
www.allitebooks.com

http://www.allitebooks.org

Cassandra 3.x High Availability
Second Edition

Achieve scalability and high availability without compromising
on performance

Robbie Strickland

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Cassandra 3.x High Availability
Second Edition

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2014

Second edition: August 2016

Production reference: 1250816

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.
ISBN 978-1-78646-210-7

www.packtpub.com

www.allitebooks.com

http://www.packtpub.com
http://www.allitebooks.org

Credits

Author

Robbie Strickland

Copy Editor

Safis Editing

Vikrant Phadke

Reviewer

Jimmy Mårdell

Project Coordinator

 Nidhi Joshi

Commissioning Editor

Veena Pagare

Proofreader

Safis Editing

Acquisition Editor

Divya Poojari

Indexer

Aishwarya Gangawane

Content Development Editor

Mayur Pawanikar

Graphics

Disha Haria

Technical Editor

Suwarna Patil

Production Coordinator

Arvindkumar Gupta

www.allitebooks.com

http://www.allitebooks.org

About the Author
Robbie Strickland has been involved in the Apache Cassandra project since 2010, and he
initially went to production with the 0.5 release. He has made numerous contributions over
the years, including work on drivers for C# and Scala and multiple contributions to the core
Cassandra codebase. In 2013 he became the very first certified Cassandra developer, and in
2014 DataStax selected him as an Apache Cassandra MVP.

Robbie has been an active speaker and writer in the Cassandra community and is the
founder of the Atlanta Cassandra Users Group. Other examples of his writing can be found
on the DataStax blog, and he has presented numerous webinars and conference talks over
the years.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer
Jimmy Mårdell is a senior software engineer and Cassandra contributor who has worked
with Cassandra for more than 5 years. He has been leading the database infrastructure team
at Spotify, focusing on improving the Cassandra ecosystem at Spotify and empowering
other teams to operate large-scale Cassandra clusters. He has been a speaker at many
Cassandra events and in 2015 he was elected by DataStax as an Apache Cassandra MVP.
Besides Cassandra, Jimmy likes algorithms and competitive programming and won the
programming competition Google Code Jam in 2003.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com
eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

h t t p s : / / w w w 2 . p a c k t p u b . c o m / b o o k s / s u b s c r i p t i o n / p a c k t l i b

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

www.allitebooks.com

http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org

Table of Contents
Preface 1

Chapter 1: Cassandra's Approach to High Availability 6

Introducing the ACID properties 7
Monolithic simplicity 7
Scaling consistency – the master-slave model 9

Using sharding to scale writes 10
Handling the death of the leader 11

Breaking with tradition – Cassandra's alternative 11
Cassandra's peer-to-peer approach 12

Hashing to the rescue 13
Replication across the cluster 13

Replication across data centers 14
The consistency continuum 14

The CAP theorem 14
Summary 16

Chapter 2: Data Distribution 17

Hash table fundamentals 17
Distributed hash tables 18

Consistent hashing 20
How it works 21

Token assignment 23
Manually assigned tokens 23
Vnodes 25

How vnodes improve availability 26
Adding and removing nodes 26
Node rebuild 26
Heterogeneous nodes 29

Partitioners 29
Hotspots 30

A time-series example 31
Summary 32

Chapter 3: Replication 33

The replication factor 34
Replication strategies 34

SimpleStrategy 34

www.allitebooks.com

http://www.allitebooks.org

[ii]

NetworkTopologyStrategy 37
Snitches 37

Maintaining the replication factor when a node fails 39
Consistency conflicts 39

Consistency levels 40
Repairing data 42

Balancing the replication factor with consistency 44
Summary 46

Chapter 4: Data Centers 47

Use cases for multiple data centers 47
Live backup 48
Failover 48
Load balancing 49
Geographic distribution 49
Online analysis 52

Analysis using Hadoop 53
Analysis using Spark 55

Data center setup 56
RackInferringSnitch 56
PropertyFileSnitch 57
GossipingPropertyFileSnitch 59
Cloud snitches 59

Replication across data centers 61
Setting replication factors 62
Consistency in a multiple data center environment 63

Anatomy of a replicated write 65
Achieving stronger consistency between data centers 68

Summary 69

Chapter 5: Scaling Out 70

Choosing the right hardware configuration 71
Scaling out versus scaling up 72
Growing your cluster 73

Adding nodes without vnodes 73
Adding nodes with vnodes 75
Adding a data center 76

How to scale up 77
Upgrading in place 78
Scaling up using data center replication 79

Removing nodes 79

www.allitebooks.com

http://www.allitebooks.org

[iii]

Removing nodes within a data center 80
Decommissioning a data center 80

Other data migration scenarios 81
Snitch changes 82
Summary 83

Chapter 6: High Availability Features in the Native Java Client 84

Thrift versus the native protocol 85
Setting up the environment 86
Connecting to the cluster 87
Executing statements 87

Prepared statements 88
Batched statements 89

Caution with batches 89
Handling asynchronous requests 90

Running queries in parallel 91
Load balancing 92

Failing over to a remote data center 93
Downgrading consistency level 94

Defining your own retry policy 95
Token awareness 97

Tying it all together 99
Falling back to QUORUM 100

Summary 103

Chapter 7: Modeling for Availability 104

How Cassandra stores data 105
Implications of log-structured storage 105

Understanding compaction 106
Size-tiered compaction 107
Leveled compaction 110
Time-window compaction 111

CQL under the hood 112
Single primary key 112
Compound keys 114

Partition keys 114
Clustering columns 114
Composite partition keys 116

The importance of the storage model 117
Understanding queries 117

Query by key 118

www.allitebooks.com

http://www.allitebooks.org

[iv]

Range queries 119
Embracing denormalization 120

Denormalizing using collections 122
Sets 122
Lists 123
Maps 124

Denormalizing with materialized views 125
Working with time series data 127

Designing for immutability 128
Modeling sensor data 128

The queries 128
Time-based ordering 129

Using a sentinel value 129
Satisfying our queries 130
When time is all that matters 131

Working with geospatial data 131
Summary 134

Chapter 8: Anti-Patterns 135

Multi-key queries 136
Secondary indices 139

Secondary indices under the hood 140
Improvements with SASI 143

Distributed joins 143
Deleting data 144

Garbage collection 144
Resurrecting the dead 145
The problem with tombstones 145
Expiring columns 146

TTL anti-patterns 146
When null does not mean empty 148
Cassandra is not a queue 149

Unbounded row growth 151
Summary 153

Chapter 9: Failing Gracefully 154

Knowledge is power 154
Monitoring via JMX 155
Using OpsCenter 158
Choosing a management toolset 158

Logging 159

[v]

Cassandra logs 159
Garbage collector logs 160

Monitoring node metrics 161
Thread pools 161
Table statistics 162
Finding latency outliers 163
Communication metrics 164

When a node goes down 165
Marking a downed node 165
Handling a downed node 166
Handling slow nodes 166

Backing up data 167
Taking a snapshot 167
Incremental backups 168
Restoring from a snapshot 169

Summary 170

Index 171

Preface
Cassandra is a fantastic data store and certainly well suited as the foundation of a highly
available system. In fact, it was built just for such a purpose: to handle Facebook’s
messaging service. But it hasn’t always been so easy to use, with its early Thrift interface
and unfamiliar data model causing many potential users to pause—and in many cases for a
good reason.

Fortunately, Cassandra has matured substantially over the last few years. I used to advise
people only to use Cassandra if nothing else would do the job because the learning curve
was quite steep. Version 3.x continues this trend, with the introduction of features such as
materialized views and SASI indexes. These additions reduce developer workload and
significantly increase the overall utility of the system.

The flip side is that each new feature further obscures the underlying data structure,
making complex operations seem straightforward. The familiarity of a SQL-like interface
can lure an unsuspecting new user into dangerous traps. The moral of this story is that it’s
still not a relational database, and you still need to know what it’s doing under the hood.

And imparting that knowledge is the core objective of this book. Each chapter attempts to
demystify the inner workings of Cassandra so that you’re no longer working blindly
against a black box data store. You will learn to configure, design, and build your system
based on a fundamentally solid foundation.

The good news is that Cassandra makes the task of building massively scalable and
incredibly reliable systems relatively straightforward, presuming you understand how to
partner with it to achieve these goals.

Since you are reading this book, I presume you are either already using Cassandra or
planning to do so, and that you’re interested in building a highly available system on top of
it. If so, I am confident that you will meet with success if you follow the principles and
guidelines offered in the chapters that follow.

What this book covers
Chapter 1, Cassandra’s Approach to High Availability, is an introduction to concepts related to
system availability and the problems that have been encountered historically when trying
to make data stores highly available. The chapter outlines Cassandra’s solutions to these
problems.

Preface

[2]

Chapter 2, Data Distribution, outlines the core mechanisms that underlie Cassandra’s
distributed hash table model, including consistent hashing and partitioner
implementations.

Chapter 3, Replication, offers an in-depth look at the data replication architecture used in
Cassandra, with a focus on the relationship between consistency levels and replication
factor.

Chapter 4, Data Centers, provides you with a thorough understanding of Cassandra’s
robust data center replication capabilities, including deployment on EC2 and building
separate clusters for analysis using Hadoop or Spark.

Chapter 5, Scaling Out, is a discussion of the tools, processes, and general guidance needed
to properly increase the size of your cluster.

Chapter 6, High Availability Features in the Native Java Client, covers the new native Java
driver and its availability-related features. We’ll discuss node discovery, cluster-aware load
balancing, automatic failover, and other important concepts.

Chapter 7, Modeling for Availability, discusses the important concepts readers need to
understand when modeling highly available data in Cassandra. CQL, keys, wide rows, and
denormalization are among the topics that will be covered.

Chapter 8, Anti-Patterns, complements the data modeling chapter by presenting a set of
common anti-patterns that proliferate among inexperienced Cassandra developers. Some
patterns include queues, joins, high delete volumes, and high-cardinality secondary
indexes, among others.

Chapter 9, Failing Gracefully, helps you understand how to deal with the various failure
cases, as failure in a large distributed system is inevitable. We’ll examine a number of
possible failure scenarios, how to detect them, and how to resolve them.

What you need for this book
This book assumes you have access to a running Cassandra installation that is at least as
new as release 3.0. Some features discussed will apply only to 3.8 or newer, and we will
point these out when that applies. Users of versions older than 3.0 can still gain a lot from
the content, but there will be some portions that do not directly translate to those versions.

For Chapter 6, High Availability Features in the Native Java Client coverage of the Java driver,
you will need the Java Development Kit 1.8 and a suitable text editor to write Java code. All
command line examples assume a Linux environment, through translation to a Windows
environment should be straightforward for those users.

Preface

[3]

Who this book is for
This book is for developers and system administrators who are interested in building an
advanced understanding of Cassandra’s internals for the purpose of deploying high-
availability services, using it as a backing data store. This is not an introduction to
Cassandra, so those who are completely new would be well served to find a suitable
tutorial before diving into this book.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "We can
include other contexts through the use of the include directive."

A block of code is set as follows:

CREATE KEYSPACE AddressBook
 WITH REPLICATION = {
 ‘class’ : ‘SimpleStrategy’,
 ‘replication_factor’ : 3
 };

Any command-line input or output is written as follows:

nodetool status

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "click on the Connect
button."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[4]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply e-
mail feedback@packtpub.com, and mention the book's title in the subject of your message. If
there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at h t t p : / / w w w . p

a c k t p u b . c o m. If you purchased this book elsewhere, you can visit h t t p : / / w w w . p a c k t p u b . c

o m / s u p p o r t and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

mailto:feedback@packtpub.com
http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[5]

The code bundle for the book is also hosted on GitHub at h t t p s : / / g i t h u b . c o m / P a c k t P u b l

i s h i n g / C a s s a n d r a - 3 x - H i g h - A v a i l a b i l i t y - S e c o n d - E d i t i o n. We also have other code
bundles from our rich catalog of books and videos available at h t t p s : / / g i t h u b . c o m / P a c k t

P u b l i s h i n g /. Check them out!

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting h t t p : / / w w w . p a c k t p u b . c o m / s u b m i t - e r r a t a, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to h t t p s : / / w w w . p a c k t p u b . c o m / b o o k s / c o n t e n

t / s u p p o r t and enter the name of the book in the search field. The required information will
appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/Cassandra-3x-High-Availability-Second-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

1
Cassandra's Approach to High

Availability
What does it mean for a data store to be highly available? When designing or configuring a
system for high availability, architects typically hope to offer some guarantee of uptime
even in the presence of failure. Historically, it has been sufficient for the vast majority of
systems to be available for less than 100 percent of the time, with some attempting to
achieve the five nines, or 99.999, percent uptime.

The exact definition of high availability depends on the requirements of the application.
This concept has gained increasing significance in the context of web applications, real-time
systems, and other use cases that cannot afford any downtime. Database systems must not
only guarantee system uptime, the ability to fulfill requests, but also ensure that the data
itself remains available.

Traditionally, it has been difficult to make databases highly available, especially the
relational database systems that have dominated the scene for the last couple of decades.
These systems are most often designed to run on a single large machine, making it
challenging to scale out to multiple machines.

Let's examine some of the reasons why many popular database systems have difficulty
being deployed in high availability configurations, as this will allow us to have a greater
understanding of the improvements that Cassandra offers. Exploring these reasons can help
us to put aside previous assumptions that simply don't translate to the Cassandra model.

Cassandra's Approach to High Availability

[7]

Therefore, in this chapter, we'll cover the following topics:

The Atomicity Consistency Isolation Durability (ACID) properties
Monolithic architecture
Master-slave architecture, covering sharding and leader election
Cassandra's approach to achieving high availability

Introducing the ACID properties
One of the most significant obstacles that prevents traditional databases from achieving
high availability is that they attempt to strongly guarantee the ACID properties:

Atomicity: This guarantees that database updates associated with a transaction
occur in an all-or-nothing manner. If some part of the transaction fails, the state of
the database remains unchanged.
Consistency: This assures that the integrity of data will be preserved across all
instances of that data. Changes to a value in one location will definitely be
reflected in all other locations.
Isolation: This attempts to ensure that concurrent transactions that manipulate
the same data do so in a controlled manner, essentially isolating in-process
changes from other clients. Most traditional relational database systems provide
various levels of isolation with different guarantees at each level.
Durability: This ensures that all writes are preserved in nonvolatile storage, most
commonly on disk.

Database designers most commonly achieve these properties via write masters, locks,
elaborate storage area networks, and the like-all of which tend to sacrifice availability. As a
result, achieving some semblance of high availability frequently involves bolt-on
components, log shipping, leader election, sharding, and other such strategies that attempt
to preserve the original design.

Monolithic simplicity
The simplest design approach to guarantee ACID properties is to implement a monolithic
architecture where all functions reside on a single machine. Since no coordination among
nodes is required, the task of enforcing all the system rules is relatively straightforward.

Cassandra's Approach to High Availability

[8]

Increasing availability in such architectures typically involves hardware layer
improvements, such as RAID arrays, multiple network interfaces, and hot-swappable
drives. However, the fact remains that even the most robust database server acts as a single
point of failure. This means that if the server fails, the application becomes unavailable. This
architecture can be illustrated with the following diagram:

A common means of increasing capacity to handle requests on a monolithic architecture is
to move the storage layer to a shared component such as a storage area network (SAN) or
network attached storage (NAS). Such devices are usually quite robust, with large numbers
of disks and high-speed network interfaces. This approach is shown in a modification of the
previous diagram, which depicts two database servers using a single NAS.

Cassandra's Approach to High Availability

[9]

You'll notice that while this architecture increases the overall request-handling capacity of
the system, it simply moves the single failure point from the database server to the storage
layer. As a result, there is no real improvement from an availability perspective.

Scaling consistency – the master-slave
model
As distributed systems have become more commonplace, the need for higher capacity
distributed databases has grown. Many distributed databases still attempt to maintain
ACID guarantees (or in some cases only the consistency aspect, which is the most difficult
in a distributed environment), leading to the master-slave architecture.

In this approach, there might be many servers handling requests, but only one server can
actually perform writes so as to maintain data in a consistent state. This avoids the scenario
where the same data can be modified via concurrent mutation requests to different nodes.
The following diagram shows the most basic scenario:

Cassandra's Approach to High Availability

[10]

However, we still have not solved the availability problem, as a failure of the write master
would lead to application downtime. It also means that writes do not scale well, since they
are all directed to a single machine.

Using sharding to scale writes
A variation on the master-slave approach that enables higher write volumes is a technique
called sharding, in which the data is partitioned into groups of keys, such that one or more
masters can own a known set of keys. For example, a database of user profiles can be
partitioned by the last name, such that A-M belongs to one cluster and N-Z belongs to
another, as follows:

An astute observer will notice that both master-slave and sharding introduce failure points
on the master nodes, and in fact the sharding approach introduces multiple points of
failure-one for each master! Additionally, the knowledge of where requests for certain keys
go rests with the application layer, and adding shards requires manual shuffling of data to
accommodate the modified key ranges.

Cassandra's Approach to High Availability

[11]

Some systems employ shard managers as a layer of abstraction between the application and
the physical shards. This has the effect of removing the requirement that the application
must have knowledge of the partition map. However, it does not obviate the need for
shuffling data as the cluster grows.

Handling the death of the leader
A common means of increasing availability in the event of a failure on a master node is to
employ a master failover protocol. The particular semantics of the protocol vary among
implementations, but the general principle is that a new master is appointed when the
previous one fails. Not all failover algorithms are equal; however, in general, this feature
increases availability in a master-slave system.

Even a master-slave database that employs leader election suffers from a number of
undesirable traits:

Applications must understand the database topology
Data partitions must be carefully planned
Writes are difficult to scale
A failover dramatically increases the complexity of the system in general, and
especially so for multisite databases
Adding capacity requires reshuffling data with a potential for downtime

Considering that our objective is a highly available system, and presuming that scalability is
a concern, are there other options we need to consider?

Breaking with tradition – Cassandra's
alternative
The reality is that not every transaction in every application requires full ACID guarantees,
and ACID properties themselves can be viewed as more of a continuum where a given
transaction might require different degrees of each property.

Cassandra's approach to availability takes this continuum into account. In contrast to its
relational predecessors-and even most of its NoSQL contemporaries-its original architects
considered availability as a key design objective, with the intent to achieve the elusive goal
of 100 percent uptime. Cassandra provides numerous knobs that give the user highly
granular control of the ACID properties, all with different trade-offs.

Cassandra's Approach to High Availability

[12]

The remainder of this chapter offers an introduction to Cassandra's high availability
attributes and features, with the rest of the book devoted to help you to make use of these in
real-world applications.

Cassandra's peer-to-peer approach
Unlike either monolithic or master-slave designs, Cassandra makes use of an entirely peer-
to-peer architecture. All nodes in a Cassandra cluster can accept reads and writes, no matter
where the data being written or requested actually belongs in the cluster. Internode
communication takes place by means of a gossip protocol, which allows all nodes to quickly
receive updates without the need for a master coordinator.

This is a powerful design, as it implies that the system itself is both inherently available and
massively scalable. Consider the following diagram:

Cassandra's Approach to High Availability

[13]

Note that in contrast to the monolithic and master-slave architectures, there are no special
nodes. In fact, all nodes are essentially identical and as a result Cassandra has no single
point of failure, and therefore no need for complex sharding or leader election. But how
does Cassandra avoid sharding?

Hashing to the rescue
Cassandra is able to achieve both availability and scalability using a data structure that
allows any node in the system to easily determine the location of a particular key in the
cluster. This is accomplished by using a distributed hash table (DHT) design based on the
Amazon Dynamo architecture.

As we saw in the previous diagram, Cassandra's topology is arranged in a ring, where each
node owns a particular range of data. Keys are assigned to a specific node using a process
called consistent hashing, which allows nodes to be added or removed without having to
rehash every key based on the new range.

The node that owns a given key is determined by the chosen partitioner. Cassandra ships
with several partitioner implementations, or developers can define their own by
implementing a Java interface.

These topics will be covered in greater detail in the next chapter.

Replication across the cluster
One of the most important aspects of a distributed data store is the manner in which it
handles replication of data across the cluster. If each partition were only stored on a single
node, the system would effectively possess many single points of failure, and a failure of
any node could result in catastrophic data loss. Such systems must therefore be able to
replicate data across multiple nodes, making the occurrence of such loss less likely.

Cassandra has a sophisticated replication system, offering rack and data center awareness.
This means it can be configured to place replicas in such a manner so as to maintain
availability even during otherwise catastrophic events such as switch failures, network
partitions, or data center outages. Cassandra also includes a mechanism that maintains the
replication factor during node failures.

Cassandra's Approach to High Availability

[14]

Replication across data centers
Perhaps the most unique feature Cassandra provides to achieve high availability is its
multiple data center replication system. This system can be easily configured to replicate
data across either physical or virtual data centers. This facilitates geographically dispersed
data center placement without complex schemes to keep data in sync. It also allows you to
create separate data centers for online transactions and heavy analysis workloads, while
allowing data written in one data center to be immediately reflected in others.

Chapter 3, Replication and Chapter 4, Data Centers, will provide a complete discussion of
Cassandra's extensive replication features.

The consistency continuum
Closely related to replication is the idea of consistency, the C in ACID that attempts to keep
replicas in sync. Cassandra is often referred to as an eventually consistent system, a term
that can cause fear and trembling for those who have spent many years relying on the
strong consistency characteristics of their favorite relational databases. However, as
previously discussed, consistency should be thought of as a continuum, not as an absolute.

With this in mind, Cassandra can be more accurately described as having tunable
consistency, where the precise degree of consistency guarantee can be specified on a per-
statement level. This gives the application architect ultimate control over the trade-offs
between consistency, availability, and performance at the call level, rather than forcing a
one-size-fits-all strategy onto every use case.

The CAP theorem
Any discussion of consistency would be incomplete without at least reviewing the CAP
theorem. The CAP acronym refers to three desirable properties in a replicated system:

Consistency: This means that the data should appear identical across all nodes in
the cluster
Availability: This means that the system should always be available to receive
requests
Partition tolerance: This means that the system should continue to function in the
event of a partial failure

Cassandra's Approach to High Availability

[15]

In 2000, computer scientist Eric Brewer from the University of California, Berkeley, posited
that a replicated service can choose only two of the three properties for any given operation.

The CAP theorem has been widely misappropriated to suggest that entire systems must
choose only two of the properties, which has led many to characterize databases as either
AP or CP. In fact, most systems do not fit cleanly into either category, and Cassandra is no
different.

Brewer himself addressed this misguided interpretation in his 2012 article, CAP Twelve
Years Later: How the “Rules” Have Changed:

“.. all three properties are more continuous than binary. Availability is obviously
continuous from 0 to 100 percent, but there are also many levels of consistency, and even
partitions have nuances, including disagreement within the system about whether a
partition exists”

In that same article, Brewer also pointed out that the definition of consistency in ACID
terms differs from the CAP definition. In ACID, consistency refers to the guarantee that all
database rules will be followed (unique constraints, foreign key constraints, and the like).
The consistency in CAP, on the other hand, as clarified by Brewer, refers only to single-copy
consistency, a strict subset of ACID consistency.

When considering the various trade-offs of Cassandra's consistency level
options, it's important to keep in mind that the CAP properties exist on a
continuum rather than as binary choices.

The bottom line is that it's important to bear this continuum in mind when designing a
system based on Cassandra. Refer to Chapter 3, Replication, for additional details on
properly tuning Cassandra's consistency level under a variety of circumstances.

Cassandra's Approach to High Availability

[16]

Summary
In this chapter we've discussed Cassandra's approach to availability and why the
fundamental design decisions were made. The remainder of this book will build on this
foundation. We will cover such topics as: how to configure Cassandra for high availability,
design highly available applications on Cassandra, avoid common antipatterns, and handle
various failure scenarios.

By the end of this book, you should possess a solid grasp of these concepts and be confident
that you've successfully deployed one of the most robust and scalable database platforms
available today.

However, we need to take it a step at a time, so in the next few chapters, we will build a
deeper understanding of how Cassandra manages data. This foundation will be necessary
for the topics covered later in the book. We'll start with a discussion of Cassandra's data
placement strategy in the next chapter.

2
Data Distribution

Cassandra's peer-to-peer architecture and scalability characteristics are directly tied to its
data placement scheme. Cassandra employs a distributed hash table data structure that
allows for data to be stored and retrieved by key quickly and efficiently. Consistent
hashing is at the core of this strategy, as it enables all nodes to understand where data exists
in the cluster without complicated coordination mechanisms.

In this chapter, we'll cover the following topics:

The fundamentals of distributed hash tables
Cassandra's consistent hashing mechanism
Token assignment, both manual and using vnodes
The implications of Cassandra's partitioner implementations
How hotspots form in the cluster

By the time you finish this chapter, you should have a deep understanding of these
concepts. Let us begin with some basics about hash tables in general, and then we can delve
deeper into Cassandra's distributed hash table implementation.

Hash table fundamentals
Most developers have experience with hash tables in some form, as nearly all programming
languages include hash table implementations. Hash tables store data by applying a hash
function to the object, which determines its placement in an underlying array.

Data Distribution

[18]

While a detailed description of hashing algorithms is out of the scope of this book, it is
sufficient for you to understand that a hash function simply maps any input data object
(which may be any size) to some expected output. While the input may be large, the output
of the hash function will be a fixed number of bits.

In a typical hash table design, the result of the hash function is divided by the number of
array slots; the remainder then becomes the assigned slot number. Thus, the slot can be
computed using hash(o) % n, where o is the object and n is the number of slots. Consider
the following hash table, with names as keys and addresses as values:

The values in the table on the left represent keys, which are then hashed using the hash function to produce the index of the slot where the value is stored.

In the preceding diagram, our input objects (John, Jane, George, and Sue), are put through
the hash function, which results in an integer value. This value becomes the index in an
array of street addresses. We can then look up the street address for a given name by
computing its hash, then accessing the resulting array index.

This method works well when the number of slots is stable, or when the order of the
elements can be managed in a predictable way by a single owner. There are additional
complexities in hash table design, specifically around avoiding hash collisions, but the basic
concept remains straightforward.

However, the situation gets a bit more complicated when multiple clients of the hash table
need to stay in sync. These clients all need to consistently produce the same hash result
even as the elements themselves may be moving around. Let's examine the distributed hash
table architecture and the means by which it solves this problem.

www.allitebooks.com

http://www.allitebooks.org

Data Distribution

[19]

Distributed hash tables
When we take the basic idea of a hash table and partition it out to multiple nodes, this is
called a distributed hash table (DHT). Each node in the DHT must share the same hash
function, such that hash results on one node match all the others.

In order to determine the location of a given piece of data in the cluster, we need some
means of associating an object with the node that owns it. We could ask every node in the
cluster, but this would be problematic for at least two important reasons. First, this strategy
doesn't scale well, as the overhead would grow with the number of nodes. Second, every
node in the cluster would have to be available to answer requests in order to definitively
state that a given item does not exist. A shared index could address this, but the result
would be additional complexity and another point of failure.

Therefore, a key objective of the hash function in a DHT is to map a key to the node that
owns it, such that a request can be made to the correct node. But the simple hash function
discussed previously is no longer appropriate for mapping data to a node. The simple hash
is problematic in a distributed system, because n translates to the number of nodes in the
cluster and we know that n changes as nodes are added or removed. To illustrate this, we
can modify our hash table to store pointers to machine IP addresses instead of street
addresses:

In this case, keys are mapped to a specific machine in the distributed hash table that holds the value for the key.

Data Distribution

[20]

Now each key in the table can be mapped to its location in the cluster with a simple lookup.
However, if we alter the cluster size (by adding or removing nodes), the result of the
computation, and therefore the node mapping, changes for every object! Let's see what
happens when a node is removed from the cluster:

When a node is removed from the cluster, the result is that subsequent hash buckets are shifted, which causes the keys to point to different nodes.

Note that after removing node three, the number of buckets is reduced. As previously
described, this changes the result of the hash function, causing the old mappings to become
unusable. This would be catastrophic, as all key lookups would resolve to the wrong node.

Consistent hashing
The solution is consistent hashing. Introduced as a term in 1997, consistent hashing was
originally used as a means of routing requests among a large number of web servers. It's
easy to see how the web could benefit from a hash mechanism that allows any node in the
network to efficiently determine the location of an object, in spite of the constant shifting of
nodes in and out of the network. This is the fundamental objective of consistent hashing.

Data Distribution

[21]

How it works
With consistent hashing, the buckets are arranged in a ring with a predefined range. The
exact range depends on the partitioner being used. Keys are then hashed to produce a value
that lies somewhere along the ring. Nodes are assigned a range, which is computed as
follows:

Range start Token value

Range end Next token value -1

The following examples assume the default Murmur3Partitioner is used.
For more information on this partitioner, take a look at the documentation,
which can be found here: h t t p : / / d o c s . d a t a s t a x . c o m / e n / c a s s a n d r a / 3 .
x / c a s s a n d r a / a r c h i t e c t u r e / a r c h P a r t i t i o n e r M 3 P . h t m l

Therefore, for a five-node cluster, a ring with evenly distributed token ranges would look
like this, presuming the default Murmur3Partitioner is used:

The primary replica for each key is assigned to a node based on its hashed value. Each node is responsible for the region of the ring between itself (inclusive) and its predecessor
(exclusive).

http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html
http://docs.datastax.com/en/cassandra/3.x/cassandra/architecture/archPartitionerM3P.html

Data Distribution

[22]

This diagram represents data ranges (the letters) and the nodes (the numbers) that own
those ranges. It may also be helpful to visualize this in table form, which may be more
familiar to those who have used the nodetool ring command to view Cassandra's
topology:

Node Range Start Range End

1 5534023222112865485 -9223372036854775808

2 -9223372036854775807 -5534023222112865485

3 -5534023222112865484 -1844674407370955162

4 -1844674407370955161 1844674407370955161

5 1844674407370955162 5534023222112865484

When Cassandra receives a key for either a read or a write, the same hash function is
applied to the key to determine where it lies in the range. Since all nodes in the cluster are
aware of the other nodes' ranges, any node can handle a request for any other node's range.
The node receiving the request is called the coordinator, and any node can act in this role. If
a key does not belong to the coordinator's range, it forwards the request to replicas in the
correct range.

