
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Cocos2D	Game	Development	Essentials

www.allitebooks.com

http://www.allitebooks.org

Table	of	Contents

Cocos2D	Game	Development	Essentials

Credits

About	the	Author

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Downloading	the	color	images	of	this	book

Errata

Piracy

Questions

1.	Getting	Started	with	Cocos2d

An	introduction	to	Cocos2d

Installing	Cocos2d

Installing	Cocos2d	with	the	installer

Creating	a	Hello	World	project

Installation	for	Android

Template	project	code	breakdown

IntroScene.m

The	HelloWorldScene.m	class

www.allitebooks.com

http://www.allitebooks.org

Summary

2.	Nodes,	Sprites,	and	Scenes

The	building	blocks,	nodes

Children	nodes

Adding	children

Removing	children

Drawing	order	of	the	children	nodes

Working	with	multiple	coordinate	systems

Sprites

Putting	it	into	practice

Adding	nodes	to	the	scene

Detecting	touches	and	responding

The	next	step

The	Cocos2d	update	loop

Scenes

Scene	life	cycle

Creating	a	CCScene

Transitioning	to	another	scene

Putting	it	into	practice

Summary

3.	SpriteBuilder

Creating	a	new	project

The	Main	editor	window

The	Resource	pane

The	Options	pane

The	Timeline	pane

Creating	Flappy	Square

Creating	a	new	scene/layer

Linking	to	a	SpriteBuilder	scene	in	code

Enabling	physics	in	SpriteBuilder

Connecting	SpriteBuilder	objects	to	Xcode	properties

www.allitebooks.com

http://www.allitebooks.org

Creating	reusable	components

Moving	obstacles	across	the	screen

Detecting	collisions

The	next	step

Summary

4.	Animation	with	SpriteBuilder

Adding	sprites	to	SpriteBuilder

Creating	sprite	frame	animations

Switching	out	the	obstacle	image

Particle	systems

Designing	a	particle	system	for	our	character

Adding	a	SpriteBuilder	particle	system	in	code

Final	polish	to	Flappy	Bird

Keyframe	animation	in	SpriteBuilder

Animation	in	code

Moving,	scaling,	and	rotating

Chaining	actions	together

Running	actions	simultaneously

Repeating	actions

Running	code	on	completion	of	an	animation

Summary

5.	User	Interaction	and	Interface

Detecting	touches

Getting	the	touch	location

Dragging	a	node

Adding	buttons	to	your	scene

Accepting	user	input	with	form	elements

Presenting	data	in	a	table	with	CCTableView

Creating	a	CCTableView	data	source

Adding	a	CCTableView	node	to	the	scene

Summary

www.allitebooks.com

http://www.allitebooks.org

6.	Physics	Engines

Introducing	physics	engines

Adding	joints

Adding	a	sprite	joint

Dragging	an	object	against	a	spring	joint

Firing	objects	from	the	catapult

Creating	a	motor

The	next	step

Summary

Index

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Cocos2D	Game	Development	Essentials

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Cocos2D	Game	Development	Essentials
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	January	2015

Production	reference:	1190115

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78439-032-7

www.packtpub.com

Cover	image	by	Ben	Trengrove	(<ben@nybbles.com.au>)

http://www.packtpub.com
mailto:ben@nybbles.com.au

Credits
Author

Ben	Trengrove

Reviewers

K.	Aava	Rani

Sergio	Martínez-Losa	Del	Rincón

Allen	Sherrod

Commissioning	Editor

Akram	Hussain

Acquisition	Editor

Richard	Gall

Content	Development	Editor

Poonam	Jain

Technical	Editor

Parag	Topre

Copy	Editor

Relin	Hedly

Project	Coordinator

Mary	Alex

Proofreaders

Simran	Bhogal

Linda	Morris

Indexer

Mariammal	Chettiyar

Graphics

Abhinash	Sahu

Production	Coordinator

Alwin	Roy

Cover	Work

Alwin	Roy

About	the	Author
Ben	Trengrove	is	an	experienced	iOS	developer	who	started	developing	with	the	release
of	the	first	iOS	SDK.	He	spent	3	years	as	the	senior	developer	at	Shiny	Things
(http://getshinythings.com),	where	he	lead	the	creation	of	all	Shiny	Things	games	using
Cocos2d.	These	apps	have	been	featured	as	the	editor’s	choice	by	Apple	around	the	world.
Today,	Ben	runs	a	mobile	app	agency	that	is	based	out	of	Canberra,	Australia—Stripy
Sock	(http://stripysock.com.au).

I	would	like	to	thank	my	gorgeous	wife	for	her	patience	during	several	weekends	that	I
spent	writing.

http://getshinythings.com
http://stripysock.com.au

About	the	Reviewers
K.	Aava	Rani	is	the	cofounder	of	CulpzLab	Pvt	Ltd,	a	software	company,	with	10	years
of	experience	in	game	technologies.	A	successful	blogger	and	a	technologist,	she	switched
her	focus	to	game	development	in	the	year	2004.	Since	then,	she	has	produced	a	number
of	game	titles	and	has	provided	art	and	programming	solutions	to	Unity	developers	across
the	globe.	She	is	based	in	New	Delhi,	India.	Aava	Rani	has	been	the	recipient	of	several
prestigious	awards,	including	Adobe	for	Game	Technology	Expert	2012	and
SmartFoxServer,	for	her	articles.	She	has	immense	experience	in	different	technologies
and	has	reviewed	Creating	E-learning	games	with	Unity3D,	Packt	Publishing.

Founded	in	2010,	CulpzLab	has	proven	itself	to	be	a	reliable	technology	partner	for	its
clients.	Currently,	CulpzLab	employs	over	50	people	and	has	its	office	based	out	of	New
Delhi	in	India.	CulpzLab	is	a	leading-edge	custom-process-driven	software	solutions
provider	that	has	helped	and	partnered	with	many	reputed	brands,	start-up	ventures,	and
offshore	IT	companies.	It	has	helped	them	realize	and	deliver	effective,	efficient,	and	on-
time	digital	solutions.	Thanks	to	its	diverse	technology	background,	industry	expertise,
and	a	client	footprint	that	extends	to	more	than	14	countries,	CulpzLab	has	worked	with	a
plethora	of	clients	on	a	global	platform.	It	is	well	positioned	to	help	organizations	derive
maximum	value	from	their	IT	investments	and	fully	support	their	business	aims.
CulpzLab’s	core	business	purpose	is	to	invent,	engineer,	and	deliver	technology	solutions
that	drive	business	value,	create	social	value,	and	improve	the	lives	of	customers.

I	would	like	to	acknowledge	the	creators	of	Unity3D	program,	an	amazing	tool	that	allows
ultimate	digital	experience	and	creative	expression.	I’d	also	like	to	thank	my	clients	for
being	part	of	the	fun!	Many	of	you	have	become	good	friends	through	my	creative
successes.	Finally,	I’d	like	to	thank	R.K.Rajanjan	who	taught	me	how	to	fall	in	love	with
technologies.

Sergio	Martínez-Losa	Del	Rincón	is	a	computer	engineer.	He	was	fond	of	programming
languages	since	his	high	school	days,	when	he	learned	programming	and	computer
interaction.	He	is	always	learning	and	discovering	something	new	everyday.

He	likes	all	kinds	of	programming	languages,	but	his	main	area	of	focus	is	mobile
development	with	native	languages,	such	as	Objective-C	(iPhone),	Java	(Android),	and
Xamarin	(C#).	He	also	builds	Google	Glass	applications,	as	well	as	mobile	applications
for	iPhone	and	Android	devices.	Sergio	also	develops	games	for	mobile	devices	with
Cocos2d-x	and	Cocos2d.	He	also	likes	cross-platform	applications	and	has	reviewed
Learning	Xamarin	Studio,	Packt	Publishing.

Sergio	loves	challenging	problems	and	is	always	keen	to	work	with	new	technologies.
Visit	www.linkedin.com/in/sergiomtzlosa	for	more	details	and	information	about	his
experiences.

Allen	Sherrod	is	a	lifelong	gamer	with	a	passion	for	programming	and	video	game
development,	which	he	has	been	involved	in	for	the	past	10	years.	When	he	is	not	helping
people	run	raids	on	Destiny	(video	game)	developed	by	Bungie,	he	is	working	hard	by

http://www.linkedin.com/in/sergiomtzlosa

programming	various	tools	and	mobile	video	game	applications.	Currently,	Allen	is	a
mobile	software	engineer	at	Disney	Interactive,	which	is	one	of	the	best	companies	to
work	for.	He	has	also	reviewed	books	such	as	Instant	New	iPad	Features	in	iOS	6	How-to
and	Instant	Apple	iBooks	How-to,	Packt	Publishing.

I’d	like	to	thank	Packt	Publishing	for	giving	me	the	opportunity	to	review	this	title.	I
would	also	like	to	thank	the	author	for	doing	a	great	job	in	putting	together	this	book.
Book	writing	is	no	easy	task,	so	it	is	always	good	to	see	something	come	together.

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
Cocos2d	is	a	cross-platform	game	engine	for	iOS	and	Android	devices.	Coding	in
Objective-C	and	using	the	rich	graphical	editor,	you	can	push	your	game	to	both	iOS	and
Android	devices	without	any	extra	work.	Cocos2d	is	packed	with	features	that	make	game
development	simple,	including	integrated	physics,	particle	engines,	and	a	graphical	editor
for	laying	out	your	scenes	and	designing	animations.	Game	development	is	about	working
out	how	to	solve	unique	problems	using	the	tools	in	your	development	toolbox.	This	book
will	help	you	to	build	this	tool	box,	cover	essential	skills,	and	provide	a	solid	foundation
on	which	to	grow	your	game	development	talent.

This	book	will	introduce	and	develop	your	understanding	of	the	core	concepts	and	tools
involved	in	developing	games	using	Cocos2d,	including	the	graphical	development
environment,	SpriteBuilder,	the	built-in	physics	engine,	the	skills	to	show	smooth-flowing
animations,	and	techniques	to	develop	easy	to	use	and	functional	user	interfaces.

Each	chapter	will	introduce	you	to	a	new	core	skill.	To	practice	this	skill,	in	each	chapter,
you	will	develop	a	mini	game	that	runs	on	both	Android	and	iOS	devices.	Your	skillset
will	evolve	as	you	move	through	each	chapter,	and	develop	increasingly	complex	games.

What	this	book	covers
Chapter	1,	Getting	Started	with	Cocos2d,	discusses	how	to	build	your	first	cross-platform
app	using	Cocos2d.	We	will	install	Cocos2d	and	get	you	all	set	up	to	create	Cocos2d
games.	We	will	then	walk	through	the	template	code	and	look	at	how	it	works.

Chapter	2,	Nodes,	Sprites,	and	Scenes,	discusses	the	fundamental	knowledge	required	to
build	any	Cocos2d	app.	You	will	learn	how	to	display	a	variety	of	content	on	the	screen
and	transition	between	scenes.	Here,	you	will	discover	how	to	lay	the	foundations	of	your
game.

Chapter	3,	SpriteBuilder,	discusses	how	to	create	apps	using	the	graphical	Cocos2d	editor.
We	will	lay	out	scenes	and	build	animations	in	the	graphical	editor.

Chapter	4,	Animation	with	SpriteBuilder,	covers	a	comprehensive	overview	of	animations
and	actions	and	how	to	create	them	in	code.	We	will	also	look	at	how	to	ease	the
animations	to	create	an	attractive	and	professional	look.

Chapter	5,	User	Interaction	and	Interface,	discusses,	and,	takes	a	look	at,	how	to	accept
input	from	the	user	in	a	variety	of	ways.	We	will	look	at	touches	and	gestures,
accelerometer	and	interface	controls.

Chapter	6,	Physics	Engines,	discusses	the	location	where	we	combine	all	our	knowledge
so	far,	with	working	physics	to	create	fun	physics-based	apps.	We	will	look	at	some	basic
physics	concepts	such	as	forces	and	joints,	and	then	put	it	altogether	in	a	scene	and	see
what	effects	physics	have	on	an	app.

What	you	need	for	this	book
In	order	to	create	games	in	Cocos2D-Swift,	you	will	need	a	Mac	computer	with	Xcode
installed.	If	you	want	to	put	apps	on	an	iOS	device,	you	will	need	a	paid	iOS	developer
account	from	Apple.	To	put	apps	on	an	Android	device,	you	will	need	an	Android	device
running	(at	least	Android	4.0	or	a	paid	Apportable	account)	that	allows	apps	to	be	built	for
Android	2.0+.

Who	this	book	is	for
This	book	is	for	developers	with	experience	in	Objective-C	and	iOS	development	who	are
looking	to	create	a	game	for	iOS	or	Android	in	Objective-C.	It	assumes	that	you
understand	the	basic	concepts	of	game	development	and	just	need	an	understanding	of	the
framework.	It	covers	the	essential	topics	on	how	to	create	a	game	with	Cocos2d	v3.	This
would	be	a	good	book	for	someone	with	previous	experience	in	Cocos2d	and	wants	to
learn	about	the	changes	in	v3.

www.allitebooks.com

http://www.allitebooks.org

Conventions
In	this	book,	you	will	find	a	number	of	styles	of	text	that	distinguish	between	different
kinds	of	information.	Here	are	some	examples	of	these	styles,	and	an	explanation	of	their
meaning.

Code	words	in	text	are	shown	as	follows:	“The	contentSize	property	is	the	bounding	box
of	the	node.”

A	block	of	code	is	set	as	follows:

				

//	Apple	recommend	assigning	self	with	supers	return	value

				self	=	[super	init];

				if	(!self)	return(nil);

	

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	in
menus	or	dialog	boxes	for	example,	appear	in	the	text	like	this:	“Press	the	Publish	button.
Your	app	will	now	be	published	on	Xcode”.

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	may	have	disliked.	Reader	feedback	is	important	for	us	to
develop	titles	that	you	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	send	an	e-mail	to	<feedback@packtpub.com>,	and
mention	the	book	title	through	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	on	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	for	all	Packt	books	you	have	purchased	from
your	account	at	http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can
visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to
you.

http://www.packtpub.com
http://www.packtpub.com/support

Downloading	the	color	images	of	this	book
We	also	provide	you	with	a	PDF	file	that	has	color	images	of	the	screenshots	/	diagrams
used	in	this	book.	The	color	images	will	help	you	better	understand	the	changes	in	the
output.	You	can	download	this	file	from:
https://www.packtpub.com/sites/default/files/downloads/B03446_ColoredImages.pdf

https://www.packtpub.com/sites/default/files/downloads/B03446_ColoredImages.pdf

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	would	report	this	to	us.	By	doing	so,	you	can	save
other	readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If
you	find	any	errata,	please	report	them	by	visiting	http://www.packtpub.com/support,
selecting	your	book,	clicking	on	the	errata	submission	form	link,	and	entering	the	details
of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and	the
errata	will	be	uploaded	to	our	website,	or	added	to	any	list	of	existing	errata,	under	the
Errata	section	of	that	title.

http://www.packtpub.com/support

Piracy
Piracy	of	copyright	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works,	in	any	form,	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors,	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
You	can	contact	us	at	<questions@packtpub.com>	if	you	are	having	a	problem	with	any
aspect	of	the	book,	and	we	will	do	our	best	to	address	it.

mailto:questions@packtpub.com

Chapter	1.	Getting	Started	with	Cocos2d
In	this	chapter,	you	will	learn	how	to	create	your	first	Cocos2d	project.	You	will	make	a
simple	game	that	could	be	extended	to	a	full	title	if	you	choose.	You	will	also	learn	how	to
deploy	on	Android	using	Apportable.

In	this	Chapter,	we	will	cover	the	following	topics:

Installing	Cocos2d
Working	of	the	Cocos2d	app
Creating	a	project	with	the	template

An	introduction	to	Cocos2d
Cocos2d	for	iPhone	is	an	open	source	framework	to	build	cross-platform	2D	games	with
Xcode	and	Objective-C.	Cocos2d	is	licensed	by	Massachusetts	Institute	of	Technology
(MIT),	meaning	that	in	addition	to	being	free	to	use,	there	is	no	need	to	open	source	your
game,	and	no	licensing	or	profit	share	fees	to	pay	to	use	it	in	a	commercial	product.

Cocos2d	can	be	compiled	for	iOS	and	Android	using	the	tool	Apportable,	the	official
sponsor	of	the	Cocos2d	project.	This	framework	encourages	and	allows	you	to	be	creative;
its	visual	editor,	SpriteBuilder,	allows	you	to	create	and	lay	out	scenes,	design
animations,	and	play	around	with	physics	and	sprite	sheets.	Cocos2d	is	built	on	top	of
OpenGL	ES	2.0,	and	the	layer	between	the	two	has	been	highly	optimized	over	a	period	of
time.	It	also	supports	custom	OpenGL	shaders	when	you	want	to	change	the	way	your
scene	is	rendered	by	OpenGL.

You	might	be	wondering	why	you	should	use	Cocos2d	in	the	newly	released	Apple	native
library,	SpriteKit,	and	I	believe	the	answer	is	relatively	simple.	Cocos2d	is	a	far	more
mature	library	than	SpriteKit,	and	it	has	more	features	while	still	being	easier	to	use.
Cocos2d	is	also	open	source,	which	means	you	can	add	to	it	if	needed,	and	see	how	it
works	behind	the	scenes.	However,	the	real	advantage	of	Cocos2d	over	SpriteKit	is	its
cross-platform	ability;	Cocos2d	can	be	cross-compiled	to	Android	from	Objective-C.	This
might	sound	like	magic;	I	wouldn’t	be	surprised	if	a	bit	of	magic	was	involved,	but	it	does
work,	and	you	will	see	it	work	in	this	book.	Cocos2d	is	also	fully	compatible	with	Swift,
Apple’s	new	programming	language,	which	was	unveiled	in	June	2014.	While	Swift	has
created	a	considerable	buzz,	Objective-C	will	nevertheless	be	essential	for	anyone	wishing
to	work	with	Cocos2d.	If	you	are	using	Objective-C,	another	benefit	is	that	Cocos2d
supports	iOS5+	unlike	SpriteKit,	which	only	supports	iOS	7+.

Installing	Cocos2d
Before	you	can	do	anything,	you	need	to	install	Cocos2d.	Let’s	get	started.

There	are	several	ways	to	install	Cocos2d.	Some	methods	are	easy,	whereas	some	are
harder	to	get	started,	but	it	will	make	upgrading	in	the	future	much	easier.	Before	you
install	Cocos2d,	you	need	to	ensure	that	you	have	the	latest	version	of	Xcode	installed.
Xcode	can	be	found	on	the	Mac	App	Store	or	on	the	Apple	Developer	Program	portal.
Additionally,	to	push	your	apps	into	an	iOS	device,	you	will	need	a	paid	iOS	developers
account.	New	accounts	can	be	made	at	http://developer.apple.com/ios.

http://developer.apple.com/ios

Installing	Cocos2d	with	the	installer
Using	the	installer	is	the	easiest	method	of	installation	and	is	recommended	for	first	time
users	because	it	will	install	the	relevant	documentation	and	project	templates
automatically.

To	install	Cocos2d	with	the	installer,	follow	these	steps:

1.	 Download	the	latest	version	of	the	installer	from	http://www.cocos2d-
swift.org/download

2.	 Open	the	installer	and	follow	the	prompts	to	install	Cocos2d.
3.	 Go	to	the	Mac	App	Store	and	install	SpriteBuilder;	we	will	use	this	in	later	chapters.

Creating	a	Hello	World	project
You	can	start	by	creating	a	new	project	from	the	template	that	you	just	installed	in	Xcode.
Open	up	Xcode	and	click	New	Project.	You	will	see	a	new	section	in	the	templates	for
cocos2d	v3.x.	Click	on	this,	and	create	a	new	project	with	the	cocos2d	iOS	template,	as
shown	in	the	following	figure.	You	can	now	build	and	run	the	template,	and	have	a	play
around	with	the	example	app:

http://www.cocos2d-swift.org/download

Tip
Cocos2D-Swift	Version	3	was	a	minor	upgrade	from	Version	2.	Its	main	features	were	an
official	support	for	Android,	built-in	physics	engine,	and	a	cleaned	up	API.	As	part	of	the
API	cleanup,	many	classes	were	either	renamed	or	removed	all	together.	This	can	make	it
difficult	to	follow	tutorials	from	old	versions.

Installation	for	Android
To	build	and	run	the	Cocos2d	app	for	Android,	you	need	to	install	Apportable,	a	cross-
compiler	that	will	compile	the	Objective-C	code	to	run	on	Android	devices.	This	sounds
crazy,	but	it	actually	works;	you	are	about	to	try	it	for	yourself.

You	will	also	need	to	plug	in	an	Android	device	and	ensure	that	USB	debugging	is
enabled.	This	step	is	different	for	every	Android	device,	so	if	you	are	not	sure	how	to	do
it,	the	best	method	is	to	go	online	and	search	for	Enable	USB	debugging	on	<device
name>.

The	first	step	is	to	download	and	install	Apportable,	the	instructions	for	which	can	be
found	at	https://www.Apportable.com.	You	will	be	asked	to	sign	up	to	an	account,	but	it	is
completely	free	to	build	Cocos2d	games;	you	can	even	push	your	game	to	the	Google	Play
Store.	The	steps	on	how	to	install	your	app	in	your	Android	phone	are	as	follows:

1.	 Once	you	have	installed	Apportable,	open	a	terminal	window	and	navigate	to	the
Hello	World	project	folder.

2.	 From	inside	the	project	folder,	run	the	command	Apportable	load.
3.	 You	will	then	be	asked	a	series	of	questions.	First,	you	will	be	asked	whether	your

app	is	using	OpenGL	ES	1	or	2.	Answer	with	2.	The	difference	between	these	options
is	that	Cocos2d	v3	is	built	on	top	of	Open	GL	ES	v2.	They	have	a	different	API	and
so	selecting	the	correct	option	is	important.

4.	 The	next	question	will	ask	whether	your	app	should	initially	launch	in	portrait	or
landscape.	Obviously,	this	will	change	between	projects,	but	for	now,	answer	L	for
landscape.

5.	 You	will	then	see	a	large	amount	of	terminal	output	while	Apportable	builds	the
project.	Once	the	build	is	complete,	Apportable	will	attempt	to	install	your	app	in	the
Android	device	that	is	plugged	into	your	computer.

Once	the	app	is	installed,	it	will	automatically	open.	If	your	phone	is	locked,	you	will	have
to	manually	unlock	it.

https://www.Apportable.com

Template	project	code	breakdown
Now	that	you	have	successfully	built	and	deployed	your	first	Cocos2d	app,	let’s	see	how	it
actually	works.	In	Xcode,	open	up	IntroScene.m.

IntroScene.m
The	IntroScene.m	file	corresponds	with	the	first	scene	you	see	when	you	load	up	your	app.
We	will	go	into	more	detail	on	scenes	in	the	next	chapter,	but	for	now,	all	you	need	to
know	is	what	a	scene	looks	like.	The	first	part	of	the	init()	method	is	a	slightly	different
method	compared	to	the	standard	Objective-C	init	pattern.

