples of employing these in the
same generic way as our floated columns. This will help us create even more flexible layouts.

 Wrapping Column Rows with Inline Blocks
 If you look closely at the screenshot from The Guardian (see Figure 7-15), you’ll note that the bottom of the
topmost subsection actually has two rows of headline links. In our version of the layout, we so far only have
one row of slightly bigger story previews.

 Figure 7-14. With “elastic” gutters set in relation to the font size, gutters stay the same no matter the width of
the content

CHAPTER 7 ■ PAGE LAYOUT AND GRIDS

205

 Using floats for wrapping lines of containers is a tricky affair: if one of the items is taller, the floats might
get stuck, creating an ugly stepped effect.

 To counter this, we can create a generic class name that we employ where content is expected to wrap
into several rows. For containers with this class name, we’ll employ inline-block display using the font-sizing
technique we used in Chapter 6 . As we do so, we need to set the negative margin of the row container in rem
units, since the font-size of the element itself is now 0 . For full backward compatibility, we use a fallback to
pixel measurements for IE 8.

 .row-wrapping {
 font-size: 0;
 margin: 0 -11px;
 margin: 0 -.6875rem;
 }
 .row-wrapping > * {
 float: none;
 vertical-align: top;
 display: inline-block;
 font-size: 16px;
 font-size: 1rem;
 }

 At this point, we can add as many story previews as we like, and they will wrap neatly after filling up four
items in a row. But before we view the results, we’ll polish the details a little further using flexbox.

 Using Flexbox for Equal-Height Columns
 Just as we saw in Chapter 6 , flexbox can help with creating equal-height columns. When creating a
systematic layout, we want to have some specific rule sets that apply only when flexbox is supported.

 To be able to detect flexbox support, we’ll add a small script at the top of the page. We will use
Modernizr for this, which adds class names to the html element for each feature that is supported. On
 https://modernizr.com you can create your own detection script file with only the detection code you
need. For this example, we’ll add detection only for the various flexbox features to keep the file small.

 After creating your detection script, you put it inside a JavaScript file that you load in the hea d element
of your page, before loading any CSS files. The order is important, since the detection needs to happen on
load, before styles are applied.

 <script src="modernizr.js"></script>

 We can now start coding our solution using prefixed classes, and be confident that only browsers with
support will see it. The flexbox class indicates modern flexbox support, and the flexwrap class indicates
support for wrapping flexbox items into multiple rows or columns.

 In the full code examples, you’ll find that we have combined these with the flexboxtweener class,
which indicates support for the version of flexbox shipped in IE10.

 First, we’ll turn the standard rows into flexbox rows:

 .flexbox .row {
 display: flex;
 }

 Already at this point, we have created equal-height columns, a direct effect of the default stretching of
flex items to fill the parent.

http://dx.doi.org/10.1007/978-1-4302-5864-3_6
http://dx.doi.org/10.1007/978-1-4302-5864-3_6
https://modernizr.com/

CHAPTER 7 ■ PAGE LAYOUT AND GRIDS

206

 Since we use a wrapper element around the contents of each column, we need to sprinkle on some
more flexbox magic to get the content to fill the columns evenly. Each column is made a columnar
flexbox container in itself, where the direct children are set to fill up the space evenly as any extra space is
distributed:

 .flexbox .col {
 display: flex;
 flex-direction: column;
 }
 .flexbox .col > * {
 flex: 1;
 }

 The shorthand flex: 1 is a special case of the flex shorthand that sets flex-grow to 1 , flex-shrink to 1 ,
and flex-basis to 0 .

 Finally, we augment the class used for wrapping rows so that they too utilize the equal-height
mechanisms of flexbox:

 .flexwrap .row-wrapping {
 display: flex;
 flex-wrap: wrap;
 }

 Looking at the example layout, displayed in Figure 7-16 , shows us neat rows and columns, filling up the
space perfectly.

CHAPTER 7 ■ PAGE LAYOUT AND GRIDS

207

 Figure 7-16. The rows and columns of our grid now fill up their containers perfectly, adjusting to the tallest
content within each row

 At this point, we have created a small flexible system of rules for creating page layouts. We can achieve
consistency in our rows, columns, and gutters by recombining simple sets of class names. This is essentially
what ready-made grid rules in CSS frameworks like Bootstrap and Foundation do for you, but often with a
heavier reliance on presentational class names.

 Starting out simple like we did in this chapter allows you to create the grid rules specifically needed for
your project, keeping the code small and manageable (the final example file has about 80 lines of generously
spaced code for the whole grid system, including all browser prefixes).

 Flexbox as a General Tool for Page Layout
 In the previous chapter, we looked at flexbox as a power tool for detailed and flexible content layout. In
this chapter, we have sprinkled it on top of a more backward-compatible float-based layout system. This
strategy is very robust, and it is in fact the exact same strategy that The Guardian has employed for their page
layout—if you dig into their page source, you’ll find lots of similarities!

 We saw in Chapter 6 why this “sprinkling flexbox on top” strategy works so well—flexbox was designed
to ignore floats and display properties on flex items. This makes it easy to use flexbox to polish float-based
layouts. The flex items adopt the width, margins, padding, and so forth from the properties already set. But is
flexbox the right tool for the job of creating full-page layout and grid-like structures?

 There is nothing (aside from lacking support in older browsers) stopping you from using flexbox as the
core method for page layout, despite it not being conceived explicitly for that purpose. After all, neither were
floats! Still, there are both upsides and downsides to using flexbox as a high-level layout tool.

http://dx.doi.org/10.1007/978-1-4302-5864-3_6

CHAPTER 7 ■ PAGE LAYOUT AND GRIDS

208

 Pros and Cons
 On the positive side, flexbox is fast—at least in browsers implementing the most modern specification.
Modern flexbox is generally more performant than, for example, floats. The implementations of the oldest
flexbox specification generally performed quite poorly though, so you should apply it carefully for older
browsers.

 Flexbox also makes it very easy to take a part of a page and, with very few lines of code, divide it up into
flexible pieces, using grow and shrink factors. This ability to accommodate content regardless of the number
of items is a clear benefit for creating grid-like layouts.

 On the negative side, since this flexibility requires recalculation as content loads inside the items, it can
lead to a jumpy experience when first loading a page. For example, an image loading in one flexible item can
“push” the other items as the item grows to accommodate the new content.

 The example we worked on earlier relies on the default flex values for rows (where elements do not
automatically grow) combined with explicit widths to minimize the jumpy effect.

 Layout in One or Two Dimensions
 All of the methods we have looked at for layout so far, including flexbox, are variations of lining things up
to create rows and columns. Even if some of them allow wrapping of content into several rows (and thus
stacking into the vertical dimension), they are basically one-dimensional—content flows left-to-right,
right-to-left, or top-to-bottom (see Figure 7-17), but items cannot span rows and columns at the same
time. This means we need to subdivide layouts using wrapper elements.

 Figure 7-17. All the layout methods we have looked at so far (even the ones with wrapping rows) are
one-dimensional in the sense that the content flows in one direction

 In the early days of web layout, one of the few tools to create layout was using actual HTML table
elements. One of the reasons that practice stuck around long after CSS was a viable alternative was that
it actually enabled us to create two-dimensional layouts—items inside the table could have colspan and
 rowspan attributes allowing them to take part in complex layout scenarios, like in Figure 7-18 .

CHAPTER 7 ■ PAGE LAYOUT AND GRIDS

209

 With CSS layouts to date, we have come to accept that any subsection in the layout may need its own
container element, and that layout is something we apply to the individual elements. But the upcoming CSS
Grid Layout module aims to change all that.

 The CSS Grid Layout Module: 2D Layout
 When it comes to the macro level of page layout, none of the techniques we’ve looked at so far has been
a complete solution for controlling order, placement, and sizing in a two-dimensional grid. The CSS Grid
Layout module defines the first set of CSS properties to specifically do this.

 Using the Grid Layout module allows us to remove a lot of the extra elements we’ve added to control
layout, dramatically simplifying our markup. It also shifts the burden of setting column or row dimensions
from the elements themselves up to a single containing element representing a grid on the page.

 WARNING: EXPERIMENTAL PROPERTIES AHEAD!

 It should be noted that the Grid Layout spec is the least supported layout technology in this chapter, and
is still in the experimental stage at the time of writing.

 Google Chrome Canary, Firefox Developer Edition, Safari Technology Preview and the WebKit Nightly
prerelease browser versions all have reasonably comprehensive implementations of Grid Layout.
The Chrome Canary implementation tends to be the most updated—we recommend that you try the
examples out in that version. It does require you to turn on the preference flag “Enable Experimental
Web Platform Features.”

 Internet Explorer was, surprisingly, the first browser to support Grid Layout. It shipped with Internet
Explorer 10, but at that time the spec looked a bit different, and did not support all of the functionality.
To get the basics working there, you need to change the syntax up a bit, and use the -ms- prefix for the
grid properties. Microsoft Edge also supports this older syntax.

 In this chapter, we’ll only look at the standard syntax as it is defined today. If you want to adapt the
syntax for IE10-11 and Microsoft Edge, have a look at the Microsoft Developer Network pages for Grid
Layout (http://msdn.microsoft.com/en-us/library/ie/hh673533(v=vs.85).aspx).

 Figure 7-18. Layout in two dimensions—see if you can spot how many container elements you would need to
achieve this layout with floats or flexbox

http://msdn.microsoft.com/en-us/library/ie/hh673533(v=vs.85).aspx

CHAPTER 7 ■ PAGE LAYOUT AND GRIDS

210

 Understanding the Grid Terminology
 Figure 7-19 shows you a fully fledged grid, as it’s defined in CSS.

Line

Container

Line

Line

Line Line Line Line Line
Track

Track

Column

Row

Cell

Item

Area

 Figure 7-19. A grid container and its component parts

 Here’s what’s going on:

• An element set to display as a grid is called a grid container —that’s the thicker outer
part in the figure.

• The container is then divided up into parts—known as grid cells —by grid lines ,
slicing through the grid container.

• These lines create strips running horizontally and vertically, called grid tracks .
Horizontal tracks are grid rows and vertical tracks are grid columns .

• The combined rectangular surface covered by a set of adjacent cells is known as a
 grid area .

• Direct children of a grid container are called grid items . These can be placed in grid
areas.

 You may note that these terms have little in common with the more traditional grid terminology we
outlined at the start of the chapter. Designers like Mark Boulton have criticized this difference in terminology
(http://markboulton.co.uk/journal/open-letter-to-w3c-css-working-group-re-css-grids), but
the people writing the specification decided that it was better to use names from the concept of tables and
spreadsheets to get the ideas of a grid across to developers. For better or worse, these names are what we are
stuck with.

http://markboulton.co.uk/journal/open-letter-to-w3c-css-working-group-re-css-grids

CHAPTER 7 ■ PAGE LAYOUT AND GRIDS

211

 Defining Rows and Columns
 To create the grid, we need to tell the browser the number and behavior of its rows and columns. To achieve
the 4×2 grid in Figure 7-19 using our trusty old wrapper div as a container, we need to set the display mode
to grid . We also supply measurements for rows and columns , called the grid template :

 .wrapper {
 display: grid;
 grid-template-rows: 300px 300px;
 grid-template-columns: 1fr 1fr 1fr 1fr;
 }

 The preceding code has given us a grid with two rows that are 300 pixels tall each, and four equal-width
columns across them. It also generates the grid lines at the edges of each column and row—we’ll need to use
those later.

 The unit we use for the column widths is new: the fr unit stands for fraction (of available space). It’s
pretty much the same flexible unit as we’ve seen in the flexbox flex-grow -factors, but here it’s gotten its very
own unit notation, presumably to keep from confusing it with other unitless numbers. The available space
is the space that is left after any grid tracks are sized with either an explicit length or according to their own
content.

 Each fr unit here thus represents a fourth of the available space in the grid; had we added a fifth
column of 1fr , each unit would represent one-fifth of the available space.

 We could also have mixed and matched units in the rows and columns: you can pretty much choose any
type of length measurement. For example, the columns could be declared as 200px 20% 1fr 200px , giving
us two fixed-width 200-pixel columns at the edges, with the second column from the left being 20% of the
overall space, and the third one taking up any space that is left after that—the fr unit deals with remaining
space after other lengths have been calculated, just like in flexbox.

 Making Grids for Our Page Subsections
 Looking at the example page section we have been working with so far, we can now slice each subsection
into a grid. The simplest possible grid for the first section would be three rows and five columns. The
columns need to be one-fifth of the total width, and the rows can have an automatic height, depending fully
on the content (see Figure 7-20).

CHAPTER 7 ■ PAGE LAYOUT AND GRIDS

212

 The markup needed for the content can now be radically simplified. We are still going to use a wrapper
element for the grid container to separate it from any subsection styling, but inside that all the stories are just
direct child elements:

 <section class="subcategory">
 <div class="grid-a">
 <header class="subcategory-header">
 <h2>Lorem ipsum</h2>
 </header>
 <article class="story story-featured">
 <!-- The slightly bigger article goes here -->
 </article>
 <article class="story">[...]</article>
 <article class="story">[...]</article>
 <!-- ...and so on, for all our articles. -->
 </div>
 </section>

 Next, we’ll define this particular grid setup in CSS. As we saw from “slicing” the grid in Figure 7-20 , we’ll
need three rows of automatic height and five columns each taking up an equal fraction of the space:

 .grid-a {
 display: grid;
 grid-template-rows: auto auto auto;
 grid-template-columns: repeat(5, 1fr);
 margin: 0 -.6875em;
 }

 Figure 7-20. Creating a grid container from the first page subsection requires us to slice it into five columns
and three rows. Numbers indicate the resulting grid lines

CHAPTER 7 ■ PAGE LAYOUT AND GRIDS

213

 You can also see a new functional notation that comes with grids: the ability to repeat a track
declaration for columns or rows a specified number of times instead of typing out every track individually.

 Since grid tracks are not represented by any specific element in the Document Object Model (DOM), we
can’t size them with min-width , max-width , etc. To achieve the same functionality in grid track declarations,
the minmax() functional notation has been introduced. For example, we could set the last two rows to be at
least 4em tall, but other than that take up an equal amount of the available space:

 .grid-a {
 display: grid;
 grid-template-rows: auto minmax(4em, 1fr) minmax(4em, 1fr) ;
 grid-template-columns: repeat(5, 1fr);
 margin: 0 -.6875em;
 }

 If you want to compress the grid track definition into a single shorthand, you can use the grid-template
property, where you can supply row definitions and column definitions, separated by a slash:

 .grid-a {
 display: grid;
 grid-template: auto minmax(4em, 1fr) minmax(4em, 1fr) / repeat(5, 1fr);
 margin: 0 -.6875em;
 }

 Placing Items on the Grid
 To place items on the grid, we need to reference the grid lines where they start and end. For example, the
subsection header takes up the entire leftmost column. The most verbose way of putting it there is setting
properties for the starting and ending lines in both dimensions (see Figure 7-21):

 .subsection-header {
 grid-row-start: 1;
 grid-column-start: 1;
 grid-row-end: 4;
 grid-column-end: 2;
 }

Lorem ipsum

grid-column-start: 1;
grid-row-end: 4;
grid-column-end: 2;

1

1 2

2

3

4

grid-row-start: 1;

 Figure 7-21. Placing the header on the grid using numbered grid lines

CHAPTER 7 ■ PAGE LAYOUT AND GRIDS

214

 We can simplify that somewhat by setting the starting and ending lines in a single declaration, using the
 grid-row and grid-column properties respectively. Starting and ending lines in each property are separated
with a slash character.

 .subsection-header {
 grid-row: 1/4;
 grid-column: 1/2;
 }

 If we were unsure how many rows there would be in the grid but still wanted the header to span all of them,
we would want to specify that it ends on the last row. Grid Layout allows you to count the lines backward
using a negative index, so the ending line of the last declared track is always -1 . The default span is always
one cell, so we could also omit the last part of the grid-column value:

 .subsection-header {
 grid-row: 1/-1;
 grid-column: 1; /* equivalent to grid-column: 1/2 */
 }

 Finally, we can compact the values even further into the grid-area property: it takes up to four values
separated by slashes. They specify, in order, grid-row-start , grid-column-start , grid-row-end , and
 grid-column-end .

 .subsection-header {
 grid-area: 1/1/-1;
 }

 In the preceding code snippet, we have left out the fourth argument, indicating the end placement in
the column direction. You can do this with both of the end-direction arguments, as the grid positioning will
then default to the item spanning one grid track in either direction.

 Grid Item Alignment
 When you place items on the grid, they automatically become as wide and as tall as the grid area you place
them in. The automatically expanding height is very similar to how flex row items work in flexbox. This is no
coincidence.

 Both flexbox and Grid Layout specify the behavior of child items in terms of the CSS Box Alignment
specification—a standard that takes care of alignment and justification in several CSS contexts.

 Just like in flexbox rows, vertical alignment can be controlled with align-items and align-self . The
alignment defaults to stretch , which causes the items to expand vertically to fill the area. The same values
as in flexbox (but without the flex- prefix) are used here, for example start , end , or center —Figure 7-22
explains the differences.

CHAPTER 7 ■ PAGE LAYOUT AND GRIDS

215

align-self: start;
justify-self: end;

align-self: end;
justify-self: start;

align-self: start;
justify-self: center; align-self: stretch;

justify-self: end;

align-self: center;
justify-self: end;

align-self: stretch;
justify-self: start;

 Figure 7-22. Some possible values for alignment of grid items

 Grid items behave like block-level elements, and automatically fill the width of the grid area they are
placed in, unless you give them another measurement. Percentages for width are based on the grid area the
item sits in, not the grid container.

 If your grid items don’t fill the whole width of the area where they’re placed, you can also justify them
left, right, or center inside that area with the justify-items and justify-self properties.

 Just like in flexbox, you use align-self on individual items, but in the Grid Layout context, you can also
set justify-self . On the grid container, align-items or justify-items sets a default alignment for the
items.

 Aligning the Grid Tracks
 In the same way you can align items inside grid areas when they don’t take up the whole area, you can align
the grid tracks themselves inside the container. As long as the track sizes don’t add up to cover the whole
size of the grid container, you can use align-content (vertically) and justify-content (horizontally) to
shift the tracks.

 For example, the columns in the following grid declaration don’t add up to the whole size of the container:

 .grid {
 width: 1000px;
 grid-template-columns: repeat(8, 100px); /* 800px in total */
 }

 You can now choose where the remaining space inside the container ends up. By default, justify-content
computes to start . Figure 7-23 shows the possible values and their effects.

CHAPTER 7 ■ PAGE LAYOUT AND GRIDS

216

 In a similar way, you can align tracks vertically (if the container has a fixed height) using the same
keywords with the align-content property.

 Gutters in Grid Layout
 There are several ways to create gutters inside your grids. You can avoid declaring them with the grid
properties altogether by using margins on the items themselves. You can also use grid track alignment
(see for example the space-between example earlier), or create empty grid tracks that act like gutters.

 If you need a fixed-size gutter that stays the same between all tracks, the simplest way is to use the
 grid-column-gap and grid-row-gap properties, as follows. This creates fixed-size gutters that act as if the
grid lines themselves had a width—comparable to column-gap in multicolumn layout or border-spacing
in tables.

 .grid {
 display: grid;
 grid-template-columns: repeat(5, 1fr);
 grid-column-gap: 1.5em;
 grid-row-gap: 1.5em;
 }

 Automatic Grid Placement
 In the news site subsection we’re working with, the leftmost column is reserved for the header, but the rest
of the space is simply packed with the .story elements. It wouldn’t be too hard to position them using, for
example, :nth-of-type() selectors and explicit grid positions, but that would be rather tedious:

 .story-featured {
 grid-area: 1/2/2/4;
 }
 .story:nth-of-type(2) {
 grid-area: 1/4/2/5;
 }
 /* ...and so on */

justify-content: start justify-content: space-between

justify-content: space-around

justify-content: space-evenly

justify-content: end

justify-content: center

 Figure 7-23. Shifting grid tracks with justify-content

CHAPTER 7 ■ PAGE LAYOUT AND GRIDS

217

Explicit:
grid-row: 1/-1;
(grid-column defaults to 1)

Auto, with:
grid-column: span 2;

Auto

Auto Auto Auto Auto

Auto Auto Auto Auto

Auto

 Figure 7-24. Only the subsection header has any explicit placement —and even that makes use of the default
placement of column 1. The rest of the items are placed column by column, row by row

 Luckily for us, the Grid Layout spec has something called automatic placement . It is part of the property
defaults for Grid Layout, and without changing anything items are laid out, by source order, in the first
available cell in the first row where there is an empty column. As rows fill up, the grid continues on the next
row and any empty cells there.

 This means we only need to specify the following in order for the Grid Layout algorithm to do its job:

• The grid definition

• The header area

• That the featured article spans two columns

 Everything else is just packed in order. The full code for replicating the float-based grid we created
earlier (but with the much cleaner markup) looks like this:

 .grid-a {
 display: grid;
 grid-template-rows: auto auto auto;
 grid-template-columns: repeat(5, 1fr);
 }
 .subcategory-header {
 grid-row: 1/-1;
 }
 .story-featured {
 grid-column: span 2;
 }

 That’s five declarations in total for controlling the actual layout! Admittedly, the full code example has
more rules for padding and gutters created with margins, but that’s just the same as previous float-based
examples. Figure 7-24 shows how the .story items fill up the grid.

CHAPTER 7 ■ PAGE LAYOUT AND GRIDS

218

 Order of Automatic Placement
 The automatic placement defaults suit us well in this example. There are several things that allow us to
control the placement further, without being explicit about where the items end up.

 In the example we have played with so far, the source order lines up neatly with the order that the grid
places the items in. We can also make use of the order property , as with flexbox, to control the order in
which items are processed. Items default to an order value of 0 , and any integer value, including a negative
one, is permitted.

 .story:nth-of-type(2),
 .story:nth-of-type(3) {
 order: -2;
 }
 .story-featured {
 order: -1;
 }

 This changes the layout so that the featured story becomes the third item to be placed on the grid: the
second and third stories come first (represented by the second and third article elements with the class
of .story inside the grid wrapper). After that, all of the other stories that default to order: 0 are placed, as
shown in Figure 7-25 .

 Figure 7-25. Changing the order property determines the order in which the automatic layout happens

 ■ Note There’s nothing stopping you from placing several items overlapping the same grid area. The order
property also affects the order in which they are painted in that case. You can further control the stacking of grid
items using z-index , without setting any specific positioning properties, just like with flexbox. Each grid item
also forms its own stacking context.

CHAPTER 7 ■ PAGE LAYOUT AND GRIDS

219

grid-auto-flow: row; grid-auto-flow: row dense;

 Figure 7-26. When items span several cells, the default sparse algorithm can cause gaps. When using the
dense algorithm, the items are more efficiently packed

 Switching the Automatic Placement Algorithm
 By default, automatic placement happens row by row. You can set it to place column by column instead, and
this is controlled by the grid-auto-flow property:

 .my-row-grid {
 grid-auto-flow: row; /* default value */
 }
 .my-columnar-grid {
 grid-auto-flow: column;
 }

 The placement algorithm is very simple by default: it makes one pass and tries to find the next sequence
of grid cells where the item to be placed fits. When items span several cells, this can lead to holes in the grid
(see Figure 7-26).

 If we change the algorithm to use something called the dense mode (sparse is the default), the
automatic placement algorithm goes back to the start for each pass, trying to find the first empty slot. This
leads to a more densely packed grid.

 .grid {
 grid-auto-flow: row dense ;
 }

 Grid Template Areas
 The “named template areas ” syntax in CSS Grid Layout is perhaps one of the weirdest parts of CSS. It allows
you to specify in a very visual way how things are going to be laid out. As it is perhaps more suitable for simple
grids, let’s look at the second subsection from the example we have been working with (see Figure 7-27). We’ll
say that we want to fit two stories and a couple of ads into this layout.

CHAPTER 7 ■ PAGE LAYOUT AND GRIDS

220

 In the markup for this section, we want to list the contents in order of priority—the header comes first,
then the articles, and finally the ads:

 <section class="subcategory">
 <div class="grid-b">
 <header class="subcategory-header"></header>
 <article class="story"></article>
 <article class="story"></article>
 <div class="ad ad1"></div>
 <div class="ad ad2"></div>
 </div>
 </section>

 We can then declare the grid layout using the grid-template-areas property:

 .grid-b {
 display: grid;
 grid-template-columns: 20% 1fr 1fr 1fr;
 grid-template-areas: "hd st1 . st2"
 "hd st1 . st2";
 }

 The grid-template-areas property takes a space-separated list of quoted strings that themselves are
made up of space-separated custom identifiers for each row of the grid. You are free to choose names for
these identifiers as long as they don’t clash with existing CSS keywords.

 Cells with the same name that are next to each other across columns or rows make up named grid areas .
These areas have to be rectangular. The areas marked with dots are anonymous cells, with no name.

 We have arranged the rows visually so they line up top-to-bottom, which is optional but helps—notice
how they form a visual representation of our layout? It’s like ASCII art describing the grid (Figure 7-28 shows
the resulting grid areas).

 Figure 7-27. The second subsection, with a header to the left, two story blocks, and a couple of ads in
between them

CHAPTER 7 ■ PAGE LAYOUT AND GRIDS

221

 The template for the columns gives the first column 20%, and the rest each take up one-third of the
remaining 80% using fr units.

 In order to place items on this grid, we can now use the grid-area property again, but this time with the
custom area names that we have defined:

 .grid-b .subcategory-header {
 grid-area: hd;
 }
 .grid-b .story:nth-child(2) {
 grid-area: st1;
 }
 .grid-b .story:nth-child(3) {
 grid-area: st2;
 }

 The reason we don’t have any named areas or specific placement of the ads is that we don’t have to,
in this example. They simply default to the automatic placement algorithm and end up the two remaining
empty cells. All done!

 Now when the boss inevitably comes and asks you to slot in five more ads before and underneath the
stories, you only have to add them last in the markup and tweak the grid-template-areas (see Figure 7-29):

 .grid-b {
 display: grid;
 grid-auto-columns: 1fr;
 grid-template-areas: "hd"
 "hd st1 ... st2"
 "hd";
 }

hd st2st1

.

.

 Figure 7-28. The resulting named grid areas based on our template

CHAPTER 7 ■ PAGE LAYOUT AND GRIDS

222

 This example also shows a variation on the dot pattern for denoting unnamed cells. The spec allows for
multiple adjoining dots to represent a single anonymous cell in order to allow you to line up your template
strings more neatly.

 Closing Words on Grid Layout
 We have looked at the most important features of Grid Layout, but there is more to learn. The Grid Layout
specification is large and complex, as it allows you to choose a number of ways to express your grid structure.

 It may be a while before Grid Layout is the default way to do layout—browsers that don’t understand it
are bound to be around for a few more years, at least. Since it affects a very significant part of our pages, it is
hard to layer on progressively, without falling back to just a simple column of page elements. There is at least
one JavaScript-based polyfill to be found, created by Francois Remy (https://github.com/FremyCompany/
css-grid-polyfill).

 As with any new technique, it remains to be seen how we designers and developers come up with creative
ways of working Grid Layout into the sites we build. But as it will be present in most browsers very soon (if not
already as you read this book!), it will be a good idea to start using Grid Layout as soon as possible.

 Summary
 This chapter has been all about a systematic approach to designing layout systems for web pages, thinking
in terms of rows, columns, and gutters. We started out building a backward- and forward-compatible grid
system using floats, with inline blocks and flexbox properties jumping in to take the design even further.

 For the entire history of CSS, we have needed to have nested element structures in place in order
to create structures to hold our layouts. This applies even for flexbox layouts, which are otherwise a very
powerful layout tool. We devoted the second half of this chapter to the CSS Grid Layout specification, where
a lot of these concerns are addressed. Layout using grid properties shifts the grid creation from individual
elements to the grid container, and we only need to place and align the items into the correct position.

 Armed with this understanding, we are now ready to master yet another layer of thinking in web design:
adapting your page to the multitude of different devices and form factors out there. So buckle up and get
ready for the next chapter: Responsive Web Design & CSS.

 Figure 7-29. Further ads slotted into the grid layout

https://github.com/FremyCompany/css-grid-polyfill
https://github.com/FremyCompany/css-grid-polyfill

223© Andy Budd and Emil Björklund 2016
A. Budd and E. Björklund, CSS Mastery, DOI 10.1007/978-1-4302-5864-3_8

 CHAPTER 8

 Responsive Web Design & CSS

 When the iPhone made its debut in 2007, it marked a significant jump in the experience of browsing on a
mobile device. People scrambled to make separate sites optimized for mobile and touchscreens, leading to
the artificial notion of the “mobile web” and the “desktop web.”

 Today, you can find browsers in phones ranging from the tiny to the almost comically oversized; small
tablets, large tablets, small and large computers, TVs, watches, and all kinds of game consoles.

 Creating a separate site for each of these form factors and input types is impossible, and the lines will
only get more blurred. The notion of building one site that adapts to the device it is viewed on—a responsive
site—has become the norm.

 Responsive web design is simple in principle, but gets complex when you delve into the details. In this
chapter, we’ll look at the techniques in CSS, and to some extent HTML, that give you a solid understanding
of responsive web design from first principles.

 We’ll cover

• The history and reasoning behind responsive web design

• How viewports, media types, and media queries work

• Basic “mobile first” strategy when creating responsive sites

• When and where to create breakpoints

• Responsive examples using modern techniques like flexbox, grid layout, and
multi-column layout

• Responsive typography and responsive media content

 A Responsive Example
 The most tangible part of responsive web design , from the point of view of CSS, is the use of fluid layouts
that adapt based on the size of the viewport. We’ll start this chapter by rewriting the first part of the news site
example from Chapter 7 as a responsive layout.

 Starting Simple
 For narrower viewports , like those on mobile devices, a simpler layout will usually suffice. A single column of
items, ordered by priority of the content (as they should be in the HTML source), is a common approach, as
shown in Figure 8-1 .

http://dx.doi.org/10.1007/978-1-4302-5864-3_7

CHAPTER 8 ■ RESPONSIVE WEB DESIGN & CSS

224

 In terms of the layout code, this means removing styles from the example we used in Chapter 7 rather
than adding them. We can remove almost all mentions of specific widths. The only thing we set as basic
styling is the padding and margin of rows and columns. We will also set the columns to be floated and 100%
wide, keeping the rules that make sure rows contain any floated children.

 .row {
 padding: 0;
 margin: 0 -.6875em;
 }
 .row:after {
 content: '';
 display: block;
 clear: both;
 }
 .col {
 box-sizing: border-box;
 padding: 0 .6875em 1.375em;
 float: left;
 width: 100%;
 }

 Introducing Our First Media Query
 If we view the design at a slightly wider size, we could potentially fit more onto the screen at the same time.
We could, for example, let the second and third stories take up half the container width, as shown
in Figure 8-2 .

 Figure 8-1. A single-column layout for narrower screens

http://dx.doi.org/10.1007/978-1-4302-5864-3_7

CHAPTER 8 ■ RESPONSIVE WEB DESIGN & CSS

225

 Figure 8-2. Two stories fit side by side under the featured story on slightly wider screens

 By resizing the window and trying to find where it would make sense to show two stories side by side,
we end up with a minimum width of about 560 pixels, or 35 ems. This is where we need to add something
called a media query , which triggers the rules inside it only if the minimum width requirement is fulfilled:

 @media only screen and (min-width: 35em) {
 .row-quartet > * {
 width: 50%;
 }
 .subcategory-featured {
 width: 100%;
 }
 }

 If you’ve ever done any programming in JavaScript, PHP, Python, Java, etc., you’ve probably seen the if
statement—“if this condition is true, do this.” Media queries using the @media rule, much like its cousin the
 @supports rule, are like if statements for CSS, specifically geared toward capabilities of the environment in
which the page is shown. In this particular case, the browser viewport needs to be at least 35 ems wide. The
width at which we introduce a media query is commonly called a breakpoint .

 Note that the measurement where we place the breakpoint has nothing to do with the measurement
of any particular class of device—mobile or otherwise. It is simply a point where we could use the space in
a better, more efficient way. We should avoid setting breakpoints based on specific device widths, as new

CHAPTER 8 ■ RESPONSIVE WEB DESIGN & CSS

226

devices are created all the time. In the end, we will not be able to tear down the artificial divide of “mobile
web” and “desktop web” by creating further division.

 We will take another look into structuring media queries and breakpoints later in this chapter. For now, the
important thing to remember is that CSS inside a media query is only applied when a certain condition is met.

 Finding Further Breakpoints
 Continuing to increase the size of the browser window, we find more places where it would make sense
to use the space more efficiently. At about 800 pixels (50 ems), we could place four stories side by side,
and let the featured story take up half the width (see Figure 8-3). This is starting to resemble the initial
“unresponsive” example, but the subcategory header still stays on top of the stories.

 @media only screen and (min-width: 50em) {
 .row-quartet > * {
 width: 25%;
 }
 .subcategory-featured {
 width: 50%;
 }
 }

 Figure 8-3. The content area now houses four columns, while the featured article takes up twice that size. The
header stays on top though.

CHAPTER 8 ■ RESPONSIVE WEB DESIGN & CSS

227

 Finally, we find that we can fit the header in to the side of the stories at around 70 ems, or 1120 pixels
(see Figure 8-4).

 @media only screen and (min-width: 70em) {
 .subcategory-header {
 width: 20%;
 }
 .subcategory-content {
 width: 80%;
 }
 }

 Figure 8-4. As the window gets wider, we can add another media query to adjust the header to work as a
sidebar

 At this point, we have re-created a responsive version of this example, covering four different layouts.
We’ve also made some further tiny stylistic tweaks that aren’t covered here. The full example code
(which you can find with the files accompanying the book) includes these tweaks, as well as the viewport
declaration that makes responsive layouts work on mobile devices. (We’ll dive into the details of the
viewport later in the chapter.)

 The relatively short snippets of code in the previous example encapsulate a number of useful
techniques and principles. We started with a bare-bones single-column layout, and used media queries to
create scopes where the design changes—this is the basis for a robust approach to responsive web design.
Before we go any further in exploring responsive coding techniques, we’ll take a look at where responsive
web design came from.

CHAPTER 8 ■ RESPONSIVE WEB DESIGN & CSS

228

 The Roots of Responsiveness
 Designer and developer Ethan Marcotte coined the term “ responsive web design ” in an article of the same
name, published on A List Apart (http://alistapart.com/article/responsive-web-design) in 2010
(see Figure 8-5). In that article, he used the term to describe designs where the combination of fluid grids,
flexible embedded objects (like images or video), and media queries adapt the design to work regardless of
screen size. The article later turned into a book of the same name, and the ball was rolling.

 Figure 8-5. The article that started it all. Fun fact: the illustration itself is responsive—go find the article and
resize the browser window!

 While responsive web design as a phenomenon is still relatively new, the roots of adapting a single
design to work on multiple types of devices are older than the name.

 On the technical level, the components of responsive web design already existed before the term was
coined. Media queries (and their predecessor, media types) would not have been standardized if there weren’t
some people anticipating the need for layouts that adapted to the browser. In fact, one of the major inspirations
for Ethan’s article was a piece by John Allsopp from 2000 called “A Dao of Web Design” (http://alistapart.
com/article/dao). In that article, John argues that good web design is more about adapting to the user and less
about enforcing pixel-perfect control. It took us a while to get there, but things are changing.

 By 2010, media queries were gaining wider support. It was also a point in time when browsing on mobile
devices was becoming a common thing. By bringing the techniques together and coining the term responsive
web design, Ethan put a name to a direction that the Web had wanted to move in for quite a while.

 Responsive web design is fast becoming the de facto way of designing web pages, and may soon just
be seen as “good web design.” Until then, responsive web design is a useful term to describe the specific
methods of making a design work on multiple devices and multiple screen sizes.

http://alistapart.com/article/responsive-web-design
http://alistapart.com/article/dao
http://alistapart.com/article/dao

CHAPTER 8 ■ RESPONSIVE WEB DESIGN & CSS

229

 Responsive beyond CSS
 Today, responsive techniques are used on sites big and small. Ethan’s three main pillars of responsiveness
still form the basis of responsive web design, but they are complemented with even more tools for
adaptation. One of the most common is to use JavaScript to add interactivity or change the presentation of
our pages on different devices.

 For example, you have probably seen the now ubiquitous “hamburger menu.” A common pattern
is to have a global navigation menu expanded at larger screen sizes, but hidden underneath a button on
smaller viewports (see Figure 8-6). Usually, there is some amount of JavaScript involved to change the menu
depending on the viewport size. It’s important to point out that the initial content and markup are still the
same, independent of what device is used to view the site. This “core experience” can then be transformed in
any way you like using scripting.

 Figure 8-6. Shopify is one of many sites using a “hamburger menu” on smaller viewports

 This pattern should be a familiar one: loading a core set of resources first and only loading further
resources as the capabilities of the device are determined. Responsive web design is indeed another
example of progressive enhancement.

 We will try to focus on the parts of responsive web design that we can affect with CSS in this chapter,
with a brief excursion into responsive images. If you want to start looking at more advanced patterns for
responsive sites, Brad Frost has a large collection of patterns and code examples called “This Is Responsive”
(https://bradfrost.github.io/this-is-responsive/).

 The first step to mastering responsive CSS is to understand the canvas we have to work with—the
viewport.

https://bradfrost.github.io/this-is-responsive/

CHAPTER 8 ■ RESPONSIVE WEB DESIGN & CSS

230

 How Browser Viewports Work
 The viewport is the rectangle in which a web page is shown. It is the area that affects our layout: how much
space we have in terms of CSS. To get the viewport to play nicely with our responsive designs, we need to
understand how it works and how to manipulate it. On desktop browsers, the concept of a viewport is mostly
straightforward. We have a number of CSS pixels to play with and we use the space inside the viewport as
best we can.

 There is an important distinction to be made here, which is that CSS pixels are not the same things as
physical pixels. The pixels we talk about when measuring things in CSS has a very fluid relationship to the
physical pixels of the screen, decided by factors like the hardware, the operating system, the browser, and
whether the user has zoomed the page in or out.

 As a thought experiment, we can imagine two div elements placed directly in the body element of
a page. If we set the first div to have width: 100% , and the second to have a width set in px , at which px
measurement are they the same width? That measurement is the width of the current viewport in CSS pixels,
regardless of how many physical pixels are used to display it.

 As a concrete example, the iPhone 5 has a physical screen width of 640 pixels, but as far as CSS is
concerned, the viewport width is 320 pixels. There is a scaling factor in play here—each CSS pixel on this
particular device is shown using 2×2 physical pixels (see Figure 8-7).

1 CSS pixel

2×2 device pixels

 Figure 8-7. The difference between CSS pixels and device pixels on a high-resolution device

 This ratio between “virtual” CSS pixels and the actual hardware pixels currently ranges from 1 (where
each CSS pixel = 1 physical pixel) up to around 4 (where each CSS pixel = 4×4 hardware pixels), depending
on the device.

 The good news is that since we only need to keep track of the CSS pixels for the sake of responsive
layouts, the pixel ratio is largely irrelevant. The bad news is that we need to dig a little deeper into the real-
world mechanics of viewports to understand how to bend them to our will.

 Nuances of the Viewport Definition
 Touchscreen smartphones and other mobile devices stirred things up a bit. They made much heavier
use of zooming to be able to handle web pages not suited for viewing on such a small screen. This
caused device makers to invent new concepts affecting the viewport. Mobile platform strategist Peter-
Paul Koch (http://quirksmode.org) has published extensive research into how these different levels of
viewports work, and has also tried to give them helpful names.

http://quirksmode.org/

CHAPTER 8 ■ RESPONSIVE WEB DESIGN & CSS

231

 Default and Ideal Viewports
 As smartphone browsers appeared, there weren’t many sites optimized for screens of that size. As a
consequence, browsers on most mobiles (as well as tablets) are hard-wired to show a desktop-sized viewport
by default, allowing non-optimized sites to fit. Usually, they emulate a viewport width of somewhere around
1000 CSS pixels, effectively zooming out the page. We call this the default viewport . This is why we have to
jump through some hoops when we want responsive designs to display correctly.

 As the default viewport is an emulated viewport size, it follows logically that there is a viewport
definition closer to the dimensions of the device itself. This is what we call the ideal viewport . The ideal
viewport varies depending on device, operating system, and browser, but usually ends up being around 300
to 500 CSS pixels in width for phones, and 800 to 1400 CSS pixels for tablets. In the iPhone 5 example from
earlier, this is where the 320-pixel width comes from.

 In responsive design, this is the viewport we design for. Figure 8-8 shows a comparison between
loading the mobile-optimized http://mobile.nytimes.com , which uses the ideal viewport, and loading the
“desktop version” of the same site, showing the zoomed-out desktop layout using the default viewport.

 Figure 8-8. The mobile site for the New York Times website uses the ideal viewport for layout (left). If you
switch to the “Desktop” site, you get the zoomed-out default viewport look (right), emulating a 980-pixel width.

http://mobile.nytimes.com

CHAPTER 8 ■ RESPONSIVE WEB DESIGN & CSS

232

 Visual and Layout Viewports
 Having set the scene by differentiating between the default viewport and the ideal viewport on phones and
tablets, we get to a common, more intuitive definition for both with regard to how viewports actually work.
We call the basic rectangle inside of which a web page is shown the visual viewport . This means the browser
window, minus any buttons, toolbars, scrollbars, etc. (known as “browser chrome”) that surround the actual
web content.

 As we zoom in on a page, some parts of the layout end up outside of the visual viewport, as shown
in Figure 8-9 . The rectangle we are looking at now is still the visual viewport, but we now refer to the
hypothetical rectangle constraining the layout of the whole page as the layout viewport . This split between
visual viewport and layout viewport works conceptually in the same way on desktop browsers as on phones
and tablets.

 Figure 8-9. The visual viewport and the layout viewport on a zoomed-in site viewed on a phone

 As you can see, there is more than meets the eye when it comes to the viewport. The bottom line is that
in responsive web design, we aim to design our pages to adapt to the ideal viewport of each device. Desktop
browsers don’t need any special treatment since the ideal viewport is equal to the default viewport there. But
on phones and tablets, we need to opt out of the fake measurement of the default viewport and make it equal
to the ideal viewport. This is done with a small piece of HTML known as the meta viewport tag.

 Configuring the Viewport
 We can make devices that have a different default viewport use the ideal viewport by adding a small tag
inside the head element of our pages. It looks like this:

 <meta name="viewport" content="width=device-width, initial-scale=1">

 This tells the browser that we would like to use the ideal measurements of the device (the device-
width) as the basis for the viewport width. There’s also another preference set here: the initial-scale=1
bit. That part sets the zoom level to match the ideal viewport, which also helps to prevent some odd scaling
behavior in iOS. Most devices will assume device-width when a zoom level is set, but both are needed for
full compatibility across devices and operating systems.

 Setting initial-scale to a value higher than 1 means you are zooming the layout further, and by doing
so you’re decreasing the size of the layout viewport, since fewer pixels fit. Conversely, setting the value lower
zooms out and sets the layout viewport to be larger in terms of CSS pixels.

CHAPTER 8 ■ RESPONSIVE WEB DESIGN & CSS

233

 Other Values and Combining with Initial-Scale
 You can also set width inside the viewport to a pixel measurement instead of the device-width keyword,
effectively locking down the layout viewport to a value of your choice. If you combine it with an initial-
scale value , mobile browsers across the board will pick the larger of the two.

 DON’T DISABLE ZOOMING!

 You can lock zooming to certain levels by setting maximum-scale and minimum-scale properties
(to a numeric value) inside the meta viewport tag. You can also disable zoom completely by setting
 user-scalable=no . It’s not uncommon to see meta viewport tags like this one:

 <meta name="viewport" content="initial-scale=1.0, maximum-scale=1.0, minimum-scale=1.0,
user-scalable=no">

 This keeps your users from zooming pages on mobile devices, which means that your pages are less
accessible.

 Even if you take care in designing pages where text is legible and actionable parts of the page (like links
and buttons) are sufficiently sized, that may not be the opinion of users with lowered vision or motor
difficulties.

 Locking down the zoom factor has been preferred by some developers to make web applications
behave more like their native app counterparts. Doing so also resolved some bugs and quirky behavior
related to zooming and positioning on older platforms, but those bugs are getting fixed as the mobile
platforms mature.

 We think that locking the zoom factor sounds like throwing out the baby with the bathwater—universal
access is, after all, one of the big benefits of building for the Web.

 Device Adaptation and CSS @viewport
 Declaring the viewport properties in a <meta> tag is the best approach for now, but it is also a nonstandard
mechanism, as you could probably tell from the previous section. Apple introduced it as a proprietary switch
in the Safari browser that came with the first iPhone, and others followed suit.

 Since this is part of how pages are rendered, it makes sense that the viewport properties should be part
of CSS. There is a proposed standard for this, called CSS Device Adaptation . It recommends that instead of
the meta viewport tag, we should have something like this in the head of our pages:

 <style>
 @viewport {
 width: auto;
 }
 </style>

 Placing the viewport declaration inside of a style element in the HTML instead of in the actual CSS file
is a small but important detail. The browser should not have to wait for the CSS file to be downloaded before
knowing about the viewport size. Keeping that information as part of the HTML file prevents the browser
from doing extra work once any external CSS files arrive.

CHAPTER 8 ■ RESPONSIVE WEB DESIGN & CSS

234

 So far the @viewport declaration has not been widely implemented. At the time of writing, it is only
partially supported in Internet Explorer 10+ on Windows and Windows Phone 8. Blink-based browsers like
Chrome and Opera implement it behind a hidden setting on some platforms. It is perhaps the most likely
candidate for controlling the viewport in the future, but not hugely important as this book is written.

 There are a couple of small caveats to this technique, as expected with an experimental technology:
developer Tim Kadlec has a good article on the pitfalls (http://timkadlec.com/2013/01/windows-phone-
8-and-device-width/).