Following our previous example, we can now examine how our names might map to a
hash, using the Murmur3 hash algorithm. Once the values are computed, they can be
matched to the range of one of the nodes in the cluster, as follows:

Name Hash value Node assignment

John -3916187946103363496 3

Jane 4290246218330003133 5

George -7281444397324228783 2

Sue -8489302296308032607 2

Data Distribution

[23]

The placement of these keys might be easier to understand by visualizing their position in
the ring:

The hash value of the name keys determines their placement in the cluster

Now that you understand the basics of consistent hashing, let's turn our focus to the
mechanism by which Cassandra assigns data ranges.

Token assignment
In Cassandra terminology, the start of the hash range is called a token, and until version 1.2,
each node was assigned a single token, in the manner discussed in the previous section.
Version 1.2 introduced the option to use virtual nodes, or vnodes as the feature is officially
termed. Vnodes became the default option in the 2.0 release.

Cassandra determines where to place data by using the tokens assigned to each node.
Nodes learn about these token assignments via gossip. Additional replicas are then placed
based on the configured replication strategy and snitch. More details about replica
placement can be found in Chapter 3, Replication.

Data Distribution

[24]

Manually assigned tokens
If you have chosen not to use vnodes, you have the requirement to assign tokens manually.
This is accomplished by setting the initial_token setting in cassandra.yaml.

Manual token assignment introduces a number of potential issues:

Adding and removing nodes: When the size of the ring changes, all tokens must
be recomputed and configuration files changed. This causes a significant amount
of administrative overhead for a large cluster.
Node rebuilds: In the case of a node rebuild, only a few nodes can participate in
bootstrapping the replacement, leading to significant service degradation. We'll
discuss this in detail later in this chapter.
Hot spots: In some cases the relatively large range assigned to each node can
cause hot spots if data is not evenly distributed.
Heterogeneous clusters: With every node assigned a single token, the
expectation is that all nodes will hold the same amount of data. Attempting to
subdivide ranges to deal with nodes of varying sizes is a difficult and error-prone
task.

Because of these issues, the use of vnodes is highly recommended for any new installation.
For existing installations, migrating to vnodes will improve the performance, reliability, and
administrative requirements of your cluster, especially during topology changes and failure
scenarios.

Use vnodes whenever possible to avoid issues with topology changes,
node rebuilds, hot spots, and heterogeneous clusters.

If you must continue to manually assign tokens, make sure to set the correct value for
initial_token any time nodes are added or removed. Failure to do so will almost always
result in an unbalanced ring. If you have a Python interpreter, you can easily generate
tokens with the following command (replacing number_of_tokens with the number of
nodes in your cluster):

python -c 'print [str(((2**64 / number_of_tokens) * i) - 2**63) for i in
range(number_of_tokens)]'

For example, if you have a six-node cluster, you would issue this command:

python -c 'print [str(((2**64 / 6) * i) - 2**63) for i in range(6)]'

Data Distribution

[25]

You can then use the values you generate as the initial_token settings for your nodes,
with each node getting one of the values. It's best to always assign your tokens to the nodes
in the same order to avoid unnecessary shuffling of data.

Vnodes
The concept behind vnodes is straightforward. Instead of a single token assigned to each
node, it is now possible to specify the number of tokens using the num_tokens
configuration property in cassandra.yaml. The default value is 256, which is sufficient for
most use cases. A higher number generally results in better data distribution, while a lower
number can lessen the time it takes to perform repairs and bootstrap operations. If you
decide to use the default, making use of incremental repairs will help to offset this negative
side effect.

When using vnodes, use nodetool status instead of nodetool ring,
as the latter will output a row for every token across the cluster. Using
nodetool status results in a much more readable output.

The following diagram illustrates a cluster without vnodes compared to one with vnodes
enabled:

In this diagram, each numbered node is represented as a slice of the ring, where the tokens are represented as letters. Note that tokens are assigned randomly.

Data Distribution

[26]

Remember that the letters represent ranges of data. You'll notice there are more ranges than
nodes after enabling vnodes, and each node now owns multiple ranges.

How vnodes improve availability
While technically the cluster remains available during topology changes and node rebuilds,
the level of degraded service has the potential to impact availability if the system remains
under significant load. Vnodes offer a simple solution to the problems associated with
manually assigned tokens. Let's examine the reasons why this is the case.

Adding and removing nodes
There are many reasons to change the size of a cluster. Perhaps you're increasing capacity
for an anticipated growth in data or transaction volume, or maybe you're adding a data
center for increased availability.

Considering that the objective is to handle greater load or provide additional redundancy,
any significant performance degradation while adding or bootstrapping a new node is
unacceptable as it counteracts these goals. Often in modern high-scale applications, slow is
the same as unavailable. Equally important is to insure that new nodes receive a balanced
share of the data.

Vnodes improve the bootstrapping process substantially:

More nodes can participate in data transfer: Since the token ranges are more
dispersed throughout the cluster, adding a new node involves ranges from a
greater number of the existing nodes. As a result, machines involved in the
transfer end up under less load than without vnodes, thus increasing the
availability of those ranges.
Token assignment is automatic: Cassandra handles the allocation of tokens, so
there's no need to manually recalculate and reassign a new token for every node
in the cluster. As a result, the ring becomes naturally balanced on its own.

Node rebuild
Rebuilding a node is a relatively common operation in a large cluster, as nodes will fail for a
variety of reasons. Cassandra provides a mechanism for automatically rebuilding a failed
node using replicated data.

Data Distribution

[27]

When each node owns only a single token, that node's entire dataset is replicated to a
number of nodes equal to the replication factor minus one. For example, with a replication
factor of three, all the data on a given node will be replicated to two other nodes (replication
will be covered in detail in Chapter 3, Replication). However, Cassandra will only use one
replica in the rebuild operation.

So in this case, a rebuild operation involves three nodes, placing a high load on all three.
Imagine that we have a six-node cluster, and Node 2 has failed, requiring a rebuild. In the
following diagram, note that each node only contains replicas for three tokens, preventing
two of the nodes from participating in the rebuild:

In the rebuilding of Node 2, only nodes 1, 3, and 4 can participate, because they contain the required replicas.

We can assume that reads and writes are continuing during this process. With one node
down and three working hard to rebuild it, we now have only two out of six nodes
operating at full capacity! Even worse, token ranges A and B reside entirely on nodes that
are being taxed by this process, which can result in overburdening the entire cluster due to
slow response times for those operations.

Data Distribution

[28]

Vnodes provide significant benefits over manual token management for the rebuild process,
as they distribute the load over many more nodes. This is the same concept as the benefit
gained during the bootstrapping process. Since each node contains replicas for a larger (and
random) variety of the available tokens, Cassandra can use these replicas in the rebuild
process. Consider the following illustration of the same rebuild using vnodes:

With vnodes, all nodes can participate in rebuilding node 2, because the tokens are spread more evenly across the cluster.

From the diagram you can see that rebuilding Node 2 now involves the entire cluster, thus
distributing the workload more evenly. This means each individual node is doing less work
than without vnodes, resulting in greater operational stability.

Data Distribution

[29]

Heterogeneous nodes
While it might be straightforward when initially building your Cassandra cluster to do so
with nodes that are all identical, at some point older machines will need to be replaced with
newer ones. This can create issues when manually assigning tokens, as it can become
difficult to effectively choose the right tokens to produce a balanced result. This is especially
problematic when adding or removing nodes, as it would become necessary to recompute
the tokens to achieve a proper balance.

Vnodes ease this effort by allowing you to specify a number of tokens, instead of having to
determine specific ranges. It is much easier to choose a proportionally larger number for
newer, more powerful nodes than it is to determine proper token ranges. For example, if
you have an existing cluster with 64 vnodes on each node, and you add nodes with twice
the resources, you would want to increase the vnodes to 128 to compensate.

Partitioners
You may recall from the earlier discussion of distributed hash tables that keys are mapped
to nodes via an implementation-specific hash function. In Cassandra's architecture, this
function is determined by the partitioner you choose. This is a cluster-wide setting specified
in cassandra.yaml. As of version 1.2, there are three options:

Murmur3Partitioner (org.apache.cassandra.dht.Murmur3Partitioner):
Produces an even distribution of data across the cluster using the Murmur3 hash
algorithm. This is the default as of version 1.2, and should not be changed as it is
measurably faster than the RandomPartitioner.
RandomPartitioner(org.apache.cassandra.dht.RandomPartitioner):
Similar to the Murmur3Partitioner, except that it computes an MD5 hash. This
was the default prior to version 1.2.
ByteOrderedPartitioner
(org.apache.cassandra.dht.ByteOrderedPartitioner): Places keys in
byte order (lexically) around the ring. This partitioner should generally be
avoided for reasons explained in this section.

The only reason to switch from the default Murmur3Partitioner (to the
ByteOrderedPartitioner) would be to enable range queries on keys (range queries on
columns are always possible). However this decision must be carefully weighed, as there is
a high likelihood that you'll end up with hotspots.

Data Distribution

[30]

Hotspots
Let's assume, for example, that you're storing an address book, where the keys represent the
surname of the contact. You want to use ByteOrderedPartitioner so you can search for all
names between Smith and Watson. Using 2000 United States Census data as a guide, let's
assume the distribution is as follows:

As one would expect, surnames in the United States are not evenly distributed by first
letter. In fact, the distribution is quite uneven, and this imbalance translates directly to the
data stored in Cassandra. If we presume that each node owns a subset of the keys
alphabetically, the result would resemble the following:

When using the ByteOrderedPartitioner, a table with surname as the key is likely to result in uneven data distribution.

Data Distribution

[31]

The diagram clearly shows that the resulting distribution produces hotspots in Node 1 and
Node 4, while Node 5 is significantly underutilized. One perhaps less obvious side effect of
this imbalance is the impact on reads and writes. If we presume that both reads and writes
follow the same distribution as the data itself (which is a logical assumption in this specific
case), the heavier data nodes will also be required to handle more operations than the
lighter data nodes.

A time-series example
Perhaps the most common use case for Cassandra is storing time-series data. Let's assume
our use case involves writing log-style data, where we're always writing current
timestamps and reading from relatively recent ranges of time. These are typical operations
involved in time-series use cases, so it's natural to ask, How can I query my data by date range?

You'll recall that range queries on columns in Cassandra are possible using any partitioner,
but only the ByteOrderedPartitioner allows for key-based range queries. Thus it's a
common mistake to build a time-series model using time as a key and rely on ordering from
BOP to perform range queries.

Let's assume a six-node cluster, where the key corresponds to time of day. If you are always
writing current time, your writes will always go to a single node! Even worse, presuming you
are reading recent ranges, your reads will also go to that same node. This diagram illustrates
what happens when log data is being written, while the application is also requesting recent
logs:

Time-series reads and writes using ByteOrderdPartitioner will concentrate on a small subset of nodes.

Data Distribution

[32]

As you can see, Node 2 is the only node doing any work. Each time the hour shifts, the
workload will move to the next node in the ring. While the distribution of data in this
model may be balanced (or it may not, depending on whether the application is busier at
certain times), the workload will always experience hotspots.

We will discuss some more appropriate time-series data modeling techniques in detail in
Chapter 7, Modeling for Availability . For now, consider it sufficient that you understand the
implications of choosing the ByteOrderedPartitioner over one of the other options that uses
a random hash function.

In almost all cases the Murmur3Partitioner is the right choice. Use of the
ByteOrderedPartitioner should be used with great caution, and can
usually be avoided by altering the data model.

If you choose to use the ByteOrderedPartitioner, just remember that you will need to keep a
close watch on your data distribution. Also you will have to ensure your reads and writes
can be accomplished without overloading a subset of your nodes. In practice it's rarely
necessary to store keys in order if you model your data correctly.

In Chapter 7, Modeling for Availability we'll discuss a number of data modeling strategies
that can enable range queries without the drawbacks of the ByteOrderedPartitioner. For
now, it's safe to assume that the Murmur3Partitioner is the safest choice, and this follows
the recommendation made by Cassandra's core developers.

Summary
At this point, you should have a strong grasp of Cassandra's data distribution architecture,
including consistent hashing, tokens, vnodes, and partitioners, as well as some of the causes
of data hotspots. Your understanding of these fundamentals should help you to make
sound design decisions that enable you to scale your cluster effectively and get the most out
of your infrastructure investment.

In this chapter and the previous one, we've made reference a number of times to replication
and its related concepts. In our next chapter, we'll discuss replication in depth, as
replication is very important in determining the availability of data.

3
Replication

Replication is perhaps the most critical feature of a distributed data store, as it would
otherwise be impossible to make any sort of availability guarantee in the face of a node
failure. As you learned in Chapter 1, Cassandra's Approach to High Availability, Cassandra
employs a sophisticated replication system that allows fine-grained control over replica
placement and consistency guarantees.

In this chapter, we'll explore Cassandra's replication mechanism in depth, including the
following topics:

The replication factor
How replicas are placed
How Cassandra resolves consistency issues
Maintaining the replication factor during node failures
Consistency levels
Choosing the right replication factor and consistency level

At the end of this chapter, you'll be able understand how to configure replication and tune
consistency for your specific use cases. You'll be able to intelligently choose options that will
provide the fault tolerance and consistency guarantees that are appropriate for your
application.

Let's start with the basics: how Cassandra determines the number of replicas to be created
and where to locate them in the cluster. We'll begin the discussion with a feature that you'll
encounter the very first time you create a keyspace: the replication factor.

Replication

[34]

The replication factor
On the surface, setting the replication factor seems to be a fundamentally straightforward
idea. You configure Cassandra with the number of replicas you want to maintain (during
keyspace creation), and the system dutifully performs the replication for you, thus
protecting you when something goes wrong. So by defining a replication factor of three,
you will end up with a total of three copies of the data. There are a number of variables in
this equation, and we'll cover many of these in detail in this chapter. Let's start with the
basic mechanics of setting the replication factor.

Replication strategies
One thing you'll quickly notice is that the semantics to set the replication factor depend on
the replication strategy you choose. The replication strategy tells Cassandra exactly how
you want replicas to be placed in the cluster.

There are two strategies available:

SimpleStrategy: This strategy is used for single data center deployments. It is
fine to use this for testing, development, or simple clusters, but discouraged if
you ever intend to expand to multiple data centers (including virtual data centers
such as those used to separate analysis workloads).
NetworkTopologyStrategy: This strategy is to be used when you have multiple
data centers, or if you think you might have multiple data centers in the future. In
other words, you should use this strategy for your production cluster.

SimpleStrategy
As a way of introducing this concept, we'll start with an example using SimpleStrategy.
The following Cassandra Query Language (CQL) block will allow us to create a keyspace
called AddressBook with three replicas:

CREATE KEYSPACE AddressBook
 WITH REPLICATION = {
 'class' : 'SimpleStrategy',
 'replication_factor' : 3
 };

Replication

[35]

You will recall from the previous chapter's section on token assignment that data is
assigned to a node via a hash algorithm, resulting in each node owning a range of data.
Let's take another look at the placement of our example data on the cluster. Remember the
keys are first names, and we determined the hash using the Murmur3 hash algorithm.

The primary replica for each key is assigned to a node based on its hashed value. Each node
is responsible for the region of the ring between itself (inclusive) and its predecessor
(exclusive).

Replication

[36]

While using SimpleStrategy, Cassandra will locate the first replica on the owner node
(the one determined by the hash algorithm), then walk the ring in a clockwise direction to
place each additional replica, as follows:

Additional replicas are placed in adjacent nodes when using manually assigned tokens

In the preceding diagram, the keys in bold represent the primary replicas (the ones placed
on the owner nodes), with subsequent replicas placed in adjacent nodes, moving clockwise
from the primary.

Replication

[37]

Although each node owns a set of keys based on its token range(s), there is no concept of a
master replica. In Cassandra, unlike other database designs, every replica is equal. This
means reads and writes can be made to any node that holds a replica of the requested key.

If you have a small cluster where all nodes reside in a single rack inside one data center,
SimpleStrategy will do the job. This makes it the right choice for local installations,
development clusters, and other similar simple environments where expansion is unlikely
because there is no need to configure a snitch (which will be covered later in this section).

For production clusters, however, it is highly recommended that you use
NetworkTopologyStrategy instead. This strategy provides a number of important
features for more complex installations where availability and performance are paramount.

NetworkTopologyStrategy
When it's time to deploy your live cluster, NetworkTopologyStrategy offers two
additional properties that make it more suitable for this purpose:

Rack awareness: Unlike SimpleStrategy, which places replicas naively, this
feature attempts to ensure that replicas are placed in different racks, thus
preventing service interruption or data loss due to failures of switches, power,
cooling, and other similar events that tend to affect single racks of machines.
Configurable snitches: A snitch helps Cassandra to understand the topology of
the cluster. There are a number of snitch options for any type of network
configuration. We'll cover snitches in detail later in this chapter.

Here's a basic example of a keyspace using NetworkTopologyStrategy:

CREATE KEYSPACE AddressBook
 WITH REPLICATION = {
 'class' : 'NetworkTopologyStrategy',
 'dc1' : 3,
 'dc2' : 2
 };

In this example, we're telling Cassandra to place three replicas in a data center called dc1
and two replicas in a second data center called dc2. We'll spend more time discussing data
centers in Chapter 4, Data Centers, but for now it is sufficient to point out that the data
center names must match those configured in the snitch.

Replication

[38]

Snitches
As discussed earlier, Cassandra is able to intelligently place replicas across the cluster if you
provide it with enough information about your topology. You give this insight to Cassandra
through a snitch, which is set using the endpoint_snitch property in cassandra.yaml.
The snitch is also used to help Cassandra route client requests to the closest nodes to reduce
network latency.

As of version 2.0, there are eight available snitch options (and you can write your own as
well):

SimpleSnitch: This snitch is a companion to the SimpleStrategy replication
strategy. It is designed for simple single data center configurations.
RackInferringSnitch: As the name implies, this snitch attempts to infer your
network topology. Using this snitch is discouraged because it assumes that your
IP addressing scheme reflects your data center and rack configuration. For this to
work properly, your addresses must be in the following form:

PropertyFileSnitch: Using this snitch allows the administrator to define
which nodes belong in certain racks and data centers. You can configure this
using cassandra-topology.properties. Each node in the cluster must be
configured identically. You should generally prefer
GossipingPropertyFileSnitch, because it handles the addition or removal of
nodes without the need to update every node's properties file.
GossipingPropertyFileSnitch: Unlike PropertyFileSnitch, where the
entire topology must be defined on every node, this snitch allows you to
configure each node with its own rack and data center, and then Cassandra
gossips this information to the other nodes.
CloudstackSnitch: This snitch sets data centers and racks using CloudStack's
country, location, and availability zone.
GoogleCloudSnitch: For Google Cloud deployments, this snitch automatically
sets the region as the data center and the availability zone as the rack.

www.allitebooks.com

http://www.allitebooks.org

Replication

[39]

EC2Snitch: This is similar to GoogleCloudSnitch, but for single-region EC2
deployments. This snitch also sets the region as the data center and the
availability zone as the rack.
EC2MultiRegionSnitch: This snitch assigns data centers and racks identically
to EC2Snitch, with the difference being that it supports using public IP
addresses for cross-data center communications.

For production installations, it is almost always best to choose
GossipingPropertyFileSnitch in physical data center environments
and the appropriate cloud snitch in cloud environments.

Since much of the configuration related to snitches pertains to the topology of our data
center, we will save our detailed treatment of this topic for Chapter 4, Data Centers, which
will cover Cassandra's multiple data center features in detail.

Maintaining the replication factor when a node
fails
One key way in which Cassandra maintains fault tolerance even during node failure is
through a mechanism called hinted handoff. If you have set hinted_handoff_enabled to
true in cassandra.yaml (which is the default), and one of the replica nodes is
unreachable during a write, then the system will store a hint on the coordinator node (the
node that receives the write). This hint contains the data itself along with information about
where it belongs in the cluster. Hints are replayed to the replica node once the coordinator
learns via gossip that the replica node is back online.

By default, Cassandra stores hints for up to 3 hours to avoid hint queues growing too long.
This time window can be configured using the max_hint_window_in_ms property in
cassandra.yaml. After this time period, it is necessary to run a repair to restore
consistency. Chapter 9, Failing Gracefully, will include more in-depth coverage of hinted
handoffs and how to ensure that your system recovers from longer node outages.

Now that we've covered the basics of replication, it's time to move on to the closely related
topic of consistency. In most configurations, there will inevitably be occasions when not all
replicas of a given bit of data are up to date. The specifics of how and when this occurs will
be outlined later in this chapter. For now, let's find out how Cassandra handles those
conflicts when they arise.

Replication

[40]

Consistency conflicts
In Chapter 1, Cassandra's Approach to High Availability, we discussed Cassandra's tunable
consistency characteristics. For any given call, it is possible to achieve either strong
consistency or eventual consistency. In the former case, we can know for certain that the
copy of the data that Cassandra returns will be the latest. In the case of eventual
consistency, the data returned may or may not be the latest, or there may be no data
returned at all if the node is unaware of newly inserted data. Under eventual consistency, it
is also possible to see deleted data if the node you're reading from has not yet received the
delete request.

Depending on the read_repair_chance setting and the consistency level chosen for the
read operation (more on this in the anti-entropy section later in this chapter), Cassandra
might block the client and resolve the conflict immediately, or this might occur
asynchronously. If data in conflict is never requested, the system will resolve the conflict the
next time nodetool repair is run.

How does Cassandra know there is a conflict? Every column has three parts: key, value,
and timestamp. Cassandra follows last-write-wins semantics, which means that the column
with the latest timestamp always takes precedence.

Now, let's discuss one of the most important knobs a developer can turn to determine the
consistency characteristics of their reads and writes.

Consistency levels
On every read and write operation, the caller must specify a consistency level, which lets
Cassandra know what level of consistency to guarantee for that one call. The following table
details the various consistency levels and their effects on both read and write operations:

Consistency level Reads Writes

ANY This is not supported for reads. Data must be written to at least one
node, but permits writes via hinted
handoff. Effectively allows a write to
any node, even if all nodes containing
the replica are down. A subsequent
read might be impossible if all replica
nodes are down.

Replication

[41]

ONE The replica from the closest node
will be returned.

Data must be written to at least one
replica node (both commit log and
memtable). Unlike ANY, hinted
handoff writes are not sufficient.

TWO The replicas from the two closest
nodes will be returned.

The same as ONE, except two replicas
must be written.

THREE The replicas from the three closest
nodes will be returned.

The same as ONE, except three replicas
must be written.

QUORUM Replicas from a quorum of nodes
will be compared, and the replica
with the latest timestamp will be
returned.

Data must be written to a quorum of
replica nodes (both commit log and
memtable) in the entire cluster,
including all data centers.

SERIAL Permits reading uncommitted
data as long as it represents the
current state. Any uncommitted
transactions will be committed as
part of the read.

Similar to QUORUM, except that writes
are conditional based on the support
for lightweight transactions.

LOCAL_ONE Similar to ONE, except that the
read will be returned by the
closest replica in the local data
center.

Similar to ONE, except that the write
must be acknowledged by at least one
node in the local data center.

LOCAL_QUORUM Similar to QUORUM, except that
only replicas in the local data
center are compared.

Similar to QUORUM, except the quorum
must only be met using the local data
center.

LOCAL_SERIAL Similar to SERIAL, except only
local replicas are used.

Similar to SERIAL, except only writes
to local replicas must be
acknowledged.

EACH_QUORUM The opposite of LOCAL_QUORUM;
requires each data center to
produce a quorum of replicas,
then returns the replica with the
latest timestamp.

The opposite of LOCAL_QUORUM;
requires a quorum of replicas to be
written in each data center.

ALL Replicas from all nodes in the
entire cluster (including all data
centers) will be compared, and the
replica with the latest timestamp
will be returned.

Data must be written to all replica
nodes (both commit log and
memtable) in the entire cluster,
including all data centers.

Replication

[42]

As you can see, there are numerous combinations of read and write consistency levels, all
with different ultimate consistency guarantees. To illustrate this point, let's assume that you
would like to guarantee absolute consistency for all read operations. On the surface, it
might seem as if you would have to read with a consistency level of ALL, thus sacrificing
availability in the case of node failure.

But there are alternatives depending on your use case. There are actually two additional
ways to achieve strong read consistency:

Write with consistency level of ALL: This has the advantage of allowing the read
operation to be performed using ONE, which lowers the latency for that operation.
On the other hand, it means the write operation will result in
UnavailableException if one of the replica nodes goes offline.
Read and write with QUORUM or LOCAL_QUORUM: Since QUORUM and
LOCAL_QUORUM both require a majority of nodes, using this level for both the
write and the read will result in a full consistency guarantee (in the same data
center when using LOCAL_QUORUM), while still maintaining availability during a
node failure.

You should carefully consider each use case to determine what guarantees you actually
require. For example, there might be cases where a lost write is acceptable, or occasions
where a read need not be absolutely current. At times, it might be sufficient to write with a
level of QUORUM, then read with ONE to achieve maximum read performance, knowing you
might occasionally and temporarily return stale data. Cassandra gives you this flexibility,
but it's up to you to determine how to best employ it for your specific data requirements. A
good rule of thumb to attain strong consistency is that the read consistency level plus write
consistency level should be greater than the replication factor.

If you are unsure about which consistency levels to use for your specific
use case, it's typically safe to start with LOCAL_QUORUM (or QUORUM for a
single data center) reads and writes. This configuration offers strong
consistency guarantees and good performance while allowing for the
inevitable replica failure.

It is important to understand that even if you choose levels that provide less stringent
consistency guarantees, Cassandra will still perform anti-entropy operations
asynchronously in an attempt to keep replicas up to date.

Replication

[43]

Repairing data
Cassandra employs a multifaceted anti-entropy mechanism that keeps replicas in sync. Data
repair operations generally fall into three categories:

Synchronous read repair: When a read operation requires comparing multiple
replicas, Cassandra will initially request a checksum from the other nodes. If the
checksum doesn't match, the full replica is sent and compared with the local
version. The replica with the latest timestamp will be returned and the old replica
will be updated. This means that in normal operations, old data is repaired when
it is requested.
Asynchronous read repair: Each table in Cassandra has a setting called
read_repair_chance (as well as its related setting,
dclocal_read_repair_chance), which determines how the system treats
replicas that are not compared during a read. The default setting of 0.1 means
that 10 percent of the time, Cassandra will also repair the remaining replicas
during read operations.
Manually running repair: A full repair (using nodetool repair) should be run
regularly to clean up any data that has been missed as part of the previous two
operations. At a minimum, it should be run once every gc_grace_seconds,
which is set in the table schema and defaults to 10 days.

One might ask what the consequence would be of failing to run a repair operation within
the window specified by gc_grace_seconds. The answer relates to Cassandra's
mechanism to handle deletes. As you might be aware, all modifications (or mutations) are
immutable, so a delete is really just a marker telling the system not to return that record to
any clients. This marker is called a tombstone.

Cassandra performs garbage collection on data marked by a tombstone each time a
compaction occurs. If you don't run the repair, you risk deleted data reappearing
unexpectedly. In general, deletes should be avoided when possible as the unfettered
buildup of tombstones can cause significant issues. For more information on this topic, refer
to Chapter 8, Anti-Patterns.

Replication

[44]

In the course of normal operations, Cassandra will repair old replicas
when their records are requested. Thus, it can be said that read repair
operations are lazy, such that they only occur when required.

With all these options for replication and consistency, it can seem daunting to choose the
right combination for a given use case. Let's take a closer look at this balance to help bring
some additional clarity to the topic.

Balancing the replication factor with
consistency
There are many considerations when choosing a replication factor, including availability,
performance, and consistency. Since our topic is high availability, let's presume your desire
is to maintain data availability in the case of node failure.

It's important to understand exactly what your failure tolerance is, and this will likely be
different depending on the nature of the data. The definition of failure is probably going to
vary among use cases as well, as one case might consider data loss a failure, whereas
another accepts data loss as long as all queries return.

Achieving the desired availability, consistency, and performance targets requires
coordinating your replication factor with your application's consistency level
configurations. In order to assist you in your efforts to achieve this balance, let's consider a
single data center cluster of 10 nodes and examine the impact of various configuration
combinations, replication factor(RF):

RF Write CL Read CL Consistency Availability Use cases

1 ONE
QUORUM
ALL

ONE
QUORUM
ALL

Consistent Doesn't tolerate any
replica loss

Data can be lost and availability
is not critical, such as analysis
clusters

2 ONE ONE Eventual Tolerates loss of one
replica

Maximum read performance and
low write latencies are required,
and sometimes returning stale
data is acceptable

2 QUORUM
ALL

ONE Consistent Tolerates loss of one
replica on reads, but
none on writes

Read-heavy workloads where
some downtime for data ingest
is acceptable (improves read
latencies)

Replication

[45]

2 ONE QUORUM
ALL

Consistent Tolerates loss of one
replica on writes,
but none on reads

Write-heavy workloads where
read consistency is more
important than availability

3 ONE ONE Eventual Tolerates loss of two
replicas

Maximum read and write
performance are required, and
sometimes returning stale data is
acceptable

3 QUORUM ONE Eventual Tolerates loss of one
replica on write and
two on reads

Read throughput and
availability are paramount,
while write performance is less
important, and sometimes
returning stale data is acceptable

3 ONE QUORUM Eventual Tolerates loss of two
replicas on write
and one on reads

Low write latencies and
availability are paramount,
while read performance is less
important, and sometimes
returning stale data is acceptable

3 QUORUM QUORUM Consistent Tolerates loss of one
replica

Consistency is paramount, while
striking a balance between
availability and read/write
performance

3 ALL ONE Consistent Tolerates loss of two
replicas on reads,
but none on writes

Additional fault tolerance and
consistency on reads is
paramount at the expense of
write performance and
availability

3 ONE ALL Consistent Tolerates loss of two
replicas on writes,
but none on reads

Low write latencies and
availability are paramount, but
read consistency must be
guaranteed at the expense of
performance and availability

3 ANY ONE Eventual Tolerates loss of all
replicas on write
and two on read

Maximum write and read
performance and availability are
paramount, and often returning
stale data is acceptable (note that
hinted writes are less reliable
than the guarantees offered at CL
ONE)

Replication

[46]

3 ANY QUORUM Eventual Tolerates loss of all
replicas on write
and one on read

Maximum write performance
and availability are paramount,
and sometimes returning stale
data is acceptable

3 ANY ALL Consistent Tolerates loss of all
replicas on writes,
but none on reads

Write throughput and
availability are paramount, and
clients must all see the same
data, even though they might
not see all writes immediately

There are also two additional consistency levels, SERIAL and LOCAL_SERIAL, which can be
used to read the latest value, even if it is part of an uncommitted transaction. Otherwise,
they follow the semantics of QUORUM and LOCAL_QUORUM, respectively.

