Collective Intelligence in Action

Satnam Alag

Collective Intelligence in Action

Collective Intelligence in Action

SATNAM ALAG

MANNING Greenwich (74° w. long.)

To my dear sons, Ayush and Shray, and my beautiful, loving, and intelligent wife, Alpana

For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

Special Sales Department Manning Publications Co. Sound View Court 3B fax: (609) 877-8256 Greenwich, CT 06830 email: orders@manning.com

©2009 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning's policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15% recycled and processed without the use of elemental chlorine.

Manning Publications Co. Sound View Court 3B Greenwich, CT 06830 Development Editor: Jeff Bleiel Copyeditor: Benjamin Berg Typesetter: Gordan Salinovic Cover designer: Leslie Haimes

ISBN 1933988312 Printed in the United States of America 1 2 3 4 5 6 7 8 9 10 – MAL – 13 12 11 10 09 08

brief contents

PART 1 GATHERING DATA FOR INTELLIGENCE1

- 1 Understanding collective intelligence 3
- 2 Learning from user interactions 20
- 3 Extracting intelligence from tags 50
- 4 Extracting intelligence from content 82
- 5 Searching the blogosphere 107
- 6 Intelligent web crawling 145

- 7 Data mining: process, toolkits, and standards 175
- 8 Building a text analysis toolkit 206
- 9 Discovering patterns with clustering 240
- 10 Making predictions 274

- 11 Intelligent search 309
- 12 Building a recommendation engine 349

v

contents

foreword xvii preface xix acknowledgments xxi about this book xxiii

PART 1 GATHERING DATA FOR INTELLIGENCE...... 1

Understanding collective intelligence 3

- 1.1 What is collective intelligence? 4
 - 1.2 CI in web applications 6

Collective intelligence from the ground up: a sample application 7 • Benefits of collective intelligence 9 • CI is the core component of Web 2.0 10 • Harnessing CI to transform from content-centric to user-centric applications 12

1.3 Classifying intelligence 14

Explicit intelligence 14 • Implicit intelligence 15 • Derived intelligence 16

- 1.4 Summary 18
- 1.5 Resources 18

Learning from user interactions 20 2.1Architecture for applying intelligence 21 Synchronous and asynchronous services 21 • Real-time learning in an event-driven system 23 • Polling services for non-event-driven systems 24 • Advantages and disadvantages of event-based and non-event-based architectures 25 2.2Basics of algorithms for applying CI - 25 Users and items 26 • Representing user information 27Content-based analysis and collaborative filtering 29 *Representing intelligence from unstructured text* 30 Computing similarities 31 • Types of datasets - 32 2.3Forms of user interaction - 34 Rating and voting 35 • Emailing or forwarding a link 36 • Bookmarking and saving 36 • Purchasing items 37 • Click-stream 37 • Reviews 39 2.4 Converting user interaction into collective intelligence 41 Intelligence from ratings via an example 41 • Intelligence from bookmarking, saving, purchasing Items, forwarding, click-stream, and reviews 46 2.5Summary 48 2.6Resources 48 Extracting intelligence from tags 50 3.1Introduction to tagging 51 Tag-related metadata for users and items 52 • Professionally generated tags 52 • User-generated tags 53 • Machine-generated tags 54 • Tips on tagging 55 • Why do users tag? 55 3.2How to leverage tags -56 Building dynamic navigation 56 • Innovative uses of tag clouds 58 Targeted search 59 • Folksonomies and building a dictionary 60 3.3Extracting intelligence from user tagging: an example 60 Items related to other items 61 • Items of interest for a user 61 • Relevant users for an item -62 3.4 Scalable persistence architecture for tagging 62 *Reviewing other approaches* 63 • *Recommended persistence* architecture 66 3.5Building tag clouds 69 Persistence design for tag clouds 69 • Algorithm for building a tag cloud 70 • Implementing a tag cloud 71 • Visualizing a tag

cloud 76

- 3.6 Finding similar tags 79
- 3.7 Summary 80
- 3.8 Resources 81

Extracting intelligence from content 82

- 4.1 Content types and integration 83
 Classifying content 83 Architecture for integrating content 85
 - 4.2 The main CI-related content types 86 Blogs 87 • Wikis 89 • Groups and message boards 91
- 4.3 Extracting intelligence step by step 93
 Setting up the example 94 Naïve analysis 95 Removing common words 98 Stemming 99 Detecting phrases 100
- 4.4 Simple and composite content types 102
- 4.5 Summary 103
- 4.6 Resources 104

Searching the blogosphere 107

- 5.1 Introducing the blogosphere 108 Leveraging the blogosphere 108 • RSS: the publishing format 109 • Blog-tracking companies 111
- 5.2 Building a framework to search the blogosphere 111 The searcher 113 • The search parameters 113 • The query results 114 • Handling the XML response 115 • Exception handling 116
- 5.3 Implementing the base classes 116

Implementing the search parameters117 • Implementing the resultobjects117 • Implementing the searcher119 • Parsing XMLresponse123 • Extending the framework127

- 5.4 Integrating Technorati 128
 Technorati search API overview 128 Implementing classes for integrating Technorati 130
- 5.5 Integrating Bloglines 135
 Bloglines search API overview 135 Implementing classes for integrating Bloglines 136
- 5.6 Integrating providers using RSS 139
 Generalizing the query parameters 139 Generalizing the blog searcher 140 Building the RSS 2.0 XML parser 141
- 5.7 Summary 143
- 5.8 Resources 143

Solution Intelligent web crawling 145

6.1 Introducing web crawling 146

Why crawl the Web? 146 • The crawling process 147 Intelligent crawling and focused crawling 149 • Deep crawling 150 • Available crawlers 151

6.2 Building an intelligent crawler step by step 152

Implementing the core algorithm 152 • Being polite: following the robots.txt file 156 • Retrieving the content 159 • Extracting URLs 160 • Making the crawler intelligent 161 • Running the crawler 162 • Extending the crawler 163

6.3 Scalable crawling with Nutch 164

Setting up Nutch 164 • Running the Nutch crawler 165 • Searching with Nutch 168 • Apache Hadoop, MapReduce, and Dryad 169

- 6.4 Summary 171
- 6.5 Resources 171

PART 2 DERIVING INTELLIGENCE 173

7 Data mining: process, toolkits, and standards 175

7.1 Core concepts of data mining 176

Attributes 176 • Supervised and unsupervised learning 178 Key learning algorithms 178 • The mining process 181

7.2 Using an open source data mining framework: WEKA 182

Using the WEKA application: a step-by-step tutorial 183 Understanding the WEKA APIs 186 • Using the WEKA APIs via an example 188

7.3 Standard data mining API: Java Data Mining (JDM) 193 JDM architecture 194 • Key JDM objects 195 • Representing the

dataset 196 • Learning models 197 • Algorithm settings 199 JDM tasks 199 • JDM connection 200 • Sample code for accessing DME 202 • JDM models and PMML 204

- 7.4 Summary 204
- 7.5 Resources 205

🜔 Building a text analysis toolkit 🛛 206

8.1 Building the text analyzers 207

Leveraging Lucene 208 • Writing a stemmer analyzer 213 • Writing a TokenFilter to inject synonyms and detect phrases 214 • Writing an analyzer to inject synonyms and detect phrases 218 • Putting our analyzers to work 218 8.2 Building the text analysis infrastructure 221

Building the tag infrastructure 222 • Building the term vector infrastructure 225 • Building the Text Analyzer class 231 Applying the text analysis infrastructure 234

- 8.3 Use cases for applying the framework 237
- 8.4 Summary 238
- 8.5 Resources 239

Discovering patterns with clustering 240

9.1 Clustering blog entries 241

Defining the text clustering infrastructure 242 • Retrieving blog entries from Technorati 244 • Implementing the k-means algorithms for text processing 247 • Implementing hierarchical clustering algorithms for text processing 253 • Expectation maximization and other examples of clustering high-dimension sparse data 261

9.2 Leveraging WEKA for clustering 262

Creating the learning dataset 263 • Creating the clusterer 265 • Evaluating the clustering results 266

9.3 Clustering using the JDM APIs 268

Key JDM clustering-related classes 268 • Clustering settings using the JDM APIs 269 • Creating the clustering task using the JDM APIs 271 • Executing the clustering task using the JDM APIs 271 • Retrieving the clustering model using the JDM APIs 272

- 9.4 Summary 272
- 9.5 Resources 273

Making predictions 274

10.1 Classification fundamentals 275

Learning decision trees by example 275 • Naïve Bayes' classifier 281 • Belief networks 285

10.2 Classifying blog entries using WEKA APIs 287 Building the dataset for classifying blog entries 288 • Building the classifier class 292

10.3 Regression fundamentals 294

Linear regression 295 • Multi-layer perceptron (MLP) 297 • Radial basis functions (RBF) 298

10.4 Regression using WEKA 299

CONTENTS

10.5 Classification and regression using JDM 300

Key JDM supervised learning–related classes 300 • Supervised learning settings using the JDM APIs 302 • Creating the classification task using the JDM APIs 304 • Executing the classification task using the JDM APIs 304 • Retrieving the classification model using the JDM APIs 305 Retrieving the classification model using the JDM APIs 305

- 10.6 Summary 306
- 10.7 Resources 306

PART 3 APPLYING INTELLIGENCE IN YOUR APPLICATION 307

1 Intelligent search 309

11.1 Search fundamentals 310

Search architecture 310 • Core Lucene classes 311 • Basic indexing and searching via example 313

11.2 Indexing with Lucene 320

Understanding the index format 320 • Modifying the index 321 • Incremental indexing 322 • Accessing the term frequency vector 324 • Optimizing indexing performance 325

11.3 Searching with Lucene 327

Understanding Lucene scoring 327 • Querying Lucene 330 Sorting search results 331 • Querying on multiple fields 333 Filtering 334 • Searching multiple indexes 335 • Using a HitCollector 335 • Optimizing search performance 338

11.4 Useful tools and frameworks 339

Luke 339 • Solr 339 • Compass 341 • Hibernate search 341

11.5 Approaches to intelligent search 341

Augmenting search with classifiers and predictors 342 • Clustering search results 342 • Personalizing results for the user 344 • Communitybased search 344 • Linguistic-based search 345 • Data search 345

- 11.6 Summary 347
- 11.7 Resources 347

🖊 🤿 Building a recommendation engine 🛛 349

12.1 Recommendation engine fundamentals 350

Introducing the recommendation engine 351 • Item-based and user-based analysis 352 • Computing similarity using contentbased and collaborative techniques 353 • Comparison of contentbased and collaborative techniques 354

12.2 Content-based analysis 355

Finding similar items using a search engine (Lucene) 355 Building a content-based recommendation engine 359 • Related items for document clusters 362 • Personalizing content for a user 362

12.3 Collaborative filtering 363

k-nearest neighbor 363 • Packages for implementing collaborative filtering 365 • Dimensionality reduction with latent semantic indexing 369 • Implementing dimensionality reduction 370 • Probabilistic model-based approach 373

12.4 Real-world solutions 373

Amazon item-to-item recommendation 374 • Google News personalization 377 • Netflix and the BellKor Solution for the Netflix Prize 381

- 12.5 Summary 385
- 12.6 Resources 386

index 389

foreword

When I founded ReadWriteWeb¹ back in April 2003, a tech news and analysis blog that is now one of the world's top 10 blogs,² my goal was to explore the current era of the web. The year 2003 was a time when the effects of the dot-com meltdown were still being felt, yet there was something new stirring on the web, too. I christened my new blog Read/Write Web (the slash and space have since been dropped) because this new era of the web seemed to embody the notion that Tim Berners-Lee had when he invented the web—that it ought to be editable by anyone and that *everyone* contributes in some way to the web's data.

As Satnam Alag writes in this book, *collective intelligence* as a research field actually predates the web. But it was after the dot-com era had ended that we began to see evidence of collective intelligence applied to the web. In 2003 we regularly saw it in sites like Amazon, with its user reviews and recommendations, eBay with its user-driven auctions, Wikipedia with its editable encyclopedia, and Google with its mysterious PageRank algorithm for ranking the popularity of web pages.

Sometime in 2004, O'Reilly & Associates coined the term *Web 2.0*, which eventually gained mainstream acceptance as the term for this era of the web (just as dot-com described the previous one). A central part of the new definition was the notion of *harnessing* collective intelligence, in which user contributions could be valuable in aggregate if mined and utilized in some way in your web site or application.

¹ http://www.readwriteweb.com/

² According to Technorati http://www.technorati.com/pop/blogs/

For all the popularity of Web 2.0, it remains difficult to implement many of its principles. This is where this book comes in, because it applies mathematical formulas and examples to the notion of collective intelligence (from now on simply known as *CI*). After explaining how to gather data and extract intelligence on the web, in part 2 of the book Satnam instructs you on specific CI techniques such as data mining, text analysis, clustering, and predictive technology.

And, *pssst*, do you want to know how to build a *recommendation engine*? This is an area of web technology that we at ReadWriteWeb have been covering with great interest in 2008. Recommendation engines, as Satnam notes, aim to show items of interest to a user. But in our reviews of the current wave of recommendation engines, we have seen that it's hard—very hard—to get recommendations right. Satnam shows how the leading practitioners, such as Amazon, Google News, and Netflix, build their recommendation engines. He also explains the different approaches you can take, with examples that developers can use and deploy in their own applications.

The Read/Write Web, or Web 2.0, or the Social Web, whatever you want to call it, relies on and builds value from user participation. If you're a web developer, you'll want to know how to use CI techniques to ensure that your web application can extract valuable data from its usage—and most importantly deliver that value right back to the users, where it belongs. This book goes a long way towards explaining how to do this.

RICHARD MACMANUS FOUNDER/EDITOR, READWRITEWEB

preface

"What is the *virality coefficient* for your application?"

This is an increasingly common question being asked of young companies as they try to raise money from venture capitalists. New products are being designed that inherently take advantage of *virality* within the product. Companies such as YouTube, Facebook, Ning, LinkedIn, Skype, and more have grown from zero to millions of users by leveraging the power of virality. With little or no marketing, these types of companies rely on the wisdom of crowds to spread exponentially from one user to two users, then four, then eight, and so on. A simple link in an email, which worked for Hotmail to grow its user base, may no longer be adequate for your application. Facebook and LinkedIn enable users to build their networks by sending an invitation to others to connect as friends or connections; other applications such as Skype and Jaxtr provide free services as long as you're connecting to someone who's already a member, thus encouraging users to register.

It wasn't long ago when things were different. I still remember a few years back when I would ignore requests from others to connect on sites such as LinkedIn. Over a period of time, after repeatedly getting requests to connect from friends and acquaintances, I finally reached a *tipping point* and joined the network. The critical mass of users on the application, in addition to word-of-mouth recommendations, was good enough for me to see enough value to joining the network. Others had collectively convinced me to change my ways and join the application—this is one aspect of how collective intelligence is born and can manifest itself in your application.

PREFACE

Over the last few years, there's been a quiet revolution in the way users interact. *Time* magazine even declared "you," as in the collective set of users on the web, as the person of the year for 2006. Users are no longer shy about expressing themselves. This expression may be as simple as forwarding an interesting article to a friend, rating an item, or generating new content—commonly known as *user-generated content (UGC)*. To harness this user revolution, a new breed of applications, commonly known as *user-centric applications*, are being developed. Putting the user at the center of the application, leveraging social networks, and UGC are the new paradigms, and a high degree of personalization is now becoming the norm.

It's been almost two years since I first contacted Manning with the idea of writing a book on collective intelligence. Ever since my graduate school days, I've been fascinated by how you can discover interesting information by analyzing data. Over the years, I was able to ground a lot of theory in the practical world, especially in the context of large-scale web applications. One thing I knew was that there wasn't a practical book that could guide a developer through the various aspects of applying intelligence in an application. I could see a typical developer's eyes roll when delving into the inner workings of an algorithm or applying some of the collective intelligence features. There's immense value that an application can create by leveraging user-interaction data. As more and more companies joined the Web 2.0 parade, I wanted to write a book that would guide developers to understanding and implementing collective intelligence–related features in their applications.

It took longer to write this book than I had hoped. Most of the book was written while I was working full-time in demanding jobs. But the experience obtained by implementing these concepts in the real world provided good insight into what would be useful to others.

Remember, applications that make use of every user interaction to improve the value of the application for the user and other potential future users, and harness the power of virality, will dominate their markets. This book provides a set of tools that you'll need to leverage the information provided by the users on your site. Whatever forms of information may be available to you, this book will guide you in harnessing the potential of your information to personalize the site for your users. Focus on the user, and you shall succeed. For collective intelligence begins with a crowd of one.

acknowledgments

In the late seventeenth century, Sir Isaac Newton said, "If I have seen further, it is by standing on the shoulders of giants." Similarly, if I've been able to finish this book, it's with the help of a great number of people.

First, this book wouldn't have been possible without Associate Publisher Michael Stephens. Mike's passion and belief in the topic kept the book going. He's an excellent mentor and guides you through good times and bad. Just like Mike, my brain now converts all text into lists of lists. It was a real privilege to work with my development editor, Jeff Bleiel. Jeff spent countless hours providing feedback, digging deeper into why things were written in a certain way, and improving the flow of the text. Thanks to Marjan Bace, Manning's publisher, for helping fine-tune the table of contents, and for his guiding principle of keeping the book focused on new content. Special thanks to Karen Tegtmeyer for setting up and coordinating the peer reviews. And to the production team of Benjamin Berg, Katie Tennant, and Gordan Salinovic for turning my manuscript into the book that you are now holding. They spent countless hours checking and rechecking the manuscript. If you're thinking of writing a book, you won't find a better team than the one at Manning!

I'd like to thank all of the reviewers of my manuscript, many of whom spent large amounts of their free time on this task, for sending their excellent comments, suggestions, and criticisms. Some of the reviewers wished to remain anonymous...but here are a few I would like to acknowledge by name: Jérôme Bernard, Ryan Cox, Dave Crane, Roozbeh Daneshvar, Steve Gutz, Clint Howarth, Frank Jania, Gordon Jones,

ACKNOWLEDGMENTS

Murali Krishnan, Darren Neimke, Sumit Pal, Muhammad Saleem, Robi Sen, Sopan Shewale, Srikanth Sundararajana, and John Tyler.

Special thanks to Shiva Paranandi, for his help in reviewing the text and the code, and for his technical proofread; Brendan Murray, for his technical proofread of the first half of the book; Sean Handel, for his detailed review of and suggestions on the first four chapters; Gautam Aggarwal, for his insightful comments; Krishna Mayuram, for his review of the third chapter; Mark Hornick, specification lead of JDM, for his suggestions on JDM-related chapters; Mayur Datar of Google, for reviewing the text for the Google News Personalization section in chapter 12; Mark Hall, Lead for Pentaho's data mining solutions (WEKA), for his comments on WEKA-related content; Shi Hui Liu, Murtaza Sonaseth, Kevin Xiao, Hector Villarreal, and the rest of the NextBio team, for their suggestions; Shahram Seyedin-Noor of NextBio, for his comments on the early chapters, encouragement, and his passionate philosophy on virality; and Ken DeLong and Mike McEvoy of BabyCenter, for their review and suggestions to improve the manuscript.

Special thanks to the awesome team at NextBio, especially the management team: Saeid Akhtari, Shahram Seyedin-Noor, Ilya Kupershmidt, and Mostafa Ronaghi, who introduced me to the field of data search and life sciences. We have a fantastic opportunity in intelligent search and user-centric applications; let's make it happen!

This book wouldn't have been possible without the support of a number of people whom I have worked for, including Patrick Grady, the charismatic CEO of Rearden Commerce; Michael McEvoy, CEO of QuickTrac Software; K.J., CEO 123signup.com, whom I thank for his mentorship; and Gordon Jones, SVP at TechWorks.

And finally, thanks to Richard MacManus, founder and editor of ReadWriteWeb, for taking the time to read the manuscript and write the foreword to the book.

This book took longer to finish than I had hoped, while I was working full-time. Consequently, it amounted to working all the time, even when we were on vacation. This book wouldn't have been possible without the active support of my wife, Alpana, and sons, and also the active encouragement and support provided by our extended families. On Alpana's side, dad diligently proofread and cheered raw early drafts; mom tried to free up my time; Rohini and Amit Verma provided constant encouragement. On my side, my mom helped in every way she could and kept me going, while my two adoring sisters, Nina and Amrita, made me feel as if I were the best writer in the world. Special thanks to Rajeev, Ankit, and Anish Suri for their encouragement.

Needless to say, this book was a nonstarter without the inspiration and support provided by Alpana, Ayush, and Shray. "Dad, how many chapters did you finish last night?" kept me going, as I didn't want to see the disappointment in my sons' eyes. Thank you, Alpana, for supporting me through this venture—it wouldn't have been possible without your sacrifices. I look forward to some quality time with the family, soon.

about this book

Collective Intelligence in Action is a practical book for applying collective intelligence to real-world web applications. I cover a broad spectrum of topics, from simple illustrative examples that explain the concepts and the math behind them, to the ideal architecture for developing a feature, to the database schema, to code implementation and use of open source toolkits. Regardless of your background and nature of development, I'm sure you'll find the examples and code samples useful. You should be able to directly use the code developed in this book. This is a practical book and I present a holistic view on what's required to apply these techniques in the real world. Consequently, the book discusses the architectures for implementing intelligence—you'll find lots of diagrams, especially UML diagrams, and a number of screenshots from well-known sites, in addition to code listings and even database schema designs.

There are a plethora of examples. Typically, concepts and the underlying math for algorithms are explained via examples with detailed step-by-step analysis. Accompanying the examples is Java code that demonstrates the concepts by implementing them, or by using open source frameworks.

A lot of work has been done by the open source community in Java in the areas of text processing and search (Lucene), data mining (WEKA), web crawling (Nutch), and data mining standards (JDM). This book leverages these frameworks, presenting examples and developing code that you can directly use in your Java application.

The first few chapters don't assume knowledge of Java. You should be able to follow the concepts and the underlying math using the illustrative examples. For the later chapters, a basic understanding of Java will be helpful. The book uses a number of diagrams and screenshots to illustrate the concepts. The Resources section of each chapter contains links to other useful content.

Roadmap

Chapter 1 provides a basic introduction to the field of collective intelligence (CI). CI is an active area of research, and I've kept the focus on applying CI to web applications. Section 1.2.1 is a personal favorite of mine; it provides a roadmap through a hypothetical example of how you can apply CI to your application. This is a must-read, since it helps to translate CI into features in your application and puts the flow of the book in perspective. Chapter 1 should also provide you with a good overview of the three forms of intelligence: direct, indirect, and derived.

The book is divided into three parts. Part 1 deals with collecting data, both within and outside the application, to be translated into intelligence later. Chapters 2 through 4 deal with gathering information from within one's application, while chapters 5 and 6 focus on gathering information from outside of one's application.

Chapter 2 provides an overview of the architecture required to embed CI in your application, along with a quick overview of some of the basic concepts that are needed to apply CI. Please take some time to go through section 2.2 in detail, as a firm understanding of the concepts presented in this section will be useful throughout the book. This chapter also shows how intelligence can be derived by analyzing the actions of the user. It's worthwhile to go through the example in section 2.4 in detail, as understanding the concepts presented there will also be useful throughout the book.

Chapter 3 continues with the theme of collecting data, this time from the user action of tagging. It provides an overview of the three forms of tags and how tagging can be leveraged. In section 3.3, we work through an example to show how tagging data can be converted into intelligence. This chapter also provides an overview of the ideal persistence architecture required to leverage tagging, and illustrates how to develop tag clouds.

Chapter 4 is focused on the different kinds of content that may be available in your application and how they can be used to derive intelligence. The chapter begins with providing an overview of the different architectures to embed content in your application. I also briefly discuss content that's typically associated with CI: blogs, wikis, and message boards. Next, we work through a step-by-step example of how intelligence can be extracted from unstructured text. This is a must-read section for those who want to understand text analytics.

ABOUT THIS BOOK

The next two chapters are focused on collecting data from outside of one's application—first by searching the blogosphere and then by crawling the web.

Chapter 5 deals with building a framework to harvest information from the blogosphere. It begins with developing a generalized framework to retrieve blog entries. Next, it extends the framework to query blog-tracking providers such as Technorati, Blogdigger, Bloglines, and MSN.

Chapter 6 is focused on retrieving information from the web using web crawling. It introduces intelligent web crawling or focused crawling, along with a short discussion on dealing with hidden content. In this chapter, we first develop a simple web crawler. This exercise is useful to understand all the pieces that need to come together to build a web crawler and to understand the issues related to crawling the complete web. Next, for scalable crawling, we look at Nutch, an open source scalable web crawler.

Part 2 of the book is focused on deriving intelligence from the information collected. It consists of four chapters—an introduction to the data mining process, standards, and toolkits, and chapters on developing a text-analysis toolkit, finding patterns through clustering, and making predictions.

Chapter 7 provides an introduction to the process of data mining—the process and the various kinds of algorithms. It introduces WEKA, the open source data mining toolkit that's being extensively used, along with Java Data Mining (JDM) standard.

Chapter 8 develops a text analysis toolkit; this toolkit is used in the remainder of the book to convert unstructured text into a format that's usable for the mining algorithms. Here we leverage Lucene for text processing. In this section, we develop a custom analyzer to inject synonyms and detect phrases.

In chapter 9, we develop clustering algorithms. In this chapter, we develop the implementation for the k-means and hierarchical clustering algorithms. We also look at how we can leverage WEKA and JDM for clustering. Building on the blog harvesting framework developed in chapter 5, we also illustrate how we can cluster blog entries.

In chapter 10, we deal with algorithms related to making predictions. We first begin with classification algorithms, such as decision trees, Naïve Bayes' classifier, and belief networks. This chapter covers three algorithms for making predictions: linear regression, multi-layer perceptron, and radial basis function. It builds on the example of harvesting blog entries to illustrate how WEKA and JDM APIs can be leveraged for both classification and regression.

Part 3 consists of two chapters, which deal with applying intelligence within one's application.

Chapter 11 deals with intelligent search. It shows how you can leverage Lucene, along with other useful toolkits and frameworks that leverage Lucene. It also covers six different approaches being taken in the area of intelligent search.

The last chapter, chapter 12, illustrates how to build a recommendation engine using both content-based and collaborative-based approaches. It also covers real-world case studies on how recommendation engines have been build at Amazon, Google News, and Netflix.

Code conventions and downloads

All source code in listings or in text is in a fixed-width font like this to separate it from ordinary text. Method and function names, object properties, XML elements, and attributes in text are presented using this same font. Code annotations accompany many of the listings, highlighting important concepts. In some cases, numbered bullets link to explanations that follow the listing.

Source code for all of the working examples in this book is available for download from www.manning.com/CollectiveIntelligenceinAction. Basic setup documentation is provided with the download.

Author Online

The purchase of *Collective Intelligence in Action* includes free access to a private web forum run by Manning Publications, where you can make comments about the book, ask technical questions, and receive help from the authors and from other users. To access the forum and subscribe to it, point your web browser to www.manning.com/ CollectiveIntelligenceinAction. This page provides information about how to get on the forum once you're registered, what kind of help is available, and the rules of conduct on the forum.

Manning's commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It isn't a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray! The Author Online forum and the archives of previous discussions will be accessible from the publisher's web site as long as the book is in print.

About the author

SATNAM ALAG, PH.D, is currently the vice president of engineering at NextBio (www.nextbio.com), a vertical search engine and a Web 2.0 user-centric application for the life sciences community. He's a seasoned software professional with more than 15 years of experience in machine learning and over a decade of experience in commercial software development and management. Dr. Alag worked as a consultant with Johnson & Johnson's BabyCenter, where he helped develop their personalization engine. Prior to that, he was the chief software architect at Rearden Commerce and began his career at GE R&D. He's a Sun Certified Enterprise Architect (SCEA) for the Java Platform. Dr. Alag earned his Ph.D in engineering from UC Berkeley, and his dissertation was on the area of probabilistic reasoning and machine learning. He's published a number of peer-reviewed articles.

About the title

By combining introductions, overviews, and how-to examples, the *In Action* books are designed to help learning and remembering. According to research in cognitive science, the things people remember are things they discover during self-motivated exploration.

Although no one at Manning is a cognitive scientist, we're convinced that for learning to become permanent it must pass through stages of exploration, play, and, interestingly, retelling of what is being learned. People understand and remember new things, which is to say they master them, only after actively exploring them. Humans learn *in action*. An essential part of an *In Action* book is that it's example-driven. It encourages the reader to try things out, to play with new code, and explore new ideas.

There is another, more mundane, reason for the title of this book: our readers are busy. They use books to do a job or solve a problem. They need books that allow them to jump in and jump out easily and learn just what they want just when they want it. They need books that aid them *in action*. The books in this series are designed for such readers.

About the cover illustration

The figure on the cover of *Collective Intelligence in Action* is captioned "Le Champenois," a resident of the Champagne region in northeast France, best known for its sparkling white wine. The illustration is taken from a 19th century edition of Sylvain Maréchal's four-volume compendium of regional dress customs published in France. Each illustration is finely drawn and colored by hand. The rich variety of Maréchal's collection reminds us vividly of how culturally apart the world's towns and regions were just 200 years ago. Isolated from each other, people spoke different dialects and languages. In the streets or in the countryside, it was easy to identify where they lived and what their station in life was just by their dress.

Dress codes have changed since then and the diversity by region, so rich at the time, has faded away. It is now hard to tell apart the inhabitants of different continents, let alone different towns or regions. Perhaps we have traded cultural diversity for a more varied personal life—certainly for a more varied and fast-paced technological life.

At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life by Maréchal's pictures.

Part 1

Gathering data for intelligence

Chapter 1 begins the book with a brief overview of what collective intelligence is and how it manifests itself in your application. Then we move on to focus on how we can gather data from which we can derive intelligence. For this, we look at information both inside the application (chapters 2 through 4) and outside the application (chapters 5 and 6).