 Media Types and Media Queries
 Now that we have a thorough understanding of viewports as the spaces in which we constrain our layouts, it
is time to move into the “how” of responsive design: adapting your designs with media queries. We started
the chapter with a quick example, but this time we’re diving deeper, starting with the predecessors of media
queries: media types.

 Media Types
 The ability to separate styles based on the capabilities of the device started with media types . These were
defined in HTML 4.01 and CSS 2.1, and were created to let you target certain types of environments: screen
styles, styles for print, styles for TVs, etc.

 You could target a media type by adding a media attribute to a link element, like so:

 <link rel="stylesheet" href="main.css" media="screen, print" >

 The preceding snippet means that this style sheet is meant for both screens (any type of screen) and
when the page is printed. If you didn’t care about what type of media it was used for, you could put all as the
value, or just omit the media attribute. Comma-separated lists of valid types means that any one of them can
match, and if none matches, the stylesheet is not applied.

 You could also put the media type selection as part of the CSS file. The most common way is to use it
with the @media syntax, like this:

 @media print {
 /* selectors and rule sets for print media go in here */
 .smallprint {
 font-size: 11pt;
 }
 }

 There are several more media types to choose from: among them are handheld and tv . Those sound
like they should be useful for responsive design, but sadly they’re not. For various reasons, browser makers
have shied away from explicitly transmitting what type of device they belong to, so the only useful types are
pretty much screen , print , and all .

 Media Queries
 Since we want to target not only the type of device but also the capabilities of that device, the CSS 3 Media
Queries specification was created. It defined extensions to the base of media types. Media queries are written
as a combination of the media type and a media condition consisting of a media feature inside parentheses.
There are also a few other new keywords in the media selection syntax, offering some additional logic.

http://timkadlec.com/2013/01/windows-phone-8-and-device-width/
http://timkadlec.com/2013/01/windows-phone-8-and-device-width/

CHAPTER 8 ■ RESPONSIVE WEB DESIGN & CSS

235

 A media query could look like this on a link element:

 <link rel="stylesheet" href="main.css" media="screen and (min-width: 600px)" >

 This declares that the main.css file should be used for any screen media matching the media condition
where the viewport is at least 600 CSS pixels wide.

 ■ Note A lot of browsers still download the CSS file, even if the media query does not currently match. This
means that you should be careful not to overdo the use of link elements with media queries—you might be
unnecessarily creating extra requests for your users, which is a serious performance issue.

 The same statement would look like this combined with the @media rule inside of your CSS file:

 @media screen and (min-width: 600px) {
 /* rules go here */
 }

 The and keyword acts like glue between the media types and any conditions we are testing for, so our
query can have several media conditions:

 @media screen and (min-width: 600px) and (max-width: 1000px) {}

 Multiple media queries can be chained together with a comma character, which acts as an “or.” The
rules inside the block will be applied if any of the media queries is true. If all of the media queries are false, it
will be skipped.

 You can omit the media type completely and still use the media condition part of the statement:

 @media (min-width: 30em) {/*...*/}
 /* ...is the same as... */
 @media all and (min-width: 30em) {/*...*/}

 You can also negate media queries with the not keyword. The following means the rules inside are valid
for any medium but screens:

 @media not screen {
 /* non-screen styles go here. */
 }

 We also have the only keyword, which was introduced as a way to keep older browsers from
misunderstanding media queries.

 When a browser that doesn’t support media queries sees screen and (min-width: ... , it’s supposed
to discard the whole thing as one badly declared media type and move on. However, some old browsers
seem to stop after seeing the first string of screen , recognize it as a valid media type, and apply the styles for
all screens.

 Thus, the only keyword was introduced in the Media Queries specification. When old browsers see it
at the beginning, they discard the whole @media rule since there is no such thing as an only media type. All
browsers that do support media queries are required to ignore the only part as if it wasn’t there.

CHAPTER 8 ■ RESPONSIVE WEB DESIGN & CSS

236

 To be really safe against older browsers applying the wrong styles, you should declare any media query
that you need to scope to a specific media type like this:

 @media only screen and (min-width: 30em) {/*...*/}

 If you don’t care about the specific media type, you could shorten it to this:

 @media (min-width: 30em) {/*...*/}

 Dimensional Queries
 Out of width and height , the width dimension (with its min - and max- prefixes) is the true workhorse of
responsive web design. When Peter-Paul Koch of QuirksMode.org ran a survey among web developers and
designers about media queries (http://www.quirksmode.org/blog/archives/2013/11/media_queryrwdv.
html), he found that the width-related media queries were the most popular to use, by a landslide.

 The reason width is so important is that the default way we create web pages is to utilize the horizontal
layout only up until we fill the viewport. In the vertical direction, we can let things grow as much as we like,
and let the user scroll. It makes sense that we want to know when we run out of (or gain more) horizontal
space for our layouts.

 STAY AWAY FROM DEVICE MEASUREMENTS

 We can also ask the browser about device-width and device-height . This does not always mean the
same thing as the viewport measurements, but rather the dimensions of the screen in its entirety.

 The sad thing is that many developers have used device-width interchangeably with normal width
queries, leading to mobile browser makers following suit to make sure sites work on their browsers. The
device-measurement queries have also been deprecated in the upcoming version of the Media Queries
specification. All in all, device-width and device-height are quite confusing, so stay away unless you
are forced to use them for some reason.

 Further Dimensions: Resolution, Aspect Ratio, and Orientation
 While the queries for viewport dimensions are likely to make up the vast majority of media query usage, it
should be noted that we could query other aspects of the device. For example, we could change the layout
only when the device width is less than the device height, meaning it is in portrait orientation :

 @media (orientation: portrait) {
 /* portrait orientation styles here. */
 }

 Similarly, we can apply rules only when, for example, the viewport matches a certain minimum aspect ratio :

 @media (min-aspect-ratio: 16/9) {
 /* only applied when the viewport aspect ratio is at least the widescreen 16:9 ratio. */
 }

http://www.quirksmode.org/blog/archives/2013/11/media_queryrwdv.html
http://www.quirksmode.org/blog/archives/2013/11/media_queryrwdv.html

CHAPTER 8 ■ RESPONSIVE WEB DESIGN & CSS

237

 We mentioned earlier that the pixel ratio of the device is largely irrelevant. That is true when it comes to
 layout . Further ahead in the chapter, we’ll use min- resolution media queries to adapt which image to load,
where the pixel ratio is very important.

 Media queries are likely to be extended in the future, to be able to detect other aspects of the user’s
device and environment. While there are plenty of exciting advancements on the horizon (and even some
experimental support already in browsers), we’ll focus on the most useful queries in this book, preparing
you for what works today.

 Browser Support for Media Queries
 The basic media queries are supported almost everywhere. Sadly, as with many other “CSS 3” features,
browsers like IE8 and older are a bit behind the times.

 There are various tactics you can use to counter this, and either serve a fixed-width layout to these older
browsers or use a polyfill—a script that fakes support for missing features.

 One such script is Respond.js from Scott Jehl (https://github.com/scottjehl/Respond). In browsers
that don’t support media queries, it looks through all the linked CSS files and searches for the media query
syntax. It then applies or removes those sections based on the screen dimensions, emulating how the native
media queries would work.

 There are some downsides to using Respond.js . For example, the script doesn’t work with media
queries directly inside style elements in the page. There are other edge-case constraints to consider, so be
sure to consult the instructions on the website before using Respond.js .

 If using JavaScript for this doesn’t work for you, you could lock the design down to a specific “desktop”
width in old versions of IE by using a separate style sheet, and include that using conditional comments.

 Conditional comments are a weird feature that existed in IE up until (but not including) IE10. They
make it possible to wrap pieces of HTML in something that all other browsers regard as a normal comment,
but IE can reach in and get at the HTML hidden inside. A special syntax lets you target individual or grouped
versions of IE.

 The conditional comment for serving these wide-screen styles to desktop IE would need to consider old
versions of IE, while still not targeting IE in old versions of Windows Phone. It looks something like this:

 <!--[if (lt IE 9) & (!IEMobile)]>
 <link rel="stylesheet" href="oldIE.css" media="all">
 <![endif]-->

 This strategy depends on your putting the rest of your rules in a style sheet where the small-screen styles
are the ”default” and the wider-screen styles are scoped by media queries. That is a good idea anyway, which
we’ll see in the next section.

 Structuring CSS for Responsive Design
 In the initial example at the start of the chapter, we stripped out the widths and layout rules from the code,
and added them back scoped to min-width media queries. This approach is not just an efficient pattern in
terms of how little code you need to write; it is also part of an important strategy.

https://github.com/scottjehl/Respond

CHAPTER 8 ■ RESPONSIVE WEB DESIGN & CSS

238

 Mobile First CSS
 You may have heard the term “ mobile first.” It is a strategy around how to focus your design and
development efforts. Mobile devices have small screens, are harder to type on, and usually have weaker
processors and less memory than their desktop counterparts. They are also the devices that are closest at
hand to a great deal of people.

 By focusing on these devices first in the design and development process, we start with a set of
constraints that emphasize what is at the core of a digital product. As we scale a website or app to work on
other devices, we can make use of the expanded capacity.

 Had we done it the other way around, we would need to cram existing features into a more constrained
platform—a much harder feat.

 The same mindset can be applied to CSS, even if you are rewriting a project initially conceived as a
“desktop” site.

 The first rules in your CSS files form the basic experience both for the smallest screens and for browsers
that don’t understand media queries:

• Typographic basics: Sizes, colors, line heights, headings, paragraphs, lists, links, etc.

• Basics of “boxes”: Any specific border styles, padded items, flexible images,
background colors, and some limited background images

• Basic components for getting around and consuming content: Navigation, forms,
buttons

 As you test these styles on mobile devices and browsers of various kinds and sizes, you will find that
they start breaking at some point. Line lengths will become too long, items will become too far apart, and
so forth. When this happens you should consider adding a media query at that point—that’s why it’s called
a breakpoint . To reiterate, this can be any measurement: it’s more important that the code adapts to the
 contents of the site than to the pixel measurements of any specific device.

 /* start off with the baseline and small-screen styles. */
 .myThing {
 font-size: 1em;
 }
 /* ...then adjust inside min-width media queries: */
 @media only screen and (min-width: 23.75em) {
 .myThing {
 width: 50%;
 float: left;
 }
 }
 /* ...and further adjustments... */
 @media only screen and (min-width: 38.75em) {
 .myThing {
 width: 33.333%;
 }
 }

 You’ll recognize the method from how we rewrote the news site example at the start of the chapter. This
is the “mobile first” mindset translated into code. It also reflects how mobile first, responsive web design,
and progressive enhancement go hand in hand. Writing as little code as possible while still catering for as
many devices as possible is a sure sign you are doing something right!

CHAPTER 8 ■ RESPONSIVE WEB DESIGN & CSS

239

 MEDIA QUERIES AND EMS

 Writing media queries with ems, as we have done here, is a way of further strengthening your design
against changing environments. Most browsers will scale pixel-based queries as you zoom in desktop
browsers, but users can also choose to change the base font size rather than zooming.

 Using ems as a measurement makes sure your layout scales with that case as well, since it relates to
the base font size of the document.

 Note that media queries set in ems always relate to the base font size in the browser preferences, not
the font size of the html element (1rem) that you can adjust in CSS.

 Max-Width Queries for Efficient Small-Screen Styles
 With the min-width query as our primary tool, we can layer on adjustments for increasingly wider viewports.
But the max-width query is not to be underestimated. Sometimes, we might have some styles that make
sense on a smaller screen but not on bigger ones. This means that we have to first declare the style and then
negate it, if using min-width . Using max-width queries can cut down on the effort.

 As a condensed example (no pun intended!), you might want to use a narrow typeface for some
headings on smaller viewports, in order to prevent excessive line wrapping (see Figure 8-10).

 Figure 8-10. One example of responsive typography could be to use a narrower typeface on smaller viewports
to avoid excessive line wrapping

 Using the min-width query and the “mobile first” CSS strategy, this scenario could look like this:

 body {
 font-family: 'Open Sans', 'Helvetica Neue', Arial, sans-serif;
 }
 h1,h2,h3 {
 font-family: 'Open Sans Condensed', 'Arial Narrow', Arial, sans-serif;
 }

CHAPTER 8 ■ RESPONSIVE WEB DESIGN & CSS

240

 @media only screen and (min-width: 37.5em) {
 h1,h2,h3 {
 font-family: 'Open Sans', 'Helvetica Neue', Arial, sans-serif;
 }
 }

 The highlighted parts indicate how the base font-family declaration needs to be repeated in order to
negate the small-screen styles of condensed headings. If we were to use a max-width query instead, we get a
slightly shorter example with no repetition, and thus less code to maintain:

 body {
 font-family: 'Open Sans', 'Helvetica Neue', Arial, sans-serif;
 }
 @media only screen and (max-width: 37.5em) {
 h1,h2,h3 {
 font-family: 'Open Sans Condensed', 'Arial Narrow', Arial, sans-serif;
 }
 }

 Of course, there are other types of media queries that you could use to change your site. As with so
many things, the specific details of each project make it all come down to a bit of “it depends.” But using
the min-width query as your workhorse chimes well with the idea of using media queries as a form of
progressive enhancement.

 Where to Place Your Media Queries
 The example with basic, “unscoped” styles first, followed by min-width queries, works well as an example of
the basic structure of a style sheet containing media queries.

 Media queries can serve slightly different purposes though: either to tweak a small detail or to rearrange
the whole layout. Often these two categories of media queries also appear at slightly different measurements,
so it makes sense to treat them differently.

 There is no hard rule on how to pick your own structure, but we find that it makes sense to group the
different kinds of media queries slightly differently:

• Media queries that affect the overall layout of your pages are usually related to a
handful of class names that describe the major components of your site, and across a
handful of screen sizes. It often makes sense to place them close to these layout rules.

• If you have specific media queries that only tweak one specific component of the site,
put the media query code next to the rules describing that component.

• Finally, if you find that a lot of changes to layout as well as several smaller tweaks
to individual components end up at the same breakpoints, it may be better to put
them all at the end of the style sheet. In doing so, you are keeping with the pattern of
starting with the “unscoped” rules, and then getting more specific with overriding
styles.

 The important takeaway is that there is no definite place in your CSS where all your media queries
need to be placed. That also means that it’s up to you as a developer to create the structure and conventions
required to suit you or your team.

CHAPTER 8 ■ RESPONSIVE WEB DESIGN & CSS

241

 ■ Caution Media queries do not add to the specificity of the selectors within them, so you need to make sure
that the structure and order of where you put them doesn’t mean that they are overridden elsewhere in the
source code. Putting them last does not guarantee that they will override anything: they still follow the normal
rules of the cascade.

 More Responsive Patterns
 The “mobile first” way of writing CSS is an example of a fundamental pattern for responsive design. There
are plenty of other patterns for making your design more flexible and more responsive though, and as new
technologies emerge, we will create and refine even more of them. This section contains a few good ones.

 Responsive Text Columns
 The CSS 3 Multi-column Layout specification we encountered in Chapter 4 was one of the first parts
of CSS to have responsive patterns built in from the start, long before the term was coined. By using a
column width rather than a set number of columns, the content will flow into as many columns as fit in the
container (see Figure 8-11).

 Figure 8-11. On narrower viewports, the paragraphs flow into a single column, and on wider viewports
multiple columns appear automatically

 <div class="multicol">
 <p>Lorem ipsum [...]<p>
 <!-- ...etc -->
 </div>

 The CSS is a single line for the column declaration—no media queries necessary!

 .multicol {
 column-width: 16em;
 }

 It bears repeating that text in multiple columns should be used sparingly on the Web. There is definitely a
use case for it though. As long as the text is not overly long such that it forces the user to scroll up and down even
on wider screens, it is a way to reclaim horizontal space without using a measure that is uncomfortably wide.

http://dx.doi.org/10.1007/978-1-4302-5864-3_4

CHAPTER 8 ■ RESPONSIVE WEB DESIGN & CSS

242

 Responsive Flexbox without Media Queries
 Flexbox is another part of CSS that has a degree of responsiveness built in. Without using any media queries,
we can create components that adapt their layout to the available space.

 Let’s say we want to build a widget where you order spare parts for your time machine, by clicking
buttons to increase or decrease the number of parts in your shopping basket (see Figure 8-12).

 Figure 8-12. Our widget for ordering parts

 The list of parts is an unordered list, where each item has the following structure:

 <ul class="ordering-widget">
 <li class="item">
 Flux capacitor regulator

 <button class="item-control item-increase" aria-label="Increase">+</button>
 <button class="item-control item-decrease" aria-label="Decrease">-</button>

 <!-- ...and so on. -->

 By styling the item name and the button controls with flexible sizes, we can create a component that
changes layout when there’s not enough space to house them both on the same row.

 First, some reset styles for the list, and basic typographic rules:

 .ordering-widget {
 list-style: none;
 margin: 0;
 padding: 0;
 font-family: 'Avenir Next', Avenir, SegoeUI, sans-serif;
 }

 Then we turn each item into a wrapping flex row:

 .item {
 color: #fff;
 background-color: #129490;
 display: flex;
 flex-wrap: wrap;
 font-size: 1.5em;
 padding: 0;
 margin-bottom: .25em;
 }

CHAPTER 8 ■ RESPONSIVE WEB DESIGN & CSS

243

 The name of each item needs to be at least 13 ems wide to fit the longest names, but should otherwise
expand to fill the available space:

 .item-name {
 padding: .25em;
 flex: 1 0 13em;
 }

 Next up, the span element wrapping the two buttons should also fill the available space, and be at least
4em wide. It also acts as a flex container for the buttons.

 .item-controls {
 flex: 1 0 4em;
 display: flex;
 }

 Each button is in turn a flex item taking up an equal amount of space. The rest of the styles are mostly to
neutralize default styling of the button element (we’ll get back to styling form controls in Chapter 9):

 .item-control {
 flex: 1;
 text-align: center;
 padding: .25em;
 cursor: pointer;
 width: 100%;
 margin: 0;
 border: 0;
 color: #fff;
 font-size: inherit;
 }

 All that’s left is the background colors for the buttons themselves:

 .item-increase {
 background-color: #1E6F6D;
 }
 .item-decrease {
 background-color: #1C5453;
 }

 That’s all the styles for the responsive widget! Here comes the interesting bit: when the button controls
(the .item-controls element) run out of space to fit comfortably on the same line as the fixed-width . item-
name element, they will naturally wrap to a second row. Since the .item-controls element has a flex-grow
factor of 1 , it will expand to take up the whole second row (see Figure 8-13). Each button will in turn grow to
take up half of the row in itself.

http://dx.doi.org/10.1007/978-1-4302-5864-3_9

CHAPTER 8 ■ RESPONSIVE WEB DESIGN & CSS

244

 Flexible, Container-Relative Components
 In the preceding example, we have created another responsive component without resorting to media
queries, keeping the complexity of the CSS down. This wrapping behavior, while simple, would not be
possible with floats or inline block display.

 It’s also important to note that this type of flexible component does not respond to the size of the
viewport, but rather the actual available space inside the component where it is rendered. This is often what
we actually want to achieve.

 While media queries are great for adapting layouts based on the viewport, they do not take into account
that one particular component can appear in multiple places, rendered at different widths. Put another way, if a
component appears in a narrow sidebar, we want it to display using styles that make sense in a narrow context,
regardless of the viewport size. Until we have some form of “container queries” (which are being worked on—see
 https://github.com/ResponsiveImagesCG/cq-usecases), techniques like flexbox help us get partway there.

 Responsive Grids with Grid Template Areas
 The Grid Layout properties allow you to shift a lot of the layout work from the individual elements up to the
grid container . This next pattern drastically simplifies the process of making a page layout responsive when
using the named template areas syntax we saw in Chapter 7 .

 ■ Note As a reminder, Grid Layout still has very spotty browser support as this is written. However, it is likely
to be an important ingredient in responsive layouts in years to come.

 If we look at the second subsection of the news site example from Chapter 7 , we can adapt it into a fully
responsive layout with relatively few changes. But first, a recap of the markup structure:

 <section class="subcategory">
 <div class="grid-b">
 <header class="subcategory-header"></header>
 <article class="story"></article>

 Figure 8-13. When space is tight, the buttons end up underneath the item name

https://github.com/ResponsiveImagesCG/cq-usecases
http://dx.doi.org/10.1007/978-1-4302-5864-3_7
http://dx.doi.org/10.1007/978-1-4302-5864-3_7

CHAPTER 8 ■ RESPONSIVE WEB DESIGN & CSS

245

 <article class="story"></article>
 <div class="ad"></div>
 <div class="ad"></div>
 </div>
 </section>

 The markup contains the section header, two articles, and two ads. Without applying any layout styles
(grid layout or otherwise), they line up as full-width blocks on the page. This works quite well on small
viewports (see Figure 8-14).

 Figure 8-14. To the left, the unstyled single-column layout. To the right, an ad injected in between stories by
using a grid template.

 The source order features what’s important in the page content with the stories appearing first in the
markup, followed by the ads. But what if the ad sales team needs us to inject ads in between stories on the
mobile view, so the ads don’t get lost at the bottom of the page?

 We can use a grid declaration to take care of that. First we need to define the grid area names for the
header and stories:

 .grid-b .subcategory-header {
 grid-area: hd;
 }
 .grid-b .story:nth-of-type(1) {
 grid-area: st1;
 }
 .grid-b .story:nth-of-type(2) {
 grid-area: st2;
 }

CHAPTER 8 ■ RESPONSIVE WEB DESIGN & CSS

246

 Without using a media query, we can now define the basics of the grid container, and the row order of the
single column inside. The grid template now takes control of the ordering of items within a single column of
content. The ads now automatically flow into the unnamed areas (represented by dots) in between stories.

 .grid-b {
 display: grid;
 grid-template-columns: 1fr;
 grid-template-areas: "hd" "st1" "." "st2" ".";
 }

 When there is a little more space, we can change the story part into a 2×2 grid by adding a new template
inside a media query (see Figure 8-15).

 @media only screen and (min-width: 37.5em) {
 .grid-b {
 grid-template-columns: 1fr 1fr ;
 grid-template-areas: "hd hd "
 "st1 ..."
 "... st2" ;
 }
 }

 Figure 8-15. For slightly bigger viewports, the stories and ads are now in a checkered formation

CHAPTER 8 ■ RESPONSIVE WEB DESIGN & CSS

247

 Remember, we can use an arbitrary number of consecutive dots to denote an anonymous grid area, to
line up our template strings more neatly.

 In viewports that are slightly larger still, the header remains on top of the content, but the stories and
ads form the same three-column layout that we saw in the example from Chapter 7 (see Figure 8-16):

 @media only screen and (min-width: 55em) {
 .grid-b {
 grid-template-columns: 1fr 1fr 1fr ;
 grid-template-areas: "hd hd hd "
 "st1 .. st2"
 "st1 .. st2" ;
 }
 }

 Figure 8-16. The header goes across the top, and the stories and ads form a three-column/two-row layout

 Finally, we switch to the layout using the sidebar header plus the three-column layout (see Figure 8-17).

 @media only screen and (min-width: 70em) {
 .grid-b {
 grid-template-columns: 20% 1fr 1fr 1fr ;
 grid-template-areas: "hd st1 . st2"
 "hd st1 . st2" ;
 }
 }

http://dx.doi.org/10.1007/978-1-4302-5864-3_7

CHAPTER 8 ■ RESPONSIVE WEB DESIGN & CSS

248

 Figure 8-17. The sidebar header now fits comfortably next to the three columns

 As you can see, the Grid Layout properties allow us to redefine the whole grid at certain breakpoints
without ever touching the respective components. You can of course use the other methods of grid
positioning for responsive layouts, but the grid template areas feature is particularly well suited for
responsive work. Just remember that nonsupporting browsers will fall back to a single-column layout, so it
may be a while before this is your weapon of choice for responsive grids.

 Going beyond Layout
 So far, we have gotten acquainted with the details of how viewports and media queries work, along with a
sampling of responsive layout techniques . But responsive websites need to deal with more than just layout.
In this section, we’ll look at some techniques to make sure other aspects of our sites adapt as well. We’ll start
with media, first as background images and then as embedded page content.

 Responsive Background Images
 Making background images adapt to the size of the screen in CSS is fairly straightforward, since we have
access to media queries.

 For our example, we’ll revisit the page header example from Chapter 5 (the social network for cats,
remember?). The markup consists of a single element, acting as the header for the page—we’ll leave out the
rest of the contents of the header for now, focusing on just applying the background.

 <header class="profile-box" role="banner"></header>

http://dx.doi.org/10.1007/978-1-4302-5864-3_5

CHAPTER 8 ■ RESPONSIVE WEB DESIGN & CSS

249

 We’ll use two different image files as backgrounds. The smaller version is 600 pixels wide and cropped
to a square, while the larger version is 1200 pixels wide, with a looser crop (see Figure 8-18).

small-cat.jpg big-cat.jpg

 Figure 8-18. Our two cat images

 For the smallest viewports, we will use the tightly cropped smaller version:

 .profile-box {
 height: 300px;
 background-size: cover;
 background-image: url(img/small-cat.jpg);
 }

 Now when the viewport gets larger than the background image, it is scaled up (by the background-
size: cover declaration), and starts to look blurry. At this point, we can swap it for the larger image:

 @media only screen and (min-width: 600px) {
 .profile-box {
 height: 600px;
 background-image: url(img/big-cat.jpg);
 }
 }

 This simple example illustrates two things. First, that we can use media queries to deliver the most
appropriately sized image for the viewport. Second, we can use responsive backgrounds not only for loading
image sources of different resolutions, but also to art-direct responsive designs by cropping background
images differently based on the viewport.

CHAPTER 8 ■ RESPONSIVE WEB DESIGN & CSS

250

 Using Resolution Queries to Switch Images
 In the previous example, we changed the image based on the dimensions of the viewport. But we may also
want to load images of different resolutions for the same viewport size, based on the pixel ratio of the device.
With images, the actual pixel dimensions of the image and CSS pixels need to work together. An image with
the intrinsic size of 400 by 400 pixels will be displayed as 400 by 400 CSS pixels even on high-resolution
screens. This means the image will be scaled up, losing sharpness in the process. If we want to load a larger,
sharper image only on high-resolution devices, we need to use resolution queries.

 Let’s say we want to serve a medium-cat.jpg file even to the smallest viewport, but only if it has a
pixel ratio of at least 1.5. This medium-cat.jpg file is the same square crop, but 800×800 pixels in size. The
number 1.5 is somewhat arbitrary, but it makes sure that the larger image is used on most high-resolution
phones and tablets, where 1.5 is in the lowest range. You can always add further media queries (and more
detailed image sizes) for higher resolutions—just keep an eye on the file size for the images!

 In order to switch out the image based on pixel ratio, the standardized media feature to test for is
called resolution , so we check for min-resolution using the dppx unit (“device-pixels per pixel”). Not all
devices support this standardized query though, so we complement it with a check for the -webkit-min-
device-pixel-ratio , predominantly used by Safari. The measurement for the latter is a unitless number.

 @media (-webkit-min-device-pixel-ratio: 1.5),
 (min-resolution: 1.5dppx) {
 .profile-box {
 background-image: url(medium-cat.jpg);
 }
 }

 Combining queries for dimensions with queries for resolution, you can make sure the most optimal
image gets loaded for each device class.

 OLDER RESOLUTION QUERY SYNTAXES

 You may encounter various other recommendations for resolution queries. There are nonstandard
queries like the extremely odd min--moz-device-pixel-ratio , used in very old Firefox browsers, as
well as min-resolution queries set in the dpi unit.

 The dpi unit is the only supported unit for the standardized min-resolution query in some older
implementations, most notably Internet Explorer 9–11. Sadly, the IE implementation gets the dpi
number for the device wrong, which causes the high-resolution image to be loaded by mistake in some
circumstances.

 Using only the -webkit-min-device-pixel-ratio query in combination with the min-resolution
query (and the dppx unit) is likely to cover a wide majority of users running high-resolution devices,
and keeps the code complexity to a minimum, which is why we recommend it, despite the lack of IE
support. For further reading, see this blog post from W3C’s Elika Etemad: https://www.w3.org/blog/
CSS/2012/06/14/unprefix-webkit-device-pixel-ratio/

https://www.w3.org/blog/CSS/2012/06/14/unprefix-webkit-device-pixel-ratio/
https://www.w3.org/blog/CSS/2012/06/14/unprefix-webkit-device-pixel-ratio/

CHAPTER 8 ■ RESPONSIVE WEB DESIGN & CSS

251

 Responsive Embedded Media
 One of the trickier aspects of responsive web design is getting the flexibility of content images, video, and
other embedded objects right. With background images in CSS, we can let media queries do a lot of the
work. With things embedded into the page, the logic of CSS is not always there to help the browser make the
right decisions.

 Some of this is technically beyond the scope of CSS, but it’s important to grasp these issues since they
affect the performance of the sites you build in such a massive way.

 Responsive Media Basics
 In Chapter 5 , we already encountered one of the most basic techniques to make images, video, and other
objects behave in a fluid way. Setting a max-width of 100% makes the element fluid, while still not growing
outside of its intrinsic dimensions:

 img, object, video, embed {
 width: auto;
 max-width: 100%;
 height: auto;
 }

 While the preceding rule is somewhat naïve, it represents a good baseline to prevent fixed-width
elements sneaking into your fluid and responsive designs. Each usage situation may require different sizing
methods though.

 The “aspect-ratio aware container” trick from Chapter 5 is especially useful for creating flexible
containers for videos. It also helps with a number of sizing issues for SVG content; Sara Soueidan has written
a good article on how to size SVG responsively (http://tympanus.net/codrops/2014/08/19/making-svgs-
responsive-with-css/).

 Responsive Images and the srcset Attribute
 While sizing images is relatively straightforward, it doesn’t solve the bigger issue with loading the right
image. Image file size is the number one factor in overall page weight, and the Web is getting heavier at an
alarming rate. Today, the average web page is well over 2MB, with images accounting for more than 60% of
that weight (see Figure 8-19).

 Figure 8-19. Screenshot from http://httparchive.org : the distribution of size in bytes between different
content on an average web page, February 2016

http://dx.doi.org/10.1007/978-1-4302-5864-3_5
http://dx.doi.org/10.1007/978-1-4302-5864-3_5
http://tympanus.net/codrops/2014/08/19/making-svgs-responsive-with-css/
http://tympanus.net/codrops/2014/08/19/making-svgs-responsive-with-css/
http://httparchive.org/

CHAPTER 8 ■ RESPONSIVE WEB DESIGN & CSS

252

 When responsive web design was introduced, many developers exacerbated the file size problem by
serving the same image to every device, regardless of screen size or capability. This meant serving the largest
image, and scaling it down for smaller viewports, to keep it looking sharp. This was bad not only because of
overall page weight; scaling images requires processor time and lots of memory space, neither of which is
abundant on devices like phones.

 Browsers do something called pre- parsing of HTML, where assets like images start to download even
before the browser has finished constructing the full page in memory, or executed any JavaScript. This
makes it impossible to solve responsive images in a sane way using scripting alone. This is why there has
been a big effort in the last few years to standardize responsive images. One of the resulting improvements is
the srcset attribute.

 The srcset attribute, along with its companion attribute sizes , is in its simplest form an extension to
the img element. It allows you to specify a couple of different things about the image:

• Which are the alternate source files for this image, and how wide are they in pixels?

• How wide, in terms of CSS, is the image supposed to be at various breakpoints?

 By supplying this information in markup rather than CSS, the pre-parser can decide as quickly as
possible which image to load.

 An early version of the srcset syntax was originally introduced a couple of years back in WebKit-
based browsers . It only deals with the target resolution and allows you to specify a list of alternate image
sources, along with a minimum ratio of physical pixels to CSS pixels known as an “x-descriptor.” For the
featured article in the news section example, we could use the 600×300 image for default resolutions or
nonsupporting browsers, but switch to a twice-as-large image when the ratio is higher (see Figure 8-20):

 Figure 8-20. Viewing the news example page on a high-resolution screen, with the x-descriptor syntax used to
load a higher resolution “featured article” image (leftmost article)

 Resolution switching does not regard at which size the image will be shown. To do that, you need to add
the sizes attribute, and describe how wide the image is rather than the intended pixel ratio.

CHAPTER 8 ■ RESPONSIVE WEB DESIGN & CSS

253

 This is where srcset syntax gets a little bit tricky. If we have a number of source images containing the
same graphic at varying sizes (ranging from 300×150 to 1200×600), we combine them with a list of pairs of
media conditions and width measurements, describing how the image will be used. We can express the
intended sizes as precisely as we wish, using, for example, viewport-relative units and the calc() functional
notation, borrowed from CSS:

 <img src="img/xsmall.png"
 srcset="img/xsmall.png 300w,
 img/small.png 400w,
 img/medium.png 600w,
 img/large.png 800w,
 img/xlarge.png 1200w"
 sizes="(min-width: 70em) 12.6875em,
 (min-width: 50em) calc(25vw * 0.95 - 2.75em),
 (min-width: 35em) calc(95vw / 2 - 4.125em),
 calc(95vw - 1.375em)"
 alt="Dummy image" />

 We’ll break this down piece by piece. Apart from the normal src and alt attributes, we have srcset .
It describes a list of image URLs, and a clue for the browser on how wide they are in actual pixels—not CSS
pixels. This syntax, with a w character after the width, is called a width descriptor .

 srcset="img/xsmall.png 300w ,
 img/small.png 400w ,
 ..."

 Next, we’ll need to explain to the browser how we intend to use the image. We do this by supplying a list
of widths, each one optionally starting with a media condition, just like in a media query. It’s important to
note that these expressions are not CSS, so they don’t follow the rules of the Cascade where the last declared
matching rule wins. Instead, the first matching rule short-circuits the evaluation and wins, so we start with
the widest media condition. The last size doesn’t need a condition, as it acts as a fallback measurement and
matches the smallest screens.

 sizes="(min-width: 70em) 12.6875em,
 (min-width: 50em) calc(25vw * 0.95 - 2.75em),
 (min-width: 35em) calc(95vw / 2 - 4.125em),
 calc(95vw - 1.375em)"

 The measurements after the media condition are calculations on approximately how wide the image
will be shown at the various breakpoints, based on the current responsive layout. This is a trade-off with
responsive images: we effectively need to put some information about our CSS into the markup. We can’t
use percentages here, since those are relative to the CSS style calculations, but we can use viewport units
like vw , and ems. The em -unit size here corresponds to the default font size of the browser, just like with
media queries.

 ■ Note The vw unit is related to the viewport width, where 1 unit is 1% of the viewport. We’ll come back to
viewport-relative units a little later in the chapter.

CHAPTER 8 ■ RESPONSIVE WEB DESIGN & CSS

254

 Finally, the browser decides on the best candidate for the current viewport dimensions, and downloads
that image.

 It make take you a while to fully grasp how the srcset and sizes attributes fit together. The end result
is that by supplying the browser with a list of image files and the intended width of the img element, the
browser will figure it out for you.

 This may result in the loading of a larger file based on images already existing in the cache, or a smaller
file based on bandwidth constraints, low battery, etc. Similarly, it will figure out if you are on a device with a
high-density screen and load the larger image, without having to specify this in the markup.

 The Picture Element: Art Direction, File Type Support, and More
 Apart from switching between source images of various resolutions , there are a few more important use
cases for responsive images:

• We may want to crop the image differently on smaller versus larger screens, because
of the difference in both rendered size and viewing distance—just like in the
background image example. When we’re using only srcset / sizes , the browser may
assume that the source files all have the same aspect ratio and only differ in their
resolution.

• We may want to load images in a different file format based on what the browser
supports. We have already mentioned the WebP format in Chapter 5 , but there are
other formats as well, such as the JPEG2000 format (supported by Safari) and the
JPEG-XR format (supported by IE and Edge), and more. A lot of these formats have
significant file-size savings compared to the formats supported cross-browser.

 The standardized solution to these issues is the picture element. It acts as a wrapper around an
tag and adds further capabilities on top of the srcset and sizes attributes.

 We could complement the srcset markup from the responsive news site example with loading images
in the WebP format where supported. The markup now looks like this:

 <picture>
 <source type="image/webp"
 srcset="img/xsmall.webp 300w,
 img/small.webp 400w,
 img/medium.webp 600w,
 img/large.webp 800w,
 img/xlarge.webp 1200w"
 sizes="(min-width: 70em) 28em,
 (min-width: 50em) calc(50vw * 0.95 - 2.75em),
 calc(95vw - 1.375em)" />
 <img src="img/xsmall.png"
 srcset="img/xsmall.png 300w,
 img/small.png 400w,
 img/medium.png 600w,
 img/large.png 800w,
 img/xlarge.png 1200w"
 sizes="(min-width: 70em) 28em,
 (min-width: 50em) calc(50vw * 0.95 - 2.75em),
 calc(95vw - 1.375em)"
 alt="Dummy image" />
 </picture>

http://dx.doi.org/10.1007/978-1-4302-5864-3_5

CHAPTER 8 ■ RESPONSIVE WEB DESIGN & CSS

255

 While this is very verbose, the logic is only a little more complex. The tag and all its contents
are the same. What’s new is the <picture> wrapper, and the <source> tag inside it, repeating much of the
patterns from the .

 First of all, the img still needs to be there inside the picture element—the function of the picture and
 source elements is to choose which image file becomes the final source for the img . Besides, it acts as a
fallback for browsers lacking in support for picture .

 We still have the srcset and sizes attributes on the img , but let’s leave them for a minute. When the
browser encounters a picture element with an img inside it, it will start going through any source elements
to try and find a match for what the img element could display. In our example, there’s only one source
element, but there could be several:

 <source type="image/webp" ...>

 Our source element has a type attribute set to image/webp , so it will only continue to be evaluated as a
potential match if the browser knows about that file type.

 Next, the source element has the same kind of srcset and sizes attributes as the img element has, but
the source files listed in the srcset attribute are all WebP files:

 <source type="image/webp"
 srcset="img/xsmall.webp 300w,
 img/small.webp 400w, ..."
 sizes="(min-width: 70em) 28em,
 (min-width: 50em) calc(50vw * 0.95 - 2.75em)..." >

 If the browser manages to match one of these, that file will be loaded as the source for the img element.
If no source element has a match, it finally goes to the img element itself, and checks any attributes there. As
a last resort if nothing matches (or the picture syntax is unsupported), the src attribute is used.

 At this point, the example negotiates both resolution and image file-type support for us. If we compare
the example when viewed in Firefox on a high-resolution screen and Chrome on a standard-resolution
screen, each browser will choose the most appropriate image for us. In Figure 8-21 , we see that Chrome
loads a smaller WebP file, and Firefox picks the high-resolution PNG file.

 Figure 8-21. Chrome (left) on a standard-resolution screen loads a smaller WebP file. Firefox (right) on a
high-resolution screen loads the high-resolution PNG file.

CHAPTER 8 ■ RESPONSIVE WEB DESIGN & CSS

256

 In the preceding example, we check the media conditions in the sizes attribute to match a display
width with a breakpoint. If we wanted to have even more control over which source is used when, we could
also use a media attribute on the source element itself, with full media queries inside it:

 <picture>
 <source media="(min-width: 70em) and (min-resolution: 3dppx)" srcset="..." />

 </picture>

 Combined like this, you get a great deal of control over which files load when. The difference from
 srcset is that the browser will not make a judgment call for you in terms of selecting which source element
to use. The selection inside the srcset attribute is still up to the browser, but it must use the first source
element that matches either on the media or the type attribute.

 This means increased control for you as developer. For example, it makes sense when you want art-
directed images, with different crops for different viewports. But it also brings a greater responsibility to be
careful. After all, the goal is to reduce unnecessarily large downloads.

 For most cases, srcset and sizes will be enough, but with picture , you’re bringing out the big toolbox.

 Browser Support and Picturefill
 At the time of writing, the latest versions of almost all browsers have full support for the srcset and sizes
syntax. Some browsers (most notably slightly older versions of Safari) offer partial support, using the syntax
with x-descriptors. Internet Explorer 11 (and earlier) is completely left out.

 Support for the picture element is slightly weaker, but catching up. Chrome, Opera, Firefox, and
Microsoft Edge have already shipped support. As this is being written, Safari is just about to ship support on
both OS X and iOS, starting with Safari 9.1 on desktop and iOS 9.3.

 The nice thing is that srcset and picture solutions were designed to have a fallback, in that both rely
on the existing img element if support isn’t there. This means that you can still go ahead and implement a
solution using these technologies right now, with a sensible fallback image size. As responsive images can
have a drastic impact on performance, you might get even further if you use a polyfill.

 There is an official JavaScript-based polyfill for these standards, called Picturefill (http://scottjehl.
github.io/picturefill/). You may remember from the start of this section that JavaScript will not be
enough for a proper solution of the responsive images solution. That’s still true, and the polyfill comes with a
few caveats:

• You will need to have a “fake” src attribute on the img element to avoid double
downloads in nonsupporting browsers. This means that browsers where the
JavaScript polyfill doesn’t load and picture is not supported will not see any images
at all.

• IE before version 10 will ignore source elements in HTML unless they are children
of a video element (the source element plays a similar role for loading videos), so if
you need to use picture with source file types targeting IE, you’ll need to fiddle with
conditional comments to add a “fake” video element to your markup. Details are in
the documentation for Picturefill.

 ■ Note For the picture element example accompanying the book, you’ll see that we haven’t used the hack
for IE—this is because IE does not understand the WebP format anyway, so polyfilling that particular feature is
not necessary.

http://scottjehl.github.io/picturefill/
http://scottjehl.github.io/picturefill/

CHAPTER 8 ■ RESPONSIVE WEB DESIGN & CSS

257

 Responsive Typography
 It’s easy to understand why layout is important for responsive design. Typography is probably equally
important when designing for all different types of devices. Not only are the sizes of screens different, but
we also interact with different types of devices in different ways. In this section, we’ll go through the most
important considerations for adapting your typography across various form factors.

 Different Devices, Different Measures
 When we read on a larger screen, we are often comfortable with a measure of around 45 to 70 characters per
line. For smaller screens such as phones, a measure of upward of 70 characters would mean that the type
would be uncomfortably small. This means that we need to adjust the size on smaller screens so that the
average line length is closer to 35 to 45 characters.

 When the number of characters per line gets smaller, we can often decrease the line-height a little
bit. If you set a line-height of around 1.5 for desktop-sized type, you can probably get away with 1.3 for the
smallest screens.

 When deciding on a size, you are influencing the measure —these two are always linked. So how do you
decide on a comfortable size for the body text of your site?

 One easy way is to sit in front of your screen at a comfortable distance, and then hold up a physical book
or magazine at your normal reading distance. Compare the size of the text in the book with the size of the
text on your screen (see Figure 8-22). Is the text on the screen smaller or larger? Usually, you will end up with
a text size of around 20 pixels to match that of the book.

 Figure 8-22. Holding a book at comfortable reading distance as a guide, you can find the right size and
measure for other devices

 It is very common for text on the Web to be set a lot smaller than that. This is probably more out of
habit among designers and developers than the actual readability of the text. The conventions are changing
though, and sites where the reading experience is front and center are leading the way. As an example,
 https://medium.com uses a font size of 22 pixels for body text viewed on a desktop browser.

 Repeating the same experiment on a phone, you are likely to find that you hold the phone a little bit
closer than you would hold a book. Experimenting with the measure is likely to land you at a font size
of 16–18 pixels.

https://medium.com/

CHAPTER 8 ■ RESPONSIVE WEB DESIGN & CSS

258

 To judge if the measure is in the accepted range for a particular combination of screen size and font,
you can use a trick from designer Trent Walton. He simply added a special character at the character
position where the accepted range starts and stops, and tested that as the paragraph text on the device
(http://trentwalton.com/2012/06/19/fluid-type/):

 <p>Lorem ipsum dolor sit amet, consectetur adip *isicing elit, sed do eius mod* tempor incidid.</p>

 The asterisks in that paragraph are positioned at character numbers 45 and 70. This means that the
measure is too long whenever they are both on the first line. When testing on a mobile device, the first line
break of the paragraph should be close to (or before) the first asterisk.

 When you have found a good font size and measure for the smallest and the biggest screens, you have a
good foundation for the rest of the responsive typography of your site. The next step is to implement it, and
as with so many other things, there are many ways to do it. Some of those ways are more flexible than others.

 Using Flexible Font Sizes
 We often talk about pixel sizes when discussing typography, but as we saw in Chapter 4 on typography, there
are other ways of describing sizes and distances.

 Font sizing with relative lengths like em , rem , and the viewport units (vw , vh , vmin , and vmax) is a
very efficient way to size our text across different screen sizes. These units give us a way to make small
adjustments for various form factors by updating the font size at a higher level and then letting that cascade
down for all elements. These are Cascading Style Sheets, after all.

 Setting the Base Font Size
 Pretty much every browser has a base font size set to 16 pixels in its user agent style sheet. We are free to
change that by changing the font size on the html element. Media queries based on em units are always
based on the base size set by the browser , so for reasons of consistency in the CSS for a responsive site, you
might want to set your new base on the body element instead.

 Using a base font size that works well for the smallest screens makes sense, as it allows us to apply the
“mobile first” strategy to our typography as well. Our next task is to set the font sizes of things that may differ
from the base size: headings, lists, menus, and other bits of content. We mentioned the importance of using
flexible font sizes in responsive design, and now it’s time to dive into that technique. We will need to scale
our whole typography up as we target bigger and bigger screens.