1.	 First,	assign	self,	and	then	check	to	make	sure	that	it	did	not	return	nil.	This	is	a
standard	Objective-C	pattern	to	guard	against	a	sub-class	or	super	class	not	initiating
properly:

//	Apple	recommend	assigning	self	with	supers	return	value

				self	=	[super	init];

				if	(!self)	return(nil);

2.	 Next,	is	your	first	piece	of	Cocos2d	code:

//	Create	a	colored	background	(Dark	Grey)

				CCNodeColor	*background	=	[CCNodeColor	nodeWithColor:[CCColor	

colorWithRed:0.2f	green:0.2f	blue:0.2f	alpha:1.0f]];

				[self	addChild:background];

CCNodeColor	is	a	Cocos2d	object	that	allows	you	to	create	and	display	a	rectangle	of
a	single	color.

3.	 You	create	the	color	node	by	passing	in	the	color	that	you	want	in	Cocos2d;	colors
are	represented	by	the	CCColor	class.	For	now,	you	are	making	a	dark	gray
background,	but	experiment	by	changing	the	color	values,	and	then	building	and
running	the	app	to	see	the	effect.

4.	 Once	you	have	created	the	color	node,	you	need	to	add	it	to	the	scene	so	that
Cocos2d	knows	how	to	render	it.	Until	you	add	it,	it	will	not	be	visible	on	screen.
You	add	the	background	child	to	self,	which	in	this	case	is	the	intro	scene.

5.	 Now,	you	have	a	solid	background	color,	but	the	app	is	still	pretty	boring.	Let’s	add
some	text	to	say	‘Hello	World‘:

				//	Hello	World

				CCLabelTTF	*label	=	[CCLabelTTF	labelWithString:@"Hello	World"	

fontName:@"Chalkduster"	fontSize:36.0f];

				label.positionType	=	CCPositionTypeNormalized;

				label.color	=	[CCColor	redColor];

				label.position	=	ccp(0.5f,	0.5f);	//	Middle	of	screen

				[self	addChild:label];

CCLabelTTF	is	a	label	class	that	allows	you	to	add	text	to	your	scene.	Labels	are	created	by
passing	in	a	string,	a	font	name,	and	a	font	size,	and	then	setting	a	position	type.	Position
types	will	be	covered	in	the	next	chapter	as	well,	but	a	normalized	position	type	allows

www.allitebooks.com

http://www.allitebooks.org

you	to	position	your	node	with	a	percentage	from	the	left	and	bottom,	rather	than	a	fixed
position.	This	is	of	great	value	when	you	are	developing	an	app	that	will	run	on	multiple
screen	sizes,	such	as	Android	phones	and	tablets.	Set	the	label	color	to	red	and	then	set	the
position	to	(0.5,	0.5)	using	ccp,	which	is	Cocos2d	shorthand	for	making	a	new	CGPoint
array.	Points	in	Cocos2d	have	an	origin	at	the	bottom-left	of	the	scene.	Remember	that	this
is	a	percentage,	so	we	are	placing	it	50	percent	in	and	50	percent	up,	which	is	the	center	of
the	screen.	Once	you	have	finished	setting	up	your	label,	you	add	it	to	the	scene	so	that	it
will	be	rendered.

Now	you	need	a	way	to	get	to	the	next	scene,	where	your	game	will	have	some
interaction.	You	need	to	add	a	button:

				//	Helloworld	scene	button

				CCButton	*helloWorldButton	=	[CCButton	buttonWithTitle:@"[Start]"	

fontName:@"Verdana-Bold"	fontSize:18.0f];

				helloWorldButton.positionType	=	CCPositionTypeNormalized;

				helloWorldButton.position	=	ccp(0.5f,	0.35f);

				[helloWorldButton	setTarget:self	

selector:@selector(onSpinningClicked:)];

				[self	addChild:helloWorldButton];

CCButton	is	a	button	node	that	gives	you	a	target	and	a	selector	for	when	the	node	is
tapped	on.	You	can	also	set	a	block	to	run	on	tap	instead,	but	in	this	example,	we	are	using
the	target	/	selector	paradigm.	You	create	the	button	in	a	similar	way	to	the	label	with	a
string,	font	name,	font	size,	and	position.	The	difference	now	is	that	you	also	need	to	set
the	target	and	selector.	You	will	need	to	set	the	target	to	self,	and	run	a	method	that	is	in
this	class,	which	for	this	example	is	onSpinningClicked.	Add	this	button	to	the	scene	to
be	rendered	as	well.

Let’s	have	a	look	at	the	method	that	is	called	when	you	tap	the	button:

-	(void)onSpinningClicked:(id)sender

{

				//	start	spinning	scene	with	transition

				[[CCDirector	sharedDirector]	replaceScene:[HelloWorldScene	scene]

																															withTransition:[CCTransition	

transitionPushWithDirection:CCTransitionDirectionLeft	duration:1.0f]];

}

In	this	method,	you	are	making	a	call	to	the	CCDirector:	the	director	of	the	game	that
manages	the	scene	currently	on	the	screen	to	replace	the	current	scene	with	the
HelloWorld	scene.	We	will	use	a	transition	to	do	this,	which	will	be	covered	fully	later	in
this	book.	For	now,	we	will	start	with	a	simple	transition	that	will	push	the	new	scene	that
comes	in	from	the	left.	You	don’t	have	to	use	a	transition,	but	can	add	a	nice	bit	of	polish
to	your	game.

The	HelloWorldScene.m	class
Let’s	take	a	look	at	the	scene	you	have	transitioned	to.	If	you	play	around	with	the	app	you
will	see	that	you	have	an	image	that	is	rotating,	and	that	starts	in	the	center	of	the	screen.
When	you	tap	the	screen,	it	moves	to	where	you	tapped.	Let’s	see	how	this	works.

1.	 Starting	in	the	init	method,	the	first	part	is	always	the	same,	but	there	is	something
new	now:

				//	Apple	recommend	assigning	self	with	supers	return	value

				self	=	[super	init];

				if	(!self)	return(nil);

				//	Enable	touch	handling	on	scene	node

				self.userInteractionEnabled	=	YES;

Enabled	user	interaction	tells	the	CCDirector	class	that	you	want	the	scene	to	receive
touches.	This	is	so	that	when	you	tap	the	screen,	your	image	moves.

2.	 Next,	you	create	the	background	in	the	same	way	as	in	IntroScene.m.	The	following
code	is	another	new	concept:

				//	Add	a	sprite

				_sprite	=	[CCSprite	spriteWithImageNamed:@"Icon-72.png"];

				_sprite.position		=	

ccp(self.contentSize.width/2,self.contentSize.height/2);

				[self	addChild:_sprite];

You	are	now	creating	the	image	that	starts	in	the	middle	of	the	screen.	These	images
are	known	as	sprites,	and	they	are	created	using	their	image	names.	Using	the	names
makes	Cocos2d	look	for	an	image	in	the	app	bundle,	with	the	name	you	provide.	You
save	the	sprite	reference	in	an	instance	variable,	so	it	can	be	moved	around	the
screen.	Then,	the	position	of	the	sprite	is	set	to	start	in	the	center	of	the	screen.	Note
that	this	is	different	to	the	position	type	that	was	used	before;	now	you	are	setting	it
to	a	fixed	coordinate	rather	than	a	percentage.	Then,	add	the	sprite	to	the	scene	to	be
rendered.

Tip
The	Cocos2d	template	stores	its	nodes	in	instance	variables.	Apple	recommends
against	this	practice,	stating	that	the	preferred	method	to	store	variables	accessible
within	a	class	is	through	properties.	Apple’s	recommended	practice	will	be	used	in
this	book.	More	information	can	be	found	at
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/EncapsulatingData/EncapsulatingData.html

3.	 Now,	you	will	add	an	animation	to	your	sprite	in	order	to	make	it	spin:

				//	Animate	sprite	with	action

				CCActionRotateBy*	actionSpin	=	[CCActionRotateBy	

actionWithDuration:1.5f	angle:360];

				[_sprite	runAction:[CCActionRepeatForever	

actionWithAction:actionSpin]];

This	code	creates	a	CCActionRotateBy	action	with	a	duration	of	1.5	seconds	and	an
angle	of	360	degrees	clockwise.	This	means	that	you	want	the	sprite	to	rotate	once	by
360	degrees,	and	take	1.5	seconds	to	complete	the	rotation.	You	will	notice	that	in	the
app,	the	rotation	runs	continuously;	this	is	achieved	on	the	next	line	with	the
relatively	self-explanatory	CCActionRepeatForever	action.	You	then	run	the	action
on	your	sprite	in	order	to	start	the	rotation.	There	are	many	different	types	of

https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/EncapsulatingData/EncapsulatingData.html

CCAction	that	will	be	covered	in	this	book;	we	have	only	just	touched	the	surface	of
what	is	possible	with	this	example:

//	Create	a	back	button

				CCButton	*backButton	=	[CCButton	buttonWithTitle:@"[Menu]"	

fontName:@"Verdana-Bold"	fontSize:18.0f];

				backButton.positionType	=	CCPositionTypeNormalized;

				backButton.position	=	ccp(0.85f,	0.95f);	//	Top	Right	of	screen

				[backButton	setTarget:self	selector:@selector(onBackClicked:)];

				[self	addChild:bcackButton];

4.	 Next,	you	create	a	button	that	will	take	you	back	to	the	main	menu.	This	works
exactly	the	same	as	in	the	previous	scene.

5.	 Now,	let’s	look	at	how	you	handle	touch.	Scroll	down	to	the	code	and	find	the
touchBegan	method.

Note
In	Xcode,	you	can	use	Ctrl+6	and	start	typing	the	method	you	are	looking	for.	This	is
a	quick	way	to	navigate	code.

-(void)	touchBegan:(UITouch	*)touch	withEvent:(UIEvent	*)event	{

				CGPoint	touchLoc	=	[touch	locationInNode:self];

				

				//	Log	touch	location

				CCLOG(@"Move	sprite	to	@	%@",NSStringFromCGPoint(touchLoc));

				

				//	Move	our	sprite	to	touch	location

				CCActionMoveTo	*actionMove	=	[CCActionMoveTo	

actionWithDuration:1.0f	position:touchLoc];

				[_sprite	runAction:actionMove];

}

How	does	touchBegan	work?	It	gets	activated	when	you	first	touch	the	screen,	and	you	get
a	location	of	touch	translated	into	the	coordinate	space	of	your	node.	This	is	an	important
step	because	UIKit	(the	framework	used	by	iOS)	uses	a	different	coordinate	space	to
Cocos2d	and	OpenGL.	If	the	location	doesn’t	get	translated,	you	would	end	up	moving
your	node	to	the	wrong	position	on	the	screen.

Tip
It	is	important	to	note	the	difference	between	touchBegan	and	touchEnded.	Choosing	the
correct	one	depends	on	what	you	are	trying	to	achieve	with	your	UI.	If	you	want	an	action
to	occur	as	soon	as	the	user	touches	the	screen,	then	use	touchBegan.	If	you	want	an
action	to	occur	when	the	user	lifts	their	finger,	then	use	touchEnded.

The	template	then	logs	the	position	that	you	are	moving	the	sprite	to,	using	a	CCLog	–	a
macro	helper	that	allows	you	to	disable	logging	in	release	builds.

Next,	you	will	create	a	CCActionMoveTo	action.	This	action	is	similar	to
CCActionRotateBy,	but	now	you	are	moving	a	node	to	an	identified	position	rather	than
rotating	a	node	by	an	angle.	You	want	your	sprite	to	move	to	the	touch	position,	using	the

touch	location	that	was	translated.	For	this	example,	you	want	the	move	to	take	1	second,
but	feel	free	to	change	the	duration	and	rebuild	to	see	the	effects.	Once	you	have	created
the	action,	run	it	on	the	sprite.	Note	that	you	are	using	the	instance	variable	that	was
created	in	the	init	method.

Summary
Congratulations!	You	have	built	your	first	cross-platform	app	and	stepped	through	the
code	to	see	how	it	works.	At	this	point,	you	should	have	a	basic	idea	of	how	a	Cocos2d
app	is	put	together.	You	have	created	scenes	to	contain	different	screens	of	your	game,	and
you	have	used	the	CCDirector	class	to	move	between	them.	You	have	created	different
types	of	nodes	to	display	content	on	the	screen,	including	CCLabelTTF	for	text	content,
CCButton	to	create	a	button	on	screen,	and	CCSprite	to	display	an	image.	You	have	used
CCActions	in	the	form	of	CCActionRotateBy	and	CCActionMoveTo,	and	you	modified	their
behavior	using	CCActionRepeatForever.	You	also	learned	how	to	create	a	solid	rectangle
of	color	using	CCNodeColor.

You	should	now	have	a	play	with	the	sample	code	and	see	what	you	can	do.	Try	changing
the	durations	and	text,	and	the	colors	of	the	background.	You	could	also	try	to	replace	the
image	with	your	own	or	have	more	than	one	image.

In	the	next	chapter,	you	will	build	on	the	knowledge	gained	in	this	chapter	by	going	over
the	details	of	nodes,	sprites	and	scenes.	You	will	also	build	your	very	first	game	and
deploy	it	to	your	device.

Chapter	2.	Nodes,	Sprites,	and	Scenes
In	the	last	chapter,	you	went	through	the	introduction	of	Cocos2d	template.	You	had	a	look
at	your	first	nodes,	and	sprites,	and	learned	how	to	move	between	scenes.	In	this	chapter,
you	will	get	into	more	detail	on	how	these	elements	work	and	what	can	be	done	with
them.	You	will	also	create	your	first	mini	game	to	begin	with,	to	see	how	the	pieces	all
come	together.

In	this	chapter,	you	will	learn:

How	to	build	blocks	of	Cocos2d	nodes
How	to	display	images	on	the	screen
How	to	layout	your	scene
How	to	change	between	different	scenes

The	building	blocks,	nodes
In	Cocos2d,	everything	you	see	on	screen	is	a	subclass	of	the	CCNode	class.	Even	the
scenes	your	game	has	are	subclasses	of	the	CCNode	class.

There	are	some	important	subclasses	that	will	be	used	in	almost	every	game.	Therefore,	it
is	important	to	know	them.	These	are	as	follows:

CCSprite:	This	represents	an	image	that	can	be	animated
CCNodeColor:	This	is	a	plain	colored	node
CCLabelTTF:	This	is	a	node	that	renders	text	in	any	TrueType	font
CCButton:	This	is	an	interactive	node	that	can	have	an	action	attached
CCLayoutBox:	This	is	a	node	that	lays	out	other	nodes	in	a	vertical	or	horizontal
layout

Tip
The	CCLayoutBox	node	replaces	the	CCMenu	class,	which	was	in	the	previous	versions	of
Cocos2d.

The	reason	every	class	inherits	from	the	CCNode	class	is	that	there	are	some	important
properties	that	all	visible	elements	on-screen	need.	These	are	as	follows:

contentSize:	This	is	the	size	of	the	element	in	the	unit	that	is	specified	in	the
contentSizeType	property
position:	This	is	the	position	(x,	y)	of	the	node	in	the	unit	that	is	specified	in	the
positionType	property
anchorPoint:	This	is	the	center	point	for	rotation	and	the	reference	point	to	position
the	node
visible:	This	defines	whether	the	node	is	visible	or	not

The	following	screenshot	illustrates	these	properties:

Source:	https://www.makegameswith.us/docs/#!/cocos2d/1.0/nodes

There	are	two	properties	that	can	affect	where	each	node	is	positioned	on	the	screen.
These	are	the	Position	Reference	Corner	and	the	Anchor	Point	properties.	By	default,
the	reference	corner	is	at	the	bottom-left	corner.	This	can	be	changed	to	any	corner	and	in
the	image	shown,	it	is	set	to	be	at	the	top-left.	This	can	be	helpful	when	working	with
other	coordinate	systems	that	use	a	different	zero	position	such	as	UIKit.

The	anchor	point	of	the	node	defaults	to	(0.5,	0.5).	Anchor	points	are	the	(x,	y)	point
between	0	and	1.	0	means	the	left-bottom	edge	and	1	is	the	top-right	edge.	The	(0.5,	0.5)
values	places	the	anchor	point	at	the	direct	center	of	the	image.	The	anchor	point	is	also
used	as	the	center	of	rotation,	as	seen	in	the	following	screenshot:

Source:	https://www.makegameswith.us/docs/#!/cocos2d/1.0/nodes

The	contentSize	property	is	the	bounding	box	of	the	node.	This	might	not	seem	to	be
important,	but	it	actually	has	a	great	effect	on	the	node.	Remember	that	our	anchor	points
are	expressed	as	a	normalized	point,	and	as	such	the	bounding	box	needs	to	be	correct.
When	using	a	sprite,	the	bounding	box	is	set	to	be	the	size	of	the	image.

The	position	of	the	node	is	always	specified	relative	to	its	parent	node,	by	default	the
relative	is	positioned	at	the	bottom-left	corner	of	the	parent.	Cocos2d	however	supports
multiple	sizing	and	position	types	that	can	be	used	to	layout	your	scene.

There	are	three	position	types	to	choose	from	based	on	your	needs:

1.	 Points:	This	is	the	default	option.	Points	are	scaled	by	the	UIScaleFactor	property.
This	is	used	to	move	between	different	screen	sizes	such	as	phone	to	tablet.	It	is
generally	not	flexible	enough	to	handle	all	the	screen	sizes	of	Android.

2.	 UI	Points:	This	option	does	not	get	scaled.	A	position	with	this	type	will	always	be
exactly	on-screen	as	it	has	been	set.

3.	 Normalized:	This	position	is	expressed	from	zero	to	one.	It	is	relative	to	the	size	of
the	parent,	and	can	be	very	useful	to	center	a	node	on	the	screen.	It	is	also	quite
helpful	to	deal	with	multiple	screen	sizes.

There	are	five	content	size	types	to	choose	from.	These	can	be	set	individually	for	the
width	and	height.	These	are	as	follows:

1.	 Points:	This	is	the	default	option.	As	is	the	case	with	position,	it	is	scaled	based	on
the	UIScaleFactor	property.

2.	 UI	Points:	This	size	is	specified	based	on	exact	points.	It	is	not	scaled.
3.	 Normalized:	This	size	is	expressed	relative	to	its	parent	from	0	to	1.
4.	 Inset	points:	This	node	will	be	the	size	of	the	parents	minus	the	inset	points	defined.

This	type	is	scaled	based	on	the	UIScaleFactor	property.
5.	 Inset	UI	points:	This	is	similar	to	the	preceding	point,	but	not	scaled.

There	is	a	huge	list	of	options,	but	it	is	handy	to	know	what	is	available.	Most	of	the	time
you	will	use	the	scaling	options	for	background	nodes,	and	the	fixed	options	for
foreground	nodes	such	as	characters	and	sprites.

Children	nodes
Nodes	can	also	have	children.	You	can	add	any	node	as	a	child	of	any	other	node.	This	is
how	a	node	hierarchy	is	formed.	The	base	node	of	every	scene	is	indeed	the	CCScene	class
itself.

Adding	children
To	add	a	node	as	a	child,	use	the	following	method:

[parent	addChild:childNode];

Objects	are	displayed	in	the	order	they	were	added	to	the	node.	The	first	added	is	at	the
bottom	and	everything	after	that	is	added	at	the	top.	This	is	especially	important	when	you
have	overlapping	children	as	it	will	determine	what	you	see	on-screen.	This	order	can	be
changed,	and	is	covered	later	in	the	chapter.

The	position	of	the	node	is	always	relative	to	the	parent.	The	only	exception	to	this	rule	is
with	nodes	that	have	a	physics	body.	This	will	be	covered	in	Chapter	6,	Physics	Engines.
All	the	children	of	a	node	are	moved	together	with	the	parent	node.	This	is	a	very	useful
and	important	concept	to	grasp.	Imagine	a	complex	character	on-screen.	The	character	is
made	up	of	many	sprites.	There	is	one	for	the	head,	two	for	the	arms,	one	for	the	body,	and
so	on.	Now,	you	want	to	move	the	character	to	the	other	side	of	the	screen.	You	could	do	it
as	follows:

head.position	=	ccp(250,	250);

arm1.position	=	ccp(250,	250);

arm2.position	=	ccp(250,	250);

body.position	=	ccp(250,	250);

Even	this	wouldn’t	work	because	you	would	then	have	to	offset	each	body	part,	so	they
aren’t	just	sitting	on	top	of	each	other.	Instead,	what	you	should	do	is	make	one	CCNode
instance	for	our	character	and	add	every	other	node	to	it:

CCNode	*character	=	[CCNode	node];

//Setup	our	sprites	with	normalized	positions

head.position	=	ccp(0.5,	0.1);

arm1.position	=	ccp(0.25,	0.25);

arm2.position	=	ccp(0.75,	0.25);

body.position	=	ccp(0.5,	0.5);

//Add	them	as	children	to	our	character	CCNode

[character	addChild:head];

[character	addChild:arm1];

[character	addChild:arm2];

[character	addChild:body];

//Remember	to	set	the	content	size	and	add	it	to	the	scene

[self	addChild:character];

character.contentSize	=	CGRectMake(100,	300);

It	is	more	work	to	set	up,	but	you	will	probably	want	to	move	your	character	around	quite

a	lot	in	your	game.	Now,	when	you	want	to	set	the	position	of	the	character,	you	simply
move	that	node:

character.position	=	ccp(250,	250);

All	our	children	will	move	with	the	node	and	remain	positioned	correctly	with	each	other.

Removing	children
To	remove	a	child	from	a	node,	you	can	simply	call:

[node	removeChild:childToRemove];

However,	sometimes	it	is	easier	to	call	through:

[childToRemove	removeFromParent];

The	choice	is	up	to	you	as	a	developer.

Drawing	order	of	the	children	nodes
The	drawing	order	of	children	is	defined	by	the	zOrder	property	of	each	node.	The	zOrder
property	is	simply	a	number	that	tells	Cocos2d	the	order	in	which	the	nodes	will	be	drawn
on	screen.

By	default,	children	are	drawn	on	top	of	their	parents.	You	can	think	of	zOrder	as	the
depth	on	screen	to	place	the	objects.	It	determines	the	nodes’	position	in	the	stack	of
objects	to	be	drawn.	You	can	modify	this	behavior	by	setting	a	custom	zOrder.	This	can
be	done	at	the	time	the	child	is	added	to	the	parent:

[parent	addChild:child	z:5]

You	can	also	set	the	zOrder	property	of	a	node.	The	zOrder	property	changes	the	position
of	the	node	in	the	draw	order.	The	first	node	added	is	drawn	first,	and	then	the	second
node	is	drawn	on	top	of	this,	and	so	on.	This	is	also	how	objects	with	the	same	zOrder	are
drawn.	Whoever	had	the	zOrder	first	is	drawn	first.