Chapter 2 deals with learning from the interactions of users. To get the ball rolling, we look at the architecture for embedding intelligence, and present some of the basic concepts related to collective intelligence (CI). We also cover how we can gather data from various forms of user interaction. We continue with this theme in chapter 3, which deals with tagging. This chapter contains all the information you need to build tagging-related features in your application. In chapter 4, we look at the various forms of content that are typically available in a web application and how to derive collective intelligence from it.

Next, we change our focus to collecting data from outside our application. We first deal with searching the blogosphere in chapter 5. This is followed by chapter 6, which deals with intelligently crawling the web in search of relevant content.

Understanding collective intellig<mark>en</mark>ce

This chapter covers

- The basics of collective intelligence
- How collective intelligence manifests itself in web applications
- Building user-centric applications using collective intelligence
- The three forms of intelligence: direct, indirect, and derived

Web applications are undergoing a revolution.

In this post-dot-com era, the web is transforming. Newer web applications trust their users, invite them to interact, connect them with others, gain early feedback from them, and then use the collected information to constantly improve the application. Web applications that take this approach develop deeper relationships with their users, provide more value to users who return more often, and ultimately offer more targeted experiences for each user according to her personal need. Web users are undergoing a transformation.

Users are expressing themselves. This expression may be in the form of sharing their opinions on a product or a service through reviews or comments; through sharing and tagging content; through participation in an online community; or by contributing new content.

This increased user interaction and participation gives rise to data that can be converted into intelligence in your application. The use of collective intelligence to personalize a site for a user, to aid him in searching and making decisions, and to make the application more sticky are cherished goals that web applications try to fulfill.

In his book, *Wisdom of the Crowds*, James Surowiecki, business columnist for *The New Yorker*, asserts that "under the right circumstances, groups are remarkably intelligent, and are often smarter than the smartest people in them." Surowiecki says that if the process is sound, the more people you involve in solving a problem, the better the result will be. A crowd's *collective intelligence* will produce better results than those of a small group of experts if four basic conditions are met. These four basic conditions are that "wise crowds" are effective when they're composed of individuals who have diverse opinions; when the individuals aren't afraid to express their opinions; when there's diversity in the crowd; and when there's a way to aggregate all the information and use it in the decision-making process.

Collective intelligence is about making your application more valuable by tapping into *wise crowds*. More formally, collective intelligence (CI) as used in this book simply and concisely means

To effectively use the information provided by others to improve one's application.

This is a fairly broad definition of collective intelligence—one which uses all types of information, both inside and outside the application, to improve the application for a user. This book introduces you to concepts from the areas of machine learning, information retrieval, and data mining, and demonstrates how you can add intelligence to your application. You'll be exposed to how your application can learn about individual users by correlating their interactions with those of others to offer a highly personalized experience.

This chapter provides an overview of collective intelligence and how it can manifest itself in your application. It begins with a brief introduction to the field of collective intelligence, then goes on to describe the many ways it can be applied to your application, and finally shows how intelligence can be classified.

1.1 What is collective intelligence?

Collective intelligence is an active field of research that predates the web. Scientists from the fields of sociology, mass behavior, and computer science have made important contributions to this field. When a group of individuals collaborate or compete with each other, intelligence or behavior that otherwise didn't exist suddenly emerges; this is commonly known as *collective intelligence*. The actions or influence of a few individuals slowly spread across the community until the actions become the norm for the community. To better understand how this circle of influence spreads, let's look at a couple of examples.

In his book The Hundredth Monkey,¹ Ken Keyes recounts an interesting story about how change is propagated in groups. In 1952, on the isolated Japanese island of Koshima, scientists observed a group of monkeys. They offered them sweet potatoes; the monkeys liked the sweet potatoes but found the taste of dirt and sand on the potatoes unpleasant. One day, an 18-month-old monkey named Imo found a solution to the problem by washing the potato in a nearby stream of water. She taught this trick to her mother. Her playmates also learned the trick and taught it to their mothers. Initially, only adults who imitated their children learned the new trick, while the others continued eating the old way. In the autumn of 1958, a number of monkeys were washing their potatoes before eating. The exact number is unknown, but let's say that out of 1,000, there were 99 monkeys who washed their potatoes before eating. Early one sunny morning, a 100th monkey decided to wash his potato. Then, incredibly, by evening all monkeys were washing their potatoes. The 100th monkey was that *tipping point* that caused others to change their habits for the better. Soon it was observed that monkeys on other islands were also washing their potatoes before eating them.

As users interact on the web and express their opinions, they influence others. Their initial circle of influence is the group of individuals that they most interact with. Because the web is a highly connected network of sites, this *circle of influence* grows and may shape the thoughts of everybody in the group. This circle of influence also grows rapidly throughout the community—another example helps illustrate this further.

In 1918, as the influenza flu pandemic spread, nearly 14 percent of Fiji's population died in just 16 days. Nearly one third of the native population in Alaska had a similar fate; it's estimated that worldwide, nearly twenty-five million people died of the flu. A pandemic is a global disease outbreak and spreads from person to person. First, one person is affected, who then transmits it to another and then another. The newly infected person transmits the flu to others; this causes the disease to spread exponentially.

In October 2006, Google bought YouTube for \$1.65 billion. In its 20 months of existence, YouTube had grown to be one of the busiest sites on the Internet, dishing out 100 million video² views a day. It ramped from zero to more than 20 million unique user visits a day, with mainly *viral marketing*—spread from person to person, similar to the way the pandemic flu spreads. In YouTube's case, each time a user uploaded a new video, she was easily able to invite others to view this video. As those others viewed this video, other related videos popped up as recommendations, keeping the user further engaged. Ultimately, many of these viewers also became submitters and uploaded their own videos as well. As the number of videos increased, the site became more and more attractive for new users to visit.

¹ http://en.wikipedia.org/wiki/Hundredth_Monkey

² As of September 2006

Whether you're a budding startup, a recognized market leader, or looking to take an emerging application or web site to the next level, harnessing information from users improves the perceived value of the application to both current and prospective users. This improved value will not only encourage current users to interact more, but will also attract new users to the application. The value of the application further improves as new users interact with it and contribute more content. This forms a selfreinforcing feedback loop, commonly known as a *network effect*, which enables wider adoption of the service. Next, let's look at CI as it applies to web applications.

1.2 CI in web applications

In this section, we look at how CI manifests itself in web applications. We walk through an example to illustrate how it can be used in web applications, briefly review its benefits, see how it fits in with Web 2.0 and can be leveraged to build usercentric applications.

Let's expand on our earlier definition of collective intelligence. Collective intelligence of users in essence is

- The intelligence that's extracted out from the collective set of interactions and contributions made by your users.
- The use of this intelligence to act as a filter for what's valuable in your application for a user—This filter takes into account a user's preferences and interactions to provide relevant information to the user.

This filter could be the simple influence that collective user information has on a user—perhaps a rating or a review written about a product, as shown in figure 1.1—or it may be more involved—building models to recommend personalized content to a user. This book is focused toward building the more involved models to personalize your application. A user influences others by reviews, ratings, recommendations, and blogs

As shown in figure 1.2, there are three things that need to happen to apply collective intelligence in your application. You need to

- 1 Allow users to interact with your site and with each other, learning about each user through their interactions and contributions.
- 2 Aggregate what you learn about your users and their contributions using some useful models.
- **3** Leverage those models to recommend relevant content to a user.

Let's walk through an example to understand how collective intelligence can be a catalyst to building a successful web application.

Figure 1.2 Three components to harnessing collective intelligence. 1: Allow users to interact. 2: Learn about your users in aggregate. 3: Personalize content using user interaction data and aggregate data.

1.2.1 Collective intelligence from the ground up: a sample application

In our example, John and Jane are two engineers who gave up their lucrative jobs to start a company. They're based in Silicon Valley and as is the trend nowadays, they're building their fledgling company without any venture capital on a shoestring budget leveraging open source software. They believe in fast-iterative agile-based development cycles and aren't afraid to release beta software to gain early feedback on their features.³ They're looking to build a marketplace and plan to generate revenue both from selling ad space and from sharing revenue from sold items.

In their first iteration, they launched an application where users—mainly friends and family—could buy items and view relevant articles. There wasn't much in terms of personalization or user interaction or intelligence—a plain vanilla system.

Next, they added the feature of showing a list of top items purchased by users, along with a list of recently purchased items. This is perhaps the simplest form of applying collective intelligence—*providing information in aggregate to users*. To grow the application virally, they also enabled users to email these lists to others. Users used this to forward interesting lists of items to their friends, who in turn became users of the application.

In their next iteration, they wanted to learn more about their users. So they built a basic user profile mechanism that contained explicit and implicit profile information. The explicit information was provided directly by the users as part of their accounts—first name, age, and so on. The implicit information was collected from the user interaction data—this included information such as the articles and content users viewed and the products they purchased. They also wanted to show more relevant articles and content to each user, so they built a content-based *recommendation engine* that analyzed the content of articles—keywords, word frequency, location, and so forth to correlate articles with each other and recommend possibly interesting articles to each user.

Next, they allowed users to generate content. They gave users the ability to write about their experiences with the products, in essence writing reviews and creating their list of recommendations through both explicit ratings of individual products

³ Note that beta doesn't mean poor quality; it just means that it's incomplete in functionality.

and a "my top 10 favorite products" list. They also gave users the capability to rate items and rate reviews. Ratings and reviews have been shown to influence other users, and numerical rating information is also useful as an input to a collaborative-based recommendation engine.

With the growing list of content and products available on the site, John and Jane now found it too cumbersome and expensive to manually maintain the classification of content on their site. The users also provided feedback that content navigation menus were too rigid. So they introduced dynamic navigation via a *tag cloud*—navigation built by an alphabetical listing of terms, where font size correlates with importance or number of occurrences of a tag. The terms were automatically extracted from the content by analyzing the content. The application analyzed each user's interaction and provided users with a personalized set of tags for navigating the site. The set of tags changed as the type of content visited by the users changed. Further, the content displayed when a user clicked on a tag varied from user to user and changed over time. Some tags pulled the data from a search engine, while others from the recommendation engine and external catalogs.

In the next release, they allowed the users to explicitly tag items by adding free text labels, along with saving or *bookmarking* items of interest. As users started tagging items, John and Jane found that there was a rich set of information that could be derived. First of all, users were providing new terms for the content that made sense to them in essence they built *folksonomies.*⁴ The tag cloud navigation now had both machine-generated and user-generated tags. The process of extracting tags using an automated algorithm could also be enhanced using the dictionary of tags built by the users. These user-added tags were also useful for finding keywords used by an ad-generation engine. They could also use the tags created by users to connect users with each other and with other items of interest. This is collective intelligence in action.

Next, they allowed their users to generate content. Users could now blog about their experiences, or ask and respond to questions on message boards, or participate in building the application itself by contributing to wikis. John and Jane quickly built an algorithm that could extract tags from the unstructured content. They then matched the interests of users—gained from analyzing their interaction in the applications—with those of other users to find relevant items. They were soon able to learn enough about their users to personalize the site for each user, and to provide relevant content—targeting niche items to niche users. They could also target relevant advertisements based on the user profile and context of interaction.

They also modified the search results to make them more relevant to each user, for which they used the user's profile and interaction history when appropriate. They customized advertising by using keywords that were relevant to both the user and the page content.

To make the application stickier, they started aggregating and indexing external content—they would crawl a select list of external web sites to index the content and present

⁴ Folksonomies are classifications created through the process of users tagging items.

links to it when relevant. They also connected to sites that tracked the blogosphere, presenting the users with relevant content from what others were saying in blogs.

They also clustered users and items to find patterns in the data and built models to automatically classify content into one of many categories.

The users soon liked the application so much that they started recommending the application to their friends and relatives and the user base grew *virally*. In our example, after a couple of years, John and Jane retired to Hawaii, having sold the company for a gigantic amount, where they waited for the next web revolution... Web 3.0!

These in essence are the many ways by which collective intelligence will manifest itself in your application, and thus more or less the outline for this book. Table 1.1 summarizes the ways to harness collective intelligence in your application. Each of these is discussed throughout the book.

Techniques	Description
Aggregate information: lists	Create lists of items generated in the aggregate by your users. Perhaps, Top List of items bought, or Top Search Items or List of Recent Items.
Ratings, reviews, and recommendations	Collective information from your users influences others.
User-generated content: blogs, wikis, message boards	Intelligence can be extracted from contributions by users. These con- tributions also influence other users.
Tagging, bookmarking, voting, saving	Collective intelligence of users can be used to bubble up interesting content, learn about your users, and connect users.
Tag cloud navigation	Dynamic classification of content using terms generated via one or more of the following techniques: machine-generated, professionally- generated, or user-generated.
Analyze content to build user profiles	Analyze content associated with a user to extract keywords. This information is used to build user profiles.
Clustering and predictive models	Cluster users and items, build predictive models.
Recommendation engines	Recommend related content or users based on intelligence gathered from user interaction and analyzing content.
Search	Show more pertinent search results using a user's profile.
Harness external content	Provide relevant information from the blogosphere and external sites

Table 1.1	Some of the way	s to harness	collective i	intelligence in	your application
	•••••••••••••••••••••••••••••••••••••••				,

John and Jane showed us a few nice things to apply to their site, but there are other benefits of applying collective intelligence to your application. Let's look at that next.

1.2.2 Benefits of collective intelligence

Applying collective intelligence to your application impacts it in the following manner:
- *Higher retention rates*—The more users interact with the application, the stickier it gets for them, and the higher the probability that they'll become repeat visitors.
- *Greater opportunities to market to the user*—The greater the number of interactions, the greater the number of pages visited by the user, which increases the opportunities to market to or communicate with the user.
- *Higher probability of a user completing a transaction and finding information of interest*—The more contextually relevant information that a user finds, the better the chances that he'll have the information he needs to complete the transaction or find content of interest. This leads to higher click-through and conversion rates for your advertisements.
- *Boosting search engine rankings*—The more users participate and contribute content, the more content is available in your application and indexed by search engines. This could boost your search engine ranking and make it easier for others to find your application.

Collective intelligence is a term that is increasingly being used in the context of Web 2.0 applications. Let's take a closer look at how it fits in with Web 2.0.

1.2.3 CI is the core component of Web 2.0

Web 2.0 is a term that has generated passionate emotions, ranging from being dismissed as marketing jargon to being anointed as the new or next generation of the Internet. There are seven principles that Web 2.0 companies demonstrate, as shown in table $1.2.^5$

Principle	Description
The network is the platform	Companies or users who use traditional licensed software have to deal with run- ning the software, upgrading it periodically to keep up with newer versions, and scaling it to meet appropriate levels of demand. Most successful Web 2.0 com- panies no longer sell licensed software, but instead deliver their software as a service. The end customer simply uses the service through a browser. All the headaches of running, maintaining, and scaling the software and hardware are taken care of by the service provider seamlessly to the end user. The software is upgraded fairly frequently by the service provider and is available 24 x 7.
Harnessing collective intelligence	The key to the success of Web 2.0 applications is how effectively they can harness the information provided by users. The more personalized your service, the better you can match a user to content of her choice.
Hard-to-replicate data as competitive advantage	Hard-to-replicate, unique, large datasets provide a competitive advantage to a company. Web 2.0 is <i>data</i> and <i>software</i> combined. One can't replicate Craigslist, eBay, Amazon, Flickr, or Google simply by replicating the software. The underlying data that the software generates from user activity is tremendously valuable. This dataset grows every day, improving the product daily.

Table 1.2 Seven principles of Web 2.0 applications

⁵ Refer to Tim O'Reilly's paper on Web 2.0.

Principle	Description
The perpetual beta	Web 2.0 companies release their products early to involve their users and gain important feedback. They iterate often by having short release cycles. They involve the users early in the process. They instrument the application to capture important metrics on how a new feature is being used, how often it's being used, and by whom. If you aren't sure how a particular feature should look and have competing designs, expose a prototype of each to different sets of users and measure the success of each. Involve the customers and let them decide which one they like. By having short development cycles, it's possible to solicit user feedback, incorporate changes early in the product life cycle, and build what the users really want.
Simpler programming models	Simpler development models lead to wider adoption and reuse. Design your application for "hackability" and "remixability" following open standards, using simple programming models and a licensing structure that puts as few restrictions as necessary.
Software above the level of a single device	Applications that operate across multiple devices will be more valuable than those that operate in a single device.
Rich user experience	The success of AJAX has fueled the growing use of rich user interfaces in Web 2.0 applications. Adobe Flash/Flex and Microsoft Silverlight are other alternatives for creating rich UIs.

Table 1.2 Seven principles of Web 2.0 applications (continued)

It is widely regarded that harnessing collective intelligence is the key or core component to Web 2.0 applications. In essence, Web 2.0 is all about inviting users to participate and interact. But what do you do with all the data collected from user participation and interaction? This information is wasted if it can't be converted into intelligence and channeled into improving one's application. That's where collective intelligence and this book come in.

Dion Hinchliffe, in his article, "Five Great Ways to Harness Collective Intelligence," makes an analogy to the apocryphal Einstein quote that compound interest was the most important force in the universe. Similarly, web applications that effectively harness collective intelligence can "benefit" in much the same way—harnessing collective intelligence is about those very same exponential effects.

NOTE Collective intelligence is the heart of Web 2.0 applications. It's generally acknowledged that one of the core components of Web 3.0 applications will be the use of artificial intelligence.⁶ There's debate as to whether this intelligence will be attained by computers reasoning like humans or by sites leveraging the collective intelligence of humans using techniques such as collaborative filtering. Either way, having the dataset generated from real human interactions will be necessary and useful.

In order to effectively leverage collective intelligence, you need to put the user at the center of your application, in essence building a user-centric application.

⁶ http://en.wikipedia.org/wiki/Web_3.0#An_evolutionary_path_to_artificial_intelligence

1.2.4 Harnessing CI to transform from content-centric to user-centric applications

Prior to the user-centric revolution, many applications put little emphasis on the user. These applications, known as *content-centric* applications, focused on the best way to present the content and were generally static from user to user and from day to day. User-centric applications leverage CI to fundamentally change how the user interacts with the web application. User-centric applications make the user the center of the web experience and dynamically reshuffle the content based on what's known about the user and what the user explicitly asks for.

As shown in figure 1.3, user-centric applications are composed of the following four components:

- *Core competency*—The main reason why a user comes to the application.
- *Community*—Connecting users with other users of interest, social networking, finding other users who may provide answers to a user's questions.
- *Leveraging user-generated content*—Incorporating generated content and interactions of users to provide additional content to users.
- Building a marketplace—Monetizing the application by product and/or service placements and showing relevant advertisements.

The user profile is at the center of the application. A part of the user profile may be generated by the user, while some parts of it may be learned by the application based on user interaction. Typically, sites that allow user-generated content have an abundance of information. User-centric sites leverage collective intelligence to present relevant content to the user.

Figure 1.4 shows a screenshot of one such user-centric application—LinkedIn,⁷ a popular online network of more than 20 million professionals.⁸ As shown in

http://www.linkedin.com/static?key=company_info&trk=ftr_abt

⁸ As of May 2008

Figure 1.4 An example of a user-centric application—LinkedIn (www.linkedin.com)

the screenshot, the LinkedIn application leverages the four components of usercentric applications:

- *Core competency*—Users come to the site to connect with others and build their professional profiles.
- *Community*—Users create connections with other users; connections are used while looking up people, responding to jobs, and answering questions asked by other users. Other users are automatically recommended as possible connections by the application.
- *User-generated content*—Most of the content at the site is user-generated. This includes the actual professional profiles, the questions asked, the feed of actions—such as a user updating his profile, uploading his photograph, or connecting to someone new.
- Marketplace—The application is monetized by means of advertisements, job postings, and a monthly subscription for the power-users of the system, who often are recruiters. The monetization model used is also commonly known as *freemium*⁹—basic services are free and are used by most users, while there's a charge for premium services that a small minority of users pay for.

⁹ http://en.wikipedia.org/wiki/Freemium_business_model

For user-centric applications to be successful, they need to personalize the site for each user. CI can be beneficial to these applications. So far in this section, we've looked at what collective intelligence is, how it manifests itself in your application, the advantages of applying it, and how it fits in with Web 2.0. Next, we'll take a more detailed look at the many forms of information provided by the users.

1.3 Classifying intelligence

Figure 1.5 illustrates the three types of intelligence that we discuss in this book. First is explicit information that the user provides in the application. Second is implicit information that a user provides either inside or outside the application and is typically in an unstructured format. Lastly, there is intelligence that's derived by analyzing the aggregate data collected. This piece of derived intelligence is shown on the upper half of the triangle, as it is based on the information gathered by the other two parts.

Data comes in two forms: structured data and unstructured data. Structured data has a welldefined form, something that makes it easily

Figure 1.5 Classifying user-generated information

stored and queried on. User ratings, content articles viewed, and items purchased are all examples of structured data. Unstructured data is typically in the form of raw text. Reviews, discussion forum posts, blog entries, and chat sessions are all examples of unstructured data.

In this section, we look at the three forms of intelligence: explicit, implicit, and derived.

1.3.1 Explicit intelligence

This section deals with explicit information that a user provides. Here are a few examples of how a user provides explicit information that can be leveraged.

REVIEWS AND RECOMMENDATIONS

A recommendation made by a friend or a person of influence can have a big impact on other users within the same group. Moreover, a review or comments about a user's experience with a particular provider or service is contextually relevant for other users inquiring about that topic, especially if it's within the context of similar use.

TAGGING

Adding the ability for users to add tags—keywords or labels provided by a user—to classify items of interest such as articles, items being sold, pictures, videos, podcasts, and so on is a powerful technique to solicit information from the user. Tags can also be generated by professional editors or by an automated algorithm that analyzes content. These tags are used to classify data, bookmark sites, connect people with each other, aid users in their searches, and build dynamic navigation in your application, of which a tag cloud is one example.

del.icio.us/tag/
io.us / tag / login register h
del.icio.us del.icio.us 🔍 search
This is a tag cloud - a list of tags where size reflects popularity. sort: alphabetically by size
net 2008 advertising ajax apple architecture art article audio blog blogging blogs books
DUSINESS china code collaboration community computer cooking cool CSS culture database design
development dy download economics education energy english environment fashion ric
inance firefox flash food free freeware fun funny gallery game games google graphics green
nardware health history home howto himi humor illustration images inspiration interesting
nternet iphone java javascript jobs jquery language learning library lifehacks linux mac
nagazine maps marketing math media microsoft mobile movies mp3 MUSIC NEWS online
ppensource osx photo photography photos photoshop php politics portfolio productivity
Drogramming python rails recipe recipes reference research resources ruby rubyonrails
cience search security seo shopping social socialnetworking software statistics teaching
ech technology tips tool tools toread travel tutorial tutorials tv twitter typography ubuntu
/ideo videos visualization web web2.0 webdesign webdev wiki windows wordpress work

Figure 1.6 This tag cloud from del.icio.us shows popular tags at the site.

Figure 1.6 shows a tag cloud showing popular tags at del.icio.us, a popular bookmarking site. In a tag cloud, tags are displayed alphabetically, with the size of the font representing the frequency of occurrence. The larger the font of the tag, the more frequently it occurs. **VOTING**

Voting is another way to involve and obtain useful information from the user. Digg, a web site that allows users to contribute and vote on interesting articles, leverages this idea. Every article on Digg is submitted and voted on by the Digg community. Submissions that receive many votes in a short period tend to move up in rank. This is a good way to share, discover, bookmark, and promote important news. Figure 1.7 is a screenshot from Digg.com showing news items with the number of Diggs associated with each.

1.3.2 Implicit intelligence

This section deals with indirect information that a user provides. Here are a few examples of how a user provides this information.

Information relevant to your application may appear in an unstructured free-form text format through reviews, messages, blogs, and so forth. A user may express his opinion online, either within your application or outside the application, by writing in his blog or replying to a question in an online community. Thanks to the power of search engines and blog-tracking engines, this information becomes easily available to others and helps to shape their opinions.

You may want to augment your current application by aggregating and mining external data. For example, if your area is real estate applications, you may want to augment your application with additional data harvested from freely available external

Figure 1.7 Screen shot from Digg.com showing news items with the number of diggs for each

sites, for example, public records on housing sales, reviews of schools and neighborhoods, and so on.

Blogs are online journals where information is displayed in reverse chronological order. The blogosphere—the collection of blogs on the net—is huge and growing fast. As of August 2008, Technorati, a private company that tracks blogs, was tracking 112.8 million blogs. With a new blog being created virtually every second, the blogosphere is an important source of information that can be leveraged in your application. People write blogs on virtually every topic.

Next, let's look at the third category of intelligence, which is derived from analyzing the data collected.

1.3.3 Derived intelligence

This section deals with information derived from the data you collect from users. Here are a few examples of techniques and features that deal with derived intelligence.

DATA AND TEXT MINING

The process of finding patterns and trends that would otherwise go undetected in large datasets using automated algorithms is known as *data mining*. When the data is in the form of text, the mining process is commonly known as *text data mining*. Another

related field is *information retrieval*, which deals with finding relevant information by analyzing the content of the documents. Web and text mining deal with analyzing unstructured content to find patterns in them. Most applications are content-rich. This content is indexed by search engines and can be used by the recommendation engine to recommend relevant content to a user.

CLUSTERING AND PREDICTIVE ANALYSIS

Clustering and predictive analysis are two main components of data mining. Clustering techniques enable you to classify items—users or content—into natural groupings. Predictive analysis is a mathematical model that predicts a value based on the input data. **INTELLIGENT SEARCH**

Search is one of the most commonly used techniques for retrieving content. In later chapters, we look at *Lucene*—an open source Java search engine developed through the Apache foundation. We look at how information about the user can be used to customize the search through intelligent filters that enhance search results when appropriate. **RECOMMENDATION ENGINE**

A recommendation engine offers relevant content to a user. Again, recommendation engines can be built by analyzing the content, by analyzing user interactions (collaborative approach), or a combination of both. Figure 1.8 shows a screenshot from Yahoo! Music in which a user is recommended music by the application.

Figure 1.8 Screenshot from Yahoo! Music recommending songs of interest

Recommendation engines use inputs from the user to offer a list of recommended items. The inputs to the recommendation engine may be items in the user's shopping list, items she's purchased in the past or is considering purchasing, user-profile information such as age, tags and articles that the user has looked at or contributed, or any other useful information that the user may have provided. For large online stores such as Amazon, which has millions of items in its catalog, providing fast recommendations can be challenging. Recommendation engines need to be fast and scale independently of the number of items in the catalog and the number of users in the system; they need to offer good recommendations for new customers with limited interaction history; and they need to age out older or irrelevant interaction data (such as a gift bought for someone else) from the recommendation process.

1.4 Summary

Collective intelligence is powering a new breed of applications that invite users to interact, contribute content, connect with other users, and personalize the site experience.

Users influence other users. This influence spreads outward from their immediate circle of influence until it reaches a critical number, after which it becomes the norm. Useful user-generated content and opinions spread virally with minimal marketing.

Intelligence provided by users can be divided into three main categories. First is direct information/intelligence provided by the user. Reviews, recommendations, ratings, voting, tags, bookmarks, user interaction, and user-generated content are all examples of techniques to gather this intelligence. Next is indirect information provided by the user either on or off the application, which is typically in unstructured text. Blog entries, contributions to online communities, and wikis are all sources of intelligence for the application. Third is a higher level of intelligence that's derived using data mining techniques. Recommendation engines, use of predictive analysis for personalization, profile building, market segmentation, and web and text mining are all examples of discovering and applying this higher level of intelligence.

The rest of this book is divided into three parts. The first part deals with collecting data for analysis, the second part deals with developing algorithms for analyzing the data, and the last part deals with applying the algorithms to your application. Next, in chapter 2, we look at how intelligence can be gathered by analyzing user interactions.

1.5 Resources

"All things Web 2.0." http://www.allthingsweb2.com/component/option,com_mtree/ Itemid,26/

Anderson, Chris. *The Long Tail: Why the Future of Business Is Selling Less of More.* 2006. Hyperion Hinchliffe, Dion. "The Web 2.0 Is Here." http://web2.wsj2.com/web2ishere.htm

"Five Great Ways to Harness Collective Intelligence." January 17, 2006, http://web2.wsj2.com/ five_great_ways_to_harness_collective_intelligence.htm

"Architectures of Participation: The Next Big Thing." August 1, 2006, http://web2.wsj2.com/ architectures_of_participation_the_next_big_thing.htm

Resources

- Jaokar, Ajit. "Tim O'Reilly's seven principles of web 2.0 make a lot more sense if you change the order." April 17, 2006, http://opengardensblog.futuretext.com/archives/2006/04/tim_o_reillys_s.html
- Kroski, Ellyssa. "The Hype and the Hullabaloo of Web 2.0." http://infotangle.blogsome.com/ 2006/01/13/the-hype-and-the-hullabaloo-of-web-20/
- McGovern, Gerry. "Collective intelligence: is your website tapping it?" April 2006, New Thinking, http://www.gerrymcgovern.com/nt/2006/nt-2006-04-17-collective-intelligence.htm
- "One blog created 'every second'." BBC news, http://news.bbc.co.uk/1/hi/technology/ 4737671.stm
- "Online Community Toolkit." http://www.fullcirc.com/community/communitymanual.htm
- O'Reilly, Tim. "What Is Web 2.0: Design Patterns and Business Models for the Next Generation of Software." http://www.oreilly.com/pub/a/oreilly/tim/news/2005/09/30/ what-is-web-20.html
- "The Future of Technology and Proprietary Software." December 2003, http://tim.oreilly.com/articles/future_2003.html
- "Web 2.0: Compact Definition?" October 2005, http://radar.oreilly.com/archives/2005/10/ web_20_compact_definition.html
- Por, George. "The meaning and accelerating the emergence of CI." April 2004, http://www. community-intelligence.com/blogs/public/archives/000251.html
- Surowiecki, James. The Wisdom of Crowds. 2005. Anchor
- Web 3.0. Wikipedia, http://en.wikipedia.org/wiki/ Web_3.0#An_evolutionary_path_to_artificial_intelligence

Learning from user interactions

This chapter covers

- Architecture for applying intelligence
- Basic technical concepts behind collective intelligence
- The many forms of user interaction
- A working example of how user interaction is converted into collective intelligence

Through their interactions with your web application, users provide a rich set of information that can be converted into intelligence. For example, a user rating an item provides crisp quantifiable information about the user's preferences. Aggregating the rating across all your users or a subset of relevant users is one of the simplest ways to apply collective intelligence in your application.