 If your font size was set in pixels, you could end up with a style sheet that looks like this:

 p { font-size: 16px; }
 h1 { font-size: 36px; }
 h2 { font-size: 30px; }
 h3 { font-size: 26px; }
 /* ...etc */
 @media only screen and (min-width: 32.5em) {
 p { font-size: 18px; }
 h1 { font-size: 40px; }
 /* ...and on and on... */
 }
 @media only screen and (min-width: 52em) {
 p { font-size: 20px; }
 h1 { font-size: 44px; }
 /* oh no, there’s more... */
 }

http://trentwalton.com/2012/06/19/fluid-type/
http://dx.doi.org/10.1007/978-1-4302-5864-3_4

CHAPTER 8 ■ RESPONSIVE WEB DESIGN & CSS

259

 You can see where this is going: pixel-based font sizes make it terribly tedious to rescale a layout. Using
relative sizes makes rescaling much easier:

 p { font-size: 1em; }
 h1 { font-size: 2.25em; }
 h2 { font-size: 1.875em; }
 h3 { font-size: 1.625em; }
 /* ...etc */
 @media only screen and (min-width: 32.5em) {
 body { font-size: 1.125em; /* done! */ }
 }
 @media only screen and (min-width: 52em) {
 body { font-size: 1.25em; } /* done! */
 }

 This technique is highly efficient, but hardly enough. Making a typographic system scale is not as simple
as just changing the base font size at a few breakpoints. For example, you might want to have huge headlines
relative to the body text for very large screens, but a somewhat more moderate difference in size for mobiles.
If you want a good foundation, Jason Pamenthal’s comprehensive article “A More Modern Scale for Web
Typography” (http://typecast.com/blog/a-more-modern-scale-for-web-typography) offers both advice
and boilerplate code to get you started (see Figure 8-23).

 Figure 8-23. Jason Pamenthal’s article on responsive typography is a handy resource

http://typecast.com/blog/a-more-modern-scale-for-web-typography

CHAPTER 8 ■ RESPONSIVE WEB DESIGN & CSS

260

 Using flexible measurements allows you to scale your font sizes (and other relative measurements like
 margin , line-height , and padding) up and down inside media queries, and then spend time tweaking
the things that don’t scale uniformly. That’s much more efficient than redeclaring everything for each
breakpoint.

 Viewport-Relative Units for Typography
 The em and rem units are flexible, since they don’t represent any specific pixel measurement. The next step
in flexible sizing is tying the size of your fonts to the size of the viewport, using viewport-relative units. With
these units, the value 1 is equal to 1% of either the viewport width or the viewport height:

• vw represents the viewport width.

• vh represents the viewport height.

• vmin represents the smallest of either width or height.

• vmax represents the biggest of either width or height.

 Getting your head around how viewport units work can be tricky at first. Let’s try out an example.

 p {
 font-size: 5vw;
 }

 What does 5vw mean? Well, assuming you view a paragraph set with that size on a viewport that is 400
pixels wide (like in some mobile browsers), it would be five times as big as 1% of the viewport width, and 1%
is 4 pixels. The math becomes 5 × 4 = 20 pixels.

 In a way, this gives us the ultimate in responsive typography, as the type will change without any media
queries. This is also the risk with viewport-relative units: you risk missing something that shouldn’t scale
too far, that becomes too big or too small at the extremes. In the example from the previous paragraph, we’re
doing OK for typical mobile screen sizes, but how large would the type be for desktop-sized browsers? Well,
assuming a viewport width of 1400 pixels (for example), the size would be 14 × 5 = 70 pixels. That’s a little on
the massive side!

 This means that we still need to cap the ranges somehow. One very creative method, documented
by developer Mike Riethmuller in his article “Precise control over responsive typography” (http://
madebymike.com.au/writing/precise-control-responsive-typography), is to get very creative with the
CSS calc() function. As calc() has its own quirks and bugs, we often have to resort to setting breakpoints
where we redefine the font-size , even when set in viewport-relative units. Regardless of method, the
benefit is that anything set with viewport relative sizes scales nicely even between the breakpoints.

 Viewport units are relatively well supported across browsers. They are supported in IE since version 9,
and in all the latest versions of Chrome, Firefox, and Safari. Support is missing in the stock Android browser
before version 4.4 and in Opera Mini. There are a few quirks though:

• IE9 implements the vmin unit as vm .

• IE9, IE10, and Safari 6–7 are missing the vmax unit.

• Safari 6–7 on iOS also has a some severe bugs where viewport units are completely
messed up (see https://github.com/scottjehl/Device-Bugs/issues/36).

https://twitter.com/MikeRiethmuller
http://madebymike.com.au/writing/precise-control-responsive-typography
http://madebymike.com.au/writing/precise-control-responsive-typography
https://github.com/scottjehl/Device-Bugs/issues/36

CHAPTER 8 ■ RESPONSIVE WEB DESIGN & CSS

261

 Tweak and Test
 Responsive typography is a fairly new way of looking at type. As with responsive layout, we are tasked with
trying to find ways of thinking about it as a system, and we need that system to translate to any form factor
and device. At the same time, the bottom line is very much the same. There are basic rules of style, sizing,
and measure to follow, but for each situation, you need to test, tweak, and test again. Choosing a method for
building your CSS is important, but the final goal should be a great experience for the person using what you
build, regardless of device.

 Summary
 In this chapter, we have looked at how to structure responsive CSS—for layout, for images, and for
typography. We took a deep dive into the technical foundations of how responsive design works, deciphering
various viewports and how to make them behave the way you want when using CSS.

 We also looked at a range of examples on how to use new specifications like flexbox and Grid Layout
to adjust responsive layouts, with or without media queries. We have seen how to implement responsive
images using new additions to CSS as well as the new standards for responsive content images. Finally, we
examined some considerations for typography on different form factors.

 In the next chapter, we’ll focus on another important area for styling: forms and tables. We will see that
there are responsive challenges there as well.

263© Andy Budd and Emil Björklund 2016
A. Budd and E. Björklund, CSS Mastery, DOI 10.1007/978-1-4302-5864-3_9

 CHAPTER 9

 Styling Forms and Data Tables

 Forms are an incredibly important part of modern web applications. They allow users to interact with
systems, enabling them to do everything from leaving comments to booking complicated travel itineraries.
Forms can be as simple as an e-mail address and a message field, or they can be hugely complex, spanning
multiple pages.

 As well as needing to capture user data, web applications increasingly need to display this data in an
easy-to-understand format. A table can be the best way to show complex data, but it needs to be carefully
designed to avoid being overwhelming. The collection of elements that make up tables is one of the more
complex bits of HTML, and easy to get wrong.

 Form and data table design have been relatively neglected in favor of higher-profile areas of design.
However, good information and interaction design can make or break a modern web application.

 In this chapter, you will learn about

• Creating attractive and accessible data tables

• Making tables work for responsive layouts

• Creating simple and complicated form layouts

• Styling various form elements, including custom styling of checkboxes
and select menus

• Providing accessible form feedback

 Styling Data Tables
 Tabular data is information that can be arranged in columns and rows. A calendar view of a month is a good
example of something that could be marked up as a table.

 Even relatively simple data tables can be hard to read if they contain more than a few rows and columns.
Without separation between data cells, information blurs together, resulting in a jumbled and confusing
layout (see Figure 9-1).

CHAPTER 9 ■ STYLING FORMS AND DATA TABLES

264

 Conversely, tables with a lot of whitespace can also be very difficult to read, as columns and cells start
to lose their visual association with each other. This is particularly problematic when you’re trying to follow
rows of information on tables with very large column spacing, such as the one in Figure 9-2 . If you are not
careful, it is easy to accidentally stray into the wrong row when moving between columns. This is most
noticeable in the middle of the table where the hard edge of the top and bottom of the table provide less of a
visual anchor.

 Figure 9-1. Compact data tables can be very confusing at first glance

 Figure 9-2. Widely spaced tables can also be difficult to immediately comprehend

 Thankfully, the readability of your data tables can be greatly improved by applying some basic design
techniques. The dates in Figure 9-3 have been given breathing room with a little line height and a default
width. The table head is clearly distinguished with different text styles and a border, and the various states
involving the current date and which days are on the weekend are clearly marked. The result is an easy-to-use
calendar widget.

CHAPTER 9 ■ STYLING FORMS AND DATA TABLES

265

 Table-Specific Elements
 If tables can be difficult for sighted users, imagine how complicated and frustrating they must be for people
using assistive technologies such as screen readers. At the most basic level, tables are created from the
 table element, and consist of tr elements (table rows) and td elements (table cells). Fortunately, the HTML
specification includes further elements and attributes intended to increase the accessibility of data tables.

 Table Captions
 A table caption element acts as a heading for the table. Although not a required element, it is always a good
idea to use a caption wherever possible. In this example, we’re using the caption to show users which month
they are looking at:

 <table class="cal">
 <caption>January 2015</caption>
 </table>

 thead, tbody, and tfoot
 Using thead , tfoot , and tbody allows you to break tables into logical sections. For instance, you can place
all of your column headings inside the thead element, providing you with a means of separately styling that
particular area. If you choose to use a thead or tfoot element, you must use at least one tbody element. You
can only use one thead and tfoot element in a table, but you can use multiple tbody elements to help break
complicated tables into more manageable chunks.

 Row and column headings should be marked up as th rather than td . Table headings can be given a
 scope attribute value of row or col to define whether they are row or column headings. The scope attribute
can also be given a value of rowgroup or colgroup if they relate to more than one row or column. The days of
the week label the columns, so they should have the scope attribute set to col .

 Figure 9-3. Styled data table

CHAPTER 9 ■ STYLING FORMS AND DATA TABLES

266

 <thead>
 <tr>
 <th scope="col">Mon</th>
 <!-- ...and so on -->
 <th scope="col">Sun</th>
 </tr>
 </thead>

 col and colgroups
 The tr element offers a target to style whole rows. But what about columns? We could use :nth-child to
select table cells, which could get messy. The col and colgroup elements are there for this very purpose.
A colgroup is used to define a group of one or more columns, represented by the col element. The col
elements themselves don’t have any content, but rather stand in for the table cells in one particular column
of the actual table.

 <colgroup>
 <col class="cal-mon">
 <col class="cal-tue">
 <col class="cal-wed">
 <col class="cal-thu">
 <col class="cal-fri">
 <col class="cal-sat cal-weekend">
 <col class="cal-sun cal-weekend">
 </colgroup>

 The colgroup needs to be placed inside the table element, after any caption but before any thead ,
 tfoot , or tbody elements.

 You then apply styling to the col (or colgroup) elements instead of all the table cells in a specific
column, like (for example) all Saturdays and Sundays in a calendar. The properties you can style for columns
are severely limited. You can style background properties, border properties, and width and visibility , but
that’s it.

 To top that off, visibility for columns can only have the value visible or collapse , and even that
is not very well supported in browsers. The value collapse is supposed to not just hide but collapse the
dimensions of portions of a table, which would be handy in some situations, but it’s just one of those things
that some browser-makers seem to have skipped.

 Finished Table Markup
 Putting all of these HTML elements and attributes together, you can create the basic outline for the calendar
table shown in Figure 9-1 .

 <table class="cal">
 <caption>January 2015</caption>
 <colgroup>
 <col class="cal-mon">
 <!-- ...and so on -->
 <col class="cal-sat cal-weekend">
 <col class="cal-sun cal-weekend">
 </colgroup>

CHAPTER 9 ■ STYLING FORMS AND DATA TABLES

267

 <thead>
 <tr>
 <th scope="col">Mon</th>
 <!-- ...and so on one per day.-->
 <th scope="col">Sun</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td class="cal-inactive">29</td>
 <td class="cal-inactive">30</td>
 <td class="cal-inactive">31</td>
 <td>1</td>
 <td>2</td>
 <td>3</td>
 <td>4</td>
 </tr>
 <!-- ...and so on, one row per week... -->
 <tr>
 <td>26</td>
 <td class="cal-current">27</td>
 <!-- ...and so on -->
 <td>31</td>
 <td class="cal-inactive">1</td>
 </tr>
 </tbody>
 </table>

 We’ve wrapped all the days with a placeholder anchor element (assuming the calendar component takes
you somewhere or does something when you click a date). We have also added a couple of class names to
represent the current day (.cal-current) and days that fall outside of the current month (.cal-inactive).

 Styling the Table Element
 The CSS specification has two table border models: separate and collapsed. In the separate model, borders
are placed around individual cells, whereas in the collapsed model, cells share borders. We want cells to
share a single 1-pixel border, so we set the border-collapse property of our table to collapse .

 Tables also have a sizing algorithm for their cells, which we can control via the table-layout property.
By default, a value of auto is used, which basically leaves it up to the browser to determine widths of cells
based on their content. By changing it to fixed , any cell widths are determined based on the width of cells in
the first row of the table or any col or colgroup elements. This gives us more control via CSS.

 Next, we set the font stack and center all the text in the table. Finally, we will add a width and a maximum
width to create a fluid component that takes up as much space as it can without being unreadably wide.

 .cal {
 border-collapse: collapse;
 table-layout: fixed;
 width: 100%;
 max-width: 25em;
 font-family: "Lucida Grande", Verdana, Arial, sans-serif;
 text-align: center;
 }

CHAPTER 9 ■ STYLING FORMS AND DATA TABLES

268

 Styling the Table Contents
 The groundwork has been set, so it is now time to start adding the visual style. To make the table caption
look a little more like a regular heading, we’ll increase the font size and line height. We will also align it to the
left and give it a border to separate it from the table head.

 .cal caption {
 text-align: left;
 border-bottom: 1px solid #ddd;
 line-height: 2;
 font-size: 1.5em;
 }

 Next, we’ll use the col elements to set a pink background for the weekend days. Remember, background
properties are among the few things you can change for whole columns. We will use a highly transparent
color so it blends in with any background, but supply a fallback declaration to a solid color before that, to
accommodate older browsers.

 .cal-weekend {
 background-color: #fef0f0;
 background-color: rgba(255, 0, 0, 0.05);
 }

 Next, we’ll style the individual cells. All cells need a bit more line height, and we’ll supply them with
a width. By default, tables have a layout algorithm that assigns space according to the content of the cells.
This causes the columns to be just slightly different because of the difference in size of the weekday table
headings. We can assign a width equal to one-seventh of the table width (14.285%) to correct this. In fact,
the width only needs to be at least one-seventh of the table width—if the cells add up to more than 100%
(when using the fixed table layout model), they will each be proportionally reduced in size until they fit. If we
wanted to make the cells equally wide regardless of how many there are, we could set their width to 100%.
While this is a handy trick, in this case we’ve left the width as one-seventh of the total, for clarity’s sake. You
can read more about table layout quirks in this CSS-Tricks article by Chris Coyier: https://css-tricks.
com/fixing-tables-long-strings/ .

 Table cells also have a default padding in some browsers, which we’ll want to remove. We’ll also add a
faint border for the table cells, but not heading cells.

 .cal th,
 .cal td {
 line-height: 3;
 padding: 0;
 width: 14.285%;
 }
 .cal td {
 border: 1px solid #eee;
 }

 To separate the table head from the table data (the actual dates), we will add a thicker border. This
should be as easy as setting a border on the thead element.

 .cal thead {
 border-bottom: 3px solid #666;
 }

https://css-tricks.com/fixing-tables-long-strings/
https://css-tricks.com/fixing-tables-long-strings/

CHAPTER 9 ■ STYLING FORMS AND DATA TABLES

269

 This will work fine in most browsers (Chrome, Firefox, Safari, Opera, etc.) but sadly not in Internet
Explorer or Edge. Borders in a table, no matter if they are on a table cell, a row, or a group of rows (thead or
 tbody for example), all get mashed together in the collapsing table model we have chosen. Fortunately, most
browsers will override vertical borders when a border is set across a whole row. IE and Edge will try to join
each of the right and left borders with the border on the thead element, creating ugly gaps (see Figure 9-4).

 Figure 9-4. IE and Edge both let the vertical borders crash into the horizontal border on the table head,
creating gaps

 There are ways around this. We could opt out of the collapsed border model and add more rules for the
individual table cell borders, but in this instance, we will leave it as is. Should you come across this problem
and need it to look exactly the same in IE as in other browsers, you might have to resort to either the separate
border model or using something like a background image instead.

 Next up, we’ll deal with the anchor links representing the clickable days inside the calendar widget.
We will remove the underline, give them a dark purple color, and set them to display as blocks. This causes
them to expand to fill the whole table cell, creating a much larger clickable area. Finally, we’ll add rules for
the hovered and focused states, where we show a translucent background-color (using the same fallback
technique to a solid color as before).

 .cal a {
 display: block;
 text-decoration: none;
 color: #2f273c;
 }

 .cal a:hover,
 .cal a:focus {
 background-color: #cde7ca;
 background-color: rgba(167, 240, 210, 0.3);
 }

 As the finishing touch, we’ll add styles for the other states of the calendar dates. We have dates falling
outside of the current month, so we will give them a faded color and make it very clear that they cannot be
selected by using a different pointer.

 For the current date, we’ll change the background color to another slightly translucent tone. The
translucent colors of the various states blend together, so we will automatically have different resulting
colors depending on if we have a current date, current date being hovered, current date being hovered inside
of the “weekend,” etc., all without any extra rules (see Figure 9-5).

CHAPTER 9 ■ STYLING FORMS AND DATA TABLES

270

 .cal-inactive {
 background-color: #efefef;
 color: #aaa;
 cursor: not-allowed;
 }
 .cal-current {
 background-color: #7d5977;
 background-color: rgba(71, 14, 62, 0.6);
 color: #fff;
 }
 .cal-current a {
 color: #fff;
 }

 And there you have it, a beautifully styled calendar as seen in Figure 9-3 .

 Responsive Tables
 Tables demand space by their very nature. They have the concept of two axes built in, and require more
width as the number of columns increases. The consequence is that complex tables tend to require quite
a bit of space, which clashes with the responsive goal of being able to display things comfortably on all
screens, big and small.

 We have previously mentioned that tables (and each component of a table) have their own display
mode in CSS. We can use this to make things that are not tables borrow the “grid nature” of tables, for layout
purposes. But we can also use the reverse strategy, and make tables not display as tables! We’ll adopt this as
a method of making tabular data fit on a smaller screen.

 Linearizing a Table
 When we have a table with a large number of columns, we can flip it so that each row is represented as a
block consisting of both the table header texts and the values for that row. Let’s create an example table
to visualize this, with a bunch of data for car models. The end result will look something like Figure 9-6 on
larger screens.

 Figure 9-5. We have added various subtle states for the hovered, current, and inactive dates

CHAPTER 9 ■ STYLING FORMS AND DATA TABLES

271

 For smaller screens, each row gets its own block. The table heading row is hidden, and the column
labels are instead printed out before each piece of data. It will look something like Figure 9-7 .

 <table class="cars">
 <caption>Tesla car models</caption>
 <thead>
 <tr>
 <th scope="col">Model</th>
 <th scope="col">Top speed</th>
 <th scope="col">Range</th>
 <th scope="col">Length</th>
 <th scope="col">Width</th>
 <th scope="col">Weight</th>
 <th scope="col">Starting price</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td>Model S</td>
 <td>201 km/h</td>
 <td>426 km</td>
 <td>4 976 mm</td>
 <td>1 963 mm</td>
 <td>2 108 kg</td>
 <td>$69 900</td>
 </tr>
 <tr>
 <td>Roadster</td>
 <td>201 km/h</td>
 <td>393 km</td>
 <td>3 946 mm</td>
 <td>1 873 mm</td>
 <td>1 235 kg</td>
 <td>$109000</td>
 </tr>
 </tbody>
 </table>

 Figure 9-6. A table of data for car models, with some simple styling

CHAPTER 9 ■ STYLING FORMS AND DATA TABLES

272

 The styling for this table consists of some simple rules for borders, fonts, and a “zebra- striping ”
technique, where each even row of the table has a different background color:

 .cars {
 font-family: "Lucida Sans", Verdana, Arial, sans-serif;
 width: 100%;
 border-collapse: collapse;
 }

 .cars caption {
 text-align: left;
 font-style: italic;
 border-bottom: 1px solid #ccc;
 }

 .cars tr:nth-child(even) {
 background-color: #eee;
 }
 .cars caption,
 .cars th,
 .cars td {
 text-align: left;
 padding: 0 .5em;
 line-height: 2;
 }
 .cars thead {
 border-bottom: 2px solid;
 }

 Figure 9-7. The table as linearized for small screens

CHAPTER 9 ■ STYLING FORMS AND DATA TABLES

273

 Tables have a lot of default styles and display modes. If we were to go the “mobile first” route and change the
default styling to then use a min-width condition to reset the defaults for larger screens, we could be in for a lot of
work. That’s why we’ll use a max-width condition instead, to specifically target this special case at smaller screens:

 @media only screen and (max-width: 760px) {
 .cars {
 display: block;
 }
 .cars thead {
 display: none;
 }
 .cars tr {
 border-bottom: 1px solid;
 }
 .cars td, .cars th {
 display: block;
 float: left;
 width: 100%;
 box-sizing: border-box;
 }
 .cars th {
 font-weight: 600;
 border-bottom: 2px solid;
 padding-top: 10px;
 }
 .cars td:before {
 width: 40%;
 display: inline-block;
 font-style: italic;
 content: attr(data-label);
 }
 }

 The table cells are now set to display as blocks and take up 100% of the width, stacking them on top of
each other inside the rows. The table header is completely hidden. To retain the association between the
column labels and the individual values inside the td elements, we have inserted the label for each column
as a data-label attribute on each table cell in the markup:

 <th scope="row">Model S</th>
 <td data-label="Top speed">201 km/h</td>
 <td data-label="Range">426 km</td>
 <td data-label="Length">4 976 mm</td>
 <!-- ...and so on -->

 Figure 9-8. Our table starts getting cramped at around 760 pixels wide

 If we resize the screen, we find that at around 760 pixels wide, this table starts getting really cramped
and hard to read (see Figure 9-8). That is where we need to place a breakpoint and start changing things.

CHAPTER 9 ■ STYLING FORMS AND DATA TABLES

274

 We can now use the :before pseudo-element to inject these labels before each row of cell content.
We can get at contents of element attributes by using the attr() functional notation with the content
property—a handy trick for revealing extra bits of data hidden in HTML. The repetition of the labels in the
markup is a small but necessary price to pay to avoid hard-coding the value of the labels inside the CSS.

 Apart from some further style changes to keep the table readable, there are some other important parts
of the code in the previous example.

 First, we have set the table itself to display: block . This isn’t necessary for presentation, but it
helps with accessibility. Switching the display mode of a table shouldn’t change how screen readers
interpret it, but it does. This means that some screen readers get confused when there is a table in the
markup but with table cells set to display as regular blocks (via CSS) inside it. Setting the table itself to
display as a block seems to trigger these screen readers to read the table as a flow of text instead, which
keeps the content accessible, despite losing the tabular nature. Jason Kiss of AccessibleCulture.org has a
helpful article explaining the differences in various screen readers, at http://accessibleculture.org/
articles/2011/08/responsive-data-tables-and-screen-reader-accessibility/ .

 The second thing we have done to make this solution work is to add a float declaration to the table
cells. This is only necessary to counter a bug in IE9, which does support media queries, but does not seem
to accept changing the display mode of table cells to block inside of an @media rule. It does apply floats,
however, which effectively turns the cells into blocks as a side effect. Setting the width of the cells to 100%
counters the shrink-wrapping effect of the float and guarantees they line up vertically just like blocks are
supposed to.

 Advanced Responsive Tables
 Linearizing tables for small viewports is just one of the solutions to creating responsive tables. There are
several ways to solve the same problem, and to be quite honest, it is still a fairly new problem as this book is
being written. There is no “one size fits all” solution, but there are a few strategies to choose from. Most rely
on JavaScript to manipulate the markup when needed, combined with CSS. The various strategies are all
variations of some basic mechanisms:

• Introduce some sort of scrolling mechanism for the columns of the table when the
screen is too small. For example, the first column could be fixed in place and act
as an anchor that helps you know which row you are looking at, and the rest of the
columns can scroll.

• Hide columns as the screen gets smaller, so that only the most important things
are shown.

• Link to a larger version of the table in a separate window, where the user must rely
on zoom instead.

• Make it possible to show and hide columns with a toggle mechanism.

 If you need to support complex responsive table scenarios, you might find the tool Tablesaw a good fit
(http://www.filamentgroup.com/lab/tablesaw.html), if nothing else as an inspiration for design patterns. It
is a collection of jQuery plug-ins that helps you achieve some of the strategies mentioned in the previous list.

 Styling Forms
 Forms are where visitors of a web page actually do something else than consume content. It can be to fill
out a contact form, write a contribution to be published, enter payment information, or finally click the
“Buy now” button. It’s quite obvious that these are very valuable activities, but despite being very important,
forms are often poorly designed and coded.

http://accessibleculture.org/articles/2011/08/responsive-data-tables-and-screen-reader-accessibility/
http://accessibleculture.org/articles/2011/08/responsive-data-tables-and-screen-reader-accessibility/
http://www.filamentgroup.com/lab/tablesaw.html

CHAPTER 9 ■ STYLING FORMS AND DATA TABLES

275

 Perhaps one of the reasons for this is that forms have always been a bit of a pain to code. They have
a lot of moving parts and have traditionally been hard to style. This is because many form controls are
implemented as replaced content , meaning that controls like the arrow in the drop-down menu in a select
element isn’t actually represented by any HTML element. It’s more of a black box that the browser throws
in there whenever you declare a <select> tag in the markup. This is largely to ensure consistency with the
default UI controls of the operating system the user is currently on.

 We can, however, style at least some parts of the appearance of form controls. For the parts we can’t
style, we can sort of fake the appearance of a custom control with some creative coding.

 Forms are also about more than the form controls themselves, so this section covers both how to mark
up and style components that make for an attractive HTML form. It should be noted that it is by no means
a comprehensive guide to the various aspects of HTML forms – there are just too many elements and
attributes for us to cover them all here.

 A simple Form Example
 Short and relatively simple forms are easiest to fill in when the form labels appear vertically above their
associated form elements. Users can simply move down the form step by step, reading each label and
completing the following form element. This method works well for short forms collecting relatively simple
and predictable information such as contact details (see Figure 9-9), but it is also a very good baseline for
viewing forms on smaller viewports such as mobile browsers.

 Figure 9-9. Simple form layout

CHAPTER 9 ■ STYLING FORMS AND DATA TABLES

276

 Fieldsets and Legends
 HTML provides a number of useful elements that can help add structure and meaning to a form. The
first one of these is the fieldset element. A fieldset is used for grouping related blocks of information.
In Figure 9-9 , three fieldsets are used: one for the contact details, one for the comments, and one for the
“Remember me” preference.

 To identify the purpose of each fieldset , you can use a legend element . Legends act a little like a
fieldset’s heading, usually appearing vertically centered over the top border of the fieldset and indented
a little to the right. By default fieldsets are often rendered as having a double border. This slightly unusual
appearance is implemented by different browsers in different ways. It seems to be a special case in the
browser’s rendering engine, and throwing normal CSS properties at it to undo the odd positioning rarely has
the effect you expect. We’ll get back to countering that as we style our form.

 Labels
 The label element is an extremely important one, as it can help add structure and increase the usability and
accessibility of your forms. As the name suggests, this element is used to add a meaningful and descriptive
label to each form element. In many browsers, clicking the label element will cause the associated form
element to gain focus.

 The real benefit of using labels is to increase form usability for people using assistive devices. If a form
uses labels, screen readers will correctly associate a form element with its label. Screen reader users can also
bring up a list of all the labels in a form, allowing them to audibly scan through the form in much the same
way as a sighted user would visually scan through them.

 Associating a label element with a form control can be done in one of two ways: either implicitly by
nesting the form control inside the label element:

 <label>Email <input name="comment-email" type="email"/><label>

 or explicitly by setting the for attribute of the label equal to the id attribute value of the associated form
element:

 <label for="comment-email" >Email<label>
 <input name="comment-email" id="comment-email" type="email"/>

 You will notice that this input, and most of the form controls in this chapter, contain both a name
attribute and an id attribute, since we will most often not nest the input inside the label . The id attribute is
required to create the association between the form input and the label, while the name attribute is required
so that the form data can be sent back to the server. The id and name don’t have to be the same, but it can be
a handy convention to keep them identical when possible, for the sake of consistency.

 Labels associated with form controls using the for attribute don’t need to be near those controls in the
source code; they could be in a completely different part of the document. From a structural point of view,
separating form controls from their labels is rarely wise and should be avoided wherever possible.

 Input Fields and Text Areas
 In our simple example, we have two types of form control elements: input and textarea . Text areas are for
typing in multiple lines of text, as in the comment field. The cols and rows attributes can be used to set a
default size of the text area, mostly to indicate the approximate length of the expected content. We will be
free to further style the textarea with CSS later.

 <textarea name="comment-text" id="comment-text" cols="20" rows="10"></textarea>

CHAPTER 9 ■ STYLING FORMS AND DATA TABLES

277

 The input element is a more versatile form control. By default, it renders as a single-line text input, but
the type attribute can change this to a variety of different form controls. Setting type="password" creates
an input where the value is obscured, and type="checkbox" creates a checkbox. There are a lot of different
values for the type attribute, many of them added in HTML5. Some are mostly variations of the text input
but with special behavior behind the scenes—for example, email , url , and search . Some types create very
different interface controls where supported, like checkbox , radio , color , range , and file . Apart from type ,
there is also a whole host of attributes to use on the inputs, to declare the expected format.

 The different types of form inputs and their attributes are useful for automatic validation of forms.
We will briefly look at that later in the chapter, but for now, we’ll settle on another big benefit. On devices with an
onscreen keyboard, changing the type triggers the software keyboard to change its layout. If we add an e-mail
field and a URL field with the correct types, the keyboard on smartphones and tablets will automatically
adjust to make it easier to type in the correct value when we focus each field (see Figure 9-10).

 Figure 9-10. When the input has the type=“email” attribute, the software keyboard shows a layout more
suitable for typing an e-mail address

 Since the default value of the type attribute is text , older browsers without support for HTML5 will
ignore these newer types and fall back to just a normal input. This makes choosing the newer input types a
very helpful enhancement for us to make.

CHAPTER 9 ■ STYLING FORMS AND DATA TABLES

278

 Putting the Fieldset Together
 Using the structural elements we have looked at so far, we can start laying out our form by marking up the
contents of the first fieldset . The unstyled fieldset is shown in Figure 9-11 .

 Figure 9-11. The unstyled fieldset

 Inside of the form, we have wrapped the fieldset elements with a div , for reasons that will become
clear in a minute. Each combination of label and input is also wrapped with a p element. It used to be that
 input elements were not allowed as direct children of a form element. That is no longer the case in HTML5,
but the standard does still recommend that you wrap labels and form controls with a block element like p ,
since they semantically represent distinct “phrases” of content inside the form.

 We have also added a class name of field to each of these paragraphs, in order to have a specific styling
hook if we want to separate them from other kinds of paragraphs inside the form later. Furthermore, we’ve
separated out the fields that contain a text-entry component by giving them the class name field-text .

 <form id="comments_form" action="/comments/" method="post">
 <div class="fieldset-wrapper">
 <fieldset>
 <legend>Your Contact Details</legend>
 <p class="field field-text">
 <label for="comment-author">Name:</label>
 <input name="comment-author" id="comment-author" type="text" />
 </p>
 <p class="field field-text">
 <label for="comment-email">Email Address:</label>
 <input name="comment-email" id="comment-email" type="email" />
 </p>
 <p class="field field-text">
 <label for="comment-url">Web Address:</label>
 <input name="comment-url" id="comment-url" type="url" />
 </p>
 </fieldset>
 </div>
 </form>

 If you want to change fieldset and legend elements from their default appearance, your best bet is to
not style the actual fieldset element itself, but rather just remove as much default styling as possible and
then add a wrapper element around the fieldset . Your styles will then be added to the wrapper element
instead.

CHAPTER 9 ■ STYLING FORMS AND DATA TABLES

279

 To unstyle the fieldset , we’ll give it the following rules:

 fieldset {
 border: 0;
 padding: 0.01px 0 0 0;
 margin: 0;
 min-width: 0;
 display: table-cell;
 }

 We removed the default border and margin . We’ve also set the padding to 0 —with the exception of the
top padding, which is set to a tiny amount (0.01px). This is to counter weird behavior in some WebKit-based
browsers, where any margin on the element after the legend gets transferred to the top of the fieldset
element. Giving the fieldset a tiny bit of padding-top stops this bug.

 On to the next oddity: some browsers (WebKit- and Blink-based) have a default minimum width for
 fieldset elements, which we override—if not, the fieldset will sometimes stick out of the viewport in the
smallest sizes, creating horizontal scrollbars. Firefox also has a minimum width for fieldset elements, but
it’s hard-coded and overriding min-width there doesn’t help. The solution is to change the display mode to
 table-cell . That messes with IE, so we need to use a Mozilla-specific nonstandard rule block to only target
Mozilla-based browsers:

 @-moz-document url-prefix() {
 fieldset {
 display: table-cell;
 }
 }

 The @-moz-document rule allows users of Mozilla-based browsers to override the styles of specific sites
in their user style sheets, but it works in author styles as well. Normally, you’d put a specific URL in the
 url-prefix() function , but leaving it empty means it works regardless of the URL. Admittedly, this is an ugly
hack, but it represents the last piece in the puzzle for removing the default styles of our fieldset . Now we
can focus on styling the wrapper.

 We’ll give the wrapper a background, some margin and padding, and a subtle shadow. Older browsers
that don’t support the box-shadow property get a border instead, which is then removed using the :root
pseudo-class as a prefix to the selector. This simply refers to the HTML element (being the root element of
the document), but IE8 and other older browsers do not understand this selector, so they will get the border.

 .fieldset-wrapper {
 padding: 1em;
 margin-bottom: 1em;
 border: 1px solid #eee;
 background-color: #fff;
 box-shadow: 0 0 4px rgba(0, 0, 0, 0.25);
 }
 :root .fieldset-wrapper {
 border: 0;
 }

CHAPTER 9 ■ STYLING FORMS AND DATA TABLES

280

 As for the legend, we’ll just remove the default padding and add a little extra to the bottom, to increase
the space between it and the form fields. Margins, sadly, have inconsistent effects on legend elements, so
we’ll avoid those. Lastly, we’ll change its display mode to table . This hack allows it to wrap into multiple
lines in IE if necessary, which is otherwise impossible.

 legend {
 padding: 0 0 .5em 0;
 font-weight: bold;
 color: #777;
 display: table;
 }

 At this point, the fieldset itself is looking good, as shown in Figure 9-12 , and we can turn our
attention to the fields.

 Figure 9-12. The fieldset has now lost the double border and weird positioning of the legend, and has gained
a background and a shadow

 Styling Text Input Fields
 Next, we will add a rule to make the form controls inherit the font properties from the rest of the document.
This is to override the browser defaults: the font size inside input fields, for example, is otherwise set to a
smaller size than the normal text in the document.

 input,
 textarea {
 font: inherit;
 }

 Positioning the labels so they appear vertically above the form elements is very simple. A label is an
inline element by default. Setting its display property to block will cause it to generate its own block box,
forcing the input elements onto the line below.

 The default width of text input boxes varies from browser to browser, but we can control that with CSS.
To create a flexible input field, we’ll set the width in percent by default, but with a maximum width of the
field wrapper set in ems, so that it does not become uncomfortably wide. This will work well on most screen
sizes. We will also need to change the box-sizing property to take borders and padding into account when
calculating what 100% means.

 .field-text {
 max-width: 20em;
 }

CHAPTER 9 ■ STYLING FORMS AND DATA TABLES

281

 .field-text label {
 cursor: pointer;
 }
 .field-text label,
 .field-text input {
 width: 100%;
 box-sizing: border-box;
 }

 The cursor property for the labels is set to pointer , making it clearer for mouse-based users that this is
a clickable element. The labels are also included in the rule above that sets the width, so they have the same
width as the inputs.

 Finally, we will tweak the styles of the text inputs slightly. We will give them subtle rounded corners, set
a border color, and add some padding:

 .field-text input {
 padding: .375em .3125em .3125em;
 border: 1px solid #ccc;
 border-radius: .25em;
 -webkit-appearance: none;
 }

 Setting the border property often removes any OS-specific border appearance and inset shadows that
may show when rendering text inputs. Some WebKit-based browsers (like Safari on iOS) still show an inset
shadow, so to get rid of that we set the proprietary -webkit-appearance property to none .

 ■ Note There isn’t a standardized appearance property, but both -webkit-appearance (WebKit- and
Blink-based browsers) and -moz-appearance (Firefox) let you override some rendering details for OS-specific
controls. Normally, you’d do best to steer clear of these, but they can be useful for removing browser-specific
styling of input elements.

 Handling the Focused State
 After changing the border of the input element, we need to pay attention to the focused state of the element
as well. Most browsers show some form of outline or glow around the input element when it is focused. This
marker helps users distinguish which field is focused, and can be removed by overriding either the outline
property or the border property, depending on the browser. As soon as we’re affecting either of these properties,
we need to make sure that we haven’t unintentionally made the form inaccessible for keyboard users.

 This means that for cross-browser compatibility it’s necessary to take care of the focused state
ourselves. We’ll add a different border color on :focus , as well as a subtle blue glow by using box-shadow
(see Figure 9-13). Having done that, we can also set the outline property to 0 when focused in order to
avoid a double marker of the focused state in some browsers.

 .field-text input:focus {
 box-shadow: 0 0 .5em rgba(93, 162, 248, 0.5);
 border-color: #5da2f8;
 outline: 0;
 }

CHAPTER 9 ■ STYLING FORMS AND DATA TABLES

282

 We have explicitly targeted the types of text-based inputs we are using in this form in the rules that
we have created so far, using the .field-text selector. This is to avoid setting unnecessary rules for other
types of input widgets, such as checkboxes. We could have gone with a list of attribute selectors instead,
but as there are many possible values of the type attribute, a utility class name on the parent element makes
the code a bit cleaner.

 Adding the Rest of the Fieldsets
 The rules we have created so far work equally well for other form elements such as textareas:

 <div class="fieldset-wrapper">
 <fieldset>
 <legend>Comments</legend>
 <p class="field field-text">
 <label for="comment-text">Message:</label>
 <textarea name="comment-text" id="comment-text" cols="20" rows="10"></textarea>
 </p>
 </fieldset>
 </div>

 To adjust the appearance of the textarea element , we can simply add it to the list of selectors in any
rules where we set properties for text inputs and labels, and get the same behavior:

 .field-text label,
 .field-text input,
 .field-text textarea {
 /*...*/
 }

 Textareas will get a default height based on the rows attribute, but we can of course override that with
 height . When a user enters text that is longer than the visible space, the textarea will overflow and receive
a scrollbar.

 Many browsers will also let the user resize the textarea, so that they can see the whole text they have
entered. Some browsers let the textareas resize in both width and height, and some only allow the height
to resize. We can actually be explicit about this in CSS, using the resize property . It can be set to any of the
keywords vertical , horizontal , none , or both , but shown here set to vertical :

 textarea {
 height: 10em;
 resize: vertical;
 }

 Figure 9-13. A focused text input gets a different border color and a bit of a glow using box-shadow

CHAPTER 9 ■ STYLING FORMS AND DATA TABLES

283

 Adding Radio Buttons
 For the last part of the form, we are adding a radio button control , which enables the user to select only one
choice out of two options. These are represented by input elements with their type set to radio . Rather than
having their labels above them, these elements usually have their labels to the right (see Figure 9-14).

 Figure 9-14. Our radio buttons, with the label text to the right instead of above

 The effect of only being able to select one of these inputs is created by making the name attribute equal
for these two inputs (the id attribute can still be different though):

 <div class="fieldset-wrapper">
 <fieldset>
 <legend>Remember Me</legend>
 <p class="field">
 <label><input name="comment-remember" type="radio" value="yes" />Yes</label>
 </p>
 <p class="field">
 <label><input name="comment-remember" type="radio" value="no" checked="checked"

/>No</label>
 </p>
 </fieldset>
 </div>

 Notice that we have chosen to nest the input inside of the label in this case, instead of associating it
with a for attribute and an id on the input element. This means that the display: block declaration on the
 label doesn’t put it on a separate row from the radio button.

 The last thing we’ll do is add a little bit of right margin to the radio buttons, to provide some spacing
between the labels:

 input[type="radio"] {
 margin-right: .75em;
 }

 Buttons
 We have one more thing to add before our form is complete. The user needs a button with which to submit
the form, so the server can process it.

 There are two ways of creating buttons with HTML. First, there’s the input element with type set to
 button , reset , or submit :

 <input type="submit" value="Post comment" />

CHAPTER 9 ■ STYLING FORMS AND DATA TABLES

284

 Then there is the button element, which can have the same type attribute values:

 <button type="submit">Post comment</button>

 The button type can be used for actions initiated by JavaScript when used outside of a form, rather than
actually submitting the form to the server. The reset type (not used very often these days) resets the form
to its initial values. Finally, the submit value sends the form data to the URL specified in the form’s action
attribute, if the button is inside a form element. It is the default value when the type attribute is missing.

 These two elements for buttons work the same way, and initially look the same. We recommend that
you use the button element for your buttons, as you can put other elements inside them (such as span s or
images) to help with styling.

 Buttons have a specific default look on each platform (see Figure 9-15), as do checkboxes, radio buttons,
and other form controls. As buttons are such a ubiquitous part of user interfaces, there is a big chance that
you’ll want to style them according to the specific look of the site you’re building. Luckily, they are one of the
easier form components to style with CSS.

 Figure 9-16. Our styled button

 Figure 9-15. Unstyled button elements from Chrome on OS X, IE10 on Windows 7, Firefox on Windows 7, and
Microsoft Edge on Windows 10

 We’ll go for a very subtle 3D-looking edge for our button using gradients and box shadows (see Figure 9-16).
Just like with the input element, messing with the border property switches the OS-specific styling off.

 button {
 cursor: pointer;
 border: 0;
 padding: .5em 1em;
 color: #fff;
 border-radius: .25em;
 font-size: 1em;
 background-color: #173b6d;
 background-image: linear-gradient(to bottom, #1a4a8e, #173b6d);
 box-shadow: 0 .25em 0 rgba(23, 59, 109, 0.3), inset 0 1px 0 rgba(0, 0, 0, 0.3);
 }

 The pseudo-3D edge on the button is created with box-shadow rather than border properties. This
allows us to leave the dimensions of the button unchanged, since the shadow doesn’t affect the box model.
The shadow also automatically follows the rounded corners of the button. Note that we are using two
shadows. One is the outside shadow creating the edge, and one is inset, adding a subtle 1-pixel color shift to
the top of the button.

 We have also added a rule for the focused state of the button (see Figure 9-17), where the background is a
bit lighter and a third shadow is added, giving the same slight “glow outline” effect as with the text inputs. (We’ll
revisit the button to animate the pressed state in Chapter 10 , when we explore transforms and transitions.)

http://dx.doi.org/10.1007/978-1-4302-5864-3_10

CHAPTER 9 ■ STYLING FORMS AND DATA TABLES

285

 button:focus {
 background-color: #2158a9;
 background-image: linear-gradient(to bottom, #2063c0, #1d4d90);
 box-shadow: 0 .25em 0 rgba(23, 59, 109, 0.3),
 inset 0 1px 0 rgba(0, 0, 0, 0.3);
 }

 Figure 9-17. Normal state of the button (left) and focused state (right)

 Figure 9-18. Example input using the placeholder attribute

 Browsers that lack support for rounded corners, gradients, and box shadows will get a flat-looking
button for both states, but it will still be perfectly usable.

 Clear Form Feedback and Help Texts
 Poor feedback and bad error messages have long been considered some of the worst and most common
design problems on the Web. When designing forms, make sure you don’t just make the form controls look
nice, but take care to style help and error messages too.

 You can use the placeholder attribute to put an example of the expected input in an input field (see
Figure 9-18). Browsers will show that text until you focus the field or until you start writing.

 <input placeholder="http://example.com" name="comment-url" id="comment-url" type="url" />

 We can do some limited styling of that placeholder attribute, for example, by making it italic. There’s
no standard selector for the placeholder, but different browsers offer different prefixed pseudo-elements that
you can then style. Since each one is only recognized by its respective browser engine, they can’t be merged
into a single rule. When a browser sees an unrecognized selector, it will discard the rule as a whole, so we’ll
need to repeat ourselves a bit:

 ::-webkit-input-placeholder {
 font-style: italic;
 }
 :-ms-input-placeholder {
 font-style: italic;
 }
 ::-moz-placeholder {
 font-style: italic;
 }

CHAPTER 9 ■ STYLING FORMS AND DATA TABLES

286

 Placeholders are meant for example input, so you must not use them as labels. After all, placeholders
disappear as the user interacts with the form, so if the user loses focus (no pun intended!) for a while, they
need to be able to have any instructions still present.

 If a label is not enough, you can add help text next to the form control. As we want to conserve space
and keep the form a bit tidier, we’ll use the sibling selector to only show the extra help when the input field is
being focused (see Figure 9-19).

 Figure 9-19. Showing an extra help text when a field is focused

 We want to hide the text visually, but not necessarily for screen readers, even when the field is not focused.
Using a combination of the clip property , absolute positioning, and overflow: hidden does the trick.

 This specific combination of properties is to avoid various bugs in older browsers. A deeper discussion
of this technique can be found on Jonathan Snook’s blog (http://snook.ca/archives/html_and_css/
hiding-content-for-accessibility). These properties are then overridden when the help text is next to a
focused input, using the sibling selector:

 .form-help {
 display: block;
 /* hide the help by default,
 without hiding it from screen readers */
 position: absolute;
 overflow: hidden;
 width: 1px;
 height: 1px;
 clip: rect(0 0 0 0);
 }

 input:focus + .form-help {
 padding: .5em;
 margin-top: .5em;
 border: 1px solid #2a80fa;
 border-radius: .25em;
 font-style: italic;
 color: #737373;
 background-color: #fff;
 /* override the "hiding" properties: */
 position: static;
 width: auto;
 height: auto;
 crop: none;
 }

http://snook.ca/archives/html_and_css/hiding-content-for-accessibility
http://snook.ca/archives/html_and_css/hiding-content-for-accessibility

CHAPTER 9 ■ STYLING FORMS AND DATA TABLES

287

 ACCESSIBLE HIDING TECHNIQUES

 The technique in the help text example uses CSS to hide something visually while keeping it accessible
for screen readers. Using other techniques, like display: none or visibility: hidden , can make
screen readers skip the text altogether.