The	drawing	order	is	defined	as	follows:

1.	 Draw	all	children	with	a	zOrder	less	than	zero.	The	lowest	value	is	drawn	first.
2.	 Draw	self.
3.	 Draw	all	children	with	a	zOrder	greater-than	or	equal	to	zero.	Nodes	that	were	added

first	are	drawn	first.

If	you	want	a	node	to	appear	below	its	parent,	set	its	zOrder	property	to	a	negative
number:

node.zOrder	=	-1;

Working	with	multiple	coordinate	systems
By	default,	node	positions	are	expressed	relative	to	their	parent.	It	can	be	useful	to	break
out	of	the	parent’s	coordinate	system,	and	calculate	the	position	in	the	world.	This	could
be	used	with	our	character	to	see	whether	its	arm	has	exited	the	screen.

To	calculate	the	position	of	a	node	in	world	space,	the	following	method	is	used:

CGPoint	worldPosition	=	[parentNode	

convertToWorldSpace:childNode.position];

This	gives	the	world	coordinate	of	the	child	node.	If	it	is	then	required	to	calculate	the
position	of	the	child	node	that	is	relative	to	another	node,	the	following	method	can	be
used:

CGPoint	scenePosition	=	[scene	convertToNodeSpace:worldPosition];

We	now	have	our	child	node’s	position	relative	to	our	scene.	Now,	instead	of	converting
from	the	node	space	of	your	scene,	you	can	convert	to	the	node	space	of	any	node.

Sprites
Sprites	in	Cocos2d	are	represented	by	the	CCSprite	class.	A	sprite	is	any	2D	image.	You
can	create	a	sprite	with	an	image	from	the	bundle	or	a	subrectangle	of	another	image.

Sprites	are	created	from	bundle	images	as	follows:

CCSprite	sprite	=	[CCSprite	spriteWithImageNamed:@"myImage.png"];

This	will	create	a	sprite	object.	Remember	you	still	need	to	set	its	position,	and	then	add	it
to	the	scene	before	it’s	rendered.

Putting	it	into	practice
It’s	now	time	to	start	working	on	your	first	game.	You	will	put	all	the	information	you
have	learned	so	far	into	practice,	and	create	a	very	simple	game	using	nodes	and	sprites.
The	game	will	be	a	simple	one	where	you	try	to	catch	water	in	a	bucket.	The	game	will	get
faster	and	faster	as	it	goes	on.	It’s	probably	not	going	to	make	you	the	next	App	Store
millionaire,	but	you	have	to	start	somewhere	right?

Here	is	what	our	game	will	look	like	when	it	is	finished:

Start	by	making	a	new	Cocos2d	project	in	Xcode	just	like	you	did	in	the	last	chapter.	You
can	also	delete	the	HelloWorldScene	classes	as	you	won’t	be	using	them.

Open	up	the	IntroScene.m	file,	and	delete	all	the	code	from	the	init	method,	except	the
required	initialization	and	return	statement.	Also,	you	can	delete	the	onSpinningClicked
method.	You	should	end	up	with	an	implementation,	as	shown	in	the	following	code:

@implementation	IntroScene

//	---

#pragma	mark	-	Create	&	Destroy

//	---

+	(IntroScene	*)scene

{

	 return	[[self	alloc]	init];

}

//	---

-	(id)init

{

				//	Apple	recommend	assigning	self	with	supers	return	value

				self	=	[super	init];

				if	(!self)	return(nil);

				return	self;

}

@end

Download	the	assets	from	https://s3.amazonaws.com/mgwu-
misc/Spritebuilder+Tutorial/PeevedPenguinsAssets.zip.	Unzip	the	assets	and	add	them	to
the	project.

First,	you	will	need	to	add	some	properties	so	that	you	can	keep	a	reference	to	our	game
items.	Add	a	private	interface	at	the	top	of	your	IntroScene.m	file:

@interface	IntroScene()

@property	(nonatomic)	CCNode	*waterBucket;

@property	(nonatomic)	CCLabelTTF	*scoreLabel;

@property	(nonatomic)	NSMutableArray	*drops;

@property	(nonatomic,	assign)	int	bucketPosition;

@property	(nonatomic,	assign)	int	numberDropped;

@end

You	will	also	need	to	define	how	many	places	you	want	water	drops	to	fall	from.	Add	a
constant	just	below	the	interface:

static	const	int	kNumberOfPositions	=	4;

These	properties	will	be	used	so	that	you	can	reference	your	game	items	in	all	the	methods
in	your	game.	You	will	create	them	in	the	init	method	and	then	move	them	in	the	Touch
event	method.	Therefore,	you	will	need	a	property	so	that	you	can	access	them.

https://s3.amazonaws.com/mgwu-misc/Spritebuilder+Tutorial/PeevedPenguinsAssets.zip

Adding	nodes	to	the	scene
Let’s	get	started,	go	to	the	init	method	and	add	the	following	code:

				self.userInteractionEnabled	=	YES;

				CCPositionType	positionType	=	

CCPositionTypeMake(CCPositionUnitNormalized,	CCPositionUnitNormalized,	

CCPositionReferenceCornerBottomLeft);

You	will	be	using	normalized	coordinates	to	lay	out	your	scene.	This	will	make	the	game
resize	better	when	ported	to	Android	devices.

Now,	let’s	create	sprites	for	use	in	the	game.	The	designer	provided	two	images	for	the
water	bucket:	a	top	part	and	a	bottom	part.	This	is	because	we	can	make	the	water	drop
seem	like	it	is	falling	into	the	bucket	rather	than	behind	the	bucket.	In	this	quick	example,
it	will	be	kept	simple	by	just	making	it	fall	behind,	but	as	an	extension	you	should	try	to
make	the	water	drop	fall	into	the	bucket.	Add	the	following	code	to	the	init	method:

//Create	the	water	bucket

				CCNode	*waterBucket	=	[CCNode	node];

				CCSprite	*bucketBottom	=	[CCSprite	

spriteWithImageNamed:@"bucket_bottom.png"];

				CCSprite	*bucketTop	=	[CCSprite	

spriteWithImageNamed:@"bucket_top.png"];

First,	you	create	a	node	to	keep	your	sprites	in,	and	then	load	up	the	images	from	the
bundle.	Now,	let’s	position	them	and	add	them	to	the	waterBucket	node.	Add	the
following	code:

bucketBottom.positionType	=	positionType;

				bucketTop.positionType	=	positionType;

				bucketBottom.anchorPoint	=	ccp(0.5,	0.0);

				bucketBottom.position	=	ccp(0.5,	0.0);

				bucketTop.anchorPoint	=	ccp(0.5,	1.0);

				bucketTop.position	=	ccp(0.5,	1.0);

				[waterBucket	addChild:bucketTop];

				[waterBucket	addChild:bucketBottom];

The	code	pins	the	bottom	bucket	to	the	bottom	of	the	node,	and	the	top	sprite	to	the	top	of
the	node.	Next,	you	need	to	configure	your	waterBucket	node.	Add	the	following	code:

waterBucket.contentSize	=	CGSizeMake(bucketBottom.contentSize.width,	

bucketBottom.contentSize.height	+	bucketTop.contentSize.height);

				waterBucket.positionType	=	positionType;

				waterBucket.anchorPoint	=	ccp(0.5,	0.5);

				waterBucket.position	=	ccp(0.5,	0.15);

				[self	addChild:waterBucket	z:1];

				self.waterBucket	=	waterBucket;

Notice	that	the	water	bucket	has	a	zOrder	of	one.	This	is	because	it	will	appear	above	any
water	drops	that	are	later	added	to	the	scene.

It	is	a	good	practice	to	create	a	method	to	handle	in	order	to	set	up	a	new	game.	This
allows	you	to	easily	restart	your	game.	Add	the	following	newGame	method	to	the	class.

-	(void)newGame	{

				//Reset	the	properties

				self.numberDropped	=	0;

				self.bucketPosition	=	0;

				//If	we	already	have	drops,	remove	them	from	the	parent

				if	(self.drops)	{

								for	(CCNode	*drop	in	self.drops)	{

												[drop	removeFromParent];

								}

				}

				//Setup	a	new	drops	array

				self.drops	=	[NSMutableArray	array];

				

				//Reset	the	score	label

				self.scoreLabel.string	=	@"Score:	0";

}

Go	back	and	add	a	call	method	to	your	new	game	method	at	the	end	of	the	init	method,
right	before	the	return	method.

Build	and	run	your	code	to	see	your	progress.	You	should	see	a	water	bucket	on	the	screen
sitting	at	the	left-hand	side:

There	will	also	be	a	score	label	up	at	the	top.	Looks	like	a	pretty	boring	game	so	far.	So,
let’s	add	some	interactivity.

Detecting	touches	and	responding
We	will	now	add	the	Touch	methods	so	that	your	game	has	some	interactivity

Add	the	following	code	to	the	class:

#pragma	mark	-	Touch	Methods

-	(void)touchBegan:(UITouch	*)touch	withEvent:(UIEvent	*)event	{

				CGPoint	touchLocation	=	[touch	locationInNode:self];

				CGFloat	halfWay	=	self.contentSize.width/2;

				

				if	(touchLocation.x	<	halfWay)	{

								self.bucketPosition--;

				}	else	{								self.bucketPosition++;

				}

}

#pragma	mark	-	Custom	Setters/Getters

-	(void)setBucketPosition:(int)bucketPosition	{

				//Limit	the	values	of	this	property

				if	(bucketPosition	<	0)	{

								bucketPosition	=	0;

				}	else	if	(bucketPosition	>	kNumberOfPositions-1)	{

								bucketPosition	=	kNumberOfPositions	-	1;

				}

				

				//Update	the	position	of	the	water	bucket

				_bucketPosition	=	bucketPosition;

				CGFloat	positionX	=	(float)(1	+	bucketPosition)	/	

((float)kNumberOfPositions+1);

				

				self.waterBucket.position	=	ccp(positionX,	

self.waterBucket.position.y);

}

The	first	method	handles	the	bucket	position	when	the	user	touches	down	on	the	screen.
The	way	it	will	work	is	when	the	user	touches	the	left-hand	side	of	the	screen,	you	move
the	bucket	to	the	left.	When	you	touch	the	right-hand	side	of	the	screen,	the	bucket	will
move	to	the	right.	The	code	is	using	the	contentSize	property	of	the	scene	to	calculate
where	the	halfway	point	is.	It	then	sets	the	bucketPosition	property.

The	next	method	is	a	custom	setter	for	the	property.	The	first	part	limits	the	range	of	the
property	between	zero	and	the	constant	that	was	defined	at	the	top	of	the	class.	Once	the
new	value	has	been	calculated,	you	store	the	value	and	calculate	the	new	position	of	the
bucket	sprite.	You	can	then	set	the	position	of	the	bucket.

Tip
It	is	always	a	good	idea	to	use	pragma	marks	to	separate	the	sections	of	your	class.	It	helps
to	keep	it	organized	and	is	also	used	by	Xcode	to	search	and	navigate	your	code.

Build	and	run	the	game	now,	and	you	should	be	able	to	move	the	bucket	left	and	right.

Now	that	you	can	move	the	bucket	around,	it	would	be	a	bit	more	interesting	to	see
whether	there	was	something	to	catch.	The	game	needs	a	method	to	create	the	water	drops.
Add	the	following	method:

-	(void)spawnWaterDrop	{

				CCPositionType	positionType	=	

CCPositionTypeMake(CCPositionUnitNormalized,	CCPositionUnitNormalized,	

CCPositionReferenceCornerBottomLeft);

				CGFloat	positionX	=	(1	+	(float)arc4random_uniform(kNumberOfPositions))	

/	((float)kNumberOfPositions	+	1);

				CCSprite	*waterDrop	=	[CCSprite	

spriteWithImageNamed:@"water_drop.png"];

				waterDrop.positionType	=	positionType;

				waterDrop.anchorPoint	=	ccp(0.5,	0.0);

				waterDrop.position	=	ccp(positionX,	1.0);

				[self	addChild:waterDrop];

				CGFloat	time	=	3.0	-	(self.numberDropped	/	10.0);

				CCActionMoveTo	*move	=	[CCActionMoveTo	actionWithDuration:time	

position:ccp(positionX,	0)];

				[waterDrop	runAction:move];

				[self.drops	addObject:waterDrop];

				self.numberDropped++;

}

This	method	creates	a	new	water	drop,	positions	it,	and	adds	it	to	the	view	hierarchy.
Notice	that	it	uses	a	CCActionMoveTo	class	reference	to	move	the	sprite	down	the	screen.
We	use	an	equation	to	speed	up	the	water	drops	based	on	the	number	that	were	caught:

CGFloat	time	=	3.0	-	(self.numberDropped	/	10.0);

Another	new	concept	is	the	arc4random_uniform(x)	function.	This	method	creates	a
random	number	between	0	and	less-than	x.	It	is	always	an	integer;	so	if	you	need	a	random
decimal	number,	you	need	to	divide	after	generating	the	random	integer:

CGFloat	positionX	=	(1	+	(float)arc4random_uniform(kNumberOfPositions))	/	

((float)kNumberOfPositions	+	1);

Add	a	method	call	to	the	bottom	of	the	newGame	method	to	call	the	new	spawnWaterDrop
method:

[self	spawnWaterDrop];

The	game	is	almost	complete;	the	only	thing	left	to	do	is	check	whether	the	bucket	is
underneath	each	water	drop	when	they	reach	the	bottom.	This	will	be	accomplished	using
the	Cocos2d	update	method.	This	method	is	called	every	time	a	frame	is	drawn	to	the
screen.	Using	this	is	simple,	it	is	just	overridden	on	the	scene	class.

Add	the	following	method	to	the	class:

-	(void)update:(CCTime)delta	{

				//Check	every	drop	on	screen

				for	(int	i	=	self.drops.count-1;	i>=0;	i--)	{

								CCNode	*drop	=	self.drops[i];

								//First	check	if	the	water	drop	has	reached	the	bucket	height

								if	(drop.position.y	<=	self.waterBucket.position.y)	{

												//Water	drop	is	at	bucket	height

												//Next	check	if	the	bucket	is	in	the	correct	position

												if	(drop.position.x	==	self.waterBucket.position.x)	{

																

																//If	it	is	remove	the	drop	from	the	screen

																[drop	removeFromParent];

																[self.drops	removeObject:drop];

																

																//Update	the	score

																self.scoreLabel.string	=	[NSString	

stringWithFormat:@"Score:	%d",	self.numberDropped];

																

																//Create	a	new	drop

																[self	spawnWaterDrop];

												}	else	{

																//The	drop	was	missed,	start	a	new	game

																[self	newGame];

												}

								}

				}

}

Now	in	every	frame,	the	water	drops	are	checked	to	see	whether	they	have	reached	the
bottom	of	the	screen.	If	they	have,	check	to	see	whether	the	bucket	is	in	the	right	position.
If	it	is,	we	add	1	to	the	score.	If	it’s	not,	the	game	is	restarted.

The	game	is	now	complete.

Build	and	run	the	game	now.	It	should	be	fully	playable.

The	next	step
Congratulations	on	making	your	first	game	in	Cocos2d.	There	are	many	possible
extensions	you	could	make:

1.	 The	game	currently	only	drops	one	drop	at	a	time.	It	was	set	up	to	use	an	array	for
drops;	however,	you	should	be	able	to	easily	drop	more	than	one	drop	at	once.

2.	 Currently	the	drop	falls	behind	the	water	bucket;	this	is	not	what	the	designer
intended.	Modify	the	game	so	the	drop	falls	into	the	bucket,	as	shown	in	the
following	figure:

Tip
Don’t	forget	that	you	can	always	build	and	run	your	app	for	Android	using
Apportable.

The	Cocos2d	update	loop
In	our	game,	the	update	method	was	seen	for	the	first	time.	This	will	most	likely	be	used
in	every	game,	so	it	will	now	be	covered	in	more	detail.

There	are	two	types	of	update	methods:

update:(CCTime)delta:	This	update	method	has	a	dynamic	time	step.	It	is	called
directly	before	the	frame	is	rendered.	Cocos2d	attempts	to	render	your	game	at	60
frames	per	second.

Note
If	your	game	consumes	too	much	processing	time,	then	the	game’s	frame	rate	will
decrease.	The	update	method	will	then	be	called	less-than	60	times	per	second.

The	delta	parameter	shows	the	time	since	the	last	update	call	in	milliseconds.

fixedUpdate:(CCTime)delta:	This	update	method	is	guaranteed	to	be	called	at	a
specified	interval.	It	is	recommended	to	use	this	when	you	require	property	changes
on	physics-based	objects.	The	integrated	physics	engine	operates	on	this	update
method.

These	update	methods	are	available	inside	every	CCNode.	The	update	method	is	called	on
each	node	by	the	CCDirector	class.

The	update	loop	is	often	used	as	an	alternative	to	the	CCAction	class	as	it	allows	much
more	flexibility.	More	of	this	will	be	covered	in	Chapter	4,	Animation	with	SpriteBuilder.
For	example,	you	could	move	a	character	using	the	update	loop	as	follows:

-	(void)update:(CCTime)delta	{

				//	move	character	to	the	right,	100	points	a	second

				self.character.position	=	ccp(self.character.position.x	+	100*delta,	

self.character.position.y);

}

Notice	that	the	change	in	position	is	multiplied	by	the	delta	parameter.	This	will	cause
your	character	to	move	100	points	per	second	no	matter	what	the	frame	rate	is.
Sometimes,	it	can	be	desirable,	whereas	at	other	times,	it	can	be	the	wrong	choice.	This
topic	will	be	covered	extensively	in	Chapter	4,	Animation	with	SpriteBuilder.

Scenes
Scenes	in	Cocos2d	are	used	extensively	to	break	the	game	into	manageable	components.
While	it	would	be	possible	to	create	your	entire	game	in	one	scene,	it	is	certainly	not
advisable.	The	scene	is	the	root	node	of	your	node	hierarchy.	Each	scene	is	a	subclass	of
the	CCNode	class.	Only	one	scene	can	be	active	at	any	time,	and	changing	the	active	scene
is	managed	by	the	CCDirector	class	.

Scene	life	cycle
Cocos2d	provides	multiple	events	that	are	called	at	certain	points	in	the	life	cycle	of	your
scene.	You	can	override	these	events	in	any	CCNode	subclass,	and	not	just	the	CCScene
class.	The	following	events	are	available:

init:	This	method	is	called	when	a	scene	is	initialized	in	code.	If	the	scene	was
created	in	SpriteBuilder,	this	method	is	not	called.	This	method	is	normally	where
you	build	your	scene	by	adding	child	nodes.
didLoadFromCCB:	This	method	is	called	when	your	scene	is	created	in	SpriteBuilder.
It	is	called	when	the	complete	scene	is	loaded	and	all	the	code	connections	have	been
set	up.	You	can	implement	this	method	to	access	and	manipulate	the	content	of	the
scene,	often	achieving	results	that	are	not	possible	inside	SpriteBuilder.	You	cannot
access	the	child	nodes	or	code	connections	before	this	method	is	called.
onEnter:	This	method	is	called	as	soon	as	the	replacement	of	the	current	active	scene
begins.	It	is	called	before	any	animated	transition	occurs.	This	method	is	used	to
configure	your	scene	before	the	scene	can	be	seen	on	screen.
onEnterTransitionDidFinish:	If	you	are	using	an	animated	scene	transition,	this
method	is	called	on	completion	of	the	animation.	If	you	are	not	using	a	transition,	it
is	called	right	after	the	onEnter	event.	Implement	this	method	to	execute	the	code
right	after	the	transition	is	finished.	This	is	often	used	to	start	off	the	scene’s
animations	or	interactivity.
onExit:	This	method	is	called	when	the	scene	leaves	the	stage.	If	the	scene	is	using
an	animated	transition,	then	it	is	called	when	the	transition	has	finished.
onExitTransitionDidStart:	This	method	is	called	when	the	scene	begins	to	exit	at
the	start	of	the	transition.

Tip
You	must	call	super	when	overriding	the	onEnter(),
onEnterTransitionDidFinish(),	onExit()	and	onExitTransitionDidStart()
methods,	which	is	very	important.	If	you	forget,	you	will	often	find	that	your	scene
behaves	strangely	and	will	not	accept	any	touch	input.

Each	scene	is	the	root	node	of	the	node	hierarchy,	and	as	such	all	the	nodes	visible	on
screen	are	children	of	the	scene.	This	hierarchy	is	called	the	scene	graph.	The	scene	itself
is	an	invisible	node	that	is	used	as	a	container	for	all	the	other	nodes.	The	following
diagram	shows	multiple	different	scenes	and	scene	graphs	in	a	typical	game:

https://www.makeschool.com/docs/?source=mgwu#!/cocos2d/1.3/concepts/cocos2d-
scenes-and-layers

The	preceding	diagram	shows	three	separate	scenes	with	each	containing	multiple	nodes.
It	also	shows	how	the	game	is	created	and	transitioned	using	the	AppDelegate	and	the
CCDirector	objects.

The	CCDirector	object	is	the	instance	that	controls	which	scene	is	the	current	active	scene
and	which	scene	is	presented	on	screen.	You	can	only	present	one	scene	at	a	time.	The
CCDirector	is	also	responsible	for	passing	on	the	update	methods	and	any	other
scheduled	methods.	It	also	works	out	where	to	pass	touch	inputs	when	they	are	received.

Also	seen	in	the	diagram	is	the	logical	grouping	of	objects	inside	their	scenes.	It	makes
sense	to	group	all	the	menu	logic	inside	one	scene,	the	game	logic	inside	another	scene,
and	the	store	inside	a	third	scene.	This	keeps	your	game	much	more	manageable	and
allows	you	to	be	flexible	in	the	future.	Let’s	say	you	decide	to	add	an	extra	level	to	your
game	after	the	first	one,	you	could	simply	insert	another	scene	after	the	gameplay	scene
and	then	transition	from	there	into	the	store	scene.

Creating	a	CCScene
The	CCDirector	object	manages	the	transition	between	scenes.	To	initialize	your	scene,
you	use	one	of	two	methods	depending	on	whether	your	scene	was	created	in
SpriteBuilder	or	code.

To	initialize	a	scene	that	was	created	in	SpriteBuilder,	use	the	following	code:

CCScene	*nextScene	=	[CCBReader	loadAsScene:@"MyScene"];

To	initialize	a	scene	that	was	created	in	code,	use	the	following:

CCScene	*nextScene	=	*	[NextScene	scene];

Transitioning	to	another	scene
To	transition	to	another	scene,	you	must	call	the	CCDirector	class	instance.	The	easiest
way	is	as	follows:

[[CCDirector	sharedDirector]	replaceScene:nextScene];

This	method	will	replace	the	current	active	scene	with	the	next	scene.	The	current	active
scene	will	then	be	removed	from	memory.	Sometimes,	this	is	not	what	you	want.	Take	for
example,	a	pause	scene.	You	simply	want	this	scene	to	appear	temporarily,	and	then	return
to	the	gameplay	scene.	There	are	other	methods	provided	by	CCDirector	to	handle
situations	like	this.	The	methods	available	are	as	follows:

replaceScene:	This	method	simply	replaces	the	current	active	scene	with	the	scene
provided.	The	current	scene	is	removed	from	memory.
pushScene:	This	method	pushes	the	next	scene	to	the	stack	and	makes	it	the	current
active	scene.	The	previous	scene	remains	in	memory.
popScene:	This	method	removes	the	current	active	scene	from	memory	and	makes
the	previously	pushed	scene	as	the	new	active	scene.
popToRootScene:	This	method	pops	to	the	root	node	in	the	scene	stack.	It	removes	all
other	scenes	from	memory,	and	is	useful	to	return	back	to	a	main	menu	button.