There are two main sources of information that can be harvested for intelligence. First is *content-based*—based on information about the item itself, usually keywords or phrases occurring in the item. Second is *collaborative-based*—based on the interactions of users. For example, if someone is looking for a hotel, the collaborative filtering engine will look for similar users based on matching profile attributes and find hotels that these users have rated highly. Throughout the chapter, the theme of using content and collaborative approaches for harvesting intelligence will be reinforced.

First and foremost, we need to make sure that you have the right architecture in place for embedding intelligence in your application. Therefore, we begin by describing the ideal architecture for applying intelligence. This will be followed by an introduction to some of the fundamental concepts needed to understand the underlying technology. You'll be introduced to the fields of content and collaborative filtering and how intelligence is represented and extracted from text. Next, we review the many forms of user interaction and how that interaction translates into collective intelligence for your application. The main aim of this chapter is to introduce you to the fundamental concepts that we leverage to build the underlying technology in parts 2 and 3 of the book. A strong foundation leads to a stronger house, so make sure you understand the fundamental concepts introduced in this chapter before proceeding on to later chapters.

2.1 Architecture for applying intelligence

All web applications consist, at a minimum, of an application server or a web server—to serve HTTP or HTTPS requests sent from a user's browser—and a database that stores the persistent state of the application. Some applications also use a messaging server to allow asynchronous processing via an event-driven Service-Oriented Architecture (SOA). The best way to embed intelligence in your application is to build it as a set of *services*—software components that each have a well-defined interface.

In this section, we look at the two kinds of intelligence-related services and their advantages and disadvantages.

2.1.1 Synchronous and asynchronous services

For embedding intelligence in your application, you need to build two kinds of services: synchronous and asynchronous services.

Synchronous services service requests from a client in a synchronous manner: the client waits till the service returns the response back. These services need to be fast, since the longer they take to process the request, the longer the wait time for the client. Some examples of this kind of a service are the runtime of an item-recommendation engine (a service that provides a list of items related to an item of interest for a user), a service that provides a model of user's profile, and a service that provides results from a search query.

For scaling and high performance, synchronous services should be stateless—the service instance shouldn't maintain any state between service requests. All the information that the service needs to process a request should be retrieved from a persistent source, such as a database or a file, or passed to it as a part of the service request. These services also use caching to avoid round-trips to the external data store. These services can be in the same JVM as the client code or be distributed in their own set of machines. Due to their stateless nature, you can have multiple instances of the services running

servicing requests. Typically, a load balancer is used in front of the multiple instances. These services scale nearly linearly, neglecting the overhead of load-balancing among the instances.

Asynchronous services typically run in the background and take longer to process. Examples of this kind of a service include a data aggregator service(a service that crawls the web to identify, gather, and classify relevant information) as well as a service that learns the profile of a user through a predictive model or clustering, or a search engine indexing content. Asynchronous learning services need to be designed to be stateless: they receive a message, process it, and then work on the next message. There can be multiple instances of these services all listening to the same queue on the messaging server. The messaging server takes care of load balancing between the multiple instances and will queue up the messages under load.

Figure 2.1 shows an example of the two kinds of services. First, we have the runtime API that services client requests synchronously, using typically precomputed information about the user and other derived information such as search indexes or predictive models. The intelligence-learning service is an asynchronous service that analyzes information from various types of content along with user-interaction information to create models that are used by the runtime API. Content could be either contained within your system or retrieved from external sources, such as by searching the blogosphere or by web crawling.

Table 2.1 lists some of the services that you'll be able to build in your application using concepts that we develop in this book.

As new information comes in about your users, their interactions, and the content in your system, the models used by the intelligence services need to be updated. There are two approaches to updating the models: event-driven and non-event-driven. We discuss these in the next two sections.

Service	Processing type	Description
Intelligence Learning Service	Asynchronous	This service uses user-interaction information to build a profile of the user, update product relevance tables, transaction history, and so on.
Data Aggregator/ Classifier Service	Asynchronous	This service crawls external sites to gather informa- tion and derives intelligence from the text to classify it appropriately.
Search Service	Asynchronous Indexing Synchronous Results	Content—both user-generated and professionally developed—is indexed for search. This may be combined with user profile and transaction history to create personalized search results.
User Profile	Synchronous	Runtime model of user's profile that will be used for personalization.
Item Relevance Lookup Service	Synchronous	Runtime model for looking up related items for a given item.

 Table 2.1
 Summary of services that a typical application-embedding intelligence contains

2.1.2 Real-time learning in an event-driven system

As users interact on your site, perhaps by looking at an article or video, by rating a question, or by writing a blog entry, they're providing your application with information that can be converted into intelligence about them. As shown in figure 2.2, you can develop near-real-time intelligence in your application by using an event-driven Service-Oriented Architecture (SOA).

Figure 2.2 Architecture for embedding and deriving intelligence in an event-driven system

www.allitebooks.com

The web server receives a HTTP request from the user. Available locally in the same JVM is a service for updating the user transaction history. Depending on your architecture and your needs, the service may simply add the transaction history item to its memory and periodically flush the items out to either the database or to a messaging server.

Real-time processing can occur when a message is sent to the messaging server, which then passes this message out to any interested intelligence-learning services. These services will process and persist the information to update the user's profile, update the recommendation engine, and update any predictive models.¹ If this learning process is sufficiently fast, there's a good chance that the updated user's profile will be reflected in the personalized information shown to the user the next time she interacts.

NOTE As an alternative to sending the complete user transaction data as a message, you can also first store the message and then send a lightweight object that's a pointer to the information in the database. The learning service will retrieve the information from the database when it receives the message. If there's a significant amount of processing and data transformation that's required before persistence, then it may be advantageous to do the processing in the asynchronous learning service.

2.1.3 Polling services for non-event-driven systems

If your application architecture doesn't use a messaging infrastructure—for example, if it consists solely of a web server and a database—you can write user transaction history to the database. In this case, the learning services use a poll-based mechanism to periodically process the data, as shown in figure 2.3.

Figure 2.3 Architecture for embedding intelligence in a non-event-driven system

¹ The open source Drools complex-event-processing (CEP) framework could be useful for implementing a rulebased event-handling intelligent-learning service; see http://blog.athico.com/2007/11/pigeons-complexevent-processing-and.html.

So far we've looked at the two approaches for building intelligence learning services—event-driven and non–event-driven. Let's now look at the advantages and disadvantages of each of these approaches.

2.1.4 Advantages and disadvantages of event-based and non-event-based architectures

An event-driven SOA architecture is recommended for learning and embedding intelligence in your application because it provides the following advantages:

- It provides more fine-grained real-time processing—every user transaction can be processed separately. Conversely, the lag for processing data in a polling framework is dependent on the polling frequency. For some tasks such as updating a search index with changes, where the process of opening and closing a connection to the index is expensive, batching multiple updates in one event may be more efficient.
- An event-driven architecture is a more scalable solution. You can scale each of the services independently. Under peak conditions, the messaging server can queue up messages. Thus the maximum load generated on the system by these services will be bounded. A polling mechanism requires more continuous overhead and thus wastes resources.
- An event-driven architecture is less complex to implement because there are standard messaging servers that are easy to integrate into your application. Conversely, multiple instances of a polling service need to coordinate which rows of information are being processed among themselves. In this case, be careful to avoid using select for update to achieve this locking, because this often causes deadlocks. The polling infrastructure is often a source of bugs.

On the flip side, if you don't currently use a messaging infrastructure in your system, introducing a messaging infrastructure in your architecture can be a nontrivial task. In this case, it may be better to begin with building the learning infrastructure using a poll-based non-event-driven architecture and then upgrading to an event-driven architecture if the learning infrastructure doesn't meet your business requirements.

Now that we have an understanding of the architecture to apply intelligence in your application, let's next look at some of the fundamental concepts that we need to understand in order to apply CI.

2.2 Basics of algorithms for applying CI

In order to correlate users with content and with each other, we need a common language to compute relevance between items, between users, and between users and items. Content-based relevance is anchored in the content itself, as is done by information retrieval systems. Collaborative-based relevance leverages the user interaction data to discern meaningful relationships. Also, since a lot of content is in the form of unstructured text, it's helpful to understand how metadata can be developed from unstructured text. In this section, we cover these three fundamental concepts of learning algorithms. We begin by abstracting the various types of content, so that the concepts and algorithms can be applied to all of them.

2.2.1 Users and items

As shown in figure 2.4, most applications generally consist of *users* and *items*. An *item* is any entity of interest in your application. Items may be articles, both user-generated and professionally developed; videos; photos; blog entries; questions and answers posted on message boards; or products and services sold in your application. If your application is a social-networking application, or you're looking to connect one user with another, then a user is also a type of item.

Associated with each item is *metadata*, which may be in the form of professionally developed keywords, user-generated tags, keywords extracted by an algorithm after analyzing the text, ratings, popularity ranking, or just about anything that provides a higher level of information about the item and can be used to correlate items together. Think about metadata as a set of attributes that help qualify an item.

When an item is a user, in most applications there's no content associated with a user (unless your application has a text-based descriptive profile of the user). In this case, metadata for a user will consist of profile-based data and user-action based data. Figure 2.5 shows the three main sources of developing metadata for an item (remember a user is also an item). We look at these three sources next.

ATTRIBUTE-BASED

Metadata can be generated by looking at the attributes of the user or the item. The user attribute information is typically dependent on the nature of the domain of the application. It may contain information such as age, sex, geographical location, profession, annual income, or education level. Similarly, most nonuser items have attributes associated with them. For example, a product may have a price, the name of the

author or manufacturer, the geographical location where it's available, the creation or manufacturing date, and so on.

CONTENT-BASED

Metadata can be generated by analyzing the content of a document. As we see in the following sections, there's been a lot of work done in the area of information retrieval and text mining to extract metadata associated with unstructured text. The title, subtitles, keywords, frequency counts of words in a document and across all documents of interest, and other data provide useful information that can then be converted into metadata for that item.

USER-ACTION-BASED

Metadata can be generated by analyzing the interactions of users with items. User interactions provide valuable insight into preferences and interests. Some of the interactions are fairly explicit in terms of their intentions, such as purchasing an item, contributing content, rating an item, or voting. Other interactions are a lot more difficult to discern, such as a user clicking on an article and the system determining whether the user liked that item or not. This interaction can be used to build metadata about the user and the item. This metadata provides important information as to what kind of items the user would be interested in; which set of users would be interested in a new item, and so on.

Think about users and items having an associated vector of metadata attributes. The similarity or relevance between two users or two items or a user and item can be measured by looking at the similarity between the two vectors. Since we're interested in learning about the likes and dislikes of a user, let's next look at representing information related to a user.

2.2.2 Representing user information

A user's profile consists of a number of *attributes*—independent variables that can be used to describe the item of interest. As shown in figure 2.6, attributes can be *numerical*—have a continuous set of values, for example, the age of a user—or *nominal*—have a nonnumerical value or a set of string values associated with them. Further, nominal attributes can be either *ordinal*—enumerated values that have ordering in them, such as low, medium, and high—or *categorical*—enumerated values with no ordering, such as the color of one's eyes.

Figure 2.6 Attribute hierarchy of a user profile

All attributes are not equal in their predicting capabilities. Depending on the kind of learning algorithms used, the attributes can be *normalized*—converted to a scale of [0-1]. Different algorithms use either numerical or nominal attributes as inputs. Further, numerical and nominal attributes can be converted from one format to another depending on the kind of algorithms used. For example, the age of a user can be converted to a nominal attribute by creating *buckets*, say: "Teenager" for users under the

Attribute	Туре	Example	Comments	
Age	Numeric	26 years old	User typically provides birth date.	
Sex	Categorical	Male, Female		
Annual Income	Ordinal or Numeric	Between 50-100K or 126K		
Geographical Location	Categorical can be converted to numerical	Address, city, state, zip	The geo-codes associated with the loca- tion can be used as a distance measure to a reference point.	

Table 2.2 Examples of user-profile attributes

age of 18, "Young Person" for those between 18 and 25, and so on. Table 2.2 has a list of user attributes that may be available in your application.

In addition to user attributes, the user's interactions with your application give you important data that can be used to learn about your user, find similar users (clustering), or make a prediction. The number of times a user has logged in to your application within a period of time, his average session time, and the number of items purchased are all examples of derived attributes that can be used for clustering and building predictive models.

Through their interactions, users provide a rich set of information that can be harvested for intelligence. Table 2.3 summarizes some of the ways users provide valuable information that can be used to add intelligence to your application.

Technique	Description
Transaction history	The list of items that a user has bought in the past Items that are currently in the user's shopping cart or favorites list
Content visited	The type of content searched and read by the user The advertisements clicked
Path followed	How the user got to a particular piece of content—whether directly from an exter- nal search engine result or after searching in the application The intent of the user—proceeding to the e-commerce pages after researching a topic on the site
Profile selections	The choices that users make in selecting the defaults for their profiles and profile entries; for example, the default airport used by the user for a travel application
Feedback to polls and questions	If the user has responded to any online polls and questions
Rating	Rating of content
Tagging	Associating tags with items
Voting, bookmarking, saving	Expressing interest in an item

Table 2.3 The many ways users provide valuable information through their interactions

We've looked at how various kinds of attributes can be used to represent a user's profile and the use of user-interaction data to learn about the user. Next, let's look at how intelligence can be generated by analyzing content and by analyzing the interactions of the users. This is just a quick look at this fairly large topic and we build on it throughout the book.

2.2.3 Content-based analysis and collaborative filtering

User-centric applications aim to make the application more valuable for users by applying CI to personalize the site. There are two basic approaches to personalization: content-based and collaborative-based.

Content-based approaches analyze the content to build a representation for the content. Terms or phrases (multiple terms in a row) appearing in the document are typically used to build this representation. Terms are converted into their basic form by a process known as *stemming*. Terms with their associated weights, commonly known as *term vectors*, then represent the metadata associated with the text. Similarity between two content items is measured by measuring the similarity associated with their term vectors.

A user's profile can also be developed by analyzing the set of content the user interacted with. In this case, the user's profile will have the same set of terms as the items, enabling you to compute the similarities between a user and an item. Contentbased recommendation systems do a good job of finding related items, but they can't predict the quality of the item—how popular the item is or how a user will like the item. This is where collaborative-based methods come in.

A collaborative-based approach aims to use the information provided by the interactions of users to predict items of interest for a user. For example, in a system where users rate items, a collaborative-based approach will find patterns in the way items have been rated by the user and other users to find additional items of interest for a user. This approach aims to match a user's metadata to that of other similar users and recommend items liked by them. Items that are liked by or popular with a certain segment of your user population will appear often in their interaction history—viewed often, purchased often, and so forth. The frequency of occurrence or ratings provided by users are indicative of the quality of the item to the appropriate segment of your user population. Sites that use collaborative filtering include Amazon, Google, and Netflix. Collaborative-based methods are language independent, and you don't have to worry about language issues when applying the algorithm to content in a different language.

There are two main approaches in collaborative filtering: memory-based and model-based. In memory-based systems, a similarity measure is used to find similar users and then make a prediction using a weighted average of the ratings of the similar users. This approach can have scalability issues and is sensitive to data sparseness. A model-based approach aims to build a model for prediction using a variety of approaches: linear algebra, probabilistic methods, neural networks, clustering, latent classes, and so on. They normally have fast runtime predicting capabilities. Chapter 12

covers building recommendation systems in detail; in this chapter we introduce the concepts via examples.

Since a lot of information that we deal with is in the form of unstructured text, it's helpful to review some basic concepts about how intelligence is extracted from unstructured text.

2.2.4 Representing intelligence from unstructured text

This section deals with developing a representation for unstructured text by using the content of the text. Fortunately, we can leverage a lot of work that's been done in the area of information retrieval. This section introduces you to terms and term vectors, used to represent metadata associated with text. Section 4.3 presents a detailed working example on this topic, while chapter 8 develops a toolkit that you can use in your application for representing unstructured text. Chapter 3 presents a collaborative-based approach for representing a document using user-tagging.

Now let's consider an example where the text being analyzed is the phrase "Collective Intelligence in Action."

In its most basic form, a text document consists of *terms*—words that appear in the text. In our example, there are four terms: *Collective, Intelligence, in, and Action.* When terms are joined together, they form *phrases. Collective Intelligence* and *Collective Intelligence in Action* are two useful phrases in our document.

The *Vector Space Model* representation is one of the most commonly used methods for representing a document. As shown in figure 2.7, a document is represented by a term vector, which consists of terms appearing in the document and a relative weight for each of the terms. The term vector is one representation of metadata associated with an item. The weight associated with each term is a product of two computations: *term frequency* and *inverse document frequency*.

Term frequency (TF) is a count of how often a term appears. Words that appear often may be more relevant to the topic of interest. Given a particular domain, some words appear more often than others. For example, in a set of books about Java, the word Java will appear often. We have to be more discriminating to find items that have these lesscommon terms: Spring, Hibernate, and Intelligence. This is the motivation behind inverse document frequency (IDF). IDF aims to boost terms that are less frequent. Let the total number of documents of interest be n, and let n_i be the number of times a given term appears across the documents. Then IDF for a term is computed as follows:

$$idf_i = \log\left(\frac{n}{n_i}\right)$$

Note that if a term appears in all documents, then its IDF is log(1) which is 0.

Commonly occurring terms such as *a*, *the*, and *in* don't add much value in representing the document. These are commonly known as *stop words* and are removed from the term vector. Terms are also

Figure 2.7 Term vector representation of text

converted to lowercase. Further, words are stemmed—brought to their root form—to handle plurals. For example, *toy* and *toys* will be stemmed to *toi*. The position of words, for example whether they appear in the title, keywords, abstract, or the body, can also influence the relative weights of the terms used to represent the document. Further, synonyms may be used to inject terms into the representation.

Figure 2.8 shows the steps involved in analyzing text. These steps are

- **1** *Tokenization*—Parse the text to generate terms. Sophisticated analyzers can also extract phrases from the text.
- 2 *Normalize*—Convert them into a normalized form such as converting text into lower case.
- 3 *Eliminate stop words*—Eliminate terms that appear very often.
- 4 Stemming—Convert the terms into their stemmed form to handle plurals.

A large document will have more occurrences of a term than a similar document of shorter length. Therefore, within the term vector, the weights of the terms are normalized, such that the sum of the squared weights for all the terms in the term vector is equal to one. This normalization allows us to compare documents for similarities using their term vectors, which is discussed next.

The previous approach for generating metadata is content based. You can also generate metadata by analyzing user interaction with the content—we look at this in more detail in sections 2.3 and 2.4; chapter 3 deals with developing metadata from user tagging.

So far we've looked at what a term vector is and have some basic knowledge of how they're computed. Let's next look at how to compute similarities between them. An item that's very similar to another item will have a high value for the computed similarity metric. An item whose term vector has a high computed similarity to that of a

user's will be very *relevant* to a user—chances are that if we can build a term vector to capture the likes of a user, then the user will like items that have a similar term vector.

2.2.5 Computing similarities

A term vector is a vector where the direction is the magnitude of the weights for each of the terms. The term vector has multiple dimensions—thousands to possibly millions, depending on your application. Multidimensional vectors are difficult to visualize, but the principles used can be illustrated by using a two-dimensional vector, as shown in figure 2.9.

Figure 2.9 Two dimensional vectors, v1 and v2

Given a vector representation, we normalize the vector such that its length is of size 1 and compare vectors by computing the similarity between them. Chapter 8 develops the Java classes for doing this computation. For now, just think of vectors as a means to represent information with a well-developed math to compute similarities between them.

So far we've looked at the use of term vectors to represent metadata associated with content. We've also looked at how to compute similarities between term vectors. Now let's take this one step forward and introduce the concept of a dataset. Algorithms use data as input for analysis. This data consists of multiple instances represented in a tabular form. Based on how data is populated in the table, we can classify the dataset into two forms: densely populated, or high-dimensional sparsely populated datasets—similar in characteristics to a term vector.

2.2.6 Types of datasets

To illustrate the two forms of datasets used as input for learning by algorithms, let's consider the following example.

Let there be three users—John, Joe, and Jane. Each has three attributes: age, sex, and average number of minutes spent on the site. Table 2.4 shows the values for the various attributes for these users. This data can be used for clustering² and/or to build a predictive model.³ For example, similar users according to age and/or sex might be a good predictor of the number of minutes a user will spend on the site.

In this example dataset, the age attribute is a good predictor for number of minutes spent—the number of minutes spent is inversely proportional to the age. The sex attribute has no effect in the prediction. In this made-up example, a simple linear model is adequate to predict the number of minutes spent (minutes spent = 50 – age of user).

	Age	Sex	Number of minutes per day spent on the site	
John	25	М	25	
Joe	30	М	20	
Jane	20	F	30	Table 2.4 Dataset with small number of attributes

This is a densely populated dataset. Note that the number of rows in the dataset will increase as we add more users. It has the following properties:

- It has more rows than columns—The number of rows is typically a few orders of magnitude more than the number of columns. (Note that to keep things simple, the number of rows and columns is the same in our example.)
- *The dataset is richly populated*—There is a value for each cell.

² Chapter 9 covers clustering algorithms.

³ Chapter 10 deals with building predictive models.

The other kind of dataset (high-dimensional, sparsely populated) is a generalization of the term vector representation. To understand this dataset, consider a window of time such as the past week. We consider the set of users who've viewed any of the videos on our site within this timeframe. Let n be the total number of videos in our application, represented as columns, while the users are represented as rows. Table 2.5 shows the dataset created by adding a 1 in the cell if a user has viewed a video. This representation is useful to find similar users and is known as the *User-Item matrix*.

	Video 1	Video 2	 	Video n	
John	1				
Joe	1	1			
Jane				1	Table 2.5 Dataset with large number of attribute

Alternatively, when the users are represented as columns and the videos as rows, we can determine videos that are similar based on the user interaction: "Users who have viewed this video have also viewed these other videos." Such an analysis would be helpful in finding related videos on a site such as YouTube. Figure 2.10 shows a screenshot of such a feature at YouTube. It shows related videos for a video.

< a http://www.youtube.com/watch?v=IQe8dWTbE2U Sign Up Account History Help Log In Site: O You lube Home Videos Channels Community Videos Search Upload **Collective Intelligence - The Vision** From: psbobj Joined: 9 months ago Videos: 12 Subscribe About This Video Trends set by the consumer lead Web_2.0 revolut. in the news Added: May 29, 2007 Embed customize <object width="425" height="355"><param name="movie" value="http:// More From: psbobj Related Videos Display: Insight: Collective Intelligence in Action 02:51 From: <u>psbobi</u> 134 Views: 602 Web_2.0 06:22 From: technologyvideo161 Views: 65 10 isiness Intelligence Demonstration Share Stare Severite Add to Playlists P Flag 26:55 From: Darw Views: 28,096 Rate: 소소소소소 Views: 1,087 Ratings have been disabled Supermind 04:02 From: soreni Comments: 0 Favorited: 13 times Honors: 0 Links: 5 Views: 2789 Would you like to comment? The Network: Information from Join YouTube for a free account, or log in if you are already a member Everywhere 04:26 From: DSb0bi

Figure 2.10 Screenshot from YouTube showing related videos for a video

This dataset has the following properties:

- *The number of columns is large*—For example, the number of products in a site like Amazon.com is in millions, as is the number of videos at YouTube.
- The dataset is sparsely populated with nonzero entries in a few columns.
- You can visualize this dataset as a multidimensional vector—Columns correspond to the dimensions and the cell entry corresponds to the weight associated for that dimension.

We develop a toolkit to analyze this kind of dataset in chapter 8. The dot product or cosine between two vectors is used as a similarity metric to compare two vectors.

Note the similarity of this dataset with the term vector we introduced in section 2.2.3. Let there be m terms that occur in all our documents. Then the term vectors corresponding to all our documents have the same characteristics as the previous dataset, as shown in table 2.6.

	Term 1	Term 2		 Term m	
Document 1	0.8			0.6	-
Document 2		0.7	0.7		Table 2.6 Sparsely populated
Document 3				1	vectors

Now that we have a basic understanding of how metadata is generated and represented, let's look at the many forms of user interaction in your application and how they are converted to collective intelligence.

2.3 Forms of user interaction

To extract intelligence from a user's interaction in your application, it isn't enough to know what content the user looked at or visited. You also need to quantify the quality of the interaction. A user may like the article or may dislike it, these being two extremes. What one needs is a quantification of how the user liked the item relative to other items.

Remember, we're trying to ascertain what kind of information is of interest to the user. The user may provide this directly by rating or voting for an article, or it may need to be derived, for example, by looking at the content that the user has consumed. We can also learn about the item that the user is interacting with in the process.

In this section, we look at how users provide quantifiable information through their interactions; in section 2.4 we look at how these interactions fit in with collective intelligence. Some of the interactions such as ratings and voting are explicit in the user's intent, while other interactions such as using clicks are noisy—the intent of the user isn't known perfectly and is implicit. If you're thinking of making your application more interactive or intelligent, you may want to consider adding some of the functionality mentioned in this section. We also look at the underlying persistence architecture that's required to support the functionality. Let's begin with ratings and voting.

2.3.1 Rating and voting

Asking the user to rate an item of interest is an explicit way of getting feedback on how well the user liked the item. The advantage with a user rating content is that the information provided is quantifiable and can be used directly.

It's interesting to note that most ratings in a system tend to be positive, especially since people rate items that they've bought/interacted with and they typically buy/ interact with items that they like.

Next, let's look at how you can build this functionality in your application.

PERSISTENCE MODEL⁴

Figure 2.11 shows the persistence model for storing ratings. Let's introduce two entities: user and item. user_item_rating is a mapping table that has a composite key, consisting of the user ID and content ID. A brief look at the cardinality between the entities show that

- Each user may rate 0 or more items.
- Each rating is associated with only one user.
- An item may contain 0 or more ratings.
- Each rating is associated with only one item.

Based on your application, you may alternatively want to also classify the items in your application. It's also helpful to have a generic table to store the ratings associated with the items. Computing a user's average rating for an item or item type is then a simple database query.

In this design, answers to the following questions amount to a simple database query:

- What is the average rating for a given item?
- What is the average rating for a given item from users who are between the ages of 25 and 35?
- What are the top 10 rated items?

The last query can be slow, but faster performance can be obtained by having a user_item_rating_statistic table, as shown in figure 2.10. This table gets updated by a trigger every time a new row is inserted in the user_item_rating table. The average

⁴ The code to create the tables, populate the database with test data, and run the queries is available from the code download site for this book.

is precomputed and is calculated by dividing the cumulative sum by the number of ratings. If you want to trend the ratings of an item on a daily basis, you can augment the user_item_rating_statistic to have the day as another key.

VOTING—"DIGG IT"

Most applications that allow users to rate use a scale from zero to five. Allowing a user to vote is another way to involve and obtain useful information from the user. Digg, a website that allows users to contribute and vote on interesting articles, uses this idea. As shown in figure 2.12, a user can either *digg* an article, casting a positive vote, or *bury* it, casting a negative vote. There are a number of heuristics applied to selecting which articles make it to the top, some being the number of positive votes received by the article along with the date the article was submitted in Digg.

Figure 2.12 At Digg.com, users are allowed to vote on how they like an article—"digg it" is a positive vote, while "Bury" is a negative vote.

Voting is similar to rating. However, a vote can have only two values—1 for a positive vote and -1 for a negative vote.

2.3.2 Emailing or forwarding a link

As a part of viral marketing efforts, it's common for websites to allow users to email or forward the contents of a page to others. Similar to voting, forwarding the content to others can be considered a positive vote for the item by the user. Figure 2.13 is a screenshot from *The Wall Street Journal* showing how a user can forward an article to another user.

2.3.3 Bookmarking and saving

Online bookmarking services such as del. icio.us and spurl.net allow users to store and retrieve URLs, also known as bookmarks. Users can discover other interesting links that other users have bookmarked through

Figure 2.13 Screenshot from *The Wall Street Journal* (wsj.com) that shows how a user can forward/email an article to another user recommendations, hot lists, and other such features. By bookmarking URLs, a user is explicitly expressing interest in the material associated with the bookmark. URLs that are commonly bookmarked bubble up higher in the site.

The process of saving an item or adding it to a list is similar to bookmarking and provides similar information. Figure 2.14 is an example from *The New York Times*, where a user can save an item of interest. As shown, this can then be used to build a recommendation engine where a user is shown related items that other users who saved that item have also saved.

If a user has a large number of bookmarks, it can become cumbersome for the user to find and manage bookmarked or saved items. For this reason, applications allow their users to create *folders*—a collection of items bookmarked or saved together. As shown

in figure 2.15, folders follow the composite design pattern,⁵ where they're composed of bookmarked items. A folder is just another kind of item in your application that can be shared, bookmarked, and rated in your application. Based on their composition, folders have metadata associated with them.

Figure 2.15 Composite pattern

for organizing bookmarks together

Next, let's look at how a user purchasing an item also provides useful information.