As you can see, there are numerous possibilities to consider when choosing these values,
especially in a scenario involving multiple data centers. This discussion will give you
greater confidence as you design your applications to achieve the desired balance.

Summary
In this chapter, we introduced the foundational concepts of replication and consistency. In
our discussion, we outlined the importance of the relationship between replication factor
and consistency level, and their impact on performance, data consistency, and availability.

By now, you should be able to make sound decisions specific to your use cases. This chapter
might serve as a handy reference in the future, as it can be challenging to keep all these
details in mind.

In the previous two chapters, we've been gradually expanding from how Cassandra locates
individual pieces of data to its strategy to replicate it and keep it consistent.

In the next chapter, we'll take things a step further and take a look at its multiple data center
capabilities, as no highly available system is truly complete without the ability to distribute
itself geographically.

4
Data Centers

One of Cassandra's most compelling high availability features is its support for multiple
data centers. In fact, this feature gives it the capability to scale reliably with a level of ease
that few other data stores can match.

In this chapter, we'll explore Cassandra's data center support, covering the following topics:

Use cases for multiple data centers
Using a separate data center for online analytics
Replication across data centers
An in-depth look at configuring snitches
Multi-region EC2 implementations
Multi-data center consistency levels

Database administrators have struggled for many years to reliably replicate data across
multiple geographies, a task that is made especially difficult when that system is attempting
to maintain ACID guarantees. The best we could typically hope for was to keep a relatively
recent backup for failover purposes.

Distributed database designs have made this easier, but many still require complex
configurations and have significant limitations when replicating across data centers.
Cassandra allows you to maintain a complete set of replicas in more than one data center
with relative ease. Let's start by examining some of the reasons why users may want to
deploy multiple data centers.

As we look at each option, think about your own use cases and into which category they
may fall. Doing so will help you to make the right deployment decisions to make the best
use of your Cassandra investment.

Data Centers

[48]

Use cases for multiple data centers
There are several key use cases for deploying Cassandra across multiple data centers,
including the obvious failover and load balancing scenarios. Let's examine a few of these
cases.

Live backup
Traditional database backups involve taking periodic snapshots of the data and storing
them offsite in case the system fails, in which case there will be downtime as a new system
is brought up and the data is restored. This strategy also inevitably leads to data loss for the
time period between the last backup and the point of failure.

Cassandra supports these types of backups, and we will discuss this in greater depth in
Chapter 9, Failing Gracefully. While snapshot backups are still useful to protect against data
corruption or accidental updates, Cassandra's data center support can be used to provide a
current backup for cases such as hardware failures.

The basic idea involves setting up a second data center that maintains a current set of
replicas that can be used to rebuild the primary cluster, should a catastrophic event cause
the loss of an entire data center.

For this use case, it is typically sufficient to maintain a smaller cluster with a replication
factor of one, as the system will never be used to accept live reads or writes. The primary
consideration in this case is storage capacity to handle the same quantity of data as the live
data center.

Failover
The failover scenario is very similar to the backup use case we just discussed, except that
the backup data center is generally allocated similar resources as the primary cluster.
Additionally, while a single replica may suffice for a backup data center, generally speaking
a failover data center should be configured with the same replication factor as the primary,
since it may take over responsibility for the full application load in the event of a failure.

Data Centers

[49]

It's also important to consider whether you expect your failover data center to handle a full
production load. Presuming this is the case, you will need to ensure it has adequate
capacity to handle this. Having a hot failover data center protects you from a common
single point of failure: the power supply to your hosts. In EC2 you can choose to configure
your hosts to run in multiple availability zones, as each is supplied with a separate power
source. If you do this while using the EC2 snitch, be sure to allocate your nodes evenly
across zones, as the snitch will place replicas across multiple zones. Failure to do this can
lead to hot spots.

It would be ill-advised to assume you can maintain a small failover data
center, and then simply add multiple nodes in the case of failure. The
additional overhead of bootstrapping the new nodes would actually
reduce capacity at a critical point when the capacity is needed most.

Load balancing
In some cases applications may be configured to route traffic to any node in the cluster,
without taking into account a specific data center. This has the effect of load balancing the
requests across multiple data centers, and can be useful in cases where the data centers
share a high-bandwidth connection.

In this instance, the objective is to provide redundancy, so each data center must be able to
handle the entire application load, similarly to the failover scenario. However, there are a
couple of important considerations when taking this approach:

Absolute consistency is expensive to guarantee in this scenario, because doing so
typically requires replicating the data across higher latency connections. If strong
consistency is paramount for your use case, you should consider employing a
geographic distribution model as described in the next section.
This usage pattern is most appropriate for use cases where eventual consistency
is acceptable, such as event capture, time-series data, logging, and so on, where
the primary read case involves offline data analysis rather than real-time queries.

Geographic distribution
Often application architects will find it necessary for latency reasons to send requests to a
data center located near the originator, or to mitigate the potential impact of natural
disasters. This is particularly useful for systems that span the globe, where routing all
requests to a central location is impractical. The ability to locate data centers in strategic
global locations around the world can be an indispensable feature in these scenarios.

Data Centers

[50]

This approach is often desirable for applications where both performance and strong
consistency are important. The reason for this is that clients are guaranteed to make
requests to a single data center, enabling the use of the LOCAL_QUORUM consistency level,
which means they won't suffer a performance penalty by waiting for a remote data center to
acknowledge the write. The following diagram illustrates this configuration:

Data Centers

[51]

In this scenario, the idea is that clients should detect the failure of a data center and fall back
to one of the others. There is the possibility of reading old data if it was written with a local
consistency level, but in many cases, stale data is better than application down time. This
can be visualized as follows:

Data Centers

[52]

In this scenario, the North American Data Center experiences a failure, which requires
clients in North America to redirect to the European Data Center during the outage.
Obviously, the European Data Center must have sufficient capacity to handle the
additional load.

It's important to make sure your application is capable of handling this scenario, as the
latency will increase and reads may produce some stale data. A good strategy is to limit the
interaction with the database to only those operations that are critical to the continued
functioning of the application.

Online analysis
So far we've discussed use cases that may be obvious to experienced database users. But
Cassandra supports an additional scenario that is particularly useful in the context of a
NoSQL database that doesn't provide a built-in ad hoc query mechanism. The use of a data
center for analysis purposes has become commonplace among Cassandra users, as it
provides the benefits of a scalable NoSQL solution with the power of modern data analysis
tools.

Traditional data analysis (referred to as Online Analytical Processing(OLAP)), typically
involves taking normalized data from the transactional relational database and moving it
into a denormalized form for faster analysis. This process involves significant Extract,
Transform and Load (ETL) overhead, which inherently results in a delay in analyzing the
data.

Cassandra's support for multiple data centers, in combination with its robust integrations
with the Hadoop and Spark frameworks, allows users to conduct sophisticated batch or
real-time analysis using live data with no ETL overhead. This is accomplished by dedicating
a separate data center for analysis then isolating this data center from live traffic.

For many use cases a single replica is sufficient for an analysis data center, as short periods
of downtime are frequently acceptable for batch analysis purposes. However, if you require
100% uptime for your analysis workloads, you may need to specify a higher replication
factor. Additional replicas also means the analysis data center is less likely to drop writes,
especially while heavy analysis jobs are running. Also, make sure to run repairs regularly to
keep data consistent.

Data Centers

[53]

There are currently two popular open source analysis projects with excellent Cassandra
integration:

Hadoop: Cassandra has included support for Hadoop since the very early
revisions, and the DataStax Enterprise offering even provides a replacement for
Hadoop Distributed File System (HDFS) called CassandraFS. Having said that,
while Hadoop was quite revolutionary at its introduction, it is beginning to show
its age.
Spark: The Spark project has gained significant traction in a very short amount of
time as a primarily in-memory replacement for Hadoop. The excellent open
source integration with Cassandra, supported by DataStax, allows much faster
and more elegant analysis work to be performed against native Cassandra data. If
you don't already have a significant Hadoop investment, the Spark integration is
most likely the better choice.

Regardless of which path you choose, it's important to realize that the old OLAP paradigms
no longer apply.

The key to successfully processing large amounts of distributed data is to
bring the processing to the data, rather than the data to the processing.
This was the key innovation with MapReduce.

In the new world of large datasets, shipping data across the network using complex ETL
processes is no longer a viable solution. We must co-locate the processing framework with
the database. Let's explore how to do this using both Hadoop and Spark.

Analysis using Hadoop
Hadoop is actually an ecosystem comprised of multiple projects, a full discussion of which
would be too much for this chapter. For our purposes, we will simply point out the
important processes and how they should be deployed with Cassandra.

Under the covers, Hadoop makes extensive use of HDFS to write temporary data to disk.
HDFS components include the NameNode and 2ndaryNameNode (which live on a master
node), and DataNode (which hold the data itself). If you use DataStax Enterprise, these
components are replaced by CassandraFS, which uses Cassandra as the underlying
filesystem.

The actual analysis work is performed by the MapReduce framework, which consists of a
global ResourceManager and one ApplicationManager for each application (which run on
the master) and NodeManager (which is co-located with the DataNode).

Data Centers

[54]

The canonical Cassandra-Hadoop integration places DataNodes and NodeManagers on
each Cassandra node in the analysis data center. This allows the data owned by each node
to be processed locally rather than having to be retrieved from across the network. This idea
is fundamental to the ability to process large amounts of data in an efficient manner. In fact,
shuffling data across the network is typically the most significant time sink in any analysis
work. The following diagram shows how this configuration looks:

The canonical Hadoop-Cassandra topology involves co-locating NodeManagers and DataNodes with the Cassandra instances.

It is tempting, if you have an existing Hadoop installation, to try to move data from
Cassandra into that cluster. However, a better strategy is to install Cassandra on that
cluster. Alternatively, you can use a separate cluster to process your Cassandra data, and
then move the results into your existing cluster.

In any case, it is worth considering migrating to Spark, as it is a much more modern attempt
at distributed data processing.

Data Centers

[55]

Analysis using Spark
To use Spark for analyzing Cassandra data, you will essentially be replacing the
MapReduce component of your Hadoop installation with the Spark processes. The Spark
Master process replaces the ResourceManager and ApplicationManager, and the Worker
processes take over the job of the NodeManagers, as follows:

Running Spark with Cassandra involves replacing the Hadoop ResourceManager and ApplicationManagers with a Spark master, and replacing Hadoop NodeManagers with Spark
Slaves.

While Spark appears to be rapidly gaining traction in the analysis space, many of the
existing tools and frameworks are built around Hadoop and MapReduce. Additionally, a
large number of users have existing investments in the Hadoop ecosystem, making a
wholesale move to Spark impractical.

Data Centers

[56]

The good news is the two can live together in harmony. In fact, you can simply add Spark
processes to your existing infrastructure, provided that you have sufficient resources to do
so. You can also employ two analysis data centers, one for Hadoop jobs and one for Spark
jobs. Cassandra offers tremendous flexibility here.

Now that we've covered the basic scenarios where multiple data centers prove useful, let's
take a deep dive into data center configuration.

Data center setup
The mechanism for defining a data center depends on the snitch you specify in
cassandra.yaml. Take a look at the previous chapter if you need a refresher on the
various types of snitches. You'll recall that the snitch's role is to tell Cassandra what your
network topology looks like, so it can know how to place replicas across your cluster. When
configuring a snitch, it's important to make sure that the data centers resolved by the snitch
match those in your schema.

With this in mind, let's take a closer look at what configuration looks like for each of the
snitch options.

RackInferringSnitch
There really isn't any configuration to perform on the RackInferringSnitch, as long as
your IP addressing scheme matches your topology. Specifically, it uses the second, third,
and fourth octets to define data center, rack, and node, respectively, as follows:

This strategy can work well for simple deployments in physical data centers where IP
addresses can be predicted reliably. The problem is that this rarely works out well over the
long term, as network requirements often change over time, and ensuring all network
administrators abide by these rules can be difficult. In general, it's better to use one of the
other more explicit snitches.

Data Centers

[57]

As a general rule, it is preferable to deploy a single rack configuration in
each data center, as opposed to using the rack awareness feature. This
applies to any snitch that allows specifying racks. While the initial
configuration may be straightforward, it can be difficult to scale the
multiple rack strategy. Rack configurations have a tendency to change
over time, and often the people who manage the hardware are not the
same people who handle Cassandra configuration. In this case, simplicity
is often the best strategy.

PropertyFileSnitch
The PropertyFileSnitch allows an administrator to precisely configure the topology of
the network by means of a properties file named cassandra-topology.properties. The
following is an example configuration, representing a cluster with three data centers, where
the first two have two racks each, and the analysis cluster has a single rack:

US East Data Center
50.11.22.33 =DC1:RAC1
50.11.22.44 =DC1:RAC1
50.11.22.55 =DC1:RAC1
50.11.33.33 =DC1:RAC2
50.11.33.44 =DC1:RAC2
50.11.33.55 =DC1:RAC2

US West Data Center
172.11.22.33 =DC2:RAC1
172.11.22.44 =DC2:RAC1
172.11.22.55 =DC2:RAC1
172.11.33.33 =DC2:RAC2
172.11.33.44 =DC2:RAC2
172.11.33.55 =DC2:RAC2

Analysis Cluster
172.11.44.11 =DC3:RAC1
172.11.44.22 =DC3:RAC1
172.11.44.33 =DC3:RAC1

Default for unspecified nodes
default =DC3:RAC1

Data Centers

[58]

This diagram shows what this cluster would look like visually:

This is a visual representation of the sample PropertyFileSnitch configuration.

This example demonstrates a cluster with two physical data centers and one virtual data
center used for analysis. It is worth noting that in the specific case above, the
RackInferringSnitch would automatically choose essentially the same topology, since
the IP addresses conform to its required scheme.

Data Centers

[59]

GossipingPropertyFileSnitch
One of the principal challenges when using the PropertyFileSnitch is that the
configuration file must be kept in sync on all nodes. This can be difficult, as the file is
reloaded automatically without restarting. While modern cluster management tools
certainly ease this burden, the GossipingPropertyFileSnitch solves the problem
completely.

Rather than using cassandra-topology.properties, you specify the data center and
rack membership for each node in its own configuration file. In each node's
$CASSANDRA_HOME/conf directory, you'll need to place a file called cassandra-
rackdc.properties, which should conform to the following example:

dc =DC1
rack =RAC1
Uncomment the following line to make this snitch prefer the internal ip
when possible, as the Ec2MultiRegionSnitch does.
prefer_local=true

Once this file is in place (and the GossipingPropertyFileSnitch is selected in
cassandra.yaml), as the name implies, Cassandra will gossip the data center and rack
information to the other nodes in the cluster. Remember that Cassandra is a peer-to-peer
system, and the gossip mechanism allows a Cassandra node to communicate state changes
with nearby peers. This eliminates the need for a centralized configuration, and in general,
better conforms to the principles behind Cassandra's peer-to-peer architecture.

So far we've examined snitches that work well when you control the network configuration
on your nodes, as is the case with physical, non-cloud data centers. With the proliferation of
cloud deployments on Amazon's EC2 infrastructure, this is not always the case.

Cloud snitches
Amazon EC2, Google Cloud, and CloudStack can be excellent places to run Cassandra, as
much work has been put into getting it right. This section will focus on EC2 deployments,
as they are the most common at the time of writing. But the general principles apply to all
the cloud snitches.

If you're planning on going this route, be sure to check out the plethora of fantastic open
source tools available from Netflix, who have put significant time and energy into
perfecting the art of deploying and running Cassandra on EC2. Their engineering blog also
has loads of great content that's worth a look.

Data Centers

[60]

This book will avoid making any recommendations for specific instance types or
configurations, as requirements are unique for different use cases. However, the one
exception is that running on ephemeral SSDs is highly recommended, as you will see
tremendous performance gains from doing so.

When it comes to configuring Cassandra on EC2, the EC2MultiRegionSnitch will come in
handy. If you already manage deployments on EC2 you'll be aware of the frequently
transient nature of its network configurations. This snitch is designed to ease the burden of
managing this often troublesome issue.

When using the EC2MultiRegionSnitch, data center and rack configuration becomes tied
directly to region and availability zone, respectively. Thus, a node in region us-east,
availability zone 1a, will be assigned to a data center named us-east and a rack named 1a.

Additionally, since many deployments involve virtual data centers that are logically
separated but located in the same physical region, this snitch allows us to specify a suffix to
be applied to the data center name. This involves setting the dc_suffix property in
cassandra-rackdc.properties, as follows:

dc_suffix=_live

With this suffix in place, the data center will now be named us-east_live.

When deploying Cassandra in EC2 with the multi-region snitch, make
sure to set your broadcast_address to the external IP address, and your
rpc_address and listen_address should be set to the internal IP
address. These values can be found in cassandra.yaml. This will allow
your nodes to communicate across data centers while keeping your client
traffic local to the data center in which it resides.

In order to achieve the greatest amount of protection from failures in EC2, it is advisable to
deploy your nodes across multiple availability zones in each region. Amazon's availability
zones operate as isolated locations with high bandwidth network configurations between
them, and Cassandra's rack awareness features can guarantee replica placement in multiple
zones. Keep in mind that you need to evenly distribute nodes across availability zones to
achieve even replica distribution.

The following diagram shows an example of an optimal configuration, with data centers in
two regions in addition to an analysis cluster. This is similar to the diagram shown
previously using the PropertyFileSnitch.

Data Centers

[61]

When using a cloud snitch, data centers correlate to regions while racks are assigned based on availability zones.

This topology mirrors the previous example, except the naming convention follows AWS
regions and availability zones. In the US-East data center, the dc_suffix is defined as
"_live" for the nodes that accept live traffic, and "_analysis" for the nodes isolated for
read-heavy analytic workloads.

You should now have a good understanding of how to configure your cluster for multiple
data centers. Let us now explore how Cassandra replicates data across these data centers,
and how multiple data centers influence the balance between consistency, availability, and
performance.

Data Centers

[62]

Replication across data centers
In previous chapters, we have touched on the idea that Cassandra can automatically
replicate across multiple data centers. There are other systems that allow for similar
replication; however, the ease of configuration and general robustness set Cassandra apart.
Let's take a detailed look at how this works.

Setting replication factors
You will recall from Chapter 3, Replication that replication is configured via CQL at the
keyspace level. Since we're on the topic of multiple data centers, it's important to
understand that you'll always want to use the NetworkTopologyStrategy, since the
SimpleStrategy does not allow for setting replication factor for each data center.

Attempting to use SimpleStrategy in a multi-data center environment would result in
random replica placement across data centers. Coordination traffic across nodes would
incur significant latency, as requests would often require nodes in more than one data
center to satisfy the requested consistency level.

Using our example physical topology from the earlier PropertyFileSnitch section, the
following statement will create a keyspace, users, with three replicas in each of our two
live data centers, as well as one in the analysis data center:

CREATE KEYSPACE users
 WITH REPLICATION = {
 'class' : 'NetworkTopologyStrategy',
 'DC1' : 3,
 'DC2' : 3,
 'DC3' : 1
 }

Now each column in the database will have seven total replicas, dispersed across five
distinct racks in two different data centers, without any complex configuration.

Data Centers

[63]

Consistency in a multiple data center
environment
In this section, we will take a look at how Cassandra moves data from one data center to
another. It is easy to understand the concept of replication in a local context, but it may
seem more difficult to grasp the idea that Cassandra can seamlessly transfer large amounts
of data across high-latency connections in real time.

As you may now suspect, the precise replication behavior depends on your chosen
consistency level. In the last chapter, we explored each consistency level in detail, as well as
its impact on availability, consistency, and performance.

In a multiple data center environment, it is extremely important to remember that using a
non-local consistency level (ALL, ONE, TWO, THREE, QUORUM, SERIAL, or EACH_QUORUM)
may have an impact on performance. This is because these consistency levels do not always
route requests to the local data center; they will prefer local nodes in the sense that they sort
based on the snitch, but there is no locality guarantee. If you do this, you will end up with a
scenario that resembles this diagram (assuming there are clients in both data centers):

When non-local consistency levels are used, requests can be routed anywhere in the cluster.

Data Centers

[64]

Obviously sending traffic across the Atlantic Ocean will have a serious impact on client
performance, which is why it's so critical that application architects and operations
personnel work together to make sure consistency levels match the deployed data center
configurations. You can imagine how the situation could become even less tenable with the
addition of more data centers!

As an alternative to the previous scenario, it is nearly always preferable to use a local
consistency level (LOCAL_ONE, LOCAL_QUORUM, or LOCAL_SERIAL) to ensure you're only
working against the local data center, resulting in a far more performant configuration:

When using local consistency levels, requests are sent only to nodes in the specified data center.

When using this strategy, you must make sure your client is only aware of the local nodes.
If you're using the native Java driver, you can read about how to do this in Chapter 6, High
Availability Features in the Native Java Client. Otherwise, consult the documentation for the
driver you are using, or consider moving to one of the newer native drivers.

Data Centers

[65]

Note that it is not sufficient to simply provide your client with the local
node list and then attempt to use a global consistency level (ALL, ONE, TWO,
THREE, QUORUM, or SERIAL). This is because once the operation hits the
database, Cassandra will not restrict fulfillment of the consistency
requirements to the local data center. If you intend to satisfy the
consistency guarantee locally, you must use a local consistency level
(LOCAL_ONE, LOCAL_QUORUM, or LOCAL_SERIAL).
Additionally, if your client connects to a remote node using a local
consistency level, the consistency level will be fulfilled using nodes in the
remote data center. This is because locality is measured relative to the
coordinator node, not to the client.

Anatomy of a replicated write
It is important to fully grasp what's going on when you perform a write in a multiple data
center environment in order to avoid common pitfalls and make sure you achieve your
desired consistency goals.

To start, we will assume your clients generally need to be aware of updates as soon as they
are written. We have discussed the fact that it's possible to achieve strong consistency using
QUORUM reads and writes, but what happens in the case of LOCAL_QUORUM, which is
typically the suggested default? Let's examine this situation in detail.

We will assume we have two live data centers in a geographically distributed configuration,
one in North America and the second in Europe. Each data center has a client application
that's responsible for performing reads and writes local to that data center, using
LOCAL_QUORUM for both.

Data Centers

[66]

We have established that local reads and writes will be strongly consistent (refer to Chapter
3, Replication, for a review of the reasons behind this), so the question is, what consistency
guarantees do we have between data centers?

With LOCAL_QUORUM reads and writes, data inside a data center is strongly consistent, but what happens to inter-data center consistency?

To answer this question, let's examine the high-level path a write takes from the time the
client sends it to Cassandra:

The client sends a write request using the LOCAL_QUORUM consistency level.1.
The node that receives the request (the coordinator) is responsible for insuring2.
the consistency level guarantees are met prior to acknowledging the write.
The coordinator determines the nodes that should own the replicas using3.
consistent hashing (see Chapter 2, Data Distribution for more details) and then
sends the writes to those nodes, including one in each remote data center, which
then acts as coordinator inside that data center.
Since we're using LOCAL_QUORUM, the coordinator will only wait for a majority of4.
replica owning nodes in the local data center to acknowledge the write. This
implies that there may be remote down hosts who have not yet received the write
and are therefore inconsistent.

Data Centers

[67]

If you were paying close attention to the flow, you may have noticed that step 4 included a
guarantee that at least a majority of local nodes received the write, so we know that a
LOCAL_QUORUM read will result in strong consistency within the same data center. However,
there was no guarantee that any remote writes succeeded. In fact, it's entirely possible that
only the local data center was operational at the time of the request.

Based on the Cassandra write path, we must conclude that LOCAL_QUORUM
writes inside a data center exhibit strong consistency when paired with
LOCAL_QUORUM reads, whereas the same pattern results in eventual
consistency between data centers.

Thus, we can complete our diagram as follows:

With LOCAL_QUORUM reads and writes, we get eventual consistency between data centers.

This level of guarantee is appropriate for many use cases, especially where users are being
routed to a single data center the vast majority of the time. In this instance, eventual
consistency would be acceptable, since traveling across continents takes enough time that
the second data center would have received the writes by the time the individual had
completed their travels.

Data Centers

[68]

But in some cases you may want or need to guarantee consistency in a remote data center,
but you cannot afford to pay the cost by using a global consistency level at write time.

Achieving stronger consistency between data centers
There are a number of reasons why you may want to know for sure that your remote data is
consistent with the originating data center. For example, you may need to ensure that your
analytics include the most up-to-date data, or you might be reconciling bank transactions
that occurred in another data center. Either way, you want to know prior to running your
analysis or reconciliation job that your data is as recent as possible.

The solution to this dilemma is to run nodetool repair more frequently. Typically, it is
advised that users run a repair at least once every gc_grace_seconds, but this is only an
upper bound. If you want to make sure a remote data center is as consistent as possible, you
can choose to run repairs more frequently, as this will make sure all your data is consistent
with the originating data center.

Always keep in mind when running repairs that the process is quite
intensive, so be sure to stagger the process such that only a subset of your
nodes is involved in a repair at any given time. If you must maintain
availability during repairs, a higher replication factor may be needed to
satisfy consistency guarantees.
You can choose to run incremental repairs, which can be run much more
often as it is a much lighter weight process.

As we discussed in the first chapter, consistency in a distributed database is a complex and
multi-faceted problem. This is even more the case when nodes in the database are dispersed
across multiple geographical regions. Fortunately, as we have demonstrated, Cassandra
provides the tools needed to handle this job.

The key to success in large-scale deployments of the sort we have covered in this chapter is
to design your solution holistically. A common traditional approach to these problems has
been to model the data independently of the infrastructure, then retrofit later to scale the
solution.

You've likely chosen Cassandra because you have outgrown this approach, so don't make
the mistake of applying old ideas to new technology. Consider how your replication factor,
data center configuration, node counts, consistency levels, and analytics approach all work
together to produce your desired result.

Data Centers

[69]

Summary
After reading this chapter and the previous one, you should have a solid understanding of
how Cassandra ensures that your data is available when needed and protected from loss
due to node or data center failure. By now you should be able to set up and configure a
cluster across multiple geographical regions, and be familiar enough with data centers to
begin the journey to analyzing your live data without cumbersome and expensive ETL
processes.

So far we've focused on what it takes to get started with a solid Cassandra foundation for
your application. In the next chapter, we will talk about what it looks like when your use
case grows beyond your original plan and you need to scale out your cluster.

5
Scaling Out

In the old days, a significant increase in system traffic would cause excitement for the sales
organization and strike fear in the hearts of the operations team. Fortunately, Cassandra
makes the process of scaling out a relatively pain-free affair, so both your sales and
operations teams can enjoy the fruits of your success.

This chapter will give you a complete rundown of the processes, tools, and design
considerations when adding nodes or data centers to your topology. We will cover the
following topics:

Choosing the right hardware configuration
Scaling out versus scaling up
Adding nodes
The bootstrapping process
Adding a data center
How to size your cluster correctly

It should go without saying that making proper choices regarding the underlying
infrastructure is a key component to achieving good performance and high availability.
Conversely, poor choices can lead to a host of issues, and recovery can sometimes be
difficult.

Let's begin the chapter with some guidance on choosing hardware that's compatible with
Cassandra's design.

Scaling Out

[71]

Choosing the right hardware configuration
There are a number of points to consider when deciding on a node configuration, including
disk sizes, memory requirements, and number of processor cores. The right choices here
depend quite a bit on your use case and whether you are on physical or virtual
infrastructure, but we will discuss some general guidelines here.

Since Cassandra is designed to be deployed in large-scale clusters on commodity hardware,
an important consideration is whether to use fewer large nodes or a greater number of
smaller nodes.

Regardless of whether you're using physical or virtual machines, there are a few key
principles to keep in mind:

More RAM equals faster reads, so the more you have the better they will
perform. This is because Cassandra can take advantage of its cache capabilities as
well as larger memory tables. More space for memory tables means fewer scans
to the on-disk SSTables. More memory also results in better filesystem caching,
which reduces disk operations.
… but not if you allocate it to JVM heap. Most of the time, the default JVM heap
size is sufficient, as Cassandra stores its O(n) structures (those that grow with
data set size) off-heap. In general, you should not use more than 8GB of heap on
the JVM.
More processors equal faster writes. This is because Cassandra is able to
efficiently utilize all available processors, and writes are generally CPU-bound.
While this may seem counter-intuitive, it holds true because Cassandra's highly
efficient log-structured storage introduces so little overhead.
Disk utilization is highly dependent on data volume and compaction strategy.
Obviously, you will need more disk space if you intend to store more data. What
may be less obvious is the dependence on your compaction strategy. In the worst
case, SizeTieredCompactionStrategy can use up to 50% more disk space than
the data itself. As an upper bound, try to limit the amount of data on each node to
1-2 TB.
Solid-state drives are a good choice. For many use cases, simply moving to SSDs
from spinning disks can be the most cost effective way to boost performance. In
fact, SSDs should be the default choice since they provide tremendous benefits
without any real drawbacks.