 When designing forms, it’s quite a common pattern to see the visual design omitting a label, or using
one label for multiple fields. As an example, you might have a date section split into three fields
representing year, month, and date, but with just one label saying “date of birth.”

 Using an accessible hiding technique in this instance allows you to add a label for any field without
actually displaying it on the page. The technique can, of course, be used for any element that would
help the semantic structure of the page but could be unnecessary for visual users.

 This makes for an ideal candidate for a “helper class” that you apply to your markup whenever this
situation arises. The HTML5 Boilerplate project (http://html5boilerplate.com/) uses this very
technique with the class name .visuallyhidden , for example.

 The markup for our help text is simple enough, but with some added semantic richness to make sure
the help is accessible:

 <input placeholder="http://example.com" name="comment-url" aria-described-by="comment-url-
help" id="comment-url" type="url" />
 Fill in your URL if you have
one. Make sure to include the "http://"-part.

 The aria-describedby attribute on the input element should point to the id of the help text. This
makes screen readers associate the help text with the field, and many of them will read the help text in
addition to the label as the field is focused. The role attribute set to tooltip further clarifies for screen
readers that this is text that appears as the user interacts with the form field.

 If you do form validation either on the server or with JavaScript in the browser, any error messages in
HTML can be marked up in a similar way, using aria-describedby to associate the message with the form
control.

 Modern browsers supporting HTML5 also have built-in form validation, and along with it a range of
CSS pseudo-classes that help with client-side validation.

 HTML5 Form Validation and CSS
 As soon as you use the newer attributes of HTML5 forms , the browser will try to help you validate the value
of the form fields. For example, when you use an input with type set to email and fill in something invalid
and try to submit the form, the browser will show an error message (see Figure 9-20).

http://html5boilerplate.com/

CHAPTER 9 ■ STYLING FORMS AND DATA TABLES

288

 Browsers supporting HTML5 validation also supply us with a number of pseudo-classes that
correspond to various states in form fields. For example, we can use the following code to highlight invalid
text-input fields with a red border and a red glow:

 .field-text :invalid {
 border-color: #e72633;
 box-shadow: 0 0 .5em rgba(229, 43, 37, 0.5);
 }

 We have already seen the :required , :optional , :valid , and :invalid pseudo-classes back in Chapter 2 .
There are several more of them, corresponding to various states of numerical inputs, sliders, etc. Styling
input fields based on these pseudo-classes is no problem, but what about the actual error messages?

 Sadly, these are another example of interface elements that are mostly beyond the reach of CSS.
WebKit-based browsers offer some limited possibilities to style error messages using browser-specific
pseudo-elements like ::-webkit-validation-bubble , but other than that there is no way as of yet to style
their appearance.

 If you need more control over these error messages, there are many JavaScript plug-ins that hook into
the form events that are triggered by the browser. They override the built-in validation, and often supply you
with methods to generate elements (and set the text) for error messages, as well as offer validation support
for older browsers. See for example the form plug-in of the Webshim project (http://afarkas.github.io/
webshim/demos/).

 Advanced Form Styling
 So far, we have kept our form styling to a very sane minimum. And for good reason: forms are rarely the
place to experiment. People wanting to register a profile or pay for a product will likely appreciate clarity
over any attempt to be different for the sake of it. That doesn’t mean that more creative CSS techniques don’t
have a place in form design. In this section, we’ll show a few tips to sweat the details.

 Modern CSS for Form Layout
 By default, most form elements display as inline blocks and thus line up in the text direction. We used the
block display mode in the earlier example to make labels and input fields display as stacked on the page.

 When we want more advanced form layout, some of the newer layout mechanisms really shine. Flexbox
was created specifically to target things like rows or columns of buttons or other interface elements, where
the space between them needs to be divided in a clever way. This is often the case with forms, so let’s look at
an example where we use flexbox.

 Building on the styles we saw in the previous simple example, let’s create a slightly more complex form,
where we collect some information about job applicants. We are aiming to collect the applicant’s name, e-mail
address, and Twitter handle, and a list of coding languages that the applicant has mastered (see Figure 9-21).

 Figure 9-20. Validation message in Mozilla Firefox

http://dx.doi.org/10.1007/978-1-4302-5864-3_2
http://afarkas.github.io/webshim/demos/
http://afarkas.github.io/webshim/demos/

CHAPTER 9 ■ STYLING FORMS AND DATA TABLES

289

 For larger viewports, the top part of the form switches from a stacked version (where labels are stacked
over the fields) to a version where the label appears on the same line as the field. There is also some
guidance text prepended to the Twitter handle field, indicating that only the part after “@” needs to be filled
in. Let’s start with the inline fields.

 We’ll use flexbox to control the field layout. To detect it, we’ll use the Modernizr library that we saw
in Chapter 6 . As a short recap, Modernizr can detect CSS features via JavaScript, and adds class names for
each supported feature to the html element of your page. You can create a custom script containing only the
detections that you need at https://modernizr.com . In this case, the flexbox detection adds the flexbox
class to the html element.

 We can now start coding our inline field solution using the .flexbox class as a selector prefix, and be
confident that only browsers with support will see it.

 First of all, we only want to serve the inline layout when the viewport is big enough to handle it. Around
560 pixels seems about right, which comes down to 35em:

 @media only screen and (min-width: 35em) {
 /* the rest of the code snippets go here */
 }

 Next, our text input fields need to become a flex container in the larger viewport, where the items line
up horizontally (which is the default). They also need to have a larger maximum width.

 Figure 9-21. Our applicant form

http://dx.doi.org/10.1007/978-1-4302-5864-3_6
https://modernizr.com/

CHAPTER 9 ■ STYLING FORMS AND DATA TABLES

290

 .flexbox .field-text {
 display: flex;
 max-width: 28em;
 }

 We want the labels to all have the same width (about 8em seems to do the trick) and neither shrink nor
grow—that is, flex-grow and flex-shrink set to 0 , with a flex-basis of 8em :

 .flexbox .field-text label {
 flex: 0 0 8em;
 }

 As for the label text, we want to center it vertically. We could do this with line-height , but we’d be tying that
to the height of the input elements. Flexbox can actually help us with this as well, without specific measurements.

 To achieve this effect, we need to declare the labels themselves as being flex containers where the
contents are centered. Since there are no children of the label element that we can center, we are relying on
the fact that any text content inside a flex container becomes an anonymous flex item . We can then tell the
container to center all its items vertically.

 .flexbox .field-text label {
 flex: 0 0 8em;
 display: flex;
 align-items: center;
 }

 That gives us the finished field layout for larger viewports, as seen in Figure 9-22 .

 Figure 9-22. The inline label/field placement for larger viewports

 As for the width of input elements, flexbox will figure them out automatically. They’re already set to
 width: 100% from before, which will then shrink to make room for the fixed-width labels since the default
 flex value is 0 1 auto . Reading that value out means “base your width on the width property (auto), don’t
grow over that, but feel free to shrink to make room.”

 Prefixed Input Fields with Flexbox
 When it comes to the prepended text, this is a situation that flexbox really excels at. We have some
constraints that are really tricky to solve in a flexible way using any other layout technique:

• The input and the prepended text component need to be the same height.

• The prepended element needs to stay flexible in width, depending on the text inside.

• The input then needs to adjust in width so that the combination of prepended text
and input field add up to the same width as the other text fields.

CHAPTER 9 ■ STYLING FORMS AND DATA TABLES

291

 To target these components, we’ll wrap the whole thing in a span and apply some generic class names.
We’ll also add relevant attributes to make the purpose of the prepended text accessible. Here’s the complete
markup for the field:

 <p class="field field-text">
 <label for="applicant-twitter">Twitter handle:</label>

 <span class="field-prefix" id="applicant-twitter-prefix" aria-label="You can omit the

@">@
 <input aria-describedby="applicant-twitter-prefix" name="applicant-twitter"

id="applicant-twitter" type="text" />

 </p>

 The aria-label attribute here gives the prefix element an accessible name for screen readers that
explains the purpose of the prefixed text.

 For the styling, we’ll start by creating a fallback style for browsers that do not support flexbox. We’ll keep
that simple, and just offer an inline block box containing the prepended text, and make the input next to it
short enough to not end up on different rows on small screens (see Figure 9-23).

 Figure 9-23. Our baseline is just the prepended text inside a styled inline block box

 .field-prefix {
 display: inline-block;
 /* border and color etc omitted for brevity. */
 border-radius: .25em;
 }
 .field-prefixed input {
 max-width: 12em;
 }

 We will also have to complement the rule where we set the width of the inputs by adding our prepended
field class name to the selectors:

 .field-text label,
 .field-text input,
 .field-prefixed,
 .field-text textarea {
 /* ... */
 }

 Finally we’ll apply the flexbox magic, using the .flexbox class name to scope our rules. We’ll make the
 .field-prefix wrappe r into a flex container, and vertically center the contents of the prefix element. Just like
with the label in the inlined field examples earlier, we create a nested flex container and align the anonymous
item vertically inside. We also tweak the border to only be rounded on the outside corners of the items.

CHAPTER 9 ■ STYLING FORMS AND DATA TABLES

292

 .flexbox .field-prefixed {
 display: flex;
 }
 .flexbox .field-prefix {
 border-right: 0;
 border-radius: .25em 0 0 .25em;
 display: flex;
 align-items: center;
 }

 The input will need to get its max-width reapplied. Other than that, it will automatically fill up the rest
of the space.

 .flexbox .field-prefixed input {
 max-width: 100%;
 border-radius: 0 .25em .25em 0;
 }

 Figure 9-24 shows the result. These styles provide a flexible and reusable base for prepending texts (and
other controls) to text input fields while keeping them the same width as other inputs. It could easily be
extended for appending after the field as well.

 Figure 9-24. The finished prefixed field

 Using Multi-Column Layout for Checkbox Collections
 In the same way an inline field placement can save vertical space, we can save space by placing collections of
checkboxes into columns. The Multi-Column Layout module is a perfect candidate for this, and falls back to
the single-column layout where not supported.

 Our markup is simple enough: an unordered list with a class name of checkboxes , containing the
individual checkboxes and their associated labels inside each list item.

 <ul class="checkboxes">

 <input type="checkbox" name="lang-as" id="lang-as">
 <label for="lang-as">ActionScript</label>

 <!-- ...and so on-->

 We could have nested the checkboxes inside the labels as we did with the radio buttons, but the order
here will actually be used for styling purposes in the next example.

CHAPTER 9 ■ STYLING FORMS AND DATA TABLES

293

 To get the checkboxes to line up in columns, we can simply tell the browser the minimum width for
each column. Around 10 ems seems reasonable to allow for longish labels. Other than that, we’ll just remove
the list styling and tweak the margin and padding. Figure 9-25 shows the checkbox columns.

 .checkboxes {
 list-style: none;
 padding: 0;
 column-width: 10em;
 }
 .checkboxes li {
 margin-bottom: .5em;
 }

 Figure 9-25. Checkboxes in four automatically generated columns on a midsized viewport

 Styling the Unstylable: Faux Custom Checkboxes
 We have seen that buttons and text inputs can be tamed by removing default styling like borders. But
buttons are mostly just one flat surface with some text in it, and other form components are more complex.
Checkboxes, for example, consist of the little box and the potential checkmark inside it. What does it even
mean to apply padding, for example, to a checkbox? Does it go inside the graphic of the box, or outside it? Is
the checkmark affected by any sizing we apply to the checkbox?

 Sidestepping these issues, we can choose to replace the checkbox completely with a graphic. This is
done with clever use of the label element and the pseudo-classes for form states.

 Because of the order of the markup, combining the sibling selector and the :checked pseudo-class gives
us a way to generate rules for the look of both the checkbox and the label, based on the state of the checkbox.

 We also need to draw a line in the sand here in terms of browser support. Old browsers that don’t
understand selectors like :checked need to fall back to the unstyled native checkbox. To achieve this, we’ll
reuse the :root selector trick, which causes old browsers like IE8 to skip the whole rule:

 :root input[type="checkbox"] + label {
 /* unchecked checkbox label */
 }
 :root input[type="checkbox"]:checked + label {
 /* checked checkbox label */
 }

CHAPTER 9 ■ STYLING FORMS AND DATA TABLES

294

 Next, we need to make the checkbox itself invisible while still accessible and focusable. We will use
an image of a checkbox that we have created ourselves as the background image for the label. Figure 9-26
explains the thinking.

Original checkbox (hidden)

Custom checkbox background image

Label element

 Figure 9-26. The checkbox itself is hidden using CSS, and the label element has a background image showing
the fake checkbox

 People using a mouse or touchscreen can click the label, which triggers the checkbox to change state
and thus updates the styling. Keyboard users can still focus and interact with the checkbox, and the state will
likewise be reflected in the styling of the label.

 There are two crucial parts to the technique. First, the label needs to come right after the input
element in the markup, and have the proper for attribute that associates the two. Second, the label needs to
be hidden but still accessible. The last one is a matter of giving it the same collection of styles as the hidden
help message from the earlier example:

 :root input[type="checkbox"] {
 position: absolute;
 overflow: hidden;
 width: 1px;
 height: 1px;
 clip: rect(0 0 0 0);
 }

 Now we need to supply the rules for the images of the various states of the checkboxes, including focus
states for keyboard access. We’ll need four images in all: unchecked, checked, unchecked with focus, and
checked with focus. Figure 9-27 shows the final result.

CHAPTER 9 ■ STYLING FORMS AND DATA TABLES

295

 Figure 9-27. The results of our checkbox styling: our checkboxes now follow the overall color theme of our
page across all modern browsers

 We are using Modernizr to detect support for SVG, so our rules have a svgasimg class added to them:

 ■ Note The Modernizr test actually detects support for the <image> element in SVG, but it overlaps pretty
much perfectly with the support for SVG for background images, which is otherwise undetectable, as well as
SVG files used for img element sources (hence the class name).

 :root.svgasimg input[type="checkbox"] + label {
 background: url(images/checkbox-unchecked.svg) .125em 50% no-repeat;
 }
 :root.svgasimg input[type="checkbox"]:checked + label {
 background-image: url(images/checkbox-checked.svg);
 }
 :root.svgasimg input[type="checkbox"]:focus + label {
 background-image: url(images/checkbox-unchecked-focus.svg);
 }
 :root.svgasimg input[type="checkbox"]:focus:checked + label {
 background-image: url(images/checkbox-checked-focus.svg);
 }

 In the final example files, we have also included some rules for padding and text styles of the label. We
have also URL-encoded the (tiny) SVG files and placed them inline in the CSS file as data URIs, which helps
bring the number of requests down.

 Sadly, there are browsers that support all the selectors we’ve used but not SVG. To combat this, we
need to use a fallback solution, where we fall back to PNG images if JavaScript is prevented from running or
the browser doesn’t support SVG as background images. We add the PNG-based solution before the SVG
solution in our CSS:

 :root input[type="checkbox"] + label {
 background-image: url(images/checkbox-unchecked.png);
 }
 :root input[type="checkbox"]:checked + label {
 background-image: url(images/checkbox-checked.png);
 }
 /* ...and so on. */

CHAPTER 9 ■ STYLING FORMS AND DATA TABLES

296

 The upside is that we now have complete support for our custom checkboxes in any browser that
supports the form pseudo-classes. IE8 (and older) falls back to plain native checkboxes. The exact same
technique can also be used for radio buttons, and you can take it as far as you like in terms of style.

 You could use other techniques for the checkbox graphic as well, including animating the action
of checking and unchecking, like in the demo from Manoela Ilic (http://tympanus.net/Development/
AnimatedCheckboxes/) shown in Figure 9-28 .

 The downside is that we’ve introduced a small dependency on JavaScript to enhance our checkbox
component to its full potential, but it is a very minimal one and with a very decent fallback.

 A word on Custom Form Widgets
 So far, we’ve seen that we can successfully style input fields and buttons with CSS. We can also style
checkboxes and radio buttons using CSS and image replacement techniques. The select element is a
slightly more complex form control, consisting of the drop-down menu itself, its arrow indicator, and a list
of options. There’s also things like the file upload and color picker versions of the input element that have
more complex widgets representing them.

 Traditionally, these kinds of widgets have been virtually impossible to style, leading to a wealth of
JavaScript-driven solutions that fake the appearance of a file picker or select element using regular div s
and span s. While these solutions solve the problem of being able to style the widget, they often create new
challenges that are much harder to get right.

 Figure 9-28. A demo that uses animated SVG graphics to “pencil in” choices for a radio button

http://tympanus.net/Development/AnimatedCheckboxes/
http://tympanus.net/Development/AnimatedCheckboxes/

CHAPTER 9 ■ STYLING FORMS AND DATA TABLES

297

 These challenges include not breaking on mobile devices, using the same keyboard controls as the
native version, and being performant across different devices and browsers. For example, attempting to
fake and then style the options inside a select element is an especially risky thing, since the control can look
drastically different on mobile devices (see Figure 9-29).

 Figure 9-29. A select element on iOS doesn’t display the options underneath the select at all, but triggers a
rotator-type widget at the bottom of the screen instead

 When deciding on a design, you might want to think twice about customizing these types of controls,
and about whether having them match the theme of the page is worth the potential trouble.

 That said, there are also plenty of developers who have tried hard to solve the problem in a thoughtful
manner using JavaScript, so the option to use a third-party library is there. Most of these libraries depend
on general DOM-manipulation libraries like jQuery, as the creation and handling of elements in the page
quickly becomes nontrivial for these kinds of widgets.

CHAPTER 9 ■ STYLING FORMS AND DATA TABLES

298

 You might want to check out any of the following libraries:

• Filament Group has published a simple select menu plug-in for jQuery, that works in
a similar way to the previously described checkbox technique, but with some added
JS trickery. It offers a quick way to style the select element itself, but not the list of
options: https://github.com/filamentgroup/select . Filament Group also has a
small plug-in with a similar approach for file inputs.

• Chosen (http://harvesthq.github.io/chosen/) and Select2
(https://select2.github.io/) are two of the more popular jQuery plug-ins for
advanced enhancement of a select element. Options include styling the placeholder
and options, searching or filtering, and better UI for multiple selection. Both of these
libraries have made improvements in accessibility in recent versions, but you should
know that they may still have issues.

 Developer Todd Parker has made a heroic effort to find such a pure CSS solution for the simplest case of
styling just the dropdown-button of the select element. You can see his solution at http://filamentgroup.
github.io/select-css/demo/ . At the time of writing, it is more a proof of concept than a finished technique,
but it manages to style the select element (sans the option s) in a majority of browsers, using no JavaScript
and a single wrapper element for styling. Older browsers are filtered out with clever hacks, so they get the
unstyled default select.

 No matter which way you go with custom styling or advanced widgets when it comes to forms, make
sure they work as well as the native elements when you use them on a live site.

 Summary
 In this chapter, we have looked at styling forms and tables. They are some of the more complex collections of
HTML elements, but often crucial to help users interact with web pages and understand complex data.

 We have looked at how to style data tables, and a simple way to make them responsive.
 We created a simple form and learned how to style fieldsets, labels, text inputs, and buttons. We also

looked at how to use modern CSS layout techniques to create more efficient use of space in forms, and how
to get past some of the troubles of styling form components like checkboxes and radio buttons.

 In the next chapter, we’ll take interactivity to another level and show you how to make your web pages
come alive, using transforms, transitions, and animations.

https://github.com/filamentgroup/select
http://harvesthq.github.io/chosen/
https://select2.github.io/
http://filamentgroup.github.io/select-css/demo/
http://filamentgroup.github.io/select-css/demo/

299© Andy Budd and Emil Björklund 2016
A. Budd and E. Björklund, CSS Mastery, DOI 10.1007/978-1-4302-5864-3_10

 CHAPTER 10

 Making It Move: Transforms,
Transitions, and Animations

 This chapter is all about moving things around—either through space, with transforms, or through time,
using animations and transitions. Often, these two families of properties work together.

 Transformation is a different concept from moving things with positioning or other layout properties.
In fact, transforming an object doesn’t affect the layout of the page at all. You can rotate, skew, translate, and
scale elements, even in 3D!

 Animating elements can be done with the CSS Animation properties. Transitions are a simplified flavor
of animations. When you only have an on-off state (like with hovering over an element), transitions are there
to automate the process.

 Taken together, these properties give you lots of ways to breathe life into your pages. As an added bonus,
they also have really good performance.

 In this chapter, we will go through the following:

• Two-dimensional transformations: translating, scaling, rotating, and skewing

• Simple and advanced transition effects

• What you can and can’t transition

• Keyframe animations and the animation properties

• Three-dimensional transformations and perspective

 How it all Fits Together
 CSS transforms allow us to move things around in space, while CSS transitions and CSS keyframe animations
control how elements can change over time.

 Even if those two aspects are somewhat unrelated, transforms, transitions, and keyframe animations
are often lumped together conceptually. This is because they are so regularly used to complement each
other. When animating something, you are changing its appearance up to 60 times per second. Transforms
allow you to describe certain kinds of changes to appearance in a way that the browser can very efficiently
calculate.

 Transitions and keyframe animations allow you to animate those changes in a smart way.
As such, these features go together hand in glove. The end result gives us the capability to do things like
the animated 3D pop-up book Google created (see Figure 10-1) to showcase creative use of its products
(http://creativeguidebook.appspot.com/).

http://creativeguidebook.appspot.com/

CHAPTER 10 ■ MAKING IT MOVE: TRANSFORMS, TRANSITIONS, AND ANIMATIONS

300

 Since the examples in this chapter quite literally have a lot of moving parts, it’s hard to describe them
on the pages of a book. We strongly recommend you try out the examples in a browser while reading, to
understand what’s going on. A lot of the time, JavaScript is used for interactivity—we won’t go into the
specifics of how the scripts work, but the examples include JS files for you to explore as well.

 A Note on Browser Support
 The specifications for transforms, transitions, and keyframe animations are still being worked on. Despite
this, most of these features are pretty well supported across commonly used browsers, notable exceptions
being Internet Explorer 8 and Opera Mini. IE9 only supports the 2D subset of transforms using the -ms-
prefix, and does not support keyframe animations or transitions. Transforms, transitions and keyframe
animations all require the -webkit- prefix to work in various versions of WebKit- and Blink-based browsers.
The -moz- prefix is only needed if you need to cover old versions of Firefox.

 2D Transforms
 CSS transforms allow you to shift the rendering of an element on the page by translating, rotating, skewing,
or scaling it. In addition, you can add a third dimension into the mix! In this section, we’ll start with the 2D
transformations, and move on to 3D later. Figure 10-2 gives an overview of what the 2D transforms do.

 Figure 10-1. Google created an animated 3D pop-up book to showcase creative use of its products

CHAPTER 10 ■ MAKING IT MOVE: TRANSFORMS, TRANSITIONS, AND ANIMATIONS

301

 In technical terms, transformations change the coordinate system of the element as it appears on the
page. One way of looking at transformations is to view them as “distortion fields.” Any pixel that belongs
to the rendering of the transformed element is caught in the distortion field and gets teleported to a new
position or size on the page. The element still remains where it was originally positioned on the page, but the
resulting image of the element is transformed.

 Imagine that you have a 100×100-pixel element with a class name of box showing on the page. The
position of the element can be affected by margins, positioning, sizes of other elements in the flow of the
page, and so forth. Regardless of how it ended up where it did, we can describe the position of the box by
using coordinates within the viewport—for example, 200 pixels from the top of the page and 200 pixels from
the left. This is the viewport coordinate system .

 In the page, there is a 100×100-pixel space reserved for the element as it normally renders. Now let’s
imagine we were to transform the element by rotating it 45 degrees:

 .box {
 transform: rotate(45deg);
 }

 Applying a transformation to an element creates what is known as a local coordinate system for the
space where the element was originally placed. The local coordinate system is the distortion field, displacing
the pixels of the element.

 Since elements are represented as rectangles on the page, it’s perhaps easiest to think about what
happens to the four points at the corners of the box. The Firefox developer tools have a nice visualization of
this when inspecting an element. In the Rules panel of the inspector, hover over the transform rule to see the
resulting transformation (see Figure 10-3).

Translate Rotate

Skew Scale

 Figure 10-2. The different types of 2D transformations illustrated

CHAPTER 10 ■ MAKING IT MOVE: TRANSFORMS, TRANSITIONS, AND ANIMATIONS

302

 The page still retains its 100×100-pixel gap where the box used to be, but any point belonging to the box
is now transformed by the distortion field.

 It is important to understand this technial background when applying transformations to elements
in addition to other properties that affect their place on the page. What happens when we apply margin-
top: 20px to the transformed div? Does the corner pointing upward now end up 20 pixels from the top of
the original position? No: the whole local coordinate system of anything belonging to the box is rotated,
including the margin, as shown in Figure 10-4 .

 Figure 10-4. Rotating a box includes rotating its whole coordinate system, so the top margin is also rotated

 Figure 10-3. Visualizing a 45-degree transformation in Firefox developer tools. The original box and the
transformed box are shown along with arrows showing the changed position of the corners.

CHAPTER 10 ■ MAKING IT MOVE: TRANSFORMS, TRANSITIONS, AND ANIMATIONS

303

 It’s also important to note that the rotated appearance in no way interferes with the layout of the rest of the
page as it would appear without the transformation. If we rotate the box a full 90 degrees so that the top margin
is visually poking out to the right, it doesn’t push on any elements that may be sitting to the right of the box.

 ■ Note There is actually one thing on the page that can be affected by transformed elements, and that is
overflow. If a transformed element ends up sticking out in the text direction of any box that has an overflow
property that causes scrollbars, the transformed element may affect the scrollable area. In left-to-right
languages, this means that you can, for example, hide things offscreen using translation upward or to the left,
but not downward or to the right.

 Transform Origin
 By default, any transformation is calculated based on the center of the element’s border box. The property
responsible for controlling this is transform-origin . For example, we could rotate the box around a spot
situated 10 pixels from the top of the box and 10 pixels from the left.

 We can supply transform-origin with one to three values, giving coordinates for the x, y, and z axes.
(The z axis is for 3D transformations; we’ll get back to that later in the chapter.) If you only supply one value,
the second is assumed to be the keyword center , just like when you set a background-position . The third
value does not affect two-dimensional transformations, so we can safely leave it out for now.

 .box {
 transform-origin: 10px 10px;
 transform: rotate(45deg);
 }

 This gives us a completely different result when rotating the box, as shown in Figure 10-5 .

 Figure 10-5. Rotating the box around a point 10 pixels from the top and left edges

CHAPTER 10 ■ MAKING IT MOVE: TRANSFORMS, TRANSITIONS, AND ANIMATIONS

304

 ■ Note Transformations work a little bit differently if you apply them to SVG elements. One example is the
default value of the transform-origin property: it defaults to the top-left corner, not the center of the element.

 Translation
 Translating an element simply means moving it to a new position. You can choose to translate along a single
axis using the translateX() and translateY() functions, or set both at the same time with translate() .

 The translate() function works by feeding it a pair of positions representing the amount of translation
on the x and y axes. This amount can be any length like pixels, ems, or percentages. It is worth noting that
percentages in this context refer to the dimensions of the element itself, not the containing block. This allows
you to translate the element to end up exactly to the right of its own original position without knowing how
wide the element is (see Figure 10-6).

 .box {
 /* equivalent to transform: translateX(100%); */
 transform: translate(100%, 0);
 }

 Figure 10-6. Our box translated 100% to the right

CHAPTER 10 ■ MAKING IT MOVE: TRANSFORMS, TRANSITIONS, AND ANIMATIONS

305

 To begin with, we’ll need an ordered list in our markup. We’ll start the list with rule number three, since
the first two rules have mysteriously gotten lost:

 <ol class="rules" start="3">
 If someone says "stop", goes limp or taps out, the fight is over.
 Only two guys to a fight.
 One fight at a time.
 No shirts, no shoes.
 Fights will go on as long as they have to.
 If this is your first night at FIGHT CLUB, you HAVE to fight.

 By default, we can’t really do much to affect the rendering of the numbers in an ordered list. The CSS
Lists and Counters Module Level 3 spec describes a ::marker pseudo-element to control list marker styling,
but no browsers support it at the time of writing. We’ll get creative and use the well-supported counter-
properties in CSS combined with pseudo-elements to work around that. Counters allow you to generate
numbers by counting certain elements, which you can then insert into the page.

 First off, we remove the default list style (which removes the numbers) and add a counter-reset rule.
It tells the browser that this element resets the numbering on a counter we have named rulecount . This
name is an arbitrary identifier that we have chosen ourselves. The number after the name tells the counter
which initial value it should have.

 .rules {
 list-style: none;
 counter-reset: rulecount 2;
 }

 Figure 10-7. The list of rules, with the numbered items rotated down the side

 Multiple Transformations
 It’s possible to apply multiple transformations at once. The transformations are supplied as a list of space-
separated values to the transform property, and are applied in the order they are declared. Let’s look at an
example where we do both translation and rotation.

 For this example, we’ll use an ordered list of rules for something called “Fight Club.” We’ll do some
formatting of the numbered rules, and rotate them to go down the side each item in our list (see Figure 10-7).
We want the list numbers to read from bottom to top, but positioned at the top of the list item.

CHAPTER 10 ■ MAKING IT MOVE: TRANSFORMS, TRANSITIONS, AND ANIMATIONS

306

 Next, we’ll tell the counter to increment the rulecount value for every time it encounters a list item
inside the list. This means that the first item will be numbered 3 , and so on, as intended.

 .rules li {
 counter-increment: rulecount;
 }

 Finally, we inject the number from the rulecount counter as pseudo-elements using the content
property, before the text of each list item. We’ll insert a section sign (§) before the number. This gives us the
rendered content we see in Figure 10-8 .

 .rules li:before {
 content: '§ ' counter(rulecount);
 }

§ 1

§ 1

transform-origin: 100% 100%; transform: translate(-100%, -100%);

§
1

transform: translate(-100%, -100%)
 rotate(-90deg);

1. 2. 3.

 Figure 10-9. The steps of transforming the counter so it runs from top to bottom next to the list-item text

 Figure 10-8. The list with the injected section signs and numbers

 It doesn’t look great yet, but we now have something to grab and style instead of the default numbers. Next,
we’ll try and position the section numbering vertically along the side of the rule instead of inline with the text.

 We don’t want the list numbers to take up any space in the flow of the page, so we’ll need to position
them absolutely; doing so puts the section number at the top left of the item automatically. To achieve the
effect of the number being rotated but anchored at the top of the list item, we’ll need to think about how to
translate and rotate it. We’ll set the transform-origin at bottom right (100% 100%), translate it 100% to the
left and 100% up (remember that the percentage refers to the dimensions of the transformed element) and
then rotate it 90 degrees counterclockwise. Figure 10-9 shows the transformation step by step.

 .rules li {
 counter-increment: rulecount;
 position: relative;
 }
 .rules li:before {
 content: '§ ' counter(rulecount);
 position: absolute;
 transform-origin: 100% 100%;
 transform: translate(-100%, -100%) rotate(-90deg);
 }

CHAPTER 10 ■ MAKING IT MOVE: TRANSFORMS, TRANSITIONS, AND ANIMATIONS

307

 The order of the transformation functions is very important here. Had we started off by rotating the
pseudo-element, the translation would have happened in relation to the rotated coordinates, and the offsets
on the x and y axes would have pointed 90 degrees the wrong way! Lists of transformations add up, so you
have to plan them out in advance.

 CHANGING THE LIST OF TRANSFORMATIONS

 When you declare a list of transformations, you cannot add to it after the fact, but only replace the whole
list. For example, if you have a transformed element with a translation, and you want to also rotate it on
 :hover , the following will not work as expected:

 .thing {
 transform: translate(0, 100px);
 }
 .thing:hover {
 /* CAUTION: this will remove the translation! */
 transform: rotate(45deg);
 }

 Instead, you must redeclare the whole list, but with the rotation appended:

 .thing:hover {
 /* preserves the initial translation, and then rotates. */
 transform: translate(0, 100px) rotate(45deg);
 }

 In the finished example, we’ve added a gray left border to the list items that the section numbering sits
on top of. The benefit of using a border here is that it will automatically stretch to the height of the list item in
case the rule goes over several lines. We have also added some typographic rules and tweaked the padding
a bit. For example, the generated section numbers have a tiny bit of padding at the top. But remember, that
actually means padding-right since it is now rotated! (See Figure 10-10 .)

 Figure 10-10. Using a border allows us to draw the sidebar background even if lines wrap. The padding-
right we add to the section number is now at the top of the rotated element.

 Scale and Skew
 So far, we have explored the translate() and rotate() transform functions. Of the remaining 2D
transformations, that leaves scale() and skew() . Both of these have corresponding functions for scaling and
skewing on a single axis. Just like translate we have scaleX() , scaleY() , skewX() and skewY()

CHAPTER 10 ■ MAKING IT MOVE: TRANSFORMS, TRANSITIONS, AND ANIMATIONS

308

 Using the scale() function is pretty straightforward. Unitless numbers are used in the scale()
function. It accepts either one or two numbers. If only one is used, the element is scaled equally on both
the x and y axes. A scale of 2 for both axes, for example, means that the element becomes twice as wide and
twice as tall. A scale measurement of 1 means the element is unchanged.

 .doubled {
 transform: scale(2);
 /* ...is equivalent to transform: scale(2, 2);
 /* ...and also equivalent to transform: scaleX(2) scaleY(2); */
 }

 Only scaling one axis means that the element squashes (see Figure 10-11) or stretches out.

 .squashed-text {
 transform: scaleX(0.5);
 /* ...equivalent to transform: scale(0.5, 1);
 }

 Figure 10-11. Text scaled to a measurement below 1 on the x axis becomes squashed

 Skewing means that the horizontal or vertical parallel edges of the element are moved in regard to each
other by a certain number of degrees. It’s easy to get the x axis and y axis mixed up—skewing on the x axis
means that the horizontal lines are still horizontal, while the vertical lines are slanted. The key is to think
about which axis you want the edges to move in relation to each other.

 Going back to the Fight Club example, we could use skewing to create a popular “2.5D” effect, perhaps
inspired by retro video games (the fancy name for it appears to be axonometric projection).

 If we give our list items alternating background and border colors as well as alternating skew
transforms, we get the appearance of an “accordion” type surface (see Figure 10-12):

 /* some properties omitted for brevity */
 .rules li {
 transform: skewX(15deg);
 }
 .rules li:nth-child(even) {
 transform: skewX(-15deg);
 }

CHAPTER 10 ■ MAKING IT MOVE: TRANSFORMS, TRANSITIONS, AND ANIMATIONS

309

 2D Matrix Transformations
 As we discussed in the beginning of this section, transformations cause each point on the surface of the
transformed element to go through a calculation that determines where it ends up in the local coordinate
system.

 When we write CSS, we think in terms like “rotate this element around its center and move it up and
to the left.” To the browser, all of these transformations we apply are mashed up into one mathematical
structure called a transformation matrix . You can manipulate its values directly using the low-level matrix()
function , using a combination of six different numerical values.

 Now, don’t worry: this is not something you would normally do by hand, as anything beyond a single
scaling or translation operation requires considerable math skills.

 To show you an example, the following is an application of the matrix() function that is equal to
rotating an element by 45 degrees, then scaling it up to twice its size, then translating it by 100 pixels on the
rotated x axis, and finally skewing it by 10 degrees on the x axis. The resulting numbers (which have been
rounded somewhat to save space) have little resemblance to the original values of the individual transforms,
at a glance.

 .box {
 width: 100px;
 height: 100px;
 transform: matrix(1.41, 1.41, -1.16, 1.66, 70.7, 70.7);
 /* equivalent to:
 transform: rotate(45deg) translate(100px, 0) scale(2) skewX(10deg); */
 }

 Not exactly easy to interpret, is it?
 For all intents and purposes, the transformation matrix is a “black box” that needs an input of various

numbers representing the final transformation, which could be a combination of a several steps. We can
precalculate these values (if we know the math) and feed them into the matrix() function, but we can’t look
at the values of a matrix() function and know which individual transformations went into it.

 Figure 10-12. Using skew transforms to create a “2.5D” look

CHAPTER 10 ■ MAKING IT MOVE: TRANSFORMS, TRANSITIONS, AND ANIMATIONS

310

 The key point is that a single matrix can succinctly represent the combination of any number of
transformations . The main use case for the matrix() function is not to save space and show off math skills—
but it really shines when combined with JavaScript. As a matter of fact, when you set a transformation on
an element and ask for the computed style of the transformation back in a JavaScript file, you get a matrix
representation.

 Since matrices can be manipulated very efficiently by a script and then plugged back into the matrix()
function, many JavaScript-based animation libraries make heavy use of it. If you’re writing CSS by hand, it’s
a lot easier (and more readable!) to stick with the normal transformation functions.

 If you want to read more about the math behind how to manipulate the CSS transformation matrix, you
can find a good introduction from Zoltan Hawryluk at http://www.useragentman.com/blog/2011/01/07/
css3-matrix-transform-for-the-mathematically-challenged/ .

 Transforms and performance
 When the browser calculates how CSS affects elements on the page, some things are more expensive in
regard to performance than others. If you change the text size, for example, the generated line boxes may
become different as text wraps, and then the element can become taller. Becoming taller pushes down other
elements on the page, which in turn forces the browser to do even further recalculation.

 When you use CSS transforms , these calculations only affect the coordinate system of the element you
are applying it to, changing neither how things are laid out internally nor how things are laid out outside
the element. Furthermore, this calculation can be done pretty much independently of all the other things
going on in the page (like running scripts or laying out other elements), since the transformation is unlikely
to interfere with those. Most browsers also try to let the graphics processor handle these things (if one is
present), since it is specially built for that kind of math.

 This means that transformations are great from a performance standpoint. Any time that you want to
create an effect that can be replicated with a transformation, there’s a high chance that it will have better
performance. Doing multiple transformations in quick succession compounds the gains, such as when
animating or transitioning an element.

 SOME FINAL TRANSFORMS “ GOTCHAS ”

 Transforms have great performance and are pretty easy to work with. That said, there are a few
unexpected side-effects of using transforms:

• Some browsers switch the anti-aliasing method for transformed elements. This means
that things like text rendering can suddenly look different when dynamically applying a
transformation. To counter this, you can experiment with applying a transformation that
only uses the initial values, leaving the element in place, right as the page loads. That
way, the rendering is switched even before the final transformation is applied.

• Any transform applied to an element creates a new stacking context. This means
that you need to be careful in combining z-index and transform, as the transformed
element creates its own stack—even if you set z-index very high on child elements
inside of a transformed element, they will not sit on top of elements outside it.

• Transformed elements also establish a new containing block for fixed positioning.
If a transformed element has an element inside it with position: fixed , it will
treat the transformed element as its viewport.

http://www.useragentman.com/blog/2011/01/07/css3-matrix-transform-for-the-mathematically-challenged/
http://www.useragentman.com/blog/2011/01/07/css3-matrix-transform-for-the-mathematically-challenged/

CHAPTER 10 ■ MAKING IT MOVE: TRANSFORMS, TRANSITIONS, AND ANIMATIONS

311

 Transitions
 Transitions are automated animations from one state to another, such as when a button goes from its regular
state to its pressed state. Normally, that change happens instantly, or at least as fast as the browser can make
it. As you click or tap a button, the browser calculates the new look of the page and draws it within a few
milliseconds. When you apply a transition, you tell the browser how long that change should take, and the
browser will calculate what the screen should look like in the intervening time.

 Transitions run automatically in both directions, so as soon as the state is reversed (like when you
release a button), the animation runs in the reverse direction.

 Let’s take the button from the forms chapter (Chapter 9) to illustrate this, and create a smooth pressed-
state animation for it. Our goal is to create the appearance of the button being pressed down by moving
it a few pixels down on the page, and to decrease the offset of the shadow to further the illusion of it
disappearing into the page behind it (see Figure 10-13):

 <button>Press me!</button>

 Figure 10-13. Normal and :active state of a button

 Here is the basis of the button code from Chapter 9 (some properties omitted for brevity). This time
we’ve added the transition property to the rule.

 button {
 border: 0;
 padding: .5em 1em;
 color: #fff;
 border-radius: .25em;
 background-color: #173b6d;
 box-shadow: 0 .25em 0 rgba(23, 59, 109, 0.3), inset 0 1px 0 rgba(0, 0, 0, 0.3);
 transition: all 150ms;
 }
 button:active {
 box-shadow: 0 0 0 rgba(23, 59, 109, 0.3), inset 0 1px 0 rgba(0, 0, 0, 0.3);
 t ransform: translateY(.25em);
 }

 When the button is activated, we translate it downward the same distance as the y-axis shadow offset. At
the same time, we decrease the shadow offset. By using the transform property to move the button, we avoid
forcing the page to reflow.

 The preceding code also tells the button to change all affected properties using a transition, and that the
change should happen over 150 milliseconds, or 0.15 seconds. Using animation introduces us to new time-
related units: ms for milliseconds and s for seconds. Most transitions in user interface components should
fall below 0.3 seconds, or they will feel sluggish. Other visual effects may take longer.

http://dx.doi.org/10.1007/978-1-4302-5864-3_9
http://dx.doi.org/10.1007/978-1-4302-5864-3_9

CHAPTER 10 ■ MAKING IT MOVE: TRANSFORMS, TRANSITIONS, AND ANIMATIONS

312

 The transition property is a shorthand that allows us to set several properties at once. Setting the
duration of the transition and telling the browser to transition all properties that are changed between states
could also have been done with the following:

 button {
 transition-property: all;
 transition-duration: .15s;
 }

 If we had only wanted to specifically transition the transform and box-shadow properties while other
changes (e.g., a different background color) should happen immediately, we would have had to specify
individual properties instead of all .

 We can’t specify more than one property name in the shorthand for a single transition, but we can
specify several transitions, separated with commas. This means that we can repeat the same values, but for
different property keywords:

 button {
 transition: box-shadow .15s, transform .15s;
 }

 Note that we now have to repeat the duration in both transitions. This repetition is a recipe for things
going out of sync later. Don’t Repeat Yourself (DRY for short) is a fundamental rule of writing good code.
When the transition is more complex, it might be better to set the transition-property separately to avoid
repetition:

 button {
 /* First, specify a list of properties using transition-property */
 transition-property: transform, box-shadow;
 /* Then, set values that go for those properties. */
 transition-duration: .15s;
 }

 When you are using multiple comma-separated values in transition declarations, they work in a
similar way to multiple background properties. The list in transition-property is what determines the
number of transitions to apply, and if other lists are shorter, they repeat.

 In the previous example, the transition-duration only has one value, but two transition properties are
defined, so the duration value applies for both.

 ■ Note When you transition prefixed properties, you must target the prefixed property name as
the transition-property as well. For example, transition: transform .25s usually needs to be
complemented with -webkit-transition: -webkit-transform .25s in older WebKit-based browsers, where
both transitions and transforms are prefixed.

CHAPTER 10 ■ MAKING IT MOVE: TRANSFORMS, TRANSITIONS, AND ANIMATIONS

313

 Transition Timing Functions
 By default, the rate of change in a transition is not exactly the same from frame to frame—it happens slightly
slower at first, accelerates quickly, then gradually slows down before reaching its final value.

 This shifting speed is known in animation terms as easing , and it often makes changes feel like they
happen more naturally and smoothly. There are mathematical functions in charge of creating this variable
change, and they are controlled using the transition-timing-function property.

 There are keywords representing different flavors of timing functions. The default described earlier is
called ease . The other are linear , ease-in , ease-out , and ease-in-out .

 “Easing in” means starting out slowly and then accelerating. “Easing out” means the opposite: starting
fast, then slowing down at the end. Finally, doing both gets us slow change in the beginning and in the end,
but sped-up change in the middle.

 It’s tricky to visualize the results on the pages of a book, but the illustration in Figure 10-14 should give
you an idea. It represents a rectangle where we change the background color from black to white over a
period of one second.

(no transition)

0.1s 0.2s 0.3s 0.4s 0.5s 0.6s 0.7s 0.8s 0.9s 1.0s

linear

ease

ease-in

ease-out

ease-in-out

 Figure 10-14. The results at sampled stops 100 milliseconds apart in a 1-second animation

 If we wanted to change the button animation to use the ease-in timing function, we’d do it like this:

 button {
 transition: all .25 ease-in;
 /* ...or we could set transition-timing-function: ease-in; */
 }

 Cubic Bézier Functions and “Bouncy” Transitions
 Behind the scenes, the mathematical functions that deal with the rate of change are built on something
called cubic Bézier functions. Each of the keywords are shortcuts to using these functions with specific
arguments. Usually the change over time using these functions is visualized as a curved line going from
intital time and initial value (bottom-left corner) to final value at the end of the duration (top-right corner),
as seen in Figure 10-15 .

CHAPTER 10 ■ MAKING IT MOVE: TRANSFORMS, TRANSITIONS, AND ANIMATIONS

314

 A cubic Bézier function needs four arguments to calculate the change over time, and we can use the
 cubic-bezier() function as an easing value in CSS transforms. This means that you can create your own
timing functions by calculating and filling in these four values. The four values represent two pairs of x and y
coordinates for two control points that shape that curve.

 Just like with the matrix transformations, it’s not something you would normally do by hand, since it requires
advanced math skills. Luckily, there are others who have used these skills to create tools for the rest of us! Lea
Verou has written one such tool specifically for CSS, available at http://cubic-bezier.com (see Figure 10-16).