2.3.4 Purchasing items

2.3.5 Click-stream

So far we've looked at fairly explicit ways of determining whether a user liked or disliked a particular item, through ratings, voting, forwarding, and purchasing items.

⁵ Refer to the Composite Pattern in the Gang of Four design patterns.

When a list of items is presented to a user, there's a good chance that the user will click on one of them based on the title and description. But after quickly scanning the item, the user may find the item to be not relevant and may browse back or search for other items.

A simple way to quantify an article's relevance is to record a positive vote for any item clicked. This approach is used by Google News to personalize the site (see section 12.4.2). To further filter out noise, such as items the user didn't really like, you could look at the amount of time the user spent on the article. Of course, this isn't fail proof. For example, the user could have left the room to get some coffee or been interrupted while looking at the article. But on average, simply looking at whether an item was visited and the time spent on it provides useful information that can be mined later. You can also gather useful statistics from this data:

- What is the average time a user spends on a particular item?
- For a user, what is the average time spent on any given article?

One of the ways to validate the data and clear out outliers is to use a *validation window*. To build a validation window, treat the amount of time spent by a user as a normal distribution (see figure 2.16) and compute the mean and standard deviation from the samples.

Let's demonstrate this with a simple example—it's fictitious, but illustrates the point well. Let the amount of time spent by nine readers on an article be [5, 47, 50, 55, 47, 54, 100, 45, 50] seconds. Computing the mean is simple (add them all up and divide it by nine, the number of samples); it's 50.33 seconds. Next, let's compute the standard

Figure 2.16 A normal distribution with a mean of 0 and standard deviation of 1

deviation. For this, take the difference of each of the samples from its mean and square it. This leads to [2055.11, 11.11, 0.11, 21.78, 11.11, 13.44, 2466.78, 28.44, 0.11]. Add them up and divide it by eight, the number of samples minus one. This gives us 576, and the square root of this is the standard deviation, which comes out to be 24. Now you can create a validation window two or three times the standard deviation from the mean. For our example, we take two times the standard deviation, which gives us a confidence level of 95 percent. For our example, this is [2.33 98]. Anything outside this range is an outlier.

So we flag the seventh sample of 100 seconds as an outlier—perhaps the user had stepped out or was interrupted while reading the article. Next, continue the same process with the remaining eight samples [5, 47, 50, 55, 47, 54, 45, 50]. The new mean and standard deviation is 44.125 and 16.18. The new confidence window is [11.76 76.49]. The first sample is an outlier; perhaps the user didn't find the article relevant.

Now let's remove this outlier and recompute the validation window for the sample set of [47, 50, 55, 47, 54, 45, 50]. The new mean and standard deviation is 49.71 and 3.73

respectively. The new confidence window is [42.26 57.17]. Most users will spend time within this window. Users that spent less time were probably not interested in the content of the article.

Of course, if you wanted to get more sophisticated (and a lot more complex), you could try to model the average time that a user spends on an item and correlate it with average time spent by a typical user to shrink or expand the validation window. But for most applications, the preceding process of validation window should work well. Or if you want to keep things even simpler, simply consider whether the article has been visited, irrespective of the time spent⁶ reading it.

2.3.6 Reviews

Web 2.0 is all about connecting people with similar people. This similarity may be based on similar tastes, positions, opinions, or geographic location. Tastes and opinions are often expressed through reviews and recommendations. These have the greatest impact on other users when

- They're unbiased
- The reviews are from similar users
- They're from a person of influence

Depending on the application, the information provided by a user may be available to the entire population of users, or may be privately available only to a select group of users. This is especially the case for software-as-a-service (SaaS) applications, where a company or enterprise subscribing to the service forms a natural grouping of users. In such applications, information isn't usually shared across domains. The information is more contextually relevant to users within the company, anyway.

Perhaps the biggest reasons why people review items and share their experiences are to be discovered by others and for boasting rights. Reviewers enjoy the recognition, and typically like the site and want to contribute to it. Most of them enjoy doing it. A number of applications highlight the contributions made by users, by having a Top Reviewers list. Reviews from top reviewers are also typically placed toward the top and featured more prominently. Sites may also feature one of their top reviewers on the site as an incentive to contribute.

Some sites may also provide an incentive, perhaps monetary, for users to contribute content and reviews. Epinions.com pays a small amount to its reviewers. Similarly, Revver, a video sharing site, pays its users for contributed videos. It's interesting to note that even though sites like Epinions.com pay money to their reviewers, while Amazon doesn't, Amazon still has on order of magnitude more reviews from its users.

Users tend to contribute more to sites that have the biggest audience.

In a site where anyone can contribute content, is there anything that stops your competitors from giving you an unjustified low rating? Good reviewers, especially those that are featured toward the top, try to build a good reputation. Typically, an

⁶ Google News, which we look at in chapter 12, simply uses a click as a positive vote for the item.

application has links to the reviewer's profile along with other reviews that he's written. Other users can also write comments about a review. Further, just like voting for articles at Digg, other users can endorse a reviewer or vote on his reviews. As shown in figure 2.17, taken from epinions.com, users can "Trust" or "Block" reviewers to vote on whether a reviewer can be trusted.

The feedback from other users about how helpful the

review was helps to weed out biased and unhelpful reviews. Sites also allow users to report reviewers who don't follow their guidelines, in essence allowing the community to police itself.

MODELING THE REVIEWER AND ITEM RELATIONSHIP

We need to introduce another entity—the reviewer, who may or may not be a user of your application. The association between a reviewer, an item, and an ItemReview is shown in figure 2.18. This is similar to the relationship between a user and ratings.

- Each reviewer may write zero or more reviews.
- Each review is written by a reviewer.
- Each item may have zero or more reviews.
- Each review is associated with one item.

The persistence design for storing reviews is shown in figure 2.19, and is similar to the one we developed for ratings. Item reviews are in the form of unstructured text and thus need to be indexed by search engines.

So far, we've looked at the many forms of user interaction and the persistence architecture to build it in your application. Next, let's look at how this user-interaction information gets converted into collective intelligence.

Figure 2.19 Schema design for persisting reviews

Figure 2.17 Epinions.com allows users to place a positive or negative vote of confidence in a reviewer.

Figure 2.18 The association between a reviewer, an item, and the review of an item

2.4 Converting user interaction into collective intelligence

In section 2.2.6, we looked at the two forms of data representation that are used by learning algorithms. User interaction manifests itself in the form of the sparsely populated dataset. In this section, we look at how user interaction gets converted into a dataset for learning.

To illustrate the concepts, we use a simple example dealing with three users who've rated photographs. In addition to the cosine-based similarity computation we introduced in section 2.2.5, we introduce two new similarity computations: correlation-based similarity computation and adjusted-cosine similarity computation. In this section, we spend more time on this example which deals with ratings to illustrate the concepts. We then briefly cover how these concepts can be generalized to analyze other user interactions in section 2.4.2. That section forms the basis for building a recommendation engine, which we cover in chapter 12.

2.4.1 Intelligence from ratings via an example

There are a number of ways to transform raw ratings from users into intelligence. First, you can simply aggregate all the ratings about the item and provide the average as the item's rating. This can be used to create a Top 10 Rated Items list. Averages work well, but then you're constantly promoting the popular content. How do you reach the potential of The Long Tail? A user is really interested in the average rating for content by users who have similar tastes.

Clustering is a technique that can help find a group of users similar to the user. The average rating of an item by a group of users similar to a user is more relevant to the user than a general average rating. Ratings provide a good quantitative feedback of how good the content is.

Let's consider a simple example to understand the basic concepts associated with using ratings for learning about the users and items of interest. This section introduces you to some of the basic concepts.

Let there be three users: John, Jane, and Doe, who each rate three items. As per our discussion in section 2.2.1, items could be anything—blog entries, message board questions, video, photos, reviews, and so on. For our example, let them rate three photos: Photo1, Photo2, and Photo3, as shown in table 2.7. The table also shows the average rating for each photo and the average rating given by each user. We revisit this example in section 12.3.1 when we discuss recommendation engines.

	Photo1	Photo2	Photo3	Average
John	3	4	2	3
Jane	2	2	4	8/3
Doe	1	3	5	3
Average	2	3	11/3	26/3

Given this set of data, we answer two questions in our example:

- What are the set of related items for a given item?
- For a user, who are the other users that are similar to the user?

We answer these questions using three approaches: cosine-based similarity, correlation-based similarity, and adjusted-cosine-based similarity.

COSINE-BASED SIMILARITY COMPUTATION

Cosine-based similarity takes the dot product of two vectors as described in section 2.2.4. First, to learn about the photos, we transpose the matrix, so that a row corresponds to a photo while the columns (users) correspond to dimensions that describe the photo, as shown in table 2.8.

	John	Jane	Doe	Average	
Photo1	3	2	1	2	
Photo 2	4	2	3	3	
Photo 3	2	4	5	11/3	Table 0.9 Dataset
Average	3	8/3	3	26/3	to describe photos

Next, we normalize the values for each of the rows. This is done by dividing each of the cell entries by the square root of the sum of the squares of entries in a particular row. For example, each of the terms in the first row is divided by $\sqrt{3^2+2^2+1^2} = \sqrt{14} = 3.74$ to get the normalized dataset shown in table 2.9⁷.

	John	Jane	Doe	
Photo1	0.8018	0.5345	0.2673	
Photo2	0.7428	0.3714	0.557	
Photo3	0.2981	0.5963	0.7454	for the photos

 Table 2.9
 Normalized dataset

 for the photos using raw ratings

We can find the similarities between the items by taking the dot product of their vectors. For example, the similarity between Photo 1 and Photo 2 is computed as (0.8018 * 0.7428) + (0.5345 * 0.3714) + (0.2673 * 0.557) = 0.943.

Using this, we can develop the item-to-item similarity table, shown in table 2.10. This table also answers our first question: what are the set of related items for a given item? According to this, Photo1 and Photo2 are very similar. The closer to 1 a value in the similarity table is, the more similar the items are to each other.

	Photo1	Photo2	Photo3		
Photo1	1	0.943	0.757		
Photo2	0.943	1	0.858		
Photo3	0.757	0.858	1	Table 2.10	ltem-to-i

⁷ There is a unit test in the downloadable code that implements this example.

To determine similar users, we need to consider the original data in table 2.7. Here, associated with each user is a vector, where the rating associated with each item corresponds to a dimension in the vector. The analysis process is similar to our approach for calculating the item-to-item similarity table. We first need to normalize the vectors and then take a dot product between two normalized vectors to compute their similarities.

Table 2.11 contains the normalized vectors associated with each user. The process is similar to the approach taken to compute table 2.9 from table 2.8. For example, $\sqrt{3^2+4^2+2^2} = \sqrt{29} = 5.385$ is the normalizing factor for John's vector in table 2.7.

	Photo1	Photo2	Photo3	
John	0.5571	0.7428	0.3714	
Jane	0.4082	0.4082	0.8165	
Doe	0.1690	0.5071	0.8452	Table 2.11 Normalized rating vectors for each use

Next, a user-to-user similarity table can be computed as shown in table 2.12 by taking the dot product of the normalized vectors for two users.

	John	Jane	Doe
John	1	0.83	0.78
Jane	0.83	1	0.97
Doe	0.78	0.97	1.00

As shown in table 2.12, Jane and Doe are very similar. The preceding approach uses the raw ratings assigned by a user to an item. Another alternative is to focus on the deviations in the rating from the average values that a user provides. We look at this next.

CORRELATION-BASED SIMILARITY COMPUTATION

Similar to the dot product or cosine of two vectors, one can compute the correlation between two items as a measure of their similarity—the *Pearson-r correlation*. This correlation between two items is a number between –1 and 1, and it tells us the direction and magnitude of association between two items or users. The higher the magnitude—closer to either –1 or 1—the higher the association between the two items. The direction of the correlation tells us how the variables vary. A negative number means one variable increases as the other decreases, or in this example, the rating of one item decreases as the rating of another increases.

To compute the correlation, we need to isolate those cases where the users corated items—in our case, it's the complete set, as all the users have rated all the content. Let U be the set of users that have rated both item i and j.

Now the scary-looking formula to compute the correlation:

$$corr(i, j) = \frac{\sum_{u \in U} (Rui - \overline{R}i)(Ruj - \overline{R}j)}{\sqrt{\sum_{u \in U} (Rui - \overline{R}i)^2} \sqrt{\sum_{u \in U} (Ruj - \overline{R}j)^2}}$$

where $R_{u,i}$ is the rating of user u for item i and \overline{R}_i is the average rating of item i. The correlation computation looks for variances from the mean value for the items.

Let's look at the correlation of Photo 1 and Photo 2.

Numerator =
$$(3-2)(4-3) + (2-2)(2-3) + (1-2)(3-3) = 1$$

Denominator = $\sqrt{(3-2)^2 + (2-2)^2 + (1-2)^2} \sqrt{(4-3)^2 + (2-3)^2 + (3-3)^2} = 2$
Corr(1,2)=0.5

Alternatively, for the computation, it's useful to subtract the average value for a row as shown in table 2.13. Note that the sum of the numbers for each row is equal to zero.

	John	Jane	Doe	
Photo1	1	0	-1	
Photo 2	1	-1	0	Table 2.12 Normalized matrix
Photo 3	-5/3	1/3	4/3	for the correlation computation

Table 2.14 shows the correlation matrix between the items and provides answers to our first question: what are the set of related items for a given item? According to this, Photo 1 and Photo 3 are strongly negatively correlated.

	Photo1	Photo2	Photo3
Photo1	1	0.5	-0.982
Photo2	0.5	1	-0.655
Photo3	-0.982	-0.655	1

Similarly, the correlation matrix between the users is computed along the rows of the data shown in table 2.7. Table 2.15 contains the normalized rating vectors for each user that will be used for computing the correlation. Note that the sum of the values for each row is 0.

	Photo1	Photo2	Photo3	
John	0	0.7071	-0.7071	
Jane	-0.4083	-0.4083	0.8166	
Doe	-0.7071	0	0.7071	rating vectors for each

The resulting correlation matrix is shown in table 2.16 and provides answers to our second question: given a user, who are the other users that are similar to that user? Note that users Jane and Doe are highly correlated—if one likes an item, chances are the other likes it, too. John is negatively correlated—he dislikes what Jane and Doe like.

Since users Jane and Doe are highly correlated, you can recommend items that are rated highly by Jane to Doe and vice versa.

	John	Jane	Doe	
John	1	-0.866	-0.5	
Jane	-0.866	1	0.87	Table 2.40 Downalation
Doe	-0.5	0.87	1	matrix for the users

ADJUSTED COSINE-BASED SIMILARITY COMPUTATION

One drawback of computing the correlation between items is that it doesn't take into account the difference in rating scale between users. For example, in the example data, user Doe is correlated highly with Jane but tends to give ratings toward the extremes.

An alternative formula, known as *adjusted cosine* is used, which is

similarity(i, j) =
$$\frac{\sum_{u \in U(Ru, i-\overline{R}u)(Ru, j-\overline{R}u)}}{\sqrt{\sum_{u \in U(Ru, i-\overline{R}u)^2}}\sqrt{\sum_{u \in U(Ru, ij-\overline{R}u)^2}}}$$

where R_u is the average rating for user u. Here, instead of subtracting the average value for a row, the average value provided by a user is used.

To compute this, it's again useful to normalize the dataset by removing the average rating value from the column values. This leads to the data shown in table 2.17. Note that the sum of the entries for a column is equal to zero.

	John	Jane	Doe
Photo1	0	-2/3	-2
Photo2	1	-2/3	0
Photo3	-1	4/3	2

Table 2.18 shows the item-to-item similarity for the three items. Again, Photo1 and Photo3 are strongly negatively correlated, while Photo2 and Photo3 are similar.

	Photo1	Photo2	Photo3
Photo1	1	0.1754	-0.891
Photo2	0.1754	1	.604
Photo3	-0.891	.604	1

Table 2.18Similarity betweenitems using correlation similarity

Along the same lines, to compute the similarity between users, we subtract the average rating associated with each item in table 2.7. Table 2.19 shows the resulting table. Note that the sum of the values for a column is equal to 0.

	Photo1	Photo2	Photo3
John	1	1	-5/3
Jane	0	-1	1/3
Doe	-1	0	4/3

Table 2.19Normalizedrating vectors for each user
	Photo1	Photo2	Photo3	
John	0.4575	0.4575	-0.7625	
Jane	0	-0.9486	0.3162	
Doe	-0.6	0	0.8	the vectors to unit lengthr

Again, normalizing each of the vectors to unit length leads to table 2.20.

Finally, table 2.21 contains the similarity matrix between the users by taking the dot product of their vectors.

	John	Jane	Doe	
John	1	-0.675	-0.884	
Jane	-0.675	1	-0.253	
Doe	-0.884	-0.253	1.00	Table 2.21 Adjusted cosine similarity matrix for the user

So far in this section, we've looked at how to transform user rating data into a dataset for analysis, and we used three different similarity metrics to compute the similarities between various items and users. The method used for computing the similarity does have an effect on the result. Next, let's look at how this approach can be generalized for other interactions such as voting.

The analysis for using voting information is similar to that for rating. The only difference is that the cell values will be either 1 or -1 depending on whether the user voted for or against the item. The persistence model for representing voting is similar to that developed in the previous section for persisting ratings.

2.4.2 Intelligence from bookmarking, saving, purchasing Items, forwarding, click-stream, and reviews

In this section, we quickly look at how other forms of user-interaction get transformed into metadata. There are two main approaches to using information from users' interaction: content-based and collaboration-based.

CONTENT-BASED APPROACH

As shown in figure 2.20, metadata is associated with each item. This term vector could be created by analyzing the content of the item or using tagging information by users,

as we discuss in the next chapter. The term vector consists of keywords or tags with a relative weight associated with each term. As the user saves content, visits content, or writes recommendations, she inherits the metadata associated with each.

User Visits Metadata Update Metadata

This implies that both users and items are represented by the same set of dimensions—tags. Using this representation, one

Figure 2.20 A user's metadata vector is created using the metadata vector associated with all the items visited.

can compare users with other users, users with items, and items with other items using cosine-based similarity. We see an example of this in the next chapter.

COLLABORATION-BASED APPROACH

The analysis of data collected by bookmarking, saving an item, recommending an item to another user, purchasing an item, or click-stream analysis is similar. To understand this, let's use the following example.

Consider data collected in a window of time. Again, let our three users John, Jane, and Doe bookmark three articles Article 1, Article 2, and Article 3, as shown in table 2.22. We've placed a 1 for articles that the user has bookmarked. This is a sparsely populated dataset as described in section 2.2.6. Using this data, you maybe interested in finding the

	Article 1	Article 2	Article 3
John	1		
Jane		1	1
Doe	1		1

following answers:

- What are other items that have been bookmarked by other users who bookmarked the same articles as a specific user?—When the user is John, the answer is Article 3—Doe has bookmarked Article 1 and also Article 3.
- What are the related items based on the bookmarking patterns of the users?

To determine the answer to the last question, it's again useful to invert the dataset to the one shown in table 2.23. Again, the users correspond to the dimensions of the vector for an article. Similarities between two items are measured by computing the dot product between them.

	John	Jane	Doe	
Article 1	1		1	
Article 2		1		
Article 3		1	1	similarity matrix for the us

The normalized matrix is shown in table 2.24.

	John	Jane	Doe	
Article 1	0.7071		0.7071	
Article 2		1		
Article 3		0.7071	0.7071	for finding related articles

The item-to-item similarity matrix based on this data is shown in table 2.25. According to this, if someone bookmarks Article 1, you should recommend Article 3 to the user, and if the user bookmarks Article 2, you should also recommend Article 3.

	Article 1	Article 2	Article 3	
Article 1	1	0	0.5	
Article 2	0	1	0.7071	
Article 3	0.5	0.7071	1	based on bookmarking

A similar analysis can be performed by using information from the items the user saves, purchases, and recommends. You can further refine your analysis by associating data only from users that are similar to a user based on user-profile information. In section 12.3, we further discuss this approach when we discuss building recommendation engines.

In this section, we looked at how we can convert user interactions into intelligence using a simple example of rating photos. We looked at finding items and users of interest for a user. We computed this by using three similarity computations.

2.5 Summary

Services for embedding intelligence in your applications can be divided into two types. First, synchronous services get invoked when the web server processes a request for a user. Second, asynchronous services typically run in the background and take longer to process. An event-driven SOA architecture is recommended for embedding intelligence.

There's a rich amount of information that can be used from user interaction. Metadata attributes can be used to describe items and users. Some interactions such as ratings, voting, buying, recommendations, and so forth are fairly explicit as to whether the user likes the item or not. There are two main approaches to finding items of interest for a user: content-based and collaborative-based. Content-based techniques build a term vector—a multidimensional representation for the item based on the frequency of occurrence and the relative frequency of the terms—and then associate similar items based on the similarities between term vectors. Collaborative-based techniques tend to automate "word of mouth recommendations" to find related items and users.

Metadata associated with users and items can be used to derive intelligence in the form of building recommendation engines and predictive models for personalization, and for enhancing search.

Tagging is another way that users interact with items and provide a rich set of information. We look at tagging next in chapter 3.

2.6 Resources

"All of Web2.0." Chrisekblog. http://chrisek.com/wordpress/2006/10/03/all-of-web-20/ Arthur, Charles. "What is the 1% rule?" July 2006. *The Guardian*. http:// technology.guardian.co.uk/weekly/story/0,,1823959,00.html

Baeza-Yates, Ricardo, and Berthier Ribeiro-Neto. *Modern Information Retrieval*. Paperback, May 15, 1999.

Resources

- Goldberg, David, David Nichols, Brian M. Oki, and Douglas Terry. Using collaborative filtering to weave an information tapestry. Communications of the ACM, 35(12):61-70, 1992.
- Grossman, David A., and Ophir Frieder. Information Retrieval: Algorithms and Heuristics (The Information Retrieval Series) (2nd Edition). Paperback, Jan 23, 2006.
- "Joshua Schachter." Joho the Blog. http://www.hyperorg.com/blogger/mtarchive/ berkman_joshua_schachter.html
- Kelly, Kevin. "A review of review sites." http://www.kk.org/cooltools/archives/000549.php
- Kopelman, Josh. "53,651." Blog. May 2006 . http://redeye.firstround.com/2006/05/ 53651.html
- Pulier, Eric, and Hugh Taylor. 2005. Understanding Enterprise SOA. Manning.
- Sarwar, Badru, George Karypis, Joseph Konstan, and John Riedl. *Item-based Collaborative Filtering Recommendation Algorithms*. ACM, 2001. http://www10.org/cdrom/papers/519/node1.html
- "Should top users be paid?" Stewtopia, Blog. September 11, 2006. http://blog.stewtopia.com/ 2006/09/11/should-top-users-be-paid/
- Thornton, James. Collaborative Filtering Research Papers. http://jamesthornton.com/cf/
- Wang, Jun, Arjen P. de Vries, and Marcel J.T. Reinders. Unifying User-based and Item-based Collaborative Filtering Approaches by Similarity Fusion. 2006. http://ict.ewi.tudelft.nl/pub/ jun/sigir06_similarityfuson.pdf.

Extracting intelligence from tags

This chapter covers

- Three forms of tagging and the use of tags
- A working example of how intelligence is extracted from tags
- Database architecture for tagging
- Developing tag clouds

In content-centric applications, users typically navigate content through categories or menus authored by the site editors. Each category can have a number of nested subcategories, allowing the user to drill down the subcategory tree and find content of interest. From a user-experience point of view, such navigation can be tedious. A user might need to navigate across multiple subtopics before finding the right item. This approach of manually categorizing items can be expensive and difficult to maintain over the long run due to the manpower involved, especially as the amount of content increases. As users generate content on your site, it'll be expensive and sometimes financially infeasible to manually categorize the content being created. Imagine a site like Flickr with millions of photographs and the effort that would be required if you tried to manually categorize each photo. An alternative to manual categorization and rigid menus is to build a system that can learn about each user—what kind of content she's interested in—and dynamically build *navigation links*, hyperlinks to other relevant items, whose text or phrases are also familiar to the user. Further, such a system can be built in a cost-effective manner without having to rely on professional editors to categorize items.

Users tagging items—adding keywords or phrases to items—is now ubiquitous on the web. This simple process of a user adding labels or tags to items, bookmarking items, sharing items, or simply viewing items provides a rich dataset that can translate into intelligence, for both the user and the items. This intelligence can be in the form of finding items related to the one tagged; connecting with other users who have similarly tagged items; or drawing the user to discover alternate tags that have been associated with an item of interest and through that finding other related items.

In this chapter, we look at three forms of generating tags in your application: professionally generated tags, user-generated tags, and machine-generated tags. We review the advantages and disadvantages of each approach and develop guidelines for creating tags. We briefly review how you can use dynamic navigation in your application. We use a working example to illustrate the process of developing the term vector or metadata for the item and user. Next, we discuss how you can build this infrastructure in a scalable manner. For this, we first review the various designs used to persist tagging-related data and develop the recommended persistence architecture. Next, we develop code to build a tag cloud, one of the ways to add dynamic navigation to your application, and end with some practical issues.

3.1 Introduction to tagging

Tagging is the process of adding freeform text, either words or small phrases, to items. These keywords or tags can be attached to anything in your application—users, photos, articles, bookmarks, products, blog entries, podcasts, videos, and more.

In section 2.2.3, we looked at using term vectors to associate metadata with text. Each term or tag in the term vector represents a dimension. The collective set of terms or tags in your application defines the *vocabulary* for your application. When this same vocabulary is used to describe both the user and the items, we can compute the similarity of items with other items and the similarity of the item to the user's metadata to find content that's relevant to the user. In this case, tags can be used to represent metadata. Using the context in which they appear and to whom they appear, they can serve as *dynamic navigation links*. The tag cloud introduced later in the chapter is one example of such navigation.

In essence, tags enable us to

- 1 Build a metadata model (term vector) for our users and items. The common terminology between users and items enables us to compute the similarity of an item to another item or to a user.
- **2** Build dynamic navigation links in our application, for example, a tag cloud or hyperlinked phrases in the text displayed to the user.
- **3** Use metadata to personalize and connect users with other users.

- 4 Build a vocabulary for our application.
- **5** Bookmark items, which can be shared with other users.

In this section, we look at some basic information about tagging.

3.1.1 Tag-related metadata for users and items

Tags provide a common vocabulary to represent metadata associated with users and items. The metadata developed can be again divided into content-based metadata and collaborative-based metadata.

In the content-based approach, metadata associated with the item is developed by analyzing the item's content as explained in section 2.2.3. This is represented by a term vector, a set of tags with their relative weights. Similarly, metadata can be associated with the user by aggregating the metadata of all the items visited by the user within a window of time, as explained in section 2.4.2.

In the collaborative approach, user actions are used for deriving metadata. User tagging is an example of such an approach, and we illustrated with the example in section 2.2. Basically, the metadata associated with the item can be computed by computing the term vector from the tags—taking the relative frequency of the tags associated with the item and normalizing the counts.

When you think about metadata for a user and item using tags, think about a term vector with tags and their related weights.

We can categorize tags based on who generated them. As shown in figure 3.1, there are three main types of tags: professionally generated, user-generated, and machine-generated.

Next, we look at each of these three types of tags.

Figure 3.1 Three ways to generate tags

3.1.2 Professionally generated tags

There are a number of applications that are content rich and provide different kinds of content—articles, videos, photos, blogs—to their users. Vertical-centric medical sites, news sites, topic-focused group sites, or any site that has a professional editor generating content are examples of such sites. In these kinds of sites, the professional editors are typically domain experts, familiar with content domain, and are usually paid for their services. The first type of tags we cover is tags generated by such domain experts, which we call professionally generated tags.

Tags that are generated by domain experts have the following characteristics:

- They bring out the concepts related to the text.
- They capture the associated semantic value, using words that may not be found in the text.
- They can be authored to be displayed on the user interface.

- They can provide a view that isn't centered around just the content of interest, but provides a more global overview.
- They can leverage synonyms—similar words.
- They can be multi-term phrases.
- The set of words used can be controlled, with a controlled vocabulary.

Professionally generated tags require a lot of manpower and can be expensive, especially if a large amount of new content is being generated, perhaps by the users. These characteristics can be challenging for an automated algorithm.

3.1.3 User-generated tags

It's now common to allow users to tag items. Tags generated by the users fall into the category of user-generated tags, and the process of adding tags to items is commonly known as *tagging*.

Tagging enables a user to associate freeform text to an item, in a way that makes sense to him, rather than using a fixed terminology that may have been developed by the content owner or created professionally.

Figure 3.2 shows the process of tagging at del.icio.us. Here, a user can associate any tag or keyword with a URL. The system displays a list of recommended and popular tags to guide the user.

The use of users to create tags in your application is a great example of leveraging the collective power of your users. Items that are popular will tend to be frequently tagged. From an intelligence point of view, for a user, what matters most is which items people similar to the user are tagging.

Figure 3.2 Screenshot of how a user creates a tag at del.icio.us

User-generated tags have the following characteristics:

- They use terms that are familiar to the user.
- They bring out the concepts related to the text.
- They capture the associated semantic value, using words that may not be found in the text.
- They can be multi-term phrases.
- They provide valuable collaborative information about the user and the item.
- They may include a wide variety of terms that are close in meaning.

User-generated tags will need to be *stemmed* to take care of plurals and filtered for obscenity. Since tags are freeform, variants of the same tag may appear. For example, *collective intelligence* and *collectiveintelligence* may appear as two tags. As shown in figure 3.2, you may want to offer recommended tags to the user based on the dictionary of tags created in your application and the first few characters typed by the user.¹ We discuss user-generated tags and tagging in more detail later in the next section.