Care	must	be	taken	when	using	the	pushScene	method	as	it	can	be	memory	intensive.	It	is
generally	only	used	for	temporary	scenes	such	as	pause	scenes.

To	animate	to	the	next	scene,	all	scene	methods	on	CCDirector	can	be	suffixed	with	the
withTransition	parameter	as	follows:

CCTransition	*transition	=	[CCTransition	

transitionCrossFadeWithDuration:1.0f];

[[CCDirector	sharedDirector]	replaceScene:nextScene	

withTransition:transition];

There	are	many	transitions	available	for	use.

TransitionCrossFadeWithDuration

TransitionFadeWithColor:duration

TransitionFadeWithDuration

TransitionMoveInWithDirection:duration

TransitionPushWithDirection:duration

TransitionRevealWithDirection:duration

Putting	it	into	practice
To	put	all	your	new	scene	knowledge	into	practice,	you	will	now	add	a	menu	scene	to
your	water	bucket	game.	The	first	step	is	to	create	the	class	files.	In	Xcode,	add	a	new
class,	call	it	MenuScene,	and	make	it	a	subclass	of	CCScene.

The	first	step	in	creating	any	scene	is	to	add	the	scene	convenience	method.	Add	the
following	to	your	class	file.	You	might	find	it	easier	to	copy,	paste,	and	edit	the	equivalent
method	from	your	IntroScene	class:

//	---

#pragma	mark	-	Create	&	Destroy

//	---

+	(MenuScene	*)scene

{

				return	[[self	alloc]	init];

}

This	method	is	simply	convenient	as	it	makes	creating	a	new	scene	easier.

Go	to	your	header	file	and	add	a	method	stub	for	scene	to	make	it	accessible	from	outside
this	class.	Your	header	should	now	look	like	the	following:

#import	<Foundation/Foundation.h>

#import	"cocos2d.h"

@interface	MenuScene	:	CCScene	{

				

}

+	(MenuScene	*)scene;

@end

Next,	you	need	to	initialize	the	menu	scene.	Add	the	following	init	method:

-	(instancetype)init

{

				self	=	[super	init];

				if	(self)	{

								CCPositionType	positionType	=	

CCPositionTypeMake(CCPositionUnitNormalized,	CCPositionUnitNormalized,	

CCPositionReferenceCornerBottomLeft);

								CCButton	*button	=	[CCButton	buttonWithTitle:@"Start"];

								button.positionType	=	positionType;

								button.position	=	ccp(0.5,	0.5);

								[button	setBlock:^(id	sender)	{

												[[CCDirector	sharedDirector]	pushScene:[IntroScene	scene]	

withTransition:[CCTransition	transitionFadeWithDuration:0.33]];

								}];

								[self	addChild:button];

				}

				return	self;

}

The	scene	will	be	using	a	button	to	kick	off	the	transition	to	the	next	scene.	An	Objective-

C	block	is	set	to	be	run	when	the	button	is	tapped.	Inside	the	block,	the	CCDirector	is	told
to	push	your	game	scene.	It	uses	a	transition	to	fade	to	the	next	scene	with	a	duration	of
0.33.	You	could	use	any	transition	here	that	you	want.

If	you	run	your	game	now,	you	will	see	nothing	has	changed.	First,	you	need	to	tell	the
director	which	scene	to	use	at	the	apps	start-up.

Open	up	your	AppDelegate.m	file	and	find	the	startScene	method.	Replace	it	with	the
following	code:

-(CCScene	*)startScene

{

				//	This	method	should	return	the	very	first	scene	to	be	run	when	your	

app	starts.

				return	[MenuScene	scene];

}

Don’t	forget	to	also	add	an	import	statement	for	the	MenuScene	header.	This	method	tells
the	director	which	scene	is	the	first	scene	in	your	game.

Now,	if	you	build	and	run	the	app,	you	will	see	a	very	simple	menu	scene.	Tapping	on	the
Start	button	loads	up	your	game.

If	you	want,	you	can	practice	your	new	skills	from	this	chapter	and	make	this	scene	look	a
bit	better.	Perhaps	add	some	sprites	and	change	the	font	of	the	Start	button.

Summary
You	now	have	a	basic	knowledge	of	Cocos2d	and	have	created	your	first	game!	You	know
about	CCNode	and	the	scene	graph.	You	learned	the	common	CCNode	subclasses,	including
CCSprite	for	2D	images,	CCButton	for	buttons,	and	CCLabelTTF	for	text.	You	also	learned
how	to	organize	your	game	into	different	scenes	using	CCScene	and,	how	to	transition
between	these	scenes	using	the	CCDirector-shared	instance.	You	also	learned	how	to	run
code	on	every	frame	by	using	the	update	methods	provided	in	CCNode.

In	the	next	chapter,	you	will	discover	how	you	can	avoid	all	the	repetitive	initialization
code	by	using	the	graphical	editor:	SpriteBuilder.

Chapter	3.	SpriteBuilder
It’s	time	to	introduce	you	to	the	graphical	editor	that	can	be	used	with	Cocos2d,
SpriteBuilder.	SpriteBuilder	is	a	fully	featured	graphical	development	environment	for
Cocos2d.	It	is	very	powerful	and	much	of	your	game	can	actually	be	created	inside	of
SpriteBuilder.	It	is	especially	good	at	eliminating	tedious	and	repetitive	layout	code
because	you	can	lay	out	your	entire	scene	graphically	and	see	the	results	straightaway.

In	this	chapter,	you	will	learn	about:

Setting	up	a	new	project	in	SpriteBuilder
The	basics	of	SpriteBuilder
Laying	out	a	scene
Animating	a	scene
Transitioning	between	scenes

In	this	chapter,	the	basics	of	SpriteBuilder	will	be	introduced	as	well	as	some	simple
physics.	You	will	learn	how	to	create	a	new	project	and	set	up	two	scenes	(one	for	the
main	menu,	and	one	for	the	gameplay).	You	will	then	learn	how	to	create	code
connections	in	order	to	write	code	for	your	nodes	that	are	created	within	SpriteBuilder.
This	will	be	accomplished	by	making	a	simple	Flappy	Bird	like	game	entirely	from
CCColorNode.	In	order	to	make	your	Flappy	Bird	clone	authentic,	you	will	add	some
simple	physics	to	make	your	character	fly	and	detect	collisions.

If	you	haven’t	already	installed	SpriteBuilder,	you	will	need	to	install	it	from	the	Mac	App
Store.

Creating	a	new	project
You	will	now	create	your	first	SpriteBuilder	project.	This	will	be	used	to	make	a	Flappy
Bird	style	game.	SpriteBuilder	is	very	easy	to	use,	and	a	lot	of	people	find	it	much	easier
to	design	their	game	scenes	compared	to	writing	code.	The	steps	to	create	a	SpriteBuilder
project	are	as	follows:

1.	 To	start,	first	open	SpriteBuilder.	Create	a	new	project	by	clicking	File	|	New	|
Project.	Call	your	game	whatever	you	like,	in	this	example	FlappySquare	was	used.
You	should	now	see	a	screen	like	the	following	screenshot:

This	is	the	default	project	template	for	SpriteBuilder.	It	is	a	simple	app	that	will
appear	on	your	device	just	as	shown	in	the	preview	window	in	the	center	of	the
screen.

2.	 To	build	and	run	a	SpriteBuilder	app,	you	need	to	publish	the	project	on	Xcode	and
build	and	run	it	from	there	like	normal.	SpriteBuilder	projects	maintain	their	own
internal	Xcode	project	and	to	create	or	update	it,	you	use	the	Publish	button.	The
Publish	button	is	located	at	the	top-left	corner	next	to	the	Develop	drop-down	menu.

3.	 Press	the	Publish	button.	Your	app	will	now	be	published	on	Xcode.
4.	 Navigate	to	Finder	where	you	saved	your	SpriteBuilder	project	and	open	the	folder.

Inside	the	folder,	you	will	see	an	Xcode	project.
5.	 Open	this	Xcode	project.
6.	 Build	and	run	the	project	on	your	device.	You	should	see	an	app	that	looks	like	the

following	screenshot:

Congratulations!	You	have	successfully	built	an	app	from	SpriteBuilder.

Now	that	you	are	all	setup,	let’s	take	a	look	at	the	different	components	of	SpriteBuilder.

There	are	four	major	sections	of	SpriteBuilder:

1.	 The	Main	editor.
2.	 The	Resource	pane.
3.	 The	Options	pane.
4.	 The	Timeline	pane.

The	Main	editor	window
The	main	area	of	SpriteBuilder	is	the	center	window.	It	is	where	all	your	layout	happens
and	provides	a	view	of	what	it	will	look	like	on	a	device.	It	is	fully	interactive;	you	can	tap
on	any	item	you	see	in	the	device	in	order	to	select	it	to	edit.	You	can	also	drag	the	items
around.

Try	it	now;	drag	the	SpriteBuilder	label	up	at	the	top	of	the	screen.

The	Resource	pane
The	resource	pane	is	where	all	your	game	objects	and	project	resources	are	listed	and
ready	to	drop	right	into	the	scene.	It	has	four	sections.	Tap	on	the	third	section	to	bring	up
the	Object	library.

The	Object	library	is	where	you	drag	Cocos2d	objects	from.	Everything	you	need	to

layout	your	scenes	from	simple	nodes	is	here.

The	Options	pane
The	options	pane	is	where	the	properties	of	your	objects	can	be	modified.	It	is	very	similar
to	Interface	Builder	in	Xcode.

Select	the	SpriteBuilder	logo	in	the	main	window	and	you	will	see	all	of	its	properties
appear	in	the	options	pane.	Here	you	can	set	the	position,	anchor	point,	scale,	content	size
and	skew	all	without	writing	any	code.

You	can	also	edit	the	properties	of	the	different	types	of	nodes.	In	the	current	case,	you	can
set	the	text,	font,	and	size	of	the	label.

Change	the	label	to	Flappy	Square.

The	Timeline	pane
The	timeline	pane	is	where	animations	are	implemented.	We	won’t	be	using	it	in	this
chapter	and	will	be	covering	it	in	detail	in	the	next	chapter.	For	now,	it	can	also	be	used	as
a	convenient	list	of	nodes	and	their	hierarchy	in	the	scene.

Creating	Flappy	Square
Let’s	start	creating	what	is	sure	to	be	the	next	big	hit	on	the	App	Store:	Flappy	Square.
Flappy	Square	is	a	Flappy	Bird	clone	that	uses	squares	instead	of	fancy	graphics.	Don’t
worry!	you	will	add	some	proper	assets	in	the	next	chapter.

You	should	currently	have	a	screen	that	looks	like	the	following	screenshot;	if	you	don’t
move	your	label	so	it	is	in	the	same	position	and	change	its	text:

1.	 This	screen	will	be	the	menu	scene	of	the	app.	Let’s	add	a	button	so	that	players	can
actually	start	the	game.

2.	 Drag	a	button	from	the	left-hand	side	of	SpriteBuilder	onto	your	scene.
3.	 Position	the	button	at	the	center	of	the	scene	and	change	its	text	to	Start	Game.
4.	 Now	to	add	the	code	that	will	run	when	this	button	is	pressed,	you	need	to	add	a	code

connection.
5.	 In	the	options	pane,	open	the	second	tab	on	the	right-hand	side	of	the	screen.	In	the

field	marked	selector,	type	start.

6.	 This	is	the	method	that	Cocos2d	will	attempt	to	call	when	you	tap	on	the	button.
Currently,	this	method	does	not	exist	and	the	game	would	crash.	Let’s	add	the	method
now.

7.	 Publish	your	SpriteBuilder	project	and	switch	to	Xcode.
8.	 Open	the	MainScene.m	file.	It	should	just	be	a	blank	implementation.
9.	 Add	the	following	method	to	your	implementation:

www.allitebooks.com

http://www.allitebooks.org

-	(void)start	{

				CCLOG(@"Start	tapped");

}

10.	 Build	and	run	your	game.
11.	 You	should	see	your	button	on	screen.	Tapping	on	this	button	produces	a	console

message.

Creating	a	new	scene/layer
You	now	need	to	link	a	scene	to	the	app	when	the	user	taps	on	start.	This	new	scene	will
be	the	gameplay	scene	of	your	app.	Following	are	the	steps:

1.	 To	create	a	new	scene	in	SpriteBuilder,	click	on	File	|	New	|	File.	This	will	open	up
the	New	File	dialog	box.

2.	 Name	your	new	document	Gameplay.ccb	and	select	Layer.	The	reason	you	will
select	layer	rather	than	scene	is	because	you	will	need	to	be	able	to	position	objects
outside	the	screen.	Scenes	present	in	the	iPhone	border	around	the	main	window.
Layers	allow	you	to	add	objects	to	any	position	regardless	of	its	layer	content	size.

3.	 You	will	now	see	an	empty	black	layer.	Let’s	make	it	look	a	bit	nicer.
4.	 Open	the	Object	library	(third	tab	on	the	left-hand	side	of	the	screen).	Using

CCColorNodes	from	the	library,	decorate	your	layer	to	look	like	sky	and	ground.	You
can	also	use	CCGradientNodes	to	fill	a	square	with	a	gradient.

5.	 You	can	use	the	options	pane	on	the	right-hand	side	of	the	screen	to	configure	your
nodes,	or	you	can	use	the	click-and-drag	modifiers	in	the	main	window.

6.	 Once	you	have	created	a	ground	and	sky	for	your	layer,	add	another	CCNodeColor
of	size	(30,	30).	Set	the	new	nodes	color	to	one	that	will	stand	out.	After	you	have
finished	creating	your	layer,	it	should	look	something	like	the	following	image.	Don’t

worry	if	it’s	a	little	different,	these	nodes	are	just	for	looks.

Linking	to	a	SpriteBuilder	scene	in	code
Now	that	you	have	created	your	layer,	you	need	to	link	it	in	code.	This	will	allow	you	to
transition	to	the	new	scene	when	the	user	presses	the	start	button.	In	order	to	do	this,	you
need	to	let	Cocos2d	know	which	class	in	code	to	associate	the	scene	with.

1.	 In	the	timeline	view,	select	the	topmost	option:	CCNode.

2.	 Now,	select	the	Code	Connection	pane	on	the	right-hand	side	of	the	screen.	It	is	the
second	tab.	Create	a	Custom	class	named	Gameplay	in	CCNode	.

3.	 Now,	open	Xcode	again	and	create	a	new	CCNode	subclass	named	Gameplay.	Make
sure	to	save	it	in	the	source	folder	to	keep	your	project	structure	consistent.

4.	 The	new	class	you	just	represented	is	the	class	file	for	your	layer	in	SpriteBuilder.
They	are	linked	with	the	name	you	typed	in	the	Custom	class	field.

5.	 Switch	back	to	MainScene.m	and	replace	the	start	method	with	the	following	code:

-	(void)start	{

				CCScene	*gameplay	=	[CCBReader	loadAsScene:@"Gameplay"];

				[[CCDirector	sharedDirector]	pushScene:gameplay	withTransition:

[CCTransition	transitionFadeWithDuration:0.33]];

}

6.	 Build	and	run	your	game.	You	should	see	a	nicely	rendered	version	of	the	layer	you
designed	in	SpriteBuilder.

Enabling	physics	in	SpriteBuilder
In	the	current	game,	you	want	your	character,	the	small	square,	to	fall	to	the	ground	and
stop.	Later	on,	you	will	introduce	the	flapping	mechanic,	but	for	now,	let’s	keep	it	simple.

Everything	that	is	to	have	physics	applied	to	it	in	Cocos2d	must	be	a	child	of
CCPhysicsNode.	Luckily,	SpriteBuilder	makes	this	very	simple	by	including	physics	nodes
in	the	Object	library.	Following	are	the	steps:

1.	 Open	the	Object	library	again	and	drag	out	a	physics	node.	Position	it	at	(0,	0).	Also,
increase	the	gravity	property	to	(0,	-700).

2.	 You	now	need	to	make	any	object	that	is	included	in	the	physics	simulation	a	child	of
this	physics	node.	In	your	current	app,	this	is	the	character	square	and	the	ground.

3.	 In	SpriteBuilder,	you	can	reorganize	the	node	hierarchy	by	simply	dragging	the	nodes
in	the	timeline	editor.	Drag	your	character	node	and	ground	node	from	the	top	of	the
physics	node	into	the	timeline	editor.	They	will	then	become	children	of	the	physics
node.

4.	 There	is	no	need	to	worry	about	the	sky	node	as	it	is	not	part	of	the	simulation.

5.	 Now	you	need	to	set	up	the	physics	engine.	The	desired	behavior	is	that	the	ground
never	moves,	and	the	character	falls	down	and	lands	on	the	ground.

6.	 First,	you	need	to	enable	physics	for	both	objects.	The	physics	options	are	configured
in	the	third	tab	in	the	options	pane.

7.	 Click	on	each	object	one	at	a	time	Enable	physics	in	the	physics	options	pane.

8.	 Now,	in	order	to	make	the	ground	never	move,	it	needs	to	become	static.	Edit	the
physics	options	for	the	ground	and	select	Static.	It	ensures	that	the	object	never
moves;	it	simply	can	be	interacted	with	by	other	objects.

9.	 Publish	your	game	to	Xcode.	Build	and	run	the	game	and	see	what	happens.

You	should	see	your	character	square	fall	down	and	stop	on	the	ground.	You	now	see	the

power	of	SpriteBuilder.	Without	any	code	in	your	gameplay	scene,	you	have	enabled
physics	and	set	up	a	physics	simulation.

Connecting	SpriteBuilder	objects	to	Xcode
properties
It’s	now	time	to	make	your	character	fly.	When	the	user	taps	on	the	screen,	the	character
will	jump	up	again.	In	order	to	do	this,	you	will	have	to	write	some	code.	In	order	to	write
code,	you	are	going	to	need	a	reference	to	the	character	square.	To	do	this,	you	create	a
new	code	connection.	Instead	of	setting	up	a	custom	class,	this	time	you	are	going	to	link	a
node	to	a	property	of	the	Gameplay.m	class.	Following	are	the	steps:

1.	 Select	your	character	square	in	SpriteBuilder	and	open	the	Code	Connection
options.	In	the	field	named	Doc	root	var,	type	_character.

2.	 Publish	it	on	Xcode	and	open	your	Xcode	project.
3.	 Add	a	private	interface	at	the	top	of	your	Gameplay.m	file.	Inside	this	file,	create	a

CCNode	property	named	character:

@interface	Gameplay()

@property	(nonatomic)	CCNode	*character;

@end

4.	 Add	a	new	method	flap	and	type	in	the	following	code.

-	(void)flap	{

				CGPoint	forceDirection	=	ccp(0.0,	1.0);

				CGPoint	impulse	=	ccpMult(forceDirection,	800);

				[self.character.physicsBody	applyImpulse:impulse];

}

5.	 To	make	your	character	flap,	an	impulse	will	be	applied.	The	direction	is	upwards
and	this	is	multiplied	with	the	magnitude.

6.	 This	impulse	is	applied	to	the	physics	body	of	your	character.	More	information
about	this	will	be	covered	in	Chapter	6,	Physics	Engines.

7.	 Now,	you	need	to	call	this	method	on	touch.	Add	the	following	code:

-	(void)didLoadFromCCB

{

				self.userInteractionEnabled	=	YES;

}

-	(void)touchBegan:(UITouch	*)touch	withEvent:(UIEvent	*)event	{

				[self	flap];

}

Instead	of	the	init	method,	the	didLoadFromCCB	method	is	used.	This	method	is
called	when	the	scene	has	been	successfully	unpacked	from	the	SpriteBuilder	file,
and	all	the	code	connections	are	now	available	for	use.

8.	 Build	and	run	the	game	now.	You	should	be	able	to	tap	on	the	screen	and	make	your
character	jump	upwards.

9.	 You	might	notice	that	there	is	a	problem;	if	you	tap	too	often,	the	character	shoots	out
quickly	from	the	top	of	the	screen.	In	order	to	counter	this,	you	will	need	to	limit	the

velocity	of	the	node.
10.	 This	will	be	achieved	with	the	update	method.	Add	the	following	method:

-	(void)update:(CCTime)delta	{

				//	clamp	velocity

				CGFloat	yVelocity	=	clampf(self.character.physicsBody.velocity.y,	

-1	*	MAXFLOAT,	200.f);

				self.character.physicsBody.velocity	=	ccp(0,	yVelocity);

}

Tip
Recall	from	Chapter	2,	Nodes,	Sprites,	and	Scenes	that	the	update	method	is	called
on	every	frame.

11.	 Build	and	run	the	game	now.	You	should	have	a	smoothly	flying	square.

Creating	reusable	components
Now	that	your	game	has	a	flapping	square,	it	would	be	nice	to	have	some	obstacles.	As
you	want	more	than	one	obstacle,	it	would	be	nice	to	create	a	component	that	could	be
reused	multiple	times.	SpriteBuilder	makes	this	process	simple.	Following	are	the	steps:

1.	 Reopen	your	SpriteBuilder	project	and	create	a	new	file.	This	time,	instead	of	a	layer,
create	node.	Name	the	node	Obstacle.

2.	 Drag	two	CCNodeColor	objects	onto	the	main	window.	Set	both	their	sizes	to	(40,
300).	Set	their	colors	to	whatever	you	like.	Position	one	node	at	(0,	0),	and	the	other
node	at	(0,	425).	Enable	physics	on	both	nodes	and	set	their	physics	type	to	Static.

3.	 Select	the	parent	CCNode	from	the	timeline	editor.	Set	its	content	size	to	(40,	725).
Set	a	Custom	class	for	the	node	to	Obstacle.

4.	 Your	SpriteBuilder	should	now	look	like	the	following	screenshot:

5.	 This	new	object	will	be	your	obstacle	in	your	game.
6.	 Reopen	the	Gameplay	file.
7.	 Open	the	Object	library.	Drag	a	Sub	File	on	top	of	the	physics	node.	In	the	options

pane,	select	the	CCB	file	as	Obstacle.ccb.	Position	your	obstacle	at	a	good	starting
point.

8.	 Your	scene	should	now	look	like	the	following	screenshot:

The	Sub	File	component	of	SpriteBuilder	is	one	of	the	most	powerful	features.	It
allows	you	to	create	reusable	components	in	your	games.

9.	 Create	two	more	obstacle	subfiles	and	evenly	space	them	at	the	right-hand	side	of	the
first	obstacle.

10.	 Create	a	Doc	root	var	code	connection	for	each	obstacle.	Name	them	_obstacle1,
_obstacle2,	and	_obstacle3,	respectively.