Scaling Out

[72]

Do not use shared storage, because Cassandra is designed to use local storage.
Shared storage configurations introduce unwanted bottlenecks and subvert
Cassandra's peer-to-peer design. They also introduce an unnecessary single point
of failure.
Cassandra needs at least two disks, one for the commit log and one for data
directories. This is somewhat less important when using SSDs, as they handle
parallel writes better than spinning disks.

For physical hardware, between 16 GB and 64 GB of RAM seems to be a
good compromise between price and performance, whereas 16 GB should
be considered ideal for virtual hardware. When choosing the right number
of CPUs, 8-core processors are currently a good choice for dedicated
machines. CPU performance varies among cloud vendors, so it's a good
idea to consult the vendor and/or perform your own benchmarks.

These simple guidelines will help you to get the most out of your hardware or cloud
infrastructure investment, and form a solid foundation for a high-performance and highly
available cluster.

Scaling out versus scaling up
So you know it's time to add more muscle to your cluster, but how do you know whether to
scale up or out?

If you're not familiar with the difference, scaling up refers to converting existing
infrastructure to better or more robust hardware (or instance types in cloud environments).
This could mean adding storage capacity, increasing memory, moving to newer machines
with more cores, and so on.

Scaling out simply means adding more machines that roughly match the specifications of
the existing machines. Since Cassandra scales linearly with its peer-to-peer architecture,
scaling out is often more desirable.

Scaling Out

[73]

In general, it is better to replace physical hardware components
incrementally rather than all at one time. This is because in large systems
failures tend to come after hardware ages to a certain point, which is
statistically likely to happen simultaneously for some subset of your
nodes. For example, purchasing a large lot of drives from a single source
at one time is likely to result in a sudden onslaught of drive failures as
they near the end of their service life.

How do you know which is the better strategy? To arrive at an answer, you should ask
yourself a few questions about your existing infrastructure:

Have there been significant advances in hardware (or cloud instance types, in the1.
case of EC2, Google Cloud, and so on), such that scaling up yields more benefit
for the cost than adding nodes? Refer to this excellent article from Netflix, where
they discuss the benefits of moving to Solid State Disk (SSD) rather than adding
nodes: h t t p : / / t e c h b l o g . n e t f l i x . c o m / 2 1 2 / 7 / b e n c h m a r k i n g - h i g h - p e r f o r m a n c

e - i o - w i t h . h t m l.
Did you start with hardware that was too small, because you were bound by the2.
limitations of early Cassandra versions or a cloud provider's offerings at the
time?
Do you have existing hardware to repurpose for use as a Cassandra cluster that is3.
better than your current hardware?

If the answer to any of the above questions is yes, then scaling up may be your best option.
If the answer is no, it may still be better to scale up, depending on what extra resources you
hope to gain by scaling up and the cost-benefit ratio. If, for example, you only need more
storage but not more CPU or IOPS, then adding disks is probably cheaper. If you need a bit
more memory for cache, then add some memory if your nodes can take more.

But upgrading the motherboard to take more memory is unlikely to be cost effective, so
adding nodes is a better choice. Fortunately, Cassandra makes scaling out painless.
Regardless of which path you choose, you will need to know how to add nodes to your
cluster.

Growing your cluster
The process of adding a node to an existing Cassandra cluster ranges from trivial when
vnodes are used to somewhat tedious if you are manually assigning tokens. Let's start with
the manual case, as the vnodes process is a subset of this.

http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html

Scaling Out

[74]

Adding nodes without vnodes
As previously mentioned, the procedure for adding a node to a cluster without vnodes
enabled is straightforward, if not a bit tedious. In general, you should add one node at a
time, unless you're able to double the size of the cluster. Doubling removes the need to
reassign tokens, as Cassandra's default of bisecting another node's range will be sufficient.
The first step is to determine the new total cluster size, then compute tokens for all nodes.

To compute tokens, follow the DataStax documentation at h t t p : / / w w w . d a t a s t a x . c o m / d o c

u m e n t a t i o n / c a s s a n d r a / 1 . 2 / c a s s a n d r a / c o n f i g u r a t i o n / c o n f i g G e n T o k e n s _ c . h t m l.
There are also several useful online tools to help you, such as this one at h t t p : / / w w w . g e r o b

a . c o m / c a s s a n d r a / c a s s a n d r a - t o k e n - c a l c u l a t o r /.

Once you have the new tokens, complete the following steps to add your new nodes to the
cluster:

If possible, run repairs to ensure all nodes contain the most recent data.1.
Make sure Cassandra is installed, but do not start the process. If you use a2.
package manager, be aware that Cassandra will start automatically, so you will
need to stop the process before proceeding.
On new nodes, in cassandra.yaml, set the addresses to their proper values,3.
along with the cluster name, seeds, and endpoint snitch. Then set the
initial_token value to the node's assigned token, using the tokens calculated
prior to beginning this process.
Start the Cassandra daemon on the new node.4.
Wait for the node to complete its bootstrap before moving on to the next node.5.
You can use nodetool netstats to check the status of the bootstrap process.
Once all new nodes are up, run nodetool move on old nodes to assign new6.
tokens on one node at a time. This is unnecessary if you are doubling the cluster
size, as the token assignments on old nodes will remain the same.
After this process has been completed on all new and existing nodes, run7.
nodetool cleanup on old nodes to purge old data that now belongs to the new
nodes. You should do this on one node at a time.

http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.datastax.com/documentation/cassandra/1.2/cassandra/configuration/configGenTokens_c.html
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/
http://www.geroba.com/cassandra/cassandra-token-calculator/

Scaling Out

[75]

Adding nodes with vnodes
The primary difference when using vnodes is that you do not have to generate or set tokens,
as this happens automatically, and there is no need to run nodetool move. Instead of
setting the initial_token property, you should set the num_tokens property in
accordance with the desired data distribution. Larger values represent proportionally larger
nodes in your cluster, with 256 being the default. If all your nodes are the same size, this
default should be sufficient.

Over time, your cluster may naturally become heterogeneous in terms of
node size and capacity. In the past, when using manually assigned tokens,
this presented a challenge, as it was difficult to determine the proper
tokens that would result in a balanced cluster.
With vnodes, you can simply set the num_tokens property to a larger
number for larger nodes. For example, if your typical node owns 256
tokens, when adding a node with twice the capacity, you should set its
num_tokens property to 512.

If you want to keep track of the bootstrapping process, you can run nodetool netstats
to view the progress. Once the streaming has completed, the output of this command will
look similar to this:

Mode: NORMAL
Not sending any streams.
Read Repair Statistics:
Attempted: 1
Mismatch (Blocking): 0
Mismatch (Background): 0
Pool Name Active Pending Completed
Commands n/a 0 1
Responses n/a 0 12345

Once the Mode status reports as NORMAL, this indicates the node is ready to serve requests. If
bootstrapping fails for any reason (often due to heavy load on one of the source nodes,
which may result in timeouts), you can use nodetool bootstrap resume to continue the
bootstrap process while skipping already streamed data. This can save a significant amount
of time on large nodes.

Now that you know how to add a node, let's examine the two paths to increasing the
capacity of your cluster, starting with scaling out.

Scaling Out

[76]

Adding a data center
Scaling out typically involves adding nodes to your current cluster, but may also mean
adding an entire data center. If you simply need to add nodes to an existing data center, you
may have guessed that you must only follow the steps for adding a node, as described in
the previous section on that topic.

Adding a new data center to your cluster is similar to initializing a new multi-node cluster.
As this is not a basic tutorial on Cassandra, we will assume you already know how to do
this. Before starting your nodes in the new data center, make sure to keep in mind the
following additional details:

You must use NetworkTopologyStrategy with an appropriate snitch: If you
have not already chosen a data center-aware snitch, the recommendation is to use
the GossipingPropertyFileSnitch for non-EC2 installations or the
EC2MultiRegionSnitch for EC2 installations. See Chapter 4, Data Centers for
more information on configuring snitches.
Set auto_bootstrap to false in cassandra.yaml: This property is set to true by
default, and if left as true will cause the node to immediately start transferring
data from the existing data center. The correct procedure is to wait and run a
rebuild after all nodes are online.
Configure the seeds: It is a good idea to include at least a couple nodes from each
data center as seeds in cassandra.yaml.
Update the appropriate properties files: If you're using the
GossipingPropertyFileSnitch, add the cassandra-rackdc.properties
file on each new node. If you have chosen the PropertyFileSnitch, you will
need to update cassandra-topology.properties on ALL nodes (a restart is
not required on existing nodes).

Prior to changing your keyspace definition, be sure to change the
consistency levels on your clients so they reflect the desired guarantees.
Failing to do this may result in slow response times and
UnavailableException as Cassandra attempts to satisfy the target
consistency level using your new data center.
This is especially true when moving from a single data center environment
(where your calls are likely, for example, to be QUORUM rather than
LOCAL_QUORUM). When adding data centers beyond the second, it should
be less of a concern. See Chapter 6, High Availability Features in the Native
Java Client for more details if you're using the native driver.

Scaling Out

[77]

Once your new nodes are online, you will need to change your keyspace properties to
reflect your desired replication factor for each data center. For example, suppose you
previously had a data center named DC1 and your new data center is called DC2. If you
wanted both DC1 and DC2 to have three replicas, you would issue the following command:

ALTER KEYSPACE [your_keyspace]
WITH REPLICATION = {
 'class' : 'NetworkTopologyStrategy',
 'DC1' : 3,
 'DC2' : 3
}

Note that you only need to do this on one node, as your schema will be gossiped to all
nodes in all data centers.

After you have set your desired replication factor, you will need to execute a rebuild
operation on each node in the new data center:

 nodetool rebuild -- [name of data center]

The rebuild will ensure that nodes in the new data center receive up-to-date replicas from
the existing data center. It's important to include the data center name when issuing this
command, or the rebuild operation will not copy any data. You can safely run this on all
nodes at once, provided your existing data center can handle the additional load. If you are
in doubt about this, it may be wise to run the rebuild on one node at a time to avoid
potential problems.

How to scale up
Properly scaling up your Cassandra cluster is not a difficult process, but it does require you
to carefully follow established procedures to avoid undesirable side effects. There are two
general approaches to consider:

Upgrade in place: To upgrade in place involves taking each node out of the ring,
one at a time, bringing its new replacement online, and allowing the new node to
bootstrap. This choice makes the most sense if a subset of your cluster needs
upgrading rather than an entire data center. This assumes, of course, that your
replication factor is greater than ONE. To upgrade an entire data center, it may be
preferable to allow replication to automatically build the new nodes.

Scaling Out

[78]

Using data center replication: Since Cassandra already supports bringing up
another data center via replication, you can use this mechanism to populate your
new hardware with existing data and then switch to the new data center when
replication is complete.

Upgrading in place
If you have determined that your best strategy is to upgrade a subset of your existing
nodes, you will need to take the node offline so the cluster sees its status as down, which
can be confirmed using nodetool status:

Datacenter: dc1
Status=Up/Down
|/ State=Normal/Leaving/Joining/Moving
-- Address ...
UN 10.10.10.1 ...
UN 10.10.10.2...
DN 10.10.10.3 ...
UN 10.10.10.4 ...

You can see in this excerpt from the output that the node at address 10.10.10.3 is labeled
DN, which indicates that Cassandra sees it as down. Once you have confirmed this, you
should make a note of the address (and the token if you are using manually assigned
tokens).

You are now ready to begin the process of replacing the node, which simply involves
following the previously outlined steps for adding a node, with the following minor
exceptions:

With a packaged installation, add this line to
/usr/share/cassandra/cassandra-env.sh prior to starting Cassandra:

 JVM_OPTS="$JVM_OPTS -Dcassandra.replace_address=[old_address]

With a tarball installation, when starting Cassandra, use the following option:

 bin/cassandra -Dcassandra.replace_address=[old_address]

Scaling Out

[79]

You will need to repeat this process for each node you want to upgrade, and make sure to
execute the procedure one node at a time. In addition, you should consider running a repair
after each node replacement. If only two of three nodes contain the latest data for some
particular token range, and you're replacing one of these nodes, Cassandra might end up
copying the data from the node with the older data. Then you would only have the latest
data on one node. If that node is replaced next, you would lose that data.

Scaling up using data center replication
If you have a large data center and intend to replace all the hardware in that data center, the
simplest way to handle this is to use Cassandra's replication mechanism to do the hard
work for you. Once the new data center is ready to receive traffic, you can then simply
redirect client requests to it. At that point you will be able to safely decommission the old
data center.

To accomplish this, you should follow the procedure for adding a data center, which is
outlined earlier in this chapter. Once your new data center is online, you should do the
following:

Validate that all new nodes are online using nodetool status.1.
Redirect all client traffic to the new data center, and make sure there are no2.
remaining clients connected to the old data center before proceeding.
Run nodetool repair on all keyspaces across the entire cluster to ensure any3.
data that was updated on the old data center is propagated to the rest of the
cluster.
Use the ALTER KEYSPACE command to remove any references to the old data4.
center, as described in the earlier section on adding data centers.
Run nodetool decommission on each of the old nodes to permanently remove5.
it from the cluster.

Removing nodes
While the material in this chapter is primarily focused on adding capacity to your cluster,
there may be times when reducing capacity is what you're hoping to accomplish. There are
a number of valid reasons for doing this. Perhaps you're experiencing smaller transaction
volumes than originally anticipated for a new application, or maybe you've changed your
data retention plan. In some cases you may want to move to a smaller cluster with more
capable nodes, especially in cloud environments where this transition is made easier.

Scaling Out

[80]

Regardless of your reasons for doing so, knowing how to remove nodes from your cluster
will certainly come in handy at some point in your Cassandra experience. Let's take a look
at this process now.

Removing nodes within a data center
Fortunately, the process for removing a node is quite simple:

Run nodetool repair on all your keyspaces. This will ensure that any updates1.
which may be present only on the node you're removing will be preserved in the
remaining nodes.
Presuming the node is online, run nodetool decommission on the node you're2.
retiring. This process will move the retiring node's token ranges to other nodes in
the ring and then copy replicas to their appropriate locations based on the new
token assignments. As mentioned previously, you can use nodetool netstats
to keep track of each node's progress during this operation.
If you're manually assigning tokens, you must reassign all your tokens so your3.
distribution is even. This procedure is outlined in an earlier section in this
chapter.
Validate that the node has been removed using nodetool status. If the node4.
has been properly removed, it should no longer appear in the list output from
this command.

Decommissioning a data center
If you want to remove an entire data center, the process closely mirrors what we outlined
earlier in the section on scaling up via data center replication. For clarity, however, let's
repeat just the important steps here:

Run nodetool repair on nodes in any other data centers (besides the one1.
you're decommissioning) to ensure any data that was updated on the old data
center is propagated to the rest of the cluster.
Use the ALTER KEYSPACE command to remove any references to the old data2.
center, as described in the earlier section on adding data centers.
Run nodetool decommission on each of the old nodes to permanently remove3.
it from the cluster.

Scaling Out

[81]

Given the coordination required between multiple teams to successfully
execute major topology changes, it is often advisable to appoint a single
knowledgeable person who can oversee this process to ensure all the
proper steps are taken. This simple step can help to avoid significant
issues. Even better, automated cluster management tools such as Puppet,
Chef, or Priam can make this process much easier.

By now you should be familiar with the various possible operations for adding and
removing nodes or data centers. As you can see, these processes require planning and
coordination between application designers, DevOps team members, and your
infrastructure team. The consequences for improper execution of any of these processes can
be quite substantial.

Other data migration scenarios
At times you may need to migrate large amounts of data from one cluster to another. A
common reason for this is the need to transition data between networks that cannot see each
other, or moving from classic Amazon EC2 to a newer Virtual Private Cloud (VPC)
infrastructure.

If you find yourself in this situation, you can use these steps to ensure a smooth transition to
the new infrastructure:

Set up your new cluster using the information you learned from this chapter,1.
configure your cluster, and duplicate the schema from your existing cluster.
Change your application to write to both clusters. This is certainly the most2.
significant change, as it likely requires code changes in your application.
Verify you are receiving writes to both clusters to avoid potential data loss.3.
Create a snapshot of your old cluster using the nodetool snapshot command.4.
Load the snapshot data into your new cluster using the sstableloader5.
command. This command actually streams the data into the cluster rather than
performing a blind copy, which means that your configured replication strategy
will be honored.
Switch your application to point only to the new cluster.6.
Shut down the old cluster.7.

It's possible to skip the step that requires your application to direct traffic to both clusters,
provided you can schedule sufficient downtime. The problem is that it's difficult to
accurately predict how long the load will take, and considering the subject matter of this
book it's likely that your application cannot sustain this downtime.

Scaling Out

[82]

One final topic that's worth covering when talking about increasing cluster capacity is the
possibility that you may need to change snitches. Often users will start with the
SimpleSnitch, and then find they want to add a data center later, which requires one of
the data center-aware snitches. If done incorrectly, snitch changes can be problematic, so
let's discuss the proper way to handle this scenario.

Snitch changes
As you should recall from Chapter 4, Data Centers, the snitch tells Cassandra what your
network topology looks like, and therefore, affects data placement in the cluster. If you
haven't inserted any data, you can change the snitch without consequence. Otherwise
multiple steps are required, as is a full cluster restart, which will result in downtime.

The following procedure should be used to change snitches:

Update your topology properties files, which means cassandra-1.
topology.properties or cassandra-rackdc.properties, depending on
which snitch you specify. In the case of the PropertyFileSnitch, make sure all
nodes have the same file. For GossipingPropertyFileSnitch or
EC2MultiRegionSnitch, each node should have a file indicating its place in the
topology.
Update the snitch in cassandra.yaml. You will need to do this for every node in2.
the cluster.
Restart all nodes, one at a time. Any time you make a change to3.
cassandra.yaml, you must restart the node.
Change the replication strategy to NetworkTopologyStrategy for any4.
keyspaces that are set to SimpleStrategy, and ensure that the data center you
reference is consistent with the one you specified in step 1.

If you need to change your topology, you should change the snitch (by following the
previously detailed steps) prior to making the changes. Once you have finished the snitch
change procedure, you can then change your topology without needing to restart your
nodes.

If you're just starting out with Cassandra, it's best to plan for cluster
growth from the beginning. Go ahead and choose either
GossipingPropertyFileSnitch or the EC2MultiRegionSnitch (for
EC2 deployments), as this will help avoid complications later when you
inevitably decide to expand your cluster.

Scaling Out

[83]

Summary
This chapter has covered quite a few procedures for handling a variety of cluster changes,
from adding a single node, to expanding with a new data center, to migrating your entire
cluster.

While it would be unreasonable to expect anyone to commit all these processes to memory,
let this chapter serve as a reference for the times when these sometimes rare events occur.
And perhaps most importantly, take note of these scenarios so you can know when it's time
to read the manual rather than just trying to figure it out on your own. Distributed
databases can be wonderful when handled correctly, but quite unforgiving when misused.

We've spent the last five chapters looking at a variety of mostly administrative and design
related concepts, but now it's time to dig in and look at some application code. In the next
chapter, we will take a look at the native client library (specifically the Java variant,
although there are also drivers for C# and Python that follow similar principles).

The native driver has a number of interesting features related to high availability, so it's
time to change into your developer hat as we transition from the database itself to the
application layer. As you likely know from past experience, a properly architected client
application is every bit as important as a correctly configured database.

6
High Availability Features in the

Native Java Client
If you are relatively new to Cassandra, you may be unaware that the native client libraries
from DataStax are a recent development. In fact, prior to their introduction there were
numerous libraries (and forks of those projects) just for the Java language. Throw in the
other languages, each with their own idiosyncrasies, and the situation was really quite dire.

Complicating the scenario was the lack of any universally accepted query mechanism, as
Cassandra Query Language (CQL) was initially poorly received. The only real common
ground for describing queries and data models was the underlying Thrift protocol. While
this worked reasonably well for early adopters, it made assimilation of newer users quite
difficult. It is a testament to Cassandra's extraordinary architecture, speed, and scalability
that it was able to survive those early days.

After several revisions of CQL, the introduction of a native binary protocol, and DataStax's
work on a modern CQL-based native driver, we are fortunately in a much better place now
than we were just a couple of short years ago. In fact, the modern implementation of CQL is
roughly 50 times faster than the equivalent Thrift query.

In this chapter, we will introduce the native Java driver and discuss its high availability
features, covering the following topics:

Thrift versus the native protocol
Client basics
Asynchronous requests
Load balancing
Failover policies
Retries

High Availability Features in the Native Java Client

[85]

While this chapter will focus specifically on Java implementation, there are
also similar drivers for Python and C#. Though the specific
implementation details may vary among languages, the basic concepts
will prove useful no matter which driver you end up using.

It's also worth noting that in most cases it will be worth transitioning to the native Java
driver if you're using another JVM-based language (such as Scala, Clojure, Groovy, and so
on), even though your language of choice may have another community-supported Thrift-
based driver available.

Thrift versus the native protocol
Cassandra users fall into two general categories:

 Those who have been using it a while and have grown accustomed to working
directly with storage rows via a Thrift-based client.
Those who are relatively new to Cassandra and are confused by the role Thrift
plays in the modern Cassandra world.

Hopefully we can clear up the confusion and set both groups on the right path. Thrift is
a remote procedure call (RPC) mechanism combined with a code generator, and for several
years, it formed the underlying protocol layer for clients communicating with Cassandra.
This allowed the early developers of Cassandra itself to focus on the database rather than
the clients. But, as we hinted at in the introduction, there are numerous negative side effects
of this strategy:

There was no common language to describe data models and queries, as each
client implemented different abstractions on top of the underlying Thrift
protocol.
Thrift was limited to the lowest common denominator, as implementation for all
the supported languages, which proved to be a significant handicap as more
advanced APIs became desirable.
All requests were executed synchronously, as Thrift has no built-in support for
asynchronous calls.
All query results had to be materialized into memory on both the server and the
client. This forced clients to implement cumbersome paging techniques when
requesting large data sets to avoid exceeding available memory on either the
client or the server. Limitations in the protocol itself also made optimization
difficult.

High Availability Features in the Native Java Client

[86]

For these reasons, the Thrift protocol is deprecated in favor of the newer binary protocol,
which supports more advanced features such as cursors, batches, prepared statements, and
cluster awareness, among others. In fact, the Thrift server is now disabled by default, and
re-enabling it requires modifying cassandra.yaml or using nodetool enablethrift.

If you're still not convinced that you should migrate away from your favorite Thrift-based
library, keep reading to learn about some of the great new features in the native driver.
Even the popular Astyanax driver from Netflix now uses the native protocol under the
hood.

Setting up the environment
To get the most out of this chapter, you should prepare your development environment
with the following prerequisites:

Java Development Kit(JDK) 1.8 for your platform, which can be obtained at h t t p
: / / w w w . o r a c l e . c o m / t e c h n e t w o r k / j a v a / j a v a s e / d o w n l o a d s / j d k 8 - d o w n l o a d s - 2

1 3 3 1 5 1 . h t m l.
The Integrated Development Environment(IDE), or text editor of your choice.
Either a local Cassandra installation, or the ability to connect to a remote cluster.
The DataStax native Java driver for your Cassandra version. If you're using
Maven for dependency management, add the following lines to your pom.xml
file:

 <dependency>
 <groupId>com.datastax.cassandra</groupId>
 <artifactId>cassandra-driver-core</artifactId>
 <version>[version_number]</version>
 </dependency>

Now that you're set up for coding, let's get familiar with some of the basics of the driver.
The first step is to establish a connection to your Cassandra cluster, so we will start by
doing just that.

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

High Availability Features in the Native Java Client

[87]

Connecting to the cluster
To get connected, you will start by creating a Cluster reference, which you will then
construct using a builder pattern. You will specify each additional option by chaining
method calls together to produce the desired configuration, then finally calling the build()
method to initialize Cluster.

Let's build a cluster that's initialized with a list of possible initial contact points:

private Cluster cluster; // defined at class level
// you should only build the cluster once per app
cluster = Cluster.builder()
 .addContactPoints("10.10.10.1", "10.10.10.2", "10.10.10.3")
 .build();

You should only have one instance of Cluster in your application for
each physical cluster, as this class controls the list of contact points and
key connection policies such as compression, failover, request routing, and
retries.

While this basic example will suffice for playing around with the driver locally, the
Cluster builder supports a number of additional options that are relevant for maintaining
a highly available application, which we will explore throughout this chapter.

Executing statements
While the Cluster acts as a central place to manage connection-level configuration options,
you will need to establish a Session to perform actual work against the cluster. This is
done by calling the connect() method on your Cluster instance.

To run the following examples, you will need to create the contacts keyspace and
contact table, as follows:

CREATE KEYSPACE contacts
WITH REPLICATION = {
 'class' : 'SimpleStrategy',
 'replication_factor' : 1
};

USE contacts;

CREATE TABLE contact (
 id UUID,

High Availability Features in the Native Java Client

[88]

 email TEXT PRIMARY KEY
);

After the schema is created, you can connect to the contacts keyspace:

private Session session; // defined at class level
session = cluster.connect("contacts");

Once you have created the Session, you will be able to execute CQL statements, as follows:

String insert = "INSERT INTO contact (id, email) " +
 "VALUES (" +
 "bd297650-2885-11e4-8c21-0800200c9a66," +
 "'contact@example.com' " +
 ");";
session.execute(insert);

You can submit any valid CQL statement to the execute() method, including schema
modifications.

Unless you have a large number of keyspaces, you should create one
Session instance for each keyspace in your application, because it
provides connection pooling and controls the node selection policy (it uses
a round robin approach by default). The Session is thread-safe, so it can
be shared among multiple clients.

Prepared statements
One key improvement provided by the native driver is its support for prepared statements.
Readers with a background in traditional relational databases will be familiar with the
concept. Essentially, the statement is pre-parsed at the time it is prepared, with placeholders
left for parameters to be bound at execution time.

Using the driver's PreparedStatement is straightforward:

String insert = "INSERT INTO contacts.contact (id, email) " +
 "VALUES (?,?);";
PreparedStatement stmt = session.prepare(insert);
BoundStatement boundInsert = stmt.bind(
 UUID.fromString("bd297650-2885-11e4-8c21-0800200c9a66"),
 "contact@example.com"
);
session.execute(boundInsert);

www.allitebooks.com

http://www.allitebooks.org

High Availability Features in the Native Java Client

[89]

Use prepared statements whenever you need to execute the same
statement repeatedly, as this will reduce parsing overhead on the server.
However, do not create the same prepared statement multiple times, as
this will actually degrade performance. You should prepare statements
only once and reuse them for multiple executions.

Batched statements
It is also possible to use prepared statements with batches. When statements are grouped
into a batch, they are executed atomically and without multiple network calls. This can be
useful when you need either all or none of your statements to succeed.

Here's an example of preparing and executing a batch, using the statement prepared in the
last code snippet:

BatchStatement batch = new BatchStatement();
batch.add(stmt.bind(
 UUID.fromString("bd297650-2885-11e4-8c21-0800200c9a66"),
 "contact@example.com"
));
batch.add(stmt.bind(
 UUID.fromString("a012a000-2899-11e4-8c21-0800200c9a66"),
 "othercontact@example.com"
));
session.execute(batch);

Caution with batches
While batches can be quite useful when they're needed, you should be aware of some
pitfalls associated with them:

They are atomic, but not isolated: This means clients will be able to see the
incremental updates as they happen. The exception is updates to a single
partition, which are isolated.
They are slower: Specifically, the atomicity guarantee introduces approximately
a 30% performance penalty across the batch. Sometimes this is worth it, but it
means you shouldn't automatically assume batching multiple requests is better
than multiple single requests. To avoid this penalty you can use unlogged
batches, which turn off atomicity and provide increased performance over
multiple statements executed against the same partition.

High Availability Features in the Native Java Client

[90]

They are all or nothing: In other words, either all statements fail or all succeed.
This has the effect of increasing latency, as you have to wait for responses for all
statements.
They are unordered: Batching applies the same timestamp to all mutations in the
batch, so statements don't actually execute in the provided ordering.

Be careful when using them with prepared statements to update many sparse
columns: It's tempting to prepare a single statement with a number of parameters
for use in a large batch. This works fine if you always supply all the parameters,
but don't assume you can insert nulls for missing columns, as inserting nulls
creates tombstones. See Chapter 8, Anti-Patterns for details on why creating large
numbers of tombstones is an anti-pattern.

Now that you're familiar with the basic client concepts, it's time to delve into the more
advanced features, beginning with the ability to execute requests asynchronously.

Handling asynchronous requests
Since Cassandra is designed for significant scale, it follows that most applications using it
would be designed with similar scalability in mind. One principal characteristic of high
performance applications is that they do not block unnecessarily, and instead attempt to
maximize available resources.

As previously discussed, one of the downsides to the older Thrift protocol was its lack of
support for asynchronous requests. Fortunately, this situation has been remedied with the
native driver, making the process of building scalable applications on top of Cassandra
significantly easier.

Blocking on I/O, such as with calls to Cassandra, can cause significant
bottlenecks in high-throughput applications. Since a slow application can
be the same as a dead application, you should use the asynchronous API
to avoid blocking whenever possible.

If you are familiar with the java.util.concurrent package, and the Future class
specifically, the asynchronous API will look familiar. Here's a basic example:

String query = "SELECT * FROM contact " +
 "WHERE id = bd297650-2885-11e4-8c21-0800200c9a66;";
ResultSetFuture f = session.executeAsync(query);
ResultSet rs = f.getUninterruptibly();

High Availability Features in the Native Java Client

[91]

Obviously this is a naÃ¯ve example, as it will simply block on call to
getUninterruptibly(), but it should give you a sense for the basic API.