0 0
1

1

Pr
og

re
ss

io
n

Time

 Figure 10-15. Curve showing an ease-in-out transition timing function

 Figure 10-16. At http://cubic-bezier.com , you can play with the preset values of different easings, and
create your own

http://cubic-bezier.com/
http://cubic-bezier.com/

CHAPTER 10 ■ MAKING IT MOVE: TRANSFORMS, TRANSITIONS, AND ANIMATIONS

315

 Figure 10-17. A stop-motion animation with seven frames using background-position

 One of the more interesting results of using a custom timing function is that you can change the value
to go outside of the start and end values while transitioning (as seen in Figure 10-16). In practice, this
means overshooting your target before finally stopping when you move something, for example. This gives
you some potential to create bouncy transitions, where elements seem to be elastic or snap into place. Try
playing around with the example on http://cubic-bezier.com to see the effects!

 Step Functions
 As well as specifying easing with preset keywords and cubic-bézier() functions, you can create transitions
that happen stepwise. This is very useful for creating stop-motion animation. Imagine having an element
with a background image consisting of seven different images, all in the same file. The image is positioned so
that only one of them shows (see Figure 10-17).

 As we hover over the element, we want to animate the background image by shifting the background-
position property. If we do this using a linear or easing transition, the background image will just slide by,
destroying the illusion. Instead, we need it to transition in six discrete steps:

 .hello-box {
 width: 200px;
 height: 200px;
 transition: background-position 1s steps(6, start) ;
 background: url(steps-animation.png) no-repeat 0 -1200px;
 }
 .hello-box:hover {
 background-position: 0 0;
 }

 The transition-timing-function is now set to steps(6, start) , which translates as “divide the
transition duration into six steps, and change the property at the start of each new step.” All in all, we get
seven different frames, including the starting state.

 By default, steps(6) would change the property at the end of each step, but if you pass in start or end
as the second argument, you can be explicit about this. Since we want to see the change directly as the user
hovers over the element, we’ve opted to start the transition at the start of each step.

http://cubic-bezier.com/

CHAPTER 10 ■ MAKING IT MOVE: TRANSFORMS, TRANSITIONS, AND ANIMATIONS

316

 Now, there is a problem with the steps() function for transitions. When you reverse the state before the
transition has completed (e.g., by removing the mouse pointer quickly), the transition will play backward.
That is expected, but the unexpected part is that the reverse transition still has six steps . Those steps now no
longer map to the carefully thought-out background positions, making our animation look bad.

 Sadly, this is undefined behavior in the current version of the spec, and all browsers seem to treat step
functions in this arguably poor manner. To counter this bad experience, we can use one of a couple of useful
techniques for transitions, coming up in the next section.

 Different Transitions for Forward and Reverse Directions
 Sometimes, we want something to transition quickly in one direction and slowly in the other, or vice versa.
In the stepping example earlier, we can’t gracefully step backward when the hover state is aborted before the
transition is finished. We could counter this by having the transition revert immediately.

 To achieve this, we need to define different sets of transition properties: one for the unhovered state and
one for the hovered state. The trick is to set the right one in the right place.

 We give the initial transition a 0 duration, and then set the “real” transition to happen as the element is
hovered. Now the hovered state triggers the animation, and as that hover is cancelled, the image snaps back.

 .hello {
 transition: background-position 0s steps(6);
 }
 .hello:hover {
 transition-duration: .6s ;
 }

 “Sticky” Transitions
 Another trick for transitions is to have the transition not reverse at all, which is the opposite of our previous
example. To make a “sticky” transition, we could use a ridiculously long transition-duration . Technically,
it would still run backward when we cancel the hover, but very, very slowly—you would have to have the
browser tab open for years and years to see any change!

 .hello {
 transition: background-position 9999999999s steps(6);
 }
 .hello:hover {
 transition-duration: 0.6s ;
 }

 Delayed Transitions
 Usually, an element will begin its transition as soon as the state is changed—for instance, when a class name
is changed by JavaScript or a button is pressed. We can choose to delay this transition using the transition-
delay property. For example, we may only want to run the stop-motion animation if the user hovers the
pointer over it for more than a second.

 The shorthand for transition is quite forgiving in terms of the order of values, but the delay must be
the second time value that appears—the first will be interpreted as the duration.

 .hello {
 transition: background-position 0s 1s steps(6);
 /* equivalent to adding transition-delay: 1s; */
 }

CHAPTER 10 ■ MAKING IT MOVE: TRANSFORMS, TRANSITIONS, AND ANIMATIONS

317

 You can also use negative delays. While this sadly doesn’t enable time travel, it does allow you to
skip straight into partway along the transition right from the start. If you set transition-delay: -5s on a
10-second transition, it will immediately jump to the halfway mark as the transition is triggered.

 What you can and can’t Transition
 So far, we’ve transitioned transform s, box-shadow values, and background-position . But not every CSS
property can be animated, nor every value. Mostly, the ones that use lengths or colors are fine: borders,
width, height, background colors, font sizes, etc. It’s all about whether you can calculate a value in between
them. You can find the middle between 100px and 200px as well as between red and blue (as colors are also
number values behind the scenes), but not between, for example, block and none for the display property.
There are also some exceptions to this rule.

 Interpolated Values
 Some properties can be animated, despite not having clear middle values. When you are using z-index ,
for example, you can’t have a value of 1.5 , but 1 or 999 would be fine. For many properties, like z-index or
 column-count that only accept integer values, the browser will interpolate them into whole numbers along
the way for you, sort of like with the steps() function earlier.

 Some values that can be interpolated are a little bit surprising. For example, you can transition values of
the visibility property, but the browser will “snap” the value to either one of the two end states as soon as
the transition passes the halfway point between them.

 Designer Oli Studholme has a conventient list of properties that are animatable, both from the CSS
specs and properties in SVG animatable via CSS: http://oli.jp/2010/css-animatable-properties/ .

 Transitioning to Content Height
 A final pitfall with transitions is that properties that can be transitioned, such as height , can only be
transitioned between numeric values. This means that other keywords, like auto , can’t be represented as
one of the states to transition to.

 A common pattern is to have a collapsed element that you transition to its full height when the user
interacts with it, like an accordion component. The browser will not know how to transition between a
length like 0 and the keyword auto , or even intrinsic measurement keywords like max-content .

 In Figure 10-18 , we have a restaurant menu component, initially showing the top three menu choices.
As we toggle the rest of the list, it should slide down and fade in.

 Figure 10-18. An expanding menu list component

http://oli.jp/2010/css-animatable-properties/

CHAPTER 10 ■ MAKING IT MOVE: TRANSFORMS, TRANSITIONS, AND ANIMATIONS

318

 In this situation, we know the approximate height of the list since it will have a total of ten items—it can
still vary a bit since there may be long names with line breaks. We can now transition it with max-height
instead. Using that technique, we go from the initially set measurement to a length that is sure to be taller
than the expanded height of the element. In this case, we have decided to limit the rest of the “Top menu
choices” to an additional seven items.

 The markup of the component is based on two ordered lists, where the second list starts with number 4:

 <div class="expando">
 <h2 class="expando-title">Top menu choices</h2>

 Capricciosa
 Margherita
 Vesuvio

 <ol class="expando-list" start="4" aria-label="Top menu choices, continued.">
 Calzone
 <!-- …and so on… -->
 Fungi

 </div>

 The markup includes an aria-label attribute on the second list, to make the purpose of the two lists
clear for users of screen readers.

 In order to toggle the states, we use a small snippet of JavaScript to set the scene. In the running
example, you can find this script that creates a button for us, appends it to the heading, and toggles a class
name of is-expanded on the container element when the button is clicked.

 It also adds a class name of js to the html element. We can then base our styling on the presence of
these class names, so if the JavaScript doesn’t run, the user will see the full expanded list from the start.

 .js .expando-list {
 overflow: hidden;
 transition: all .25s ease-in-out;
 max-height: 0;
 opacity: 0;
 }
 .js .is-expanded .expando-list {
 max-height: 24em;
 opacity: 1;
 }

 The expanded max-height is set to a value that is a quite bit more than the expected maximum height
of the actual list. This is to have a safety margin: we don’t want the list to be cut off by the max-height if there
are a couple of unexpected line breaks inside the menu items on small screens, for example.

 The small downside is that the max-height transition will still run as if the element was exactly 24 ems
tall, making the easing and stopping point overshoot the full height of the list. If you play with the example,
this is most noticeable as a small delay in the collapsing animation. In a more robust example, the script
could initially transition to a very tall max-height , and then measure the element after the transition to
dynamically update the max-height based on the content.

CHAPTER 10 ■ MAKING IT MOVE: TRANSFORMS, TRANSITIONS, AND ANIMATIONS

319

 CSS Keyframe Animations
 CSS transitions are implicit animations. We supply the browser two different states, and when an element
goes from one state to the other, any property included in a transition will be animated. Sometimes, we need
to do more than animate between just two states, or explicitly animate certain properties that may not be
there to begin with.

 The CSS Animations spec allows us to define these kinds of animations using the concept of keyframes .
Furthermore, they allow us to control several other aspects of how and when the animation runs.

 Animating the Illusion of Life
 One of the benefits of using animation is to convey a message by showing, not telling. We can use it to direct
attention (like a moving arrow to tell you “Look over here! This is important!”), explain what just happened
(for example, when using a fade-in animation to show that a list item was added), or just to make our web
pages seem a bit more alive, to make an emotional connection.

 Walt Disney Studios teaches a set of 12 principles for expressing character and personality through
animation. These were later collected in a book called The Illusion of Life . Animator Vincenzo Lodigiani
created a short animated film to illustrate these principles (https://vimeo.com/93206523), with a little cube
as the main character. Go ahead and watch it!

 Inspired by that, we’re going to create an animated square logo, showing some of what keyframe
animations can do. The static rendering of the logo consists of a square next to the word “Boxmodel” (see
Figure 10-19), which will be our fictive company name.

 Figure 10-19. The static logo

 The markup is pretty simple: a heading element with some extra span elements to wrap the words, and
two nested span elements to represent the little square. Using extra empty elements for presentation is not
ideal, but for reasons that will become clear, it’s necessary in order to achieve what we want.

 <h1 class="logo">
 <!-- This is the box we are animating -->

 Boxmodel
 </h1>

 For the basic styling, we give the page a background color, give the logo some font properties, and set the
dimensions and color of the square. We prepare the two span elements representing the square for animation
by setting their display mode to inline-block , as it is not possible to transform an inline text element.

https://vimeo.com/93206523

CHAPTER 10 ■ MAKING IT MOVE: TRANSFORMS, TRANSITIONS, AND ANIMATIONS

320

 body {
 background-color: #663399;
 margin: 2em;
 }
 .logo {
 color: #fff;
 font-family: Helvetica Neue, Arial, sans-serif;
 font-size: 2em;
 margin: 1em 0;
 }
 .box-outer {
 display: inline-block;
 }
 .box-inner {
 display: inline-block;
 width: .74em;
 height: .74em;
 background-color: #fff;
 }

 Creating the Animation Keyframe Block
 Next up, we need to create the actual animation. We want to imitate the opening sequence of the “Illusion of
life” film, where the little square struggles to roll across the screen.

 CSS animations are a bit of an odd bird in terms of syntax and structure. You define and name an
animation sequence using a @keyframes rule, and then connect that sequence to one or more rule sets in
CSS using the animation- * properties.

 Here’s how the first keyframe block will look:

 @keyframes roll {
 from {
 transform: translateX(-100%);
 animation-timing-function: ease-in-out;
 }
 20% {
 transform: translateX(-100%) skewX(15deg);
 }
 28% {
 transform: translateX(-100%) skewX(0deg);
 animation-timing-function: ease-out;
 }
 45% {
 transform: translateX(-100%) skewX(-5deg) rotate(20deg) scaleY(1.1);
 animation-timing-function: ease-in-out;
 }
 50% {
 transform: translateX(-100%) rotate(45deg) scaleY(1.1);
 animation-timing-function: ease-in;
 }
 60% {
 transform: translateX(-100%) rotate(90deg);
 }

CHAPTER 10 ■ MAKING IT MOVE: TRANSFORMS, TRANSITIONS, AND ANIMATIONS

321

 65% {
 transform: translateX(-100%) rotate(90deg) skewY(10deg);
 }
 70% {
 transform: translateX(-100%) rotate(90deg) skewY(0deg);
 }
 to {
 transform: translateX(-100%) rotate(90deg);
 }
 }

 It’s definitely a mouthful, but there is a lot of repetition in there. First up, we have named the keyframe
sequence roll —this can be any valid identifier as long as it doesn’t clash with any predefined names in CSS.
We haven’t decided yet how long this animation takes, so points in time inside the block are selected using
 keyframe selectors , written as percentages along the timeline.

 We can also use the special keywords from and to , which are aliases for 0% and 100% , respectively. If
either from (or 0%) or to (or 100%) are missing, they are constructed automatically from the initial state of the
element’s existing properties. The number of keyframe selectors you can have is anywhere from one to how
ever many you need—you decide.

 The first keyframe (at 0%) sets the animation-timing-function property. It works just like with
transitions: use a preset keyword for easing, or a cubic-bezier() function . Setting the timing function here
inside a keyframe selector controls the transition timing between this keyframe and the next.

 We also move the starting position of the square to 100% to the left of itself using translateX(-100%) .
 Next, we set a whole range of keyframes where various transforms are applied, as well as individual

timing functions. Figure 10-20 shows how the element looks in each keyframe. Note that some keyframes are
the same, for example at the end: this is to control the speed of the animation.

 Figure 10-20. The various keyframes of our animation

 The element will first skew a bit as if to gather momentum, then rotate and stretch, almost stopping at
the 45-degree angle, to finally complete the 90-degree rotation and skew a bit on the rotated axis, making a
bouncy stop. That’s our first animation.

 Connecting a Keyframe Block to an Element
 Now that we have defined an animation keyframe sequence, we need to connect it to the square in the logo.
Just as with the transition properties, there are animation properties controlling duration, delay, and timing
functions, but with a few additional controls:

 .box-inner {
 animation-name: roll;
 animation-duration: 1.5s;
 animation-delay: 1s;

CHAPTER 10 ■ MAKING IT MOVE: TRANSFORMS, TRANSITIONS, AND ANIMATIONS

322

 animation-iteration-count: 3;
 animation-timing-function: linear;
 transform-origin: bottom right;
 }

 We apply animation-name to this element to use the roll animation . Using animation-duration , we set
how long each iteration is. The animation-delay property tells the browser to wait 1 second before running
the animation. We want the box to roll over its side three times before stopping, so we set animation-
iteration-count to 3 .

 We can set animation-timing-function inside keyframe selectors and on the element being animated.
Here, the timing function is set to linear across the whole sequence, but we already saw how we can
override that between individual keyframes.

 ■ Note You can apply multiple animations to the same element using the same sort of comma-separated
syntax as with transitions. If two animations try to animate the same property at the same time, the animation
declared last wins.

 Finally, we’ve set the transform-origin property to bottom right , since we want the square to pivot on
its bottom-right corner.

 Using the shorthand animation property, we can boil all of the previous details down to one line, much
like with transitions:

 .box-inner {
 animation: roll 1.5s 1s 3 linear;
 transform-origin: bottom right;
 }

 But we’re not done yet. So far, we have a square that repeats the rolling animation in place. We need
it to move from outside the viewport to its final destination. This would have been possible using a single
animation, but with a massive number of keyframes. Instead, we can apply another animation and another
set of transformations on the outer span element. This time, the animation is much simpler. We want it to
move in from the left, from a distance of three times the width of the box:

 @keyframes shift {
 from {
 transform: translateX(-300%);
 }
 }

 Since we want to animate from something to the intial state, we can omit the to keyframe and just leave
the from state.

CHAPTER 10 ■ MAKING IT MOVE: TRANSFORMS, TRANSITIONS, AND ANIMATIONS

323

 A NOTE ON KEYFRAME BLOCKS AND PREFIXES

 We are keeping to the standardized, unprefixed versions of the various properties in this chapter. The
code examples have the full, prefixed code.

 In browsers where the animation properties are prefixed, the keyframe rule is prefixed as well. This
means you will have to write one set of keyframe rules per prefix! Thankfully, most browsers accept the
unprefixed version these days, so usually you will only need to add the -webkit-prefix .

 We can now apply the shift sequence to the outer span using a stepping timing function . There are
three steps, so that each time the rolling animation finishes and reverts the square to the initial position,
the stepping function moves it forward by the same amount. This is what creates the illusion of the square
rolling across the screen; it’s hard to illustrate, but play around with the code example to see how it works.

 .box-outer {
 display: inline-block;
 animation: shift 4.5s 1s steps(3, start) backwards;
 }

 That last keyword, backwards , sets the animation-fill-mode property of the animation sequence. The
fill mode tells the browser how to treat the animation before or after it runs. By default, the properties in the
first keyframe aren’t set until the animation runs. If we supply the keyword backwards , those values are filled
backward in time, so the first keyframe properties are set straight away even if the animation is delayed or
paused initially. Filling forward makes the last values in the sequence stick forward in time, and both does
forward and backward filling.

 In this instance, we want the animation to be offscreen straight away but retain the final value (since it is
identical to the initial position of the box), so we fill backwards .

 And with that, our first keyframe animation is done. When you load the example, the little square
happily struggles across the screen.

 Animating Along Curved Lines
 Animating the position of an element between two points by definition moves it in a straight line. You
could create the appearance of a curved movement by creating a large number of keyframes, changing
the direction slightly every time. A better way is to move the object by means of combining rotation and
translation in a specific order, like in this example by Lea Verou: http://lea.verou.me/2012/02/moving-
an-element-along-a-circle/ .

 In the example files, we have included an example of a loading animation that uses this technique to
illustrate files being uploaded to a server. The files “jump” from the computer to the server icon along a path
in the shape of a half-circle, while shrinking a bit to fit behind the server icon (see Figure 10-21).

http://lea.verou.me/2012/02/moving-an-element-along-a-circle/
http://lea.verou.me/2012/02/moving-an-element-along-a-circle/

CHAPTER 10 ■ MAKING IT MOVE: TRANSFORMS, TRANSITIONS, AND ANIMATIONS

324

 Here is the keyframe block for this animation:

 @keyframes jump {
 from {
 transform: rotate(0) translateX(-170px) rotate(0) scale(1);
 }
 70%, 100% {
 transform: rotate(175deg) translateX(-170px) rotate(-175deg) scale(.5);
 }
 }

 The initial keyframe translates the file element 170 pixels to the left (in order to start over the computer
icon). The second keyframe selector rotates the element by 175 degrees, still translating it the same amount,
and then rotates it back by 175 degrees in the opposite direction. Since this is done in the translated position,
it serves to keep the element upright, so it doesn’t turn upside down while rotating. Finally, we scale the
element down to half its size.

 Figure 10-22 illustrates how this particular combination of transformations works together to create
movement along an arc.

 Figure 10-21. The file icon moves to the server icon along a curved path

1. transform: rotate(45deg); 2. transform: rotate(45deg),
translateX(-170px)

3. transform: rotate(45deg),
translateX(-170px),
rotate(-45deg);

X

Y

 Figure 10-22. Since the rotation is applied before translation, the icon is moved along an arc. Here’s how it
would look about a quarter of the way through the animation, at 45 degrees rotated.

CHAPTER 10 ■ MAKING IT MOVE: TRANSFORMS, TRANSITIONS, AND ANIMATIONS

325

 We then wire up this animation to the file-icon element, and set the duration and easing function.
Since it’s a loading animation, we set it to repeat indefinitely (we’ve all been there!), by adding the keyword
 infinite as the animation-iteration-count value.

 .file-icon {
 animation: jump 2s ease-in-out infinite;
 }

 You might have noticed that the final keyframe selector targeted both the 70% mark and the 100% mark
of the animation. This is because we want the animation to pause in the finished state for a short while
before starting over.

 There’s no specific property to control this delay, so instead we want the states at 70% and 100% to
remain the same, and we can combine keyframes that share the exact same properties in this way, just like
we combine normal comma-separated selectors.

 Animation Events, Play State, and Direction
 At some point, the file transfer should be done, hopefully. In the full code example, we have added buttons
to click to simulate finishing, restarting, and pausing the animation. Their only function is to add one of two
class names to the file icon. These classes add the property animation-play-state to the file icon and set it
to paused . There are two values for this property: by default it’s set to running .

 The stopping action is different from pausing, in that it hooks into the JavaScript events fired when
animations start, stop, or initiate a new iteration. As soon as the animation finishes its current iteration, the
file icon disappears and a checkmark appears next to the server icon. You can study the source code for this
example to see how this works, or read more about animation events in JavaScript at MDN
(https://developer.mozilla.org/en-US/docs/Web/API/AnimationEvent).

 Finally, you can also control the direction of an animation using the animation-direction property . By
default, it’s set to normal , but you could run the animation backward using the reverse keyword, and you
would have a “downloading” animation for free!

 There are also the alternate and alternate-reverse keywords, which alternate the direction between
animation iterations. The difference between them is that alternate starts in the normal direction, while
 alternate-reverse starts off as reversed.

 SOME ANIMATION “ GOTCHAS ”

 There are quite a few pitfalls and inconsistencies when using CSS keyframe animations. Here are a few
that may be good to know:

• Some of the animations begin running as soon as the page loads, albeit with a small
delay. This can be tricky, as some browsers have buggy behavior when it comes to
running things smoothly right at the start; if you check the rolling square example
in a few different browsers, you’ll notice this sometimes. It’s often better to trigger
animations using JavaScript when everything is good and ready.

• Properties in keyframes don’t have any specificity. They simply change properties
on the element they are applied to. Despite this, some browsers (but not all) let you
override a property set with the !important flag in a normal rule, from inside an
animation, which can be confusing.

https://developer.mozilla.org/en-US/docs/Web/API/AnimationEvent

CHAPTER 10 ■ MAKING IT MOVE: TRANSFORMS, TRANSITIONS, AND ANIMATIONS

326

• Conversely, properties set inside keyframe blocks are not allowed to be set with the
 !important flag. Any declaration with that flag set inside of a keyframe block will be
ignored.

• Versions 2 and 3 of the Android OS supports CSS animations, but only one property at a
time! If you try to animate two or more properties, the element will disappear completely.
To combat this, you could split up your animations into separate keyframe blocks.

 3D Transforms
 Now that we have used regular 2D transforms, transitions, and animations, it’s time to look at perhaps the
most impressive tool in the CSS toolkit: 3D transforms .

 We have already gone through the basics of transformations and coordinate systems in 2D space. When
we move to 3D, we are dealing with exactly the same concepts, but this time, we have to consider the z
dimension as well. 3D transforms allow us to take the coordinate system and rotate, skew, scale, or move it
 toward or away from us. To achieve this effect, it’s necessary to introduce the concept of perspective.

 Getting some Perspective
 When dealing with 3D, we need to represent transformations on three axes. The x and y axes still represent
the same thing, but z represents a line going through the screen and toward us as a viewer, so to speak (see
Figure 10-23). The surface of the screen itself is often called the z-plane , which is the default location on
the z axis.

Z

Y

X

 Figure 10-23. The z axis in the 3D coordinate system

 This means that things need to appear smaller as we move them away from us (negative direction on
the z axis) and bigger as we move them toward us. Rotating something on the x or y axis will make parts of it
bigger and others smaller, etc.

CHAPTER 10 ■ MAKING IT MOVE: TRANSFORMS, TRANSITIONS, AND ANIMATIONS

327

 Let’s dive right in and try an example. We’ll use our trusty 100×100-pixel box from the 2D section, and
rotate it around the y axis:

 .box {
 margin: auto;
 border: 2px solid;
 width: 100px;
 height: 100px;
 transform: rotateY(60deg) ;
 }

 This alone will not get you far: the box will appear narrower (which is expected when rotating on the
y axis), but will lack any 3D feel at all (see the leftmost part of Figure 10-24).

 Figure 10-24. Our rotated 100×100-pixel box with no perspective (left), perspective: 140px (middle), and
 perspective: 800px (right)

 The reason is that we haven’t defined a perspective : we must choose how far from the box we should
appear to be. Changes will be more pronounced the closer you are to an object, and less so when you are
far away. The default perspective is basically that of being inifinitely far away, so we’re not getting a very
pronounced effect.

 We remedy this by setting the perspective property on a parent of the element to be transformed:

 body {
 perspective: 800px;
 }

 This measurement represents how far the viewing point is supposed to be positioned from the screen.
You’ll have to experiment to find the right value case by case, but somewhere around 600 to 1000 pixels is a
good starting point.

 Perspective Origin
 By default, it is assumed that the perspective of the viewer is centered on the element that has the
perspective applied to it. Technically, this means that the vanishing point is in the center. You can control
this using the perspective-origin property . It works in a similar way to the transform-origin property:
you supply it a pair of values for the x and y coordinates with keywords (top , right , bottom , left),
percentages, or a length.

CHAPTER 10 ■ MAKING IT MOVE: TRANSFORMS, TRANSITIONS, AND ANIMATIONS

328

 Figure 10-25 illustrates 3D objects with a perspective on the body element. All of the boxes have a
90-degree rotation on the x axis applied to them (so they are facing up), but the left and right images have
different perspective origins.

 Figure 10-25. The left browser window has a default perspective-origin (50% 50%), the right has the
 perspective-origin set to top left

 The Perspective() Transform Function
 Setting the perspective property on a parent element makes all 3D transformations on elements inside it
share the same perspective. This is usually what you want, since it makes for more realistic effects.

 The perspective() function lets you set an individual perspective on each transformed element.
A similar result to the earlier example could be achieved by the following, but the perspective wouldn’t be
shared among elements:

 .box {
 transform: perspective(800px) rotateY(60deg);
 }

 Creating a 3D widget
 Now that we have the recipe for moving things around and displaying them in 3D perspective, we can
create something more useful. Besides using motion to add a bit of flair or explain what is going on, we can
combine motion and 3D to save space and declutter the design at the same time.

 Our goal is to build a 3D widget using CSS and JavaScript, where bits of the user interface are hidden
on the backside of the element. We’ll reuse the menu component from earlier and add options for filtering
instead of expanding all items. By clicking a “Show filters” button, the element will flip 180 degrees and
reveal the back panel (see Figure 10-26). Clicking “Show me pizzas!” flips it again, and in a real-world
example the list of pizzas would now be filtered according to the checkbox selection.

CHAPTER 10 ■ MAKING IT MOVE: TRANSFORMS, TRANSITIONS, AND ANIMATIONS

329

 To start off, we’ll need some solid markup and a default case for browsers that don’t support 3D
transforms, or when the JavaScript doesn’t run properly. When the browser doesn’t support 3D transforms, we
could just display the front and back sides after one another as blocks on the page, as shown in Figure 10-27 .
Theoretically, clicking the “Show me pizzas!” button would simply reload the page with the new filters applied.

 Figure 10-27. The basic “2D” version shows the two sides of the widget one after another in the page

1. 2. 3.

 Figure 10-26. Our “flipable” widget

CHAPTER 10 ■ MAKING IT MOVE: TRANSFORMS, TRANSITIONS, AND ANIMATIONS

330

 The markup is similar to the menu from earlier in the chapter, but we’ve added some new class names
and a wrapper to hold the whole structure.

 <div class="flip-wrapper menu-wrapper">
 <div class="flip-a menu">
 <h1 class="menu-heading">Top menu choices</h1>
 <ol class="menu-list">
 Capricciosa
 <!-- ...and so on, all 10 choices -->

 </div>
 <div class="flip-b menu-settings">
 <!-- the form on the back of the widget goes here. -->
 </div>
 </div>

 We will use Modernizr to detect support for 3D transforms, so the rules for the enhanced widget will be
“prefixed” with the class name that’s added to the html element when CSS 3D transforms are supported.

 First, we’ll set the perspective on the body element, and make the wrapper element a positioning
context for its descendants. We’ll then add the transition, aiming for the transform property of the wrapper.

 .csstransforms3d body {
 perspective: 1000px;
 }
 .csstransforms3d .flip-wrapper {
 position: relative;
 transition: transform .25s ease-in-out;
 }

 Now we’ll make the content destined for the back of the widget absolutely positioned so that it covers
the same space as the front side, and flip it 180 degrees on the y axis. We also want both sides to be invisible
when they are flipped the wrong way, so one doesn’t end up obscuring the other. We’ll use the backface-
visibility property to control this; it defaults to visible , but setting it to hidden makes the element
invisible when viewed from the back.

 .csstransforms3d .flip-b {
 position: absolute;
 top: 0; left: 0; right: 0; bottom: 0;
 margin: 0;
 transform: rotateY(-180deg);
 }
 .csstransforms3d .flip-b,
 .csstransforms3d .flip-a {
 backface-visibility: hidden;
 }

CHAPTER 10 ■ MAKING IT MOVE: TRANSFORMS, TRANSITIONS, AND ANIMATIONS

331

 When we rotate the widget, we want the whole thing to be rotated, including the already flipped
backside. By default, any 3D transformation applied to a parent will nullify 3D transformations on child
elements, flattening them. We need to create a 3D context where transformations on children happen in the
same 3D space as the parent. We do this by setting the transform-style property on the wrapper element to
the value preserve-3d :

 .csstransforms3d .flip-wrapper {
 position: relative;
 transition: all .25s ease-in-out;
 transform-style: preserve-3d; /* default is flat */
 }

 The final piece of the puzzle now is getting JavaScript to toggle a class name on the wrapper element
when the buttons on the front and back are clicked. The is-flipped class name that’s added triggers a
180-degree rotation on the y axis for the whole widget:

 .csstransforms3d .flip-wrapper.is-flipped {
 transform: rotateY(180deg);
 }

 And with that, the styling is in place. But, sadly, there are real-world constraints that force us to revisit
the widget to make it cross-browser compatible and accessible.

 IE and the lack of preserve-3d
 Internet Explorer 10 and 11 don’t support the preserve-3d keyword . This means that no element can share
the 3D space of a parent, which turn means that we can’t flip the whole widget and have the sides follow
along. We have to transition each side individually to make things work in IE.

 Furthermore, IE has some severe bugs with perspective on the parent element in combination with
multiple transformed elements, which means we have to resort to the perspective() function in the list of
transformations instead.

 The updated code sets a 0-degree initial transform on the front of the widget, a -180-degree transform
on the back, and then flips both as the class name on the wrapper element is toggled. Furthermore, the
 perspective() function needs to be introduced first in the chain of transformations for each of these.

 .csstransforms3d .flip-b,
 .csstransforms3d .flip-a {
 transition: transform .25s ease-in-out;
 }
 .csstransforms3d .flip-a {
 transform: perspective(1000px) rotateY(0);
 }
 .csstransforms3d .flip-b {
 transform: perspective(1000px) rotateY(-180deg);
 }
 .csstransforms3d .flip-wrapper.is-flipped .flip-a {
 transform: perspective(1000px) rotateY(180deg);
 }
 .csstransforms3d .flip-wrapper.is-flipped .flip-b {
 transform: perspective(1000px) rotateY(0deg);
 }

CHAPTER 10 ■ MAKING IT MOVE: TRANSFORMS, TRANSITIONS, AND ANIMATIONS

332

 Safari on iOS 8 has an opposite bug where elements with a perspective() transform applied
sometimes disappear as they start to transition. One fix is to apply the otherwise redundant perspective
property back on the body element:

 .csstransforms3d .flip-wrapper {
 perspective: 1000px;
 }

 Responsible Code: Adressing Keyboard Control and Accessibility
 When developing components that hide things, we have seen in previous chapters that how you hide
them matters. Simply rotating something out of view does not remove it from, for example, the tab order
of the document. In the final code for the 3D widget (and the JavaScript code that goes with it), we have
incorporated several other fixes to make the widget more robust:

• Besides using Modernizr to detect support for 3D transforms, we also detect support
for the classList JavaScript API. This is used for efficient switching of class names
when the widget state changes. This means that all the CSS rules in the final code are
prefixed with .csstransforms3d.classlist .

 The support for 3D transforms and support for the classList API are almost
overlapping, but we don’t want any edge cases left with a broken widget. The
widget will not run if these two features are not supported by the browser, and
the “2D” style is then left untouched.

• When one side of the widget is hidden, it automatically has the class name is-
disabled added to it, as well as the aria-hidden attribute set to true . The is-
disabled class sets the visibility property in CSS to hidden .

 This prevents keyboard users from accidentally tabbing into form controls they
cannot see, and screen readers from reading the content. (The aria-hidden
attribute is there solely for screen readers, so as to not be dependant on the CSS
hiding technique.) The hiding occurs first after the flip is complete, so it depends
on the transitionend event.

• Conversely, the other side is explicitly made accessible before being shown using the
class name is-enabled .

• When flipping the widget back, keyboard focus is moved back to the “Show filters”
button.

 Advanced Features of 3D Transforms
 This section features parts of the 3D transforms specification that are perhaps less used in day-to-day
coding, but offer some additional functionality to play around with.

CHAPTER 10 ■ MAKING IT MOVE: TRANSFORMS, TRANSITIONS, AND ANIMATIONS

333

 The Rotate3d() Function
 Apart from the individual rotation functions— rotateX() , rotateY() and rotateZ() (and its 2D equivalent
 rotate())—there is a function called rotate3d() . This function allows you to rotate an element around
an arbitrary line going through 3D space, instead of a specified amount on each axis. Here’s how using this
function could look:

 .box {
 transform: rotate3d(1, 1, 1, 45deg);
 }

 The rotate3d() function takes four arguments: three numbers representing x, y and z vector
coordinates , and an angle. The coordinates define a line in space around which the rotation occurs. For
example, if the vector coordinates are 1,1,1 , the rotation will be around an imagined line that goes from the
 transform-origin point, through the point situated at 1 unit on the x axis (right), 1 unit on the y axis (down),
and 1 unit on the z axis (toward the viewer), relative to the origin.

 We don’t need to specify which unit here, since the points are all relative to each other—if we would
have used 100,100,100 , we would have gotten the same result, since the line going through the element
would be the same.

 In effect, the 3D rotation is equivalent to some rotation (0 degrees or more) on each of the axes, but
some quite complex math is involved in figuring out how much for each of them. It’s much easier to see this
function as a way to rotate by some angle around a line of your choosing. If you need to rotate by a specific
degree on several axes at the same time, it’s much easier to stick to a combination of single-axis rotations.

 3D Matrix Transformations
 Just as with the 2D subset of CSS transforms, there is a matrix3d() function that allows you to combine an
arbitrary amount of translation, scaling, skewing, and rotation on each of the three axes.

 We won’t go into the details of how a 3D matrix works here, but the function itself needs 16 (!)
arguments for various aspects of the final manipulation of the coordinate system. It arguably takes the prize
for “most complex CSS property ever.”

 Just as with the 2D version, 3D matrices are not something you would normally write by hand, but
they can help you create high-performance interactive experiences like games using a combination of CSS
and JavaScript. For example, the Digital Creativity Guidebook example at the very beginning of the chapter
(shown in Figure 10-1) uses matrix3d() heavily to calculate the transformations on all of the characters
inside the animated book.

 Summary
 In this chapter, we got into manipulating elements in space as well as time. We looked at how transforms in
2D or 3D change the rendering of an element, but without affecting other elements on the page. We had a
sneak peek at advanced transformations like the matrix() function and rotate3d() .

 Putting these together with animations, using CSS transitions or CSS keyframe animations, we can
create either lively “delighters” like the animated logo, or more practical 3D widgets like the flipping pizza
menu.

 Throughout, we have seen techniques for applying these effects responsively, making every effort
to not ruin the experience for users whose browsers don’t support them as well as users browsing with a
screenreader or navigating using only a keyboard.

335© Andy Budd and Emil Björklund 2016
A. Budd and E. Björklund, CSS Mastery, DOI 10.1007/978-1-4302-5864-3_11

 CHAPTER 11

 Cutting-edge Visual Effects

 Coding creative designs has always been difficult using CSS alone. Until recently, the language itself has
been quite restrictive in terms of the visual effects you can use. Re-creating the visual effects from graphics
editing packages like Photoshop was difficult, if not impossible, and regularly required nasty hacks.

 We have always been able to work around these constraints by sacrificing simplicity (extra elements
purely for presentation purposes) or performance (pages too heavy on images, JavaScript to do visual effects).

 In this chapter we will look at how we can achieve these effects using a variety of CSS features. Some of
them are very new and have limited browser support today, while others have been around for a few years.
Many have existed in SVG for a long time, but are only now bleeding into CSS—we’ll see a few examples of
that harmonization later in this chapter.

 All of these techniques could take your designs to the next level: they are spices to lift the raw
ingredients to new heights. As such, they should be used with caution, and applied with progressive
enhancement in mind. You should also be aware that many of these techniques have associated bugs. So
even in browsers where they are supported, they are often a work in progress.

 In this chapter, we’ll look at the following topics:

• CSS Shapes

• Using clipping paths and masks with CSS and via SVG

• CSS blend modes

• Filters with CSS and via SVG

 In Figure 11-1 , we have put together a page (describing some celestial bodies) packed full of visual
effects. Just a few years ago, these effects would have been impossible to re-create in CSS. The page layout,
had it been attempted at all, would have been re-created with loads of images and extra elements.

CHAPTER 11 ■ CUTTING-EDGE VISUAL EFFECTS

336

 Figure 11-1. A page using a range of visual effects

CHAPTER 11 ■ CUTTING-EDGE VISUAL EFFECTS

337

 Today, these kinds of effects are actually achievable with CSS in many browsers, and where they fail,
they can be made to fail gracefully. Using a large number of visual effects on the page at the same time is still
something to be careful with, as they come with a performance cost; some more than others. Despite this,
there are huge benefits to having these effects as part of CSS. They become less dependent on hacky markup
and easier to maintain. Besides, once features are standardized in competing browsers, the performance
tends to get better over time.

 In the rest of this chapter, we are going to go through all of the techniques used in the “Stargazing” page
example, and more.

 Breaking Out of the Box: CSS Shapes
 As we’ve said before, web layout is all about rectangles, so there’s an inherent boxiness built-in. In earlier
chapters, we’ve seen examples of how to counter this by using images and gradients to introduce a more
organic feel, and by using rounded corners to create softer shapes and even circles.

 CSS Shapes is a new standard to allow for a wider range of shapes in web design. Shaped elements affect
the actual flow of content in the page, and not only the surface-level appearance.

 Inside and Outside Shapes
 CSS Shapes consists of two groups of new properties: one to set the shape that affects the content inside of a
box, and another to set the outside shape that affects content flow around a shaped element. In Figure 11-2 ,
an element is set to a circular shape. The left example shows how the outside shape affects content flowing
around the circle, while the example on the right shows how content within the circle would be affected by
the inside shape.

Outside shape Inside shape

 Figure 11-2. Outside vs. inside shapes

 These two kinds of shaping methods are defined in separate levels of the CSS Shapes specification. The
 shape-outside property (defined in CSS Shapes Level 1) is the only one to have reached a reasonable level
of maturity, and has started to find its way into browsers. We’ll leave shape-inside out of this section, as it
hasn’t been implemented in any browsers just yet, but it is likely to start appearing soon.

 The shape-outside property only works on floated elements. It works by carving out a shape that affects
the flow of content outside the element, but it does not change the appearance of the element itself.

CHAPTER 11 ■ CUTTING-EDGE VISUAL EFFECTS

338

 In the “Moon” section of our example, the text flows around the shape of the Moon image (see
Figure 11-3) via shape-outside as follows:

 .fig-moon {
 float: right;
 max-width: 40%;
 shape-outside: circle();
 }

 Figure 11-3. The text flows in a circular shape outside the Moon image

 Figure 11-4. The text flows in over the element boundaries of the shaped element

 Before we go into how the shaping works, it’s worth noting how shape-outside affects the layout. The
image file itself has a black background. If we change the background color of this section of the page, the
effect of the shape shows more clearly (see Figure 11-4). The image itself remains a square, but the text flows
 over the image, around a circular shape inside it. In browsers that don’t support CSS Shapes, the text will
flow around the rectangular shape as normal.

CHAPTER 11 ■ CUTTING-EDGE VISUAL EFFECTS

339

 ■ Note As shown in Figure 11-4 , the text follows the shape only on the left side of the float. You can only get
a shape to affect the line boxes on one side, so even if the shape carves out space to the right of itself, the text
will never flow there.

 Shape Functions
 The shape-outside property for the Moon image has the value circle() . There are a number of these shape
functions : circle() , ellipse() , polygon() , and inset() . Most of these are self-explanatory, except for
 inset() , which means a rectangular shape inset from the box edges, optionally with rounded corners. It is
basically a souped-up version of the old CSS 2.1 clip property, but with a slightly different syntax.

 The syntax for circles and ellipses is similar to the syntax for sizing and positioning radial gradients that
we saw in Chapter 5 :

 .shape-circle {
 /* circles take 1 radius and a position value: */
 shape-outside: circle(150px at 50%);
 }
 .shape-ellipse {
 /* ellipses take 2 radii and a position value: */
 shape-outside: ellipse(150px 40px at 50% 25%);
 }

 Just like gradient functions, there are some sensible defaults for circles and ellipses. The circle() value
for our Moon image has no arguments supplied, which results in positioning the circle shape in the center of
the element and extending the radius to the closest side.

 The inset() shape works by supplying a list of lengths that represents the distance from the top, right,
bottom, and left edges, a lot like the margin or padding shorthand. The same shortening rules for margins
or padding apply when supplying one to three values. You can also supply values for rounded corners by
adding the round keyword, followed by radii values that work the same as the border-radius property:

 .shape-inset {
 /* shape the outside of the box 20px from
 * the top and bottom edges and 30px from
 * the left and right edges, with 10px
 * radius rounded corners.
 */
 shape-outside: inset(20px 30px round 10px);
 }

 A more complex example is using the polygon() shape function. This lets you supply a list of coordinate
pairs for points on the box surface, relative to the top-left corner, and a line is drawn between them resulting
in a shape. The last point listed connects to the first to close the shape. In the “Planets” section, we have
created a polygon shape from the image of Saturn.

 The easiest way to quickly create a polygon shape is to use the CSS Shapes Editor plug-in, available both
for the Google Chrome and Opera developer tools (https://github.com/oslego/chrome-css-shapes-
editor). Chrome and Opera both support Shapes, and offer a preview of the shape when inspecting an
element. The plug-in adds additional tools, so that you can both visualize how a shape affects the page, and
create new ones by creating and dragging control points (see Figure 11-5).

http://dx.doi.org/10.1007/978-1-4302-5864-3_5
https://github.com/oslego/chrome-css-shapes-editor
https://github.com/oslego/chrome-css-shapes-editor

CHAPTER 11 ■ CUTTING-EDGE VISUAL EFFECTS

340

 We can now copy and paste the resulting polygon shape into our code:

 .fig-planet {
 float: right;
 max-width: 65%;
 shape-outside: polygon(41.85% 100%, 22.75% 92.85%, 5.6% 73.3%, 0.95% 52.6%, 5.6% 35.05%,
21.45% 17.15%, 37.65% 12.35%, 40% 0, 100% 0%, 100% 100%);
 }

 The coordinates for each point on the polygon are represented as percentages here for maximum
flexibility, but you can also use other lengths like pixels, ems, or even calc() expressions.

 Shape Images
 Creating polygons based on complex images can be tedious. Luckily, we can also create shapes directly
from an image source, based on image transparency. We could create a separate image file with the desired
outline shape, but the Saturn image is already a PNG with transparency, so we can use that to generate the
shape. All we need to do is change the shape-outside value from a polygon() function to a url() function
pointing to the image :

 .fig-planet {
 float: right;
 max-width: 65%;
 shape-outside: url(img/saturn.png);
 }

 If we inspect the image in the Chrome Developer Tools (DevTools) now, as shown in Figure 11-6 , we
can see that the transparency data from the image is picked up, generating the shape.

 Figure 11-5. A polygon shape drawn on the image of Saturn with the Shapes plug-in for Google Chrome

CHAPTER 11 ■ CUTTING-EDGE VISUAL EFFECTS

341

 ■ Tip If you try this example by just opening the HTML file directly in your browser, it will not work—even if
the browser supports CSS Shapes. You need to fetch the page via a web server, so that the referenced image
has proper HTTP headers describing it as coming from the same origin server as the CSS. This is a security
trade-off that exists in some newer browsers, to prevent referenced files doing unsafe things to your computer.

 By default, the shape outline will be generated from the outline of where the image becomes fully
transparent, but we can change that value with the shape-image-threshold property. The default is 0.0
(fully transparent), while higher values (up toward 1.0) will mean higher opacity values are tolerated before
the shape edge is created. If we change the Saturn image to use an image threshold of 0.9 , for example,
the semitransparent rings will not be included in the shape outline, and the text will overlap them (see
Figure 11-7):

 .fig-planet {
 float: right;
 max-width: 65%;
 shape-outside: url(img/saturn.png);
 shape-image-threshold: 0.9;
 }

 Figure 11-6. The outline of the transparent parts of the image is used to create the shape

 Figure 11-7. Using shape-image-threshold , semitransparent parts of the image are now ignored when
generating the shape

CHAPTER 11 ■ CUTTING-EDGE VISUAL EFFECTS

342

 Shaped Boxes and Margins
 Instead of using a shape function or an image, we can also use the reference boxes for the element to
generate the shape. This may sound strange at first, as it is the boxiness that we wanted to get away from, but
the shape will also follow rounded corners.

 For example, if we go back to the Moon example, we may want to change that section’s background
color, but at the same time get rid of the black square frame around the image, as shown in Figure 11-8 . We
can use border-radius on the image to create the circular shape:

 .fig-moon {
 float: right;
 max-width: 40%;
 border-radius: 50%;
 }

 Figure 11-8. Applying border-radius to the Moon image

 The border radius alone does not generate a shape, but we can tell the shape-outside property to use
the now circular border-box as a reference for the shape:

 .fig-moon {
 float: right;
 max-width: 40%;
 border-radius: 50%;
 shape-outside: border-box;
 }

 The outside shape is now back to a circle, following the border box of the element. The other possible
reference box values for shapes are content-box , padding-box , and margin-box . We’ve seen reference boxes
before (with properties like box-sizing and background-clip), with the exception of margin-box . Since
shapes operate on the float area, they can include the margin as well, so this keyword is special to shapes—
there’s no box-sizing: margin-box , for example.