Moving	obstacles	across	the	screen
Now,	you	need	to	move	the	obstacles	across	the	screen.	To	do	this,	you	will	need	to
reference	them	in	code:

1.	 Publish	and	switch	over	to	Xcode.	Add	the	following	properties	to	your	private
interface:

@property	(nonatomic)	NSMutableArray	*obstacles;

@property	(nonatomic)	CCNode	*obstacle1;

@property	(nonatomic)	CCNode	*obstacle2;

@property	(nonatomic)	CCNode	*obstacle3;

2.	 Also,	add	the	following	line	to	your	didLoadFromCCB	method:

self.obstacles	=	[NSMutableArray	arrayWithObjects:self.obstacle1,	

self.obstacle2,	self.obstacle3,	nil];

3.	 Now,	to	actually	move	these	across	screen,	add	the	following	code	underneath	the
velocity	clamp	in	the	update	method:

				//Move	the	obstacles	across	the	screen

				for	(CCNode	*obstacle	in	self.obstacles)	{

								obstacle.position	=	ccpSub(obstacle.position,	ccp(3.0,	0));

								

								//Check	if	they	have	gone	off	screen,	if	they	have	reposition	

them

								if	(obstacle.position.x	<	-obstacle.contentSize.width)	{

												int	y	=	-(arc4random_uniform(180)+70);

												obstacle.position	=	ccp(self.boundingBox.size.width	*	2,	

y);

								}

				}

4.	 Also,	as	you	added	a	custom	class	to	your	Obstacle	subfile,	you	will	need	to	create
the	corresponding	code	file	or	else	the	game	will	crash.

5.	 Create	a	new	CCNode	subclass	called	Obstacle.
6.	 Build	and	run	your	game.

You	should	now	have	an	endless	supply	of	obstacles	to	try	and	dodge.	The	only	problem	is
that	nothing	happens	when	you	actually	hit	one.

Detecting	collisions
The	last	thing	missing	from	Flappy	Square	is	the	end	condition.	When	your	character
squares	hit	an	obstacle,	the	game	should	end.	This	will	be	achieved	by	detecting	a
collision	between	each	of	the	obstacle	squares	and	the	character	square.	Following	are	the
steps:

1.	 First,	you	need	to	add	code	connections	to	the	obstacle	squares	so	that	code	can	be
written	for	them.

2.	 Open	SpriteBuilder,	and	then	open	the	Obstacle.ccb	file.
3.	 Add	a	code	connection	to	each	block	named	_bottomBlock	and	_topBlock,

respectively.
4.	 Publish	and	switch	back	to	Xcode.	Open	the	Obstacle.m	file	and	add	the	properties

for	the	blocks:

@interface	Obstacle()

@property	(nonatomic)	CCNode	*topBlock;

@property	(nonatomic)	CCNode	*bottomBlock;

@end

Also	add	the	following	method:

-	(void)didLoadFromCCB	{

				self.topBlock.physicsBody.collisionType	=	@"obstacle";

				self.topBlock.physicsBody.sensor	=	YES;

				self.bottomBlock.physicsBody.collisionType	=	@"obstacle";

				self.bottomBlock.physicsBody.sensor	=	YES;

}

Setting	the	physics	body	sensor	property	to	true	makes	objects	that	collide	with	that
physics	body	unaffected.	It	simply	gives	you	a	chance	at	a	callback	to	let	you	know	that
the	collision	has	happened.	It	is	very	good	for	invisible	objects,	for	example,	to	check
whether	you	wanted	to	detect	when	an	object	entered	a	region.

1.	 Open	your	Gameplay.m	file	again.
2.	 Change	your	interface	to	adopt	the	Collision	delegate:

@interface	Gameplay()	<CCPhysicsCollisionDelegate>

This	protocol	defines	the	methods	for	use	when	detecting	collisions.	The	delegate	is
set	on	the	physics	node,	so	you	will	need	to	add	a	code	connection	for	it.

3.	 Open	your	SpriteBuilder	project	and	add	a	code	connection	to	the	physics	node.
Name	it	_physicsRootNode.

4.	 Add	the	corresponding	property	to	your	Gameplay.m	file:

@property	(nonatomic)	CCPhysicsNode	*physicsRootNode;

5.	 Add	the	following	lines	to	your	didLoadFromCCB	method:

self.physicsRootNode.collisionDelegate	=	self;

self.character.physicsBody.collisionType	=	@"character";

6.	 Now,	in	order	to	detect	the	collision	between	an	obstacle	and	a	character,	you	need	to
implement	the	correct	method.	Add	the	following	code	at	the	bottom	of	your
Gameplay.m	file:

-	(BOOL)ccPhysicsCollisionBegin:(CCPhysicsCollisionPair	*)pair	

character:(CCNode	*)nodeA	obstacle:(CCNode	*)nodeB	{

				CCLOG(@"Game	over");

				[[CCDirector	sharedDirector]	popScene];

				return	YES;

}

Notice	that	the	parameter	name	for	nodeA	and	nodeB	is	character	and	obstacle,
respectively.	The	Cocos2d	physics	engine	looks	to	see	whether	the	delegate
implements	a	method	with	the	names	of	the	collisionTypes	property.	If	it	does,	it
will	call	this	method.

7.	 Build	and	run	your	game	now.	You	should	see	a	complete,	but	very	basic	Flappy
Square	game.

When	your	character	collides	with	an	obstacle,	the	game	drops	back	to	the	main	menu.

The	next	step
Now,	you	have	seen	the	power	of	SpriteBuilder.	With	a	relatively	small	amount	of	code,
you	have	created	a	game	that	has	complex	physics	mechanics.	There	was	no	layout	code
to	write	at	all	which	keeps	the	code	very	readable.

You	learned	a	lot	in	this	chapter.	SpriteBuilder	is	a	large	piece	of	software	and	you	require
a	lot	of	practice	to	learn	it	properly.	You	should	now	have	a	basic	understanding	about
how	to	layout	a	scene,	and	how	to	create	resuseable	components	to	speed	up	developer.
Reuseable	components	also	cut	down	on	code	repetition.

Of	course!	The	game	is	very	simple	and	lacks	polish.	In	the	next	chapter,	you	will	add
some	proper	assets	and	design	simple	animations	to	go	with	them.	You	will	also	learn
about	particle	systems.	This	will	take	the	game	to	a	whole	new	level.

In	the	meantime,	however	you	could	think	about	adding	the	following	features:

1.	 Add	a	score	system.	You	will	need	to	detect	when	the	character	passes	between	two
blocks.	To	do	this,	you	could	use	an	invisible	node	in	between	the	blocks	and	set	its
collision	type	to	sensor.

2.	 Try	to	change	the	numbers	with	the	physics	settings.	Perhaps	make	the	gravity
stronger	and	judge	the	effect.

Summary
In	this	chapter,	you	gained	an	insight	into	how	to	use	SpriteBuilder	to	build	your	games
faster	than	it	was	before.	You	learned	how	to	set	up	a	new	project	and	to	lay	out	a	scene.
You	also	learned	how	to	create	gameplay	objects	using	nodes	and	how	to	enable	physics
on	them.	You	also	learned	how	to	export	to	Xcode	and	build	and	run	your	game.

In	the	next	chapter,	you	will	improve	on	your	Flappy	Bird	game	by	adding	some	actual
sprites	rather	than	color	nodes	and	by	creating	some	animations.

Chapter	4.	Animation	with	SpriteBuilder
In	the	previous	chapter,	you	were	introduced	to	SpriteBuilder.	In	order	to	keep	it	simple,
the	tutorial	did	not	use	any	graphical	assets.	In	this	chapter,	you	will	learn	how	to	add
assets	to	SpriteBuilder	and	create	animations	for	them.	It	will	really	take	your	Flappy	Bird
game	to	the	next	level.	You	will	also	be	introduced	to	particles	to	add	a	nice	little	effect	to
the	bird	when	the	user	taps	the	screen.

The	following	points	will	be	covered	in	this	chapter:

Adding	sprite	assets	to	SpriteBuilder
Animating	in	SpriteBuilder	using	sprite	frames
Animating	nodes	in	SpriteBuilder	using	keyframes
Animating	in	code	using	actions

Moving,	scaling,	and	rotating
Sequencing	actions
Delaying	actions
Running	actions	at	the	same	time
Repeating	actions
Running	code	with	actions	to	get	a	callback

Adding	sprites	to	SpriteBuilder
Just	using	basic	shapes	does	not	create	the	best	looking	game.	In	order	to	make	your	game
better,	you	will	now	learn	how	to	add	real	assets	to	your	game.

First,	you	will	need	to	acquire	some	assets.	You	can	create	your	own	if	you	like	or
download	some	premade	assets	from	https://s3.amazonaws.com/mgwu-
misc/Spritebuilder+Tutorial/PeevedPenguinsAssets.zip.

Tip
If	you	are	looking	for	more	game	art,	you	can	check	out	OpenGameArt.org	for	some	great
assets.

Open	up	your	project	from	the	last	chapter	in	SpriteBuilder.	To	import	assets	into
SpriteBuilder,	you	need	to	drag	them	into	the	resources	pane	on	the	left.	Drag	in	the	asset
files	now.	You	should	now	see	them	listed	in	the	resources	pane.

You	may	notice	that	you	do	not	have	different	assets	for	retina	and	non-retina.	This	is
because	SpriteBuilder	automatically	converts	them	for	you.	You	just	have	to	let	it	know
what	it	is	starting	with.	The	default	starting	scale	is	4x,	but	the	images	you	have	imported
are	at	the	2x	size.	To	change	this	setting,	perform	the	following:

1.	 Open	up	Project	Settings	by	clicking	File	|	Project	Settings.
2.	 Change	the	Default	scaling	from	setting	to	2x	(phonehd).

When	publishing,	SpriteBuilder	will	automatically	resize	these	images	for	you.	Having
lots	of	separate	images	however	is	bad	for	performance	as	it	greatly	increases	the
overhead.	Loading	files	from	the	disk	takes	time,	and	for	each	file,	there	is	an	overhead.

https://s3.amazonaws.com/mgwu-misc/Spritebuilder+Tutorial/PeevedPenguinsAssets.zip
http://OpenGameArt.org

To	overcome	this	problem,	many	graphics	engines,	including	Cocos2d,	have	support	for
sprite	sheets.	Sprite	sheets	pack	all	your	small	graphic	assets	into	one	large	file.	The
implementation	is	completely	hidden	from	the	programmer.	You	still	use	the	assets	as	if
they	were	single	files	but	you	get	the	extra	performance	benefits.

In	order	to	enable	this	feature,	you	need	to	separate	your	assets	into	folders.	In	large
games,	you	can	make	folders	for	each	part	of	your	game.	Perhaps,	you	can	make	one	per
screen	or	level	and	one	for	common	assets	across	all	screens.	In	your	game,	there	aren’t
too	many	assets,	so	one	folder	will	be	fine.	Following	are	the	steps:

1.	 To	create	the	folder,	right-click	on	the	resources	area	and	create	a	new	folder.	Call	it
whatever	you	choose.	Then,	drag	all	the	game	assets	into	this	folder.

2.	 Next,	right-click	on	the	folder	and	select	Make	Smart	Sprite	Sheet.

Let’s	see	the	results	of	this:

3.	 Click	Publish.
4.	 Navigate	to	your	SpriteBuilder	project	resources	in	Finder.

There	will	be	a	new	file	that	is	an	image	of	all	your	assets	combined.

Creating	sprite	frame	animations
You	may	have	noticed	that	there	are	three	assets	for	the	bird.	These	will	be	used	to	create	a
keyframe	animation	that	will	run	in	a	loop.	SpriteBuilder	makes	this	process	very	simple:

1.	 Create	a	new	file	that	uses	a	sprite	as	its	root	object.	Call	it	Bird.
2.	 Select	CSprite	in	the	editor.
3.	 In	the	options	pane	on	the	right-hand	side	of	the	screen,	there	is	an	option	for	Sprite

frame.	Set	it	to	bird0.png.

4.	 Now,	in	order	to	create	the	animation,	select	all	the	bird	images	in	the	resources	pane
on	the	left	of	the	screen.	Right-click	on	them	and	select	Create	keyframes	from
Selection.

5.	 Notice	that	there	has	been	three	keyframes	created	in	the	timeline	editor.	If	you	click
play,	you	will	notice	that	the	bird	quickly	flaps	and	then	gets	stuck	on	the	last	frame
while	the	rest	of	the	timeline	plays	out.

6.	 In	order	to	fix	this,	you	need	to	set	the	timeline	duration.	Open	the	options	for	the
default	timeline	and	select	Set	timeline	duration.	Enter	0	seconds	and	3	frames.

7.	 You	also	have	to	set	up	the	animation	to	loop.	This	is	accomplished	with	the	chaining
of	timelines.	In	order	to	create	a	loop,	you	simply	chain	the	timeline	to	itself.

8.	 At	the	bottom	of	the	timeline,	there	is	an	option	currently	set	to	No	chained	timeline.
Click	on	this	and	select	Default	Timeline.

9.	 Your	bird	sprite	animation	is	now	complete.	Let’s	drop	it	in	the	main	menu	in	order	to
see	it	in	action.

10.	 Open	your	MainScene.ccb	file	and	drop	in	a	subfile	node.	Select	your	Bird.ccb
file	as	the	CCB	File.

Tip
If	nothing	appears	after	selecting	Bird.ccb,	make	sure	you	have	saved	your	bird	file.

We	can	now	also	switch	out	the	square	in	the	game	play	scene	with	your	new	bird
subfile.

11.	 Open	your	Gameplay	layer.
12.	 Delete	the	square	and	drag	out	a	new	subfile	onto	the	physics	node	in	the	timeline.

Note
Remember	to	re-add	the	code	connection	a	doc	root	var	named	_character	and
enable	physics.

13.	 Change	the	physics	shape	to	circle	as	it	better	fits	the	image	of	our	bird.
14.	 Publish	your	game	and	run	it	from	Xcode.

You	now	have	a	real	flapping	bird!

Switching	out	the	obstacle	image
Knowing	that	you	cleverly	made	your	obstacle	a	separate	subfile,	it	is	very	easy	to	switch
in	the	image	of	the	pipe.	Let’s	do	this	now:

1.	 Open	up	the	Obstacle	file	and	delete	the	two	red	squares.
2.	 Drag	out	two	images	of	the	pipe	from	the	resources	tab.
3.	 You	will	have	to	rotate	one	of	them	to	180	degrees	so	that	it	is	facing	the	correct

direction.	Line	them	up	where	the	red	blocks	were.
4.	 You	will	also	have	to	re-add	your	code	connections	and	physics	so	the	collisions

work.
5.	 Enable	physics	on	both	and	set	the	physics	type	to	be	Polygon	and	Static.	Also,	add

the	doc	root	var	code	connections	_topBlock	and	_bottomBlock,	respectively.
6.	 Open	the	Gameplay	scene	and	drag	out	some	ground	sprites	to	replace	your	gradient

node	ground.	You	will	probably	have	to	overlap	two	of	them.	Ensure	that	your	new
ground	nodes	have	physics	enabled	and	are	children	of	the	physics	node	in	the	scene.

7.	 Also	drag	out	some	background	images	to	make	your	scene	look	good.
8.	 Publish	and	run	the	game	and	have	a	look!

The	game	is	starting	to	look	really	good	now.

Particle	systems
A	great	item	of	polish	that	could	be	added	to	your	game	is	a	particle	system.	Particle
systems	can	be	designed	right	in	SpriteBuilder	with	the	fully	featured	particle	system
editor.	If	you	are	unsure	of	what	a	particle	system	is,	then	the	best	way	to	learn	is	by
having	a	look.

In	your	Flappy	Bird	project,	create	a	new	file.	Select	Particles	and	name	it
FlapParticles.

You	should	see	a	new	file	open	up	with	what	looks	like	a	flame	in	the	center	of	the	screen:

This	is	a	particle	system.	Particle	systems	allow	the	spawning	of	many	small	sprites	that
behave	in	defined	ways.	You	can	set	many	property	ranges	and	each	particle	that	is
spawned	will	be	randomly	assigned	a	value	in	that	range.	This	allows	for	the	creation	of
some	really	great	effects.	The	best	thing	about	creating	particle	systems	in	SpriteBuilder	is
that	you	can	see	the	changes	straightaway.	This	allows	for	great	fine	tuning	of	the	effect.

The	following	are	the	properties	you	can	edit	and	their	effects:

Property Effect

Mode This	mode	defines	the	Gravity	mode	or	radial	mode.

Position
Variance This	property	sets	the	amount	of	variance	in	the	start	position	in	the	x	and	y	direction.

Emit	Rate This	property	sets	the	amount	of	particles	emitted	per	second

Duration This	property	sets	how	many	seconds	the	emitter	will	run.	-1	means	forever.

Total
Particles This	property	sets	a	maximum	number	of	particles	to	exist	at	a	time.

Life This	property	sets	the	amount	of	seconds	each	particle	lives.	You	can	also	set	a	variance	for	this	property.

Start	Size This	property	sets	how	big	the	particles	start	their	life.	You	can	also	set	a	variance	for	this	property.

End	Size This	property	sets	how	big	the	particles	are	at	the	end	of	their	life.	You	can	also	set	a	variance	for	this
property.

Start	Spin This	property	defines	how	much	rotation/	spin	a	particle	has	at	the	start	of	its	life.	You	can	also	set	a
variance	for	this	property.

End	Spin This	property	defines	how	much	rotation	/	spin	a	particle	has	at	the	end	of	its	life.	You	can	also	set	a
variance	for	this	property.

Angle This	property	sets	the	angle	of	the	entire	particle	system.	This	is	used	to	control	the	direction	of	the
particles	emitted.	You	can	also	set	a	variance	for	this	property.

Start	Color This	property	sets	the	starting	color	of	the	particle.

End	Color This	property	sets	the	end	color	of	the	particle.

The	particle	system	can	be	set	into	one	of	two	modes,	Gravity	or	Radial.

The	Gravity	mode	is	the	default	mode	that	produces	particle	systems	like	the	one
SpriteBuilder	defaults	to.	An	example	of	particles	in	the	gravity	mode	is	shown	as	follows:

Gravity	mode	has	a	few	unique	settings:

Property Effect

Gravity This	property	defines	the	direction	of	gravity.

Speed This	property	defines	the	strength	of	the	gravity.

Tangential
Acceleration This	property	defines	the	acceleration	tangential	to	the	direction	of	the	particle.

Radial
Acceleration

This	property	defines	the	acceleration	in	the	radial	direction.	The	radial	direction	is	perpendicular
to	the	tangential	acceleration.

The	Radial	mode	produces	what	could	be	described	as	a	black	hole	sort	of	effect,	as	seen
in	the	following	screenshot:

Property Effect

Start
Radius

This	property	sets	how	wide	the	radius	of	rotation	is	at	the	start.	You	can	also	set	a	variance	for	this
property.

End	Radius This	property	sets	how	wide	the	radius	is	at	the	end.	You	can	also	set	a	variance	for	this	property.

Rotate This	property	sets	the	angle	of	rotation	per	second.

Designing	a	particle	system	for	our	character
Using	the	tools	in	SpriteBuilder,	you	will	now	create	a	simple	particle	effect	for	when	the
bird	character	flaps	their	wings.

Have	a	go	at	designing	one	yourself.	For	reference,	here	is	what	is	used	in	the	example
code:

Property Effect

Mode Gravity

Position	Variance 0,0

Emit	rate 25

Duration 0.25

Total	Particles 6

Life 0.25	+/-	0.15

Start	size 5	+/-	1

End	Size 5	+/-	1

Start	Spin 0

End	Spin 0

Angle 180	+/-	90

Start	Color Brown

End	Color Brown

For	gravity,	the	following	settings	were	used:

Property Effect

Gravity (-100,	0)

Speed 10	+/-	20

Tangential	Acceleration 0

Radial	Acceleration 100	+/-	50

Adding	a	SpriteBuilder	particle	system	in	code
Now	that	you	have	designed	your	particle	system,	you	need	to	add	it	into	your	code.	It
shall	be	fired	when	the	bird	flaps.

1.	 Publish	your	SpriteBuilder	project	and	open	up	your	Xcode	project	and	navigate	to
the	Gameplay.m	file.	Modify	the	file	to	look	as	follows:

				CCParticleSystem	*explosion	=	(CCParticleSystem	*)[CCBReader	

load:@"FlapParticles"];

				//	make	the	particle	effect	clean	itself	up,	once	it	is	completed

				explosion.autoRemoveOnFinish	=	TRUE;

				//	place	the	particle	effect	on	the	characters

				explosion.position	=	self.character.position;

				//	add	the	particle	effect	to	the	same	parent	as	the	character

				[self.character.parent	addChild:explosion];

2.	 Build	and	run	your	game.	You	should	now	see	a	small	particle	effect	when	the	bird
flaps.

Final	polish	to	Flappy	Bird
As	one	final	touch	of	polish	to	your	game,	you	need	to	make	the	bird	rotate	towards	the
ground	as	it	flies.	This	gives	a	great	more	natural	flying	effect.

To	do	this,	you	will	need	to	keep	track	of	how	long	it	has	been	since	the	last	touch	and
rotate	the	bird	accordingly:

1.	 Add	a	new	property	to	your	gameplay.m	file:

@property	(assign)	CGFloat	timeSinceLastTouch;

2.	 In	your	touchBegan	method,	set	it	to	zero:

-	(void)touchBegan:(UITouch	*)touch	withEvent:(UIEvent	*)event	{

				[self	flap];

				

				self.timeSinceLastTouch	=	0.0f;

}

3.	 Now,	navigate	to	your	update	method.	Add	the	following	code:

//Keep	track	of	the	time	since	the	last	touch

self.timeSinceLastTouch	+=	delta;

//Set	the	new	rotation	of	our	character	to	be	in	a	range

				self.character.rotation	=	clampf(self.character.rotation,	-30.f,	

90.f);

				if	(self.character.physicsBody.allowsRotation)	{

//Apply	a	rotation	force	to	generate	a	smooth	rotation

								float	angularVelocity	=	

clampf(self.character.physicsBody.angularVelocity,	-2.f,	1.f);

								self.character.physicsBody.angularVelocity	=	angularVelocity;

				}

				if	((self.timeSinceLastTouch	>	0.5f))	{

								[self.character.physicsBody	

applyAngularImpulse:-40000.f*delta];

				}

4.	 Also	navigate	to	your	flap	method	and	add	this	line	underneath	where	you	apply	the
impulse:

[self.character.physicsBody	applyAngularImpulse:10000.f];

5.	 Build	and	run	your	game.	You	should	now	have	a	nicely	rotating	bird.

Keyframe	animation	in	SpriteBuilder
Animations	can	also	be	created	in	SpriteBuilder	with	keyframes.	In	the	SpriteBuilder
timeline,	there	is	a	full	keyframe	animation	editor.	Each	node	can	have	multiple	properties
animated.