Running queries in parallel
One common use case for the asynchronous API is to make multiple calls in parallel, then
collect the results. This can be accomplished easily:

String query = "SELECT * FROM contact WHERE id = ?;";
BoundStatement q1 = session.prepare(query).bind(
 UUID.fromString("bd297650-2885-11e4-8c21-0800200c9a66")
);
BoundStatement q2 = session.prepare(query).bind(
 UUID.fromString("a012a000-2899-11e4-8c21-0800200c9a66")
);
ResultSetFuture f1 = session.executeAsync(q1);
ResultSetFuture f2 = session.executeAsync(q2);

try {
 ResultSet rs1 = f1.getUninterruptibly(5, TimeUnit.SECONDS);
 ResultSet rs2 = f2.getUninterruptibly(5, TimeUnit.SECONDS);
 // do something with results
} catch (Exception e) {
 // handle exception
}

A closer inspection of the ResultSetFuture class reveals that it inherits from both
java.util.concurrent.Future and
com.google.common.util.concurrent.ListenableFuture (which is from Google's
Guava library). Guava's Futures class provides a useful construct for collecting multiple
Future results into a single list of values, which can be helpful when aggregating queries. It
can be used as follows:

Future<List<ResultSet>>future = Futures.allAsList(
 session.executeAsync(q1),
 session.executeAsync(q2)
);
try {
 List<ResultSet> results = future.get(5, TimeUnit.SECONDS);
 // do something with results
} catch (Exception e) {
 // handle exception
}

High Availability Features in the Native Java Client

[92]

While the code above is more straightforward, there is one disadvantage to doing it this
way. A call to ResultSetFuture.getUninterruptibly() will throw helpful Cassandra-
specific exceptions, while Future.get() throws the more generic ExecutionException
and TimeoutException. It's also worth noting that the Future returned by allAsList()
will only be successful if all component Future succeed.

Load balancing
Since Cassandra is a distributed database with the ability to add and remove nodes easily,
it's important for the client to be able to send requests to new nodes that join the cluster, or
to stop sending requests to removed or dead nodes.

Some databases use special middle-man processes to broker requests to available nodes,
thus relieving the client of the requirement to maintain a list of hosts. Since Cassandra is a
peer-to-peer system, with no special nodes or broker processes, the client must be aware of
the topology of the cluster.

You should not use a load balancer between the client and Cassandra, as
the client handles this via its load balancing policies. Adding a separate
load balancer will actually prevent the client from understanding the
cluster, which is what allows it to perform many of its duties.

Behind the scenes, the native driver connects to the cluster and learns about the topology of
the ring. While legacy Thrift-based clients were able to make use of an RPC call to describe
the cluster, the metadata obtained by the native client is much richer. You can get a good
sense of the type of information available by taking a look at the Metadata class, which can
be obtained by calling the getMetadata() method on your Cluster instance.

One of the chief strengths in this approach is that you can configure intelligent load-
balancing and failover policies at the application level. Some policies act as wrappers
around others, in a quasi-decorator pattern. Ultimately, the load balancer determines which
node will end up coordinating the request. Internally, Cassandra will use its own
mechanisms when communicating with the rest of the cluster.

High Availability Features in the Native Java Client

[93]

The driver offers five load balancing policies out of the box:

RoundRobinPolicy: As the name implies, this policy will execute requests in a
round-robin fashion to all known nodes.
DCAwareRoundRobinPolicy: This policy also executes in a round-robin fashion,
but ensures that requests are routed only to hosts in the local data center. Keep in
mind that this does NOT obviate the need to satisfy cross-data center consistency
levels (such as QUORUM). It merely limits client connections to local nodes. This
policy is the default lower-level policy and is typically wrapped by a higher-level
implementation.
LatencyAwarePolicy: If you want the driver to keep track of query latencies for
each node, then route requests only to the fastest node, this policy will fit the bill.
This policy acts as a wrapper around a child policy, and there are several
properties you can set to tune its behavior.
WhiteListPolicy: If you want the client to only talk to specific hosts, this policy
will enable that behavior. However, it will not attempt to send requests to
unavailable hosts.
TokenAwarePolicy: This wrapper policy will make a best effort to select replicas
for the given key in the local data center; otherwise, it will use the child policy to
locate hosts.

The default combination of the DCAwareRoundRobinPolicy wrapped by
the TokenAwarePolicy is a good place to start if you're unsure as to the
right strategy. You should only add latency awareness as a tuning
measure if you experience issues.

Let's examine some load balancing strategies in detail, and see how they might help us
increase availability in the application.

Failing over to a remote data center
The foundation of any robust load balancing strategy is the DCAwareRoundRobinPolicy,
because we'll assume you will be deploying to more than one data center. But the
implementation hides an interesting failover feature that's worth a look.

High Availability Features in the Native Java Client

[94]

In Chapter 4, Data Centers, we discussed several use cases for multiple data centers, with
failover being one key scenario. If your desire is to failover to a backup data center should
replicas in your client's primary data center fail, you may be interested in two additional
options you can specify when building the DCAwareRoundRobinPolicy:

withUsedHostsPerRemoteDc: This vaguely named method allows you to
specify a number of hosts in a remote data center that can be used by this client
should your local data center fail to satisfy the request. Note that by default, this
will be ignored for LOCAL_ONE and LOCAL_QUORUM consistency levels.
allowRemoteDCsForLocalConsistencyLevel: If set to true, this overrides
the restriction on LOCAL_ONE and LOCAL_QUORUM requests. This should be
enabled with caution, as it essentially breaks the consistency level policy. You
should consider simply using another consistency level rather than enabling this
feature.

Keep in mind that enabling fallback to remote hosts will likely result in degraded
performance due to network latency, but this can be preferable to a wholesale failure of the
application. A slow system and a down system often look the same, so you may be failing
over to the remote data center even when all nodes in the local data center are up. The good
news is that the policy is intelligent enough to make all possible efforts to satisfy requests
locally before attempting to connect to remote nodes. In most cases, this only makes sense
when using a numbered consistency level such as ONE, TWO, or THREE.

There is an important consideration when deciding whether to allow
remote fallback. If you're relying on LOCAL_QUORUM reads and writes to
maintain overall consistency, during the failover condition this
consistency guarantee will be temporarily broken.

Downgrading consistency level
While failing over to a remote data center may be the right strategy in some cases, there is
another option for dealing with potential node failures in the local data center. The driver
offers a flexible retry policy interface that allows you to temporarily downgrade the
consistency level during a failure.

For example, you may desire that your application write at a consistency level of
LOCAL_QUORUM with a replication factor of three. If your client is unable to write to two
replicas, the request will fail. In some cases, it may be preferable for the write to succeed on
a single node, even if that results in potentially stale reads.

High Availability Features in the Native Java Client

[95]

You can enable this feature with its default behavior by using the
DowngradingConsistencyRetryPolicy, like this:

private Cluster cluster; // defined at class level
cluster = cluster.builder()
 .addContactPoints("10.10.10.1", "10.10.10.2", "10.10.10.3")
 .withRetryPolicy(DowngradingConsistencyRetryPolicy.INSTANCE)
 .build();

Defining your own retry policy
It is also possible to specify your own behavior by implementing the RetryPolicy
interface. In the following naÃ¯ve example, we override the onReadTimeout() method to
always try at a consistency level of ONE as long as we have received at least one response
but not previously retried. For write timeouts, we defer to a default policy:

import com.datastax.driver.core.*;
import com.datastax.driver.core.exceptions.DriverException;
import com.datastax.driver.core.policies.*;

public class MyRetryPolicy implements RetryPolicy {
 private RetryPolicy defaultPolicy =
 DowngradingConsistencyRetryPolicy.INSTANCE;

 public MyRetryPolicy() {}

 public void init(Cluster cluster) {}
 public void close() {}

 @Override
 public RetryDecision onReadTimeout(Statement statement,
 ConsistencyLevel cl, int
 requiredResponses, int
 receivedResponses,
 boolean dataRetrieved, int nbRetry)
 {
 if (nbRetry != 0)
 return RetryDecision.rethrow();
 else if (receivedResponses > 0)
 return RetryDecision.retry(ConsistencyLevel.ONE);
 else
 return RetryDecision.rethrow();
 }

 @Override
 public RetryDecision onWriteTimeout(Statement stmt,

High Availability Features in the Native Java Client

[96]

 ConsistencyLevel cl,
 WriteType type,
 int reqAcks, int recAcks,
 int nbRetry) {
 return defaultPolicy.onWriteTimeout(stmt, cl, type, reqAcks,
 recAcks, nbRetry);
 }

 @Override
 public RetryDecision onUnavailable(Statement stmt,
 ConsistencyLevel cl,
 int reqRep,int aliveRep,
 int nbRetry){
 return defaultPolicy.onUnavailable(stmt, cl, reqRep,
 aliveRep, nbRetry);
 }

 @Override
 public RetryDecision onRequestError(Statement stmt,
 ConsistencyLevel cl,
 DriverException exc,
 int nbRetry){
 return defaultPolicy.onRequestError(stmt, cl, exc, nbRetry);
 }

}

You can also override the methods for handling write timeouts (onWriteTimeout) and
UnavailableException (onUnavailable). In many cases, however, the
DowngradingConsistencyRetryPolicy will provide the desired functionality.
Specifically, it will lower the consistency level on all operations such that they can be
successful, but will attempt to maintain the highest level possible. Since exceptions are
essentially overlooked in these cases, it can be helpful to wrap the handler in a
LoggingRetryPolicy so you will know when exceptions occur.

A RetryPolicy can also be specified at the Statement level, which is often more useful
than applying a one-size-fits-all policy globally:

Statement stmt = // create statement
session.execute(stmt.withRetryPolicy(
 DowngradingConsistencyRetryPolicy.INSTANCE));

If you decide to implement your own RetryPolicy, make sure to test it thoroughly under
simulated failure conditions so you can be confident that it will behave as you believe it
will.

High Availability Features in the Native Java Client

[97]

Keep in mind that both failover policies and those that downgrade consistency level are a
trade-off between consistency and availability. You will have to determine which is most
important in any given circumstance. In many cases, it is a lesser of two evils decision, as
neither situation may be ideal.

In general, you should be very careful when retrying to only do so at a
single point in the call chain. For example, if client A calls service B, which
then calls service C, which makes a request to Cassandra, ideally you
should only perform retries in the outermost service. If all services
implement retries, the number grows exponentially and can effectively
result in a distributed denial-of-service attack from your own users.

Token awareness
With older Thrift-based drivers, the client is naive in regards to the location of the data in
the cluster. It simply chooses a node (typically, randomly or using a round-robin scheme)
and executes the query against that node. As a result, the coordinator often does not contain
a replica for the requested key, which means additional nodes must participate to satisfy the
request. The following diagram illustrates this point:

High Availability Features in the Native Java Client

[98]

With a naive Thrift client, nodes are chosen at random, which often results in a situation
where the coordinator doesn't have a copy of the data. So it must ask other nodes for
replicas.

By contrast, much in the same way that the Hadoop and Spark drivers operate, the native
driver is able to determine the token ranges owned by each node in the cluster. This is a
significant advantage, as the TokenAwarePolicy load balancer can route requests to
known owners of the requested key, rather than blindly choosing an available node. This
can be visualized as follows:

The native client can be configured to direct requests to one of the replica nodes, such that
fewer total nodes are involved in fulfilling the request.

This feature is provided when using the TokenAware load balancing policy, which is
enabled by default as of version 2.0.2 of the driver. You can enable it in previous versions
like this:

private Cluster cluster; // defined at class level
LoadBalancingPolicy policy =
 new TokenAwarePolicy(DCAwareRoundRobinPolicy.builder().build());
cluster = cluster.builder()
 .addContactPoints("10.10.10.1", "10.10.10.2", "10.10.10.3")
 .withLoadBalancingPolicy(policy)
 .build();

High Availability Features in the Native Java Client

[99]

In most cases, the TokenAwarePolicy is a great place to start. You will see the benefit in
reduced latencies, as you avoid situations where the node that receives your request is
unable to serve or write the replica, and therefore, must forward the request to one of the
replica owners.

We have now covered all the pieces you need to maximize your application's ability to stay
running during node failures. It's time to make use of these features in a cohesive strategy.

Tying it all together
In attempting to develop a comprehensive approach to handling failure, we will start by
assuming you prefer consistency when possible, but want your application to remain
available even if the desired consistency level cannot be satisfied. You are also willing to
experience slower client response rather than denying requests.

With these ideas in mind, we can tie the concepts you have learned throughout this chapter
together in a policy that answers this demand. Take a look at the following example, which
makes use of the previously discussed features:

// defined at class level
private String localDC = "DC1";
private ConsistencyLevel defaultCL =
 ConsistencyLevel.LOCAL_QUORUM;
private Cluster cluster;

LoadBalancingPolicy dcPolicy =
 DCAwareRoundRobinPolicy.builder()
 .withLocalDc(localDC)
 .withUsedHostsPerRemoteDc(2)
 .build();

// initialized once per application
cluster = cluster.builder()
 .addContactPoints("10.10.10.1", "10.10.10.2", "10.10.10.3")
 .withRetryPolicy(new LoggingRetryPolicy(
 DowngradingConsistencyRetryPolicy.INSTANCE))
 .withLoadBalancingPolicy(new TokenAwarePolicy(dcPolicy))
 .withQueryOptions(
 new QueryOptions().setConsistencyLevel(defaultCL))
 .build();

High Availability Features in the Native Java Client

[100]

This implementation exhibits the following characteristics:

If sufficient replicas exist in the local data center, both reads and writes will
default to LOCAL_QUORUM, and therefore, queries will be strongly consistent.
If sufficient replicas do not exist in the local data center, the consistency level will
downgrade to either ONE, TWO, or THREE. The decision as to which is used is
based on the highest level achievable that is at least one less than the originally
requested level.
Our DCAwareRoundRobinPolicy will continue to try to satisfy the consistency
level using only local nodes if possible, avoiding unnecessary trips to the remote
data center as long as the local data center can fulfill the downgraded consistency
level.
If all else fails, we have set the usedHostsPerRemoteDc parameter to two in the
DCAwareRoundRobinPolicy . So if the local data center cannot produce a
sufficient number of replicas to satisfy a consistency level of ONE, the policy
allows it to contact a remote data center to fulfill the request.

Falling back to QUORUM
While this policy may fit the bill for many use cases, some users may prefer to initially fall
back to QUORUM rather than ONE, TWO, or THREE. Consider that, at a replication factor of
three, a LOCAL_QUORUM request will fall immediately to ONE using our previously proposed
strategy, because only two replicas are necessary to satisfy the original consistency level.

The implication is that we have only one remaining live replica out of three in total, which
could be considered a precarious situation. It is possible that both down replicas are in fact
lost and that there may be some fundamental problem in the data center itself. In this case,
if we fall back to writing at QUORUM instead of ONE, we are guaranteed to get at least one
replica immediately persisted in a remote data center, thus protecting the write from a
complete data center failure.

High Availability Features in the Native Java Client

[101]

Unfortunately, there is no simpleconfiguration to enable this policy, so we must implement
our own. As in the earlier example, we will simply use the
DowngradingConsistencyRetryPolicy for most cases, since we really only want a slight
modification of its behavior. Specifically, we need to override onUnavailable, as this
controls the response when insufficient replicas are available to satisfy the requested
consistency level. We let the default policy handle the timeout exceptions. Here's the
implementation:

import com.datastax.driver.core.*;
import com.datastax.driver.core.exceptions.DriverException;
import com.datastax.driver.core.policies.*;

public class QuorumFallbackPolicy implements RetryPolicy {
 private RetryPolicy defaultPolicy =
 DowngradingConsistencyRetryPolicy.INSTANCE;
 public static final RetryPolicy INSTANCE = new QuorumFallbackPolicy();

 private QuorumFallbackPolicy() {}

 public void init(Cluster cluster) { defaultPolicy.init(cluster); }
 public void close() { defaultPolicy.close(); }

 @Override
 public RetryDecision onUnavailable(Statement stmt,
 ConsistencyLevel cl,
 int reqRep,int aliveRep,
 int nbRetry){

 if (nbRetry == 0 && ConsistencyLevel.LOCAL_QUORUM == cl)
 return RetryDecision.retry(ConsistencyLevel.QUORUM);
 else if (nbRetry == 1)
 return RetryDecision.retry(ConsistencyLevel.ONE);
 else
 return defaultPolicy.onUnavailable(stmt, cl,reqRep,
 aliveRep, nbRetry);
 }

 @Override
 public RetryDecision onReadTimeout(Statement stmt,
 ConsistencyLevel cl, int reqRes,
 int recRes,
 boolean dataRet, int nbRetry) {
 return defaultPolicy.onReadTimeout(stmt, cl, reqRes,
 recRes, dataRet, nbRetry);
 }

 @Override

High Availability Features in the Native Java Client

[102]

 public RetryDecision onWriteTimeout(Statement stmt,
 ConsistencyLevel cl,
 WriteType type,
 int reqAcks, int
 recAcks, int nbRetry) {
 return defaultPolicy.onWriteTimeout(stmt, cl, type, reqAcks,
 recAcks, nbRetry);
 }

 @Override
 public RetryDecision onRequestError(Statement stmt,
 ConsistencyLevel cl,
 DriverException exc,
 int nbRetry){
 return defaultPolicy.onRequestError(stmt, cl, exc, nbRetry);
 }
}

This retry policy first checks to see if the current consistency level is LOCAL_QUORUM and
that this is the first retry. If so, it resets the level to QUORUM. If the QUORUM fails,
onUnavailable() will be called again with the nbRetry count set to 1. In this case, the
default is to simply throw the exception, so we need to check for nbRetry == 1 and do a
second retry at consistency level ONE. Finally, it falls back to the default policy.

Note that this policy introduces a good bit of overhead in the failure case, as it allows for
two retries (and therefore, three total calls per request). It would be advisable to monitor the
number of failures, and simply start making calls at a different consistency level until the
underlying cause of the failure condition is remedied. Otherwise, you will end up with
numerous retries for each success, potentially compounding the issue.

In other words, use this strategy as an initial triage measure, but allowing it to continue for
a long period of time could result in additional trouble.

High Availability Features in the Native Java Client

[103]

Summary
In this chapter, you have learned the value of the native driver as a tool to assist you in
developing a highly available application built on top of Cassandra. Hopefully it has been
apparent that this objective involves a partnership between the application and the
database, and that poor decisions on either end can dramatically affect availability.

However, the native driver has a wealth of functionality beyond what has been covered
here, so it would be worth your while to spend some time understanding its features and
subtleties, as with any new piece of software.

In Chapter 7, Modeling for Availability we will look at another aspect of designing highly
available applications in Cassandra. We'll explore how the right data models can make or
break your system, and what to do to ensure success.

7
Modeling for Availability

A well-designed data model is central to availability in Cassandra, while a poorly chosen
model can substantially handicap your application's resiliency. This idea may seem
counterintuitive to those with backgrounds in relational database systems, but this chapter
may very well be the most critical one in this book.

It's not that data models are unimportant in relational systems, but they are especially
critical when attempting to maintain availability in a large distributed database. In fact, this
topic is probably the least understood and most difficult aspect of transitioning to
Cassandra.

The data modeling problem is somewhat exacerbated by a familiar SQL-style syntax that
can lure unsuspecting users into believing that they already understand the necessary
principles. In reality, the similarity between Contextual Query Language (CQL) and SQL
ends with syntax. The underlying data structure is vastly different, and therefore a new
approach to designing your data model is required.

In this chapter, we will cover the fundamentals of successful data modeling in Cassandra,
including the following topics:

Understanding the storage layer
Compaction
Translating CQL to the storage layer
Designing for immutability
Modeling time series data
Modeling geospatial data

Modeling for Availability

[105]

After reading this chapter, you will understand the principles of effective data modeling,
and hopefully the shroud of mystery surrounding CQL will be lifted. We'll begin by taking
a look at Cassandra's on-disk data structure, as a solid grasp of this will allow you to
understand why certain models work well while others do not.

How Cassandra stores data
Database systems use a variety of structures to represent data on disk. Most traditional
relational systems use a tabular approach, which enables the kinds of random access
queries supported by these systems. But in order to achieve Cassandra's hallmark write
performance, it must avoid these sorts of random access disk seeks, because random disk
I/O tends to be a significant bottleneck. Instead, the system employs a log-structured
storage engine, which allows it to write data sequentially to both a commit log and
Cassandra's permanent structure, SSTables.

Implications of log-structured storage
When a write is received, it is written simultaneously to the commit log and to an in-
memory representation of the table, called a memtable. Note that the commit log is what
provides durability of writes in Cassandra. Memtables are then periodically flushed to disk
in the form of immutable SSTables.

Data in SSTables is split into partitions (which map to the primary key) and sorted in
column name order. This is an important fact, which will be covered in greater detail later
in this chapter.The commit log is only read on node restart to recover data not yet flushed to
an SSTable.

This storage scheme has several important implications related to data modeling:

Writes are immutable: Since writes are always essentially append operations,
updating data involves simply writing the new value with a higher timestamp
(every column is written with a timestamp attached to it).
The last write wins: If multiple versions of a column exist on disk (as will be the
case in an update), the latest value will be returned when that column is queried.
All inserts are actually upserts, as there is no distinction between the two under
the hood.

Modeling for Availability

[106]

Columns cannot be physically deleted: Immutability implies that data isn't
actually deleted when a DELETE statement is executed. Instead, a null column
value is inserted, covering up the old value. This value is referred to as a . Deletes
and tombstones will be covered in detail in Chapter 8, Anti-Patterns.
Sequential queries are efficient: Also referred to as range queries, any query that
results in reading data sequentially on disk will maximize read performance, as it
takes advantage of the underlying storage structure. In general, Cassandra
restricts you to sequential queries, although there are several examples of queries
that break this rule. We will look at range queries in this chapter, while other
types will be dealt with in Chapter 8, Anti-Patterns.

One consequence of an append-only data structure is that old values must periodically be
purged to avoid accumulating unnecessary junk data over time. For example, old values
that have been replaced by newer ones should be purged. And since SSTables are
immutable, we often end up with columns from the same partition existing in multiple files.
This slows read performance, so we need a mechanism to manage this situation.

Understanding compaction
Cassandra deals with this build-up of SSTables over time by means of a process called
compaction. Compaction aggregates partitions from multiple files into a single file, and in
the process it removes old data and purges tombstones. But housekeeping is only one
reason to do this; the other objective is to improve read performance by moving data for a
given key into a single SSTable, thereby reducing the disk I/O required to read each key.

The exact mechanism that governs the compaction process depends on which compaction
strategy you choose. As of version 3.8 (or 3.0.8, which added time-window compaction and
deprecated date-tiered compaction), there are four strategies that ship with Cassandra
(although you can implement your own):

Size-tiered compaction: This strategy causes SSTables to be compacted when
there are multiple files of a similar size (the default is four). In update-heavy
workloads, a partition may exist in many SSTables at once, resulting in reduced
read performance.

Modeling for Availability

[107]

Leveled compaction: This strategy assigns SSTables to levels, where each level
represents tables that are 10 times larger than the next lower level. This
guarantees that tables in the same level won't overlap, and results in the vast
majority of rows being read from a single SSTable. This is good for read-heavy
workloads, but if you don't perform updates or deletes, or query large ranges
across a partition, the additional I/O may not be worth the cost.
Time-window compaction: Added in 3.8, this strategy replaces the deprecated
date-tiered compaction, which suffered from usability and performance issues. It
groups SSTables by time bucket and expiration, thereby allowing the compaction
process to simply drop expired tables and ignore old unexpired tables. This
strategy can dramatically reduce cluster overhead for time series workloads.

Date-tiered compaction: Deprecated as of 3.8 in favor of the more
straightforward time-window strategy.

Let's look at these compaction strategies in detail so you can make an informed decision
about which is right for your use case.

Size-tiered compaction
Size-tiered compaction has been around in Cassandra from the early days, and prior to
version 1.0 it was the only available option. The basic premise is that SSTables are chosen
for compaction based on size buckets.

When the compaction process finds multiple SSTables (the default is four) of a similar size,
it will compact those tables into a single SSTable. Eventually, there will be four larger tables,
which will be compacted again into one table.

Modeling for Availability

[108]

The following diagram shows the progression through multiple passes of the compaction
process:

With size-tiered compaction, similarly sized tables are compacted into larger tables once a certain number are accumulated

Modeling for Availability

[109]

Each stage results in smaller tables being combined into larger ones, such that ultimately
after multiple compactions, the resulting SSTable distribution will resemble the following
chart:

This represents the final distribution using size-tiered compaction after multiple passes

Modeling for Availability

[110]

Size-tiered compaction has some disadvantages, which may or may not be important for
your use case:

It can require a lot of extra disk space, as much as twice the used disk space if
there are no deletes or updates. This is because the tables are copied during
compaction, so the data will be duplicated while the process is running. This is
especially important for operations because it means you must have as much free
space as your largest SSTables or they won't be able to compact.
A row can exist in multiple SSTables, which can result in degradation of read
performance. This is especially true if you perform many updates or deletes.

If you have very write-heavy workloads or your writes are generally immutable, size-tiered
compaction can be a good strategy. Otherwise, you should probably choose leveled or time-
window compaction.

Leveled compaction
Introduced in version 1.0, leveled compaction attempts to create SSTables that are fixed in
size and then grouped into levels based on their size, with each level being 10 times the size
of the previous level. A key trait of leveled compaction is that within a level, there are no
overlapping SSTables. This minimizes the number of files that need to be checked in a given
level, because a partition can only exist in at most one (and most likely zero) SSTable per
level.

The algorithm is straightforward. New SSTables are placed in the first level, called L0, after
which they are immediately compacted with the overlapping tables in the next level, L1. As
L1 becomes filled, extra tables are merged with tables in L2, and so on.

This process introduces several improvements over size-tiered compaction for workloads
involving lots of reads or updates:

It uses much less space than size-tiered compaction, reducing the amount of disk
space used while the SSTable is being compacted. Since SSTables are also much
smaller using this strategy, this amounts to a reduction in space complexity.
Much less space is wasted by old rows, at most 10%.
Read performance is often improved, as 90% of all reads will require a lookup in
only a single SSTable.

Modeling for Availability

[111]

The leveled compaction strategy actually employs a hybrid approach,
where the process switches to size-tiered compaction when Cassandra is
unable to keep up with the load. The max_threshold property
determines when this occurs.

Time-window compaction
Starting in versions 3.8 and 3.0.8, you can make use of a new time-window compaction
strategy, which groups data into SSTables based on the write time and expiration. This can
be helpful for time series models where the most frequent query patterns involve reading
the most recent data. If you use TTLs, this strategy can group data expiring at the same time
into the same SSTables, which allows it to simply remove the table without having to run
compaction. Time-window compaction makes use of size-tiered compaction within
windows, so it supports all the existing size-tiered configuration options.

Many users have reported significant gains in performance on time series workloads by
switching to time-window compaction, and it is much easier to understand than its
deprecated predecessor, date-tiered compaction. If you are running a version that has not
yet incorporated time-window compaction, the upgrade is well worth the effort. Though it
is a new strategy, many early adopters have been running it in production at scale for over a
year, so you can proceed with confidence.

Compaction plays such a critical role in reducing disk usage and providing optimal read
performance, making it important to choose the right strategy for your workload. As the
compaction process can be intensive, you can choose to throttle it using the
compaction_throughput_mb_per_sec setting in cassandra.yaml. The default is 16
MB/sec, which may be sufficient for many workloads. As with any tuning, you should
measure the impact of compaction prior to changing this setting.

Now that you understand the high-level structure of Cassandra's storage engine, the next
step is to examine how various data models translate to the underlying storage layer. These
concepts will help you design models that take full advantage of Cassandra's unique
characteristics.

Modeling for Availability

[112]

CQL under the hood
At this point, most users should be aware that CQL has replaced Thrift as the standard (and
therefore recommended) interface for working with Cassandra. Yet it remains largely
misunderstood, as its resemblance to common SQL has left both Thrift veterans and
Cassandra newcomers confused about how it translates to the underlying storage layer.
This fog must be lifted if you hope to create data models that scale, perform, and ensure
availability.

As we begin this section, it is important to understand that the CQL data representation
does not always match the underlying storage structure. This can be challenging for those
accustomed to Thrift-based operations, as those were performed directly against the storage
layer. But CQL introduces an abstraction on top of the storage rows, and only maps directly
in the simplest of schemas.

If you want to be successful at modeling and querying data in Cassandra,
keep in mind that while CQL improves the learning curve, it is not SQL.
You must understand what's happening under the covers, or you will end
up with data models that are poorly suited to Cassandra. As we'll discuss
in Chapter 8, Anti-Patterns, indices are not always the answer.

So let's pull back the curtain and look at what our CQL statements translate to at the storage
layer starting with a simple table.

Single primary key
The first model we will examine is a straightforward table, which we'll call books, with a
single primary key called title:

CREATE TABLE books (
 title text,
 author text,
 year int,
 PRIMARY KEY (title)
);

Modeling for Availability

[113]

We can then insert some data, as follows:

INSERT INTO books (title, author, year)
VALUES ('Patriot Games', 'Tom Clancy', 1987);
INSERT INTO books (title, author, year)
VALUES ('Without Remorse', 'Tom Clancy', 1993);

And finally we can read our newly inserted rows:

SELECT * FROM books;

 title | author | year
-----------------+------------+------
 Without Remorse | Tom Clancy | 1993
 Patriot Games | Tom Clancy | 1987

What we've done so far looks a lot like ANSI SQL, and in fact these statements would have
been valid when run against most modern relational systems. But we know that something
very different is happening under the hood.