CHAPTER 11 ■ CUTTING-EDGE VISUAL EFFECTS

343

 The margin-box on a shaped item will also follow the border radius. This means that we can use a
normal margin declaration for the Moon image to create some space around it:

 .fig-moon {
 float: right;
 max-width: 40%;
 border-radius: 50%;
 shape-outside: margin-box;
 margin: 2em;
 }

 The text will now flow around the curved margin shape. If we inspect the item in Chrome DevTools, we
will see how this shape behaves, as well as the original margin (see Figure 11-9).

 Figure 11-9. With the margin-box as a shape reference, the margin distance follows the rounded corners

 Figure 11-10. Adding a shape-margin property on the Saturn image shape

 If we wanted to add a margin to the more complex shape of the Saturn image, there’s a new property
called shape-margin to set a margin distance around the whole shape, regardless of the method used to
create it (see Figure 11-10):

 .fig-planet {
 max-width: 65%;
 shape-outside: url(img/saturn.png);
 shape-margin: 1em;
 }

CHAPTER 11 ■ CUTTING-EDGE VISUAL EFFECTS

344

 Browser Support for CSS Shapes
 At the time of writing, CSS Shapes only work in newer WebKit- or Blink-based browsers : Google Chrome,
Opera, and Safari 7.1+ (or Mobile Safari on iOS 8+).

 Clipping and Masking
 Where CSS Shapes lets you alter the flow of content around the shape of an element, it does not allow you to
alter the appearance of the element itself. We saw that adding a border radius is one way of visually shaping
the element. There are other ways to affect the shape of an element, by making parts of it transparent.

 Clipping uses a path shape to define sharp edges where the element’s visibility toggles fully on and off.
 Masking is slightly different, and is used to set areas of an element to be more or less transparent. Clipping also
affects the hit surface of an object, whereas masking does not. For example, hover effects will be triggered only
when your mouse pointer is over the visible parts of a clipped element. When you hover over a masked element,
any :hover rule will become active regardless of the visibility of the portion underneath the mouse pointer.

 Clipping
 Clipping was first introduced in CSS 2.1, with the clip property. However it could only be used on absolutely
positioned elements to clip them into a rectangular shape, using a rect() function . Boring!

 Luckily, the new clip-path property allows us to clip elements in more exciting ways. It can use the
same basic shape functions as CSS Shapes to define how the element should be clipped. We can also use an
SVG document to clip an element, by referencing a <clipPath> element inside it via a URL.

 We’ll start by looking at the version using shape functions. This version only works in Blink- and
WebKit-based browsers at the time of writing, and needs a -webkit- prefix in addition to the unprefixed
property. In the upcoming examples, we will stick with the standard unprefixed property for brevity.

 The sections in the Stargazing example page are all clipped, to give them a slight diagonal tilt (see
Figure 11-11).

 Figure 11-11. All the sections of the page are clipped to give them a slight tilt

CHAPTER 11 ■ CUTTING-EDGE VISUAL EFFECTS

345

 Each section is given the class name stacked , and for this class name, we add a rule with the clipping
path defined as a polygon shape:

 .stacked {
 clip-path: polygon(0 3vw, 100% 0, 100% calc(100% - 3vw), 0% 100%);
 }

 This polygon shape is not as complex as the one for the Saturn shape earlier, and gives us a chance to
dive into the syntax a bit more. Each point in the polygon is represented as a pair of space-separated values,
and the points are separated with commas.

 Starting at the top left, we clip from 0 on the x axis and 3vw on the y axis. We use viewport-relative units
here to keep the angle relative to the viewport size. The next coordinate pair is at the top-right corner of the
element, so the coordinate pair is 100% 0 . The next point is 3vw from the bottom-right corner, and cannot be
represented with a percentage as we start from the top. This means we need to calculate it as 100% - 3vw .
Finally, we place the last point in the bottom-left corner of the element, at 0 100% .

 Since the clipping paths only affect the rendered appearance of the element and not the flow of the
page, the clipped elements will now have transparent gaps between them (see Figure 11-12). To fix this,
we can apply a negative margin for each stacked element, slightly larger than the 3vw distance that we clip
away, so that the sections overlap. We only want this negative margin in browsers that do support clip-path ,
which gives us an excellent opportunity to use the @supports -rule. Since these new visual effects are only
implemented in very recent browsers, we can safely scope them this way.

 @supports ((clip-path: polygon(0 0)) or
 (-webkit-clip-path: polygon(0 0))) {
 .stacked {
 margin-bottom: -3.4vw;
 }
 }

 Figure 11-12. With just the clipping, there will be gaps between sections

 In the @supports-block , we test for support of the minimum polygon shape, consisting of a single
point.

 With this fix, the sections stack up nicely and browsers with no support for clip-path via shapes get the
normal straight sections without the overlap.

CHAPTER 11 ■ CUTTING-EDGE VISUAL EFFECTS

346

 Clipping with SVG Clip Sources
 You can use polygon() , circle() , ellipse() , and the inset() function to create clipping paths, just like in
CSS Shapes. For more complex shapes, it’s probably easier to create them using an image editor, and then
use the graphic as the source of the clipping shape. This is what we have done with the shapes in the page
navigation shown in Figure 11-13 .

 Figure 11-13. The complex shapes in the navigation section are clipped from SVG sources

 To achieve this, we need to use SVG to create our clipping path, and then use a URL reference to this clip
source in place of the shape function. To start with, we need to create the shape in a graphics editing program
such as Illustrator, Sketch, or Inkscape. The process is not as straightforward as it could be, but doable.

 The navigation itself is an unordered list containing in-page links:

 <nav class="stacked section nav-section inverted">
 <ul class="wrapper">
 The Moon
 The Sun
 Planets
 Galaxy
 Universe

 </nav>

 We’ll leave the details of the navigation styling out of this example; suffice to say we’re using flexbox to
lay the items out horizontally, and sized them as 100×100-pixel squares at the default font size.

 Next, we create an image in an SVG-capable graphics editor , Adobe Illustrator in this case. The image is
also set to be 100 by 100 pixels in size (see Figure 11-14). We draw the planet by creating two black shapes:
a circle and a rotated ellipsis. Next, we save the graphic as an SVG file named clip.svg . This process differs
between different graphics editing software; we’ll leave out the details of this, and focus on the general
workflow.

CHAPTER 11 ■ CUTTING-EDGE VISUAL EFFECTS

347

 If we now open the SVG file in a code editor, it will look something like this:

 <svg xmlns=http://www.w3.org/2000/svg width="100px" height="100px" viewBox="0 0 100 100">
 <circle cx="50" cy="50" r="45"/>
 <ellipse transform="matrix(-0.7553 0.6554 -0.6554 -0.7553 -12.053 54.99)" cx="50" cy="50"
rx="63.9" ry="12.8"/>
 </svg>

 In order to transform this image into a clipping path, we need to wrap the contents inside a <clipPath>
element and give that element an ID:

 <svg xmlns="http://www.w3.org/2000/svg"
 width="100px" height="100px" viewBox="0 0 100 100">
 <clipPath id="saturnclip">
 <circle cx="50" cy="50" r="40.1"/>
 <ellipse transform="matrix(0.7084 -0.7058 0.7058 0.7084 -20.7106 49.8733)" cx="50"

cy="50" rx="62.9" ry="12.8"/>
 </clipPath>
 </svg>

 We are finally ready to reference the clipping path inside of the clip.svg file from our CSS:

 .nav-section [href="#planets"] {
 clip-path: url(img/clip.svg#saturnclip);
 }

 Using this technique, you can keep a number of clip sources in a single SVG file, and reference them by
their ID in the URL fragment.

 Sadly, the current state of browsers leaves two major obstacles to overcome in order to make SVG clip
sources work reliably:

• So far, only Firefox allows external clip sources applied to HTML content in CSS—
other browsers are likely to follow suit eventually.

• The coordinates in the SVG <clipPath> are interpreted as pixels, so the clip shape is
inflexible and will not resize with the HTML content it is applied to. Percentages in
measurements are technically valid, but support is lacking.

 There are solutions for these obstacles, but they require some slight reshuffling of our code.

 Figure 11-14. Creating the planet shape in Illustrator

CHAPTER 11 ■ CUTTING-EDGE VISUAL EFFECTS

348

 Inline SVG Clip Sources
 Browsers that do not support external clip source references do allow you to use SVG clipping paths, as long
as the CSS, HTML, and SVG are all in the same file.

 If you put the CSS inside a <style> element inline with the content, and also put the SVG contents
inline in the same file, you can reference the <clipPath> element directly via the ID. This would all be in the
same HTML source file:

 <!-- Here's the element we want to clip -->
 Planets

 <style>
 /* in the same HTML file, we put the CSS for the clip-properties */
 .nav-section [href="#planets"] {
 clip-path: url(img/clip.svg#saturnclip);
 }
 </style>
 <!-- Still in the same HTML file, the clipping path inline as SVG -->
 <svg xmlns=http://www.w3.org/2000/svg height="0" viewBox="0 0 100 100">
 <clipPath id="saturnclip">
 <circle cx="50" cy="50" r="40.1"/>
 <ellipse transform="matrix(0.7084 -0.7058 0.7058 0.7084 -20.7106 49.8733)" cx="50"

cy="50" rx="62.9" ry="12.8"/>
 </clipPath>
 </svg>

 The preceding technique gives us slightly better cross-browser support, but at the cost of sacrificing the
reusability of having all our clipping paths in one external SVG file, as well as not having to mess about in the
HTML.

 ■ Note WebKit-based browsers have a bug where the coordinates for the position of the clipping path start
at the top left of the page instead of relative to the element. In order for them to be positioned correctly, the final
example also features transform: translate(0, 0) on the clipped item, which does nothing visually, but
fixes the problem.

 Using the Object Bounding Box to Size Clipping Paths
 The next problem is that the clipping path will not resize with the size of our navigation items; it has a hard-
coded size of 100 by 100 pixels.

 There are two coordinate systems we can use to size our clipping path. The default is called the “user
space on use,” meaning the coordinate system for the content the clipping path is applied to. In our case, this
means that one unit inside the clipping path is interpreted as one CSS pixel in the clipped HTML content.

 The other coordinate system is called “ object bounding box ,” which uses a scale where the units are
relative to the size of the content being clipped. In this scale, a value of 0 on the x axis means the left edge of
the clipped content’s border box, and 1 means the right edge. Similarly, 0 is the top of the box in the y axis,
and 1 is the bottom.

CHAPTER 11 ■ CUTTING-EDGE VISUAL EFFECTS

349

 For simpler graphics, you might get away with changing the values by hand—a value of 50 in our
100×100-pixel image would become 0.5, and so on—but for more complex graphics, this would be too error-
prone. The easier solution is to resize the graphic to a 1×1-pixel size inside the image editing software, before
exporting the SVG.

 In the final example, we have used the objectBoundingBox value for the inline SVG clipping paths. For
the Saturn clipping path, the final code looks like this:

 <clipPath id="saturnclip" clipPathUnits="objectBoundingBox" >
 <circle cx=" 0.5 " cy=" 0.5 " r=" 0.45 "/>
 <ellipse transform="matrix(-0.7553 0.6554 -0.6554 -0.7553 1.2053 0.5499)" cx=" 0.5 "
cy=" 0.5 " rx=" 0.639 " ry=" 0.125 "/>

 </clipPath>

 Browser Support for Clipping Paths
 Using the inline SVG method for clipping paths, you can target most modern browsers : Chrome, Opera,
Safari, and Firefox all support this version. WebKit- and Blink-based browsers also support the basic shape
functions for clipping paths. Sadly, IE does not support clipping paths at all. At the time of writing, Edge was
also missing support, but it is on the roadmap and likely to be added soon. External references for SVG clip
sources only work in Firefox at the time of writing, but are expected to work elsewhere in a near future.

 Masking
 The title in the header of the “Stargazing” page appears to be behind the “atmosphere” of the Earth graphic
(see Figure 11-15). This gradual transparency is achieved with masking .

 Figure 11-15. The “Stargazing” title is masked with a gradient mask image

 Safari implemented masking way back in 2008, using a nonstandard property called - webkit-mask-
image . This property allowed you to take an image and use it as a source for the transparency levels of the
masked element. This is based on the alpha level of each pixel in the mask: how transparent it is. Where the
mask image is completely transparent, so will the masked element be. Conversely, completely opaque parts
of the mask will make the masked element completely visible. The color values of the mask are irrelevant, so
the most common approach is to use a grayscale image to do the masking.

CHAPTER 11 ■ CUTTING-EDGE VISUAL EFFECTS

350

 Instead of creating an image file, we can also use CSS gradients to create the mask. This is exactly what
we’ve done in the header:

 .header-title {
 mask-image: radial-gradient(ellipse 90% 30% at 50% 50%,
 rgba(0,0,0,0) 45%,
 #000 70%);
 mask-size: 100% 200%;
 }

 You’ll recognize the syntax: mask images are declared pretty much exactly as you would declare
background properties. For example, the mask-image property works just like background-image syntax-
wise; you can even declare multiple mask images on top of each other.

 Along with picking a mask image, you can also specify sizing and position. For this example, we’ve
opted to use twice the height of the mask image in order to place it at the bottom of the text, instead of
positioning it there. If we simply moved the gradient image down, the top part of the mask image surface
would be transparent, which would mask away the top part of the text. Figure 11-16 illustrates how the
gradient mask is sized and positioned over the text.

 Figure 11-16. The mask image as it would look if it were an image on top of the text

 Since the original WebKit implementation, the mask properties are being standardized and expanded,
as well as harmonized with the corresponding SVG effects. Yes, that’s right: just like with clip-path , masking
exists in SVG and is being made applicable to HTML content as well.

 At the time of writing, WebKit- and Blink-based browsers offer support for the prefixed -webkit-mask -
properties for alpha transparency mask images. Along with Firefox, they also support SVG <mask> sources .
All except Firefox require the same inline method we saw for clipping paths.

 .header-title {
 /* inline CSS, pointing to an inline SVG <mask> element */
 mask: url(#ellipseMask);
 }

CHAPTER 11 ■ CUTTING-EDGE VISUAL EFFECTS

351

 The SVG equivalent of the CSS gradient we created looks something like this:

 <mask id="ellipseMask" maskUnits="objectBoundingBox" maskContentUnits="objectBoundingBox">
 <radialGradient id="radialfill" r="0.9" cy="1.1">
 <stop offset="45%" stop-color="#000"/>
 <stop offset="70%" stop-color="#fff"/>
 </radialGradient>
 </mask>

 Just like with clip-paths, we need to use the objectBoundingBox coordinate system from 0 - 1 to size
the mask surface to the boundaries of the element. SVG masks also have the additional maskContentUnits
attribute, which here sets the same coordinate system for the mask shapes.

 SVG mask sources use luminance values for the mask rather than alpha. This means that the masked
element will be transparent where the mask is darker, and opaque where the mask is lighter. In the preceding
SVG mask example, we used a gradient from black to white.

 The browser will automatically assume that you are using an alpha mask for mask image sources, and a
luminance mask if pointing to an SVG source. With the proposed standard version, you can toggle between
these with the mask-type property.

 There are some further differences between the -webkit- prefixed version and the proposed masking
standard. Refer to the MDN docs for the full list of properties and syntax for the WebKit implementation
(https://developer.mozilla.org/en-US/docs/Web/CSS/-webkit-mask).

 Transparent JPEGs with SVG Masking
 The page header uses masking in two places, one of them harder to spot than the other. The title itself uses
masked text, but the background image of Earth (taken from an Apollo expedition) actually has its own mask
baked in.

 This image is a fairly high-resolution photograph, and the header has a nice, smooth gradient background.
In Figure 11-17 we have removed the text and lightened the gradient a bit so the result is more visible.

 Figure 11-17. The header with the Earth photo

 Photographic images with baked-in transparency are usually achieved with PNG images. The downside
with PNGs is that they have a massive file size—the Earth image would be around 190 KB as a PNG. In this
technique, we are going to use the power of SVG to apply alpha transparency to a JPEG file via masking. The
resulting file will be around 24 KB instead.

https://developer.mozilla.org/en-US/docs/Web/CSS/-webkit-mask

CHAPTER 11 ■ CUTTING-EDGE VISUAL EFFECTS

352

 Images Inside SVG
 The first thing we need to do is to create the image as a normal JPEG, with the background still there, as
shown in Figure 11-18 .

 Figure 11-18. The JPG photo

 Next, we create an SVG “wrapper” file named earth.svg that loads the bitmap image. SVG is primarily
a vector format, but you can load and use bitmap images inside SVG files with the <image> element. We’ll
eventually use this SVG file as the header background image in CSS.

 We’ll size the SVG graphic to the same dimensions as the bitmap image using the viewBox , width , and
 height attributes. The viewBox attribute is responsible for setting up the coordinate system inside the image,
and the width and height attributes are there to set the outside image dimensions. Most browsers don’t
need the latter, but IE has a bug which skews SVG background images if these two are missing.

 The code looks something like this:

 <svg xmlns="http://www.w3.org/2000/svg" width="1200" height="141" viewBox="0 0 1200 141"
xmlns:xlink="http://www.w3.org/1999/xlink">
 <image width="100%" height="100%" xlink:href="earth.jpg" />
 </svg>

 SVG Masking
 Next, we’ll need to create the mask. For this shape we can get away with a radial gradient, which we will size
and position to cover Earth’s horizon in the image. The radial gradient has a slight transparency at the edge.
It’s kind of hard to pick out the right coordinates, but we can make this easier by using a graphics editor. In
Figure 11-19 we’ve drawn a giant semitransparent circle on top of the bitmap image inside Adobe Illustrator,
to quickly be able to get some measurements. We could have drawn a path to create the mask shape as well,
but the radial gradient gives us the possibility of a smoother edge. This is just a throwaway document, to
come up with the right numbers.

 Figure 11-19. We’ve drawn a giant circle shape over the photo, to quickly pick out the mask coordinates

CHAPTER 11 ■ CUTTING-EDGE VISUAL EFFECTS

353

 It turns out that the gradient needs to have a radius of about 1224 pixels, and be positioned at 1239
pixels on the y axis and 607 pixels on the x axis. We then create an SVG <mask> element in the earth.svg file,
consisting of a rectangle covering the entire SVG viewport, filled with the radial gradient.

 <mask id="earthmask">
 <radialGradient gradientUnits="userSpaceOnUse" id="earthfill" r="1224" cx="607" cy="1239">
 <stop offset="99.5%" stop-color="#fff"/>
 <stop offset="100%" stop-color="#000"/>
 </radialGradient>
 <rect width="1200" height="141" fill="url(#earthfill)" />
 </mask>

 The gradient color stops go from white to black, with a slight feathering at the edge. Note that gradient
dimensions work the opposite way from clip-paths, in that they are sized with objectBoundingBox
dimensions by default. For that reason, we also need to add gradientUnits="userSpaceOnUse" .

 We can now point the image to use the mask we created:

 <mask id="earthmask"><!-- mask content here --></mask>
 <image width="100%" height="100%" xlink:href="earth.jpg" mask="url(#earthmask)" />

 Inlining the Image
 At this point, our file could be done, if we were to use it as a stand-alone SVG graphic. The problem is that
SVG background images can’t load other resources. For this reason, the final step is to convert the bitmap
image (earth.jpg) into a Base64-encoded data URI. There are plenty of tools and services that let you do
this, like http://duri.me —just go there and drag and drop the image file to get the text string.

 Finally, we swap out the image file reference in the SVG to the encoded string:

 <image width="100%" height="100%" mask="url(#earthmask)" xlink:href="..." />

 Note that this string of characters can be very long. Base64 encoding increases the file size compared to
the binary image file by about 30%, but as the original JPEG file is around 18KB, we land at 24 KB total.

 Now we’re finally ready to apply this SVG image as the header background, along with the gradient:

 .page-header {
 background-image: url(img/earth.svg),
 linear-gradient(to bottom, #000, #102133);
 background-repeat: no-repeat;
 background-size: 100% auto, cover;
 background-position: 50% bottom;
 }

 This technique works in almost all browsers that support SVG, the exceptions being IE9 and some older
versions of Android that do not support SVG masking at all.

 Automating the Technique
 Creating this background image was a lot of work, but we did get the file size down to one-tenth of the size,
compared with the transparent PNG. For this shape, a radial gradient did the trick of masking very well,
albeit with a bit of manual work.

CHAPTER 11 ■ CUTTING-EDGE VISUAL EFFECTS

354

 For more complex shapes, there’s a very handy web service that does this for you, called ZorroSVG
(mask, get it?). At http://quasimondo.com/ZorroSVG/ , you can upload a transparent PNG, and it will spit
back a masked SVG with a JPEG inside it. The downside is that it converts the transparency data to a bitmap
mask, which takes up some additional space compared to drawing it as an SVG shape. Even so, you are still
likely to gain some massive savings with this technique.

 Blend Modes and Compositing
 In graphics editing applications like Photoshop, Sketch, or Gimp, designers have long been able to choose
how the colors mix when putting design elements on top of each other (see Figure 11-20). In CSS, we’ve only
recently been given decent control over alpha blending: regular transparency in the form of transparent
PNG files, rgba background colors, the opacity property, masking, etc. Needless to say, designers have
wanted to see the same blend modes they are used to from graphics editing applications as part of CSS. This
is finally coming, in the Compositing and Blending standard.

 Figure 11-20. Blending layers in Adobe Photoshop

 Compositing is the technical term for merging image layers together. Blend modes are probably the
most commonly encountered aspect of compositing. If you haven’t used blend modes before, or haven’t
thought about what they are, they all represent different mathematical ways of combining color values for of
one image (called the source) on top of another (called the destination).

 The simplest example is perhaps the “multiply” blend mode, where each color channel value of the
source pixel is multiplied with the values of the pixel behind it, which results in a darker image. It helps to
think of this in terms of a grayscale example and the color being from 0 (black) to 1 (white). If the source is
0.8 and the destination is 0.5, the resulting pixel will have a color value of 0.8 × 0.5 = 0.4.

http://quasimondo.com/ZorroSVG/

CHAPTER 11 ■ CUTTING-EDGE VISUAL EFFECTS

355

 Colorizing a Background Image
 Another example is the “luminosity” blend mode. It takes the light-levels from the source and applies them
to the hue and saturation of the destination. The “Milky Way” section in our example page has a background
image with some rather vibrant blue tones. We have tweaked it slightly by applying a purplish background
color and then applying background-blend-mode: luminosity (see Figure 11-21). This colorizes the image
and gives it a more uniform color range.

 Figure 11-21. Colorizing a background image with the luminosity blend mode

 .section-milkyway {
 background-image: url(img/milkyway.jpg);
 background-color: #202D53;
 background-blend-mode: luminosity;
 }

 ■ Note If you are reading this in black-and-white print or on a monochrome e-reader: sorry! It’s really hard to
demonstrate color effects in those situations. You can find the working code in the example files from the book.

 It’s tricky to explain what each of the full 16 blend modes does without getting into the color math.
Most of them only become useful in certain situations, like how luminosity allows you to colorize an image
by mixing it with a solid color layer. In Figure 11-22 we have mixed the relatively dark blue background
image with a light pink background color to show you the effects of each mode when the two layers have an
exaggerated difference.

CHAPTER 11 ■ CUTTING-EDGE VISUAL EFFECTS

356

 If you want to dive deeper into the how each mode works, we recommend the article and video “The
Ultimate Visual Guide to Understanding Blend Modes” by Pye Jirsa (http://www.slrlounge.com/school/
photoshop-blend-modes/) .

 As we discussed in Chapter 5 , you can have multiple background images per element, and backgrounds
are stacked on top of each other in the reverse order they are declared in. The background color sits at the
bottom of this stack of background layers. If you have more than one image layer, you can declare a comma-
separated list of background blend modes, applied in turn between each layer and the ones below it.

 Note that the background layers are not mixed with the content behind the element itself, regardless of
the background transparency. You can’t set a background-blend-mode for a single background color layer—
mixing elements together is achieved via a separate property, and we’ll tackle that next.

normal multiply screen overlay

darken lighten color-dodge color-burn

hard-light soft-light difference exclusion

color hue saturation luminosity

 Figure 11-22. The 16 blend modes

http://www.slrlounge.com/school/photoshop-blend-modes/
http://www.slrlounge.com/school/photoshop-blend-modes/
http://dx.doi.org/10.1007/978-1-4302-5864-3_5

CHAPTER 11 ■ CUTTING-EDGE VISUAL EFFECTS

357

 Blending Elements
 Just as you can blend background layers, you can blend elements with their backdrop. This means either
a statically positioned child element blending with its parent elements, or something like an absolutely
positioned element overlapping another part of the page. The caveat is that elements that are in different
stacking contexts do not blend with each other; we will examine that effect further in a moment.

 The syntax is exactly the same as with its background counterpart, but the property is called mix-blend-
mode . The Saturn image uses the screen blend mode to better fit in with the background color of the page
section (see Figure 11-23).

 Figure 11-23. The Saturn image uses the screen blend mode to fit in better with the background

 .fig-planet {
 mix-blend-mode: screen;
 }

 The screen blend mode is another of the more immediately useful modes. It is named after projecting
two images on top of another on the same screen, resulting in an overall lighter image. Where one image
“shines” less light (i.e., is darker), any light from the second image shows through, and vice versa, generating
an overall lighter image.

 This means that white source parts will be completely opaque, but black source parts become
transparent, making it useful as a masking technique. We can use this for some interesting “knock-out text”
effects.

 Typographic Lock-ups with Knock-Out Text
 This see-through effect is exactly what we’ve done in the title for the “The Observable Universe” section title
of the example page, shown in Figure 11-24 .

CHAPTER 11 ■ CUTTING-EDGE VISUAL EFFECTS

358

 The text sits on a white background positioned on top of the image. It is also part of what’s sometimes
called a “typographic lock-up,” where the text is made to fit the container exactly, by sizing or spacing the
text. CSS makes this effect a bit tricky. It will work with viewport-relative units, but even those have their
drawbacks; for example, since viewport-relative units are not relative to the element itself, we will need to
lock them down at a maximum breakpoint.

 Instead, the example uses SVG text to achieve fluidly sizing text that is relative to the element size. The
markup of the heading contains a snippet of SVG:

 <h2 class="universe-title">
 <svg viewBox="0 0 400 120" role="presentation">
 <text>
 <tspan class="universe-span-1" x="6" dy="0.8em">The Observable</tspan>
 <tspan class="universe-span-2" x="3" dy="0.75em">Universe</tspan>
 </text>
 </svg>
 </h2>

 SVG text is a complex subject in itself, but to quickly note what the code is doing:

• SVG text is more like graphical objects, and does not flow like HTML content. Line
breaks are not automatic, so each line needs to be wrapped in a <tspan> element
and positioned by hand.

• Each <tspan> is positioned horizontally with the x attribute relative to the left edge of
the SVG viewport.

• Text is positioned vertically from the bottom of the line box. If we want to keep the
sizing flexible, we need to position each line vertically with an offset relative to its
size, acting as a sort of line height. This is what the dy attribute is for.

• Text inside inline SVG should be perfectly accessible for screen readers—in
theory. In practice, some assistive technologies have issues, but adding
 role="presentation" should maximize accessibility.

 Figure 11-24. The “ typographic lock-up ” using screen blend mode

CHAPTER 11 ■ CUTTING-EDGE VISUAL EFFECTS

359

 As the <svg> sits inline with our HTML, we can style it in our normal CSS. Note that text color in SVG is
controlled with the fill property rather than color .

 .universe-span-1 {
 font-size: 53.2px;
 }
 .universe-span-2 {
 font-size: 96.2px;
 }
 .universe-title text {
 fill: #602135;
 text-transform: uppercase;
 }

 Each <tspan> element is sized with pixels to exactly fill the space. What’s important to note is that the
pixel sizes are relative to the coordinate system of the SVG fragment, not the HTML. This means that as the
SVG is resized with the page, the font size of the text follows, keeping the lock-up intact.

 To keep the <svg> element itself sized consistently across browsers, we use the same aspect-ratio
hack that we saw in Chapter 5 . See the example code for the full details on this. The whole heading is then
absolutely positioned on top of the image.

 Finally, we add the blend mode to the title:

 @supports (mix-blend-mode: screen) {
 .universe-title {
 mix-blend-mode: screen;
 }
 .universe-title text {
 fill: #000;
 }
 }

 The text inside the SVG was initially styled using a dark red color that goes well with the overall color
of the image behind it. This works as a fallback for browsers without support for mix-blend-mode (see
Figure 11-25). Inside the @supports rule, we set the blend mode, but also change the fill color of the text to
black, making it fully transparent.

http://dx.doi.org/10.1007/978-1-4302-5864-3_5

CHAPTER 11 ■ CUTTING-EDGE VISUAL EFFECTS

360

 In general, blend modes are not too hard to apply with progressive enhancement in mind. The effects
are mostly subtle, and where we do more drastic changes, the @supports rule is there to help. Blend modes
for elements work in the latest versions of Chrome, Opera, and Firefox, as well as Safari (from 7.1 on Mac
and in Mobile Safari from iOS8). Safari is however missing support for the luminosity , hue , and color blend
modes. IE, Edge, Opera Mini, and Android WebKit browsers all lack support at the time of writing.

 Isolation
 Apart from blend modes, the other aspect of compositing we can control with CSS is isolation . In effect, this
means creating groups of elements that blend within the group but not outside it. We mentioned earlier that
elements in different stacking contexts (see Chapter 3) do not blend together.

 In Figure 11-26 , we have two examples of a group of items with a multiply blend mode applied. Each
group sits on top of a patterned background. In the left example, the blend mode is not isolated, so the
individual elements also blend with the background. In the right example, the figure has opacity: 0.999
set, which forces a new stacking context and isolates the blending.

 Figure 11-25. The heading as it appears in IE9, which does not support mix-blend-mode . The SVG sizing
works fine though, even in this older browser

 Figure 11-26. The left group blends all the way through to the background, but the right group is isolated

http://dx.doi.org/10.1007/978-1-4302-5864-3_3

CHAPTER 11 ■ CUTTING-EDGE VISUAL EFFECTS

361

 .item {
 mix-blend-mode: multiply;
 }
 .group-b {
 opacity: 0.999;
 }

 The items in “group B” blend with each other, but not the background.
 We can create new stacking contexts (and thus isolate groups) without hacking the opacity , using the

new isolation property. The same result as above could be achieved with the following change:

 .group-b {
 isolation: isolate;
 }

 Image Processing in CSS: Filters
 The next tool for modern CSS is also straight out of image editing software: applying graphical filters to an
element. Filters are applied to the whole element and its children. It’s a bit like taking a screenshot of part of
a page and then adjusting aspects of that image like you would in Photoshop. (In fact, this analogy is not far
off from how browsers actually implement these things—we’ll come back to that in Chapter 12 .) Filters are
available in WebKit- and Blink-based browsers like Safari, Chrome, and Opera, as well as Firefox and Edge,
so support is reasonably broad. There are ten different filters available, plus the ability to define your own
filters in SVG. We’ll start by going through the predefined filters available in CSS.

 Adjustable Color Manipulation Filters
 Filters allow you to apply one or more effects to an element, in order. Some of these are more general color
manipulation filters , allowing you to tweak lightness, contrast, saturation, etc. The following code snippet
should be pretty self-describing (see Figure 11-27 for the results):

 .universe-header {
 filter: grayscale(70%) brightness(0.7) contrast(2);
 }

http://dx.doi.org/10.1007/978-1-4302-5864-3_12

CHAPTER 11 ■ CUTTING-EDGE VISUAL EFFECTS

362

 We have desaturated the element 70% of the way toward being fully grayscale, then decreased the
brightness from 1 (normal brightness) to 0.7 , and finally cranked up the contrast to double the normal value.

 Most of the filters can take either a percentage or a number value. For values that can go both up
and down like constrast() , brightness() , and saturation() , the default is 100% or 1 . For grayscale() ,
 invert() , and sepia() , the default is 0 , going to 100% or 1 . Any values higher than that are capped to the
maximum value.

 There’s also an opacity() filter, which has a default of 1 (or 100%) and takes values down to 0 . The
difference between this filter and the opacity property is that the filter can have different results depending
on where in the filter chain it is added. By contrast, the opacity property is always applied after all of the
filters are applied. We will revisit the order of application later on in the chapter.

 Finally, there are a few filters that work a little bit differently, and we’ll examine them individually using
examples from the “Stargazing” page.

 Hue Rotation
 The image of the Sun and its spots is actually a grayscale photo with a black background. This isn’t the
cheeriest of photos, and in most situations you’d pop open an image editor before even putting it on the
page—as you should, as that is probably the best-performing route. For the purpose of illustrating how filters
work, let’s assume we don’t have access to the image at all, only the CSS. Just like we colorized the background
image earlier, we’re going to colorize the Sun image and make it just a little brighter. Figure 11-28 shows the
image without any filters applied.

 Figure 11-27. The “Universe” header with a range of filters applied

CHAPTER 11 ■ CUTTING-EDGE VISUAL EFFECTS

363

 Figure 11-28. The original astronomical photo of the Sun. Not very shiny

 The hue-rotate() filter lets us rotate all the hues of an image by a number of degrees, based on the
standard color wheel. The bright yellows sit about 40 degrees (starting at the top) on this wheel, so hue-
rotate(40deg) should do the trick. Problem is, the image is grayscale, so there’s no hue to work with, and
the hue rotation won’t have any effect!

 To solve this, we can use a trick involving another filter. The sepia() filter already colorizes the image
with a brownish hue sitting at around 30 degrees on the color wheel. We can then chain this together with a
hue rotation of about 10 degrees to arrive at the right yellow nuance. Finally, we need to lower the contrast
and up the brightness a bit to make the sun shine. This needs to be done before the hue manipulations;
otherwise the yellow becomes too washed out. Remember, filters are applied in order.

 .fig-sun {
 filter: contrast(0.34) brightness(1.6) sepia(1) hue-rotate(10deg);
 }

 Next, we mask away the black background with the SVG masking technique we coved earlier, arriving at
the result in Figure 11-29 :

 .fig-sun {
 filter: contrast(0.34) brightness(1.6) sepia(1) hue-rotate(10deg);
 mask: url(#circlemask); /* points to a circular SVG mask we created */
 }

CHAPTER 11 ■ CUTTING-EDGE VISUAL EFFECTS

364

 Drop-Shadows on Clipped Shapes
 The next filter we’re going to look at is drop-shadow() . This filter is very similar to the box-shadow and text-
shadow properties, but it has some limitations as well as extra tricks up its sleeve.

 Where a box-shadow is applied to the rectangular border-box shape of an element, the drop-shadow()
filter applies to the transparency outline of an element. This includes things like putting shadows on images
with alpha transparency and having them follow the contours of the image, or adding shadows to elements
shaped with clip-path .

 In the navigation menu of the Stargazing page, the items are clipped to different shapes and are then
filtered with a drop-shadow() (see Figure 11-30 for the results). The syntax looks exactly like the text-
shadow property: it includes x and y offsets, a blur radius, and a color. This means that the spread parameter
that we find in box-shadow is missing here.

 .nav-section li {
 filter: drop-shadow(0 0 .5em rgba(0,0,0,0.3)) ;
 }

 Figure 11-30 . The navigation menu items have a drop-shadow effect around their clipped shapes. To the right,
a hovered or focused element gets a lighter shadow, resulting in a glow effect

 Figure 11-29. The filtered Sun image with mask applied

CHAPTER 11 ■ CUTTING-EDGE VISUAL EFFECTS

365

 The blur() filter tends to be a performance hog, at least in current implementations, so use it wisely. It’s
a bit of a shame, as blurring can make for some interesting animated effects. Blurring and focusing can be an
effective tool when directing attention in an interface, or toning down something that’s in the background.

 Backdrop Filters
 Speaking of backgrounds, there are a few other places where filters have snuck into CSS. In the “Milky Way”
section of the example page, we have used an experimental property from the Level 2 Filter Effects spec:
 backdrop-filter .

 It works exactly like the filter property, but it applies the filter in the compositing of the element
background with the page behind it. This enables us to do some nice “frosted-glass” effects, for example (see
Figure 11-32).

 .section-milkyway .section-text {
 backdrop-filter: blur(5px);
 background-color: rgba(0,0,0,0.5);
 }

 The CSS filter effects use the dedicated graphics chip when available. This makes the drop-shadow()
filter surprisingly performant. For example, when animating a shadow, you may be better off to use the
 filter version rather than the box-shadow version. In Chapter 12 , we’ll dive deeper into the developer tools,
and see how you can measure the impact of CSS properties of rendering. The next effect we’ll cover is not so
kind on performance.

 The blur filter
 The blur() filter applies a Gaussian blur to the element. You supply it with a length setting how far the blur
radius spreads. In Figure 11-31 , we have set a blur radius of 10px on the image of Saturn in the example page:

 .fig-planet {
 filter: blur(10px);
 }

 Figure 11-31. Blurring the Saturn image

http://dx.doi.org/10.1007/978-1-4302-5864-3_12

CHAPTER 11 ■ CUTTING-EDGE VISUAL EFFECTS

366

 This property so far is implemented only in very recent WebKit-based browsers like Safari 9 (as
 -webkit-backdrop-filter) and behind a flag in Google Chrome.

 Filtered Background Images with the Image Filter Function
 The Filter Effects spec also dictates that filters can be used when loading images in CSS. To filter a
background image, you would run it through the filter() function . This function uses the same type of
filter chain as the filter property , but does so when loading an image. The image is the first parameter, and
the filter chain is the second.

 For example, we can change the opacity of a background image and turn it grayscale (see Figure 11-33):

 .figure-filtered {
 background-image: filter(url(img/saturn.png), grayscale(1) opacity(0.4));
 }

 Figure 11-33. A component where we have changed the opacity of the background and turned it fully
grayscale

 Figure 11-32. Applying a backdrop blur to the backdrop behind a semitransparent element

CHAPTER 11 ■ CUTTING-EDGE VISUAL EFFECTS

367

 Figure 11-34. Screenshot of a few of the filters from the CSSgram library

 The bad news is browser support. At the time of writing, only recent experimental builds of the WebKit
browser support this functionality. For some reason, all other browsers who have implemented filters have
ignored the image filter function.

 ■ Note Safari 9 does have a prefixed (and undocumented) version of the filter() function, but it is horribly
broken, as the background cannot be resized properly. For that reason, stay away from the -webkit- prefix on
this property.

 Advanced Filters and SVG
 In photo apps like Instagram, you can apply a precomposed filter to an image, often by combining color
overlays and a few of the operations that we have seen in the shorthand filter functions so far. Developer and
designer Una Kravets combined the Instagram filters into a small CSS library (http://una.im/CSSgram/),
where the color overlays are created with clever use of pseudo-elements, CSS gradients, and blend modes
(see Figure 11-34).

http://una.im/CSSgram/

CHAPTER 11 ■ CUTTING-EDGE VISUAL EFFECTS

368

 Figure 11-35. On the left the original image, on the right the filtered one

 One of the most powerful aspects of CSS filters is that we can use SVG to create custom filters just like
these, with practically no limit to the complexity of the filter effect, and requiring less work in the CSS.

 The CSS version of filters began life as filters in SVG. As with most of the other visual effects in this
chapter, they started to bleed into HTML. First among the browsers was Firefox, letting us apply straight-up
SVG filters to HTML content, using the same kind of techniques we’ve seen for clipping and masking. Then
followed a specification for CSS filters in 2011—authored by Adobe, Apple, and Opera—that took the SVG
filters and bundled them up into easy-to-use “shorthand” filter functions we have seen so far.

 In fact, all of the CSS filter functions are defined in terms of their SVG counterparts. For example, a
 filter: grayscale(100%); declaration corresponds to this SVG filter:

 <filter id="grayscale">
 <feColorMatrix type="matrix"
 values=".213 .715 .072 0 0
 .213 .715 .072 0 0
 .213 .715 .072 0 0
 0 0 0 1 0" />
 </filter>

 The preceding filter declaration consists of just one filter primitive , represented by a “Color Matrix” filter
effect element (<feColorMatrix>). The color matrix filter is a very versatile tool, allowing you to map input
colors to outputs in various ways. It’s not important to know exactly what each value does, but the point is
that grayscale itself is not a low-level thing, but the result of a general color manipulation—at least as far as
SVG is concerned.

 There are several other filter primitives, and most effects are the result of combining several. The
 drop-shadow() filter , for example, is composed of the filter primitives Gaussian Blur, Offset, Flood,
Composite, and Merge.

 Now, the interesting part is that we can author and apply our own SVG filters to HTML content.
This means that we are free to create as complex filters as we like, as long as we define them in SVG
and point to them as the source for our filters. This is done with the url() functional notation in our
 filter declarations, just like with masking and clipping. To show something slightly more complex, in
Figure 11-35 we have re-created the “1977” filter from CSSgrams in SVG.

CHAPTER 11 ■ CUTTING-EDGE VISUAL EFFECTS

369

 In the original code for the CSSgram version of the filter, there are three filter operations:
 contrast(1.1) brightness(1.1) saturate(1.3) . There are also a color overlay pseudo-element with a
pink hue set to an opacity of 0.3 and a mix-blend-mode of screen . Since the filters are defined in the spec in
terms of SVG, we can look up how to write them and calculate the values. It turns out we need two instances
of a feComponentTransfer filter (for contrast and brightness) and a feColorMatrix filter for the saturation.
We can create the color overlay with the feFlood filter, which creates a filter layer with a solid fill color. All of
these are then merged together using an feBlend filter, where we set the blend mode to screen .

 <filter id="filter-1977" color-interpolation-filters="sRGB">
 <feComponentTransfer result="contrastout">
 <feFuncR type="linear" slope="1.1" intercept="-0.05"/>
 <feFuncG type="linear" slope="1.1" intercept="-0.05"/>
 <feFuncB type="linear" slope="1.1" intercept="-0.05"/>
 </feComponentTransfer>
 <feComponentTransfer in="contrastout" result="brightnessout">
 <feFuncR type="linear" slope="1.1"/>
 <feFuncG type="linear" slope="1.1"/>
 <feFuncB type="linear" slope="1.1"/>
 </feComponentTransfer>
 <feColorMatrix in="brightnessout" type="saturate" values="1.3" result="img" />
 <feFlood flood-color="#F36ABC" flood-opacity="0.3" result="overlay" />
 <feBlend in="overlay" in2="img" mode="screen" />
 </filter>

 SVG filters allow you to “pipe” the results of various filters and filter primitives into each other by
naming the inputs and outputs with the in and result attributes, respectively. The first filter primitive has
no in defined, and defaults to using the source graphic as input.

 We can now reference this snippet of SVG in CSS:

 .filter-1977 {
 filter: url(#filter-1977);
 }

 SVG filters are chainable and composable. You can create noise, add lighting effects, and manipulate
color channels to your heart’s desire. The only limit is your imagination—and willingness to get into the
somewhat arcane syntax. But beware of performance: SVG effects are not yet hardware accelerated in
browsers, so use custom filters sparingly.

 The same caveats apply: some browsers have restrictions on using external SVG fragment identifiers, so
you may need to use the “all in one HTML file” technique for the time being.

 SVG filters applied to HTML are supported everywhere that the “shorthand” CSS filters are supported,
except Edge at the time of writing. Note that IE versions 10 and 11 do support filters within SVG, but not
applied to HTML content.

 Order of Application for Visual Effects
 Since we could get different (and perhaps undesirable) results based on the order of clipping, masking,
blending, and filtering, there is a standardized order of application for these properties.

 All of clipping, masking, blending, and filtering come after any other properties (except opacity , which
we’ll get to in a second) have been set: color , width , height , border , background properties, etc. set
the basic appearance of the element. Then comes the “post-processing” step with the advanced effects,
where the element and its contents are effectively treated as a single image.

CHAPTER 11 ■ CUTTING-EDGE VISUAL EFFECTS

370

 First, filters are applied in the order they are declared. Then the element is clipped, then masked.
Note that since clipping and masking happen after filters are applied, we can’t use the drop-shadow() filter
directly on a clipped shape. Shadows (and the fringes of a blurred element, for example) will be clipped off.
In the navigation for the Stargazing example, we have solved this by adding the clipping path to the links
inside the items, but the drop-shadow to the item elements.

 Finally, there’s the compositing step, where blend modes are applied. They share this step with the
 opacity property, which is effectively a sort of blending in itself.

 Summary
 In this chapter, we have taken quite a big leap from the boring and boxy pages of yesteryear. We’ve explored
how to shape the flow of our pages with CSS Shapes, and how to stamp out visual boundaries with clipping
paths. Using masking, we can further control the visibility of the elements of our designs.

 We have also taken a look at how to finally achieve the sort of blending of different layers that many
designers are used to in graphics editing software, via CSS blend modes.

 CSS filters are starting to add even more of the effects we have come to expect from the graphical world
into the design we can actually affect in the browser.

 Throughout a lot of these effects, we have seen how CSS is being harmonized with the powerful
graphics editing of SVG, letting us push the envelope on what web design can be.

 After this firmly visually focused chapter, we will shift to looking at CSS as software: how to write
modular, readable, and maintainable code.

371© Andy Budd and Emil Björklund 2016
A. Budd and E. Björklund, CSS Mastery, DOI 10.1007/978-1-4302-5864-3_12

 CHAPTER 12

 Code Quality and Workflow

 Throughout this book, we have dealt with various techniques and the (many!) different specifications and
properties of CSS. In the process, we have touched on some useful ways of thinking responsibly about these
solutions. In this final chapter, we will revisit some of these approaches to dive deeper into the reasons why
some are better than others.

 CSS mastery is about writing markup and styles that not only work (and work well), but also have
qualities like readability, portability, and maintainability. We aim to give you all the knowledge you need to
address the more complex aspects of writing great CSS in this last chapter.