3.1.4 Machine-generated tags

Tags or terms generated through an automated algorithm are known as machine-generated tags. In section 2.2.3, we briefly reviewed the steps involved in generating tags using an automated algorithm. Section 4.3 has a working example of how tags can be generated by analyzing the text. We develop the toolkit to extract tags in chapter 8. An algorithm generates tags by parsing through text and detecting terms and phrases.

Machine-generated tags have the following characteristics:

- They use terms that are contained in the text, with the exception of injected synonyms.
- *They're usually single terms*—Multi-term phrases are more difficult to extract and are usually done using a set of predefined phrases. These predefined phrases can be built using either professional or user-generated tags.
- They can generate a lot of noisy tags—tags that can have multiple meanings based on the context, including polysemy² and homonyms.³—For example, the word gain can have a number of meanings—height gain, weight gain, stock price gain, capital gain, amplifier gain, and so on. Again, detecting multiple-term phrases, which are a lot more specific than single terms, can help solve this problem.

In the absence of user-generated and professionally generated tags, machine-generated tags are the only alternative. This is especially true for analyzing user-generated content.

Chances are that you'll be using tags for both dynamic navigation in your application and for representing metadata. The next section covers some tips on how to tag items that I've learned from my experience.

¹ This is commonly done using AJAX.

² A word that has multiple related meanings depending on the context.

³ A word that has multiple unrelated meanings depending on the context.

3.1.5 Tips on tagging

Here are a few guidelines for how to create tags:

- *If possible, build a tag dictionary for your product*—Further tags can be organized in a "is-a" hierarchy. While tagging, build a synonym dictionary—a set of tags that have the same meaning. Leverage this dictionary to extract phrases while analyzing content and inject synonyms automatically while parsing text (see chapter 8).
- Avoid tags that can have multiple meanings based on their context—For example, gain can have multiple meanings as discussed in the previous section. Use a more qualified phrase, such as weight gain or stock price gain.
- Don't use multiple tags to capture both singular and plurals, since the tags will be *stemmed*—Similarly, don't worry about capitalization—all tags will be converted to lowercase.
- Multi-term phrases are rarer in occurrence and therefore can give highly relevant matches—To detect multi-term phrases using an automated algorithm, you may need to use a phrase dictionary. This is discussed more in chapter 8.
- For a system that uses only professionally generated tags, the weight associated with each tag is related to the number of other tags used to describe the item and the inverse-document-frequency (idf) for the tag—Every additional tag can dilute the weight of the other tags for an item. Use adequate but only relevant tags for an item.
- You can use a combination of the three sources of tag generation.
- While tagging, build a synonym dictionary—a set of tags that have the same meaning.

So far we've looked at the three forms of tagging and some pointers on how to tag. You may wonder what motivates a user to tag information; we look at this next.

3.1.6 Why do users tag?

In its most basic form, people may tag things so as to organize items of interest and remember them. For example, if you have a large number of files on your computer, you normally create folders to organize your files. Tagging is similar—you create categories or buckets and associate them with the item of interest. An item can be tagged with multiple labels, as shown in figure 3.3, a screenshot from Amazon.com, where users are allowed to add multiple tags to an item. By tagging items, users can use tags that make sense to them and don't have to use the classification of the content owner or site.

Users also tag items so that they can share the information with others, find related items that others have tagged in the same category, and also when they want to be found by others (mainly in social-networking sites).

As shown in figure 3.3, let's assume that a user is interested in management and has placed a *management* tag for his items of interest. Over a period of time, if the user would like to see all items related to management, he can look at all items that have been tagged with management. Tags help users organize and find items of interest.

Figure 3.3 Amazon allows users to tag a product and see how others have tagged the same product.

Another feature that's actively used, especially for social networking applications, is allowing users to explore tags. In our example, any user would be able to click on the management link and see other items that have been tagged by other users with the same tag. This helps them discover new items of interest. User can also look at which users have used the same tag, thus helping them find other users with similar interests.

You can also find similar tags. The same item may have been tagged by others with different keywords. By following the links, you can associate similar tags. For example, in figure 3.3, the same item has been tagged as *social networks, sociology, management, marketing*, and so on. These four tags may be similar, especially if they're repeated consistently across multiple items.

So far, we've looked at what tags are and how they're generated. At the beginning of the section, we listed how tags can be used in your application. Next, we go through each use case in more detail.

3.2 How to leverage tags

It's useful to build metadata by analyzing the tags associated with an item and placed by a user. This metadata can then be used to find items and users of interest for the user. In addition to this, tagging can be useful to build dynamic navigation in your application, to target search, and to build folksonomies. In this section, we briefly review these three use cases.

3.2.1 Building dynamic navigation

In early applications, content would be categorized by professional authors. A user would navigate to the content by first selecting a category and then drilling down the category tree until the content was found. Tags provide an alternative to this rigid categorization, with a tag cloud as one manifestation of this dynamic navigation. Hyperlinks within content are another manifestation of this dynamic navigation. It's now fairly common for applications to hyperlink cities, phone numbers, and certain keywords as they display content on their sites. You must have seen this kind of hyperlinking, perhaps in your Yahoo! or Gmail email account.

As shown in figure 3.4, a tag cloud shows a list of tags, typically arranged alphabetically, with the font size representing the tag's frequency of use. The bigger the font in

Figure 3.4 Tag cloud from squidoo.com

a tag cloud, the more frequently it's used. Some tag clouds also use different font colors in their tag clouds.

Figure 3.5 shows the tag cloud of all-time most popular tags at Flickr. There are a number of interesting things that we can learn from this tag cloud. First, tags are not stemmed—plurals are treated as separate tags. For example, *animal* and *animals* are treated as separate tags, as are *flower* and *flowers*.

Note that the tag cloud here has only single-term tags—*new*, *york*, and *newyork* are three separate tags. The tag *San* could be a part of *San Diego*, *San Jose*, or *San Francisco*. Clearly, in this case, the content parsing isn't intelligent enough to extract the content in a way that makes sense.

All time most popular tags

OG africa amsterdam animal animals april architecture art august australia baby barcelona beach berlin birthday black blackandwhite blue boston bw California cameraphone camping canada canon car cat cats chicago china christmas church city clouds color concert day de dog england europe family festival film florida flower flowers food france friends fun garden geotagged germany girl graffiti green halloween hawaii hiking holiday home honeymoon hongkong house india ireland island italy japan july june kids lake landscape light live london losangeles macro may me mexico mountain mountains museum music nature new newyork newyorkeity newzealand night nikon NyC ocean paris park party people portrait red river roadtrip rock rome san sanfrancisco school scotland sea seattle september show Sky snow spain spring street Summer sun sunset sydney taiwan texas thailand tokyo toronto travel tree trees trip uk urban usa vacation vancouver washington Water Wedding white winter yellow york zoo Toward the center of the tag cloud, you'll see the tag *nyc*. Clearly, *nyc* is a synonym for *new york city*, but these two phrases are treated as separate tags. To properly leverage tags, we need to do the following:

- Stem tags to take care of plurals.
- Detect multi-term phrases.
- Handle synonym tags.

The process of stemming, detecting phrases, and injecting synonyms is illustrated in section 4.3, and the infrastructure for such an analysis is developed in chapter 8.

A tag cloud needs terms and their relative weights, and that's what's contained in a term vector! Whereas a term vector is one way to represent metadata, a tag cloud is a visual representation of the metadata associated with an item or a user.

A tag cloud can be created for each user using her metadata—her term vectors—whether that metadata is learned from the content or from a collaborativebased approach or a combination of the two. In essence, a tag cloud associated with a user or an item is dynamic—it's dependent on the tags that users have assigned to it or that the user has visited.

When a user clicks on a tag in a tag cloud, you have the context for the tag—the associated metadata —and this can be converted into a call to the recommendation engine, where you search for content that's related to the user and the tag of interest. We look at building a tag cloud in detail in section 3.4.

3.2.2 Innovative uses of tag clouds

At the beginning of the chapter, we mentioned the use of tags to create dynamic navigation. Every day, more and more personalized tag clouds are appearing in applications. The tags in these clouds are being generated in one or more of three ways: professional, automated, or user-generated. Figure 3.6 shows the basic strategy used. Use the set of contents associated with the user—visited, subscribed to, and so on as shown on the right side of the figure—to get a combined term vector and then display it to the user. Remember that a tag cloud in essence is a visualization of a term vector.

Here are a couple of other interesting examples of using tag clouds. John Herren provides a good example of how different APIs can be combined to build powerful applications. He built a prototype application, Yahoo! News Tag Soup (http://yahoo.theherrens.com/index.php), that combines Yahoo!'s content analysis web service with Yahoo! News feeds. The service extracts keywords from the news article,

using Yahoo!'s content analysis web service. He then uses that information to build a dynamic tag cloud. This idea was further developed to provide users with their own personal tag cloud at TagCloud.com (http://www.tagcloud.com/). At this site, users can register themselves, and based on the news feeds that they register for, a personal tag cloud is generated for each user.

ZoomCloud (http://zoomclouds.egrupos.net/) provides the capability to add a tag cloud to your application. You can create a tag cloud on the ZoomCloud site by feeding in an RSS feed. ZoomCloud provides a template to customize the look-and-feel of the cloud and code that you can embed in your site. The tag cloud is hosted on their site, and can be customized for your blog or application.

In the future, look for more personalized tag clouds that combine multiple sources of information.

3.2.3 Targeted search

In June 2005, in its quest to challenge Google's search engine, Yahoo! launched its new search technology called MyRank. Google's search engine, which holds 50–60 percent⁴ of the search market share, is based on the PageRank algorithm—the number of connections to a page, indicating the importance of the page. MyRank instead taps into the collective intelligence generated by a community of users. MyRank powers Yahoo!'s community, MyWeb 2.0. Users can save copies of web pages of interest in their personal cache and tag them. Search results for each user are dependent on the items saved and tagged by that user and his community of friends; results depend on the "quality" of a user's community and the pages they save and tag. Now let's look at the use of tags beyond MyRank.

Just like Google's page rank system looks at the number of links to a page as a metric to quantify the page's importance in its search engine, tags provide a similar metric. If an article is being tagged by many users using the same tag, it's probably very relevant to that topic and of interest to other users.

As shown in figure 3.7, you can combine the tag's context with the user's metadata as a query to the search engine to get relevant results for the user.

An example illustrates this approach well. Let's say that a tag *Spring* appears in a tag

cloud that's used for navigating books in the application. Further, the user's profile identifies her as a developer. Here, the context of the query is books, while the metadata associated with the user is from her profile—developer. Relevant results can be shown to the user when she clicks on the tag *Spring* by making the following query to the search engine: *Books Spring Developer*.

Figure 3.7 Using a tag, the context that it appears in, and user metadata to get relevant results from a search engine

⁴ Nelsen/Netratings gave the number as 59% for the month of May 2008: http://www.nielsen-netratings.com/ pr/pr_080619V.pdf.

3.2.4 Folksonomies and building a dictionary

User-generated tags provide an ad hoc way of classifying items, in a terminology that's relevant to the user. This process of classification, commonly known as *folksonomies*, enables users to retrieve information using terms that they're familiar with. There are no controlled vocabularies or professionally developed taxonomies.

The word *folksonomy* combines the words *folk* and *taxonomy*. Blogger Thomas Vander Wal is credited with coining the term.

Folksonomies allow users to find other users with similar interests. A user can reach new content by visiting other "similar" users and seeing what other content is available. Developing controlled taxonomies, as compared to folksonomies, can be expensive both in terms of time spent by the user using the rigid taxonomy, and in terms of the development costs to maintain it. Through the process of user tagging, users create their own classifications. This gives useful information about the user and the items being tagged.

The tags associated with your application define the set of terms that can be used to describe the user and the items. This in essence is the vocabulary for your application. Folksonomies are built from user-generated tags. Automated algorithms have a difficult time creating multi-term tags. When a dictionary of tags is available for your application, automated algorithms can use this dictionary to extract multi-term tags. Well-developed ontologies, such as in the life sciences, along with folksonomies are two of the ways to generate a dictionary of tags in an application.

Now that we've looked at how tags can be used in your application, let's take a more detailed look at user tagging.

3.3 Extracting intelligence from user tagging: an example

In this section, we illustrate the process of extracting intelligence from the process of user tagging. Based on how users have tagged items, we provide answers to the following three questions:

- Which items are related to another item?
- Which items might a user be interested in?
- Given a new item, which users will be interested in it?

To illustrate the concepts let us look at the following example. Let's assume we have two users: John and Jane, who've tagged three articles: Article1, Article2, and Article3, as follows:

- John has tagged Article1 with the tags apple, fruit, banana
- John has tagged Article2 with the tags orange, mango, fruit
- Jane has tagged Article3 with the tags cherry, orange, fruit

Our vocabulary for this example consists of six tags: *apple, fruit, banana, orange, mango,* and *cherry*. Next, we walk through the various steps involved in converting this information into intelligence. Lastly, we briefly review why users tag items.

Let the number of users who've tagged each of the items in the example be given by the data in table 3.1. Let each tag correspond to a dimension. In this example, each item is associated with a six-dimensional vector. For your application, you'll probably have thousands of unique tags. Note the last column, *normalizer*, shows the magnitude of the vector. The normalizer for Article1 is computed as $\sqrt{4^2+8^2+6^2+3^2} = 11.18$.

Table 3.1 Raw data used in the example

	apple	fruit	banana	orange	mango	cherry	normalizer
Article1	4	8	6	3			11.18
Article2		5		8	5		10.68
Article3	1	4		3		10	11.22

Next, we can scale the vectors so that their magnitude is equal to 1. Table 3.2 shows the normalized vectors for the three items—each of the terms is obtained by dividing the raw count by the normalizer. Note that the sum of the squares of each term after normalization will be equal to 1.

Table 3.2 Normalized vector for the items

	apple	fruit	banana	orange	mango	cherry
Article1	.3578	.7156	.5367	.2683		
Article2		.4682		.7491	0.4682	
Article3	.0891	.3563		.2673		.891

3.3.1 Items related to other items

Now we answer the first of our questions: which items are related to other items?

To find out how "similar" or relevant each of the items are, we take the dot product for each of the item's vector to obtain table 3.3. This in essence is an item-to-item recommendation engine.

To get the relevance between Article1 and Article2 we took the dot product:

```
(.7156 * .4682 + .2683 * .7491) = .536
```

According to this, Article2 is more relevant to Article1 than Article3.

	Article1	Article2	Article3
Article1	1	.5360	.3586
Article2	.5360	1	.3671
Article3	.3586	.3671	1

3.3.2 Items of interest for a user

This item-to-item list is the same for all users. What if you wanted to take into account the metadata associated with a user to tailor the list to his profile? Let's look at this next.

Based on how users tagged items, we can build a similar matrix for users, quantifying what items they're interested in as shown in table 3.4. Again, note the last column, which is the normalizer to convert the vector into a vector of magnitude 1.

	apple	fruit	banana	orange	mango	cherry	normalizer
John	1	2	1	1	1		2.83
Jane		1		1		1	1.73

Table 3.4 Raw data for users

The normalized metadata vectors for John and Jane are shown in table 3.5.

Table 3.5 The normalized metadata vector for the two users

	apple	fruit	banana	orange	mango	cherry
John	.3536	.7071	.3536	.3536	.3536	
Jane		.5773		.5773		.5773

Now we answer our second question: which items might a user be interested in?

To find out how relevant each of the items are to John and Jane, we take the dot product of their vectors. This is shown in table 3.6.

	Article1	Article2	Article3	
John	.917	.7616	.378	
Jane	.568	.703	.8744	Table betwo

Table 3.6Similarity matrixbetween users and items

As expected in our fictitious example, John is interested in Article1 and Article2, while Jane is most interested in Article3. Based on how the items have been tagged, she is also likely to be interested in Article2.

3.3.3 Relevant users for an item

Next, we answer the last question: given a new item, which users will be interested in it?

When a new item appears, the group of users who could be interested in that item can be obtained by computing the similarities in the metadata for the new item and the metadata for the set of candidate users. This relevance can be used to identify users who may be interested in the item.

In most practical applications, you'll have a large number of tags, items, and users. Next, let's look at how to build the infrastructure required to leverage tags in your application. We begin by developing the persistence architecture to represent tags and related information.

3.4 Scalable persistence architecture for tagging

Web 2.0 applications invite users to interact. This interaction leads to more data being available for analysis. It's important that you build your application for scale. You need a strong foundation to build features for representing metadata with tags, representing information in the form of tag clouds, and building metadata about users and items. In this section, we concentrate on developing the persistence model for tagging in your application. Again, the code for the database schemas is downloadable from the download site. This section draws from previous work done in the area of building the persistence architecture for tagging, but generalizes it to the three forms of tags and illustrates the concepts via examples.

In chapter 2, we had two main entities: user and item. Now we introduce two new entities: *tags* and *tagging source*. As shown in figure 3.8, all the tags are represented in the tags table, while the three sources of producing tags—professional, user, and automated—are represented in the tagging_source table.

The tags table has a unique index on the tag_text column: there can be only one row for a tag. Further, there may be additional columns to describe the tag, such as stemmed_text, which will help identify duplicate tags, and so forth.

Now let's look at developing the tables for a user tagging an item. There are a number of approaches to this. To illustrate the benefits of the proposed design, I'm going to show you three approaches, with each approach getting progressively better. The schema also gets progressively more normalized. If you're familiar with the principles of database design, you can go directly to section 3.4.2.

3.4.1 Reviewing other approaches

To understand some of the persistence schemas used for storing data related to user tagging, we use an example. Let's consider the problem of associating tags with URLs; here the URL is the item. In general, the URL can be any item of interest, perhaps a product, an article, a blog entry, or a photo of interest. MySQLicious, Scuttle, and Toxi are the three main approaches that we're using.

I've always found it helpful to have some sample data and represent it in the persistence design to better understand the design. For our example, let a user bookmark three URLs and assign them names and place tags, as shown in table 3.7.⁵

Table 3.6	Data used	for the	bookmarking	example
-----------	-----------	---------	-------------	---------

Uri	Name	Tags
http://nanovivid.com/projects/mysqlicious/	MySQLicious	Tagging schema denormalized
http://sourceforge.net/projects/scuttle/	Scuttle	Database binary schema
http://toxi.co.uk/	Тохі	Normalized database schema

MYSQLICIOUS

The first approach is the MySQLicious approach, which consists of a single denormalized table, mysqlicious, as shown in figure 3.9. The table consists of an autogenerated

⁵ The URLs are also reference to sites where you can find more information to the persistence architectures: MySQLicious, Scuttle, and Toxi.

primary key, with tags stored in a space-delimited manner. Figure 3.8 also shows the sample data for our example persisted in this schema. Note the duplication of *database* and *schema* tags in the rows. This approach also assumes that tags are single terms.

1441	mys id url name descripti tags create_da	int unsigned varchar(200 varchar(50) ion varchar(200 varchar(500 ste timestamp(1	(10))))0))) 9)	
	url	name	tags	
	http://nanovivid.com/projects/mysqlicious/	MySQLicious	tagging schema <u>denormalized</u>	Figure 3.9 The
[http://sourceforge.net/projects/scuttle/	Scuttle	database binary schema	MySQLicious schema
Ì	http://toxi.co.uk/	Toxi	normalized database schema	with sample data

Now, let's look at the SQL you'd have to write to get all the URLs that have been tagged with the tag *database*.

Select url from mysqlicious where tags like "%database%"

The query is simple to write, but "like" searches don't scale well. In addition, there's duplication of tag information. Try writing the query to get all the tags. This denormalized schema won't scale well.

TIP Avoid using space-delimited strings to persist multiple tags; you'll have to parse the string every time you need the individual tags and the schema won't scale. This doesn't lend well to stemming words, either.

Next, let's improve on this solution by looking at the second approach: the Scuttle approach.

SCUTTLE SOLUTION

The Scuttle solution uses two tables, one for the bookmark and the other for the tags, as shown in figure 3.10. As shown, each tag is stored in its own row.

The SQL to get the list of URLs that have been tagged with *database* is much more scalable than for the previous design and involves joining the two tables:

```
Select b.url from scuttle_bookmark b, scuttle_tags t where
    b.bookmark_id = t.bookmark_id and
    t.tag = 'database' group by b.url
```

The Scuttle solution is more normalized than MySQLicious, but note that tag data is still being duplicated.

Next, let's look at how we can further improve our design. Each bookmark can have multiple tags, and each tag can have multiple bookmarks. This many-to-many relationship is modeled by the next solution, known as Toxi.

1	http://nanovivid.com/projects/mysqlicious/	MySQLicious
2	http://sourceforge.net/projects/scuttle/	Scuttle
3	http://toxi.co.uk/	Toxi

[id	bookmank_id	tag
	1	1	tagging
[2	1	schema
[3	1	denormalized
[4	2	database
[5	2	binary
	6	2	schema
[7	3	Nom alized
[8	3	database
[9	3	schema

Figure 3.10 Scuttle representation with sample data

TOXI

The third approach that's been popularized on the internet is the Toxi solution. This solution uses three tables to represent the many-to-many relationship, as shown in figure 3.11. There's no longer duplication of data. Note that the toxi_bookmark table is the same as the scuttle_bookmark table.

So far in this section, we've shown three approaches to persisting tagging information. Each gets progressively more normalized and scalable, with Toxi being the closest to the recommended design. Next, we look at the recommended design, and also generalize the design for the three forms of tags: professionally generated, user-generated, and machine-generated.

Figure 3.11 The normalized Toxi solution with sample data

3.4.2 Recommended persistence architecture

The scalable architecture presented here is similar to the one presented at MySQL-Forge called *TagSchema*, and the one presented by Jay Pipes in his presentation "Tagging and Folksonomy Schema Design for Scalability and Performance." We generalize the design to handle the three kinds of tags and illustrate the design via an example.

Let's begin by looking at how to handle user-generated tags. We use an example to explain the schema and illustrate how commonly used queries can be formed for the schema.

SCHEMA FOR USER-GENERATED TAGS

Let's continue with the same example that we began with at the beginning of section 3.3.2. Let's add the user dimension to the example—there are users who are tagging items. We also generalize from bookmarks to items.

In our example, John and Jane are two users:

- John has tagged item1 with the tags tagging, schema, denormalized
- John has tagged item2 with the tags database, binary, schema
- Jane has tagged item3 with the tags normalized, database, schema

As shown in figure 3.12, there are three entities—user, item, and tags. Each is represented as a database table, and there is a fourth table, a mapping table, user_item_tag.

Let's look at how the design holds up to two of the common use cases that you may apply to your application:

- What other tags have been used by users who have at least one matching tag?
- What other items are tagged similarly to a given item?

As shown in figure 3.13 we need to break this into three queries:

- **1** First, find the set of tags used by a user, say John.
- 2 Find the set of users that have used one of these tags.
- **3** Find the set of tags that these users have used.

Let's write this query for John, whose user_id is 1. The query consists of three main parts.

First, let's write the query to get all of John's tags. For this, we have to inner-join tables user item tag and tags, and use the distinct qualifier to get unique tag IDs.

```
Select distinct t.tag_id, t.tag_text from tags t, user_item_tag uit where
    t.tag_id = uit.tag_id and uit.user_id = 1;
```

If you run this query, you'll get the set (tagging, schema, denormalized, database, binary).

Second, let's use this query to find the users who've used one of these tags, as shown in listing 3.1.

Listing 3.1 Query for users who have used one of John's tags

Note that the first query:

```
Select distinct t.tag_id, t.tag from tags t, user_item_tag uit where
    t.tag id = uit.tag id and uit.user id = 1
```

is a subquery in this query. The query selects the set of users and will return user_ids 1 and 2.

Third, the query to retrieve the tags that these users have used is shown in listing 3.2

```
Listing 3.2 The final query for getting all tags that other users have used
```

```
Select uit3.tag_id, t3.tag_id, count(*) from user_item_tag uit3, tags t3
whereuit3.tag_id = t3.tag_id and uit3.user_id
    in (Select distinct uit2.user_id from user_item_tag uit2, tags t2
where uit2.tag_id = t2.tag_id and
    uit2.tag_id in (Select distinct t.tag_id from tags t, user_item_tag uit
        where t.tag_id = uit.tag_id and uit.user_id = 1) )
    group by uit3.tag_id
```

Note that this query was built by using the query developed in listing 3.1. The query will result in six tags, which are shown in table 3.8, along with their frequencies.

Figure 3.13 Nesting queries to get the set of tags used

tag_id	tag_text	count(*)
1	tagging	1
2	schema	3
3	denormalized	1
4	database	2
5	binary	1
6	normalized	1

Now let's move on to the second question: what other items are tagged similarly to a given item? Let's find the other items that are similarly tagged to item1.

First, let's get the set of tags related to item1, which has an item_id of 1—this set is (*tagging, schema, normalized*):

```
Select uit.tag_id from user_item_tag uit, tags t where
    uit.tag_id = t.tag_id and
    uit.item id = 1
```

Next, let's get the list of items that have been tagged with any of these tags, along with the count of these tags:

```
Select uit2.item_id, count(*) from user_item_tag uit2 where
  uit2.tag_id in (Select uit.tag_id from user_item_tag uit, tags t where
    uit.tag_id = t.tag_id and uit.item_id = 1)
    group by uit2.item id
```

This will result in table 3.9, which shows the three items with the number of tags.

item_id	count(*)	Tags
1	3	tagging, schema, normalized
2	1	schema
3	1	schema

So far, we've looked at the normalized schema to represent a user, item, tags, and users tagging an item. We've shown how this schema holds for two commonly used queries. In chapter 12, we look at more advanced techniques—*recommendation engines*—to find related items using the way items have been tagged.

Next, let's generalize the design from user tagging to also include the other two ways of generating tags: professionally and machine-generated tags.

SCHEMA FOR PROFESSIONALLY AND MACHINE-GENERATED TAGS

We add a new table, item_tag, to capture the tags associated with an item by professional editors or by an automated algorithm, as shown in figure 3.14. Note that there's also a weight column—this table is in essence storing the metadata related with the item.

Finding tags and their associated weights for an item is simply with this query:

```
Select tag_id, weight from item_tag
where item_id = ? and
tagging source id = ?
```


Figure 3.14 Table to store the metadata associated with an item via tags

In this section, we've developed the schema for persisting tags in your application. Now, let's look at how we can apply tags to your application. We develop tag clouds as an instance of dynamic navigation, which we introduced in section 3.1.4.

3.5 Building tag clouds

In this section, we look at how you can build tag clouds in your application. We first extend the persistence design to support tag clouds. Next, we review the algorithm to display tag clouds and write some code to implement a tag cloud.

3.5.1 Persistence design for tag clouds

For building tag clouds, we need to get a list of tags and their relative weights. The relative weights of the terms are already captured in the *item_tag* table for professionally generated and machine-generated tags. For user tagging, we can get the relative weights and the list of tags for the tag cloud with this query:

```
Select t.tag, count(*) from user_item_tag uit, tags t where
  Uit.tag_id = t.tag_id group by t.tag
```

This results in table 3.10, which shows the six tags and their relative frequencies for the example in section 3.3.3.

The use of count (*) can have a negative effect on scalability. This can be eliminated by using a summary table. Further, you may want to get the count of tags based on different time windows. To do this, we add two more tables, tag_summary and days, as shown in figure 3.15. The tag_ summary table is updated on every insert in the user_ item_tag table.

The tag cloud data for any given day is given by the following:

Table	3.10	Data	for	the	tag
cloud	in our	exam	ple		

tag_text	count(*)
tagging	1
schema	3
denormalized	1
database	2
binary	1
normalized	1


```
select t.tag, ts.number from tags t, tag_summary ts where
    t.tag_id = ts.tag_id and
    ts.day = 'x'
```

To get the frequency over a range of days, you have to use the sum function in this design:

```
select t.tag, sum(ts.number) from tag tags t, tag_summary ts where
    t.tag_id = ts.tag_id and
    ts.day > 't1' and ts.day <'t2' group by t.tag</pre>
```

When a user clicks on a particular tag, we need to find out the list of items that have been tagged with the tag of interest. There are a number of approaches to showing results when a user clicks on a tag. The tag value could be used as an input to a search engine or recommendation engine, or we can query the userItemTag or the itemTag tables. The following query retrieves items from the userItemTag table:

```
select uit.item_id, count(*) from user_item_tag uit where
    uit.tag id = 'x' group by uit.item id
```

Similarly, for professional and automated algorithm generated tags we can write the query

select item_id from item_tag where tag_id = ? order by weight desc

Since we've developed the database query for building the tag cloud, let's next look at how we can build a tag cloud after we have access to a list of tags and their frequency.

3.5.2 Algorithm for building a tag cloud

There are five steps involved in building a tag cloud:

- 1 The first step in displaying a tag cloud is to get a list of tags and their frequencies—a list of <Tag name, frequency>.
- **2** Next, compute the minimum and maximum occurrence of each tag. Let's call these numberMin and numberMax.
- **3** Decide on the number of font sizes that you want to use; generally this number is between 3 and 20. Let's call this number numberDivisions.

4 Create the ranges for each font size. The formula for this is

```
For i = 1 to numberDivisions
rangeLow = numberMin + (i - 1) * (numberMax - numberMin) / numberDivisions
high = numberMin + i*( numberMax - numberMin) / numberDivisions
```

For example, if numberMin, numberMax, and numberDivisions are (20, 80, 3), the ranges are (20–40, 40–60, 60–80).

5 Use a CSS stylesheet for the fonts and iterate over all the items to display the tag cloud.

Though building a tag cloud is simple, it can be quite powerful in displaying the information. Kevin Hoffmann, in his paper "In Search of … The Perfect Tag Cloud," proposes a logarithmic function—take the log of the frequency and create the buckets for the font size based on their log value—to distribute the font size in a tag cloud.

In my experience, when the weights for the tags have been normalized (when the sum of squared values is equal to one), the linear scaling works fairly well, unless the min or the max values are too skewed from the other values.