At the storage layer, this data is represented by a row key, title, and a set of columns with
 name and value. Each column also has a timestamp that is used for conflict resolution.
The following is a representation of the storage rows that closely resembles the old pre-3.0
CLI output, and we will continue with this representation throughout this chapter:

Row Key: Without Remorse
=> (name=author, value=Tom Clancy, timestamp=1393102991499000)
=> (name=year, value=1993, timestamp=1393102991499000)
Row Key: Patriot Games
=> (name=author, value=Tom Clancy, timestamp=1393102991499100)
=> (name=year, value=1987, timestamp=1393102991499100)

As you can see, this is nearly a direct mapping to the CQL rows. Let's point out a couple of
important features of this data. First, you will recall from Chapter 2, Data Distribution, that
the row key is distributed randomly using a hash algorithm, so the results are returned in
no particular order. By contrast, columns are stored in sorted order by name, using the
natural ordering of the type. In this case, author comes before year lexicographically, so it
appears first in the list. These are critical points, as they are central to effective data
modeling.

Modeling for Availability

[114]

Compound keys
Now let's look at a slightly more complex example, one that uses a compound key. In this
case, we'll create a new table, authors, with a compound key using name, year, and
title:

CREATE TABLE authors (
 name text,
 year int,
 title text,
 isbn text,
 publisher text,
 PRIMARY KEY (name, year, title)
);

And this is what our data looks like after inserting two CQL rows:

 name | year | title | isbn | publisher
------------+------+-----------------+---------------+-----------
 Tom Clancy | 1987 | Patriot Games | 0-399-13241-4 | Putnam
 Tom Clancy | 1993 | Without Remorse | 0-399-13825-0 | Putnam

This is where CQL can begin to cause confusion for those who are unfamiliar with what's
happening at the storage layer. To make sense of this, it's important to understand the
difference between partition keys and clustering columns.

Partition keys
When declaring a primary key, the first field in the list is always the partition key. This
translates directly to the storage row key, which is randomly distributed in the cluster via
the hash algorithm. Most queries require that you provide the partition key, so that
Cassandra will know which nodes contain the requested data.

Clustering columns
The remaining fields in the primary key declaration are called clustering columns, and these
determine the ordering of the data on disk. They are not, however, a part of the partition
key, so they do not help determine the nodes on which the data will reside. But they play a
key role in determining the kinds of queries you can run against your data, as we will see in
the remainder of this section.

Modeling for Availability

[115]

Thus, the breakdown of the fields in the primary key is as follows:

PRIMARY KEY (partition_key, clustering1, clustering2)

Now that you know the difference, it's time to see what our authors table looks like in its
storage layer representation:

Row Key: Tom Clancy
=> (name=1987:Patriot Games:ISBN, value=0-399-13241-4)
=> (name=1987:Patriot Games:publisher, value=Putnam)
=> (name=1993:Without Remorse:ISBN, value=0-399-13825-0)
=> (name=1993:Without Remorse:publisher, value=Putnam)

You will note that our two CQL rows translated to a single storage row, because both of our
inserts used the same partition key. But perhaps more interesting is the location of our year
and title column values. They are stored as parts of the column name, rather than column
values! Note that this is a simplified representation, as the new storage engine (as of 3.0)
provides optimizations to avoid duplication of the clustering column names.

You can also observe that the rows are sorted first by year and then by title, which is the
way we specified them in our primary key declaration. It is also possible to reverse the
stored sort order by adding the WITH CLUSTERING ORDER BY clause, as follows:

CREATE TABLE authors (
 name text,
 year int,
 title text,
 isbn text,
 publisher text,
 PRIMARY KEY (name, year, title)
) WITH CLUSTERING ORDER BY (year DESC);

Then, when selecting our rows, we can see that the ordering starts with the latest year and
ends with the earliest:

name | year | title | isbn | publisher
-----------+------+-----------------+---------------+-----------
Tom Clancy | 1993 | Without Remorse | 0-399-13825-0 | Putnam
Tom Clancy | 1987 | Patriot Games | 0-399-13241-4 | Putnam

While this may seem to be a trivial point, it can matter a great deal depending on the types
of queries you intend to run on your data. We will examine these implications later in this
chapter when we discuss queries.

Modeling for Availability

[116]

Composite partition keys
In the previous examples, we demonstrated the use of a single partition key with multiple
clustering columns. But it's also possible to create a multi-part (or composite) partition key.
The most common reason for doing this is to improve data distribution characteristics. A
prime example of this is the use of time buckets as keys when modeling time series data.
We will cover this in detail in the time series section of this chapter.

For now, let's see what it looks like to create a composite partition key:

CREATE TABLE authors (
 name text,
 year int,
 title text,
 isbn text,
 publisher text,
 PRIMARY KEY ((name, year), title)
);

The difference, in case it's not obvious, is the addition of parentheses around the name and
year columns, which specifies that these two columns should form the composite partition
key. This leaves title as the only remaining clustering column.

At the storage layer, this has the effect of moving the year from a component of the column
name to a component of the row key, as follows:

Row Key: Tom Clancy:1993
=> (name=Without Remorse:isbn, value=0-399-13241-4)
=> (name=Without Remorse:publisher, value=5075746e616d)

Row Key: Tom Clancy:1987
=> (name=Patriot Games:isbn, value=0-399-13825-0)
=> (name=Patriot Games:publisher, value=5075746e616d)

The 3.0 release introduced a significant refactor of the storage engine.
Previously, the storage engine had no concept of CQL rows but rather
represented data as a simple map of binary keys to binary cell blobs. The
new engine understands the CQL rows, clustering columns, and type
information, which allows for a number of improvements in both space
and computational efficiency.

Modeling for Availability

[117]

The importance of the storage model
You may be wondering why it matters how the data is stored internally. In fact, it matters a
great deal for several important reasons:

Your queries must respect the underlying storage. Cassandra doesn't allow ad
hoc queries of the sort that you can perform using SQL on a relational system. If
you don't understand how the data is stored, at best you will be constantly
frustrated by the error messages you receive when you try to query your data,
and at worst you will suffer poor performance.
You must choose your partition key carefully, because it must be known at query
time and must also distribute well across the cluster. Make sure to avoid models
where even a small number of keys will contain huge numbers of columns, as
this will impact data distribution.
Because of its log-structured storage, Cassandra handles range queries very well.
A range query simply means that you select a range of columns for a given key,
in the order they are stored. Note that it is not possible to perform range queries
across multiple partitions as they are located in physically different places on
disk.
You have to carefully order your clustering columns, because the order affects the
sort order of your data on disk and therefore determines the kinds of queries you
can perform.

Proper data modeling in Cassandra requires you to structure your data in
terms of your queries. This is backward compared to the approach taken
in most relational models, where normalization is typically the objective.
With Cassandra, you must consider your queries first.

With these principles in mind, let's examine what happens when you run different kinds of
queries so that you can better understand how to structure your data.

Understanding queries
In order to make sense of the various types of queries, we will start with a common data
model to be used across the following examples. For this data model, we will return to the
authors table, with name as the partition key, followed by year and title as clustering
columns. We'll also sort the year in descending order. This table can be created as follows:

CREATE TABLE authors (
 name text,
 year int,

Modeling for Availability

[118]

 title text,
 isbn text,
 publisher text,
 PRIMARY KEY (name, year, title)
) WITH CLUSTERING ORDER BY (year DESC);

Also, for the purposes of these examples, we will assume a replication factor of 3 and
consistency level of QUORUM.

Query by key
We'll start with a basic query by key:

SELECT * FROM authors WHERE name = 'Tom Clancy';

For this simple select, the query makes the request to the coordinator node, which in this
case owns a replica for our key. The coordinator then retrieves the row from another replica
node to satisfy the quorum. Thus, we need a total of two nodes to satisfy the query:

A simple query by key requires two nodes to satisfy a QUORUM read

Modeling for Availability

[119]

At the storage layer, this query first locates the partition key and then scans all the columns
in the natural sort order of the columns, as follows:

So, even though this appears to be a simple query by key, at the storage layer, it actually
translates to a range query!

Range queries
If this basic query results in a range query, let's see what happens when we specifically
request a range, like this:

SELECT * FROM authors WHERE name = 'Tom Clancy' AND year >= 1993;

In this case, we're still selecting a single partition, so the query must only check with two
nodes as in the previous example. The difference is that in this case, Cassandra simply scans
the columns until it finds one that fails the query predicate:

Modeling for Availability

[120]

Once it finds the year 1991, Cassandra knows there are no more columns to scan.
Therefore, this query is efficient because it must only read the required number of columns
plus one.

To recap, there are three key points you should note from this discussion:

Sequential queries are efficient, because they take advantage of Cassandra's1.
natural sort order at the storage layer.
Queries by key and combination of key plus clustering column are sequential at2.
the storage layer, which of course means they are optimal.
Write your data the way you intend to read it. Put another way, model your data3.
in terms of your queries and not the other way around. Following this rule will
help you avoid the most common data modeling pitfalls that plague those who
are transitioning from a relational database.

Now that we've covered the basics of how to build data models that make optimal use of
the storage layer, let's look at how we can effectively leverage some of Cassandra’s newer
features to model for our queries.

Embracing denormalization
If you recall, earlier in this chapter we stated that you must write your data the way you
intend to read it. Denormalization is the key, and Cassandra provides tools to help ease this
burden.

Modeling for Availability

[121]

If you come from a relational background, denormalization can initially be difficult to
grasp. But it is extremely important, as normalized models tend to force applications to
produce client-side joins. Using the authors table as an example, let's consider how we
would model this in a normalized database.

We would of course start with an authors table, but the one-to-many relationship between
authors and books would be modeled with a second table. Each table would have an ID,
and the books table would have an authorID as a foreign key. The result would be similar
to the following MySQL tables:

CREATE TABLE authors (
 authorID int,
 name varchar(50),
 PRIMARY KEY (authorID)
)

CREATE TABLE books (
 bookID int,
 authorID int,
 name varchar(100),
 year int,
 INDEX auth_ind (authorID),
 FOREIGN KEY (authorID) REFERENCES authors(authorID)
)

In a relational database we could execute a query joining these two tables together, which is
a common operation. But imagine what would happen if we emulated this model in
Cassandra. In order to retrieve a list of books and the associated author, we would have to
request each book, then request the author separately, resulting in a query for each book
plus the one for the author. This query would likely require many nodes to satisfy and
would be very expensive to execute.

We need a saner model, and collections can help us solve this. An authors table with a
collection of books, as in our earlier examples, gives us the ability to perform a single query
to retrieve everything we need.

While it might be tempting to use secondary indices as a means of avoiding denormalizing
your data, this is rarely a sound strategy. For more information on why this is the case, see
Chapter 8, Anti-Patterns, where we cover secondary indices in detail.

Modeling for Availability

[122]

Denormalizing using collections
The introduction of collections to CQL addresses some of the concerns that frequently arose
regarding Cassandra's primitive data model. They add richer capabilities that give
developers more flexibility when modeling certain types of data.

Cassandra supports three collection types: sets, lists, and maps. In this section, we will
examine each of these and take a look at how they're stored under the hood. But first, it's
important to understand some basic rules regarding collections:

The size of each item in a collection must not be more than 64 KB
A maximum of 64,000 items may be stored in a single collection
Querying a collection always returns the entire collection
Collections are best used for relatively small, bounded datasets

With these rules in mind, we can examine each type of collection in detail, starting with
sets.

Sets
A set in CQL is very similar to a set in your favorite programming language. It is a unique
collection of items, meaning it does not allow for duplicates. In most languages, sets have
no specific ordering; Cassandra, however, stores them in their natural sort order, as you
might expect.

Here is an example of a table of authors that contains a set of books:

CREATE TABLE authors (
 name text,
 books set<text>,
 PRIMARY KEY (name)
);

We can then insert some values as follows:

INSERT INTO authors (name, books)
VALUES ('Tom Clancy', {'Without Remorse', 'Patriot Games'});

UPDATE authors
SET books = books + {'Red Storm Rising'}
WHERE name = 'Tom Clancy';

Modeling for Availability

[123]

Cassandra also supports removing items from a set using the UPDATE statement:

UPDATE authors
SET books = books - {'Red Storm Rising'}
WHERE name = 'Tom Clancy';

At the storage layer, set values are stored as column names, with the values left blank. This
guarantees uniqueness, as any attempt to rewrite the same item would simply result in
overwriting the old column name. The storage representation of the books set would look
like this:

You can see that the name of the set is stored as the first component of the composite
column name, with the item as the second component. Sets can be quite useful as a
container for unique items in a variety of data models.

Lists
At the CQL level, lists look very similar to sets. In the following table, we substitute the set
of books from the previous example for a list:

CREATE TABLE authors (
 name text,
 books list<text>,
 PRIMARY KEY (name)
);

Insertion is also similar to the set syntax, except that the curly braces are traded for brackets:

INSERT INTO authors (name, books)
VALUES ('Tom Clancy', ['Without Remorse', 'Patriot Games']);

Modeling for Availability

[124]

And since lists are ordered, CQL supports prepend and append operations, which involve
simply placing the item as either the first (prepend) or second (append) operands, as
follows:

UPDATE authors
SET books = books + ['Red Storm Rising']
WHERE name = 'Tom Clancy';

UPDATE authors
SET books = ['Red Storm Rising'] + books
WHERE name = 'Tom Clancy';

To delete an item, you can refer to it by name:

UPDATE authors
SET books = books - ['Red Storm Rising']
WHERE name = 'Tom Clancy';

Unlike set, the list structure at the storage layer places the list item in the column value, and
the column name instead contains a UUID for ordering purposes. Here's what it looks like:

Row Key: Tom Clancy
=> (name=books:d36de8b0305011e4a0dddbbeade718be, value=576974686f)
=> (name=books:d36de8b1305011e4a0dddbbeade718be, value=506174726)

Maps
Lastly, maps are a highly useful structure, as they can offer similar flexibility to the old
dynamic column names many grew accustomed to in the Thrift days, as long as the total
number of columns is kept to a reasonable number. Just remember that many of the models
that used dynamic columns in Thrift (such as time series data) should make use of
clustering columns. Maps, on the other hand, can be helpful for cases where some fields
may be unknown up front.

For example, we can use a map to store not only the book title but also the year. Here is
what that would look like:

CREATE TABLE authors (
 name text,
 books map<text, int>,
 PRIMARY KEY (name)
);

Modeling for Availability

[125]

To insert or update an entire map, use the following syntax:

INSERT INTO authors (name, books)
VALUES ('Tom Clancy', {'Without Remorse':1993, 'Patriot Games':1987});

You can also insert or update a single key using array-like syntax, as follows:

UPDATE authors
SET books['Red Storm Rising'] = 1986
WHERE name = 'Tom Clancy';

Specific values can be also be removed by using a DELETE statement:

DELETE books['Red Storm Rising']
FROM authors WHERE name = 'Tom Clancy';

At the storage layer, maps look very similar to lists, except that the ordering ID is replaced
by the map key:

RowKey: Tom Clancy
=> (name=books:50617472696f742047616d6573, value=000007c3)
=> (name=books:576974686f75742052656d6f727365, value=000007c9)

As you can see, all of these collection types make use of composite columns in the same
manner as clustering columns. However, keep in mind that there is currently no range
query functionality for collections, so in many cases clustering columns will be a better
choice.

Denormalizing with materialized views
There are times when your use case requires you to read data using an alternate key
entirely. In order to be able to read your data by partition key, and in sorted order, it is
often necessary to write data in more than one way. Prior to version 3.0, we would
accomplish this by literally creating and writing to multiple tables, one for each query type.

Fortunately Cassandra now provides an alternative, called materialized views. This new
feature handles the administrative task of populating these alternate table views, removing
the burden from our application and reducing the risk of orphaned data.

Modeling for Availability

[126]

Creating a materialized view is straightforward. As an example, let's say we need to query
for all authors in a given year, which is not possible with the authors table introduced
earlier. To accomplish this, we need a view that specifies a primary key starting with the
year column, followed by clustering columns for both name and title:

CREATE MATERIALIZED VIEW books_by_year AS
 SELECT *
 FROM authors
 WHERE year IS NOT NULL
 AND name IS NOT NULL
 AND title IS NOT NULL
 PRIMARY KEY (year, name, title);

As we insert new data into the authors table, Cassandra will keep this view up to date,
allowing us to run queries such as the following:

SELECT * FROM books_by_year
WHERE year = 1987;

You'll notice that CQL requires us to specify a non-null query predicate for each of the
primary key columns. In the previous example we simply used the IS NOT NULL qualifier,
but it is also possible to filter data using the WHERE clause, similarly to any other CQL
statement. Suppose, for instance, that we would like a view consisting solely of books
written by a single author. We could do this as follows:

CREATE MATERIALIZED VIEW clancy_books AS
 SELECT *
 FROM authors
 WHERE name = 'Tom Clancy'
 AND title IS NOT NULL
 AND year IS NOT NULL
 PRIMARY KEY (name, title, year);

Modeling for Availability

[127]

There are implications whenever data is modified, as Cassandra must now perform writes
to both the base table and the view table(s). However, without this feature, we would need
to execute multiple updates from our application, which may be less performant than
allowing the database to handle this for us. Additionally, updates to views are atomic, so
there is no concern about data getting out of sync.

At this point you should have a good understanding of the building blocks for a solid
Cassandra data model. While every use case is different, there are some general themes we
can examine to help you think through your own unique model. So let us now have a look
at some of these common patterns, beginning with what's likely the most common use of
Cassandra: time series data.

Working with time series data
For most of the last two decades, data modeling has centered around the relationships
among various entities. A person has one account but one or many phone numbers. That
same person has one or more addresses (such as a home and work address). A person can
belong to one or more groups, which can in turn contain many people.

nge over time.

We modeled these relationships using foreign keys and join tables, and we built queries by
joining multiple tables together to produce the desired result. But in recent years we have
begun to introduce another dimension to our data: time. Now we're interested in more than
just how entities are connected, but also how their relationships change over time.

For example, while we previously were concerned only about a set of fixed locations
associated with a person, we now have mobile phones with GPS radios in pockets and
purses all over the world. This makes it possible to produce a timeline of a person's
movements, marrying time and location.

Introducing time into the equation causes significant challenges for a traditional relational
database, because it dramatically increases the volume and velocity of data, putting a strain
on the monolithic model. Fortunately Cassandra is perfectly suited for this sort of data.

Modeling for Availability

[128]

Designing for immutability
An interesting and important difference between modeling relationships versus modeling
time series data, is that relational data tends to be mutable whereas time series data is
generally immutable. Mutable data is unstable, because it may change at any moment. This
makes it more complicated to guarantee that we have the most up-to-date version.
Immutable data, by contrast, is stable, which means we can avoid many of the complexities
associated with data that can change over time.

If you find yourself struggling with modeling a particular problem in
Cassandra, consider reimagining the model as immutable time series data.
This strategy often results in an obvious solution to what appeared to be
an intractable problem.

Immutability is a desirable property in a Cassandra data model, as updates and deletes can
add complexity related to consistency and performance (remember that SSTables are
immutable). Often the easiest way to guarantee immutability is to simply add a time
component to your data model. Let's take a look at how we can do this.

Modeling sensor data
We'll start with a ubiquitous use case: sensor data. Sensor readings are inherently time-
oriented, and our world is filled with all manner of sensors. As with any Cassandra data
model, the first order of business is to examine our intended query patterns.

The queries
For this use case, given a specific sensor, we want to be able to answer two primary
questions in real time:

What is the current sensor reading?1.
What were the readings between time x and time y?2.

To answer the first question, our model must allow us to retrieve only the latest value, so
we know we must order the data by a timestamp. Since the data will be ordered by time, we
should also be able to support the second query, as it involves selecting a range of times. As
we learned earlier in this chapter, Cassandra does well with ranges based on sort order.

Modeling for Availability

[129]

Time-based ordering
We have established that we must know the partition key at query time, and that the key
must distribute well across the cluster. Since we're going to look up the data by sensorID,
one option might be to use this ID as the partition key. We can then store the timestamp as
a clustering column in order to get time-based ordering. Here's what that model would look
like:

CREATE TABLE sensor_readings (
 sensorID uuid,
 timestamp bigint,
 reading decimal,
 PRIMARY KEY (sensorID, timestamp)
) WITH CLUSTERING ORDER BY (timestamp DESC);

If you consider our earlier discussion on how this type of model translates to the storage
layer, it should be clear that this could be problematic. If we presume that sensors will
continue to collect data indefinitely, the result of this data model will be unbounded row
growth. This is because each new CQL row for a given sensor is actually adding columns to
the same storage row. Eventually this model will result in an unsustainable number of
columns in each row, with no easy way to archive off old data. It would be tempting to
resolve this by simply deleting a range of values at the end of the partition, but this is
actually an anti-pattern. See the next chapter for more details on why this is a bad idea.

Using a sentinel value
There is a simple way to address this. We can add a time bucket to the partition key, such
that the key is comprised of both the sensorID and the time bucket, where the time bucket
is a timestamp rounded to some interval. This gives us a known, time-based value to use as
a means of further partitioning our data, and also allows us to easily find keys that can be
safely archived. The time bucket is an example of a sentinel, and is a useful construct in a
number of models where you need better distribution than your natural key provides.

With this in mind, here is a modification of the sensor_readings table:

CREATE TABLE sensor_readings (
 sensorID uuid,
 time_bucket int,
 timestamp bigint,
 reading decimal,
 PRIMARY KEY ((sensorID, time_bucket), timestamp)
) WITH CLUSTERING ORDER BY (timestamp DESC);

Modeling for Availability

[130]

When choosing values for your time buckets, a rule of thumb is to select an interval that
allows you to perform the bulk of your queries using only two buckets. The more buckets
you query, the more nodes will be involved to produce your result. For more information
on this, see Chapter 8, Anti-Patterns. It's also worth noting that this would be an excellent
time to use time-window compaction.

Satisfying our queries
So the question remains: how does this model allow us to perform the two queries we said
were required for our use case? Well, we have seen that we can ask for the data for a
specific sensor, as the time bucket can be computed at query time. To do this, we compute a
time_bucket that corresponds to the current timestamp rounded down to the start of the
time interval.

We can then obtain the latest reading as follows:

SELECT * FROM sensor_readings
WHERE sensorID = 53755080-4676-11e4-916c-0800200c9a66
AND time_bucket = 1411840800 LIMIT 1;

For the second query, we want a range from time x to time y for a given sensor. Since our
timestamp is a clustering column, this is also possible:

SELECT * FROM sensor_readings
WHERE sensorID = 53755080-4676-11e4-916c-0800200c9a66
AND time_bucket IN (1411840800, 1411844400)
AND timestamp >= 1411841700
AND timestamp <= 1411845300;

Thus, we have answered both our queries with a model that scales and performs well, and
that doesn't require a large number of nodes to participate. This time series model should
form the basis of many of your use cases, whether they initially appear to be time series
data or not.

Modeling for Availability

[131]

When time is all that matters
In the previous example, we were looking for time-ordered data for a given object, in this
case a sensor. But there are cases when what we really need is to simply get a list of the
latest readings from all sensors. We need a different model to address this, because our
previous model required that we know which sensor we were querying.

It would be tempting to simply remove sensorID from the primary key, using only
time_bucket as the partition key. The problem with this strategy is that all writes and
most reads would be against a single partition key. This would create a single hotspot that
would move around the cluster as the interval changed. Keep in mind that a materialized
view would result in the same problem, since the view itself would contain hotspots.

As a result, it is imperative that you determine some sentinel value that can be used in place
of the sensorID, and that is not time oriented. For example, sensor type or a hash of the
sensorID could be a good value. In practice I have found that this use case is rare, or that
the real use case requires a queue or cache. Using Cassandra, or most databases for that
matter, as a queue is an antipattern. You can read more about this and other antipatterns in
Chapter 8, Anti-Patterns.

Understanding how to model time series data is an essential skill that you will employ over
and over again as you work with various types of data in Cassandra. When in doubt about
how to model a given use case, start by viewing it as time series data. You will find that the
model fits more often than not.

Working with geospatial data
Another very common use of Cassandra is to store and query geospatial data. Typically the
objective with this type of data is to find points near a given location. The challenge is to
find a key that can be used to narrow down the potential list of locations, and to avoid
querying many keys at once.

While there is more than one possible data structure that can be used for this purpose,
geohashing has a number of benefits that make it worth considering. A geohash is a base-32
representation of a geographic area, where each additional digit represents greater
precision. The property of geohashes that makes them particularly suited for geospatial
searches is that adding a level of precision to a given geohash results in an area contained
within the lower-precision value.

Modeling for Availability

[132]

We can visualize this using the following diagram, which shows a geohash, dnh03, with a
number of more precise geohashes contained within it. All of the smaller geohashes begins
with the dnh03 prefix:

Essentially, geohashes represent the globe as a binary search tree, starting with each
hemisphere as the first nodes. One benefit of using this method over other data structures is
that there is a single scheme that is universally recognized, similar to using latitude and
longitude to represent a point.

Modeling for Availability

[133]

To represent searchable data, we can use a low-precision geohash as the partition key, and
then the full geohash can be stored as a clustering column. The chosen precision will
determine how many keys must be queried to produce results to fill the search space. So
our data model would be as follows:

CREATE TABLE geo_search (
 geo_key text,
 geohash text,
 place_name text,
 PRIMARY KEY (geo_key, geohash)
);

Let's assume we want to store locations with a range of approximately 2.5 km. This
translates to a geo_key precision of five digits. Using this as our model, an insert would
look like this:

INSERT INTO geo_search (geo_key, geohash, place_name)
VALUES ('dnh03', 'dnh03pt4', 'Green Grocery Store');

If necessary, you can also insert values with keys at multiple precision levels, enabling
either coarse- or fine-grained queries. To query for points near a location, you can simply
compute the geohash of the location, then truncate it to the precision level of the key. Once
you have this value, a simple select produces the desired results.

For example, to find points near Green Grocery Store, use the following query:

SELECT * FROM geo_search WHERE geo_key = 'dnh03';

Note that dnh03 is simply the full geohash of Green Grocery Store truncated down to five
digits to match the precision of the key. Depending on the search area, it may be necessary
to request more than one key. This strategy allows you to model and query geospatial data
with minimal cost and overhead across a large Cassandra cluster.

You can also easily imagine combining geohashing with time series data to keep track of
location changes over time. This can be accomplished by creating a partition key consisting
of time bucket and low-precision geohash. This model allows for querying a range of time
for a given location.

While your data model may vary from the two approaches covered here, you will likely
find that querying by time and space will be a common use case. This section has prepared
you to tackle those data models with confidence.

Modeling for Availability

[134]

Summary
In this chapter, we laid down a general foundation for data modeling that should give you
the tools you need to correctly reason about your specific use cases. We have covered a lot
of ground, including Cassandra's storage engine and how your CQL gets translated to that
underlying model, as well as a guide for modeling time series and geospatial data.

But there are also a number of mistakes people make when modeling data for Cassandra,
and we will talk about these in the next chapter on antipatterns. Make sure to read on, so
that you can avoid these common pitfalls.

8
Anti-Patterns

When working with new or unfamiliar technology, we can find ourselves struggling to
apply it to the problem at hand. This is why it is a common practice in software engineering
to seek out established design patterns. Such patterns provide guide rails to keep us headed
in the right direction, and therefore avoid the traps that await those who try to figure it out
on their own.

Design patterns are established through the (often painful) experience of early technology
adopters who have blazed the trails and provided us with nicely groomed paths. But with
any given technology, we find some commonly used trails leading to dangers in the woods.
In software design, we call these anti-patterns.

In the last chapter, we focused on how to model your data correctly to take advantage of
Cassandra's natural sorting and distribution properties. This chapter, by contrast, will take
the opposite approach. We will expose many of the well-worn but dangerous paths so that
you can avoid these common pitfalls.

Specifically, we will deal with the following topics:

Multi-key queries
Secondary indices
Distributed joins
Deletes (and tombstones)
Unbounded row growth

Those who have been around the block with Cassandra can likely point to a time when they
were lured unsuspectingly into at least one of the traps in the previous list. For the benefit
of everyone else, let's fully explore each of these topics to help others steer clear of the
dangers.

Anti-Patterns

[136]

In many ways, this chapter is an extension of the last, as we will be using the same idioms
to discuss data models and their representation at the storage layer. If you are unfamiliar
with these concepts, it would be advisable to review the last chapter to avoid confusion
regarding the terminology.

One common theme with most of the anti-patterns we will discuss is that they often appear
to work fine at a smaller scale. But once you grow your dataset or cluster size, you can end
up with increased latencies, failing queries, and availability problems. Some of these
patterns can be used very carefully under specific circumstances, but you must clearly
understand the limitations.

The first pattern we will examine involves a query pattern that results in some non-obvious
consequences: querying by multiple keys.

Multi-key queries
You will recall from the last chapter that Cassandra is most efficient when querying a range
of columns on disk. All our examples assumed a replication factor of 3 with QUORUM reads
and writes. We will follow the same conventions with the examples in this chapter.

With this in mind, let's make use of the authors schema we introduced in the last chapter:

CREATE TABLE authors (
 name text,
 year int,
 title text,
 publisher text,
 isbn text,
 PRIMARY KEY (name, year, title)
);

Using this schema, let's say we want to retrieve a number of books from a list of known
authors. Obviously, we could write a separate query for each author, but Cassandra also
provides a familiar SQL-style syntax for specifying multiple partition keys using the IN
clause:

SELECT * FROM authors
WHERE name IN (
 'Tom Clancy',
 'Malcolm Gladwell',
 'Dean Koontz'
);

Anti-Patterns

[137]

The question is: how will Cassandra fulfill this request? As we have discussed numerous
times throughout this book, the system will hash the partition key-name in this case-and
assign replicas to nodes based on the hash. Using the three authors in our query as
examples, we will end up with a distribution resembling the following:

The distribution of keys across a six-node cluster using a replication factor of 3

Anti-Patterns

[138]

The important characteristic to note in this distribution is that the keys are dispersed
randomly throughout the cluster. If we also remember that a QUORUM read requires
consulting with at least two out of three replicas, it is easy to see how this query will result
in consulting many nodes. In the following diagram, our client makes a request to one of
the nodes, which will act as coordinator. The coordinator must then make requests to at
least two replicas for each key in the query:

The IN clause in this query results in consulting four total nodes to satisfy the query

The end result is that we require four out of six nodes to fulfill this query! If any one of
these calls fails, the entire query will fail. It is easy to see how a query with many keys could
require participation from every node in the cluster.