Keyframe	animation	works	by	setting	a	keyframe	on	the	starting	value	and	then	later	in
the	timeline,	a	keyframe	is	set	for	the	ending	value.	The	animation	then	automatically
advances	between	these	values.

It	is	easier	to	understand	in	practice:

1.	 Open	your	main	menu	scene	in	SpriteBuilder.	Drag	out	a	Bird.ccb	subfile.	You	will
create	an	animation	to	move	the	bird	from	offscreen	to	the	center	of	the	screen.

2.	 Drag	the	bird	out	of	the	scene	to	where	it	will	start	its	animation.

3.	 Now,	you	need	to	set	a	key	frame	for	the	starting	position.	Ensure	your	timeline	is	set
to	zero	by	dragging	the	blue	bar	in	the	timeline	back	to	the	start.

4.	 With	your	bird	node	selected,	open	the	menu	and	select	Animation	|	Insert
Keyframe	|	Position:

This	will	add	a	keyframe	to	the	timeline	for	position.

5.	 Now,	drag	your	timeline	bar	and	set	it	to	three	seconds.	Move	your	bird	node	to	the
center	of	the	screen.	This	is	where	your	animation	will	finish.	You	will	notice	that
SpriteBuilder	has	automatically	inserted	a	new	keyframe	for	you	where	you	set	your
timeline.

If	you	play	the	animation	now,	you	can	see	the	bird	move	onto	the	screen.

In	order	to	make	animations	look	better	in	almost	all	cases,	you	will	want	to	apply	some
easing	to	the	tween.	We	will	look	at	all	the	different	types	of	easing	shortly,	but	in	order	to
ease	your	animation	in	SpriteBuilder,	you	need	to	right-click	on	the	purple	bar	and	select
an	ease	type.

Have	an	experiment	with	the	different	types	of	easing	offered	by	SpriteBuilder.

Animation	in	code
Of	course,	you	don’t	have	to	use	SpriteBuilder	when	developing	for	Cocos2d.	Sometimes,
SpriteBuilder	won’t	be	capable	of	what	you	are	trying	to	achieve.	For	these	situations,	you
can	of	course	perform	animation	within	your	code.	There	is	a	powerful	animation	engine
built	straight	into	Cocos2d.

Moving,	scaling,	and	rotating
In	the	last	section,	you	saw	how	you	can	keep	track	of	time	since	an	event	starter	and	use
that	knowledge	in	the	update	method	to	change	an	attribute	of	a	node.	You	can	write	all
your	animation	like	this,	but	there	is	a	much	simpler	way	to	accomplish	simple
animations.	This	method	uses	CCAction.	By	using	CCAction,	you	can	accomplish	many
animations,	such	as	move,	rotate,	and	scale.

Here	is	a	list	of	CCActions	available	to	you	in	code:

Action Effect

CCActionMoveTo,
CCActionMoveBy This	action	moves	a	node	to	a	position	or	by	a	certain	amount.

CCActionJumpTo,
CCActionJumpBy This	action	jumps	a	node	in	a	parabolic	arc	to	a	position	or	by	a	certain	amount.

CCActionScaleTo,
CCActionScaleBy This	action	scales	a	node	to	or	by	a	certain	value.

CCActionRotateTo,
CCActionRotateBy This	action	rotates	a	node	to	or	by	a	certain	angle	in	degrees.

CCActionShow,	CCActionHide This	action	sets	the	visibility	property	of	a	node.

CCActionBlink This	action	toggles	the	node’s	visibility	property	back	and	forth	to	cause	a
blinking	effect.

CCActionToggleVisibility This	action	toggles	the	node’s	visibility	property.

CCActionFadeIn This	action	first	sets	the	node’s	opacity	to	0	and	then	fades	in	the	node	to	an
opacity	of	1.

CCActionFadeOut This	action	first	sets	the	node’s	opacity	to	1	and	then	fades	it	out	to	0.

CCActionTintBy,	CCActionTintTo This	action	changes	the	tint	color	of	a	node	by	or	to	a	value.

To	use	an	action,	you	simply	create	the	action	and	then	run	it	on	the	node	as	follows:

CCActionMoveTo	*move	=	[CCActionMoveTo	actionWithDuration:1.0	

position:ccp(10,	10)];

				[self.character	runAction:move];

By	default,	all	actions	occur	over	a	linear	time	scale.	Generally,	this	does	not	look	good
and	you	probably	want	to	ease	all	your	animations.

Imagine	moving	a	node	from	the	left	side	of	the	screen	to	the	right.	With	a	linear	time
scale,	it	will	move	a	set	amount	of	pixels	per	second,	no	matter	where	it	is	up	to	in	the
animation.	This	almost	never	happens	in	real	life,	normally	objects	accelerate	and
decelerate.	It	is	for	this	reason,	that	it	is	generally	desirable	to	ease	your	animations.
Cocos2d	makes	this	very	easy	to	accomplish	and	provides	a	number	of	prebuilt	easing

functions	for	your	use.

Ease	actions	come	in	three	types:

ease	in
ease	out
ease	InOut

These	names	describe	where	the	change	of	the	acceleration	curve	happens.

The	most	common	easing	patterns	are	listed	as	follows:

Linear:	This	is	the	effect	of	having	no	easing.

EaseIn:	EaseIn	slows	the	speed	at	the	start	and	then	speeds	up.

EaseOut:	EaseOut	is	the	opposite	of	ease	in.	The	animation	will	slow	at	the	end.

EaseInOut:	EaseInOut	slows	the	animation	at	the	start	and	end.	It	is	the	most
commonly	used	easing	function.	Animations	in	iOS	use	an	ease	similar	to	this	one.

There	are	many	easing	types	you	can	choose	from.	For	a	full	list	and	handy	demonstration
of	the	different	ease	types,	check	out	http://kirillmuzykov.com/cocos2d-iphone-easing-
examples/.

To	apply	an	ease	function	to	an	action,	you	just	have	to	create	the	ease	action	with	the
original	action	and	then	run	it	on	the	node.

				CCActionMoveTo	*move	=	[CCActionMoveTo	actionWithDuration:1.0	

position:ccp(10,	10)];

				CCActionEaseInOut	*easedAction	=	[CCActionEaseInOut	

actionWithAction:move];

				[self.character	runAction:easedAction];

http://kirillmuzykov.com/cocos2d-iphone-easing-examples/

Chaining	actions	together
It	is	very	common	to	want	to	run	an	action	at	the	completion	of	another	action.	For
example,	you	may	want	to	move	a	node	to	a	position,	and	once	it	arrives,	scale	it	up.	To
accomplish	this,	you	use	another	type	of	action,	the	CCSequence	action.

A	CCActionSequence	takes	an	array	of	actions	and	runs	them	one	after	another,	in
sequence.	To	achieve	what	is	described	above,	you	would	use	the	following	code:

				CCActionMoveTo	*move	=	[CCActionMoveTo	actionWithDuration:1.0	

position:ccp(10,	10)];

				CCActionEaseInOut	*easedMove	=	[CCActionEaseInOut	

actionWithAction:move];

				CCActionScaleBy	*scale	=	[CCActionScaleBy	actionWithDuration:1.0	

scale:2.0];

				CCActionEaseInOut	*easedScale	=	[CCActionEaseInOut	

actionWithAction:scale];

				

				CCActionSequence	*sequence	=	[CCActionSequence	actions:easedMove,	

easedScale,	nil];

				[self.character	runAction:sequence];

What	if	you	want	the	scale	to	happen	after	a	delay?	There	is	another	action	for	this,
CCActionDelay.	To	use	it,	you	have	to	create	the	object	with	a	duration	and	then	simply
place	it	in	the	sequence	where	you	want	it	to	occur:

				CCActionDelay	*delay	=	[CCActionDelay	actionWithDuration:1.0];

				CCActionSequence	*sequence	=	[CCActionSequence	actions:easedMove,	

delay,	easedScale,	nil];

Running	actions	simultaneously
It	is	also	very	common	to	want	to	run	actions	simultaneously.	This	is	very	simple	to	do,
just	run	the	action	one	after	another	in	code.	In	the	following	code,	you	shall	move	and
scale	your	character	node	at	the	same	time:

CCActionMoveTo	*move	=	[CCActionMoveTo	actionWithDuration:1.0	

position:ccp(10,	10)];

				CCActionEaseInOut	*easedMove	=	[CCActionEaseInOut	

actionWithAction:move];

				CCActionScaleBy	*scale	=	[CCActionScaleBy	actionWithDuration:1.0	

scale:2.0];

				CCActionEaseInOut	*easedScale	=	[CCActionEaseInOut	

actionWithAction:scale];

	[self.character	runAction:easedMove];

[self.character	runAction:easedScale];

However,	there	is	one	slight	catch	to	this	method.	What	if	you	want	to	use	it	in	a
sequence?	For	this	situation,	there	is	another	type	of	action,	CCActionSpawn.	A
CCActionSpawn	action	is	like	a	CCActionSequence,	except	it	runs	its	actions	at	the	same
time.	It	is	created	in	the	same	manner	as	CCActionSequence.

CCActionSpawn	*spawn	=	[CCActionSpawn	actions:easedMove,	easedScale,	nil];

				[self.character	runAction:spawn];

You	can	also	use	the	spawn	you	create	inside	a	sequence	or	use	a	sequence	inside	of	a
spawn.

Repeating	actions
Another	type	of	action	can	be	used	to	create	repeating	actions	or	actions’	sequences.	For
instance,	you	may	want	a	pulsating	scale	effect	where	a	node	scales	up	and	down
repeatedly.	This	can	be	accomplished	with	CCActionRepeat	as	follows:

				CCActionScaleTo	*scaleUp	=	[CCActionScaleTo	actionWithDuration:1.0	

scale:2.0];

				CCActionScaleTo	*scaleDown	=	[CCActionScaleTo	actionWithDuration:1.0	

scale:2.0];

				CCActionSequence	*scaleSeq	=	[CCActionSequence	actions:scaleUp,	

scaleDown,	nil];

				CCActionRepeat	*repeat	=	[CCActionRepeat	actionWithAction:scaleSeq	

times:5];

[self.character	runAction:repeat];

This	will	scale	up	and	down	your	node	five	times.

If	you	want	to	repeat	forever,	there	is	another	action	for	that,	CCActionRepeatForever.

CCActionRepeatForever	*repeat	=	[CCActionRepeatForever	

actionWithAction:scaleSeq];

Running	code	on	completion	of	an	animation
A	very	common	requirement	is	to	run	some	code	on	the	completion	of	an	animation.	You
would	want	to	move	a	node	off	screen	and	then	once	set	off	screen,	remove	it	from	your
scene	for	instance.	This	can	be	easily	accomplished	with	another	set	of	actions,
CCActionCallBlock	and	CCActionCallFunc.

The	most	convenient	to	use	is	the	block	based	action	as	it	allows	you	to	access	the	node
that	is	having	the	action	run	on	it:

					CCActionCallBlock	*blockAction	=	[CCActionCallBlock	actionWithBlock:^{

								[self.character	removeFromParent];

				}];

				CCActionSequence	*blockSequence	=	[CCActionSequence	actions:easedMove,	

blockAction,	nil];

				[self.character	runAction:blockSequence];

Tip
For	Cocos2d	users	who	used	a	previous	version,	the	CallFuncN	and	CallFuncO	actions
have	been	removed	from	Cocos2d	v3.0.	In	order	to	recreate	their	functionality,	you	need
to	use	the	block-based	actions	and	access	the	node	through	local	scope.

Summary
There	was	a	lot	covered	in	this	chapter	on	animation.	Animation	is	probably	the	most
important	part	of	game	development,	as	without	it	nothing	on	the	screen	will	move	or
change.	You	learned	how	to	add	assets	into	the	SpriteBuilder	so	that	your	games	will	look
much	more	polished.	You	then	learned	how	to	animate	these	assets.	Of	course,	sometimes,
SpriteBuilder	can’t	meet	all	your	needs;	so,	you	also	learnt	how	to	perform	animations	in
code.

In	the	next	chapter,	you	will	learn	how	to	put	together	user	interfaces.	You	will	also	learn
about	the	different	ways	of	accepting	user	input	through	touch	and	the	accelerometer.

Chapter	5.	User	Interaction	and	Interface
What	good	is	a	game	when	the	user	can’t	actually	interact	with	it!	User	interaction	is	a	key
feature	of	a	game	and	is	often	overlooked.	In	this	chapter,	you	will	learn	how	to	take	input
from	a	wide	variety	of	methods.

In	this	chapter,	you	will	learn	how	to:

Detect	and	respond	to	the	user	touching	the	screen
Add	buttons	to	your	scene	in	code
Take	input	from	the	user	with	form	elements	such	as	CCTextField	and	CCSlider
Create	a	scrollable	table	view	using	CCTableView

Detecting	touches
In	Cocos2D,	every	CCNode	class	and	subclass	can	receive	and	handle	touches.	You	just
have	to	enable	one	property.	This	property	is	the	userInteractionEnabled	property	and
is	written	as	follows:

-	(id)init

{

				if	(self	=	[super	init])

				{

								//	activate	touches	on	this	scene

								self.userInteractionEnabled	=	YES;

				}

				return	self;

}

Enabling	this	property	registers	your	node	with	the	touch	dispatcher.	There	are	four	types
of	touch	events.	These	occur:

When	touches	begin
When	touches	end
When	touches	move
When	touches	are	cancelled

Using	these	events	allows	you	to	track	any	touch	as	it	moves	around	the	screen.	These
events	are	passed	to	your	node	by	implementing	the	touch	delegate	methods:

	(void)touchBegan:(UITouch	*)touch	withEvent:(UIEvent	

*)event(void)touchMoved:(UITouch	*)touch	withEvent:(UIEvent	

*)event(void)touchEnded:(UITouch	*)touch	withEvent:(UIEvent	*)event

(void)touchCancelled:(UITouch	*)touch	withEvent:(UIEvent	*)event

Multitouch	can	be	enabled	by	setting	the	following	property:

self.multipleTouchEnabled	=	YES;

If	this	is	set,	each	touch	will	call	the	corresponding	event	method	individually.	If	you	have
four	fingers	touching	the	screen,	you	will	get	four	touchBegan	calls.	It	is	up	to	you	to	keep
track	of	all	the	touches	manually,	this	can	be	done	by	storing	a	strong	reference	to	each
UITouch	object	and	checking	which	touch	has	moved.

Getting	the	touch	location
Knowing	that	a	user	touched	the	screen	is	of	some	use,	but	it	is	very	limited.	What	you
really	want	to	do	is	know	where	the	user	touched	the	screen.

Start	a	new	Xcode	project	using	the	Cocos2d	template.	Open	up	HelloWorldScene.m.	You
will	see	that	there	is	already	a	touchBegan	method	implemented:

-(void)	touchBegan:(UITouch	*)touch	withEvent:(UIEvent	*)event	{

				CGPoint	touchLoc	=	[touch	locationInNode:self];

				

				//	Log	touch	location

				CCLOG(@"Move	sprite	to	@	%@",NSStringFromCGPoint(touchLoc));

				

				//	Move	our	sprite	to	touch	location

				CCActionMoveTo	*actionMove	=	[CCActionMoveTo	actionWithDuration:1.0f	

position:touchLoc];

				[_sprite	runAction:actionMove];

}

You	will	notice	the	first	line	calculates	the	touch	location	relative	to	the	scene.	Remember
that	if	you	are	in	a	CCNode	child	class,	the	calculated	touch	location	will	be	relative	to	that
node,	not	the	screen.	You	can	always	pass	a	different	node	into	the	locationInNode
method	to	get	it	relative	to	another	node.

Dragging	a	node
You	will	now	learn	how	to	drag	a	node	using	the	touch	information.

If	you	are	moving	along	from	the	getting	the	touch	location	section,	delete	the	code	from
the	touchBegan	method.	You	are	going	to	implement	a	drag	action	on	the	sprite	rather
than	a	tap	to	move.	This	will	use	the	full	touch	life	cycle.

1.	 Add	a	new	Boolean	property	to	your	private	interface:

@interface	HelloWorldScene	()

@property	(nonatomic,	assign)	BOOL	dragging;

@end

2.	 Also,	delete	the	code	that	makes	the	sprite	spin	from	the	init	method.
3.	 Now,	add	the	following	code	to	the	touchBegan	method:

-(void)	touchBegan:(UITouch	*)touch	withEvent:(UIEvent	*)event	{

				CGPoint	touchLoc	=	[touch	locationInNode:self];

				

				if	(CGRectContainsPoint(_sprite.boundingBox,	touchLoc))	{

								self.dragging	=	YES;

								NSLog(@"Start	dragging");

				}

}

4.	 Add	a	touchMoved	method	with	the	following	code:

-	(void)touchMoved:(UITouch	*)touch	withEvent:(UIEvent	*)event	{

				CGPoint	touchLoc	=	[touch	locationInNode:self];

				

				if	(self.dragging)	{

								_sprite.position	=	touchLoc;

				}

}

5.	 What	is	being	done	in	these	methods	is	that	first	you	check	to	see	whether	the	initial
touch	was	inside	the	sprite.	If	it	was,	you	set	a	Boolean	to	say	that	the	user	is
dragging	the	node.	It	has,	in	effect,	picked	up	the	node.

6.	 Next,	in	the	touch	moved	method,	it	is	as	simple	as	if	the	user	did	touch	down	on	the
node	and	set	the	new	position	of	the	node	to	the	touch	location.

7.	 Then,	you	just	have	to	let	go	of	the	sprite.	This	is	done	in	touchEnded.
8.	 Implement	the	touchEnded	method	as	follows:

-	(void)touchEnded:(UITouch	*)touch	withEvent:(UIEvent	*)event	{

				self.dragging	=	NO;

}

9.	 Now,	if	you	build	and	run	the	app,	you	will	be	able	to	drag	around	the	sprite.	There	is
one	small	problem;	if	you	don’t	grab	the	sprite	in	its	center,	you	will	see	that	the	node
snaps	its	center	to	the	touch.	What	you	really	want	is	to	just	move	from	the	location
on	the	node	where	it	was	touched.	You	will	make	this	adjustment	now.

10.	 To	make	this	fix,	you	are	going	to	have	to	calculate	the	offset	on	the	initial	touch
from	the	nodes	center	point.	This	will	be	stored	and	applied	to	the	final	position	of
the	node	in	touchMoved.

11.	 Add	another	property	to	your	private	interface:

@property	(nonatomic,	assign)	CGPoint	dragOffset;

12.	 Modify	your	touchBegan	method	to	the	following	code:

-(void)	touchBegan:(UITouch	*)touch	withEvent:(UIEvent	*)event	{

				CGPoint	touchLoc	=	[touch	locationInNode:self];

				CGPoint	touchOffset	=	[touch	locationInNode:_sprite];

				

				if	(CGRectContainsPoint(_sprite.boundingBox,	touchLoc))	{

								self.dragging	=	YES;

								NSLog(@"Start	dragging");

								self.dragOffset	=	touchOffset;

				}

}

Note
Notice	that	using	the	locationInNode	method,	you	can	calculate	the	position	of	the
touch	relative	to	the	node.	This	information	is	only	useful	if	the	touch	was	indeed
inside	the	node;	so,	you	only	store	it	if	this	is	the	case.

13.	 Now,	modify	your	touchMoved	method	to	the	following	code:

-	(void)touchMoved:(UITouch	*)touch	withEvent:(UIEvent	*)event	{

				CGPoint	touchLoc	=	[touch	locationInNode:self];

				//Check	if	we	are	already	dragging

				if	(self.dragging)	{

								CGPoint	offsetPosition	=	ccpSub(touchLoc,	self.dragOffset);

//Calculate	an	offset	to	account	for	the	anchor	point

CGPoint	anchorPointOffset	=	CGPointMake(_sprite.anchorPoint.x	*	

_sprite.boundingBox.size.width,	_sprite.anchorPoint.y	*	

_sprite.boundingBox.size.height);

//Add	the	offset	and	anchor	point	adjustment	together	to	get	the	final	

position

								CGPoint	positionWithAnchorPoint	=	ccpAdd(offsetPosition,	

anchorPointOffset);

								_sprite.position	=	positionWithAnchorPoint;

				}

}

The	offset	position	is	subtracted	from	the	touch	location	using	the	Cocos2d
convenience	function:	ccpSub.	It	subtracts	a	point	from	another	point.

14.	 Using	the	anchor	point	and	size	of	the	sprite,	an	adjustment	is	calculated	to	account
for	different	anchor	points.

15.	 Once	these	two	points	have	been	calculated,	they	are	added	together	to	create	a	final
sprite	position.

16.	 Build	and	run	the	app	now,	you	will	now	have	a	very	natural	dragging	mechanic.

For	reference,	here	are	the	relevant	parts	of	HelloWorldScene.m:

@interface	HelloWorldScene	()

@property	(nonatomic,	assign)	BOOL	dragging;

@property	(nonatomic,	assign)	CGPoint	dragOffset;

@end

-	(id)init

{

				//	Apple	recommend	assigning	self	with	supers	return	value

				self	=	[super	init];

				if	(!self)	return(nil);

				

				//	Enable	touch	handling	on	scene	node

				self.userInteractionEnabled	=	YES;

				

				//	Create	a	colored	background	(Dark	Grey)

				CCNodeColor	*background	=	[CCNodeColor	nodeWithColor:[CCColor	

colorWithRed:0.2f	green:0.2f	blue:0.2f	alpha:1.0f]];

				[self	addChild:background];

				

				//	Add	a	sprite

				_sprite	=	[CCSprite	spriteWithImageNamed:@"Icon-72.png"];

				_sprite.position		=	

ccp(self.contentSize.width/2,self.contentSize.height/2);

				_sprite.anchorPoint	=	ccp(0.5,	0.5);

				[self	addChild:_sprite];

				//	Create	a	back	button

				CCButton	*backButton	=	[CCButton	buttonWithTitle:@"[Menu]"	

fontName:@"Verdana-Bold"	fontSize:18.0f];

				backButton.positionType	=	CCPositionTypeNormalized;

				backButton.position	=	ccp(0.85f,	0.95f);	//	Top	Right	of	screen

				[backButton	setTarget:self	selector:@selector(onBackClicked:)];

				[self	addChild:backButton];

				//	done

return	self;

}

//	---

#pragma	mark	-	Touch	Handler

//	---

-(void)	touchBegan:(UITouch	*)touch	withEvent:(UIEvent	*)event	{

				CGPoint	touchLoc	=	[touch	locationInNode:self];

				CGPoint	touchOffset	=	[touch	locationInNode:_sprite];

				

				if	(CGRectContainsPoint(_sprite.boundingBox,	touchLoc))	{

								self.dragging	=	YES;

								NSLog(@"Start	dragging");

								self.dragOffset	=	touchOffset;

				}

}

-	(void)touchMoved:(UITouch	*)touch	withEvent:(UIEvent	*)event	{

				CGPoint	touchLoc	=	[touch	locationInNode:self];

				

				if	(self.dragging)	{

								CGPoint	offsetPosition	=	ccpSub(touchLoc,	self.dragOffset);

								CGPoint	anchorPointOffset	=	CGPointMake(_sprite.anchorPoint.x	*	

_sprite.boundingBox.size.width,	_sprite.anchorPoint.y	*	

_sprite.boundingBox.size.height);

								CGPoint	positionWithAnchorPoint	=	ccpAdd(offsetPosition,	

anchorPointOffset);

								_sprite.position	=	positionWithAnchorPoint;

				}

}

-	(void)touchEnded:(UITouch	*)touch	withEvent:(UIEvent	*)event	{

				self.dragging	=	NO;

}

Adding	buttons	to	your	scene
Buttons	are	a	requirement	for	almost	any	app.	You	will	have	to	use	them	constantly	in
your	game	development.	Cocos2d	v3	makes	this	very	simple	with	the	introduction	of	the
new	class,	CCButton.	This	is	a	great	improvement	over	version	2	for	those	familiar	with	it.
Making	buttons	is	now	as	easy	as	making	any	other	node.	It	is	even	better	as	they	support
block-based	callbacks	or	target/selector	calls	that	gives	you	the	flexibility	to	work	with
buttons	however	you	like.