Implementing a tag cloud is straightforward. It's now time to roll up our sleeves and write some code, which you can use in your application to implement a tag cloud and visualize it.

3.5.3 Implementing a tag cloud

Figure 3.16 shows the class diagram for implementing a tag cloud. We also use this code later on in chapter 8. We use the Strategy⁶ design pattern to factor out the scaling algorithm used to compute the font size. It's also helpful to define interfaces TagCloud and TagCloudElement, as there can be different implementations for them.

The remaining part of this section gets into the details of implementing the code related to developing a tag cloud. Figure 3.16 shows the classes that we develop in this section.

⁶ Gang of Four—Strategy pattern

TAGCLOUD

First, let's begin with the TagCloud interface, which is shown in listing 3.3.

```
Listing 3.3 The TagCloud interface
package com.alag.ci.tagcloud;
import java.util.List;
public interface TagCloud {
    public List<TagCloudElement> getTagCloudElements();
}
```

This is simple enough, and has one method to get the List of TagCloudElements. **TAGCLOUDELEMENT**

The TagCloudElement interface corresponds to a tag and contains methods to get the tag text, the tag weight, and the computed font size. This is shown in listing 3.4.

```
Listing 3.4 The TagCloudElement interface
package com.alag.ci.tagcloud;
public interface TagCloudElement extends Comparable<TagCloudElement> {
    public String getTagText();
    public double getWeight();
    public String getFontSize();
    public void setFontSize(String fontSize);
}
Extends Comparable to sort entries

Double to represent
relative weight
```

The TagCloudElement interface extends the Comparable interface, which allows Tag-Cloud to return these elements in a sorted manner. I've used a String for the font size, as the computed value may correspond to a style sheet entry in your JSP. Also a double is used for the getWeight() method.

FONTSIZECOMPUTATIONSTRATEGY

The FontSizeComputationStrategy interface has only one method, as shown in listing 3.5.

Listing J.J The Fonchizecomputation building with the fonchize computation building the fonchize computation	Listir	ng 3.5	The FontSi	zeComputat	ionStrategy	[,] interface
--	--------	--------	------------	------------	-------------	------------------------

package com.alag.ci.tagcloud;

```
import java.util.List;
```

```
public interface FontSizeComputationStrategy {
    public void computeFontSize(List<TagCloudElement> elements);
}
```

The method

void computeFontSize(List<TagCloudElement> elements);

computes the font size for a given List of TagCloudElements.

TAGCLOUDIMPL

TagCloudImpl implements the TagCloud and is fairly simple, as shown in listing 3.6.

It has a list of TagCloudElements and delegates the task of computing the font size to FontSizeComputationStrategy, which is passed in its constructor. It also sorts the List<TagCloudElement> elements alphabetically.

TAGCLOUDELEMENTIMPL

TagCloudElementImpl is shown in listing 3.7.

TagCloudElementImpl is a pure bean object that implements the Comparable interface for alphabetical sorting of tag texts as shown in listing 3.7.

FONTSIZECOMPUTATIONSTRATEGYIMPL

The implementation for the base class FontSizeComputationStrategyImpl is more interesting and is shown in listing 3.8.

www.allitebooks.com

```
Listing 3.8 Implementation of FontSizeComputationStrategyImpl
package com.alag.ci.tagcloud.impl;
import java.util.List;
import com.alaq.ci.tagcloud.*;
public abstract class FontSizeComputationStrategyImpl implements
      FontSizeComputationStrategy {
  private static final double PRECISION = 0.00001;
                                                         \triangleleft
                                                              Used to check
  private Integer numSizes = null;
                                                              equality of doubles
   private String prefix = null;
   public FontSizeComputationStrategyImpl(int numSizes, String prefix) {
      this.numSizes = numSizes;
      this.prefix = prefix;
   }
   public int getNumSizes() {
      return this.numSizes;
   public String getPrefix() {
      return this.prefix;
   public void computeFontSize(List<TagCloudElement> elements) {
      if (elements.size() > 0) {
         Double minCount = null;
         Double maxCount = null;
         for (TagCloudElement tce: elements) {
                                                                  Compute min
            double n = tce.getWeight();
                                                                  and max count
            if ( (minCount == null) || (minCount > n)) {
                                                            <1-
               minCount = n;
            }
            if ((maxCount == null) || (maxCount < n)) {
               maxCount = n;
            }
                                                            Scale the
         }
                                                            counts
         double maxScaled = scaleCount(maxCount);
         double minscaled = scaleCount(minCount);
         double diff = (maxScaled - minscaled) / (double) this.numSizes;
         for (TagCloudElement tce: elements) {
                                                         < -
            int index = (int)
             Math.floor((scaleCount(tce.getWeight()) - minscaled)/diff);
            if (Math.abs(tce.getWeight() - maxCount) < PRECISION) {</pre>
               index = this.numSizes - 1;
            ļ
                                                                         Compute
            tce.setFontSize(this.prefix + index);
                                                                      appropriate
                                                                       font bucket
         }
      }
   protected abstract double scaleCount(double count) ;
                                                                   Abstract forces
}
                                                                   inheriting classes
                                                                   to implement
```

This takes in the number of font sizes to be used and the prefix to be set for the font. In your application, there might be an enumeration of fonts and you may want to use Enum for the different fonts. I've made the class abstract to force the inheriting classes to overwrite the scaleCount method, as shown in figure 3.16.

The method computeFontSize first gets the minimum and the maximum and then computes the bucket for the font size using the following:

```
for (TagCloudElement tce: elements) {
    int index = (int) Math.floor((scaleCount(tce.getWeight()) -
        minscaled)/diff);
    if (Math.abs(tce.getWeight() - maxCount) < PRECISION) {
        index = this.numSizes - 1;
    }
    tce.setFontSize(this.prefix + index);
}</pre>
```

To understand the formula used to calculate the font index, let, *x* be the scaled value of the number of times a tag appears then that tag falls in bin *n*, where

$$n = \frac{(x - \min \text{ scaled})}{(\max \text{ scaled} - \min \text{ scaled})} num Sizes$$

}

Note that when *x* is the same as *maxscaled*, *n* is *numSizes*. This is why there's a check for *maxCount*:

```
if (tce.getWeight() == maxCount) {
```

This implementation is more efficient than creating an array with the ranges for each of the bins and looping through the elements.

EXTENDING FONTSIZECOMPUTATIONSTRATEGYIMPL

Lastly, the two classes extending FontSizeComputationStrategyImpl simply need to implement the scaleCount method and have a constructor that calls super, as shown in figure 3.17.

First, let's look at the implementation of LinearFontSizeComputationStrategy, which simply overrides the scaleCount method:


```
protected double scaleCount(double count) {
   return count;
}
```

Similarly, LogFontSizeComputationStrategy implements the same method as the following:

```
protected double scaleCount(double count) {
    return Math.log10(count);
}
```

You can implement your own variant of the FontSizeComputationStrategy by simply overwriting the scaleCount method. Some other strategies that you may want to consider are using clustering (see chapter 9) or assigning the same number of items (or nearly the same) for each of the font sizes. For this, sort the items by weight and assign the items to the appropriate bins.

Now that we've implemented a tag cloud, we need a way to visualize it. Next, we develop a simple class to generate HTML to display the tag cloud.

3.5.4 Visualizing a tag cloud

We use the Decorator design pattern, as shown in figure 3.18, to define an interface VisualizeTagCloudDecorator. It takes in a TagCloud and generates a String representation.

The code for VisualizeTagCloudDecorator is shown in listing 3.9.

Listing 3.9 VisualizeTagCloudDecorator interface

```
package com.alag.ci.tagcloud;
```

```
public interface VisualizeTagCloudDecorator {
    public String decorateTagCloud(TagCloud tagCloud);
}
```

There's only one method to create a String representation of the TagCloud:

```
public String decorateTagCloud(TagCloud tagCloud);
```

Let's write a concrete implementation of HTMLTagCloudDecorator, which is shown in listing 3.10.

```
Listing 3.10 Implementation of HTMLTagCloudDecorator
package com.alag.ci.tagcloud.impl;
import java.io.StringWriter;
import java.util.*;
import com.alaq.ci.taqcloud.*;
public class HTMLTagCloudDecorator implements VisualizeTagCloudDecorator {
  private static final String HEADER HTML =
      "<html><br><head><br><title>TaqCloud <br></title>chr></head>";
  private static final int NUM TAGS IN LINE = 10;
  private Map<String, String> fontMap = null;
  public HTMLTaqCloudDecorator() {
     getFontMap();
                                                         Get mapping
                                                         from font-bin
   }
                                                         or XML file
  private void getFontMap() {
     this.fontMap = new HashMap<String,String>();
     fontMap.put("font-size: 0", "font-size: 13px");
     fontMap.put("font-size: 1", "font-size: 20px");
     fontMap.put("font-size: 2", "font-size: 24px");
   }
                                                               Generates
                                                               HTML file
  public String decorateTagCloud(TagCloud tagCloud) {
     StringWriter sw = new StringWriter();
     List<TaqCloudElement> elements = taqCloud.getTaqCloudElements();
     sw.append(HEADER HTML);
     sw.append("<br><body><h3>TagCloud (" + elements.size() +")</h3>");
     int count = 0;
     for (TagCloudElement tce : elements) {
        sw.append(" <a style=\""+</pre>
         fontMap.get(tce.getFontSize())+";\">");
        sw.append(tce.getTagText() +"</a>&nbsp;");
        if (count++ == NUM TAGS IN LINE) {
           count = 0;
           sw.append("<br>");
      }
     sw.append("<br></body><br></html>");
     return sw.toString();
   }
}
```

Here, the title of the generated page is hard-coded to TagCloud:

```
private static final String HEADER_HTML =
    "<html><br><head><br><title>TagCloud <br></title><br></head>";
```

The method getFontMap() simply creates a Map of font strings that will be used:

```
private void getFontMap() {
   this.fontMap = new HashMap<String,String>();
   fontMap.put("font-size: 0", "font-size: 13px");
   //... other font mapping
}
```

For your application, you'll probably read this mapping from an XML file or from the database.

The rest of the code generates the HTML for displaying the tag cloud:

```
for (TagCloudElement tce : elements) {
   sw.append(" <a style=\""+
     fontMap.get(tce.getFontSize())+";\">");
   sw.append(tce.getTagText() +"</a>&nbsp;");
   if (count++ == NUM_TAGS_IN_LINE) {
     count = 0;
     sw.append("<br>>");
   }
}
```

A simple test program is shown in listing 3.11. The asserts have been removed to make it easier to read. This code creates a TagCloud and creates an HTML file to display it.

```
Listing 3.11 Sample code for generating tag clouds
package com.alag.ci.tagcloud.test;
import java.io.*;
import java.util.*;
import com.alag.ci.tagcloud.*;
import com.alaq.ci.tagcloud.impl.*;
import junit.framework.TestCase;
public class TagCloudTest extends TestCase {
  public void testTagCloud() throws Exception {
     String firstString = "binary";
     int numSizes = 3;
     String fontPrefix = "font-size: ";
     List<TagCloudElement> 1 = new ArrayList<TagCloudElement>();
     l.add(new TagCloudElementImpl("tagging",1));
     l.add(new TagCloudElementImpl("schema",3));
     l.add(new TagCloudElementImpl("denormalized",1));
     l.add(new TagCloudElementImpl("database",2));
     l.add(new TagCloudElementImpl(firstString,1));
     l.add(new TagCloudElementImpl("normalized",1));
     FontSizeComputationStrategy strategy =
        new LinearFontSizeComputationStrateqy(numSizes,fontPrefix);
     TagCloud cloudLinear = new TagCloudImpl(l,strategy);
     System.out.println(cloudLinear);
     strategy = new LogFontSizeComputationStrategy(numSizes, fontPrefix);
     TagCloud cloudLog = new TagCloudImpl(1, strategy);
     System.out.println(cloudLog);
     //write to file
     String fileName = "testTagCloudChap3.html";
     writeToFile(fileName,cloudLinear);
  private static void writeToFile(String fileName, TagCloud cloud)
```

```
throws IOException {
   BufferedWriter out = new BufferedWriter(
        new FileWriter(fileName));
   VisualizeTagCloudDecorator decorator = new HTMLTagCloudDecorator();
   out.write(decorator.decorateTagCloud(cloud));
   out.close();
  }
}
```

A TagCloud is created by the following code:

```
List<TagCloudElement> l = new ArrayList<TagCloudElement>();
l.add(new TagCloudElementImpl("tagging",1));
....
FontSizeComputationStrategy strategy =
    new LinearFontSizeComputationStrategy(numSizes,fontPrefix);
TagCloud cloudLinear = new TagCloudImpl(l,strategy);
```

The method writeToFile simply writes the generated HTML to a specified file:

Figure 3.19 shows the tag cloud developed for our example.⁷ Note that *schema* has the biggest font, followed by *database*.

In this section, we developed code to implement and visualize a tag cloud. Next, let's look at a few interesting topics related to tags that you may run into in your application.

3.6 Finding similar tags

As of February 2007, 35 percent⁸ of all posts tracked by Technorati used tags. As of October 2006, Technorati was tracking 10.4 million tags. There were about half a million unique tags in del.icio.us, as of October 2005, with each item averaging about two tags. Given the large number of tags, a good question is how to find tags that are related to each other—tags that are synonymous or that show a parent-child relationship. Building this manually is too expensive and nonscalable for most applications.

A simple approach to finding similar tags is to stem—convert the word into its root form—to take care of differences in tags due to plurals after removing *stop*

⁷ Both the linear and logarithmic functions gave the same font sizes for this simple example when three font sizes were used, but they were different when five were used.

⁸ http://technorati.com/weblog/2007/04/328.html

words—commonly occurring words. Having a synonym dictionary also helps keep track of tags that are similar. When dealing with multi-term phrases, two tags could be similar but may have their terms in different positions. For example, *weight gain* and *gain weight* are similar tags.

Another approach is to analyze the co-occurrences of tags. Table 3.11 shows data that can be used for this analysis. Here, the rows correspond to tags and the columns are the items in your system. There's a 1 if an item has been tagged with that tag. Note the similarity to the table we looked at in section 2.4. You can use the correlation similarity computation to find correlated tags. Matrix dimensionality reduction using *Latent Semantic Indexing (LSI)* is also used (see section 12.3.3). LSI has been used to solve the problems of synonymy and polysemy.

	Item 1	Item 2	Item 3
Tag1	1		
Tag2		1	1
Tag3	1		1

Table 3.11 Bookmarking data for analysis

When finding items relevant to a tag, don't forget to first find a similar set of tags to the tag of interest and then find items related to the tag by querying the item_tag table.

3.7 Summary

Tagging is the process of adding freeform text, either words or small phrases, to items. These keywords or labels can be attached to anything—another user, photos, articles, bookmarks, products, blog entries, podcasts, videos, and more. Tagging enables users to associate freeform text with an item, in a way that makes sense to them, rather than using a fixed terminology that may have been developed by the content owner.

There are three ways to generate tags: have professional editors create tags, allow users to tag items, or have an automated algorithm generate tags. Tags serve as a common vocabulary to associate metadata with users and items. This metadata can be used for personalization and for targeting search to a user.

User-centric applications no longer rigidly categorize items. They offer dynamic navigation, which is built from tags to their users. A tag cloud is one example of dynamic navigation. It visually represents the term vector—tags and their relative weights. We looked at how tags can be persisted in your application and how you can build a tag cloud.

In the next chapter, we look at the different kinds of content that are used in application and how they can be abstracted from an analysis point of view. We also demonstrate the process of generating a term vector from text using a simple example.

3.8 Resources

"All of Web2.0." Chrisekblog, http://chrisek.com/wordpress/2006/10/03/all-of-web-20/ "Building a tag cloud in Java." http://randomcoder.com/articles/building-a-tag-cloud-in-java "Everything Web2.0." Matt's blog. http://yahoolog.com/blog/?p=94

- Freitag,Pete. "How to make a tag cloud." http://www.petefreitag.com/item/396.cfm
- Gamma, Eric, et. al. Design Patterns Elements of Reusable Object-Oriented Software. 1995, Addison-Wesley Professional.
- Green,Heather. "A Tag Team's Novel Net Navigation." *BusinessWeek*. February 28, 1995. http://www.businessweek.com/technology/content/feb2005/tc20050228_6395_tc024.htm?chan=search

Grossman, Frieder. Information Retrieval: Algorithms and Heuristics. 2006. Springer.

Hoffman, Kevin. "In Search of a Perfect Tag Cloud." http://files.blog-city.com/files/J05/ 88284/b/insearchofperfecttagcloud.pdf

"Homonyms." wikipedia.org, http://en.wikipedia.org/wiki/Homonyms

- Keller, Philipp. "Tags Database Schema." http://www.pui.ch/phred/archives/2005/04/ tags-database-schemas.html
- Konchady, Manu. "Text Mining Application Programming." 2006. Thomson Delmar Learning.
- Kopelman, Josh. "53,651." May 2006. http://redeye.firstround.com/2006/05/53651.html

MySQLicious. http://nanovivid.com/projects/mysqlicious/

- "Nielsen Net Ratings Announces February U.S Search Share Rankings." January, 2008. http://www.nielsen-netratings.com/pr/pr_080118.pdf
- Pipes, Jay. "Tagging and Folksonomy Schema Design for Scalability and Performance." MySQL Inc.
- "Polysemy." wikipedia.org, http://en.wikipedia.org/wiki/Polysemy
- Scuttle. http://sourceforge.net/projects/scuttle/
- Sinha,Rashmi. "A social analysis of tagging (or how tagging transforms the solitary browsing experience into a social one)." January 18, 2006. http://www.rashmisinha.com/archives/06_01/social-tagging.html
- "Tag Schema." MySQL Inc. http://forge.mysql.com/wiki/TagSchema# Tagging_and_Folksonomy_Schema_Concepts
- "Tagcloud examples." http://microformats.org/wiki/tagcloud-examples
- Toxi. http://toxi.co.uk/
- "Zoom Clouds." http://zoomclouds.egrupos.net/
Extracting intelligence from content

This chapter covers

- Architecture for integrating various types of content
- A more detailed look at blogs, wikis, and message boards
- A working example of extracting intelligence from unstructured text
- Extracting intelligence from different types of content

Content as used in this chapter is any item that has text associated with it. This text can be in the form of a title and a body as in the case of articles, keywords associated with a classification term, questions and answers on message boards, or a simple title associated with a photo or video. Content can be developed either professionally by the site provider or by users (commonly known as *user-generated content*), or be harvested from external sites via web crawling.¹

Content is the fundamental building block for developing applications. This chapter provides background on integrating and analyzing content in your application.

¹ Web crawling is covered in chapter 6.

It'll be helpful to go through the example developed in section 4.3, which illustrates how intelligence can be extracted from analyzing content.

In this chapter, we take a deeper look into the many types of content, and how they can be integrated into your application for extracting intelligence. A book on collective intelligence wouldn't be complete without a detailed discussion of content types that get associated with collective intelligence and involve user interaction: blogs, wikis, groups, and message boards. Next, we use an example to demonstrate step by step how intelligence can be extracted from content. Having learned the similarities among these content types, we create an abstraction model for analyzing the content types for extracting intelligence.

4.1 Content types and integration

Classifying content into different content types and mapping each content type into an abstraction (see section 4.4) allows us to build a common infrastructure for handling various kinds of content.

In this section, we look at the many forms of content in an application and the various forms of integration that you may come across to integrate these content types.

4.1.1 Classifying content

Table 4.1 shows some of the content types that are used in applications along with the way they're typically created. Chances are that you're already familiar with most of the content types.

Content type	Description	Source
Articles	Text on a particular topic. Has a title, body, and, optionally, subtitles.	Professionally created, user-gen- erated, news feeds, aggregated from other sites
Products	An item being sold on your site. Typically has title, description, keywords, reviews, ratings, other attributes such as price, manufacturer, and availability in particular geographic location.	Created by the site, user-gener- ated in a marketplace like eBay, linking to partner sources
Classification terms	Ad hoc terms, such as <i>collective intelligence</i> with keywords or tags associated with them. Created for user navigation.	Professionally created, machine- generated; user tagging is also an instance of this
Blogs	Online personal journals where you write about things you want to share with others; others can comment on your entries and link to your site.	Site management, company employees, user-generated
Wikis	Online collaboration tool where users can very easily edit, add, or delete web pages.	Mainly user-generated
Groups and message boards	Places where you can place questions and oth- ers can respond to them, as well as rate them for usefulness. Mainly in the form of questions and answers.	Mainly user-generated, expert answers may be provided by experts working for the site

Table 4.1 The different content types

Content type	Description	Source
Photos and video	Rich media in the form of photos and videos.	Professionally created, user-generated
Polls	Questions asked of a user, with the response being one of a handful of options.	Professionally or user-generated
Search terms	Search queries by user. Similar to dynamic classification.	User-generated
Profile pages	Profile page for a user. Typically, created by the user listing preferences and information about the user.	User-generated
Tools and worksheets	Tools and worksheets that may be available at the site.	Professionally created
Chat logs	Transcripts of online chats.	Expert talking to users, users talking to users
Reviews	Reviews about an item, which could be any of the other content types.	Professionally or user-generated
Classifieds	Advertisements with a title and a body. Option- ally, may have keywords associated with it.	Professionally or user-generated
Lists	List of items—any of the other content types—combined together.	Professionally or user-generated

Table 4.1 The different content types (continued)

You're probably familiar with articles and products. We talked about classification terms in section 3.2.1 and their use for dynamic navigation links. Classification terms are any ad hoc terms that may be created; they're similar to topic headers. An example best illustrates them.

Let's say that one of the features in your application is focused on providing relevant news items. You know that global warming is an important area of interest to your users. So you create the classification term *global warming* and assign it appropriate tags or keywords. Then the process of finding relevant content for this term for a user can be treated as a classification problem—using the user's profile and the keywords assigned to the term, find other items that the user will be interested in. The other content types could be news articles, blog entries, information from message boards and chat logs, videos, and so on.

Another manifestation of classification terms is when information is extracted from a collection of content items to create relevant keywords. In the previous example, rather than assigning tags or keywords to the term *global warming*, you'd take a set of items that you think best represents the topic and let an automated algorithm extract tags from the set of articles. In essence, you'll get items that are similar to the set of learning items.

In section 4.2, we take a more detailed look at three content types that are normally associated with collective intelligence: blogs, wikis, and groups and message boards. All three of these involve user-generated content. The remaining content types are fairly straightforward.

So far we've looked at some of the different kinds of content that you may use in your application. We need to integrate these content types into our intelligence learning services that we talked about in section 2.1.

4.1.2 Architecture for integrating content

At the beginning of chapter 2, we looked at the architecture for integrating intelligence into your application. Let's extend it for integrating content into your application. Based on your business requirements and existing infrastructure, you'll face one of the following three ways to integrate content into your application:

- **1** Use standalone, freely available open source or commercial software within your firewall, hosted as a separate instance.
- **2** Rebuild the basic functionality within your application.
- 3 Integrate data from an externally hosted site.

This section covers how each of these cases can be integrated into your application to extract data. There are two forms of information that we're interested in:

- The user interaction with the content. This could be in the form of authoring the content, rating it, reading it, bookmarking it, sharing it with others, and so on.
- The actual content itself. We need it to index it in our search engine and extract metadata from it.

Let's look at the first case, in which the functionality is available in a server hosted within your firewall but as a separate instance.

INTERNALLY HOSTED SEPARATE INSTANCE

Figure 4.1 shows the architecture for integrating content from separate servers hosted within your firewall. Here, the application server could either make REST calls to the other server or redirect the HTTP request to the external server. Since all calls go through the application server, both user interaction information and the content when edited can be persisted to the database for use by the intelligence learning services.

Figure 4.1 Architecture for integrating internally hosted separate instances server

INTEGRATED INTO THE APPLICATION

The second case is when the basic functionality for the feature—for example, blogs—is built within the web app of your application server. You may choose this approach to integrate this functionality into your application when you need a lot more control over the look-and-feel than hosting it as a separate instance. In this case, the architecture for learning is the same as we covered in section 2.1.

EXTERNALLY HOSTED

Many times you may have a relationship with an external vendor to outsource certain features of your application, or need to integrate content from another partner. The simplest way to integrate is to provide a link to the externally hosted server. In essence, as users click on the link, they're transferred to the other site—your application loses the user. There's no information available to your application, unless the external site posts you that information, as to what the user did on the site. If you want to learn from what users did at the external site, you'll need their user-interaction information and the text for the content.

Another challenge is coordinating sessions. The user's session shouldn't time out in your application as she interacts on the other site. Managing single-signons and receiving data are some of the technical challenges that you'll face in this approach. Though this is probably the easiest approach to add new functionality, it's the least user friendly and least desirable approach from an intelligence point of view.

So far, we've classified content into different content types and looked at three ways of integrating them in your application. Next, let's take a more detailed look at a few of the content types that are associated with collective intelligence.

4.2 The main CI-related content types

In this section, we look at three content types that are typically associated with collective intelligence: blogs, wikis, and groups and message boards. All these content types are user generated, and users through their opinions and contributions with these content types shape the thoughts of others.

User-generated content plays an important part in influencing others—here's an example of how they affected me last year. Last summer, my printer stopped working after I'd changed the cartridge. After reinstalling the cartridge a few times and trying to print, I gave up. On searching the web, I found an online community where others had written in detail about similar problems with the same brand of printer. Evidently, there was a problem with the way the printing head was designed that caused it to fail occasionally while changing cartridges. Going through the postings, I found that initially a number of users had expressed their frustration at the failure of the printer, promising never to buy again from the vendor. After a few initial postings, I found that someone had left information about how to contact the customer support department for the vendor. The manufacturer was shipping an upgraded version of the printer to anyone who had experienced the problem. The recent postings tended to have a positive tone, as the users got a brand-new printer from the manufacturer. The next morning, I called the manufacturer's customer support number and had a new printer in a few days.

For each of these three content types, we describe what they are and how they are used, and model the various elements and develop the persistence schema. We use blogs as an example to illustrate the process of extracting intelligence from content in the second and third part of the book. It's therefore helpful to understand the structure of a blog in detail.

4.2.1 Blogs

Blogs, short for *weblogs*, are online personal journals where you write about things you want to share with others; others can comment on your entries and link to your site. Blogs typically are written in a diary style and contain links to other websites. There are blogs on virtually every topic; a blog may cover a range of topics from the personal to the political, or focus on one narrow subject.

USE OF BLOGS

As a part of writing this book, I went through numerous blogs. There were blogs on almost every topic covered in this book, as you can see from the references in the various chapters. The popularity of blogs can be measured by both the number of blogs in the blogosphere and the references to blogs that people cite in publications.

Blogs appear in three different contexts:

- 1 *In a corporate website*—Corporations use blogs to connect with their shareholders, customers, staff, and others. Blogs can be used to solicit feedback on important decisions and policies. Blogs also serve as a good forum for conveying the rationale for certain decisions or policies and for getting feedback on product features that you're developing. An internal blog within the company may be a good medium for groups to collaborate together, especially if they're geographically dispersed. Similarly, consultants often develop their brands and reputations with their blogs.
- 2 Within your application—Applications can leverage blogs both internally and externally by providing contextually relevant information. Allowing users to blog within your application generates additional content that can be viewed by others. User-generated content and blogging in particular can help improve the visibility of your application and boost your search index ranking. If your blog is widely followed, with a number of people linking to it, it'll show up higher in search engine results. Furthermore, if your application or corporate website is linked to your blog, its ranking will be boosted further, since it's connected to a highly linked page.
- **3** All other blogs in the blogosphere—Other blogs in the blogosphere can have an impact on your brand. A favorable blog entry by an influential person can create a buzz around your product, while a negative reference could spell doom for the product.

So far we've looked at what blogs are and how they're used. If you're thinking of building blogs in your application, it's useful to look at the various elements of a blog. Reviewing the class diagram to model blogs and a typical persistence schema for blogs should help you understand the basic elements. This information will also be useful in the next chapter, where we look at searching the blogosphere. We review these next.

MODELING THE ELEMENTS OF BLOG

As shown in figure 4.2, a Blog consists of a number of blog entries such as BlogEntry—a BlogEntry is fully contained in a Blog. Associated with a BlogEntry are comments made by others, represented as a List of BlogEntryComments. The BlogEntry may

Figure 4.2 Class model for representing a blog for a user

have been tagged by the author; this is contained in BlogEntryTag. References by other blogs are contained in a List of ReferenceWeblogs.

Using the class diagram, we can build a corresponding persistence schema for blogs using five tables, as described in table 4.2.

Table	Description
blog	Represents the blogs for the various users.
blog entry	Each blog entry is represented as a row. If you allow users to modify their blogs and want to keep a history of changes then you need to keep a version ID. The version id is incremented after every modification to the blog-entry.
blog entry history	This is a history table that's updated via a trigger whenever there's a modifi- cation to the BlogEntry table. The primary key for this table is blog entry id, version id.
reference-weblog	Stores the list of blogs referencing the blog entry.
blog Entry comment	This stores the list of comments associated with the blog entry.

Table 4.2 Description of the tables used for persistence

Figure 4.3 shows the persistence schema for a blog. There are a few things to note about the schema design. If you want to keep a history of modifications made by users in their blog entries, you need to have a version_id associated with every blog entry. This gets updated after every modification. There's a corresponding history table blog_entry_history that can be populated via a database trigger.

Using the class diagram and the persistence schema, you should have a good understanding of elements of a blog, blog entries, blog comments, and reference

Figure 4.3 Persistence schema for blogs

weblogs. This information is also useful in the next chapter, which deals with searching the blogosphere. Next, we briefly look at the second content type that is associated with collective intelligence: wikis.

4.2.2 Wikis

In May 2006, Meebo (www.meebo.com) was getting requests for Spanish-language translations of its application. Meebo is a startup company that uses AJAX to build a browser-based application that can connect to multiple instant messengers in one location. Meebo set up a wiki and allowed their users to submit translations in different languages. Last I checked, there were more than 90 different languages that users were contributing to.