When using the IN clause, it's best to keep the number of keys small. There
are valid use cases for this clause, such as querying across time buckets for
time series models, but in such cases, you should try to size your buckets
such that you only need at most two in order to fulfill the request.

Anti-Patterns

[139]

In fact, it is often advisable to issue multiple queries in parallel as opposed to utilizing the
IN clause. While the IN clause may save you from multiple network requests to Cassandra,
the coordinator must do more work. You can often reduce overall latency and workload
with several token-aware queries (see Chapter 6, High Availability Features in the Native Java
Client for details on this concept), as you'll be talking directly to the nodes that contain the
data.

There is an additional benefit in running separate queries rather than a single multi-key
query. When using the IN clause, if any one key times out, you will have to retry the entire
query. On the other hand, using separate queries allows you to retry only the query that
timed out.

Secondary indices
If range queries can be considered optimal for Cassandra's storage engine, queries based on
a secondary index fall at the other end of the spectrum. Secondary indices have been a part
of Cassandra since the 0.7 release, and they are certainly an alluring feature. In fact, for
those who are accustomed to modeling data in relational databases, creating an index is
often a go-to strategy to achieve better query performance. However, as with most aspects
of the transition to Cassandra, this strategy translates poorly.

To start, let's get familiar with what secondary indices are and how they work. The purpose
of an index is to allow query-by-value functionality, which is not supported naturally. This
should be a clue as to the potential danger involved in relying on the index functionality.

As an example, suppose we want to be able to query authors for a given publisher. Using
out earlier authors table, remember that the publisher column has no special properties.
It is a simple text column, meaning that by default we cannot filter based on its value. We
can take a look at what happens when attempting to do so, as in the following query:

SELECT * FROM authors
WHERE publisher = 'Putnam';

Running this query results in the following error message, indicating that we're trying to
query by the value of a non-indexed column:

InvalidRequest: code=2200 [Invalid query] message="Cannot execute this
query as it might involve data filtering and thus may have unpredictable
performance. If you want to execute this query despite the performance
unpredictability, use ALLOW FILTERING"

Anti-Patterns

[140]

The error message gives a hint about why this functionality is unnatural. Because we have
not specified the partition key, this query will require a full, distributed table scan. The
seemingly obvious remedy is to simply create an index on publisher, as follows:

CREATE INDEX authors_publisher
ON authors (publisher);

Now we can filter on publisher, so our problems are solved, right? Not exactly! Let's look
closely at what Cassandra does to make this work.

Secondary indices under the hood
At the storage layer, a secondary index is simply another table, where the key is the value of
the indexed column, and the columns contain the row keys of the indexed table. This can be
a bit confusing to describe, so let's visualize it.

Imagine our authors table contains the following CQL rows:

Name Year Title Publisher

Tom Clancy 1987 Patriot Games Putnam

Dean Koontz 1991 Cold Fire Headline

Anne Rice 1998 Pandora Random House

Charles Dickens 1838 Oliver Twist Random House

An index on publisher would then look like this at the storage layer:

Row Key: Putnam
=> (name=Tom Clancy, value=)

Row Key: Headline
=> (name=Dean Koontz, value=)

Row Key: Random House
=> (name=Anne Rice, value=)
=> (name=Charles Dickens, value=)

So a query filtering on publisher will use the index to each author name, and then query
all the authors by key. This is similar to using the IN clause, since we must query replicas
for every key with an entry in the index.

Anti-Patterns

[141]

But it's actually even worse than the IN clause, because of a very important difference
between indices and standard tables. Cassandra co-locates index entries with their
associated original table keys. In other words, you will end up with a key for Random
House in author_publishers on every node that has keys for Anne Rice or Charles
Dickens in authors.

To make this a bit clearer, the following diagram shows how our co-located authors table
and author_publisher index might be distributed across a four-node cluster:

Index entries are located on the node where the indexed key is stored

Anti-Patterns

[142]

The objective of using this approach is to be able to determine which nodes own indexed
keys, as well as to obtain the keys themselves in a single request. But the problem is that we
have no idea which token ranges contain indexed keys until we ask each range. So now we
end up with a query pattern like this:

A secondary index query requires consulting with all nodes in the cluster

Obviously, the use of secondary indices has an enormous impact on both performance and
availability, since all nodes must participate in fulfilling the query. While this could be
acceptable for occasional queries, trying to do it with critical, high-volume queries will be
problematic. In a distributed system with many nodes, there is a high likelihood that at least
one node will be unable to respond. For this reason, it's best to avoid using them in favor of
materialized views or another data model entirely.

If you decide to use a secondary index for a use case where performance
and availability are not critical, make sure you only index on low-
cardinality values, as high-cardinality indices do not scale well. But don't
go so low that your index is rendered useless. For example, booleans are
bad, as are UUIDs, but birth year could be a reasonable column to index.

Often you will find that your chosen data model does not satisfy all your queries. If this is
the case, you should leverage materialized views to support the additional queries (see
Chapter 7, Modeling for Availability for more details).

Anti-Patterns

[143]

Improvements with SASI
One of the problems with the traditional index mechanism is that it requires two passes
through the read path on each node, one to read the index and one to read the data. This
double-pass introduces significant latency and unnecessary load on the system. As of
version 3.4, there is another option called an SSTable Attached Secondary Index (SASI).

SASI indices offer improvements in performance, resource utilization, and functionality.
The key innovation that enables these enhancements is that-as the name implies-the index is
attached to the SSTable itself, rather than being relegated to a separate table. This means the
read path is much more straightforward, requiring only a single pass to read both the index
and the underlying data.

Creating a SASI index is straightforward, but there are many options available to enable a
variety of query predicates. To enable retrieving authors by publisher as in our previous
example (using the default options), you can issue the following statement:

CREATE CUSTOM INDEX authors_publisher
ON authors(publisher)
USING 'org.apache.cassandra.index.sasi.SASIIndex';

For more information on the various options available for SASI indices, check out the full
documentation at h t t p s : / / d o c s . d a t a s t a x . c o m / e n / c q l / 3 . 3 / c q l / c q l _ r e f e r e n c e / r e f C r e

a t e S A S I I n d e x . h t m l.

But be aware that SASI indices still follow the same query pattern as traditional indices, and
therefore you should use them with caution for applications where performance and
availability are critical. Interestingly, secondary indices are actually one form of a more
general anti-pattern that's just as common. Let's take a look at this concept now.

Distributed joins
With relational databases, we write different data entities in their own tables, and then we
join them to form the desired view at query time. If we apply this idea to a database like
Cassandra, we end up with a distributed join.

New Cassandra developers, especially those who come from a relational database
background, are particularly prone to following this pattern. In the last chapter, we
mentioned that denormalization is the key to successful data modeling in Cassandra, and
our discussion of secondary indices can help explain the reasons for this.

https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html
https://docs.datastax.com/en/cql/3.3/cql/cql_reference/refCreateSASIIndex.html

Anti-Patterns

[144]

If you find yourself querying multiple large tables and then joining them
in your application based on some shared key, you are performing a
distributed join. This should almost always be avoided in favor of a
denormalized data model. The only exception is for very small lookup
tables that can fit easily in memory. Otherwise, you should always write
your data the way you intend to read it.

At this point, you should be familiar enough with distributed join patterns to know why
they should be avoided, so it's time to move on to another common source of problems in
Cassandra: deletes.

Deleting data
We have established that Cassandra employs a log-structured storage engine, where all
writes are immutable appends to the log. The implication is that data cannot actually be
deleted at the time a DELETE statement is issued. Cassandra solves this by writing a marker,
called a tombstone, with a timestamp greater than the previous value. This has the effect of
overwriting the previous value with an empty one, which will then be compiled in
subsequent queries for that column in the same manner as any other update.

Garbage collection
Eventually, these tombstones are reconciled with earlier values as part of the compaction
process, where the earlier values are discarded. See Chapter 7, Modeling for Availability for
more details on how compaction works. There are two possibilities for when data can be
physically deleted and tombstones collected.

If a delete occurs while the data is still in the memtable (and therefore, not yet flushed to
disk), the existing data will be immediately replaced by the tombstone. Otherwise, the
tombstone is simply written to the memtable. In either case, it will eventually get flushed to
disk, where it will continue to live until it is garbage-collected.

Anti-Patterns

[145]

For a tombstone to be deleted, two events must occur. First, the age of the tombstone must
exceed the value of gc_grace_seconds, as specified in cassandra.yaml. Once this time
has elapsed, the next compaction to run on the SSTable containing the tombstone will cause
it to be purged as long as the compaction includes all SSTables covered by the tombstone.

Resurrecting the dead
An astute observer may have noticed a potential problem with tombstones in an eventually
consistent system. Let's assume that multiple replicas exist for a given column, yet only one
has recorded the tombstone. If one of the nodes remains down past gc_grace_seconds
without a repair operation, when it finally comes back online, it will still contain the old
data and be unaware of the delete. Any subsequent repair will then recreate the old data on
other nodes as if the delete had never occurred.

To ensure that deleted data never resurfaces, make sure you run repair at
least once every gc_grace_seconds, and never let a node stay down for
longer than this time period.

The problem with tombstones
You may be wondering why we've spent so much time discussing tombstones in a chapter
on anti-patterns. The last example should provide a hint to the reason. When a query
requires reading tombstones, Cassandra must perform many reads to return your results.
Depending on your data model, this could result in thousands of tombstones read for a
given partition!

In addition, a query for a key in an SSTable that has only tombstones associated with it will
still pass through the bloom filter, because the system must reconcile tombstones with other
replicas. The bloom filter is a data structure that's designed to prevent unnecessary reads
for missing data, but in this case there is actual data to be read. So Cassandra must perform
extra reads even after data has been deleted.

Now that you understand the basics of deletes and the problems associated with them, it's
important to point out the other ways deletes can be generated-sometimes in ways you
would not expect.

Anti-Patterns

[146]

Expiring columns
Cassandra offers us a handy feature for purging old data through setting an expiration
time, called a TTL, at the column level. There are many valid reasons to set TTL values, and
they can help avoid unbounded data accumulation over time. Setting a TTL on a column is
straightforward, and can be accomplished using either an INSERT or UPDATE statement as
follows (note that TTL values are in seconds):

INSERT INTO authors (name, title, year)
VALUES ('Tom Clancy', 'Patriot Games', 1987)
USING TTL 86400;

UPDATE authors USING TTL 86400
SET publisher = 'Putnam'
WHERE name = 'Tom Clancy'
AND title = 'Patriot Games'
AND year = 1987;

This can be useful when dealing with ephemeral data, but you must take care while
employing this strategy, because an expired column results in a tombstone as in any other
form of delete.

TTL anti-patterns
A common reason to expire columns is in the case of time series data. Imagine we want to
display a feed of comments associated with a news article, where the newest post appears at
the top. To avoid holding onto them indefinitely, we set them to expire after a few hours.

So we end up with a model that resembles the following:

CREATE TABLE comments (
 articleID uuid,
 timestamp int,
 username text,
 comment text,
 PRIMARY KEY (articleID, timestamp, username)
) WITH CLUSTERING ORDER BY (timestamp DESC);

Anti-Patterns

[147]

We then insert new comments with a three-hour TTL:

INSERT INTO comments (articleID, timestamp, username, comment)
VALUES (36f08b19-fc6d-4930-81f6-6704f627ca83,
 1413146590, 'rs_atl', 'Nice article!')
USING TTL 10800;

It's important to note that this model is perfectly acceptable so far. Where we can run into
problems is when we naively attempt to query for the latest values. It can be tempting to
assume that we can simply query everything for a given articleID, with the expectation
that old columns will simply disappear. In other words, we perform a query like this:

SELECT * FROM comments
WHERE articleID = 36f08b19-fc6d-4930-81f6-6704f627ca83;

In some ways this expectation is correct. Old values will disappear from the result set, and
for a period of time this query will perform perfectly well. But we will gradually
accumulate tombstones as columns reach their expiration time, and this query requires that
we read all columns in the storage row. Eventually, we will reach a point where Cassandra
will be reading more tombstones than real values!

The solution is simple. We must add a range filter on timestamp, which will tell Cassandra
to stop scanning columns at approximately as far back in time as the tombstones will start.
In this case, we don't want to read any columns older than 3 hours, so our new query looks
like this:

SELECT * FROM comments
WHERE articleID = 36f08b19-fc6d-4930-81f6-6704f627ca83
AND timestamp > [current_time - 10800];

Note that you will have to calculate the timestamp in your application, as CQL does not
currently support arithmetic operations.

To sum up, expiring columns can be highly useful as long as you do so wisely. Make sure
your usage pattern avoids reading excessive numbers of tombstones. Often you can use
range filters to accomplish this goal. Adding a row limit using the LIMIT clause can help to
ensure that you don't inadvertently return a large number of rows. Also, these models are a
good fit for the new time-window compaction strategy, as it's optimized for the efficient
collection of TTL'ed data.

Anti-Patterns

[148]

When null does not mean empty
There is an even subtler (and more insidious) way to inadvertently create tombstones: by
inserting nullvalues. Let's see how we might cause this situation unwittingly.

We know that Cassandra stores columns sparsely, meaning that unspecified values simply
aren't written. So it would seem logical that setting a column to null would result in a
missing column. In fact, writing a null is the same thing as explicitly deleting a column,
and therefore a tombstone is written for that column!

There is a simple reason why this is the case. While Cassandra supports separate INSERT
and UPDATE statements, all writes are fundamentally the same under the covers. And
because all writes are simply append operations, there is no way for the system to know
whether a previous value exists for the column. Therefore Cassandra must actually write a
tombstone in order to guarantee any old values are deleted.

While it may seem as though this would be easy to avoid—by just not writing null values-it
is fairly easy to mistakenly allow this to happen when using prepared statements. Imagine a
data model that includes many sparsely populated columns. It is tempting to create a single
prepared statement with all potential columns, then set the unused columns to null. It is
also possible that callers of an insert method might pass in null values. If this condition is
not checked, it is easy to see how tombstones could be accumulated without realizing this is
happening.

Perhaps the subtlest means by which null values are introduced is through collections.
Any time a collection is deleted or updated, you can end up inserting null. Be wary of
write patterns that do this frequently.

Fortunately, version 4 of the native protocol (support starting from version 3.0 of the driver)
helps to address this issue by allowing you to leave some parameters of a prepared
statement unbound. However, you must still ensure that you aren't passing in null values.

To wrap up our discussion of deletes, let's look at a common anti-pattern involving deletes.

Anti-Patterns

[149]

Cassandra is not a queue
The idea of using a database as a durable queue is certainly not a new one. For many years,
people have been misappropriating relational databases for use as queues. On the surface, it
may seem that Cassandra would work well as a distributed durable queue, as it easily
supports querying based on insertion order. Here is an example data model that would
serve this use case:

CREATE TABLE queue (
 name text,
 timestamp int,
 item text,
 PRIMARY KEY (name, timestamp)
);

We could then support an enqueue operation with a simple insert, perhaps including an
expiration time to avoid holding onto irrelevant items:

INSERT INTO queue (name, timestamp, item)
VALUES ('to_do', 1413146590, 'Learn Scala');

And a dequeue operation would involve querying the first (which equates to the oldest in
this case) item, and then deleting it:

SELECT * FROM queue
WHERE name = 'to_do'
ORDER BY timestamp ASC LIMIT 1;

DELETE FROM queue
WHERE name = 'to_do'
AND timestamp = [timestamp_of_dequeued_item];

Based on our discussion of deletes and tombstones, it should be obvious that we'll be
creating three tombstones for every dequeue operation (one for the marker column and one
for each non-clustering column). While this may seem similar to the earlier example where
we were constantly reading and deleting comments, there is an important distinction.

Anti-Patterns

[150]

In the article comments model, we were reading from one end of the range (the latest
comments) and deleting from the other end (the earliest comments). This allowed us to scan
from the head of the range without the risk of reading any tombstones, and simply apply a
range filter to make sure we never read so far that we encounter any at the other end. With
the queue model, we are doing the opposite: we are reading and deleting from the same
end of the range. The result, over time, looks like this:

The queue pattern results in accumulating tombstones at the head of the range

Anti-Patterns

[151]

As you can see from the diagram, with each dequeue operation, three tombstones (the
marker plus clustering columns) are added to the head of the queue. Then, when we run a
query to obtain the actual head, we must scan through all of these tombstones before
reaching it. Obviously, this is not a sustainable strategy, which is why the queue is an anti-
pattern.

When building your data models, beware of strategies that are actually
queues masquerading as something else. In general, it's important to avoid
data structures where you must perform many deletes on a range of data
you will frequently read. With large datasets, you can end up reading
more tombstones than actual values, and your application may grind to a
halt.

To sum up, remember that databases typically make poor queues. If you need a queue,
choose a system that was designed to support that use case. There are a number of excellent
distributed queues available, so avoid the temptation to use Cassandra for this purpose.

Also, this is a good time to offer a reminder of the advice given in the last chapter to write
data immutably. If you avoid deletes where possible, many of the issues from this section
can be avoided naturally.

Unbounded row growth
Now let us take a look at the counterpoint problem to deletes, when data for a given key
grows without bounds. This is a surprisingly easy situation to get yourself into, especially if
you do not understand how Cassandra stores your data on disk. Perhaps the best antidote
to unbounded row growth is to read and understand the previous chapter, which offers the
foundational knowledge to help you avoid this scenario.

To clarify, this section is not a warning against unbounded growth of your data set in
general. We have established that Cassandra scales linearly, so you can continue to add data
as long as you have capacity in your cluster. Instead, we are referring to a model where a
given partition key continues to accumulate columns with no end in sight. We briefly
touched on this in Chapter 7, Modeling for Availability, but the topic deserves full treatment.

Anti-Patterns

[152]

We can imagine a typical scenario using the sensor_readings data model described in the
last chapter. Here is a reminder of what it looks like:

CREATE TABLE sensor_readings (
 sensorID uuid,
 timestamp int,
 reading decimal,
 PRIMARY KEY (sensorID, timestamp)
);

There are two fundamental problems with this model:

Data will be collected for a given sensor indefinitely, and in many cases at very
high frequency.
With sensorID as the partition key, the row will grow by two columns for every
reading (one marker and one reading).

It should be noted that this is not actually a problem in terms of queries, provided that they
are limited either by a row count or a reasonable range filter on timestamp. Instead, you
should recall from Chapter 2, Data Distribution that the unit of distribution across the
cluster is the partition key, in this case, sensorID. It is therefore possible with this model
that a single key might become so large that it could outgrow a single node! Each Cassandra
partition can support a maximum of two billion columns, but in practice the number should
be much less-with the important point that partitions should have as even a distribution as
possible.

For this reason, it is important to choose a reasonable partition key that will prevent
unbounded row growth. For time series data, this typically means adding a time bucket to
the partition key as described in the time series section in the last chapter. In fact, most
models with the potential to suffer from this problem will be time-based, so the bucketing
solution is typically the best strategy to avoid the situation. For more information on how to
detect wide row problems, refer to Chapter 9, Failing Gracefully.

Anti-Patterns

[153]

Summary
In this chapter, we discussed some common data modeling patterns to avoid. But it would
be impossible to cover every bad choice a user might make, so it's important to focus on
understanding the fundamentals of sound design. This will give you a foundation that will
allow you to make correct data modeling decisions on whatever problem you may
encounter.

As we have also seen in this chapter, sometimes Cassandra isn't the right tool for the
problem at hand. Hopefully, you can now recognize when this is the case and choose the
right tool for the right job.

It is now time to wrap up this book by taking a look at the ways in which things can go
wrong when running Cassandra. While it is a highly fault-tolerant system, you will rest
easier if you know what to do when the unexpected happens.

9
Failing Gracefully

Technology organizations, from the CTO to the system administrators, have spent countless
hours over the years trying to prevent their database systems from experiencing failure.
This is because failure typically meant downtime for the application or, even worse, a loss
of critical data.

As we discussed in Chapter 1, Cassandra's Approach to High Availability, attempts to make
these systems highly available often still required a significant amount of human
intervention to restore functionality in the event of a failure. Cassandra, as we have learned,
was designed from the ground up to consider failure as a normal operational state. This is
because in a large distributed system, the chance that at any given moment a piece of
hardware will fail is relatively high, so the system must know how to deal with those
problems.

But even a robust system like Cassandra, which is designed to handle failure scenarios
without losing data or compromising availability, requires vigilance and know-how to keep
things running smoothly day in and day out. As we near the end of this book, let's take a
moment to examine some of the things that can go bump in the night, and how we might
handle those situations. Fortunately, Cassandra provides a number of tools to deal with a
great many of the common failure scenarios that can present themselves from time to time.

In this chapter, we will cover the following topics:

Monitoring Cassandra
Failure detection
Logging
Recovering from node failures
Backups

Failing Gracefully

[155]

Knowledge is power
Of course, the first step in handling anomalous situations is to be aware that something is
amiss. As proponents of the Unix philosophy have famously stated, a system must not just
function well, but it must also be seen to function well. This is called the rule of
transparency, and in essence it admonishes application designers to build systems that
provide visibility into their inner workings.

Taking this a step further, we might add that we should be able to know that the system is
working even when we aren't looking. There are times when you may be actively watching
the cluster, for example when adding or removing nodes or deploying a new application.
But more often than not, you will have your attention turned elsewhere when the
unexpected occurs. It is during these periods that you will need to rely on automated
monitoring to alert you that there is trouble.

Monitoring via JMX
Fortunately, Cassandra makes this easy by providing numerous Java Management
Extensions (JMX) targets that publish all kinds of statistics to give you a window into the
state and health of the system. You do not need to know a significant amount about JMX to
be able to use it effectively. Essentially, it is a standard mechanism by which applications
built on the Java Virtual Machine (JVM) can expose metrics and management functions via
a common interface.

There are numerous tools for monitoring JMX targets, from the simple JConsole that ships
with the Java Development Kit (JDK), to sophisticated automated monitoring tools that
can alert administrators or even take action based on a set of rules. A simple tool is
sufficient for exploring the various targets and learning more about JMX in general, but for
production deployments, you will want to make use of an automated tool that can work
across your entire cluster.

By default, Cassandra listens for JMX connections on port 7199. To connect to a remote host
for monitoring, you will need to configure JMX to allow remote connections. Detailed
documentation for accomplishing this can be found on Oracle's website at the following
URL:

h t t p : / / d o c s . o r a c l e . c o m / j a v a s e / 8 / d o c s / t e c h n o t e s / g u i d e s / m a n a g e m e n t / a g e n t . h t m l

http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html

Failing Gracefully

[156]

Once you have configured your Cassandra hosts to allow remote JMX connections, you can
connect using any JMX client. Assuming you have a JDK installation on your local
computer, you can connect using JConsole as follows:

First, open a terminal and start JConsole using the jconsole command. Then, fill in the
host, port, and your credentials in the dialog box, and click on the Connect button:

Once JConsole connects to the remote host, you will see an overview of basic statistics for
the host, such as memory and CPU utilization. To access the Cassandra-specific
information, choose the MBeans tab at the top of the window. In this tab, you can see a list
of available mbean categories, some of which are provided by default in the JVM; others are
specific to the application, in this case, those starting with org.apache.cassandra.

Failing Gracefully

[157]

If you expand one of the Cassandra categories, this will expose the various objects that can
be inspected. Under each object, you can either view attributes or perform operations on the
object. For example, if you open the org.apache.cassandra.db category and then
expand the Caches object, you will have access to a variety of statistics, such as hit rates,
cache sizes, and the like. You can also perform operations such as clearing row or key
caches:

While this may be helpful for working with a local Cassandra instance or exploring the
available attributes and operations, JConsole is not a practical tool for managing an entire
cluster. A generic, graphical tool such as JConsole can also be unwieldy when trying to
perform simple tasks on remote servers. For this reason, Cassandra ships with a useful
command-line utility called nodetool, which exposes many of the JMX statistics and
operations. The full documentation for this utility can be found at h t t p s : / / d o c s . d a t a s t a x

. c o m / e n / c a s s a n d r a / 3 . x / c a s s a n d r a / t o o l s / t o o l s N o d e t o o l . h t m l.

https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra/3.x/cassandra/tools/toolsNodetool.html

Failing Gracefully

[158]

Using OpsCenter
DataStax also provides an excellent web-based Cassandra administration tool called
OpsCenter that interfaces with JMX to provide a cluster-wide view of your system. It also
exposes management functions that allow you to perform system-wide changes without
manually editing configuration files or calling JMX functions on every node individually.

To install OpsCenter on your cluster, download the appropriate package from the following
URL:

h t t p : / / d o c s . d a t a s t a x . c o m / e n / o p s c e n t e r / 5 . / o p s c / i n s t a l l / o p s c I n s t a l l a t i o n _ g . h t m
l

OpsCenter offers a variety of useful tools to ease the Cassandra management workload,
especially repair, configuration, and topology changes. There are community and enterprise
versions of OpsCenter that provide different levels of functionality.

Choosing a management toolset
There is a vast array of third-party products and processes available for managing and
monitoring distributed systems, and as such the topic cannot be adequately covered in this
book. However, this chapter will offer you an overview of the most important monitoring
targets so that you can configure your chosen tool correctly.

When choosing a toolset to manage your cluster, at a minimum, you will need it to be able
to perform the following functions:

Automatically deploy and configure new nodes: You will quickly realize the
necessity for this as your cluster size grows and the process of scaling out
manually becomes cumbersome.
Keep your configuration in sync across the nodes: Specifically, this means
managing cluster topology files and each machine's cassandra.yaml
configuration and cassandra-env.sh. Open source options such as Chef and
Puppet are excellent choices for these kinds of tasks.
Perform rolling cluster changes: Any changes that require a node restart, such as
configuration changes or version upgrades, will need to be rolled out to a subset
of your nodes at a time.
Monitor kernel-level metrics: These include primarily resource utilization
details, such as CPU, disk, and memory at the operating system level. Since
Cassandra stores a number of important data structures off-heap, simply
monitoring the JVM process itself is not sufficient.

http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html
http://docs.datastax.com/en/opscenter/5.0/opsc/install/opscInstallation_g.html

Failing Gracefully

[159]

Monitor JMX targets: You will certainly want to know when a key metric falls
out of the acceptable range, and many monitoring tools offer this capability. As
you become more experienced with Cassandra, you may also want the tool to
take action to resolve the problem without human intervention. But at the very
least, you need to be aware that something is awry.

For smaller installations, a minimal combination of shell scripts, cron jobs, and a simple
JMX monitoring tool may be sufficient. But large clusters will demand higher levels of
sophistication in this category. When evaluating tools and procedures for monitoring and
managing Cassandra in Amazon EC2, you should consult the Netflix engineering blog
(http://techblog.netflix.com/search/label/Cassandra) and their GitHub site, as they
have contributed significant amounts of their knowledge and tooling to the community.

Logging
In addition to keeping an eye on JMX statistics, there are several levels of log files that
should be monitored so that they can be analyzed in case of failure. Ideally, you should be
using some sort of log aggregation (such as Flume, FluentD, Splunk, or other similar tools)
to make it easier to make sense of logs. Also, aggregation ensures that catastrophic node
failures don't prevent you from recovering logs from the problematic hosts, which may be
the most important bit of diagnostic data available.

Cassandra logs
Cassandra itself provides two logs, and both are located in the configured logging
directory, which is /var/log/cassandra by default. The first, system.log, is a rolling log
of Cassandra's logback output. The second, output.log, shows standard out and standard
error and is overwritten on startup.

If you are experiencing an issue that warrants lower-level logging than the default INFO
level, you can adjust the logging level by editing the logback.xml file (in the conf
directory), or by using the nodetool setlogginglevel command. This also allows you to
set the logging level for a specific subsystem, as in the following example:

nodetool setlogginglevel org.apache.cassandra.db DEBUG

http://techblog.netflix.com/search/label/Cassandra

Failing Gracefully

[160]

To obtain more granular logging, change INFO to either DEBUG or TRACE. Trace-level output
is extremely verbose, so it is recommended that you first use DEBUG as that level should be
sufficient for troubleshooting purposes. Keep in mind that a cluster receiving many
thousands of writes per second will generate very verbose logs at DEBUG level, so this
should be enabled only for a short period of time to diagnose an issue.

Garbage collector logs
As is the case with any JVM-based application, garbage collection is a significant factor in
the performance of Cassandra. In certain classes of problems, where Cassandra did not
necessarily fail outright but suffered significant performance issues, having GC logs is a
significant aid in determining the underlying cause.