 For the most part, we won’t introduce much in the way of new standards, but will instead switch
between theory and some practical examples. Toward the end of the chapter, we’ll explore some tools for
working efficiently with your code, as well as give you a glimpse of the future of the language.

 In this chapter, we will cover the following subjects to help you write better CSS:

• How browsers go from style sheets to rendered web page

• How to use the developer tools to help optimize rendering performance

• Managing the cascade by limiting selector types and selector depth

• Naming schemes and balancing complexity in HTML vs. CSS

• Tools like linters, preprocessors, and build systems to handle complex CSS

• Future standards like custom properties, HTTP/2, and Web Components

 Debugging CSS: External Code Quality
 In this section, we’ll explain how browsers work with HTML and CSS, and how we can use that knowledge to
address problems like rendering performance.

 These aspects of code are sometimes called external code quality—things that are noticeable for the
person using the end result. A few important ones include:

• Correctness : Is the code working as intended? Did we type in the right property
name in the CSS, and does the browser understand it?

• Usability : Does the code result in something that not only looks right, but can be
used? Accessibility falls into this category, for example.

• Robustness : What happens if something goes wrong? As an example, we might
declare two sets of properties, where one is a fallback for older browsers.

• Performance : Is the design fast to load, and do animations and scrolling work
smoothly?

CHAPTER 12 ■ CODE QUALITY AND WORKFLOW

372

 Some of these qualities are a matter of having the right mindset before writing any code, and we’ve tried
to demonstrate good principles for usability and robustness throughout this book. When coding a real-world
project, you will need to think deeply about what correctness and good performance means for each unique
component. This is a great place to use the developer tools built into most browsers.

 We’ve seen in previous chapters how we can use these tools to view which properties are applied to
an element or debug animations. Developer tools are constantly being improved, and we can use them for
much more than this. For example, Figure 12-1 shows how we can use the developer tools in Firefox to find
out exactly which font file was used, not just what the font stack declaration was.

 Figure 12-1. Using the Firefox developer tools to find out exactly which font file gets used on a specific element
on http://www.microsoft.com

 Digging further into the developer tools, you will find panels and buttons that let you inspect other
qualities. This enables you to see not just what gets applied, but how and when. To understand those tools, it
helps to know a little bit about how browsers parse CSS.

 How Browsers Interpret CSS
 What follows is a whirlwind tour of the process from CSS file to “pixels on screen,” in order to better
understand the impact of the CSS we write. The steps described in the following sections represent a
simplified model of what happens every time a new page is loaded, but some (or all) of the steps may
happen when the page is interacted with as well.

 Parsing Files and Constructing Object Models
 When you load a site, the browser receives an HTML response first of all. This response is interpreted into
objects (nodes) that have relationships to each other. For example, the body node is a descendant of the html
node, and p and h1 nodes might exist inside the body node. This is the DOM: the Document Object Model
(see Figure 12-2).

http://www.microsoft.com/

CHAPTER 12 ■ CODE QUALITY AND WORKFLOW

373

 When a link element pointing to a CSS file is encountered inside an HTML document, the browser
will fetch and parse that file. Similar to how the HTML is turned into a DOM tree, the CSS file is parsed into
something called the CSSOM: the CSS Object Model. Not just external files, but any CSS inside a style
element or an inline style attribute will be parsed and added to the CSSOM. Just like the DOM, it is a tree-
like structure, containing the combined hierarchy of styles for the page (see Figure 12-3).

<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Test Document</title>
</head>
<body>
 <h1>This is a test</h1>
 <p>This is a paragraph</p>
 <p>This is another paragraph</p>
</body>
</html>

html node

doctype nodedocument

head node

meta node title node

body node

h1 node

text node

text node

text node text node

p node p node

Document Object ModelHTML source

 Figure 12-2. The Document Object Model is how the browser understands the HTML internally

body {
 font-size: 1em;
}
h1 {
 color: #669;
 font-size: 2em;
}
p {
 color: #333;
}

Style Sheet

CSS Object ModelCSS source

rule rulerule

Selectors

body

font-size 2em

Declaration

color #669

Declaration

 Figure 12-3. The CSSOM tree represents the hierarchy of styles in a style sheet

 Each DOM node is matched with the relevant CSS selectors, and the final style calculation is made (on
the basis of things like cascade, inheritance, and specificity).

 The DOM and CSSOM are both standardized, and are supposed to work the same across browsers.
After this step, it’s up to the browser how to go from the data it now has to what’s shown on the screen, but all
browsers follow similar steps to achieve that.

CHAPTER 12 ■ CODE QUALITY AND WORKFLOW

374

 The Render Tree
 The next step in rendering the page is constructing yet another tree structure, usually called the render tree .
Here, each object represents something to be rendered on the screen. This structure will look somewhat like
the tree for the DOM, but they are not equal. For example, visually hidden DOM nodes will not be present
in the render tree, and pseudo-elements like ::before may have a render object without being in the DOM.
The browser will also need to represent other aspects of the visual representation of the page, like scrolling
blocks and the viewport (see Figure 12-4).

Render tree

Scrolling block

h1 object

text object

p object

text object

p object

text object

Viewport

 Figure 12-4. A simplified hypothetical render tree. Elements like head , title , and meta do not have their own
render objects. The same would go for elements with display: none , for example

 When the render tree is constructed, each object in the render tree knows what color it’s supposed to
be, what font any text is in, if it has an explicit width, etc.

 Layout
 In the next stage, the geometric properties of each render object are calculated. This is known as the layout or
 reflow stage . The browser will go through the render tree and try to figure out where to fit each item on the page.

 Since a lot of web layout is about keeping the flow of the page, where elements “push” on other
elements, this can get quite complex. Figure 12-5 is from a fascinating video (https://www.youtube.com/
watch?v=dndeRnzkJDU) by programmer Satoshi Ueyama, who hacked the Gecko engine to show a visualization
of the actual reflow operations that Firefox does when laying out a site.

https://www.youtube.com/watch?v=dndeRnzkJDU
https://www.youtube.com/watch?v=dndeRnzkJDU

CHAPTER 12 ■ CODE QUALITY AND WORKFLOW

375

 Sometimes, additional rendering objects with their own rendering properties will need to be
constructed at this stage. For example, a piece of text with a certain font size may generate a line break,
which splits it into two anonymous line boxes. This in turn influences the final height of the parent element,
and the other elements following it.

 Eventually, the position of each render object will be calculated, and it’s time to put them on the screen.

 Painting, Compositing, and Drawing
 In a very simplified model, the browser now takes everything it can learn from the render tree and puts the
visual representation on screen. In reality, things are a little more complicated.

 When the position and properties of every render object are determined, the browser can figure out
the actual pixels that are to be shown on the screen, a process known as painting . But in addition to this, the
browser may need to do some further work.

 When the browser knows that a certain part of the final graphic representation can’t influence the
display of the rest of the page, it may decide to split the work of painting into different tasks, each responsible
for a specific part of the page known as a layer .

 Some things, like 3D transforms, may even be hardware accelerated by using the dedicated graphics
chip. Others may have filters or blend modes applied that will determine how they mix with other layers.
This task of splitting up the rendering into layers and then recombining them into the final result is called
 compositing . If the page were made of tracing paper, this would be the equivalent of drawing on different
pieces and then gluing them together on top of each other.

 Finally, the page is ready to be displayed (or drawn) on the screen. Phew!

 Figure 12-5. Screenshot from a video visualizing the slowed-down reflow of http://www.wikipedia.org in
Firefox

http://www.wikipedia.org/

CHAPTER 12 ■ CODE QUALITY AND WORKFLOW

376

 Optimizing Rendering Performance
 If anything in the page changes, the browser will need to do some of the preceding steps again. In order to
keep the page appearing smoothly on the screen, it should preferably do so in under about 16 milliseconds—
the amount of time between each update of the screen, providing it has standard 60hz refresh rate.

 Some things are usually very cheap from a performance perspective, like scrolling: the entire final
 rendering is just redrawn at different positions. When something causes the styles of the page to change,
things get a little more performance heavy.

 If we change the width or height properties of an element in JavaScript, the browser would need to do
layout, compositing, and paint. Changing only the color of text doesn’t affect layout, so it triggers painting
and compositing. Finally, the cheapest operation we can make is one that is entirely done by compositing.

 The site https://csstriggers.com is a handy reference of which property maps to which rendering
operations (see Figure 12-6). The site (by Paul Lewis) currently tracks rendering operations in Google
Chrome, but they are likely to work similarly in most browsers.

 Figure 12-6. CSS properties and how much work they trigger in the browser, from https://csstriggers.com

 We can use the developer tools to see when these different steps are performed, and what the resulting
performance is like. By going to the Timeline panel in the Chrome DevTools , we can record as we interact
with the page and track if the interactions trigger specific rendering steps. Other browsers also have timeline
recording features, but the Chrome DevTools have historically been the most feature-rich. In Figure 12-7 , we
have recorded a 1.5-second timeline of us scrolling an example page, where a fixed header is animated into
view, while scrolling.

https://csstriggers.com/
https://csstriggers.com/

CHAPTER 12 ■ CODE QUALITY AND WORKFLOW

377

 We can zoom in to the level of individual frames, and determine what kind of operations are going
on inside the browser. Each bar represents a rendered frame, and the colored bits of each bar represent a
rendering operation. In this instance, green represents a paint operation. Below the timeline, each operation
is listed, and we can click each row to get even more detail.

 As the timeline shows, something is causing paint operations in every frame. It’s not horrible, but it might
prevent smooth scrolling on slower machines, and should not need to happen on scrolling. To figure out
what’s going on, we can turn on something called “ paint flashing ” in the Rendering tab. The browser will then
draw a color highlight around any areas that are repainted, as we interact with the page (see Figure 12-8).

 Figure 12-7. A timeline recording in the Chrome DevTools. The recording is started and stopped by clicking
the circular icon in the right-side panel

 Figure 12-8. Turning on paint flashing reveals that the fixed header is repainted as we scroll

CHAPTER 12 ■ CODE QUALITY AND WORKFLOW

378

 The fixed header is constantly repainted as we scroll, since it affects the scrolling content underneath it.
Luckily, the browser optimizes the painted area, so at least it’s not the entire page. But we can do even better,
by forcing the browser to render the fixed part in a separate layer, and only do compositing. The current
styles for the header look something like this:

 .page-head {
 position: fixed;
 top: 0;
 left: 0;
 width: 100%;
 transition: top .25s ease-in-out;
 }
 .page-head-hide {
 top: -3.125em;
 }

 The . page-head-hide rule is toggled via JavaScript, and moves the header out of the viewport when
we’re scrolling down, and back into view as we scroll up.

 The trick to avoiding paint is to force the browser to create a separate, hardware-accelerated layer
for rendering the header, and then just composite it together with the rest of the page. We’re going to use
the will-change property to do this. This property provides a hint to the browser that this element will be
updating the transform property in the future. A transform property doesn’t create a new layer on its own,
but animated transforms do. When the browser gets the preview hint that the header will animate in the
future, it will create a new layer right from the start.

 This means that we can transition the transform property rather than the top property, and kill two
birds with one stone: both scrolling performance and animation performance will benefit.

 The new styles look like this:

 .page-head {
 /* some styles left out for brevity */
 transition: transform .25s ease-in-out;
 transform: translateY(0);
 will-change: transform;
 }

 .page-head-hide {
 transform: translateY(-100%);
 }

 Rerunning the timeline recording now shows that there is no painting going on. We can also verify that
a separate layer is created, by turning on the “Show layer borders” option inside the Rendering tab. The
header should now have a colored border around it (see Figure 12-9).

CHAPTER 12 ■ CODE QUALITY AND WORKFLOW

379

 ■ Note The will-change property is supported in recent versions of Firefox, Safari, Chrome, and Opera
at the time of writing. For a more backward-compatible technique, you can use a 3D transform to move the
header, which also forces a separate layer.

 The ability to use developer tools to peek into browser internals like this hasn’t been around for long,
and the tools to discover exactly what’s going on behind the scenes are improving in leaps and bounds. You
won’t have to go into this much detail for every single rule in your project, but to understand how CSS works
(and why some things are more expensive than others), a grasp on browser rendering and debugging is
invaluable.

 CSS for Humans: Internal Code Quality
 We should always consider the needs of users over the convenience of developers, so it makes sense to put a
lot of effort into securing the external qualities of our code.

 It might seem like a contradiction in terms, then, that some would probably argue that internal code
qualities are even more important. To name a few internal quality markers:

• How DRY (“Don’t Repeat Yourself”) is the code: Is each unique problem solved
in one place, or would you have to update lots of different places if you change one
solution?

• Readability : Can someone understand what the code does easily when reading it?

• Portability : Will a piece of your code work only if combined with other parts of your
codebase, or does it stand on its own?

• Modularity : Can you combine and reuse parts of your code into new things in a
self-evident way?

 Figure 12-9. The timeline is now showing no paint operations going on as we scroll. Turning on “Show layer
borders” draws a colored outline around the header layer

CHAPTER 12 ■ CODE QUALITY AND WORKFLOW

380

 The reason these qualities are so important is that they affect the person writing or changing the code. If
there is a problem with the external quality (a bug) and no one can understand the source code that caused
the bug, you won’t know how to fix it. High external quality is usually a consequence of high internal quality,
but the inverse is rarely true.

 Internal code quality is also much more subjective and based on personal preference as well as the
properties of each individual project. So, put your critical goggles on, and let’s explore!

 Understanding the Shape of CSS
 CSS was constructed with several design principles in mind. One of the most important principles is
simplicity: CSS is meant to be easy to learn. You shouldn’t need a computer science degree to use it. As a
designer you should be able to get to grips with selecting a piece of a page and applying styles to that piece.
This doesn’t require extensive knowledge of software construction.

 Viewing CSS as Software
 At the same time, CSS is also software. As software, it has qualities beyond just working. For a quick
prototype, the quality of the code is largely irrelevant as long as it does the job. But as soon as something is
made part of a living product, the quality of the code may have wide repercussions. It will affect things like
how costly it is to maintain over time, how likely it is that new bugs will appear, and how easy it is to work
with for new developers.

 Even if the thing you are creating is a one-person project, it’s healthy to assume that there are at least
two people on the team: you, and the future you . When you’re fixing some bug in a few months or years, you
will likely have forgotten what the heck you were thinking when you initially crafted the code.

 Bring your Own Structure
 CSS is often described as a declarative language . In simplified terms, this means that you use it to tell a
computer what to do, limited to a set of things that the language knows how to do. In contrast, many general-
purpose programming languages are more imperative , meaning that you use them to tell the computer step-
by-step instructions of exactly how (and in what order) it should go about doing things.

 Many imperative programming languages are equipped with a small number of building blocks that
allow for new kinds of control structures and logic, specific to your code. Not so in CSS: it has functions that
you can call, like the url() function , but it lacks the building blocks that would allow you to define your own
functions.

 All of the CSS that gets added to a document is also sharing a global scope. If you have a rule with the
selector p , it will factor into the style calculation for all paragraph elements, no matter which style sheet it
originated from or how it was loaded. The selector determines the scope of each rule , but the connection
between the style sheet and the document is always global. For example, you can’t create a CSS file
containing a p selector and load it in a way that only applies it to paragraphs in one part of the page. (This
model does exist in the world of Web Components, which is a technology still in its infancy. Well get back to
Web Components toward the end of the chapter.)

CHAPTER 12 ■ CODE QUALITY AND WORKFLOW

381

 THE SCOPED ATTRIBUTE

 There is one way to style a section of a page with its own isolated styles: the scoped attribute on a
 style element. It’s a rather clumsy mechanism, and browser makers have been hesitant to implement
it (so far only Firefox is on board).

 The style element when using scoped is limited to apply only to the parent element or child elements
within it. In the following markup, only the inner <p> will be red:

 <p>I will not be red</p>
 <div>
 <p>I will be red.</p>
 <style scoped>
 p { color: red; }
 </style>
 </div>

 While this is a handy concept, it will work poorly with regard to backward compatibility—nonsupporting
browsers will apply the styles globally anyway.

 Many programming languages have the concept of namespaces : isolated contexts where code is unable
to influence or be influenced by the outside world, unless explicitly imported or exported. This makes it
easier to manage bits of a code base without unintended consequences elsewhere.

 The simpler model of the CSS language means that any structure we want to impose must come from
the way we write our rules. In the next part of this chapter, we’ll look at a simple example and try to derive
some guidelines for writing CSS with high internal quality.

 Code Quality: an Example
 The alert message boxes in Figure 12-10 all look exactly the same, but they are implemented differently.
When we look at the source code, we hope that some of the theoretical talk about internal code quality will
become clearer.

 Figure 12-10. An alert message box, implemented in three slightly different ways

CHAPTER 12 ■ CODE QUALITY AND WORKFLOW

382

 The first implementation uses the following markup and CSS:

 <div id="pink-box">
 <p>This is alert message implementation one</p>
 </div>
 div#pink-box {
 border-radius: .5em;
 padding: 1em;
 border: .25em solid #D9C7CC;
 background-color: #FFEDED;
 color: #373334;
 }

 The first thing to note is the use of an id in the selector. This prevents the reuse of this selector anywhere
else on the page, which is unnecessarily limiting. There is nothing wrong with using id attributes per se:
they are great for in-page links or JavaScript hooks. There’s nothing preventing you from using them as CSS
selectors either, but the high specificity (as we discussed way back in Chapter 2) makes it troublesome to
override any variations of the rule. Something like a message component is likely to be both overridden and
repeated on the page, so in this case an ID is definitely a problem.

 Furthermore, we’ve added a completely unnecessarily div qualifier to the selector, which does nothing
but increase the specificity even more in this case. It’s common to see element selectors used together with
 id s or classes in this way—usually it’s a result of trying to override some all-too specific rule somewhere else.
Often, the solution is not to escalate the specificity “arms race” but to rethink your naming strategy.

 Another thing to note is the id attribute name: #pink-box is describing a specific property of the alert
message box. We could decide to change the warning message to a white box with a red icon inside instead,
and the class name would no longer make sense.

 In terms of the style declarations, there’s nothing wrong with them per se: there’s font-relative sizing for
the border , padding , and border-radius properties, and some colors for text, border, and background. We
can do better though, and looking at the second implementation, we will highlight some clear differences:

 <div class="warning-message">
 <p>This is alert message implementation two</p>
 </div>
 .warning-message {
 border-radius: .5em;
 padding: 1em;
 border: .25em solid rgba(0, 0, 0, 0.15);
 background-color: #FFEDED;
 color: rgba(0, 0, 0, 0.8);
 }

 Here, the class name is much clearer in purpose: it is a warning message component, and the
implementation details are left out of the name. The colors are defined differently: the different shades of the
text and border are both generated using a semitransparent black when mixed with the pink background.
This means that we could change only the background color and get the other two shades for free—one less
place to update the code.

http://dx.doi.org/10.1007/978-1-4302-5864-3_2

CHAPTER 12 ■ CODE QUALITY AND WORKFLOW

383

 But the name is still kind of specific to one style of message box. If we had a success message box rule
where we wanted to override the color, it wouldn’t make sense for it to also have a class name starting with
 warning in the markup. The third example fixes this:

 <div class="message message-warning">
 <p>This is alert message implementation three</p>
 </div>
 .message {
 border-radius: .5em;
 padding: 1em;
 border: .25em solid rgba(0, 0, 0, 0.15);
 background-color: #ffffed;
 color: rgba(0, 0, 0, 0.8);
 }
 .message-warning {
 background-color: #FFEDED;
 }

 At first sight, this example uses more code to do the same thing. The trick is that the .message rule
is actually a neutral message style with a faint yellow color. The . message-warning rule turns the generic
message into a warning message by changing the one thing that’s different—the background color.

 We can easily create other types of message rules by deciding on other names, like a green
 . message-success rule (see Figure 12-11):

 .message-success {
 background-color: #edffed;
 }

 Figure 12-11. A smart structure allows us to quickly create other flavors of message boxes

CHAPTER 12 ■ CODE QUALITY AND WORKFLOW

384

 By structuring the code this way, we get a number of benefits:

• The semitransparent text and borders allow us to create new variations with just a
single declaration.

• The name message is related to the functionality of this component rather than the
end result (a box of a certain color scheme). Hopefully, the name is also clear in its
purpose to people who are new to the code.

• By starting the class names for variations of the component with the base name
(.message in this case) and keeping them together in the CSS file, it becomes easier
to visually scan the file and recognize the purpose of these rules.

 The initial three variations of the message box were perfectly valid and externally equivalent in terms
of how they looked in a browser. By structuring the code, giving it a different set of names, and carefully
choosing how to apply the properties, the final implementation differed substantially in terms of quality. For
the remainder of this part of the chapter we will dive deeper into some of the common patterns, methods,
and tools for writing high-quality CSS.

 Managing the Cascade
 We can begin to extract a few principles from the previous message example to help improve the quality of
our code:

• Use class names as the primary styling hook

• Make class names readable and clear

• Avoid unnecessary repetition by breaking out single-purpose rules

• Avoid tying the type of element to the style rule

 All of these have one thing in common: they limit the effects of the cascade, mostly by managing
specificity.

 Why this focus on limiting the use of one of the most powerful features of the language? To some extent,
the question answers itself, as any power tool needs to come with safety instructions—“aim away from body
when using.” But the cascade was also invented for a specific purpose: allowing a mix of style rule sources
(user agent defaults, author rules, and user rules) to determine the final presentation of a document.

 We use the word “document” here for a reason—at the time when CSS was invented, the Web was
predominantly seen as a technology for sharing text documents. CSS allowed an elegant way to promote
consistency through cascading and inheritance. It also brought concepts like user style sheets: if the user is
more comfortable reading web pages with a high-contrast style sheet, they can override the author styles.

 While the Web still has the underlying architecture of a document model, it is now being used to create
more advanced visual designs and user interfaces. In practice, this has meant a shift in importance toward
the author styles. As these become more complex, there has been a movement toward compartmentalizing
them, making them more portable, self-contained, and predictable. The principles listed earlier are a
starting point for achieving that purpose. In the next section, we will look at CSS from a slightly different
angle, working out how we can take these principles even further.

CHAPTER 12 ■ CODE QUALITY AND WORKFLOW

385

 Structured Naming Schemes and CSS Methodologies
 In the message example earlier, we started the class names with .message- . This idea of a “prefix” not only
makes the code more readable, but also organizes the code in a way resembling the namespace idea.

 There are several people and organizations that have taken on the task of coming up with
methodologies that encapsulate the quality principles outlined so far, often coupled with this kind of
structured naming scheme, as a way to guide CSS authors. You may have stumbled upon names like OOCSS,
SMACSS, or BEM, as they have been immensely popular for a few years now.

 OOCSS
 OOCSS stands for Object Oriented CSS, and it is an approach to writing CSS created by Nicole Sullivan in
2009. It was in many ways the starting point of a wave of exploring how to write CSS from the perspective
of maintainable software. With OOCSS, Nicole used metaphors from object-oriented programming, where
reusable class names associated with well-defined rule sets in CSS act as a way to create hierarchies of
objects.

 In OOCSS, class names are used (on top of a foundation of semantically correct HTML) as the primary
mechanism to explain what the purpose of the component is in the UI. Nicole calls this “visual semantics.”

 Perhaps the most famous example from the OOCSS mindset is the “media object” that we encountered
first in Chapter 3 —a common pattern of an image, video, or other media sitting next to a block of text (see
Figure 12-12). By extracting this pattern to a single object and sprinkling the class names where needed,
Nicole showed that a lot of repetition could be cut from your CSS.

 Figure 12-12. Screenshot from the comment section of Nicole Sullivan’s article on the “media object,” where
each comment actually illustrates the principle of the pattern

 OOCSS includes the advice to separate “skin from structure” and “container from content.” Separating
skin from structure means that you should try to avoid writing rules that do things like typography and colors
(skin) as well as positioning, floats, etc. (structure). In those cases, you might be better off creating a separate
rule and class name for each aspect. For example, the “media object” takes care of the layout of a floated
image and the associated text, while the colors and typography are attached to the component itself. The
following markup for a blog post teaser illustrates the combination of classes in the markup:

 <article class="media-block post-teaser">
 <div class="media-body post-teaser-body">
 <h2 class="post-title">Media object</h2>
 <p>Article text goes here…</p>
 </div>

 </article>

http://dx.doi.org/10.1007/978-1-4302-5864-3_3

CHAPTER 12 ■ CODE QUALITY AND WORKFLOW

386

 The post- classes could represent the “skin” of this component, and the media object pattern has its
own class names.

 The separation of “container from content” can be seen in the grid strategy we saw in Chapter 7 . By
applying the styles for how the component fits into the layout of the page to a technically redundant outer
element (.col), we eliminate the risk of collision with the styles of the component itself:

 <div class="row row-trio">
 <div class="col">
 <article class="media-block post-teaser">
 <div class="media-body post-teaser-body">
 <h2 class="post-title">Post teaser heading</h2>
 <p>Article text goes here...</p>
 </div>

 </article>
 </div>
 <!-- ..and so on, more post-teasers here.
 </div>

 SMACSS
 Scalable and Modular Architecture for CSS, or SMACSS for short, is an approach created by Jonathan Snook
while working at Yahoo. It has a lot of similarities to OOCSS, like advocating class names and component-
focused rule sets as the primary mechanism to create a hierarchy of UI elements, as well as avoiding
specificity clashes. Jonathan focuses the SMACSS thinking a little differently, by introducing a categorization
of rules:

• Base styles, giving a default style to HTML elements as well as variations based on
element attributes.

• Layout styles, handling grid systems and other layout helpers, similar to the
abstractions we saw in Chapter 6 (“rows,” “columns,” etc.).

• Module styles, consisting of all rules that make up the components specific to the site
you’re building: products and product lists, site headers, etc. This is where the bulk
of your styles are likely to end up.

• States, which are overrides that change the appearance of existing modules. For
example, a menu item can be active or inactive.

 In adhering to this classification of rules, SMACSS encourages you to think about how you name things,
and where they fit. These rules should normally be included in your style sheet in the order described, so
that they go from most generic to most specific. This is another part of avoiding specificity battles, and using
the cascade in a sensible way.

 Apart from the categorization of styles, the SMACSS methodology also advocates using prefixes to
some of your class names in order to more clearly signal the intended purpose. In Chapter 6 we talked about
layout helpers, and used names like .row and .col . SMACSS recommends that you prefix such classes with
something that communicates their nature, like .l - for Layout:

 .l-row { /* row container */ }
 .l-row-trio { /* row with three equally weighted "columns" */ }
 .l-col { /* column container */ }
 /* ...etc */

http://dx.doi.org/10.1007/978-1-4302-5864-3_7
http://dx.doi.org/10.1007/978-1-4302-5864-3_6
http://dx.doi.org/10.1007/978-1-4302-5864-3_6

CHAPTER 12 ■ CODE QUALITY AND WORKFLOW

387

 Similarly, you can clarify state prefixes with is- , so a component named .productlist in a disabled
state could be targeted with something like .is-productlist-disabled or .productlist-is-disabled .
Components themselves use no specific prefix, but the name of the component itself can act as a prefix for
any subcomponents:

 .productlist { /* styles for the product list container */ }
 .productlist-item { /* item container in the list */ }
 .productlist-itemimage { /* image inside a product list item */ }

 BEM
 Where OOCSS and SMACSS can be seen as a more of frameworks for thinking about structured CSS combined
with some handy rules of thumb, BEM is a much more rigid system for how to author and name your styles.

 BEM is originally an application development methodology from the search engine company Yandex. It
includes several conventions, libraries, and tools for how to structure UI in large-scale web applications. The
naming convention used in these applications has become synonymous with the word BEM in the context of
HTML and CSS.

 The acronym BEM stands for Block , Element , Modifier . The block is the top-level abstraction,
comparable to a module in SMACSS or an object in OOCSS. Anything remotely self-contained can be
described as a block. Elements are subcomponents of a block—not to be confused with pure HTML
elements. Finally, modifiers are different states or variations of a block or element.

 Blocks, elements, and modifiers in BEM are written in lowercase with dashes separating multiword
items:

 .product-list { /* this is a block name */ }

 Elements inside blocks are separated with two underscores:

 .product-list__item { /* this is the item element inside the product list */ }

 Modifiers are added with single underscores, and can modify either blocks or elements:

 .product-list_featured { /* product list variation */ }
 .product-list_featured__item { /* item inside featured product list */ }
 .product-list__item_sold-out { /* Sold out item inside normal product list */ }

 There are also several variations of this syntax. Developer Harry Roberts uses a variation where
modifiers are delimited with double dashes instead of a single underscore:

 .product-list__item--sold-out {}

 Harry has also written extensively on his website (http:// csswizardry.com) about how to work with
these types of naming schemes, including various ways of combining BEM syntax with prefixes. (He has also
written a comprehensive resource on writing high-quality CSS, including how to structure and name things,
available at http://cssguidelin.es .)

 Regardless of which syntax you choose, the main idea of BEM is to be immediately able to identify
the type of rule associated with a certain class name, as long as you know the naming scheme used. This
also helps to keep the code focused. If a single class gets too many responsibilities, it will start to clash with
the explicit purpose of the name. This acts as a signal to rethink the abstraction. There is nothing stopping
you from breaking out a complex part of a block into its own nested block, which in turn invites further
reusability.

http://csswizardry.com/
http://cssguidelin.es/

CHAPTER 12 ■ CODE QUALITY AND WORKFLOW

388

 Managing Complexity
 The bottom line for all of the guidelines and methodologies we have described so far can be summarized
as aiming to manage complexity . Anything beyond a trivial piece of code gets complex fast, so we can either
dramatically limit the scope (by only allowing a much simpler design) or break the complex parts down into
simpler chunks.

 Using naming schemes and class names that represent UI behavior makes the CSS easier to understand,
but it doesn’t make the overall complexity go away. Instead, it shifts some of the complexity over to the
HTML. It may do so in varying degrees, and for different parts of a web page or site, but it always does. To
understand why this is, we need to backtrack a bit, to when CSS was introduced.

 Separation of Concerns
 As the Web moved from a soup of and <center> tags to a model were CSS dictated the presentation,
there was a huge push for companies to start using CSS and to keep HTML pure, free from any mention of
how the document was to be presented.

 Sites like CSS Zen Garden (http://www.csszengarden.com/ ; see Figure 12-13) did a great deal to
convince designers and developers of the value of semantic markup and the power of CSS. Viewing the
presentation as independent from the markup of the underlying document is a good illustration of the
software design principle of separation of concerns (SoC) : markup should not include presentation nor be
dependent on the presentation layer, and the two layers should have as little intermingling as possible. This
is something built into the Web itself: the basic representation of a web page should make sense even if the
CSS (or JavaScript, for that matter) is not there.

 Figure 12-13. CSS Zen Garden showcases variations of a single HTML page, just by manipulating the
CSS—sometimes with very clever use of pseudo-content

http://www.csszengarden.com/

CHAPTER 12 ■ CODE QUALITY AND WORKFLOW

389

 The separation into distinct areas of responsibility helps both how the end users experience a website
and how we build them. The end user should be able to consume the content represented in the HTML
regardless of ability or if the CSS for some reason fails to load. As developers, we should be able to focus on
the CSS files and not update each HTML element specifically when we want to update the design.

 Now, consider the case of using a class name that only deals with a specific presentational aspect, like
 row and col for horizontal layout structures (that we used in Chapter 7):

 .row {
 margin: 0 -.9%;
 padding: 0;
 }
 .row:after {
 content: '';
 display: block;
 clear: both;
 }
 .col {
 float: left;
 box-sizing: border-box;
 margin: 0 .9% 1.375em;
 }

 Even if we rename them to something less visually telling like group and block , they are still there for
one purpose, which is to create presentational hooks. We have put presentational information in the HTML,
no two ways about it. This goes against the SoC, so why would it be acceptable?

 The SoC principle itself is much older than the Web. It was coined by legendary computer scientist
Edsger Dijkstra in 1974 (https://www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD447.html),
in an essay where he reasoned about how to advance the field of software engineering.

 The way to face increasing complexity, to summarize Dijkstra’s essay, was “focusing one’s attention
upon some aspect” rather than “tackling these various aspects simultaneously.” Since we may need to work
on both HTML and CSS at the same time, we are violating this principle in one place.

 Here’s the thing: we are free to apply the “separation of concerns” principle on any level of our code,
and it may be beneficial to sacrifice the theoretical purity of one part in order to benefit another.

 The single purpose of a rule like .row is an example of the type of focus that Dijkstra talks about. When
we solve the general problem of column-based layout in one place, it stays solved: when we find a better
way, we don’t have to update everywhere we’ve repeated the same solution in the CSS.

 The trade-off is that we need to update the HTML when the name changes, or a specific part of the
code does not use the solution any longer. Proponents of using these kinds of naming hooks tend to argue
that it’s easier to find and replace where we have used the class name in HTML than it is to refactor a
messy CSS file.

 HTML Semantics vs. Class Semantics
 Here’s what the HTML specification has to say on the subject of class names:

 There are no additional restrictions on the tokens authors can use in the class attribute,
but authors are encouraged to use values that describe the nature of the content, rather
than values that describe the desired presentation of the content.

http://dx.doi.org/10.1007/978-1-4302-5864-3_7
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD447.html

CHAPTER 12 ■ CODE QUALITY AND WORKFLOW

390

 When it comes to CSS, the CSS 2.1 specification has the following to say about class names:

 CSS gives so much power to the “class” attribute, that authors could conceivably design their
own “document language” based on elements with almost no associated presentation (such
as DIV and SPAN in HTML) and assigning style information through the “class” attribute.
Authors should avoid this practice since the structural elements of a document language
often have recognized and accepted meanings and author-defined classes may not.

 First of all, we should note the language used in the last sentence: “encouraged,” “should,” “often,”
“may.” Using a class name that could be considered presentational is not forbidden: it will not cause
validation errors, and it has no effect in itself on the structural semantics or accessibility of the document.
Class names and other identifiers are mostly there for the sake of developers, not users. We should therefore
make a clear distinction: the semantics of HTML and its attributes is distinct from the semantics of author-
defined values like classes.

 The part about designing your own “document language” is important: there is a huge
difference between something that looks like a button, using markup like <span class="myButton"
onclick="myFunction()">Click me! , and using <button>Click me!</button> . The <button>
tag creates an element that is focusable and accessible, which is styled according to the OS conventions by
default, and is potentially associated with a form. The same principle goes for any element or attribute with
semantic meaning in HTML—use them responsibly.

 What the specification doesn’t say is that we can’t use classes as an extension to the correct use of these
elements, or augment the document with a few extra semantically meaningless elements to aid presentation.

 Developer Nicolas Gallagher made the argument for re-evaluating the semantics of class names in an
influential article titled “About HTML semantics and front-end architecture” (http://nicolasgallagher.
com/about-html-semantics-front-end-architecture/), published in 2012. It nicely summarizes the
thinking behind seeing presentational class names as a valid (if not always preferable) tool rather than a
forbidden anti-pattern.

 Finding the Right Balance
 Minimizing the intermingling of style and structure via names that don’t relate to presentation is obviously
a good place to aim. But even when the class names represent the “visual semantics,” we can try to keep the
presentational nature at a minimum.

 If you go down the route of allowing presentational class names, it might be tempting to decide that
 arial-green-text is a good one. Maybe you find that a reusable rule is beneficial for this font and color
combination, since it’s part of the brand guidelines. If you create such a rule, try to leave the implementation
details out of the name—perhaps brand-primary-text would be a better choice? That way, you are at least
protected from changes in color and font guidelines, if not fully from which parts use this particular style.

 We must also remember that no matter how we name our classes or structure our rules, we don’t have
to make a binary choice. Any element could have class names describing the content, in addition to names
describing their function as part of the UI.

 Similarly, we can completely back off from expecting class names on some parts of the markup,
especially where non-developers work with it. The markup in bits of application UI is likely to be authored
with full control over the attributes, whereas the content of a blog post is probably just pure HTML spat out
from a content management system.

 If you set sensible rules for base typography and avoid styling too much based on context (in effect,
more heavily based on class names where applicable), these situations will sort themselves out. On the other
hand, the people who will make use of a collection of code you write may be more or less comfortable with
the markup complexity.

http://nicolasgallagher.com/about-html-semantics-front-end-architecture/
http://nicolasgallagher.com/about-html-semantics-front-end-architecture/

CHAPTER 12 ■ CODE QUALITY AND WORKFLOW

391

 In the blog post “Code refactoring for America” (https://adactio.com/journal/7276), Jeremy Keith
writes about how he and Anna Debenham had to back away slightly from a heavy use of class names in
the Code for America pattern library project. In short, the people who created pages based on the pattern
library weren’t necessarily people who wrote CSS or understood the naming conventions used. Thus, they
benefitted from more readable and short HTML rather than CSS.

 Code is for People
 At the end of the day, the verdict on whether a specific way of writing CSS and HTML is good or bad comes
down to the situation and the people involved, as long as it’s technically sound and accessible. If you or the
team of people you are working with find that certain ways of doing things decrease complexity in the grand
scheme of things: go for it. If they hinder more than help, you should consider avoiding them.

 Tooling and Workflow
 As we start to treat CSS as software and impose greater demands on how we write and optimize it, we often
look for better tools to manage our workflows. There has been an explosion of things like preprocessors
and build systems in recent years, to the point where it is very easy to get lost in the buzzword jungle. In this
section, we’ll briefly present some options to beef up your toolkit.

 Preprocessors and Sass
 As we mentioned at the start of the chapter, CSS is intentionally designed without many of the building
blocks that you’d expect in a general-purpose programming language. Things like loops, functions, lists,
and variables are not available. As we’ve already concluded, there are good reasons for keeping them out of
CSS, but on the flipside there are good reasons why people with programming experience miss them when
writing CSS. They allow you to more easily create reusable bits of code, hopefully lowering the overall effort
to create and maintain your styles.

 People have created other languages, known as preprocessors , where these building blocks exist, that in
turn output CSS. There are several flavors available—Sass, Less, Stylus, PostCSS, etc. At the time of writing,
the most popular is Sass—Syntactically Awesome Style Sheets. We’re going to look at a brief example of how
this particular flavor of preprocessor works.

 The most common way of writing Sass is using a superset of CSS syntax called SCSS, meaning you can
write anything that is already valid in CSS, plus the extra Sass functionality you choose to use.

 INSTALLING AND RUNNING SASS

 The Sass compiler exists in various flavors, either as a stand-alone program or as a plug-in to
many popular code editors. You can often set up your editor so that when you save a .scss file, it
automatically updates a corresponding CSS file.

 If you go to the Sass language installation page (http://sass-lang.com/install) you can find
instructions to install on various platforms, as well as links to several editors and plug-ins with built-in
support.

https://adactio.com/journal/7276
http://sass-lang.com/install

CHAPTER 12 ■ CODE QUALITY AND WORKFLOW

392

 Following are snippets from two files where a whole host of Sass features are used. This is far from the
full range of what Sass can do, but it’s a taste of how the syntax looks and what various language features are
used for. Don’t worry if it doesn’t immediately make sense to you.

 First, the file named library.scss :

 $primary-color: #333;

 $secondary-color: #fff;

 @mixin font-smoothing($subpixel: false) {
 @if $subpixel {
 -webkit-font-smoothing: subpixel-antialiased;
 -moz-osx-font-smoothing: auto;
 }
 @else {
 -webkit-font-smoothing: antialiased;
 -moz-osx-font-smoothing: grayscale;
 }
 }

 Next, the main.scss file:

 @import 'library';

 body {
 color: $primary-color;
 background-color: darken($secondary-color, 10%);
 }
 .page-header {
 color: $secondary-color;
 background-color: $primary-color;
 @include font-smoothing;
 }
 .page-footer {
 @extend .page-header;
 background-color: #14203B;
 a {
 color: #fff;
 }
 }

 Browsers will have no use for this code, so SCSS files are always run through a preprocessor that
outputs normal CSS. Here’s the result:

 body {
 color: #333;
 background-color: #e6e6e6;
 }
 .page-header,
 .page-footer {
 color: #fff;
 background-color: #333;

CHAPTER 12 ■ CODE QUALITY AND WORKFLOW

393

 -webkit-font-smoothing: antialiased;
 -moz-osx-font-smoothing: greyscale;
 }
 .page-footer {
 background-color: #14203B;
 }
 .page-footer a {
 color: #fff;
 }

 A lot of the main.scss file is probably familiar to you: there’s the same syntax for selectors, rule sets,
property/value-pairs, etc. The library.scss file is imported into the main file, using a regular @import
statement. For the Sass compiler, this means that the file is included into the output. In this case, the library
file doesn’t actually contain anything to output, but rather a collection of supporting material.

 For example, Sass allows us to define variables , which we can then reuse in multiple places. The
 $primary-color and $secondary-color variables can then be used to set background and text colors, for
example.

 The library.scss file also contains a mixin , which is a collection of reusable CSS we can output
anywhere. The font-smoothing mixin that we’ve defined allows us to toggle the browser-specific properties
that keep track of which antialiasing method is used for text.

 Inside the main.scss file we have used this mixin to include the font-smoothing properties as part of the
 .page-header rule. Mixins are called on using the @include syntax.

 The . page-footer rule in turn uses another language feature—the @extend syntax. This means that its
selector is added to that of the one it extends, in this case meaning that .page-footer is sharing styles with
 .page-header .

 Finally, there’s nesting : inside the .page-footer rule there is a selector for the a elements inside it.
By writing the rules this way:

 .page-footer {
 /* rules for page footer here */
 a {
 /* rules for links in footer here */
 }
 }

 …the Sass compiler automatically creates two sets of rules like this:

 .page-footer {}

 .page-footer a {}

 While nesting saves us from having to type the full selector, nesting selectors can go too far. It might be
tempting to nest all rules for a specific component inside each other for some sort of visual neatness, but the
output will suffer in terms of overly specific rules:

 .my-component {
 /*...rules here */
 .subcomponent {
 /*...rules here */
 .nested-subcomponent {

CHAPTER 12 ■ CODE QUALITY AND WORKFLOW

394

 /*...rules here */
 h3 { /*...rules here */ }
 }
 }
 }
 /* ...will output... */
 .my-component { /* ...rules here... */ }
 .my-component .subcomponent { /* ...rules here... */ }
 .my-component .subcomponent .nested-subcomponent { /* ...rules here... */ }
 .my-component .subcomponent .nested-subcomponent h3 { /* ...rules here... */ }

 It’s a good idea to check your output CSS often, so that you are not inadvertently creating bloated style
sheets.

 The Case for Preprocessors
 Preprocessors can have a big effect on how you write CSS. When the code starts getting large and
complex, preprocessors can help you achieve consistency and structure in your code, as well as speed up
development.

 When you’re comfortable using a preprocessor, even smaller projects can benefit; especially as you start
to build up an arsenal of conventions, mixins, and functions that you can share among projects.

 ..and the Case Against
 But there are also things to consider before choosing to use a preprocessor. There is a definite hurdle in
learning to use one, and using it right. If you write code that others are then going to maintain or collaborate
on, you also commit to their knowing how to write in the preprocessor language you have chosen. It is also a
bet on that language sticking around and being supported in the long run.

 Looking back to the initial section on code quality, we saw that the main enemy of good code is
complexity. The same rule applies here: don’t assume that preprocessors always make your code easier to
handle, but don’t hesitate to try using them if they seem to help you write better code.

 There are other tools that help you keep check of your code in different ways. In the next section, we’ll
look at some of them.

 Workflow Tools
 Regardless of whether you use CSS or a preprocessor language, there are usually tasks you need to do over
and over again when developing. Luckily, computers are excellent at handling boring and repetitive stuff. In
this section, we’ll take a brief look at some tools that can be helpful.

 Static Analysis and Linters
 In terms of the correctness of your code, a lot of code editors have built-in syntax checkers that will highlight
any selector or style declaration that doesn’t look right. This kind of error checking is often referred to as
“static analysis”—fancy programmer talk for trying to find problems in your code before it’s even run.

 If you want to beef up the static analysis of your code, there are tools that you can configure to check for
issues that even go beyond syntax errors. Known as linters , these tools focus on finding “lint”—bits of cruft
that aren’t supposed to be there. For CSS, there’s CSS Lint (http://csslint.net) and Stylelint

http://csslint.net/

CHAPTER 12 ■ CODE QUALITY AND WORKFLOW

395

 Build Tools
 Apart from linting, there are a lot of tasks outside of the editor that we may need to do over and over again
while developing a site:

• Preprocessing CSS

• Concatenating CSS files together, if working in multiple shorter files

• Minifying CSS, removing comments and so forth to save space

• Optimizing images referenced in the CSS

• Running a development server

• Reloading one or more browsers to inspect our changes

 Luckily, there are numerous tools that help you do these tasks automatically in a project. They range
from more advanced tools run from the command line, to more simple setups that you can manage in a
graphical user interface, like Koala (see Figure 12-15).

 Figure 12-14. Using CSS Lint in the Sublime Text editor. Dots in the left gutter indicate potential problems,
and the explanation message is printed on the bottom bar

(http://stylelint.io/). These tools check both for syntax errors and patterns in your selectors and
declarations that may be undesirable (see Figure 12-14). Both are configurable and you can even write your
own rules.

http://stylelint.io/

CHAPTER 12 ■ CODE QUALITY AND WORKFLOW

396

 There are also lots of apps available that allow you to configure your build system entirely in code. This
typically requires a bit more setup, but since the configuration can then be shared among developers and
projects, it can help keep development environments consistent and quick to set up.

 Setting up a CSS Build Workflow with Node and Gulp
 Node is a flavor of JavaScript that you can run outside of a browser and use for any type of programming task.
Since Node came about, a lot of the tooling for front-end development is based on JavaScript, as people who
already knew it could scratch their own itch, so to speak.

 For front-end build workflows, there are lots of Node applications like Grunt, Gulp, and Broccoli (yes,
those are the actual names) that specialize in managing build tasks. They help by configuring and chaining
together the output from separate tasks, each responsible for one part of the workflow.