Buttons	have	three	states:

Default
Selected
Disabled

If	you	open	up	IntroScene.m	in	your	Xcode	project,	you	will	see	an	example	of	a	button
being	created:

				//	Helloworld	scene	button

				CCButton	*helloWorldButton	=	[CCButton	buttonWithTitle:@"[Start]"	

fontName:@"Verdana-Bold"	fontSize:18.0f];

				helloWorldButton.positionType	=	CCPositionTypeNormalized;

				helloWorldButton.position	=	ccp(0.5f,	0.35f);

				[helloWorldButton	setTarget:self	

selector:@selector(onSpinningClicked:)];

				[self	addChild:helloWorldButton];

Buttons	are	created	with	either	a	text-based	title	or	an	image.	To	create	a	button	with	an
image	instead	of	text,	you	can	use	the	following	code:

(id)	buttonWithTitle:(NSString*)	title	spriteFrame:(CCSpriteFrame*)	

spriteFrame	highlightedSpriteFrame:(CCSpriteFrame*)	highlighted	

disabledSpriteFrame:(CCSpriteFrame*)	disabled;

This	method	gives	you	the	option	of	providing	an	image	for	all	states	of	a	button.

To	set	a	block	instead	of	target/selector	is	as	simple	as	the	following	code:

[helloWorldButton	setBlock:^(id	sender)	{

								NSLog(@"Button	tapped");

				}];

Accepting	user	input	with	form	elements
There	are	many	other	user	input	methods	that	are	not	buttons.	Cocos2d	v3	brings	a	whole
suite	of	form	components	that	were	missing	from	previous	versions.

It	is	also	possible	to	include	UIKit	components,	but	in	nearly	all	cases,	a	better	user
experience	will	be	provided	by	using	the	Cocos2d	equivalent.

The	form	elements	available	are	as	follows:

CCButton

CCTextField

CCLabelTTF,	CCLabelBMFont
CCSlider

CCScrollView

CCTableView

To	use	these	elements,	you	must	provide	images	for	their	appearance.	However,	there	is	an
easier	method.	SpriteBuilder	comes	with	template	versions	of	the	form	components	and
makes	their	use	very	simple.

These	are	what	each	component	looks	like	in	an	app.

1.	 Start	a	new	SpriteBuilder	project.
2.	 Drag	out	some	form	elements	onto	the	screen	and	then	publish	it	in	Xcode.	In	order

to	use	these	form	elements	you	have	placed,	you	will	need	to	set	up	code
connections.

3.	 Open	the	Xcode	project	for	your	SpriteBuilder	project,	and	then	open	the
MainScene.m	file.

4.	 Add	a	private	interface	with	some	properties	for	the	form	elements:

@interface	MainScene	()

@property	(nonatomic,	strong)	CCTextField	*textField;

@property	(nonatomic,	strong)	CCSlider	*slider;

@end

5.	 Add	the	Code	Connections	node	in	SpriteBuilder	to	match	these	properties:

As	both	CCSlider	and	CCTextField	are	subclasses	of	CCControl,	they	both	support
target/selector	or	block-based	callbacks.	The	thing	you	need	to	know	is	when
these	callbacks	are	called.

For	CCTextField,	it	is	when	the	user	presses	the	return	key	and	the	control
resigns	its	first	responder	status
For	CCSlider,	it	is	on	touch	up	after	the	user	has	changed	a	value

6.	 Implement	the	following	onEnter	method	in	MainScene.m	to	test	this	out:

-	(void)onEnter	{

				[super	onEnter];

				[self.slider	setBlock:^(id	sender)	{

								NSLog(@"Slider");

				}];

				

				[self.textField	setBlock:^(id	sender)	{

								NSLog(@"Text	field");

				}];

}

7.	 Build	and	run	your	app;	you	should	see	console	output	when	releasing	your	touch	on
the	slider	or	when	pressing	return	on	the	text	field.

Presenting	data	in	a	table	with
CCTableView
The	CCTableView	node	is	the	Cocos2d	equivalent	of	UITableView.	It	can	be	used	in	your
game	whenever	you	need	to	present	a	scrollable	list	of	items	such	as	a	high	score	table.	It
works	a	lot	like	UITableView,	where	a	data	source	provides	the	instance	of	the	cell	to
show	on	screen.	In	order	to	learn	how	to	use	CCTableView,	you	will	create	a	simple
mocked	up	high	score	screen.	The	scores	will	be	stubbed	out,	but	could	be	easily	switched
for	real	data	if	you	want	to	use	this	implementation	in	your	game.

Start	a	new	Xcode	project	and	delete	all	the	boilerplate	code	from	the	HelloWorldScene.m
file,	so	you	are	left	with	a	blank	scene.	You	might	want	to	leave	the	back	button	so	that
you	can	navigate	back	to	the	main	menu.

Creating	a	CCTableView	data	source
The	first	step	is	to	create	the	data	source	for	your	table	view.	This	could	be	done	in	a
separate	class,	but	to	keep	things	simple	in	this	tutorial,	your	scene	will	also	be	the	data
source.	Following	are	the	steps:

1.	 You	will	also	need	some	dummy	data	to	present.	Add	a	new	property	to	your
interface	for	an	array	of	scores:

@interface	HelloWorldScene	()	<CCTableViewDataSource>

@property	(nonatomic,	strong)	NSArray	*scores;

@end

2.	 In	your	init	method,	give	it	some	dummy	data.	In	this	example,	they	are	strings:

self.scores	=	@[@"5050",	@"3500",	@"3400",	@"2300",	@"1100",	@"500"];

3.	 Now	that	you	have	some	data	on	the	data	source,	you	will	need	to	implement	the
CCTableViewDataSource	protocol.	This	involves	implementing	the	following
methods:

(CCTableViewCell*)	tableView:(CCTableView*)tableView	nodeForRowAtIndex:

(NSUInteger)	index;

-	(float)	tableView:(CCTableView*)tableView	heightForRowAtIndex:

(NSUInteger)	index

(NSUInteger)	tableViewNumberOfRows:(CCTableView*)	tableView;

4.	 These	methods	should	remind	you	of	UITableViewDataSource	as	the	two	work	in	a
very	similar	manner.

5.	 Add	the	protocol	to	your	private	interface:

@interface	HelloWorldScene	()	<CCTableViewDataSource>

6.	 Now,	create	a	new	section	in	your	code	for	the	methods:

#pragma	mark	-	CCTableViewDataSource

//	--

-	(CCTableViewCell*)tableView:(CCTableView	*)tableView	

nodeForRowAtIndex:(NSUInteger)index	{

				return	nil;

}

-	(NSUInteger)tableViewNumberOfRows:(CCTableView	*)tableView	{

				return	self.scores.count;

}

-	(float)	tableView:(CCTableView*)tableView	heightForRowAtIndex:

(NSUInteger)	index	{

				return	50.0f;

}

7.	 For	now,	our	methods	are	stubbed	out.
8.	 The	next	thing	you	are	going	to	do	is	create	the	table	view	cell.	Table	view	cells	are

simply	another	node.
9.	 You	can	put	whatever	type	of	node	you	would	like	on	them.	For	this	example,	you

will	be	adding	a	color	node	as	a	background	and	a	label	for	the	score.

10.	 Update	the	nodeAtRowIndex	method	to	the	following	code:

-	(CCTableViewCell*)tableView:(CCTableView	*)tableView	

nodeForRowAtIndex:(NSUInteger)index	{

				CGSize	cellSize	=	CGSizeMake(150.0f,	50.0f);

				

				CCTableViewCell*	cell	=	[CCTableViewCell	node];

				cell.contentSize	=	cellSize;

				

//Adjust	the	color	of	the	node	to	create	a	gradient	like	effect

				float	colorAdjust	=	(index	/	(float)self.scores.count);

				CCNodeColor*	colorNode	=	[CCNodeColor	nodeWithColor:[CCColor	

colorWithRed:0.1f	green:0.1f	blue:(0.5f	+	0.5f	*	colorAdjust)]	

width:cellSize.width	height:cellSize.height];

//Create	the	score	label	and	center	it	in	the	color	node.

				CCLabelTTF	*scoreLabel	=	[CCLabelTTF	

labelWithString:self.scores[index]	fontName:@"Marker	Felt"	

fontSize:22.0f];

				scoreLabel.position	=	ccp(colorNode.boundingBox.size.width/2,	

colorNode.boundingBox.size.height/2);

				scoreLabel.anchorPoint	=	ccp(0.5,	0.5);

				[colorNode	addChild:scoreLabel];

				

				[cell	addChild:colorNode];

				return	cell;

}

The	color	of	the	Color	Node	is	set	to	different	shades	of	blue,	based	on	its	index.	The	color
node	is	added	as	a	child	of	the	cell	and	the	score	label	is	a	child	of	the	color	node.	The
score	label	is	also	centered	in	the	color	node.	You	could	design	any	node	you	want.	It	is	a
good	practice	to	create	a	subclass	for	the	cell	to	keep	your	code	clean.

Adding	a	CCTableView	node	to	the	scene
Now	that	you	have	your	data	source	created,	you	need	to	actually	hook	it	up	to	a	table
view.	Adding	a	table	view	to	your	scene	is	as	easy	as	adding	any	other	node.	Following
are	the	steps:

1.	 In	your	init	method,	add	the	following	code	after	you	set	up	the	scores	array:

CCTableView*	table	=	[CCTableView	node];

				table.dataSource	=	self;	//	make	our	class	the	data	source

				table.block	=	^(CCTableView*	table)	{

								NSLog(@"Cell	%d	was	pressed",	(int)	table.selectedRow);

				};

				[self	addChild:table];

2.	 Build	and	run	your	app,	you	should	see	a	scrollable	table	view	for	your	high	scores.
Add	some	more	high	scores	to	your	array	and	look	at	how	the	table	view	changes.

Note
For	reference,	the	complete	code	is	available	in	the	code	bundle	provided	with	the
book.

3.	 If	you	want	to	extend	this	high	scores	screen,	you	could	perform	the	following	steps:

Instead	of	taking	an	array	of	strings,	it	would	be	better	to	take	an	array	of	a
custom	object.	This	object	could	contain	a	name,	score,	and	date.	You	would
then	have	to	update	the	design	to	accommodate	these	new	fields	by	adding	more
labels.
You	could	pass	in	an	array	of	high	scores	rather	than	hard	coding	it.	This	would

make	the	high	score	screen	much	more	portable.
The	scene	at	the	moment	is	a	bit	bland.	You	could	style	it	up	using	SpriteBuilder
or	in	code	in	order	to	have	a	title	and	a	background.

Summary
In	this	chapter,	you	learned	how	to	respond	to	a	variety	of	inputs	from	the	user.	You	also
learned	how	to	detect	touches	on	the	screen	and	how	to	use	these	touches	to	change
properties	of	your	nodes.	You	also	learned	how	to	use	form	elements	to	accept	other	types
of	inputs	from	users.

In	the	next	chapter,	you	will	learn	all	about	how	to	use	physics	in	your	app.	Physics	will
be	used	with	both	SpriteBuilder	and	code.	You	will	also	create	an	interactive	physics-
based	game	to	learn	these	concepts.

Chapter	6.	Physics	Engines
These	days,	most	games	will	use	some	form	of	physics	in	their	game	play.	Be	it	just	to
detect	collision	between	objects	or	to	create	a	more	realistic	feel	to	movements	within	a
game.	Physics	engines	can	add	a	great	deal	of	polish	to	a	game	without	a	large	amount	of
effort,	and	as	such	it	is	an	important	skill	to	have.	Physics	takes	your	game	to	the	next
level.

You	have	already	had	some	exposure	to	basic	physics	in	the	previous	chapters.	Physics
was	used	to	detect	collisions	in	the	Flappy	Bird-style	game	and	was	also	used	to	make
your	bird	move	up	and	down	through	the	scene.	There	is	so	much	more	that	can	be	done
with	physics	and	you	will	learn	some	of	it	in	this	chapter.

This	chapter	covers	the	following	topics:

Different	physics	engine	techniques
Build	a	simple	app	that	allows	you	to	fire	a	catapult	at	a	stack	of	objects
See	how	these	objects	will	fall	down

It	will	be	similar	to	how	Angry	Birds	works.

Introducing	physics	engines
Cocos2d	v3	has	an	inbuilt-integrated	physics	engine.	The	physics	engine	it	uses	is	actually
a	third-party	library	named	Chipmunk.	In	the	previous	versions	of	Cocos2d,	there	was	the
option	of	using	either	Box2D	or	Chipmunk	as	they	weren’t	built	into	Cocos2d,	but	simply
could	be	used	with	Cocos2d.	Now,	Chipmunk	support	is	built	right	into	Cocos2d,	which
makes	it	very	easy	to	use	and	makes	it	a	simple	choice	on	which	engine	to	use.	Following
are	the	steps:

1.	 Start	by	creating	a	new	SpriteBuilder	project.	This	app	shall	be	named	Catapult.
2.	 Open	the	project	settings	and	change	the	default	scaling	to	2x.	Remember	this	is	for

the	automatic	scaling	that	SpriteBuilder	uses	when	importing	assets.

3.	 Import	the	catapult	assets	provided	by	dragging	them	into	SpriteBuilder.	Following
are	the	two	assets	that	will	be	used	to	create	your	catapult:

catapult_arm.png

catapult_base.png

4.	 Delete	the	template	scene	and	add	a	new	layer	so	you	have	more	room	to	work	with.
Decorate	the	layer	with	a	gradient	node	for	the	sky	and	a	green	color	node	for	the
ground.

5.	 Next,	add	a	physics	node.	Remember	from	the	previous	chapters	that	every	object
that	interacts	with	physics	must	be	a	child	of	a	physics	node.

6.	 Next,	drag	out	the	assets	for	the	catapult	base	and	arm	as	children	of	the	physics
node.

7.	 Set	the	anchor	point	of	the	arm	to	(1.0,	0.0)	so	that	it	rotates	around	its	bottom-right
corner.

8.	 Now,	enable	physics	for	both	the	base	and	the	arm	by	opening	the	physics	page	on
the	right-hand	side	of	SpriteBuilder	and	tick	Enable	physics:

9.	 Currently,	running	your	app	will	see	the	catapult	parts	quickly	falling	off	the	screen.
To	fix	this,	you	need	to	enable	the	ground	to	also	use	physics	and	make	it	a	Static
object.

10.	 Make	the	ground	node	a	child	of	the	physics	node	and	click	on	Enable	physics
option	in	the	same	way	as	the	catapult	parts.

11.	 Running	the	game	now	will	see	the	catapult	falling	apart	on	launch,	but	at	least	it	will
stay	on	screen.

Obviously,	your	catapult	should	not	fall	apart.	You	need	a	way	to	join	the	two	parts
together.	This	leads	to	the	next	technique,	that	is,	joints.

Adding	joints
A	joint	does	exactly	what	it	sounds	like	it	would	do.	It	joins	objects	together.	There	are
three	types	of	joints:

Physics	Pivot	Joint:	This	connects	two	objects	with	a	single	point
Physics	Distance	Joint:	This	connects	two	objects	together	at	a	set	distance
Physics	Spring	Joint:	This	connects	two	objects	together	at	a	set	distance,	but
instead	of	the	joint	being	rigidly	set,	it	allows	the	distance	to	change	in	the	manner	of
a	spring

1.	 The	first	step	is	to	make	the	base	of	your	catapult	static.	You	don’t	want	it	to	move
throughout	the	scene.

2.	 The	joint	you	will	be	using	is	the	first	option:	the	physics	pivot	joint	as	you	want	your
catapult	arm	to	pivot	around	a	point.

All	of	the	physics	joints	are	available	in	the	SpriteBuilder	objects	pane.

3.	 Drag	Physics	Pivot	Joint	onto	the	scene	and	position	it	in	the	top-right	corner	of	the
catapult	base.

4.	 Next,	move	the	catapult	arm	so	that	its	anchor	point	sits	exactly	at	the	center	of	the
pivot	joint.	You	can	also	rotate	the	arm	so	that	it	is	facing	straight	up.

Your	scene	should	now	look	like	the	following	screenshot:

Currently,	the	joint	is	not	actually	joining	any	objects.	Despite	the	fact	that	it	is	sitting
on	top	of	the	two	bodies	you	want	to	join	together.

5.	 To	set	what	the	joint	holds	together,	you	need	to	edit	the	properties	of	the	joint	in	the
editor	on	the	right-hand	side	of	SpriteBuilder.

6.	 Drag	the	setting	out,	and	select	the	arm	and	the	base	for	Body	A	and	Body	B.	It
should	look	like	the	following	screenshot	when	you	are	done:

7.	 Build	and	run	your	game	now.	You	should	see	your	catapult	no	longer	falls	apart!

Congratulations!	you	just	created	your	first	physics	joint.

Adding	a	sprite	joint
Now,	the	catapult	at	least	holds	itself	together,	but	it	is	not	the	greatest	structure	ever
created.	The	arm	instantly	falls	down.	What	you	want	is	the	arm	to	stay	up	and	then	be
able	to	be	dragged	backwards.

To	achieve	this	behavior,	you	will	use	the	Physics	Spring	Joint.	The	question	however	is
what	are	you	joining	it	to?	Perform	the	following	steps:

1.	 You	need	to	hook	up	your	arm	to	an	invisible	object	that	is	above	the	catapult,	which
will	hold	the	arm	up.	As	this	is	a	spring,	which	will	allow	the	arm	to	be	pulled	in
different	directions	and	spring	back.

2.	 Add	a	blank	CCNode	as	a	child	of	the	physics	node.	This	node	will	have	no	size.	Click
on	Enable	physics	for	the	node	and	set	it	to	be	Static.

3.	 Now,	drag	out	a	physics	spring	node	and	set	the	two	bodies	on	the	node	to	be
between	the	invisible	node	and	the	catapult	arm.

4.	 Build	and	run	your	game;	your	catapult	arm	should	not	fall	down	now.

You	will	tune	the	values	of	the	spring	joint	later	when	you	can	test	out	the	dragging
feature.	First,	you	need	to	implement	the	dragging	feature.

Dragging	an	object	against	a	spring	joint
In	order	to	drag	our	catapult	arm	back,	we	will	create	another	joint.	However,	this	joint
will	be	between	our	finger	and	the	catapult	arm.	As	you	can’t	create	a	joint	to	your	finger,
what	you	will	do	is	create	another	empty	node	that	will	move	based	on	touch.	This	empty
node	will	be	joined	to	the	catapult	arm.	Following	are	the	steps:

1.	 Create	a	new	empty	node	as	in	the	last	section.	Enable	physics	and	set	it	to	static.	The
position	of	the	node	does	not	matter	as	it	will	be	moved	in	code,	but	you	must	ensure
that	it	is	a	child	of	the	physics	node.	Add	a	code	connection	called	_touchNode	to	the
new	node.

2.	 You	will	also	need	a	code	connection	for	the	catapult	arm.	Call	it	_catapultArm.
3.	 Add	another	code	connection	for	the	physics	node:	_physicsNode.
4.	 You	will	do	this	section	in	code.	Switch	over	to	Xcode.
5.	 First,	add	the	property	implementation	for	your	new	code	connection.	Also,	add

another	property	for	the	new	joint	that	will	be	created	in	code:

@interface	MainScene	()

@property	(nonatomic,	strong)	CCNode	*physicsNode;

@property	(nonatomic,	strong)	CCNode	*catapultArm;

@property	(nonatomic,	strong)	CCNode	*touchNode;

@property	(nonatomic,	strong)	CCPhysicsJoint	*touchJoint;

@end

6.	 First,	you	will	need	to	enable	user	interaction	on	the	scene.	Add	the	didLoadFromCCB
method:

-	(void)didLoadFromCCB	{

				self.userInteractionEnabled	=	YES;

				

				self.touchNode.physicsBody.collisionMask	=	@[];

}

7.	 Also	in	the	didloadfromCCB	method,	you	are	setting	the	touch	node	to	collide	with
no	other	objects.	This	stops	it	from	getting	in	the	way.

8.	 Add	the	following	method	to	touchBegan:

-	(void)touchBegan:(UITouch	*)touch	withEvent:(UIEvent	*)event	{

				CGPoint	touchLocation	=	[touch	locationInNode:self];

				

				//Is	the	touch	location	in	the	catapult	arm?

				if	(CGRectContainsPoint(self.catapultArm.boundingBox,	

touchLocation))	{

								//Move	the	touch	node	to	the	position	of	the	touch.

								self.touchNode.position	=	touchLocation;

								

								//Attach	a	spring	between	the	touch	node	and	the	catapult	arm

								self.touchJoint	=	[CCPhysicsJoint	

connectedSpringJointWithBodyA:self.touchNode.physicsBody	

bodyB:self.catapultArm.physicsBody	anchorA:ccp(0,	0)	anchorB:ccp(15,	

15)	restLength:0.0f	stiffness:3000.0f	damping:150.0f];

				}

}

9.	 What	this	method	does	is	simple.	If	the	touch	begins	inside	the	bounds	of	the	catapult
arm,	move	the	touch	node	to	the	position	of	the	touch.	Next,	add	a	joint	between	the
touch	node	and	the	catapult	arm.

10.	 Next,	you	will	need	to	define	the	behavior	on	touch	moved:

-	(void)touchMoved:(UITouch	*)touch	withEvent:(UIEvent	*)event	{

				CGPoint	touchLocation	=	[touch	locationInNode:self];

				self.touchNode.position	=	touchLocation;

}

11.	 For	this,	you	are	simply	moving	the	touch	node	position	to	the	new	touch	location.
You	don’t	need	to	worry	about	checking	the	bounds	of	the	catapult	arm	because	the
joint	will	only	exist	if	the	touch	started	within	the	catapult	arm.