Wikipedia, with more than five million articles in 229 languages, is probably the poster child of how wikis can be used to develop new applications. Wikipedia is cited by Alexa as one of the top 20 visited sites and is widely cited. If you're interested in a topic and search for it, chances are that a Wikipedia article will show up in the first

few listings—the breadth of topics, number of articles, and the large number of external sites (blogs, articles, publications) linking to its articles boost the ranking of Wikipedia pages.

Wikis are good for online collaboration, since users can easily edit, add, or delete web pages. All changes are stored in the database. Each modification can be reviewed and information can be reverted back if required. The wiki style of development promotes consensus or democratic views on a topic.

We briefly review how wikis are used. Model the elements of a wiki and develop its persistence model to understand a wiki's core components.

USE OF WIKIS

Nowadays, almost all software projects use a wiki as a collaboration tool for documenting and developing software. There are a number of open source wiki implementations, so the cost associated with having a wiki is low. Table 4.3 list some of the ways that wikis are used.

Use	Description
Online collaboration	They're good for online collaborations between groups. Each person can con- tribute her thoughts and the information is accessible to anyone with access to the wiki.
Harnessing user contri- butions—crowd sourcing	Wikis are good at involving your users to develop your product. You may want to start a wiki in your application, perhaps to develop an FAQ, an installation guide, help section, or anything where the collective power of user contribu- tions can be leveraged. Users get a sense of ownership and cover a wide range of use cases that would otherwise be too difficult or expensive to build.
Boosting search engine ranking	As with all user-generated content, wiki content, especially if it's extensively linked, can help improve the search rank visibility of your application.
Knowledge repository	How many times have you been working on a project and someone starts an email chain discussing an issue? As the email chain gets longer and longer, it's more and more difficult and time consuming to keep up with it. This infor- mation is also available to only those who participate in the email chain. The barrage of emails can also slow productivity for those who don't want to actively participate in the discussion. Wikis offer an excellent alternative. Unlike email, Wiki content is available for anyone and can be searched and retrieved easily.

There are literally hundreds of Wiki software programs available in dozens of languages (see http://c2.com/cgi/wiki?WikiEngines). Wikipedia has a good comparison between the features of the top WikiEngines at http://en.wikipedia.org/wiki/

Comparison_of_wiki_software. There is good information on how to choose a Wiki at http://c2.com/ cgi/wiki?ChoosingaWiki.

MODELING THE USERS, PAGES, AND CATEGORIES

Every wiki consists of a number of categories. Within each category are zero or more pages, as shown in figure 4.4. A page can belong to one or more categories.

Figure 4.4 Relationship between a page, a category, and a user in a wiki

Users create and edit pages, categories, and the relationship between the pages and the categories.

The category page is an example of the CompositeContentType that we introduce in section 4.4 for extracting intelligence.

Figure 4.5 shows a persistence model for a wiki. Also, a *blob* is used for the text of a page, allowing the users to create a large document.

Figure 4.5 Persistence model for a wiki

We've briefly reviewed wikis: what they are, how they're used, the elements of a wiki, and how they can be persisted. Lastly, let's look at the third content type associated with collective intelligence: groups and message boards.

4.2.3 Groups and message boards

Message boards are places where you can ask questions and others can respond to them, as well as rate them for usefulness. Message boards are usually associated with groups. A group is a collection of users that share a common interest, where users can participate in threaded conversations. Groups usually have a mailing list associated with them where members can get updates over email. Yahoo! has more than a million groups on virtually every subject, from data mining, to groups on companies, dogs, and marathons. There are hundreds of message boards, and you can find a list of them at http://www.topology.org/net/mb.html and http://dmoz.org/Computers/Internet/On_the_Web/Message_Boards/.

USE OF MESSAGE BOARDS

Groups can be useful in your application for bringing together people with similar interests and tastes. In a blog, people respond to writing by a single user or a group of bloggers, who collectively share the responsibility of writing blog entries; this is especially true in the case of corporate blogs. However, in a group or a message board, any user can pose a question to which others can respond. Message boards along with wikis are more collaborative. Since multiple people can post and comment on questions, message boards need to be moderated and managed to weed out spam and flames. Each entry in a message board should be indexed separately by a search engine.

MODELING GROUPS AND MESSAGE BOARDS

As shown in table 4.4, groups, topics, questions, messages, and users are the main entities for groups and message boards.

Entity	Description
Groups	Collections of users that have a common cause or interest
Topics	Groups consist of a number of topics or categories
Questions	Users pose questions within a topic
Messages	Posted in response to a question or an answer provided
User	Can create, become a member of, view, or rate any of the above entities

Table 4.4 Entities for message boards and groups

As shown in figure 4.6, each group consists of a number of topics; each topic has a number of questions; each question has a number of messages or answers. A user can belong to multiple groups; can create a group, topic, question, or answer; and can rate any of these entities. Again, groups, topics, and question are all examples of CompositeContentTypes, which we discuss in section 4.3. Figure 4.7 shows the schema for the elements of a message board.

In this section, we've looked at three content types that are typically associated with collective intelligence: blogs, wikis, and groups and message boards. We've looked at the elements of these content types, how they're used, and the relationship between

their various elements. Now we're ready to take a more detailed look at how intelligence is extracted from analyzing content.

4.3 Extracting intelligence step by step

In section 2.2.3, we introduced the use of term vectors to represent metadata associated with text. We also introduced the use of term frequency and inverse document frequency to compute the weight associated with each term. This approach is an example of using the content to generate the metadata. In section 3.3, we demonstrated a collaborative approach using user tagging to generate similar metadata with text.

At this stage, it's helpful to go through an example of how the term vector can be computed by analyzing text. The intent of this section is to demonstrate concepts and keep things simple; therefore we develop simple classes for this example. Later, in chapter 8, we use open source libraries for analyzing text, but going through the code developed in this chapter should give you good insight into the fundamentals involved.

If you haven't done so already, it's worthwhile to review section 2.2.3, which gives an overview of generating metadata (term vectors) from text, and section 3.2.1 on tag clouds, which we use to visualize the data. Remember, the typical steps involved in text analysis are shown in figure 4.8:

- **1** *Tokenization*—Parse the text to generate terms. Sophisticated analyzers can also extract phrases from the text.
- 2 *Normalize*—Convert them to lowercase.
- 3 Eliminate stop words—Eliminate terms that appear very often.
- 4 Stemming—Convert the terms into their stemmed form—remove plurals.

In this section, we set up the example that we'll use. We first use a simple but naïve way to analyze the text—simply tokenizing the text, analyzing the body and title, and taking term frequency into account. Next, we show the results of the analysis by eliminating the stop words, followed by the effect of stemming. Lastly, we show the effect of detecting phrases on the analysis.

4.3.1 Setting up the example

Let's assume that a reader has posted the following blog entry:

Title: Collective Intelligence and Web2.0

Body: Web2.0 is all about connecting users to users, inviting users to participate, and applying their collective intelligence to improve the application. Collective intelligence enhances the user experience.

There are a few interesting things to note about the blog entry:

- It discusses collective intelligence, Web 2.0, and how they affect users.
- There are a number of occurrences of *user* and *users*.
- The title provides valuable information about the content.

We've talked about metadata and term vectors; code for this is fully developed in chapter 8. So as not to confuse things for this example, simply think of metadata being represented by an implementation of the interface MetaDataVector, as shown in listing 4.1.

Listing 4.1 The MetaDataVector interface package com.alag.ci; import java.util.List; public interface MetaDataVector { public List<TagMagnitude> getTagMetaDataMagnitude(); public MetaDataVector add(MetaDataVector other); } Gives result from adding another MetaDataVector

We have two methods: one for getting the terms and their weights and the second to add another MetaDataVector. Further, assume that we have a way to visualize this MetaDataVector; after all, it consists of tags or terms and their relative weights.²

² If you really want to see the code for the implementation of the MetaDataVector, jump ahead to chapter 8 or download the available code.

Let's define an interface MetaDataExtractor for the algorithm that will extract metadata, in the form of keywords or tags, by analyzing the text. This is shown in listing 4.2.

```
Listing 4.2 The MetaDataExtractor interface

package com.alag.ci.textanalysis;

import com.alag.ci.MetaDataVector;

public interface MetaDataExtractor {

    public MetaDataVector extractMetaData(String title, String body);
```

The interface has only one method, extractMetaData, which analyzes the title and body to generate a MetaDataVector. The MetaData-Vector in essence is the term vector for the text being analyzed.

Figure 4.9 shows the hierarchy of increasingly complex text analyzers that we use in the next few sections. First, we use a simple analyzer to create tokens from the text. Next, we remove the common words. This is followed by taking care of plurals. Lastly, we detect multi-term phrases. With this background, we're now ready to have some fun and work through some code to analyze our blog entry!

4.3.2 Naïve analysis

Let's begin by tokenizing the text, normalizing it, and getting the frequency count associated with each term. We also analyze the body and text separately and then combine the information from each. For this we use SimpleMetaDataExtractor, which is a naïve implementation for our analyzer, shown in listing 4.3.

Listing 4.3 Implementation of the SimpleMetaDataExtractor

```
package com.alag.ci.textanalysis.impl;
import java.util.*;
import com.alag.ci.*;
```

```
import com.alaq.ci.impl.*;
import com.alag.ci.textanalysis.MetaDataExtractor;
public class SimpleMetaDataExtractor implements MetaDataExtractor {
   private Map<String, Long> idMap = null;
                                                               Keeps
   private Long currentId = null;
                                                < \vdash
                                                     Used to
                                                               map of
                                                     generate
   public SimpleMetaDataExtractor() {
                                                               all tags
                                                     unique
      this.idMap = new HashMap<String,Long>();
                                                               found
                                                     IDs
      this.currentId = new Long(0);
   }
   public MetaDataVector extractMetaData(String title, String body) {
      MetaDataVector titleMDV = getMetaDataVector(title);
                                                                   Places equal
      MetaDataVector bodyMDV = getMetaDataVector(body);
                                                                   weight on title
      return titleMDV.add(bodyMDV);
                                                                   and body
   private Long getTokenId(String token) {
                                                \leq
                                                     Generates
      Long id = this.idMap.get(token);
                                                     unique IDs for
      if (id == null) {
                                                     tags found
         id = this.currentId ++;
         this.idMap.put(token, id);
      return id;
   }
```

Since the title provides valuable information as a heuristic, let's say that the resulting MetaDataVector is a combination of the MetaDataVectors for the title and the body. Note that as tokens or tags are extracted from the text, we need to provide them with a unique ID; the method getTokenId takes care of it for this example. In your application, you'll probably get it from the tags table.

The following code extracts metadata for the article:

```
MetaDataVector titleMDV = getMetaDataVector(title);
MetaDataVector bodyMDV = getMetaDataVector(body);
return titleMDV.add(bodyMDV);
```

Here, we create MetaDataVectors for the title and the body and then simply combine them together.

As new tokens are extracted, a unique ID is assigned to them by the code:

```
private Long getTokenId(String token) {
  Long id = this.idMap.get(token);
  if (id == null) {
    id = this.currentId ++;
    this.idMap.put(token, id);
  }
  return id;
}
```

The remaining piece of code, shown in listing 4.4, is a lot more interesting.

Listing 4.4 Continuing with the implementation of SimpleMetaDataExtractor

private MetaDataVector getMetaDataVector(String text) {
 Map<String,Integer> keywordMap = new HashMap<String,Integer>();

```
StringTokenizer st = new StringTokenizer(text);
                                                                    Uses space
     while (st.hasMoreTokens()) {
                                                                    delimited
         String token = normalizeToken(st.nextToken());
                                                                    StringTokenizer
         if (acceptToken(token)) {
            Integer count = keywordMap.get(token);
                                                           Should we accept
            if (count == null) {
                                                          token as valid?
               count = new Integer(0);
            }
                                                     Keeps
            count ++;
                                                     frequency count
            keywordMap.put(token, count);
                                                                         Creates
         }
                                                                  MetaDataVector
      }
            MetaDataVector mdv = createMetaDataVector(keywordMap);
     return mdv;
  }
  protected boolean acceptToken(String token) {
                                                             Method to decide if
     return true;
                                                            token is accepted
  }
  protected String normalizeToken(String token) {
                                                               \triangleleft
                                                                    Convert to
     String normalizedToken = token.toLowerCase().trim();
                                                                    lowercase/
     if ( (normalizedToken.endsWith(".")) ||
                                                                    remove
          (normalizedToken.endsWith(",")) ) {
                                                                    punctuation
         int size = normalizedToken.length();
         normalizedToken = normalizedToken.substring(0, size -1);
      }
     return normalizedToken;
  }
}
```

Here, we use a simple StringTokenizer to break the words into their individual form:

```
StringTokenizer st = new StringTokenizer(text);
while (st.hasMoreTokens()) {
```

We want to normalize the tokens so that they're case insensitive—that is, so user and User are the same word—and also remove the punctuation (comma and period).

```
String token = normalizeToken(st.nextToken());
```

The normalizeToken simply lowercases the tokens and removes the punctuation:

```
protected String normalizeToken(String token) {
   String normalizedToken = token.toLowerCase().trim();
    if ( (normalizedToken.endsWith(".")) ||
        (normalizedToken.endsWith(",")) ) {
        int size = normalizedToken.length();
        normalizedToken = normalizedToken.substring(0, size -1);
     }
    return normalizedToken;
}
```

We may not want to accept all the tokens, so we have a method acceptToken to decide whether a token is to be expected:

```
if (acceptToken(token)) {
```

All tokens are accepted in this implementation.

The logic behind the method is simple: find the tokens, normalize them, see if they're to be accepted, and then keep a count of how many times they occur. Both title and body are equally weighted to create a resulting MetaDataVector. With this, we've met our goal of creating a set of terms and their relative weights to represent the metadata associated with the content.

A tag cloud is a useful way to visualize the output from the algorithm. First, let's look at the title, as shown in figure 4.10. The algorithm tokenizes the title and extracts four equally weighted terms: *and*, *collective*, *intelligence*, and *web2.0*. Note that *and* appears as one of the four terms and *collective* and *intelligence* are two separate terms.

Title TagCloud (4)	
and collective intelligence web2.)

Figure 4.10 The tag cloud for the title consists of four terms.

Similarly, the tag cloud for the body of the text is shown in figure 4.11. Note that words such as *the* and *to* occur frequently, and *user* and *users* are treated as separate terms. There are a total of 20 terms in the body.

Body TagCloud (20)]
about all and application applying collective connecting enhances experience improve intelligence	
inviting is participate the their to user USETS web2.0	

Figure 4.11 The tag cloud for the body of the text

Combining the vectors for both the title and the body, we get the resulting MetaData-Vector, whose tag cloud is shown in figure 4.12.

```
Combined TagCloud (20)
about all and application applying collective connecting enhances experience improve intelligence
inviting is participate the their to user users Web2.0
```

Figure 4.12 The resulting tag cloud obtained by combining the title and the body

The three terms *collective, intelligence,* and *web2.0* stand out. But there are quite a few noise words such as *all, and, is, the,* and *to* that occur so frequently in the English language that they don't add much value. Let's next enhance our implementation by eliminating these terms.

4.3.3 Removing common words

Commonly occurring terms are also called *stop terms* (see section 2.2) and can be specific to the language and domain. We implement SimpleStopWordMetaDataExtractor to remove these stop words. The code for this is shown in listing 4.5.

```
Listing 4.5 Implementation of SimpleStopWordMetaDataExtractor
```

```
package com.alag.ci.textanalysis.impl;
import java.util.*;
public class SimpleStopWordMetaDataExtractor
    extends SimpleMetaDataExtractor {
    private static final String[] stopWords =
```

```
{"and", "of", "the", "to", "is", "their", "can", "all", ""};
private Map<String, String> stopWordsMap = null;
public SimpleStopWordMetaDataExtractor() {
    this.stopWordsMap = new HashMap<String, String>();
    for (String s: stopWords) {
        this.stopWordsMap.put(s, s);
    }
}
Don't accept
protected boolean acceptToken(String token) {
    return !this.stopWordsMap.containsKey(token);
}
```

This class has a dictionary of terms that are to be ignored. In our case, this is a simple list; for your application this list will be a lot longer.

```
private static final String[] stopWords =
    {"and","of","the","to","is","their","can","all", ""};
```

The acceptToken method is overwritten to not accept any tokens that are in the stop word list:

```
protected boolean acceptToken(String token) {
    return !this.stopWordsMap.containsKey(token);
}
```

Figure 4.13 shows the tag cloud after removing the stop words. We now have 14 terms from the original 20. The terms *collective, intelligence,* and *web2.0* stand out. But *user* and *users* are still fragmented and are treated as separate terms.

After Removing Stop Words: Combined TagCloud (14) about application applying collective connecting enhances experience improve intelligence inviting participate user users Web2.0 Figure 4.13 The tag cloud after removing the stop words

To combine user and users as one term, we need to stem the words.

4.3.4 Stemming

}

Stemming is the process of converting words to their stemmed form. There are fairly complex algorithms for doing this, *Porter stemming* being the most commonly used.

There's only one plural in our example: *users*. For now, we enhance our implementation with SimpleStopWordStemmerMetaDataExtractor, whose code is in listing 4.6.

```
Listing 4.6 Implementation of SimpleStopWordStemmerMetaDataExtractor
package com.alag.ci.textanalysis.impl;
public class SimpleStopWordStemmerMetaDataExtractor extends
SimpleStopWordMetaDataExtractor {
protected String normalizeToken(String token) {
if (acceptToken(token)) {
token = super.normalizeToken(token);
```

```
if (token.endsWith("s")) {
    int index = token.lastIndexOf("s");
    if (index > 0) {
        token = token.substring(0, index);
    }
    }
    return token;
}
```

Here, we overwrite the normalizeToken method. First, it checks to make sure that the token isn't a stop word:

```
protected String normalizeToken(String token) {
    if (acceptToken(token)) {
        token = super.normalizeToken(token);
    }
}
```

Then it simply removes "s" from the end of terms.

Figure 4.14 shows the tag cloud obtained by stemming the terms. The algorithm transforms *user* and *users* into one term: *user*.

We now have four terms to describe the blog entry: *collective, intelligence, user,* and *web2.0.* But *collective intelligence* is really one phrase, so let's enhance our implementation to detect this term.

4.3.5 Detecting phrases

Collective intelligence is the only two-term phrase that we're interested in. For this, we will implement SimpleBiTermStopWordStemmerMetaDataExtractor, the code for which is shown in listing 4.7.

Listing 4.7 Implement SimpleBiTermStopWordStemmerMetaDataExtractor
<pre>package com.alag.ci.textanalysis.impl;</pre>
<pre>import java.util.*;</pre>
<pre>import com.alag.ci.MetaDataVector;</pre>
public class SimpleBiTermStopWordStemmerMetaDataExtractor extends SimpleStopWordStemmerMetaDataExtractor {
<pre>protected MetaDataVector getMetaDataVector(String text) { Map<string, integer=""> keywordMap = new HashMap<string, integer="">(); List<string> allTokens = new ArrayList<string>(); StringTokenizer st = new StringTokenizer(text); while (st.hasMoreTokens()) { String token = normalizeToken(st.nextToken()); if (acceptToken(token)) { } }</string></string></string,></string,></pre>
Integer count = keywordMap.get(token);

```
if (count == null) {
            count = new Integer(0);
         count ++;
                                              Store normalized
         keywordMap.put(token, count);
                                              tokens in order
         allTokens.add(token);
                                       ~
      }
   }
  String firstToken = allTokens.get(0);
   for (String token: allTokens.subList(1, allTokens.size())) {
      String biTerm = firstToken + " " + token;
      if (isValidBiTermToken(biTerm)) {
                                                         Take two tokens
         Integer count = keywordMap.get(biTerm);
                                                        and check validity
         if (count == null) {
            count = new Integer(0);
         }
         count ++;
         keywordMap.put(biTerm, count);
      }
      firstToken = token;
   }
  MetaDataVector mdv = createMetaDataVector(keywordMap);
   return mdv;
                                                                  Phrases tested
}
                                                                  against phrase
                                                                  dictionary
private boolean isValidBiTermToken(String biTerm) {
   if ("collective intelligence".compareTo(biTerm) == 0) {
      return true;
   }
  return false;
}
```

Here, we overwrite the getMetaDataVector method. We create a list of valid tokens and store them in a list, allTokens.

Next, the following code combines two tokens to check whether they're valid:

```
String firstToken = allTokens.get(0);
for (String token: allTokens.subList(1, allTokens.size())) {
   String biTerm = firstToken + " " + token;
   if (isValidBiTermToken(biTerm)) {
```

In our case, there's only one valid phrase, *collective intelligence*, and the check is done in the method.

```
private boolean isValidBiTermToken(String biTerm) {
    if ("collective intelligence".compareTo(biTerm) == 0) {
        return true;
    }
    return false;
}
```

Figure 4.15 shows the tag cloud for the title of the blog after using our new analyzer. As desired, there are four terms: *collective, collective intelligence, intelligence,* and *web2.0.*

}

Title TagCloud (4)

collective collective intelligence intelligence web2.0

Figure 4.15 Tag cloud for the title after using the bi-term analyzer

The combined tag cloud for the blog now contains 14 terms, as shown in figure 4.16. There are five tags that stand out: *collective, collective intelligence, intelligence, user,* and *web2.0.*

```
After stop words, stemming, and bi-terms: Combined TagCloud (14)
about application applying collective collective intelligence connecting enhance experience improve intelligence inviting
participate User Web2.0
```

Figure 4.16 Tag cloud for the blog after using a bi-term analyzer

Using phrases in the term vector can improve finding other similar content. For example, if we had another article, "Intelligence in a Child," with tokens *intelligence* and *child*, there'd be a match on the term *intelligence*. But if our analyzer was intelligent enough to simply extract *collective intelligence* without the terms *collective* and *intelligence*, there would be no match between the two pieces of content.

Hopefully, this gives you a good overview of how text can be analyzed automatically to extract relevant keywords or tags and build a MetaDataVector.

Now, every item in your application has an associated MetaDataVector. As users interact on your site, you can use the MetaDataVector associated with the items to develop a profile for the user. Finding similar items deals with finding items that have similar MetaDataVectors.

Intelligence in your application will manifest itself in three main forms—predictive models, search, and recommendation engines—each of which is covered in the latter half of this book.

In this section, we've worked with a simple example to understand how intelligence can be extracted from text. Text processing involves a number of steps, including creating tokens from the text, normalizing the text, removing common words that aren't helpful, stemming the words to their roots, injecting synonyms, and detecting phrases. With this basic understanding of text processing, we can now tie this back to section 4.1, where we discussed the different content types. For text processing, we can classify content into two types: simple and composite.

4.4 Simple and composite content types

In your application, you may want to show related videos for an article, or related blog entries for a product. Classifying the content into content types as done in section 4.4.1 enables you to do this analysis. Basically, you should consider only desired content types as candidate items. The content types we've developed are mutually exclusive; an item can only belong to one content type. Therefore, we enhance the Item table introduced in section 2.3.1 to also contain the content type. There's also another table, content_type, that contains a list of content types, as shown in figure 4.17.

Figure 4.17 Adding item type to the item table

Based on how the term vectors for the content types are extracted, we can define content types—SimpleContentType and CompositeContentType—shown in figure 4.18.

Both the simple and the composite content types are described in table 4.5.

Table 4.5 Content type categorization

Content Type	Description	Examples
Simple content type	Items of this content type aren't dependent on other items .	Articles, photos, video, blogs, polls, products
Composite content type	Items of this content type are dependent on other items.	Questions with their associated set of answers Categorized terms with an associated set of items to describe the term Boards with associated group of messages Categories of items

Note that for certain content types such as questions and answers, answers are fully contained within the context of the question. You typically won't show the answer without the context of the question. The same is true for a list of items that a user may have saved together. The term vectors for CompositeContentType are obtained by combining the term vectors for each of their children items. The MetaDataVector for a CompositeContentType is obtained by combining the MetaDataVector for each of its children items.

4.5 Summary

Content is the foundation for building applications. It's one of the main reasons why users come to your application. There are a number of different types of content, such as articles, photos, video, blogs, wikis, classification terms, polls, lists, and so forth. These can be created professionally, created by users, or aggregated from external sites. Depending on your business requirements, there are three main ways of integrating content into your application: on a separate server hosted within your firewall, embedded in your application, and linked to an external site.

Intelligence or metadata can be extracted by analyzing text. The process consists of creating tokens, normalizing the tokens, validating them, stemming them, and detecting phrases. This metadata is in addition to the collaborative approach for generating metadata for content that we looked at in chapter 3.

Blogs, wikis, and groups are some ways by which users interact, both within and outside your application. Each tool is potentially useful within your application. User-generated content in your application can boost your search engine ranking, influence users, make your application stickier, and increase the content available in your application.

Content can be classified into simple and composite content types based on how metadata is extracted.

In the last three chapters, we looked at gathering intelligence from information within your application. The next two chapters deal with collecting information from outside your application. Chapter 5 deals with searching the blogosphere for relevant content, while chapter 6 introduces how to crawl the web in search of relevant content. Both techniques can be helpful in aggregating external relevant information for your application.

4.6 Resources

- "All Things Web 2.0: Message Boards." http://www.allthingsweb2.com/component/ option,com_mtree/task,search/Itemid,26/searchword,message%20boards/cat_id,0/
- "Axamol Message Board." http://www.slamb.org/projects/axamol/message-board/
- "Blog Software Breakdown." http://asymptomatic.net/blogbreakdown.htm
- "Blog software comparison chart." *Online Journalism Review*. http://www.ojr.org/ojr/images/blog_software_comparison.cfm
- "Blogging Strategy 101: A Primer." http://www.scoutblogging.com/blogs101.html
- "Blogs Will Change Your Business." May 2, 2005. *BusinessWeek*. http://www.businessweek.com/ magazine/content/05_18/b3931001_mz001.htm
- "Blogware choice." http://asymptomatic.net/2004/05/28/2040/blogware-choice
- "Building Online Communities, Chromatic." O'Reilly. October 2002. http://www.oreillynet.com/pub/a/network/2002/10/21/community.html
- "Choosing a Wiki", http://c2.com/cgi/wiki?ChoosingaWiki
- "Comparison of Wiki Software." http://en.wikipedia.org/wiki/Comparison_of_wiki_software
- "Corporate Blogging: Is it worth the hype?" Backbone Media, 2005. http://www.backbonemedia.com/blogsurvey/blogsurvey2005.pdf
- Edelman, Richard. "A Commitment." October 16, 2006. http://www.edelman.com/speak_up/ blog/archives/2006/10/a_commitment.html#trackbacks
- Fish, Shlomi. "July 2006 Update to Which Wiki." http://www.shlomifish.org/philosophy/ computers/web/which-wiki/update-2006-07/

Resources

- ——"Which Open Source Wiki Works For You?" November, 2004. http://www.onlamp.com/ pub/a/onlamp/2004/11/04/which_wiki.html
- ------ "Fortune 500 Business Blogging Wiki." http://www.socialtext.net/bizblogs/index.cgi

Friedman, Tom. The World is Flat. 2005. Penguin Books.

- Gardner, Susannah. "Time to check: Are you using the right blogging tool?" Online Journalism Review July 14, 2005. http://www.ojr.org/ojr/stories/050714gardner/
- Goodnoe, Ezra. "How To Use Wikis For Business." *InformationWeek*, August 8, 2005. http://informationweek.com/shared/printableArticle.jhtml?articleID=167600331
- Green, Heather. "Meebo and its Language Wiki." *BusinessWeek*. July 11, 2006. http:// www.businessweek.com/the_thread/blogspotting/archives/2006/07/ meebo_and_its_m.html?chan=search
- Hof, Rob. "JotSpot Intros Wiki 2.0." BusinessWeek. July 24, 2006. http://www.businessweek.com/ the_thread/techbeat/archives/2006/07/jotspot_intros.html?chan=search
- Holohan, Catherine. "Six Apart's Booming Blogosphere." September 25, 2006. *BusinessWeek*. http://www.businessweek.com/technology/content/sep2006/ tc20060925_607937.htm?chan=search
- Horrigan, John, and Lee Rainie. "The Internet's Growing Role in Life's Major Moments." http://www.pewinternet.org/pdfs/PIP_Major%20Moments_2006.pdf
- "Internet Message Boards." http://www.topology.org/net/mb.html
- Kirkby, Jennifer. "Welcome to the Blogosphere." The Customer Management Community. http://www.insightexec.com/newswire_archive/20060322_monthly.html
- Lee, Felicia. "Survey of the Blogosphere Finds 12 Million Voices." *New York Times*. July 20, 2006. http://select.nytimes.com/search/restricted/ article?res=FA0613F63D5B0C738EDDAE0894DE404482
- Li, Charlene. "Blogging policy examples." November 8, 2004. http://forrester.typepad.com/ charleneli/2004/11/blogging_policy.html
- Lenhrt, Amanda, and Susannah Fox. "Bloggers: A portrait of the internet's new storytellers." July 19, 2006. Pew Internet & American Life Project. http://www.pewinternet.org/PPF/r/ 186/report_display.asp
- Leuf, Bo, and Ward Cunningham. "The Wiki Way: Collaboration and Sharing on the Internet." 2001. Addison Wessley.
- "Message Boards." http://dmoz.org/Computers/Internet/On_the_Web/Message_Boards/
- "Online Community Toolkit." http://www.fullcirc.com/community/communitymanual.htm
- Open Directory, Message Boards. http://dmoz.org/Computers/Internet/On_the_Web/ Message_Boards/
- "Open Source Bloggers in Java." http://java-source.net/open-source/bloggers
- Pilgrim, Mark. "What is RSS?" XML.com. 2002. http://www.xml.com/pub/a/2002/12/18/ dive-into-xml.html
- Quick, William. "Blogosphere." http://www.iw3p.com/DailyPundit/ 2001_12_30_dailypundit_archive.php#8315120
- "Reports Family, Friends, and Community." http://www.pewinternet.org/ report_display.asp?r=47
- "Roller open source blog server." http://rollerweblogger.org/
- Scoble, Robert, and Shell Israel. "Naked Conversations: How Blogs Are Changing the Way Businesses Talk with Customers." Wiley. 2006.
- Sifry, Dave. "State of the Blogosphere, August 2005, Part 1: Blog Growth." August 2, 2005. http://www.technorati.com/weblog/2005/08/34.html
- Singer, Suzette Cavanaugh. "NeoMarketing." June, 2006. Class notes, UC SC Extension.