GC logging can be enabled in Cassandra by simply adding a few lines at the end of
$CASSANDRA_HOME/conf/cassandra-env.sh:

JVM_OPTS="$JVM_OPTS -XX:+PrintGCDetails"
JVM_OPTS="$JVM_OPTS -XX:+PrintGCDateStamps"
JVM_OPTS="$JVM_OPTS -XX:+PrintHeapAtGC"
JVM_OPTS="$JVM_OPTS -XX:+PrintTenuringDistribution"
JVM_OPTS="$JVM_OPTS -XX:+PrintGCApplicationStoppedTime"
JVM_OPTS="$JVM_OPTS -XX:+PrintPromotionFailure"
JVM_OPTS="$JVM_OPTS -Xloggc:/var/log/cassandra/gc-`date +%s`.log"
JVM_OPTS="$JVM_OPTS -Xloggc:/var/log/cassandra/gc.log"
JVM_OPTS="$JVM_OPTS -XX:+UseGCLogFileRotation"
JVM_OPTS="$JVM_OPTS -XX:NumberOfGCLogFiles=10"
JVM_OPTS="$JVM_OPTS -XX:GCLogFileSize=10M"

The easiest way to view and understand these logs is to use a viewer designed to parse and
make sense of them for you. There are a number of such tools available. If you would like to
learn more about how to read and understand GC logs, check out this post on the Oracle
site:

h t t p s : / / b l o g s . o r a c l e . c o m / p o o n a m / e n t r y / u n d e r s t a n d i n g _ g 1 _ g c _ l o g s

In addition to Cassandra and GC logs, you should also make sure you keep detailed
application logs to diagnose issues with connections, queries, and other such problems that
may display symptoms on the client. The native drivers offer useful information in their
logs that may be helpful in determining the cause of a variety of issues.

https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs
https://blogs.oracle.com/poonam/entry/understanding_g1_gc_logs

Failing Gracefully

[161]

Monitoring node metrics
Whether you are using JMX monitoring software or the nodetool utility, it is important to
know what statistics are worth watching. The names and locations of specific attributes can
vary depending on the Cassandra version, but the key ideas remain the same.

The objective here is to give you an understanding of the available statistics so that you will
know how to choose the proper monitoring targets. We will use nodetool for this purpose,
as its options tend to be more stable. You should find it straightforward to locate the
equivalent JMX mbean.

Thread pools
Cassandra's design employs a staged event-driven architecture (SEDA), which essentially
comprises of message queues (containing events) feeding into thread pools (or stages). The
stages fire off messages to other stages via a messaging service. There are stages for
handling a variety of tasks.

Running nodetool tpstats provides detailed information about what's happening at
each of the stages. A buildup of pending tasks in any of the pools is an indicator that there's
something wrong. For example, a lot of pending operations in the mutation stage means
that writes are backing up (writes are internally referred to as mutations). As a result, it is
wise to monitor pending thread pool messages as they can be a leading indicator of
potential issues.

The following truncated output of the nodetool tpstats command shows what you
might see in the case of a backlog of mutations:

 Pool Name Active Pending Completed
 ReadStage 0 0 4531423
 RequestResponseStage 0 0 109089295
 MutationStage 0 53425 49501952

There can be any number of reasons why such a situation may occur, but it is imperative
that you become aware of the situation as soon as possible, especially if the symptoms are
cluster-wide. If a single node is experiencing this kind of difficulty, it may be an indicator of
impending hardware failure or some other situation that would require intervention to
remedy.

Failing Gracefully

[162]

Table statistics
The nodetool tablestats command offers a wealth of data points that provide a
complete picture of each table in your schema. You can provide a specific keyspace and
table to this command, which helps to limit the verbosity of its output.

When we run this command, we get an output resembling the following:

 Keyspace: test_keyspace
 Read Count: 383953
 Read Latency: 0.9053452870533634 ms.
 Write Count: 125031
 Write Latency: 0.14220190992633827 ms.
 Pending Tasks: 0
 Table: test
 SSTable count: 2
 Space used (live): 1135025
 Space used (total): 1136661
 Space used by snapshots (total): 0
 Off heap memory used (total): 234245
 SSTable Compression Ratio: 0.916869063329679
 Number of keys (estimate): 12544
 Memtable cell count: 0
 Memtable data size: 0
 Memtable off heap memory used: 0
 Memtable switch count: 10
 Local read count: 383953
 Local read latency: 0.045 ms
 Local write count: 125031
 Local write latency: 0.055 ms
 Pending flushes: 0
 Bloom filter false positives: 0
 Bloom filter false ratio: 0.00000
 Bloom filter space used: 16824
 Bloom filter off heap memory used: 0
 Index summary off heap memory used: 54352
 Compression metadata off heap memory used: 0
 Compacted partition minimum bytes: 43
 Compacted partition maximum bytes: 103
 Compacted partition mean bytes: 50
 Average live cells per slice (last five minutes): 0.0
 Maximum live cells per slice (last five minutes): 0.0
 Average tombstones per slice (last five minutes): 0.0
 Maximum tombstones per slice (last five minutes): 0.0
 Dropped mutations: 0

Failing Gracefully

[163]

In general, the keyspace-level statistics at the top are not particularly useful, as they are
aggregates across all the tables in the keyspace. Instead, pay particular attention to local
read and write metrics as well as SSTable count, because these data points can offer insight
into issues with specific tables. Often an issue with a single table can expose problems with
a data model. For example, if you're using size-tiered compaction, a high SSTable count
typically means compaction isn't keeping pace with writes. With leveled compaction, watch
for a high count in level 0, which also indicates lagging compaction.

In addition, you should keep an eye on average tombstones per slice, as this will tell you
how much of your read workload is being consumed by scanning tombstones. A high
number here is a clear indicator of either a problem with your data model or issues with
your query patterns. Review Chapter 8, Anti-Patterns for more information on deletes and
tombstones to understand how this can happen and what to do to avoid the situation.

Finding latency outliers
Another useful tool for diagnosing table-specific issues is the nodetool
tablehistograms command. The basic idea is to provide a histogram of read and write
latencies per table. This tool gives additional insights beyond average latencies, which can
be deceiving, as they can be skewed by outliers. Using nodetool tablehistograms
allows you to see those outliers more clearly.

The following is a truncated sample output from the command:

Percentile SSTables Write Latency Read Latency
 (micros) (micros)
50% 2.00 39.50 36.00
75% 3.00 49.00 55.00
95% 5.00 95.00 82.00
98% 7.00 126.84 110.42
99% 10.00 155.13 123.71
Min 0.00 3.00 3.00
Max 10.00 50772.00 314.00

The statistics generated by nodetool tablehistograms are calculated from the last time
the command was run, so you will effectively reset the numbers with each run.

Failing Gracefully

[164]

Communication metrics
Cassandra provides a useful tool for determining the current state of its communications
both with other nodes and with connected clients. The nodetool netstats command
offers particularly helpful insight into the status of read repair operations, data streaming,
and pending client requests.

The following output shows a Cassandra node in a normal state:

 Mode: NORMAL
 Not sending any streams.
 Read Repair Statistics:
 Attempted: 1
 Mismatch (Blocking): 0
 Mismatch (Background): 0
 Pool Name Active Pending Completed
 Large Messages n/a 0 0
 Small Messages n/a 0 0
 Gossip Messages n/a 0 0

During read repair, bootstrapping, and loading from a snapshot, Cassandra exchanges data
between nodes via a process called streaming. The netstats command will display details
about which nodes are streaming to and from the requested node. The streaming subsystem
associates a specific stream plan to each operation. This plan has a UUID to identify it,
which can be observed in this netstats snippet:

Mode: NORMAL
Bulk Load fdf4cc70-10e9-11e3-bed0-27ba85b87bf8
 /192.168.1.163
 Receiving 3 files, 28437084 bytes total
 /var/lib/cassandra/data/Keyspace1/Standard1
 /Keyspace1-Standard1-tmp-ja-4-Data.db 9244384/
 9244384 bytes(100%) received from /192.168.1.163
 /var/lib/cassandra/data/Keyspace1/Standard1/
 Keyspace1-Standard1-tmp-ja-5-Data.db
 9249617/9249617 bytes(100%)received from
 /192.168.1.163
 /var/lib/cassandra/data/Keyspace1/Standard1/
 Keyspace1-Standard1-tmp-ja-6-Data.db
 5635715/9943083 bytes(56%)
 received from /192.168.1.163

Once you have this ID, you can search through the Cassandra log to find entries related to
this stream. This can be very helpful if a stream operation appears to be taking too long or
has become stuck.

Failing Gracefully

[165]

Thus far we have discussed a variety of ways in which you can monitor and detect failures
using the available tooling. But Cassandra also has its own mechanisms for managing
failure scenarios. Let us take a moment to look at how these processes help us to sleep well
at night, knowing that the system will keep functioning even when things go awry.

When a node goes down
In a cluster of any significant size, nodes are bound to become unresponsive for a variety of
reasons. Fortunately, Cassandra has a sophisticated mechanism called the failure detector
that is designed to determine when this has occurred and then mark the node as down.

Most node failures result from temporary conditions, such as network issues. Therefore,
Cassandra assumes that the node will eventually come back online and that permanent
cluster changes will be executed explicitly using nodetool.

Marking a downed node
Each node keeps track of the state of other nodes in the cluster by means of an accrual
failure detector (or phi failure detector). This detector evaluates the health of other nodes
based on a sliding window of gossip message arrival times. It computes the statistical
distribution of those arrival times per node, thus taking into account the current state of the
network rather than using naive thresholds or timeouts.

The ultimate result of the failure detection algorithm is a value called phi, which
corresponds to the probability that the next gossip message will be received within a certain
amount of time. You can specify the phi value that determines when a node is marked as
down by setting the phi_convict_threshold configuration value in cassandra.yaml.

The default for phi_convict_threshold is 8, which should be sufficient for most
situations. If you are running in a cloud environment without dedicated network resources,
you may consider increasing the value to 12, which takes into account the more contentious
network environment. In general, lower values favor earlier detection at the cost of
unnecessarily downing a host, while higher values will result in longer detection times but
will be less likely to mark a functioning host as down.

Note that there is no master list of downed nodes. Each node manages its own list of the
state of its peers. To see the current list of peer states maintained by a given node, use the
nodetool status command.

Failing Gracefully

[166]

Handling a downed node
Once a node has been marked as unreachable, Cassandra will stop sending traffic to that
node. However, other nodes will continue to try to reach the downed host periodically to
determine whether it has recovered.

During this downtime, any replicas destined for the downed node will be stored as hints on
whichever node acted as coordinator for the write, assuming you have enabled hinted
handoff (see Chapter 3, Replication for more details on how this works). So there will likely
be many nodes in the cluster holding hints for the downed node. Assuming the node comes
back online before the time window (default 3 hours) set in max_hint_window_in_ms (in
cassandra.yaml), the hints will be replayed and the replicas restored.

If the host does not recover before the configured time window has elapsed, the hints will
be discarded. In this case, it will be necessary to run nodetool repair on the newly
recovered host to restore the lost replicas. Furthermore, it is possible that the downed node
itself had stored hints that were never replayed, which is yet another reason to run regular
repair operations across your cluster.

In general, it is wise to attempt to restore downed hosts during the hint window if you're
using hinted handoff, as this will mitigate potential data loss or consistency issues. If you
need to permanently remove a node from the cluster, you should run nodetool
decommission on that node so that Cassandra can properly redistribute data and inform
other nodes.

Handling slow nodes
Sometimes, a node may not become entirely unresponsive but may be slower than others in
the cluster. Cassandra employs a dynamic snitch to attempt to steer clear of slower nodes
when routing read requests (this doesn't work for writes, since all replicas are always
contacted, and then Cassandra simply waits for the consistency level to be satisfied).

When performing a read, the coordinator node only requests the full replica from one node
and then asks for checksums from other nodes based on the consistency level. The dynamic
snitch algorithm attempts to prefer lower latency nodes when requesting the entire record,
thus improving read performance. The algorithm takes into account a variety of factors,
including recent performance and whether the node in question is currently undergoing a
compaction.

Failing Gracefully

[167]

Cassandra has a feature called rapid read protection, which helps to prevent slow nodes
from causing requests to time out. If a request happens to be routed to a slow node,
Cassandra can detect this condition and proactively make the request to another node while
waiting for the original node to respond. This allows the client to avoid a timeout if the
second request returns within the request timeout period.

This feature (which defaults to a setting of 99percentile) can be enabled as either a fixed
time or as a read latency percentile, as follows:

ALTER TABLE authors WITH speculative_retry = '10ms';

or

ALTER TABLE authors WITH speculative_retry = '99percentile';

Keep in mind that rapid read protection only helps when the consistency level is lower than
the replication factor. In other words, you cannot expect improvement if you request all
replicas. In other cases, however, enabling this feature can substantially improve
availability during failure scenarios.

Backing up data
While Cassandra itself goes a long way toward reducing the possibility of data loss, it
cannot prevent loss or corruption due to administrative or application-level mistakes. For
this reason, it is still advisable to maintain backups of critical tables to allow you to recover
to a known good point in the past.

Taking a snapshot
Fundamentally, backing up data in Cassandra involves taking a snapshot of the SSTable for
a given keyspace at a moment in time, as it must have all the tables in order to properly
recover if needed. You can create a snapshot using nodetool as follows:

 nodetool snapshot [keyspace_name]

Failing Gracefully

[168]

This will create hardlinks to the current SSTables in that keyspace's snapshots directory
(located inside the data directory, which is located at
/var/lib/cassandra/data/[keyspace_name] by default), under a directory named
based on the Unix epoch at the time the snapshot is generated. The advantage of this
approach is that the hardlink does not require any additional disk space. However, you
should be sure to remove old snapshots as they will continue to accumulate if not deleted
regularly.

An important point to recognize when using the nodetool snapshot command is that
this builds a snapshot for the target node only. In order to build a snapshot for the entire
cluster, you must run this on every node.

In case it isn't obvious, hardlinking files on the local node does not help you recover lost or
corrupted data in the event of a failure. So you will need to have a process to copy the
snapshots to an offsite location. With a large database, the size of the data set can
discourage frequent backups, so fortunately there is a feature to help alleviate this burden.

Incremental backups
In most cases, there is no need to snapshot an entire keyspace for every backup, as most of
the data has already been transferred offsite. If you only want the changes from the last
snapshot, you can turn on incremental backups by setting incremental_backups to true
in cassandra.yaml. This feature is disabled by default.

You will recall from earlier in this book that SSTables are immutable, and they are flushed
to disk periodically as memtables reach a defined threshold. The incremental backup
process works by hardlinking each new SSTable as it is flushed to disk, thereby providing a
backup that's as up to date as the last flush. The combination of the latest snapshot and any
incremental backups created since that snapshot creates the most recent possible picture of
the state of the keyspace, making more granular recovery possible.

Make sure to periodically remove old snapshots and backups, as
Cassandra does not do this automatically. Otherwise you will end up with
increased disk utilization over time. A logical time to remove incremental
backups is on creation of a new snapshot or after you have moved them to
an off-site location.

Failing Gracefully

[169]

Restoring from a snapshot
Unfortunately, the procedure to restore from a snapshot is less trivial than the initial
snapshot creation process. Before starting the restore procedure, it is important to first
truncate the table. If you fail to truncate the table, you will lose any data that was deleted
after the backup occurred. This is because the tombstones written to cover that data will
have higher timestamps than the restored data.

Restoring from backup can be accomplished in one of two ways:

Shutting down the node, removing old commit logs and SSTables, copying the
backups to the node, and then restarting the node
Using the sstableloader utility to load the snapshot

Considering that the first option requires a significant amount of node downtime, we will
focus on the second option. To restore using the sstableloader option, complete the
following steps:

Copy the snapshots into a directory structure that matches the following pattern:1.
[keyspace]/[table]/[snapshots]. This is a hard requirement for the tool to
pick up the correct files.
Run the following command:2.

 sstableloader -d host1,host2,host3 [keyspace]/[table]

Ideally, you should not run this operation from a Cassandra node, as the operation will
consume significant resources on that node. Note that this process will stream data to the
appropriate nodes, and the host list is simply a set of initial contact points. You can also run
many of these loaders concurrently to reduce the overall load time. It is also possible to
throttle the amount of bandwidth used by the sstableloader process by specifying the -t
option.

Failing Gracefully

[170]

Summary
Handling failure in a distributed system is non-trivial and requires extra vigilance on the
part of the system designers. This is especially true in a stateful, coordinated database like
Cassandra. Fortunately, the architects of Cassandra have done an excellent job in building a
resilient, fault-tolerant system that is designed from the ground up to be highly available.

We have covered a lot of ground in this book, from the basics of distributed database design
to building scalable Cassandra data models. While not exhaustive by any means, the topics
covered have hopefully helped you gain confidence as you design and deploy your
Cassandra-backed applications.

As you take the next step in your journey with Cassandra, please participate by sharing
your experience and learning from others. The project has a strong community of
individuals and businesses who are committed to building the most scalable and resilient
database in the world, and we value contribution at any level.

Thank you for taking the time to read this book, and good luck as you build game-changing
applications!

Index

2
2ndaryNameNode 53

A
Amazon Dynamo architecture 13
anti-patterns 135
ApplicationManagers 53
asynchronous requests
 handling 90, 91
 queries, executing in parallel 91, 92
Atomicity Consistency Isolation Durability (ACID)

properties
 about 7
 Atomicity 7
 Consistency 7
 Durability 7
 Isolation 7
automated monitoring
 management toolset, selecting 158
 OpsCenter, using 158
 using 155
 via Java Management Extensions (JMX) 155

B
batched statements
 about 89
 disadvantages 89, 90
bootstrapping process, vnodes
 automatic token assignment 26
 nodes participation, in data transfer 26
ByteOrderedPartitioner 29

C
CAP theorem 15
 about 14
 availability 14

 consistency 14
 partition tolerance 14
Cassandra logs 159
Cassandra Query Language (CQL)
 about 34, 84, 112
 compound keys 114
 single primary key 112
 storage model, importance 117
Cassandra
 approach to availability 11
 data, storing 105
 peer-to-peer architecture 12
CassandraFS 53
Chef 81
cloud snitches 59, 60
cluster
 connecting 87
 data center, adding 76, 77
 node, adding 73
 node, adding with vnodes 75
 node, adding without vnodes 74
clustering columns 114
collections
 lists 123
 maps 124
 sets 122
 used, for denormalization 122
column expiration
 about 146
 TTL anti-patterns 146
commit log 105
communication metrics 164
compaction
 about 106
 date-tiered compaction 107
 leveled compaction 107, 110
 size-tiered compaction 106, 107

[172]

 time-window compaction 107, 111
composite partition key 116
compound keys
 about 114
 clustering columns 114
 composite partition keys 116
 partition keys 114
consistency level
 ALL 41
 ANY 40
 custom retry policy, defining 95, 97
 downgrading 94, 95
 EACH_QUORUM 41
 LOCAL_ONE 41
 LOCAL_QUORUM 41
 LOCAL_SERIAL 41
 ONE 41
 QUORUM 41
 SERIAL 41
 THREE 41
 TWO 41
consistency
 about 14
 achieving, between data centers 68
 CAP theorem 14, 15
 conflicts 40
 consistency levels 40
 data, repairing 43, 44
 in multiple data center environment 63
 replication factor, balancing 44
consistent hashing
 about 13, 17, 20
 working 21, 22, 23
Contextual Query Language (CQL) 104
coordinator 22
CQL statements
 batched statements 89
 executing 87, 88
 prepared statements 88

D
data backup
 about 167
 incremental backups, setting 168
 restoring, from snapshot 169

 snapshot, obtaining 167
data center, snitch options
 cloud snitches 59, 60
 GossipingPropertyFileSnitch 59
 PropertyFileSnitch 57, 58
 RackInferringSnitch 56, 57
data center
 adding 76, 77
 considerations 76
 consistency, achieving between 68
 decommissioning 80, 81
 nodes, removing 80
 replication 62
 setting up 56
data deletion
 about 144
 columns, expiring 146
 data, recreating 145
 garbage collection 144
 null value, inserting 148
 queues support 149
 tombstones, problems 145
data migration
 scenarios 81, 82
data repair
 asynchronous read repair 43
 manually running repair 43
 synchronous read repair 43
data storage
 about 105
 log-structured storage engine, implications 105
DataNode 53
DCAwareRoundRobinPolicy, options
 allowRemoteDCsForLocalConsistencyLevel 94
 withUsedHostsPerRemoteDc 94
denormalization
 collections, using 122
 using 121
 with materialized views 125
development environment
 setting up 86
distributed hash table (DHT) 13, 17, 19, 20
distributed joins 143
dynamic snitch 166

[173]

E
EC2 snitch 49
Extract, Transform and Load (ETL) 52

F
failover 48, 49
failure detector 165

G
garbage collector logs 160
 reference link 160
geographic distribution 49, 50, 51, 52
geohashing 131
geospatial data
 querying 131
GossipingPropertyFileSnitch 59

H
Hadoop Distributed File System (HDFS) 53
Hadoop
 used, for online analysis 53, 54
hardware configuration
 principles, for selection 71, 72
 selecting 71, 72
hash table
 distributed hash table (DHT) 19, 20
 fundamentals 17, 18
hashing 13
heterogeneous nodes 29
hinted handoff 39

I
Integrated Development Environment (IDE) 86

J
Java Development Kit (JDK) 86, 155
Java Management Extensions (JMX)
 about 155
 reference link, for configuration 155
Java Virtual Machine (JVM) 155

L
latency outliers
 searching 163
leveled compaction
 about 110
 advantages 110
lists 122, 123
live backup 48
load balancing, policies
 DCAwareRoundRobinPolicy 93
 LatencyAwarePolicy 93
 RoundRobinPolicy 93
 TokenAwarePolicy 93
 WhiteListPolicy 93
load balancing
 about 49, 92, 93
 consistency level, downgrading 94, 95
 remote data center, failing over 93, 94
 token awareness 97, 98, 99
log-structured storage engine
 about 105
 implications 105
logging
 about 159
 Cassandra logs 159
 garbage collector logs 160

M
maps 122, 124
master-slave model
 about 9
 master failure, handling 11
 sharding, used to scale writes 10
materialized views
 about 125
 denormalization 126
memtable 105
monolithic architecture 7, 8
multi-key queries 136
multiple data centers
 consistency 63
 consistency, achieving 68
 replicated write, anatomy 65, 66, 67, 68
 use cases 48

[174]

Murmur3Partitioner
 about 29
 URL 21
mutations 161

N
NameNode 53
native protocol
 characteristics 100
 implementation 99
 QUORUM, using 100, 101
 versus Thrift protocol 85
network attached storage (NAS) 8
NetworkTopologyStrategy
 about 37
 properties 37
node failures
 handling 165, 166
 slow nodes, handling 166
 tracking 165
node metrics
 communication metrics 164
 latency outliers, searching 163
 monitoring 161
 table statistics 162
 thread pools 161
NodeManager 53
nodes
 adding, with vnodes 75
 adding, without vnodes 74
 data center, decommissioning 80, 81
 removing 79, 80
 removing, within data center 80
nodetool utility
 URL 157
null value
 inserting 148

O
online analysis
 about 52, 53
 with Hadoop 53, 54
 with Spark 53, 55, 56
Online Analytical Processing (OLAP) 52
OpsCenter

 URL 158
 using 158

P
partition keys 114
partitioner
 about 29
 ByteOrderedPartitioner 29
 hotspots 30, 31
 Murmur3Partitioner 29
 RandomPartitioner 29
 time-series example 31
peer-to-peer architecture
 about 12
 consistency 14
 hashing 13
 replication, across cluster 13
prepared statements 88
Priam 81
PropertyFileSnitch 57, 58
Puppet 81

Q
queries
 about 117
 denormalization, using 120
 key, using 118
 range query 119
query-by-value functionality 139
queues 149
QUORUM
 using 100, 101

R
RackInferringSnitch 56, 57
RandomPartitioner 29
rapid read protection 167
remote data center
 failing over 93, 94
remote procedure call (RPC) 85
replication factor
 about 34, 44
 balancing, with consistency 44
 maintaining, when node fails 39
 replication strategy 34

[175]

 setting 62
replication strategy
 NetworkTopologyStrategy 34, 37
 SimpleStrategy 34, 35
replication
 across cluster 13
 across data centers 14, 62
 multiple data center environment, consistency

63, 65
 replication factor, setting up 62
ResourceManager 53
rule of transparency 155

S
SASI indices
 reference link 143
scaling out
 versus scaling up 72, 73
scaling up
 data center replication, using 78, 79
 node, upgrading 77, 78, 79
secondary index
 about 139
 improving, with SSTable Attached Secondary

Index (SASI) 143
 using 140
sensor data
 modeling 128
 queries 128
 time-based ordering 129
sets 122
sharding
 about 10
 used, to scale writes 10
SimpleStrategy 34, 36
single primary key 112
size-tiered compaction
 about 107
 disadvantages 110
snitch
 about 38
 CloudstackSnitch 38
 EC2MultiRegionSnitch 39
 EC2Snitch 39
 GoogleCloudSnitch 38

 GossipingPropertyFileSnitch 38
 modifying 82
 PropertyFileSnitch 38
 RackInferringSnitch 38
 SimpleSnitch 38
Solid State Disk (SSD)
 about 73
 reference link 73
Spark
 used, for online analysis 55, 56
SSTable Attached Secondary Index (SASI) 143
SSTables 105
staged event-driven architecture (SEDA) 161
storage area network (SAN) 8
storage model
 importance 117
streaming 164

T
table statistics 162
thread pools 161
Thrift protocol
 about 84
 disadvantages 85
 versus native protocol 85
time series data
 about 127
 designing, for immutability 128
 querying 127
 sensor data, modeling 128
time-based ordering, sensor data
 about 129, 131
 queries, solving 130
 sentinel value, using 129
time-window compaction 111
token, manual assignment issues
 heterogeneous clusters 24
 hot spots 24
 node rebuilds 24
 nodes, adding 24
 nodes, removing 24
token
 about 23
 assigning 23
 manual assignment 24, 25

 references, for calculation 74
 vnodes 25, 26
tombstone
 about 43, 144
 problems 145
TTL 146

U
unbounded row growth
 preventing 151
use cases, for multiple data centers
 failover 48, 49
 geographic distribution 49, 50, 51, 52

 live backup 48
 load balancing 49
 online analysis 52, 53

V
Virtual Private Cloud (VPC) 81
vnodes
 about 23, 25, 26
 availability, improving 26
 heterogeneous nodes 29
 node, rebuilding 26, 27, 28
 nodes, adding 26, 75
 nodes, removing 26

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Cassandras Approach to High Availability
	Introducing the ACID properties
	Monolithic simplicity
	Scaling consistency – the master-slave model
	Using sharding to scale writes
	Handling the death of the leader

	Breaking with tradition – Cassandra's alternative
	Cassandra's peer-to-peer approach
	Hashing to the rescue
	Replication across the cluster
	Replication across data centers

	The consistency continuum
	The CAP theorem

	Summary

	Chapter 2: Data Distribution
	Hash table fundamentals
	Distributed hash tables

	Consistent hashing
	How it works

	Token assignment
	Manually assigned tokens
	Vnodes
	How vnodes improve availability
	Adding and removing nodes
	Node rebuild
	Heterogeneous nodes

	Partitioners
	Hotspots
	A time-series example

	Summary

	Chapter 3: Replication
	The replication factor
	Replication strategies
	SimpleStrategy
	NetworkTopologyStrategy

	Snitches
	Maintaining the replication factor when a node fails

	Consistency conflicts
	Consistency levels
	Repairing data

	Balancing the replication factor with consistency
	Summary

	Chapter 4: Data Centers
	Use cases for multiple data centers
	Live backup
	Failover
	Load balancing
	Geographic distribution
	Online analysis
	Analysis using Hadoop
	Analysis using Spark

	Data center setup
	RackInferringSnitch
	PropertyFileSnitch
	GossipingPropertyFileSnitch
	Cloud snitches

	Replication across data centers
	Setting replication factors
	Consistency in a multiple data center environment
	Anatomy of a replicated write
	Achieving stronger consistency between data centers

	Summary

	Chapter 5: Scaling Out
	Choosing the right hardware configuration
	Scaling out versus scaling up
	Growing your cluster
	Adding nodes without vnodes
	Adding nodes with vnodes
	Adding a data center

	How to scale up
	Upgrading in place
	Scaling up using data center replication

	Removing nodes
	Removing nodes within a data center
	Decommissioning a data center

	Other data migration scenarios
	Snitch changes
	Summary

	Chapter 6: High Availability Features in the Native Java Client
	Thrift versus the native protocol
	Setting up the environment
	Connecting to the cluster
	Executing statements
	Prepared statements
	Batched statements
	Caution with batches

	Handling asynchronous requests
	Running queries in parallel

	Load balancing
	Failing over to a remote data center
	Downgrading consistency level
	Defining your own retry policy

	Token awareness

	Tying it all together
	Falling back to QUORUM

	Summary

	Chapter 7: Modeling for Availability
	How Cassandra stores data
	Implications of log-structured storage

	Understanding compaction
	Size-tiered compaction
	Leveled compaction
	Time-window compaction

	CQL under the hood
	Single primary key
	Compound keys
	Partition keys
	Clustering columns
	Composite partition keys

	The importance of the storage model

	Understanding queries
	Query by key
	Range queries
	Embracing denormalization

	Denormalizing using collections
	Sets
	Lists
	Maps

	Denormalizing with materialized views
	Working with time series data
	Designing for immutability
	Modeling sensor data
	The queries
	Time-based ordering
	Using a sentinel value
	Satisfying our queries
	When time is all that matters

	Working with geospatial data
	Summary

	Chapter 8: Anti-Patterns
	Multi-key queries
	Secondary indices
	Secondary indices under the hood
	Improvements with SASI

	Distributed joins
	Deleting data
	Garbage collection
	Resurrecting the dead
	The problem with tombstones
	Expiring columns
	TTL anti-patterns

	When null does not mean empty
	Cassandra is not a queue

	Unbounded row growth
	Summary

	Chapter 9: Failing Gracefully
	Knowledge is power
	Monitoring via JMX
	Using OpsCenter
	Choosing a management toolset

	Logging
	Cassandra logs
	Garbage collector logs

	Monitoring node metrics
	Thread pools
	Table statistics
	Finding latency outliers
	Communication metrics

	When a node goes down
	Marking a downed node
	Handling a downed node
	Handling slow nodes

	Backing up data
	Taking a snapshot
	Incremental backups
	Restoring from a snapshot

	Summary

	Index