12.	 For	touchEnded	and	touchCancelled	events,	you	will	create	a	fire	catapult	method:

-	(void)touchEnded:(UITouch	*)touch	withEvent:(UIEvent	*)event	{

				[self	fireCatapult];

}

-	(void)touchCancelled:(UITouch	*)touch	withEvent:(UIEvent	*)event	{

				[self	fireCatapult];

}

-	(void)fireCatapult	{

				if	(self.touchJoint)	{

								[self.touchJoint	invalidate];

								self.touchJoint	=	nil;

				}

}

13.	 This	method	simply	destroys	the	joint.	It	will	allow	the	spring	joint	we	attached	in
SpriteBuilder	to	pull	the	catapult	arm	back	up.

14.	 Build	and	run	the	app	now.	You	should	see	the	basic	behavior;	you	will	need	to	tune
the	values	of	the	spring	joint	in	SpriteBuilder	until	you	get	something	that	you	like.

For	reference,	the	values	used	in	the	book	are:

RestLength:	50Dampening:	50Stiffness:	750

You	can	also	play	around	with	the	position	of	the	invisible	node	and	the	anchor	points	of
the	joints.

Once	you	have	this,	you	will	have	a	catapult	that	actually	holds	itself	together	and	can	be
fired	by	dragging	it	back	and	letting	it	go.	Wouldn’t	it	be	great	if	you	could	actually	fire
something	out	of	the	catapult	though?

Firing	objects	from	the	catapult
You	will	now	learn	how	to	launch	an	object	from	the	catapult.	This	will	be	accomplished
by	combining	techniques	into	one	smooth	action,	which	you	have	already	learned.
Following	are	the	steps:

1.	 The	first	step	to	firing	an	object	from	the	catapult	is	to	actually	make	an	object.
2.	 Open	SpriteBuilder	and	add	a	new	node	named	Brick.	Set	bricks	size	to	be	(25,	25)

and	its	anchor	point	to	be	(0.5,	0.5).	Enable	physics	and	set	its	density	to	a	high
value	such	as	50.0,	and	its	friction	to	be	1.0,	and	its	elasticity	to	0.

3.	 Add	a	color	node	to	the	node	and	give	it	an	orange	color	to	make	it	look	more	like	a
brick.

4.	 Publish	and	switch	back	to	Xcode.
5.	 In	order	to	fire	an	object,	you	will	use	the	same	techniques	that	you	have	already

used.	When	the	user	touches	down	on	the	catapult	arm,	you	will	add	a	new	object	to
it.	You	will	then	connect	it	to	the	arm	with	a	pivot	joint.	Once	the	catapult	is	released,
you	will	invalidate	this	joint	and	let	the	brick	fly.

6.	 First	modify	the	interface	to	add	two	new	properties:

@property	(nonatomic,	strong)	CCNode	*brick;

@property	(nonatomic,	strong)	CCPhysicsJoint	*brickJoint;

These	will	be	used	to	keep	track	of	your	brick	when	it	is	being	used.

7.	 Next,	modify	the	touchBegan	method	in	the	following	code:

-	(void)touchBegan:(UITouch	*)touch	withEvent:(UIEvent	*)event	{

				CGPoint	touchLocation	=	[touch	locationInNode:self];

				

				//Is	the	touch	location	in	the	catapult	arm?

				if	(CGRectContainsPoint(self.catapultArm.boundingBox,	

touchLocation))	{

								//Move	the	touch	node	to	the	position	of	the	touch.

								self.touchNode.position	=	touchLocation;

								

								//Attach	a	spring	between	the	touch	node	and	the	catapult	arm

								self.touchJoint	=	[CCPhysicsJoint	

connectedSpringJointWithBodyA:self.touchNode.physicsBody	

bodyB:self.catapultArm.physicsBody	anchorA:ccp(0,	0)	anchorB:ccp(15,	

15)	restLength:0.0f	stiffness:3000.0f	damping:150.0f];

								

								//Setup	the	brick

								CCNode	*brick	=	[CCBReader	load:@"Brick"];

								CGPoint	brickPosition	=	[self.catapultArm	

convertToWorldSpace:ccp(35,	35)];

								brick.position	=	brickPosition;

								[self.physicsNode	addChild:brick];

								self.brick.physicsBody.collisionMask	=	@[];

								self.brick.physicsBody.allowsRotation	=	NO;

								self.brick	=	brick;

								

								self.brickJoint	=	[CCPhysicsJoint	

connectedPivotJointWithBodyA:brick.physicsBody	

bodyB:self.catapultArm.physicsBody	anchorA:ccp(15,	15)];

				}

}

This	adds	a	new	brick	to	the	scene	and	sets	up	its	position.	You	will	notice	that
rotation	and	collision	have	been	disabled.	This	is	to	avoid	weird	behavior	when	the
brick	is	in	the	catapult.	Once	it	is	released,	these	will	be	enabled	again.

8.	 Now	that	you	have	added	the	brick	to	the	catapult	arm,	you	just	need	to	release	it.
9.	 Modify	your	fire	catapult	method	to	the	following	code:

-	(void)fireCatapult	{

				if	(self.touchJoint)	{

								[self.touchJoint	invalidate];

								self.touchJoint	=	nil;

								

								[self.brickJoint	invalidate];

								self.brickJoint	=	nil;

								

								self.brick.physicsBody.collisionMask	=	nil;

								self.brick.physicsBody.allowsRotation	=	YES;

				}

}

This	should	look	very	familiar	by	now.	You	invalidate	the	joint,	and	also	the
renewable	collisions	and	rotation	for	the	brick.

10.	 Build	and	run	your	app.	You	should	now	be	able	to	throw	bricks	from	your	catapult!

11.	 Now	all	you	need	to	do	is	build	something	to	destroy.
12.	 Open	SpriteBuilder	and	drag	out	some	color	nodes	to	create	a	structure	of	your

choice.
13.	 Make	sure	they	are	all	children	of	the	physics	node	and	then	enable	physics	on	all	of

them.	Give	them	a	solid	weight	so	they	don’t	go	flying	too	far	(unless	that’s	what	you
want!).

14.	 Build	and	run	your	game	when	your	structure	is	complete.	Enjoy	knocking	it	down.

Creating	a	motor
A	great	feature	of	joints	is	that	they	can	be	turned	into	a	motor.	A	joint	can	be	given	a	rate
of	rotation	that	can	be	used	to	propel	objects	through	the	scene.	This	can	be	used	to	add
objects	that	behave	like	vehicles	in	your	game.

To	demonstrate	this,	you	will	modify	your	catapult	to	drive	into	your	structure	instead	of
throwing	objects	at	it.	This	can	all	be	done	within	SpriteBuilder.	Following	are	the	steps:

1.	 Open	up	your	project	in	SpriteBuilder	and	drag	out	a	CCColorNode	onto	the	scene.
2.	 Make	sure	it	is	a	child	of	the	physics	node.	This	will	be	the	wheel	for	your	catapult,

so	resize	it	appropriately.
3.	 Enable	physics	on	the	node.	Change	the	physics	shape	to	be	a	Circle,	the	density	to

10.00,	and	the	friction	to	1.00.

4.	 Position	your	wheel	node	in	roughly	the	position	of	the	back	wheel.
5.	 Drag	out	a	Physics	Pin	Joint	and	pin	the	catapult	to	the	back	wheel.	Your	scene

should	now	look	like	the	following	screenshot:

6.	 To	turn	the	pivot	joint	into	a	motor	is	as	simple	as	clicking	a	tick	box.	In	the	settings
for	the	Pivot	Joint	on	the	right-hand	side	of	the	screen	is	a	Motor	section.	Enable	the
motor	and	set	its	rate	to	10.00.

7.	 To	free	your	cart,	you	can	also	delete	the	spring	joint	that	is	holding	up	the	catapult
arm.

8.	 Publish	your	scene	and	open	it	in	Xcode.	Build	and	run	the	project.

You	should	now	see	your	cart	driving	ahead.	It	drags	its	front	side	along	the	ground	as	it
does	not	have	any	wheel	object.

See	whether	you	can	use	the	same	techniques	to	add	a	wheel	in	the	front.

The	next	step
If	you	would	like	to	explore	physics	some	more,	here	are	some	ideas:

Create	a	car	game	where	you	have	to	drive	over	the	hills
Tie	the	rate	of	the	motor	joint	to	the	touch	of	the	screen	in	order	to	give	control	to	the
user
Add	targets	to	shoot	at	objects.	You	can	use	collisions	to	detect	whether	the	target
was	hit

Summary
Congratulations!	You	have	just	built	a	physics	sample	project.	Using	these	techniques,	you
can	build	an	endless	supply	of	physics-based	games.

You	learned	how	to	enable	physics	on	objects	so	they	are	affected	by	gravity.	You	also
learned	how	to	join	objects	together	with	one	of	three	types	of	joints:	Pivot	joints,
Distance	joints,	and	Spring	joints.

You	learned	how	to	use	touch	to	interact	with	the	physics	world.	You	then	learned	how	to
turn	joints	into	motors	to	enable	more	possibilities.

Index
A

anchorPoint	property
about	/	The	building	blocks,	nodes

Android
Cocos2d	app,	building	for	/	Installation	for	Android

animations
creating	/	Animation	in	code
move	/	Moving,	scaling,	and	rotating
scale	/	Moving,	scaling,	and	rotating
rotate	/	Moving,	scaling,	and	rotating
actions,	chaining	together	/	Chaining	actions	together
actions,	running	simultaneously	/	Running	actions	simultaneously
actions,	repeating	/	Repeating	actions
code,	executing	on	completion	of	actions	/	Running	code	on	completion	of	an
animation

Apple	Developer
URL	/	Installing	Cocos2d

Apportable
about	/	An	introduction	to	Cocos2d
URL,	for	downloading	/	Installation	for	Android
installing	/	Installation	for	Android

assets
reference	link	/	Adding	sprites	to	SpriteBuilder

assets,	water	bucket	game
URL,	for	downloading	/	Putting	it	into	practice

B
buttons

adding,	to	scene	/	Adding	buttons	to	your	scene
states	/	Adding	buttons	to	your	scene

C
Catapult	app

creating	/	Introducing	physics	engines
sprite	joint,	adding	/	Adding	a	sprite	joint
object,	dragging	against	spring	joint	/	Dragging	an	object	against	a	spring	joint
objects,	firing	/	Firing	objects	from	the	catapult
motor,	creating	/	Creating	a	motor

CCActions
CCActionMoveTo	/	Moving,	scaling,	and	rotating
CCActionMoveBy	/	Moving,	scaling,	and	rotating
CCActionJumpTo	/	Moving,	scaling,	and	rotating
CCActionJumpBy	/	Moving,	scaling,	and	rotating
CCActionScaleTo	/	Moving,	scaling,	and	rotating
CCActionRotateBy	/	Moving,	scaling,	and	rotating
CCActionShow	/	Moving,	scaling,	and	rotating
CCActionHide	/	Moving,	scaling,	and	rotating
CCActionBlink	/	Moving,	scaling,	and	rotating
CCActionToggleVisibility	/	Moving,	scaling,	and	rotating
CCActionFadeIn	/	Moving,	scaling,	and	rotating
CCActionFadeOut	/	Moving,	scaling,	and	rotating
CCActionTintBy	/	Moving,	scaling,	and	rotating
CCActionTintTo	/	Moving,	scaling,	and	rotating

CCButton	class
about	/	The	building	blocks,	nodes

CCLabelTTF	class
about	/	The	building	blocks,	nodes

CCLayoutBox	class
about	/	The	building	blocks,	nodes

CCNode	class
about	/	The	building	blocks,	nodes

CCNodeColor	class
about	/	The	building	blocks,	nodes

CCScene
creating	/	Creating	a	CCScene

CCSprite	class
about	/	The	building	blocks,	nodes

CCTableView
about	/	Presenting	data	in	a	table	with	CCTableView
used,	for	presenting	data	in	table	/	Presenting	data	in	a	table	with	CCTableView
data	source,	creating	/	Creating	a	CCTableView	data	source
adding,	to	scene	/	Adding	a	CCTableView	node	to	the	scene

children	nodes
about	/	Children	nodes

adding	/	Adding	children
removing	/	Removing	children
ordering	/	Drawing	order	of	the	children	nodes
multiple	coordinate	systems,	working	with	/	Working	with	multiple	coordinate
systems

Chipmunk
about	/	Introducing	physics	engines

Cocos2d
about	/	An	introduction	to	Cocos2d
installing	/	Installing	Cocos2d
installing,	with	installer	/	Installing	Cocos2d	with	the	installer
Hello	World	project,	creating	/	Creating	a	Hello	World	project

Cocos2d	app
building,	for	Android	/	Installation	for	Android
IntroScene.m	file	/	IntroScene.m
HelloWorldScene.m	class	/	The	HelloWorldScene.m	class

contentSize	property
about	/	The	building	blocks,	nodes

content	size	types,	nodes
Points	/	The	building	blocks,	nodes
UI	Points	/	The	building	blocks,	nodes
Normalized	/	The	building	blocks,	nodes
Inset	points	/	The	building	blocks,	nodes
Inset	UI	points	/	The	building	blocks,	nodes

D
data	source

creating,	for	CCTableView	/	Creating	a	CCTableView	data	source
didLoadFromCCB	method

about	/	Scene	life	cycle

E
ease	actions

Linear	/	Moving,	scaling,	and	rotating
EaseIn	/	Moving,	scaling,	and	rotating
EaseOut	/	Moving,	scaling,	and	rotating
EaseInOut	/	Moving,	scaling,	and	rotating
reference	link	/	Moving,	scaling,	and	rotating

F
Flappy	Bird

sprites,	adding	/	Adding	sprites	to	SpriteBuilder
rotating	bird,	creating	/	Final	polish	to	Flappy	Bird

Flappy	Square
about	/	Creating	Flappy	Square
creating	/	Creating	Flappy	Square
scene/layer,	creating	/	Creating	a	new	scene/layer
SpriteBuilder	scene,	linking	in	code	/	Linking	to	a	SpriteBuilder	scene	in	code
physics,	enabling	in	SpriteBuilder	/	Enabling	physics	in	SpriteBuilder
SpriteBuilder	objects,	connecting	to	Xcode	properties	/	Connecting
SpriteBuilder	objects	to	Xcode	properties
reusable	components,	creating	/	Creating	reusable	components
obstacles,	moving	across	screen	/	Moving	obstacles	across	the	screen
collisions,	detecting	/	Detecting	collisions
additional	features,	implementing	/	The	next	step

form	elements
used,	for	accepting	user	input	/	Accepting	user	input	with	form	elements

G
Gravity	mode

about	/	Particle	systems
Gravity	mode,	properties

Gravity	/	Particle	systems
Speed	/	Particle	systems
Tangential	Acceleration	/	Particle	systems
Radial	Acceleration	/	Particle	systems

H
Hello	World	project

creating	/	Creating	a	Hello	World	project
HelloWorldScene.m	class

about	/	The	HelloWorldScene.m	class

I
init	method

about	/	Scene	life	cycle
installation,	Apportable

about	/	Installation	for	Android
installation,	Cocos2d

about	/	Installing	Cocos2d
with	installer	/	Installing	Cocos2d	with	the	installer

installer
used,	for	installing	Cocos2d	/	Installing	Cocos2d	with	the	installer
URL,	for	downloading	/	Installing	Cocos2d	with	the	installer

IntroScene.m	file
about	/	IntroScene.m

J
joints

about	/	Introducing	physics	engines
adding	/	Adding	joints
Physics	Pivot	Joint	/	Adding	joints
Physics	Distance	Joint	/	Adding	joints
Physics	Spring	Joint	/	Adding	joints

K
keyframe	animation

creating	/	Keyframe	animation	in	SpriteBuilder

M
main	editor	window,	SpriteBuilder

about	/	The	Main	editor	window
MenuScene	class

adding	/	Putting	it	into	practice
motor

creating	/	Creating	a	motor
move	animations

creating	/	Moving,	scaling,	and	rotating
multiple	coordinate	systems

working	with	/	Working	with	multiple	coordinate	systems

N
nodes

about	/	The	building	blocks,	nodes
position	types	/	The	building	blocks,	nodes
content	size	types	/	The	building	blocks,	nodes
children	nodes	/	Children	nodes

O
Objective-C

about	/	An	introduction	to	Cocos2d
onEnter	method

about	/	Scene	life	cycle
onEnterTransitionDidFinish	method

about	/	Scene	life	cycle
onExit	method

about	/	Scene	life	cycle
onExitTransitionDidStart	method

about	/	Scene	life	cycle
options	pane,	SpriteBuilder

about	/	The	Options	pane

P
particle	systems

about	/	The	next	step,	Particle	systems
designing	/	Designing	a	particle	system	for	our	character
coding	/	Adding	a	SpriteBuilder	particle	system	in	code

particle	systems,	modes
Gravity	/	Particle	systems
Radial	/	Particle	systems

particle	systems,	properties
Mode	/	Particle	systems
Position	Variance	/	Particle	systems
Emit	Rate	/	Particle	systems
Duration	/	Particle	systems
Total	Particles	/	Particle	systems
Life	/	Particle	systems
Start	Size	/	Particle	systems
End	Size	/	Particle	systems
Start	Spin	/	Particle	systems
End	Spin	/	Particle	systems
Angle	/	Particle	systems
Start	Color	/	Particle	systems
End	Color	/	Particle	systems

Physics	Distance	Joint
about	/	Adding	joints

physics	engines
about	/	Introducing	physics	engines
Catapult	app,	creating	/	Introducing	physics	engines

Physics	Pivot	Joint
about	/	Adding	joints

Physics	Spring	Joint
about	/	Adding	joints

popScene	method
about	/	Transitioning	to	another	scene

popToRootScene	method
about	/	Transitioning	to	another	scene

position	property
about	/	The	building	blocks,	nodes

position	types,	nodes
Points	/	The	building	blocks,	nodes
UI	Points	/	The	building	blocks,	nodes
Normalized	/	The	building	blocks,	nodes

pushScene	method
about	/	Transitioning	to	another	scene

R
Radial	mode

about	/	Particle	systems
Radial	mode,	properties

Start	Radius	/	Particle	systems
End	Radius	/	Particle	systems
Rotate	/	Particle	systems

replaceScene	method
about	/	Transitioning	to	another	scene

resource	pane,	SpriteBuilder
about	/	The	Resource	pane

rotate	animations
creating	/	Moving,	scaling,	and	rotating

S
scale	animations

creating	/	Moving,	scaling,	and	rotating
scene

CCScene,	creating	/	Creating	a	CCScene
menu	scene,	adding	/	Putting	it	into	practice
buttons,	adding	/	Adding	buttons	to	your	scene
CCTableView,	adding	/	Adding	a	CCTableView	node	to	the	scene

scene	graph
about	/	Scene	life	cycle

scenes
about	/	Scenes
life	cycle	/	Scene	life	cycle
transitioning,	to	another	scene	/	Transitioning	to	another	scene

SpriteBuilder
about	/	An	introduction	to	Cocos2d
main	editor	window	/	The	Main	editor	window
resource	pane	/	The	Resource	pane
options	pane	/	The	Options	pane
timeline	pane	/	The	Timeline	pane
sprites,	adding	to	Flappy	Bird	/	Adding	sprites	to	SpriteBuilder
keyframe	animation	/	Keyframe	animation	in	SpriteBuilder

SpriteBuilder	project
creating	/	Creating	a	new	project

sprite	frame	animations
creating	/	Creating	sprite	frame	animations
obstacle	image,	switching	out	/	Switching	out	the	obstacle	image

sprite	joint
adding	/	Adding	a	sprite	joint
object,	dragging	against	/	Dragging	an	object	against	a	spring	joint

sprites
about	/	The	HelloWorldScene.m	class,	Sprites
adding,	to	Flappy	Bird	/	Adding	sprites	to	SpriteBuilder

sprite	sheets
about	/	Adding	sprites	to	SpriteBuilder

T
timeline	pane,	SpriteBuilder

about	/	The	Timeline	pane
touches

detecting	/	Detecting	touches
location,	detecting	/	Getting	the	touch	location
node,	dragging	/	Dragging	a	node

Touch	methods
adding	/	Detecting	touches	and	responding

U
UIKit

about	/	The	HelloWorldScene.m	class,	The	building	blocks,	nodes
UIKit	components

including	/	Accepting	user	input	with	form	elements
update	methods

using	/	The	Cocos2d	update	loop
update*(CCTime)delta	/	The	Cocos2d	update	loop
fixedUpdate*(CCTime)delta	/	The	Cocos2d	update	loop

user	input
accepting,	with	form	elements	/	Accepting	user	input	with	form	elements

V
visible	property

about	/	The	building	blocks,	nodes

W
water	bucket	game

creating	/	Putting	it	into	practice
nodes,	adding	to	scene	/	Adding	nodes	to	the	scene
Touch	methods,	adding	/	Detecting	touches	and	responding
possible	extensions	/	The	next	step
update	methods,	using	/	The	Cocos2d	update	loop
MenuScene	class,	adding	/	Putting	it	into	practice

X
Xcode

about	/	An	introduction	to	Cocos2d

Z
zOrder	property

about	/	Drawing	order	of	the	children	nodes

	Cocos2D Game Development Essentials
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions
	1. Getting Started with Cocos2d
	An introduction to Cocos2d
	Installing Cocos2d
	Installing Cocos2d with the installer
	Creating a Hello World project
	Installation for Android
	Template project code breakdown
	IntroScene.m
	The HelloWorldScene.m class
	Summary
	2. Nodes, Sprites, and Scenes
	The building blocks, nodes
	Children nodes
	Adding children
	Removing children
	Drawing order of the children nodes
	Working with multiple coordinate systems
	Sprites
	Putting it into practice
	Adding nodes to the scene
	Detecting touches and responding
	The next step
	The Cocos2d update loop
	Scenes
	Scene life cycle
	Creating a CCScene
	Transitioning to another scene
	Putting it into practice
	Summary
	3. SpriteBuilder
	Creating a new project
	The Main editor window
	The Resource pane
	The Options pane
	The Timeline pane
	Creating Flappy Square
	Creating a new scene/layer
	Linking to a SpriteBuilder scene in code
	Enabling physics in SpriteBuilder
	Connecting SpriteBuilder objects to Xcode properties
	Creating reusable components
	Moving obstacles across the screen
	Detecting collisions
	The next step
	Summary
	4. Animation with SpriteBuilder
	Adding sprites to SpriteBuilder
	Creating sprite frame animations
	Switching out the obstacle image
	Particle systems
	Designing a particle system for our character
	Adding a SpriteBuilder particle system in code
	Final polish to Flappy Bird
	Keyframe animation in SpriteBuilder
	Animation in code
	Moving, scaling, and rotating
	Chaining actions together
	Running actions simultaneously
	Repeating actions
	Running code on completion of an animation
	Summary
	5. User Interaction and Interface
	Detecting touches
	Getting the touch location
	Dragging a node
	Adding buttons to your scene
	Accepting user input with form elements
	Presenting data in a table with CCTableView
	Creating a CCTableView data source
	Adding a CCTableView node to the scene
	Summary
	6. Physics Engines
	Introducing physics engines
	Adding joints
	Adding a sprite joint
	Dragging an object against a spring joint
	Firing objects from the catapult
	Creating a motor
	The next step
	Summary
	Index