 For our example workflow, we are going to use Gulp, which is in turn handled via NPM, a utility
program that comes with Node. NPM is a command-line tool, so all of the commands in the example are run
inside a terminal window.

 ■ Note If you need a crash course in how to use the command line, go to http://learnpythonthehardway.
org/book/appendix-a-cli/introduction.html and work through some examples. It can be a daunting task,
but you will learn invaluable skills for managing your computer and taking advantage of more advanced tools.

 Figure 12-15. Koala is a build tool GUI available for Windows, Mac, and Linux

http://learnpythonthehardway.org/book/appendix-a-cli/introduction.html
http://learnpythonthehardway.org/book/appendix-a-cli/introduction.html

CHAPTER 12 ■ CODE QUALITY AND WORKFLOW

397

 First things first: you’ll need to install Node. Go to https://nodejs.org to download and run the
installer for your platform. Next, navigate to the workflow-project folder inside the Chapter 12 examples in
the code accompanying the book.

 This folder has a file called package.json , which is the file that keeps track of what’s needed to run
the project. These dependencies are stored in a central code repository on https://www.npmjs.com , where
hundreds of thousands of free code libraries are shared. Normally, you’d create your own package file by
invoking the command npm init and answer a few questions about your project, but this time we’ve gone
down the TV-chef route and prepared one ahead of time.

 To install the dependencies listed in the package file, run the command npm install . This will
download and install the following small applications, locally in your project folder:

• Gulp: The task runner that puts the rest of the programs together.

• Gulp-sass: A version of the Sass preprocessor library.

• Browser-sync: A tool to run a lightweight development server, and synchronize
the reloading of and interacting with web pages across browsers. Also includes a
debugger, so you can debug for example on mobile devices.

• Autoprefixer: An immensely useful library that inspects your CSS and adds the
relevant prefixes and alternate syntaxes for CSS properties, based on a list of
browsers that you want to support.

• Gulp-postcss: A version of the PostCSS preprocessor, which is needed to run
Autoprefixer.

 These applications will put their files in a folder called node_modules inside the project directory. If you
use any kind of version control for your files, you will probably want to tell it to ignore this folder: there will
be thousands of tiny files inside, and you can re-create them at any time using the package file.

 The next ingredient is the file gulpfile.js , which contains instructions for how to use the installed
packages together. We won’t go into all the details of how this works, but as an example, here’s the part that
handles the preprocessing of CSS:

 gulp.task('styles', function(){
 var processors = [autoprefixer()];
 gulp.src(['*.scss'])
 .pipe(sass())
 .pipe(postcss(processors))
 .pipe(gulp.dest('./'))
 .pipe(browserSync.reload({stream:true}))
 });

 When the gulp program is told to run the styles task, any .scss file in the same directory is picked
up. It is then run through the Sass preprocessor. After that, it runs through the PostCSS processor, where
Autoprefixer appends the necessary prefixes. It does so by going to http://caniuse.com and figuring out
which prefixes and syntax changes to use. By default it covers the latest two versions of all major browsers,
plus browsers with an approximate market share of over 1%, but this setting is highly configurable. Finally, the
CSS is saved to disk and the browser-sync program is signaled to reload any connected browser windows.

https://nodejs.org/
http://dx.doi.org/10.1007/978-1-4302-5864-3_12
https://www.npmjs.com/
http://caniuse.com/

CHAPTER 12 ■ CODE QUALITY AND WORKFLOW

398

 To run tasks, we use NPM. The package.json file contains a mapping of commands that target the
applications that we installed. When we now run npm run gulp , the default set of tasks is run, and continues
to rerun automatically whenever we save a file, until we stop it.

 The default browser on our machine also launches in a new tab, where the index.html file in the
current directory is served. As soon as the CSS file changes, the browser (and any other browser you point at
the same address) reloads.

 It’s easy to get lost when setting up task runners and workflows. The win comes when you have it on file,
and it’s ready to reuse across projects or share. A new collaborator would only need to install Node and run
 npm install before they had the exact same setup on their machine. Although wrestling with development
tools is probably the least fun part of building websites for most people, it is often a type of “set it and forget
it” task that can save lots of time in the long perspective, once you are up and running. If you need a slightly
more detailed introduction (using the Grunt task runner rather than Gulp), we recommend Chris Coyier’s
article “Grunt for People Who Think Things Like Grunt are Weird and Hard” (https://24ways.org/2013/
grunt-is-not-weird-and-hard/).

 The Future of CSS Syntax and Structure
 Throughout this book, we have been using CSS features with various levels of browser support. We have
repeated the mantra of progressive enhancement in applying new features—meaning you can use a lot of
them today, as long as you have a sensible alternative lined up when they aren’t yet supported. This works
for a lot of things, but not all.

 There are some fundamental proposed changes to how we write CSS on the horizon. Some of these are
experimentally supported already, but as they are hard to apply in a progressive way, it’s likely that it will be
a few years before we’ll be able to use all of them in our day-to-day workflows. Nevertheless, it is useful to
keep an eye out for where CSS is headed.

 Custom Properties—Variables in CSS
 The addition of variables to CSS has been one of the most-requested features for a long time. A spec has
been in the works for several years, and only recently became a Candidate Recommendation. As this book
is being written, Chrome and Safari are on the verge of releasing versions with support. Firefox has already
supported variables for quite a while.

 The technically correct name for these variables is custom properties : they look an awful lot like how
variables work in, for example, Sass, but are slightly different.

 A custom property is declared using syntax much like a vendor-prefixed property, except the vendor
name is empty, resulting in two initial dashes. To define a variable that is to be available globally, you can
add it to the :root selector. You can also define (or redefine) a variable to have a specific value in a specific
selector context.

 :root {
 --my-color: red;
 }
 .myThing {
 --my-color: blue;
 }

https://24ways.org/2013/grunt-is-not-weird-and-hard/
https://24ways.org/2013/grunt-is-not-weird-and-hard/

CHAPTER 12 ■ CODE QUALITY AND WORKFLOW

399

 We can access the value of a custom property anywhere that the value has cascaded. The var()
functional notation pulls the custom property value out, with the option of a fallback value if the property is
undefined or invalid. In the following snippet, the color declaration will be set to blue , since the previous
example set it on the .myThing ancestor:

 .myThing .myInnerThing {
 /* second (optional) argument is the fallback */
 color: var(--my-color, purple);
 }

 Custom properties can be used with var() not just as the entire value, but as part of another subvalue:

 :root {
 --max-columns: 3;
 }
 .myThing {
 columns: var(--max-columns, 2) 12em;
 }

 Since preprocessors like Sass have variables built in, why would we choose to do this work on the client
rather than beforehand via a build script or server process? Well, since custom properties are calculated in
the browser and not beforehand, they have access to the live DOM tree and the whole cascade. If something
changes, the styles can be recalculated. If we use JavaScript to set the --my-color variable for the html
element after the page has loaded, every element that depends on that color value updates its color instantly.

 It’s tricky to start using custom properties for any significant parts of your code before a wide range
of browsers supports them. Any fallbacks to regular values would necessarily result in a lot of duplicated
declarations. Nevertheless, they are no doubt a powerful addition to CSS.

 HTTP/2 and Server Push
 A lot of the performance-related patterns we use today are related to how HTTP works. More specifically,
we try to counter the fact that the current version, HTTP/1.1, is relatively slow when it comes to fetching
multiple things at once, so we mash together all of our styles into one file, and avoid external requests like
the plague.

 In HTTP/2, the underlying protocol is optimized for delivering many small assets at once. A single
connection can carry multiple files, reducing a lot of the overhead for making new requests. There’s also
some smart thinking in HTTP/2 with regard to how web pages are delivered. Using something called “Server
Push,” the server can automatically deliver a single response containing both HTML and CSS, unless the
request signals that the browser already has the CSS file in its cache.

 These new advances may help us get rid of patterns like inlining styles, or making image sprites. The
 @import statement, which has been an anti-pattern of sorts for a long time, can get a new lease on life,
allowing us to split up files as we like, without worrying about the extra request overhead.

 HTTP/2 is supported in a lot of places already, and can be used today, as it falls back to the old behavior
when unsupported in a browser. It does require that the web server you are using supports it, however. As
with many infrastructure changes, this means that it will take some time before it’s truly mainstream and
built into our tools.

CHAPTER 12 ■ CODE QUALITY AND WORKFLOW

400

 Web Components
 Web Components is a name for a range of standards that allow web developers to package up HTML, CSS,
and JavaScript into truly self-contained and easily reusable components, almost as if they were native
elements. When using a Web Component, you should be able to drop it right into your project, without
worrying about naming collisions between your styles (or scripts) and those belonging to the component.

 If we had created a hypothetical Web Component for including thumbnail previews from the Internet
Movie Database (http://www.imdb.com), we would use a JavaScript file to tell the browser that we intended to
use a custom imdb-preview element in our markup. This element could then be invoked like this in HTML:

 <imdb-preview>
 The Big Lebowski
 </imdb-preview>

 On the page, the result could be something like that shown in Figure 12-16 , with several parts.

The Big Lebowski (1998)

 Figure 12-16. The hypothetical result of invoking our <imdb-preview> element

 Behind the scenes, this custom element could fetch data based on the URL of the link, and replace
its contents with its own hidden DOM fragment, known as the Shadow DOM. The title, review score, and
image will all have their own elements in that fragment. In a sense, it’s a bit like an iframe —the contents are
shielded from the regular DOM tree of the page, and they use separate contexts for scripting and styling.

 Inside a Shadow DOM fragment, style elements automatically have a scope limited to the web
component’s root element, just like if we were using the scoped attribute. Styles from the parent document
do not bleed into the element either, so the component styles are completely encapsulated. The trick is that
custom properties can cascade into the component—so the component author can specify exactly which
properties you are allowed to override. With this mechanism, things like typography and color schemes can
safely be changed to match the site where the component is used.

 A lot of the proposed Web Component standards are unsupported as of yet, but the encapsulation into
Shadow DOM is already happening in browsers with elements like <video src="..."></video> . Even if the
element is empty in the markup, it has hidden elements for things like the video controls—you can activate
the “Show user agent Shadow DOM” option in the Chrome DevTools, for example, to see it in action (see
Figure 12-17).

http://www.imdb.com/

CHAPTER 12 ■ CODE QUALITY AND WORKFLOW

401

 In the Web Component mindset, we get a lot of the modularity and composability that other
methodologies strive for—not just in CSS, but in HTML, CSS, and JavaScript together. All of the major
browser vendors are on board with implementing Web Components, but there’s still disagreement about
exactly which feature sets and syntaxes should be used.

 How much they will influence how we write CSS is still too early to tell. Maybe they will change how we
construct websites all together, and maybe they’ll just be another way of doing things that we bump into now
and then.

 CSS and the Extensible Web
 One of the ideas behind Web Components is that they can be used as a testing ground of sorts for new native
functionality. If a certain component becomes the de facto way to create a certain type of widget or content,
and is used across millions of websites, then maybe that element should be part of the HTML standard?

 The idea of creating standards based on what developers actually use is not new. For example, the
jQuery JavaScript library used a CSS selector approach to select DOM elements, and became hugely popular.
Nowadays, we have the querySelector API in native JavaScript, which works in a very similar way:

 // jQuery code:
 jQuery('.myThing p');
 // Standardized way:
 document.querySelectorAll('.myThing p');

 In the same way, things like preprocessors influence how CSS is going to look in the future. There are
suggestions for CSS standards covering native @extend directives, native nesting, custom named media
queries, and more.

 There is a document, signed by a range of people in the web community, called “The Extensible Web
Manifesto ” (https://extensiblewebmanifesto.org/) that pushes the idea that standards need to go in a
direction that gives developers better access to lower levels of browser internals, so they may explore new
ways of building. The solutions they come up with then become fed back to the standards organizations for
more high-level building blocks to standardize.

 Figure 12-17. If we turn on Shadow DOM inspection and inspect a <video> , we see that it’s composed of lots
of other elements—volume controls and player buttons, for example

https://extensiblewebmanifesto.org/

CHAPTER 12 ■ CODE QUALITY AND WORKFLOW

402

 This model is a step away from the current situation, where browser makers and other industry
stakeholders come up with proposed high-level standards, which developers only get to try out once
implemented in a browser.

 For CSS, the Extensible Web idea doesn’t necessarily mean that the language will become encumbered
with low-level features. Instead, JavaScript APIs will, hopefully, be opened up to things like rendering and
custom syntax, so that any proposed new CSS features can be implemented as scripted polyfills the moment
they are conceived. If this succeeds, the rate of innovation in CSS will only increase. We’d better get ready.

 Summary
 In this final chapter, we’ve covered everything from how browsers interpret your CSS, to how authors can
write flexible and maintainable code that any front-end developer worth their salt could understand. Even
if the CSS you write is bug-free, nicely packaged up, and maintainable, development can still be a chore.
Power tools like preprocessors and build scripts can help you along the way, but don’t let them become
overwhelmingly complex in themselves. With great power comes great responsibility, after all.

 Finally, we’ve looked at some of the things on the horizon for CSS and how we can plan for the future.
There are many developments ahead of us, too many for one book to cover in detail. Concepts that once felt
universal and immutable when the first version of this book was written, have become more nuanced and
complex as the language (and what’s asked of it) matures.

 The best CSS authors always have one eye on the present and another eye on the future, constantly
questioning how the trends of today may become the bottlenecks of tomorrow. Rather than throwing
your weight behind a particular tool or technique, put time and effort into understanding the underlying
principles. That’s the true route to CSS mastery.

403© Andy Budd and Emil Björklund 2016
A. Budd and E. Björklund, CSS Mastery, DOI 10.1007/978-1-4302-5864-3

 A
 Absolute measurement units , 66
 Absolute positioning , 49, 144 . See also Visual

formatting model
 automatic sizing with off sets , 147
 initial position , 144
 use cases , 144

 Accessible hiding techniques , 287
 Accessible Rich Internet Applications (ARIA) , 12

 aria-describedby property , 287
 aria-hidden property , 332
 aria-labelledby property , 13
 aria-label property , 242, 291, 318
 aria-valuemin property , 13
 aria-valuemax property , 13
 aria-valuenow property , 13
 landmark roles , 13

 :active , pseudo-class , 24. See also Pseudo-classes
 Animation properties , 320

 animation-delay property , 321–322
 animation-duration property , 321–322
 animation-fi ll-mode property , 323
 animation-iteration-count property , 322
 animation-name property , 321–322
 animation-play-state property , 325
 animation property (shorthand) , 322
 animation-timing-function property , 321

 Animations , 299 . See also Keyframe Animations;
Transitions

 Asynchronous script loading , 38
 attr() functional notation , 274
 Attribute selector , 21 . See also Selectors

 matching syntax , 22

 B
 Background properties , 101

 background-attachment property , 114
 background-clip property , 113
 background-color property , 101

 background-image property , 107
 background-origin property , 114
 background-position property , 109
 background property (shorthand) , 101, 117
 background-repeat property , 107–108
 background-size property , 115

 Background images , 105 . See also Background
properties

 image formats , 109
 multiple backgrounds syntax , 117
 positioning, lengths vs . percentages , 111
 position, using edge keywords , 112
 sizing with automatic keywords , 115
 using absolute URLs , 108
 using Data URIs , 108
 using relative URLs , 108
 when to use , 105

 BEM, naming convention , 387
 Berners-Lee, Tim . See also Pseudo-elements

 ::before pseudo-element , 23
 Blend modes , 354

 background-blend-mode property , 355
 isolation property , 360
 knock-out text eff ect , 357
 mix-blend-mode property , 357

 Border images , 123
 border-image property , 124

 Borders , 39, 119 . See also Box model
 asymmetric corner shape , 120

 border property (shorthand) , 119
 border-radius (shorthand), 120
 border-style property , 119
 border-width property , 119
 Creating triangles , 146
 rounded corners , 119

 circle and oval shapes , 123
 pill shapes (obrund shapes) , 123

 Box alignment properties , 214 . See also Flexbox
properties; Grid Layout properties

 align-content , 177
 align-items , 164, 214

 Index

■ INDEX

404

 align-self , 166, 214
 justify-content , 163, 215
 justify-self , 215

 Box model , 39
 borders , 39
 content area , 40
 margin , 39
 minimum and maximum dimensions , 44
 padding , 39–40
 width and height , 40

 Box shadows , 125
 box-shadow property , 125
 inset shadows , 126
 multiple shadows syntax , 127
 spread radius , 126

 box-sizing property , 40
 legacy behavior on form controls , 41

 Block formatting context , 56 . See also
Visual formatting model

 Breakpoints , 225, 238 . See also Media queries
 Buttons , 283

 C
 calc() functional notation , 112
 caniuse.com , 7
 Cascade , 29, 384
 Cascading Style Sheets (CSS) , 1 . See also Cascade;

Specifi city; Inheritance
 versions of , 4

 Checkboxes , 293
 Class attribute , 9
 ClassList API , 332
 Class selector , 17 . See also Selectors
 Clipping paths , 344

 clip-path property , 344
 using basic shape functions , 344
 using SVG clipPath sources , 344, 347

 clip property , 286, 344
 Code quality , 371

 external code quality , 371
 internal code quality , 379
 static analysis and linters , 394

 Code Structure , 1, 240, 385
 col and colgroup elements , 266
 Combinators , 19

 adjacent sibling , 19
 general sibling , 19

 Compositing , 354, 360, 370, 375 . See also
Blend modes

 Container queries , 244
 Containing block , 48 . See also Visual

formatting model
 content property , 23, 56, 146, 156, 273, 306

 Color , 63
 color keywords , 102
 color property , 63
 contrast , 63, 104
 hexadecimal notation , 102
 HSL color wheel , 103
 hsl() functional notation , 102
 rgb() functional notation , 102
 rgba() functional notation , 102

 counter-increment property , 306
 counter-reset property , 305
 CSSOM, CSS Object Model , 373
 Cubic Bézier curves , 313
 cubic-bezier() functional notation , 313
 Custom Properties (CSS variables) , 398

 D
 Data URIs , 108
 Descendant selector , 17
 Developer Tools (DevTools), in browsers , 34, 301,

339, 372, 376, 400
 Document Object Model (DOM) , 372
 Drawing with CSS , 136

 E
 Element selector , 17 . See also Type selectors;

Selectors
 em unit , 66

 in media conditions , 239, 253
 Extensible Web Manifesto , 401
 Extrinsic sizing , 58

 F
 Filters , 361

 backdrop-fi lter property , 365
 blur() functional notation , 365
 color manipulation fi lters , 361

 brightness() functional notation , 361–362
 contrast() functional notation , 361–362
 grayscale() functional notation , 361–362
 hue-rotate() functional notation , 362
 invert() functional notation , 362
 saturation() functional notation , 362
 sepia() functional notation , 362

 custom fi lters using SVG , 368
 drop-shadow() functional notation , 364
 fi lter() functional notation for

images , 366
 fi lter property , 361
 opacity() functional notation , 362

 ::fi rst-letter pseudo-element , 22. See also
 Pseudo-elements

Box alignment properties (cont.)

■ INDEX

405

 ::fi rst-line pseudo-element , 22. See also
 Pseudo-elements

 Fixed positioning , 50 . See also Visual
formatting model

 Flexbox properties , 162
 align-content property , 177
 align-items property , 164
 align-self property , 166
 fl ex-basis property , 168
 fl ex-direction property , 162
 fl ex-grow property , 168
 fl ex-shrink property , 168
 fl ex-wrap property , 175
 justify-content property , 163
 order property , 179

 Flexible Box Layout model (fl exbox) , 45, 58, 161,
205, 242, 288

 alignment and spacing , 163
 automatic margin treatment , 164
 bugs and gotchas , 183
 column layout , 179
 fallback techniques , 182, 205
 as general layout tool , 207
 vs . Grid Layout , 209
 nested fl exbox layouts , 180
 older syntaxes , 161
 ordering , 179
 sizing items , 168

 distributing remaining space (growing) , 170
 shrinking algorithm , 172

 terminology , 161
 main size , 161
 main axis , 161
 cross axis , 161

 vertical and horizontal centering , 166
 of multiple elements , 167

 wrapping rows , 173
 Floating , 51 . See also Visual formatting model
 :focus , pseudo-class , 24. See also Pseudo-classes
 @font-face rule , 83. See also Web fonts
 Font properties , 61

 font-family property , 64
 font-feature-settings property , 91–94
 font-kerning property , 94
 font-size property , 65
 font-style property , 71
 font-variant-ligatures property , 91–92
 font-variant-numeric property , 91
 font-variant property , 72
 font-weight property , 70

 Font stacks , 64
 Font terminology , 65
 Formatting contexts , 56 . See also Visual

formatting model

 Forms , 5, 27, 274
 button styling , 283
 custom checkboxes , 293
 feedback and help texts , 285
 fi eldset “unstyling” , 278
 form pseudo-classes , 27, 288
 handling form-fi eld focus states , 281
 HTML5 input types , 5, 27, 277
 placeholder attribute , 285
 radio buttons , 283
 text input fi eld styling , 280
 using fl exbox , 290
 using multi-column layout , 292

 fr unit , 211

 G
 GIF format , 109
 Gradients , 128

 color stops , 130–131
 linear-gradient() functional

notation , 128–129
 older syntaxes , 129
 as patterns , 133
 radial-gradient() functional notation , 131
 repeating-radial-gradient() functional

notation , 133
 Grid Layout Module , 59, 209

 automatic placement algorithm , 216
 dense vs . sparse modes , 219

 vs . fl exbox , 209
 fr unit , 211
 grid-area property , 214, 221
 grid-column-end property , 213–214
 grid-column-gap property , 216
 grid-column property (shorthand) , 214
 grid-column-start property , 213
 grid item alignment , 214
 grid item placement , 213

 order , 218
 grid-row-end property , 213
 grid-row-gap property , 216
 grid-row property (shorthand) , 214
 grid-row-start property , 213
 grid-template-columns property , 211
 grid-template-rows property , 211
 grid track alignment , 216
 minmax() functional notation , 213
 numbered grid tracks , 213
 old IE implementation , 209
 polyfi ll, JavaScript , 222
 repeat() functional notation , 212
 template areas , 219
 terminology , 210

■ INDEX

406

 Grids, as page design tool , 185 .
See also Page layout

 terminology , 186
 using helper classes , 187
 using ready-made frameworks , 187

 Gulp (task runner) , 396
 GZIP compression , 37

 H
 Horizontal layout patterns , 150

 using fl oats , 150
 using inline blocks , 153
 using table display modes , 159

 vertical alignment in table cells , 160
 :hover , pseudo-class , 24. See also Pseudo-classes
 HTTP Headers, caching , 37
 HTTP Requests, reducing , 37, 108
 HTTP/2 and Server Push , 399
 HyperText Markup Language (HTML) , 1

 history of , 4
 HTML5 , 5

 structural elements , 10

 I
 ID attribute , 9
 ID selector , 17 . See also Selectors
 Images and embedded objects , 137, 251 . See also

 Responsive embedded media
 aspect-ratio aware containers trick , 139

 for SVG embedding , 251
 fl exible media pattern , 137, 251
 object-fi t property , 138
 object-position property , 139
 optimization, fi le size , 141

 !important syntax , 29
 @import statements , 36
 Inheritance , 34
 Inline block layout , 153

 battling whitespace issues , 157
 font family hack , 159
 font size hack , 158

 vertical alignment , 155
 vertical centering , 155

 Inline boxes , 45 . See also Line box; Visual
formatting model

 Intrinsic sizing , 58
 :invalid pseudo-class , 28. See also Pseudo-classes

 J
 JPEG format , 109

 transparent JPEGs with SVG
masking , 351

 K
 Keyframe animations , 299, 319 . See also

Animation properties
 animating along curved lines , 323
 animation events , 325
 animation “gotchas” , 325
 @keyframe rules , 320
 keyframe selectors , 321
 sequence name , 321

 L
 Layout stage (browser rendering) , 374
 Line box , 45 . See also Visual formatting model

 anatomy of , 68
 inline formatting model , 68

 Line spacing , 68 . See also Text properties
 line-height property , 69
 in responsive design , 257
 unitless (multipliers) vs . calculated inheritance , 69

 link element, adding style sheets , 35
 :link , pseudo-class , 24. See also Pseudo-classes

 M
 Maintainability , 2
 Margin collapsing , 46 . See also Visual formatting

model
 Masking , 349

 alpha level masks , 349
 mask-image property , 350
 mask property , 350
 transparent JPEGs with SVG masking , 351

 automated masks with ZorroSVG , 354
 using radial gradients , 350
 using SVG mask sources , 350

 Media queries , 224, 234
 aspect ratio queries , 236
 breakpoints , 225, 238
 device measurement queries , 236
 dimensional queries , 236
 media conditions , 234
 media features , 234
 not keyword , 235
 old IE support , 237
 only keyword , 235
 orientation queries , 236
 polyfi ll (respond.js) , 237
 resolution queries , 236, 250

 Media types , 234
 Microdata , 14
 Microformats , 13
 Mobile fi rst , 238

 for CSS structure , 238

■ INDEX

407

 Modernizr , 7, 11, 182, 205, 289, 330
 Modular Scale, typographic size , 67
 Multi-column layout module , 59, 77

 column-count property , 78
 column-gap property , 77
 columns property , 77
 column-span property , 79
 column-width property , 78
 fallback widths , 78

 N
 Naming schemes , 385
 Negative margins , 145, 150, 202, 345
 Node , 396
 :not pseudo-class , 25. See also Pseudo-classes
 NPM , 396
 :nth-child pseudo-class , 25. See also

 Pseudo-classes
 :nth-last-child pseudo-class , 26. See also

 Pseudo-classes
 :nth-last-of-type pseudo-class , 26. See also

 Pseudo-classes
 :nth-of-type pseudo-class , 26. See also

 Pseudo-classes

 O
 Object Oriented CSS (OOCSS), methodology , 385
 opacity property , 149
 :optional pseudo-class , 28

 P
 Page layout , 185 . See also Responsive layout

 column container rules , 194
 content wrappers , 191
 fi xed, fl uid/elastic layouts , 188
 fl uid gutters , 199
 font size dependent gutters , 203
 row container rules , 193

 Painting, Compositing, Drawing (browser
rendering) , 375

 Performance , 36, 87, 136, 235, 251, 310, 337, 365, 376
 perspective-origin property , 327
 perspective property , 327
 perspective() transform function , 328
 picture element , 254
 PNG format , 109, 141
 Preprocessors , 391

 PostCSS , 397
 Sass , 391

 Presentational text elements , 12
 Progressive enhancement , 5
 Pseudo-classes , 24

 :active , 24
 :focus , 24, 30, 269, 281
 :hover , 24, 269
 :invalid , 28
 :link , 24
 :not , 25
 :nth-child , 25, 221, 272, 308
 :nth-last-child , 26
 :nth-last-of-type , 26
 :nth-of-type , 26
 :optional , 28
 :required , 27
 :root , 33, 279, 294, 398
 :target , 25
 :valid , 28
 :visited , 24

 Pseudo-elements , 22
 ::after , 56, 146, 224
 ::before , 23, 156, 174, 273, 306
 ::fi rst-line , 22
 ::fi rst-letter , 22
 syntax, single/double colon , 24

 Q
 Quantity Queries , 27

 R
 Radio buttons , 283
 Regions module , 59
 Refl ow , 374
 Relative positioning , 49 .

See also Visual formatting model
 rem unit , 66
 Render tree , 374
 Responsive background images , 248

 art-direction , 249
 resolution switching , 250

 Responsive embedded media , 251
 page weight problem , 252
 picture element , 254
 picturefi ll (polyfi ll) , 256
 pre-parsing , 252
 sizes attribute , 253
 source element , 254
 srcset attribute , 252

 x descriptor , 252
 w descriptor , 253

 Responsive layout , 223
 using fl exbox , 242
 using fl oats , 224
 using Grid Layout properties , 244
 using multi column layout

properties , 241

■ INDEX

408

 Responsive tables , 270
 linearized table , 270
 using JavaScript , 274

 Responsive typography , 257
 reading distance, measure and line height , 257
 using em units , 259–260
 using viewport-relative units , 260

 Responsive web design , 44, 189, 223 . See also Mobile
First; Viewports

 beyond CSS (using JavaScript) , 229
 browser viewport confi guration , 232
 roots of , 228

 S
 Scalable and Modular Architecture for CSS

(SMACSS), methodology , 386
 scoped attribute , 381
 Screen readers , 2, 7, 12, 15, 22, 179, 265, 274, 276,

286, 292, 318, 332, 358
 select element , 297
 Selectors , 17

 child , 18
 class , 17
 descendant , 17
 ID , 17
 pseudo-classes , 24 (see also Pseudo-classes)
 pseudo-elements , 22 (see also

 Pseudo-elements)
 sibling , 19 (see also Sibling selector)
 structural pseudo-classes , 25 (see also

 Pseudo-classes)
 Quantity Queries , 27
 type , 17
 universal , 30, 35, 195

 Separation of concerns (SoC) , 3, 388
 Serif vs . sans-serif typefaces , 65
 Shape functions , 339

 circle() functional notation , 339
 in clipping paths , 344–345
 in CSS Shapes , 339
 ellipse() functional notation , 339
 inset() functional notation , 339
 polygon() functional notation , 340, 345

 Shapes , 337
 inside vs . outside shapes , 337
 Shape Editor plug-in , 339
 shape images , 340
 shape-image-threshold property , 341
 shape-inside property , 337
 shape-outside property , 337
 shape-margin property , 343
 using reference boxes , 342

 Sibling selector , 18 . See also Combinators
 adjacent sibling , 19
 general sibling , 19

 sizes attribute , 253
 Specifi city , 29

 avoiding specifi city arms-race , 32
 calculating in base 10 , 30

 srcset attribute , 252
 Stacking contexts , 149, 183, 218, 310
 Static positioning , 45, 143
 style element, adding style sheets , 36
 Style guide , 8
 @supports (Conditional rule block) , 7,

183, 225, 345, 359
 SVG , 109, 141, 295

 clipping paths using , 344, 347
 custom fi lter using , 368
 detecting with Modernizr , 295
 masking using , 350
 optimization , 141

 T
 Table layout , 264
 Table markup , 45, 265
 Text properties , 61

 hyphens property , 76
 letter-spacing property , 73
 line-height property , 69

(see also Line spacing)
 text-align property , 75
 text-indent property , 74
 text-shadow property , 95
 text-transform property , 71
 word-spacing property , 72

 Transforms , 299
 anti-aliasing , 310
 local coordinate system , 301
 multiple transformations , 305
 rotation , 300
 scaling , 300, 307
 skewing , 300–301, 307, 321
 stacking contexts , 310
 3D subset , 326

 backface-visibility property , 330
 IE and the lack of preserve-3d , 331
 perspective-origin property , 327
 perspective property , 327
 perspective() transform function , 328
 3D matrix transformations , 333
 3D rotation , 333
 transform-style property , 331

 translation , 304
 transform property , 301
 transform-origin property , 303
 2D subset , 300

 Transitions , 299, 311
 bouncy transitions , 313, 315
 cubic-bezier() functional notation , 313

■ INDEX

409

 easing , 313
 interpolated values , 317
 stepping functions and stop-motion

animation , 315
 timing guidelines , 311
 transition-duration property , 312
 transition-property property , 312
 transition property (shorthand) , 311
 transition-timing-function , 313

 Type selector , 17
 Typography , 61 . See also Font properties; Line

spacing; Text properties; Responsive
typography; Web fonts

 baseline grids (vertical rhythm) , 80
 hyphenation , 76

 rag (as in ragged) , 74
 JavaScript-based solutions , 98
 Justifi cation , 75
 ligatures , 92
 measure , 73

 in responsive design , 257
 multiple columns , 77
 numerals , 93
 rivers , 75
 shadows , 95

 letterpress eff ect , 95
 sign painter eff ect , 96

 typographic lock-up in SVG , 357–358

 U
 Universal selector , 30, 35, 195 . See also Selectors

 V
 Validation , 15
 Vendor prefi xes , 6
 Vertical alignment , 69 . See also Inline

block layout
 inline block layout, diff erences , 70, 155
 table display layout, diff erences , 160

 Viewport, browser , 230
 default viewport , 231
 ideal viewport , 231
 layout viewport , 232
 meta tag confi guration , 232
 @viewport declarations

(device adaptation) , 233
 visual viewport , 232

 Viewport-relative units , 253
 vh unit , 260
 vm unit (IE specifi c) , 260
 vmax unit , 260
 vmin unit , 260
 vw unit , 253, 260

 Visual eff ects , 335 . See also Clipping paths;
Filters; Masking

 order of application , 369
 Visual formatting model , 44 . See also Box model

 absolute positioning , 49, 144
 anonymous boxes , 46
 block formatting context , 57
 fi xed positioning , 50
 fl oating , 51

 clearing fl oats , 53
 enclosing fl oats , 53
 line box behavior , 53
 margin behavior , 54

 inline boxes , 45
 line box , 45
 margin collapsing , 46
 negative margins , 145, 150, 202, 345
 relative positioning , 49, 143
 stacking contexts , 149, 183, 218, 310
 static positioning , 45, 143
 vertical alignment , 69, 155
 z-index property , 50, 149

 W
 Web components , 400
 Web Developer toolbar , 15
 Web fonts , 81

 faux italics , 87
 fi le formats , 83
 Flash of Invisible Text (FOIT) , 88
 Flash of Unstyled Text (FOUT) , 88
 font descriptors , 84
 @font-face rule , 83
 licensing , 82
 Loading with JavaScript , 89
 performance , 87

 Web Open Font Format (WOFF) , 83 .
See also Web fonts

 WebP format , 109
 Workfl ow tools , 394

 X
 x axis , 107, 131, 308, 326, 345, 353
 XHTML , 4

 Y
 y axis , 107, 131, 308, 326, 345, 353

 Z
 z axis , 303, 326
 z-index property , 50, 149

	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewers
	Acknowledgments
	Introduction
	Chapter 1: Setting the Foundations
	Structuring your Code
	Maintainability
	A Brief History of Markup
	Different Versions of HTML and CSS
	What Version Should I Use?

	Progressive Enhancement
	Vendor Prefixes
	Conditional Rules and Detection Scripts

	Creating Structurally and Semantically Rich HTML
	Class and ID Attributes
	Structural Elements
	Using Divs and Spans
	Presentational Text Elements, Redefined
	Extending the Semantics of HTML
	ARIA Role Attributes
	Microformats
	Microdata

	Validation

	Summary

	Chapter 2: Getting Your Styles to Hit the Target
	CSS Selectors
	Child and Sibling Selectors
	The Universal Selector
	Attribute Selectors
	Pseudo-Elements
	Pseudo-Classes
	Targets and Negations

	Structural Pseudo-Classes
	Getting Clever with Structural Pseudo-Classes

	Form Pseudo-Classes

	The Cascade
	Specificity
	Order of Rules when Resolving the Cascade
	Managing Specificity
	Specificity and Debugging

	Inheritance
	Applying Styles to your Document
	The Link and Style Elements
	Performance
	Reducing HTTP Requests
	Compressing and Caching Content
	Avoid Render-Blocking JavaScript

	Summary

	Chapter 3: Visual Formatting Model Overview
	Box Model Recap
	Box-Sizing
	Minimum and Maximum Values

	The Visual Formatting Model
	Anonymous Boxes
	Margin Collapsing
	Containing Blocks
	Relative Positioning
	Absolute Positioning
	Fixed Positioning
	Floating
	Line Boxes and Clearing

	Formatting Contexts
	Intrinsic and Extrinsic Sizing

	Other CSS Layout Modules
	Flexible Box Layout
	Grid Layout
	Multi-Column Layout
	Regions

	Summary

	Chapter 4: Web Typography
	Basic Typesetting in CSS
	Text Color
	Font-Family
	The Relation Between Fonts and Typefaces

	Font Size and Line Height
	Font Sizing with Scales

	Line Spacing, Alignment, and the Anatomy of Line Boxes
	Setting Line Height
	Vertical Alignment

	Font Weights
	Font Style
	Transforming Case and Small-Cap Variants
	Using Font-Variant

	Changing the Space Between Letters and Words

	Measure, rhythm, and rag
	Text Indent and Alignment
	Hyphenation
	Setting Text in Multiple Columns
	Fallback Width
	Column Spans
	Vertical Rhythm and Baseline Grids

	Web Fonts
	Licensing
	The @font-face rule
	Font File Formats
	Font Descriptors

	Web Fonts, Browsers, and Performance
	Loading Fonts with JavaScript
	Matching Fallback Font Size

	Advanced Typesetting Features
	Numerals
	Kerning Options and Text Rendering

	Text Effects
	Using and Abusing Text Shadows
	Using JavaScript to Enhance Typography

	Further Type Inspiration
	Summary

	Chapter 5: Beautiful Boxes
	Background Color
	Color Values and Opacity

	Background Image Basics
	Background Images vs. Content Images
	Simple Example Using Background Images
	Loading Images (and other files)
	Image Formats

	Background Image Syntax
	Background Position
	Introducing Calc

	Background Clip and Origin
	Background Attachment
	Background Size
	Background Shorthand

	Multiple Backgrounds
	Borders and Rounded Corners
	Border Radius: Rounded Corners
	Border Radius Shorthand
	More Complex Border-Radius Syntax
	Setting a Border Radius on a Single Corner

	Creating Circles and Pill Shapes with Border Radius
	Border Images

	Box-Shadow
	Spread Radius: Adjusting the Size of the Shadow
	Inset Shadows
	Multiple Shadows

	Using CSS Gradients
	Browser Support and Browser Prefixes
	Linear Gradients
	Defaults and Color Stop Positions

	Radial Gradients
	Repeating Gradients
	Gradients as Patterns
	Drawing with CSS

	Styling Embedded Images and other Objects
	The Flexible Image Pattern
	New Object-Sizing Methods
	Aspect-Ratio Aware Flexible Containers
	Reducing Image File Sizes

	Summary

	Chapter 6: Content Layout
	Using Positioning
	Absolute Positioning Use Cases
	Using the Initial Position
	Bonus: Creating Triangles in CSS
	Automatic Sizing Using Offsets

	Positioning and z-index: Stacking Context Pitfalls

	Horizontal Layout
	Using Floats
	Inline Block as a Layout Tool
	Vertical Centering with Inline Block
	Vertical Centering Inside a Container Element
	Getting the Details Right: Battling Whitespace

	Using Table Display Properties for Layout
	Vertical Alignment in Table Cells

	Pros and Cons of the Different Techniques

	Flexbox
	Browser Support and Syntax
	Understanding Flex Direction: Main and Cross Axis
	Alignment and Spacing
	Cross-Axis Alignment
	Aligning Individual Items
	Vertical Alignment with Flexbox

	Flexible Sizes
	The Flexible Sizing Properties
	Sizing Purely with Flex Factors
	Shrinking Flex Items

	Wrapping Flexbox Layouts
	Wrapping and Direction
	Flexible Sizing in Wrapping Layouts
	Aligning all Rows

	Column Layout and Individual Ordering
	Nested Flexbox Layouts
	Flexbox Fallbacks
	Flexbox Bugs and Gotchas

	Summary

	Chapter 7: Page Layout and Grids
	Planning your Layout
	Grids
	Traditional Grid Terminology

	Layout Helper Classes
	Using Ready-Made Design Grids and Frameworks
	Fixed, Fluid, or Elastic

	Creating a Flexible Page Layout
	Defining a Content Wrapper
	Row Containers
	Creating Columns
	Fluid Gutters
	Negating the Outer Gutters
	Alternate Gutter Strategies

	Enhanced Columns: Wrapping and Equal Heights
	Wrapping Column Rows with Inline Blocks
	Using Flexbox for Equal-Height Columns

	Flexbox as a General Tool for Page Layout
	Pros and Cons
	Layout in One or Two Dimensions

	The CSS Grid Layout Module: 2D Layout
	Understanding the Grid Terminology
	Defining Rows and Columns
	Making Grids for Our Page Subsections

	Placing Items on the Grid
	Grid Item Alignment
	Aligning the Grid Tracks
	Gutters in Grid Layout

	Automatic Grid Placement
	Order of Automatic Placement
	Switching the Automatic Placement Algorithm

	Grid Template Areas
	Closing Words on Grid Layout

	Summary

	Chapter 8: Responsive Web Design & CSS
	A Responsive Example
	Starting Simple
	Introducing Our First Media Query
	Finding Further Breakpoints

	The Roots of Responsiveness
	Responsive beyond CSS

	How Browser Viewports Work
	Nuances of the Viewport Definition
	Default and Ideal Viewports
	Visual and Layout Viewports

	Configuring the Viewport
	Other Values and Combining with Initial-Scale
	Device Adaptation and CSS @viewport

	Media Types and Media Queries
	Media Types
	Media Queries
	Dimensional Queries
	Further Dimensions: Resolution, Aspect Ratio, and Orientation
	Browser Support for Media Queries

	Structuring CSS for Responsive Design
	Mobile First CSS
	Max-Width Queries for Efficient Small-Screen Styles

	Where to Place Your Media Queries

	More Responsive Patterns
	Responsive Text Columns
	Responsive Flexbox without Media Queries
	Flexible, Container-Relative Components

	Responsive Grids with Grid Template Areas

	Going beyond Layout
	Responsive Background Images
	Using Resolution Queries to Switch Images

	Responsive Embedded Media
	Responsive Media Basics
	Responsive Images and the srcset Attribute
	The Picture Element: Art Direction, File Type Support, and More
	Browser Support and Picturefill

	Responsive Typography
	Different Devices, Different Measures
	Using Flexible Font Sizes
	Setting the Base Font Size
	Viewport-Relative Units for Typography
	Tweak and Test

	Summary

	Chapter 9: Styling Forms and Data Tables
	Styling Data Tables
	Table-Specific Elements
	Table Captions
	thead, tbody, and tfoot
	col and colgroups
	Finished Table Markup

	Styling the Table Element
	Styling the Table Contents

	Responsive Tables
	Linearizing a Table
	Advanced Responsive Tables

	Styling Forms
	A simple Form Example
	Fieldsets and Legends
	Labels
	Input Fields and Text Areas
	Putting the Fieldset Together
	Styling Text Input Fields
	Handling the Focused State
	Adding the Rest of the Fieldsets
	Adding Radio Buttons
	Buttons

	Clear Form Feedback and Help Texts
	HTML5 Form Validation and CSS

	Advanced Form Styling
	Modern CSS for Form Layout
	Prefixed Input Fields with Flexbox
	Using Multi-Column Layout for Checkbox Collections
	Styling the Unstylable: Faux Custom Checkboxes
	A word on Custom Form Widgets

	Summary

	Chapter 10: Making It Move: Transforms, Transitions, and Animations
	How it all Fits Together
	A Note on Browser Support

	2D Transforms
	Transform Origin
	Translation
	Multiple Transformations
	Scale and Skew
	2D Matrix Transformations
	Transforms and performance

	Transitions
	Transition Timing Functions
	Cubic Bézier Functions and “Bouncy” Transitions
	Step Functions

	Different Transitions for Forward and Reverse Directions
	“Sticky” Transitions
	Delayed Transitions
	What you can and can’t Transition
	Interpolated Values
	Transitioning to Content Height

	CSS Keyframe Animations
	Animating the Illusion of Life
	Creating the Animation Keyframe Block
	Connecting a Keyframe Block to an Element

	Animating Along Curved Lines
	Animation Events, Play State, and Direction

	3D Transforms
	Getting some Perspective
	Perspective Origin
	The Perspective() Transform Function

	Creating a 3D widget
	IE and the lack of preserve-3d
	Responsible Code: Adressing Keyboard Control and Accessibility

	Advanced Features of 3D Transforms
	The Rotate3d() Function
	3D Matrix Transformations

	Summary

	Chapter 11: Cutting-edge Visual Effects
	Breaking Out of the Box: CSS Shapes
	Inside and Outside Shapes
	Shape Functions
	Shape Images
	Shaped Boxes and Margins
	Browser Support for CSS Shapes

	Clipping and Masking
	Clipping
	Clipping with SVG Clip Sources
	Inline SVG Clip Sources
	Using the Object Bounding Box to Size Clipping Paths
	Browser Support for Clipping Paths

	Masking
	Transparent JPEGs with SVG Masking
	Images Inside SVG
	SVG Masking
	Inlining the Image
	Automating the Technique

	Blend Modes and Compositing
	Colorizing a Background Image
	Blending Elements
	Typographic Lock-ups with Knock-Out Text
	Isolation

	Image Processing in CSS: Filters
	Adjustable Color Manipulation Filters
	Hue Rotation
	Drop-Shadows on Clipped Shapes
	The blur filter
	Backdrop Filters
	Filtered Background Images with the Image Filter Function

	Advanced Filters and SVG

	Order of Application for Visual Effects
	Summary

	Chapter 12: Code Quality and Workflow
	Debugging CSS: External Code Quality
	How Browsers Interpret CSS
	Parsing Files and Constructing Object Models
	The Render Tree
	Layout
	Painting, Compositing, and Drawing

	Optimizing Rendering Performance

	CSS for Humans: Internal Code Quality
	Understanding the Shape of CSS
	Viewing CSS as Software
	Bring your Own Structure

	Code Quality: an Example
	Managing the Cascade
	Structured Naming Schemes and CSS Methodologies
	OOCSS
	SMACSS
	BEM

	Managing Complexity
	Separation of Concerns
	HTML Semantics vs. Class Semantics
	Finding the Right Balance

	Code is for People

	Tooling and Workflow
	Preprocessors and Sass
	The Case for Preprocessors
	..and the Case Against

	Workflow Tools
	Static Analysis and Linters
	Build Tools
	Setting up a CSS Build Workflow with Node and Gulp

	The Future of CSS Syntax and Structure
	Custom Properties—Variables in CSS
	HTTP/2 and Server Push
	Web Components
	CSS and the Extensible Web

	Summary

	Index