- "State of the Blogosphere, April 2006, Part 1: Blog Growth." August 2, 2006. http:// technorati.com/weblog/2006/04/96.html
- "State of the Blogosphere, August 2005, Part 2: Posting Volume." August 2, 2005. http:// technorati.com/weblog/2005/08/35.html
- "The Best of Web2.0 Wiki." http://www.allthingsweb2.com/component/option,com_mtree/ task,listcats/cat_id,120/Itemid,26/
- "Top ten Wiki Engines." http://c2.com/cgi-bin/wiki?TopTenWikiEngines
- "Twiki." http://www.twiki.org/
- Udell, John. "Year of the enterprise Wiki." *InfoWorld*. December 2004. http:// www.infoworld.com/article/04/12/30/01FEtoycollab_1.html
- "Virtual Community, Wikipedia." http://en.wikipedia.org/wiki/Virtual_community
- "What is Wiki?" Wiki.org. http://wiki.org/wiki.cgi?WhatIsWiki
- "Wiki Engines." http://c2.com/cgi/wiki?WikiEngines
- Wolley, David. "Forum Software for the Web: An independent guide to discussion forum & message board software." http://thinkofit.com/webconf/forumsoft.htm
- "10 Tips for Becoming a Great Corporate Blogger." Backbone Media. http:// www.scoutblogging.com/tips.html

Searching the blogosphere

This chapter covers

- A brief introduction to the blogosphere
- A framework for searching the blogosphere
- Integrating Technorati and Bloglines
- Integrating MSN and Blogdigger using RSS

In early 2007, Microsoft was slated to launch its much-awaited new operating system—Vista. Perhaps tacitly acknowledging the growing power of the blogosphere—the collection of blogs on the web—and the impact it has in shaping the thoughts of others, a Microsoft employee contacted about 90 influential bloggers in late December 2006, offering them each a laptop, probably worth about \$2,000, preloaded with Vista, and encouraging them to blog about their experiences with the new operating system. Leaving aside issues related to ethics and conflict of interest, public relations firms are now reaching out to bloggers, podcasters, and people who post video clips on the Internet to promote their products.

What people say about your product or application has an impact on others and affects your brand—it's important to track what others are saying about your product or application. In this chapter, we look at how we can search the blogosphere to discover nuggets of relevant information. The infrastructure developed here to retrieve blog entries is leveraged in the remaining part of the book to build examples to illustrate various algorithms.

In the previous three chapters, we looked at how to gather information from within your application. Collective intelligence deals with using information both within and outside one's application. In this and the next chapter, we focus on gathering relevant information from outside your application.

In section 4.2.1, we briefly looked at the elements of a blog. Searching for relevant information within blogs in your application is straightforward—index all content with a search engine and derive metadata from it. But harvesting information from the millions of blog entries not within your application is more involved. There are a large number of companies,¹ blog-tracking providers, that are in the business of tracking blogs. These companies provide APIs to query for relevant blog entries, usually using RSS (introduced in section 5.1.2) and/or proprietary APIs.

This chapter shows how to search blog-tracking providers. We leverage this infrastructure again in chapter 9 to illustrate the clustering process, in chapter 10 to illustrate predictive models, in chapter 11 to illustrate a search engine, and in chapter 12 to illustrate building a recommendation engine.

In this chapter, we build a generalized framework so you can start using blog-tracking providers to search blogs. We begin with a brief introduction to the blogosphere, RSS, and blog-tracking providers. Next, we build a generalized framework for searching blogs. This is followed by building the base implementation, which takes care of most of the heavy lifting.

There are a number of blog-tracking providers. Fortunately, most of them provide an RSS API in addition to any proprietary APIs to search for blogs they're tracking. We show how to integrate blog-tracking providers into the framework by integrating Technorati and Bloglines using their proprietary APIs, followed by integrating other providers, MSN and Blogdigger, using RSS 2.0. Other formats and providers can be integrated in a similar manner.

5.1 Introducing the blogosphere

People blog on virtually every topic, and there are literally millions of blogs in the blogosphere.² Further, people may blog within your application. All these blog entries contain a rich set of information, which when relevant could be valuable to users. The universe of blogs in essence is a good example of collective intelligence in action; here, the collective contributions of millions of people shape the thoughts of others.

In this section, we look at some of the benefits associated with searching the blogosphere; briefly look at RSS, a standard publishing format; and provide an overview of the different blog tracking providers.

5.1.1 Leveraging the blogosphere

In the previous chapter, I mentioned that content is the building block for applications. Many times, you have to go outside your application to get relevant content. It's

¹ As of September 2008, there were more than 150 companies that tracked various kinds of RSS feeds.

² As of September 2008, Technorati was tracking more than 112 million blogs.

common for applications to get news feeds and then show relevant news based on the context and the user. Similarly, the growing blogosphere provides a rich set of content—the collective set of blogs that can shape the minds of others—that can be aggregated and shown when relevant. Continuing with our example, if your application were in the business of selling the latest version of an operating system, perhaps it would be useful to show users blog entries from people who've expressed their experiences in using the new operating system.

Finding relevant content consists of two parts: first you need to aggregate or find content, and second you need to determine whether the context is relevant. This chapter focuses on the first part. You should be able to determine the relevance of the retrieved document to an item of interest using the similarities in the term vectors for the two items. The infrastructure for this similarity computation is developed in chapter 8.

Using the framework developed in this chapter, you should be able to build a feature that periodically queries the blogosphere for relevant blog entries. This could be helpful in protecting your brand; you can automate the retrieval of relevant blog entries and extract keywords to determine either positive or negative comments about your brand. The retrieved items could also be classified for review by a human.

Next, let's briefly look at RSS, one of the key enabling technologies for searching the blogosphere. If you're already familiar with RSS, you can skip this section.

5.1.2 RSS: the publishing format

Chances are that there are hundreds of articles or other content that you'd like to keep track of on the Internet. This could be tracking blog entries of your favorite bloggers or following news as it unfolds. It's virtually impossible to manually go and check for updates for each of these. Fortunately, software is pretty good at automating this repetitive task. Most sites publish their content in a standard format, RSS, that's understood by programs such as RSS readers or aggregators, which automatically check for updates and retrieve new content when available.

RSS allows you to publish content to the Web in an XML format that's commonly understood and also track other sites for updates using a similar format. Formats for publishing content on the Web have existed from the early days of the Internet. RSS has a rich history, and the acronym *RSS* stands for different things, as we'll soon see. Given the various formats, it's helpful to spend a few minutes understanding its history.

In March 1999, the first version of RSS³—RDF Site Summary—was created by Netscape. This version became known as RSS 0.9. There were two camps in the RSS community. The first camp wanted to make better use of RDF in RSS, while the other camp wanted to simplify the format and remove RDF. A few months later, in June 1999, Dan Libby produced a prototype called RSS 0.91 that simplified the format, removed all reference to RDF, and incorporated parts of an earlier syndication format created by Dave Winer, an influential blogger from Userland Software. In this version, RSS stood for *Rich Site Summary*. In late December 2000, Dave Winer released RSS 0.92, and then released a final version in September 2002, known as RSS 2.0. Here, RSS stands for *Really*

³ Resource Description Framework—a language for describing resources on the web

Simple Syndication; RSS 2.0 is the most widely used newsfeed format. But there's more to this story.

In 2003, a group of influential bloggers and XML experts got together to develop a new newsfeed format known as Atom. Almost every part of RSS 2.0 is optional, and developers can extend the specification by using namespace-qualified vocabularies. This vagueness caused issues with interoperability among different vendor implementations. The influential bloggers joined forces with the Internet Engineering Task Force (IETF) and aimed to develop a new format that was

100 percent vendor-neutral, implemented by everybody, freely extensible by anybody, and cleanly and thoroughly specified.

—The Atom Wiki, June 2003. http://www.intertwingly.net/wiki/pie/RoadMap

IETF developed the Atom Publishing Format and Atom Publishing Protocol, and released Atom as an internet standard in 2005. Most blog search providers, with the exception of Blogger.com, provide results in RSS 2.0 format (see http://blogs.law. harvard.edu/tech/rss). Blogger.com provides results in the Atom format.

Listing 5.1 shows a sample of an RSS 2.0 output from Blogdigger.com. We later use this listing in section 5.6 to integrate Blogdigger. Each channel has a number of different <item>s associated with it. This XML snippet gives you a sense of the elements used in RSS 2.0, perhaps the most commonly used RSS version.

```
Listing 5.1 Example of RSS 2.0 from Blogdigger.com
<rss version="2.0">
  <channel>
    <title>Blogdigger search for collective intelligence</title>
    <link>://www.blogdigger.com/search/collective+intelligence</link>
    <description>Blogdigger search for collective intelligence
    </description>
   <ttl>60</ttl>
   
  <item>
     <title>Water - the basic system flow and missing learning ...</title>
    <link>http://waterangels.blogspot.com/2006/12/water-basic-system-
flow-and-missing.html</link>
    <description>When info from our various network ... ... </description>
     <pubDate>Mon, 1 Jan 2007 00:38:00 EST</pubDate>
   <source url="http://waterangels.blogspot.com/atom.xml">what the ...
   </source>
   <author>macrae.nets</author>
  </item>
</channel>
<?xml version="1.0" encoding="UTF-8"?></rss>
```

If you want to find out more about RSS, Manning has an excellent book on RSS and Atom, *RSS and Atom in Action: Web 2.0 Building Blocks*, by Dave Johnson. Chapter 12 of the book, *Searching and Monitoring the Web*, also presents a good overview of blog search engines.

Next, let's look at companies that are in the business of tracking blogs and other RSS newsfeeds.

5.1.3 Blog-tracking companies

Fueled by the growth of the self-publishing phenomenon, a large number of companies track what's being published on the Web. As of early 2008, there were more than 40 blog-search engines; some of the best are Technorati, Google, Yahoo!, MSN, Sphere, IceRocket, Bloglines, Blogdigger, DayPop, Zopto, Postami, and Read A Blog.

If you publish content, you want others to find it. This is most easily done by notifying blog-tracking providers of the change. A number of companies allow you to notify multiple blogs and feed-tracking providers. By pinging these providers, you're notifying these services that content on your site has changed, and they then crawl your site to get the new content and publish it. By pinging these services, you decrease how long it takes before your content is published by these content-tracking providers. Pingoat (http://www.pingoat.com/), Pingomatic (http://pingomatic.com/), Blogflux (http://pinger.blogflux.com/), Feedshark (http://feedshark.brainbliss.com/), and King Ping (http://kping.com/) are examples of services that ping multiple providers.

APIs provided by these providers typically include the ability to search for relevant blogs using search terms or tags, as well as information on who's connecting to various blogs using either HTTP Get or HTTP Post. We discuss these kinds of APIs in sections 5.4 and 5.5.

With this background, we're now ready to build a framework to search the blogosphere. We follow a step-by-step approach, beginning with a generalized framework, building the base classes, and then integrating various providers.

5.2 Building a framework to search the blogosphere

Given the large number of blog-tracking providers, chances are that you may want to integrate more than one of them in your application. The framework we develop in this chapter abstracts out the differences between the APIs for these different providers; thus it's easy for your application to add new providers and not be coupled to a specific API or a single provider.

As shown in figure 5.1, there are four steps involved in searching the blogosphere:

- **1** Create a query that's submitted to a blog searcher.
- **2** The blog searcher translates this query into a format that can be understood by the blog-tracking provider and sends this information to the provider using either HTTP Get or HTTP Post.
- **3** The blog-tracking provider processes the request and sends back an XML response.
- **4** The response is parsed by the blog searcher and a response in a standard format is sent back to the client.

Therefore, to develop a generic framework, we need the four main interfaces that are shown in figure 5.2:

- BlogQueryParameter: captures the query made by the client
- BlogSearcher: translates and submits the query to the provider
- BlogSearchResponseHandler: used by the BlogSearcher to process the response XML
- BlogQueryResult: the canonical response to query

Figure 5.2 The generic architecture for the blog searcher

Next, let's look at each of these main interfaces. The API is fairly generic, using generic objects as input to the methods and for the results from the query. The API should be resilient to changes as you integrate more blog-tracking providers.

5.2.1 The searcher

The BlogSearcher is the main class that coordinates the process of searching. Listing 5.2 shows the BlogSearcher interface.

```
Listing 5.2 BlogSearcher interface

package com.alag.ci.blog.search;

public interface BlogSearcher {

    public BlogQueryResult getRelevantBlogs(BlogQueryParameter param)

        throws BlogSearcherException; 

    } Return relevant blogs

    using query parameters
```

BlogSearcher contains only one method:

which takes a BlogQueryParameter, returns a BlogQueryResult, and throws a Blog-SearcherException.

Next, let's look at the input to the search: BlogQueryParameter.

5.2.2 The search parameters

Parameters for the search are encapsulated in the BlogQueryParameter interface, whose code is shown in listing 5.3.

Listing 5.3 The BlogQueryParameter interface	
<pre>package com.alag.ci.blog.search;</pre>	
<pre>import java.util.Collection;</pre>	
<pre>public interface BlogQueryParameter { public enum QueryType {SEARCH,TAG}; public enum QueryParameter {KEY, APIUSER, START_INDEX, LIMIT, QUERY, TAG,SORTBY, LANGUAGE};</pre>	Type of query
<pre>public String getParameter(QueryParameter param); public void setParameter(QueryParameter param, String value); public Collection<queryparameter> getAllParameters(); public QueryType getQueryType(); public String getMethodUrl();</queryparameter></pre>	parameters
}	

There are two enums: QueryType and QueryParameter. There are two types of queries that can be made—search by a query string or search by a specified tag:

```
enum QueryType {SEARCH, TAG};
```

You may want to generalize to additional search commands in your application. Similarly, the following

public enum QueryParameter {KEY, APIUSER, START_INDEX, LIMIT, QUERY, TAG, SORTBY, LANGUAGE}; specifies the different parameters that can be set for the query. It's nearly impossible to list all parameters (a lot of them optional) across the various blog-tracking providers. The enumerated list is the subset of features that we support in our API. Table 5.1 contains a description of the QueryParameters.

Table 5.1	Description	of the O	uervParameters
	Booonpaion	on ano g	actyratamotorb

QueryParameter	Description
KEY, APIUSER	A unique-token KEY and APIUSER name that may need to be passed to the provider. This key and name identify the caller to the provider. The provider may authenticate if the caller has privileges to make the call. This also gives the provider the capability to charge for calls made if required.
START_INDEX, LIMIT	There may be a large number of results available from the query. Typically, LIMIT specifies the maximum number of results returned from the START INDEX. For example, if there are 100 results, specifying START INDEX of 20 and LIMIT of 10 will return results 20–29.
QUERY, TAG	The query string is populated either as a QUERY or a TAG based on whether we're interested in search queries or tag related blog entries.
SORTBY	Specifies how the results should be sorted, for example, by date or title.
LANGUAGE	Language of blog entries.

There are two methods to retrieve the QueryParameter:

```
String getParameter(QueryParameter param);
Collection<QueryParameter> getAllParameters();
```

The URL for connecting to a provider is dependent on the type of search and the provider. This can be retrieved using String getMethodUrl();. This doesn't need to be specified by the calling client code. We'll build implementations of QueryParameter that automatically set the URL for each provider.

Next, let's look at how results are returned by the BlogSearcher.

5.2.3 The query results

BlogQueryResult is a container object that contains the result of the blog search query, as shown in figure 5.3. For building a generic API that will be resilient to changes over time, it's almost always better to return a rich object such as the container Blog-QueryResult rather than just a List. You can add more details to the BlogQuery-Result, perhaps by how long the query took or whether multiple blog-tracking providers were queried. Listing 5.4 shows the code for the BlogQueryResult, which consists of two methods.

```
Listing 5.4 The BlogQueryResult interface
```

```
package com.alag.ci.blog.search;
import java.util.List;
public interface BlogQueryResult {
```


The number of results returned by the query is accessed through the following method:

```
int getQueryCount();
```

Note that this count is the total number of results, not necessarily the same as the number of blog entries retrieved in this query. The list of blog entries retrieved is

```
List<RetrievedBlogEntry> getRelevantBlogs();
```

RetrievedBlogEntry represents one retrieved blog entry, and its specification is shown in figure 5.3. The attributes of RetrievedBlogEntry are a subset of all the attributes of a blog entry (see BlogEntry in section 4.3.1) and represent common attributes that are available across different blog-tracking providers. Note that some providers may expose only a subset of these attributes in their APIs. RetrievedBlogEntry contains the name of the blog, getName(), which is different from the title of the blog entry, String getTitle();.

The BlogSearcher normally receives an XML response from the provider. This XML is handled by a BlogSearchResponseHandler, which parses the response and converts it into BlogQueryResult.

5.2.4 Handling the XML response

The response XML received from a provider is handled by BlogSearchResponse-Handler. The BlogSearchResponseHandler interface, as shown in figure 5.4, consists of a single method, getBlogQueryResult(). For parsing the XML results, it uses Xml-Token objects, corresponding to the XML tags.

Listing 5.5 contains the code for the interface BlogSearchResponseHandler.

```
Listing 5.5 The BlogSearchResponseHandler interface
package com.alag.ci.blog.search;
public interface BlogSearchResponseHandler {
    public BlogQueryResult getBlogQueryResult();
}
Retrieves result
from blog query
}
```

The code BlogQueryResult getBlogQueryResult(); returns the resulting result object from the parsed XML.

The SAX parsing deals with tokens, which are represented by the interface shown in figure 5.4. The XmlToken interface has only one method, String getTag();, which returns the associated XML tag.

A number of exceptions can be thrown while talking to external providers. Next, let's look at how exceptions are handled in the framework.

5.2.5 Exception handling

All exceptions are wrapped in a common exception, BlogSearcherException, which is used for throwing exceptions throughout the package. Listing 5.6 contains the code for the BlogSearcherException, which is a *checked exception*, so the caller code needs to handle it.

```
Listing 5.6 Implementation of BlogSearcherException
package com.alag.ci.blog.search;
public class BlogSearcherException extends Exception {
    public BlogSearcherException(String message, Throwable cause) {
        super(message, cause);
        }
        Constructor to
        public BlogSearcherException(String message) {
            chain exceptions
            super(message);
        }
}
```

The constructor BlogSearcherException nests the underlying Throwable, and the new exception is created with the original cause attached, as is typically done with chained exceptions.

So far we've looked at the process of searching the blogosphere and introduced interfaces for the main entities that will be used in our framework. Next, let's implement the base classes for these interfaces. Provider-specific implementations will extend these base classes.

5.3 Implementing the base classes

We'd like most of the heavy lifting to be done by the base implementations, so as to minimize the amount of code required to integrate a new provider. Next, we implement each of the interfaces introduced in the previous section; we begin with an easy one: BlogQueryParameterImpl.

5.3.1 Implementing the search parameters

Each provider has a unique URL, and we'll have multiple implementations of the BlogQueryParameter that will extend from the base class BlogQueryParameterImpl.

BlogQueryParameterImpl is an abstract class, whose implementation is shown in listing 5.7.

```
Listing 5.7 Implementation of BlogQueryParameterImpl
package com.alag.ci.blog.search.impl;
import java.util.*;
import com.alag.ci.blog.search.BlogQueryParameter;
public abstract class BlogQueryParameterImpl
                                                              Uses Map to store
implements BlogQueryParameter {
                                                              QueryParameters
  private Map<QueryParameter,String> params = null;
  private QueryType queryType = null;
  private String methodUrl = null;
  public BlogQueryParameterImpl(QueryType queryType, String methodUrl)
                                                                            <1-
     this.queryType = queryType;
                                                                  Constructor to
     this.methodUrl = methodUrl;
     this.params = new HashMap<QueryParameter,String>();
                                                                   set queryType
                                                                  and methodUrl
   }
//get methods
  public void setParameter (QueryParameter param, String value) {
     this.params.put(param, value);
   }
}
```

BlogQueryParameterImpl uses the following to store the QueryParameters:

private Map<QueryParameter,String> params = null;

It also has a variable QueryType to store the type of query being made and methodUrl to store the provider URL. The rest of the code consists of get methods for the three attributes. The constructor BlogQueryParameterImpl sets the queryType and the methodUrl. There are no set methods for these two attributes—the derived classes will pass these two attributes to the constructor.

Next, let's look at implementing the result objects.

5.3.2 Implementing the result objects

As shown in figure 5.5, BlogQueryResultImpl implements BlogQueryResult. Null-BlogQueryResultImpl extends BlogQueryResultImpl and represents the case when there are no results found for a blog query.

The implementation of BlogQueryResultImpl is straightforward. It consists of two attributes. The first stores the List of retrieved blog entries:

private List<RetrievedBlogEntry> results = null;

The other stores the query count:

```
private Integer queryCount = null;
```

NullBlogQueryResultImpl extends BlogQueryResultImpl and has a constructor that sets the results List to an empty Collections.EMPTY LIST:

```
public NullBlogQueryResultImpl() {
   super();
   this.setResults(Collections.EMPTY_LIST);
}
```

The method getRelevantBlogs returns a List of RetrievedBlogEntry objects, which is implemented by RetrievedBlogEntryImpl. RetrievedBlogEntryImpl is a JavaBean object with seven attributes to implement the interface RetrievedBlog-Entry. There are standard get and set methods and a toString method to print out the attributes.

So far we've implemented the classes for representing the query and the results. Next, let's look at the implementation of the BlogSearcher, which is responsible for coordinating the search.

5.3.3 Implementing the searcher

Implementations of BlogSearcher are responsible for converting the input query from the client into a format that the blog-tracking provider can understand and then processing the XML response back from the provider. Figure 5.6 shows the base implementation for the BlogSearcher. Note that there is only one public method that needs to be implemented:

```
public BlogQueryResult getRelevantBlogs(BlogQueryParameter param)
    throws BlogSearcherException {
```

We use SAX⁴ parsing to process the XML returned by the provider. We use JAXP⁵—a small layer on top of SAX—to plug in parsers from different vendors without changing

Figure 5.6 Base implementation for BlogSearcher

⁴ http://www.saxproject.org/apidoc/overview-summary.html

⁵ http://java.sun.com/webservices/jaxp/index.jsp

the basic code. We use the Apache Xerces- J^6 parser. SAX parsing consists of creating a content handler and invoking the parser with the content handler.

Communication with blog-tracking providers occurs using the Hypertext Transfer Protocol (HTTP). The java.net class provides basic functionality for accessing resources via HTTP. However, the Apache Jakarta Commons HttpClient⁷ package provides an easy way to use the HTTP protocol. This open source project follows the Apache Source License and provides flexibility for source and binary reuse.

NOTE You can download the HttpClient library from http://jakarta.apache.org/ commons/httpclient/downloads.html. Don't forget to also download the dependent jar files: commons-codec.jar and commons-logging.jar.

Listing 5.8 contains the first half of the code for BlogSearcherImpl. This half deals with creating the SAX parser.

```
Listing 5.8 First half of BlogSearcherImpl—SAX parser
package com.alaq.ci.bloq.search.impl;
import java.io.*;
                           \triangleleft
                                  See downloaded
import java.net.URLEncoder;
                                 code for full list
import java.util.*;
import javax.xml.parsers.*;
import org.apache.commons.httpclient.*
import org.apache.commons.httpclient.params.HttpMethodParams;
import org.xml.sax.SAXException;
import org.xml.sax.helpers.DefaultHandler;
import com.alag.ci.blog.search.*;
import com.alaq.ci.bloq.search.BloqQueryParameter.QueryParameter;
public abstract class BlogSearcherImpl implements BlogSearcher {
  private static final String JAXP PROPERTY NAME =
                                                         \triangleleft
                                                                 Sets name
      "javax.xml.parsers.SAXParserFactory";
                                                                 of SAX
  private static final String APACHE XERCES SAX PARSER =
                                                                 parser
      "org.apache.xerces.jaxp.SAXParserFactoryImpl";
                                                                 factory
  private SAXParser parser = null;
  private Map<QueryParameter, String> paramStringMap = null;
   protected BlogSearcherImpl() throws BlogSearcherException {
      createSAXParser();
                                 <1
      initializeParamStringMap();
                                        Creates instance
                                                                 Creates instance
                                                                 of parser factory
                                       of SAX parser
   }
   private void createSAXParser() throws BlogSearcherException {
      if (System.getProperty(JAXP_PROPERTY_NAME) == null) {
       System.setProperty(JAXP PROPERTY NAME, APACHE XERCES SAX PARSER);
      SAXParserFactory factory = SAXParserFactory.newInstance();
                                                                      < 1
      try {
```

⁶ http://xerces.apache.org/xerces2-j/

⁷ http://jakarta.apache.org/commons/httpclient/

```
this.parser = factory.newSAXParser();
} catch(ParserConfigurationException e) {
    throw new BlogSearcherException("SAX parser not found",e);
} catch(SAXException se) {
    throw new BlogSearcherException("SAX exception",se);
}
Uses factory to create
instance of parser
protected void initializeParamStringMap() {
    paramStringMap = new HashMap<QueryParameter, String>();
}
protected Map<QueryParameter, String> getParamStringMap() {
    return paramStringMap;
}
protected SAXParser getSAXParser() {
    return this.parser;
}
```

The system property javax.xml.parsers.SAXParserFactory needs to be set to specify which instance of the SAX parser is to be used. This is set to org.apache. xerces.jaxp.SAXParserFactoryImpl in our case. The constructor creates an instance of the SAX parser:

```
protected BlogSearcherImpl() throws BlogSearcherException {
    createSAXParser();
```

For this, it first creates a SAXParserFactory:

```
SAXParserFactory factory = SAXParserFactory.newInstance();
```

And through the factory, it creates an instance of the parser:

this.parser = factory.newSAXParser();

The attribute paramStringMap stores a Map of QueryParameters and their values.

Next, let's look at listing 5.9, which deals with submitting an HTTP request and handling the XML response.


```
} catch (HttpException he) {
     throw new BlogSearcherException ("HTTP exception ", he);
  } catch (IOException ioe) {
     throw new BlogSearcherException(
           "IOException while getting response body", ioe);
   } finally {
     method.releaseConnection();
  return result;
protected abstract HttpMethod getMethod (BlogQueryParameter param);
protected abstract BlogSearchResponseHandler
     getBlogSearchResponseHandler();
                                                           Parse content
                                                           using custom
private BlogQueryResult parseContent(InputStream is)
                                                           handler
     throws BlogSearcherException {
                                                      1
  try {
     BlogSearchResponseHandler h = getBlogSearchResponseHandler();
     this.getSAXParser().parse(is, (DefaultHandler) h);
     return h.getBlogQueryResult();
  } catch (SAXException se) {
     throw new BlogSearcherException ("Error parsing Response XML",
           se);
   } catch (IOException ioe) {
     throw new BlogSearcherException("IOException while parsing
           XML", ioe);
   }
}
                                                    GET methods must
                                                   be URL-encoded
public static String urlEncode(String s) {
  String result = s;
  try {
     result = URLEncoder.encode(s, "UTF-8");
   } catch (UnsupportedEncodingException e) {
     System.out.println("Unsupported encoding exception thrown");
                                                                        4
                                                                    UTF-8 is
  return result;
                                                                  supported
```

Initially, the result BlogQueryResult is initialized to a null implementation, in case of no response back from the provider:

```
BlogQueryResult result = new NullBlogQueryResultImpl();
```

The code first creates an instance of the HttpClient:

HttpClient client = new HttpClient();

}

Next, it creates an instance of HttpMethod, either Get or Post:

```
HttpMethod method = getMethod(param);
```

The getMethod() method is abstract and will be implemented by the inheriting classes. The method is executed on the client and a status code is returned, which can be used to determine if the request was successful.

There are two kinds of exceptions that can be thrown:

- *HttpException*—Represents a logical error.
- *IOException*—Represents a transport error. This is likely to be an I/O error.

The following code sets the default recovery procedure to recover when a plain IOException is thrown:

HttpClient will retry the request three times, provided the request was never fully submitted to the blog-tracking provider.

Next, the response back from the provider is read in as a stream:

```
InputStream is = method.getResponseBodyAsStream();
result = parseContent(is);
```

The parseContent() method gets the appropriate response handler to parse the response.

Parameters for get methods need to be URL-encoded—for example, *collective intelli*gence gets converted to *collective+intelligence*. The following code

public static String urlEncode (String s)

is available for inheriting classes to encode the parameters using UTF-8 encoding, which is the recommended encoding scheme.

In this section, we developed the base class for coordinating the search. The last class to be implemented is the base class for handling the XML response.

5.3.4 Parsing XML response

An implementation of the BlogSearchResponseHandler is responsible for parsing the XML response from the provider and creating a BlogQueryResult. BlogSearch-ResponseHandlerImpl is the base class that other instances extend. This base class does most of the heavy lifting for writing a specific implementation of BlogSearchResponse-Handler. Figure 5.7 shows the methods in BlogSearchResponseHandlerImpl. Default-Handler⁸ is the base class for SAX event handlers and contains default implementations for the callbacks.

For consistency across the different parsers, we use Java 1.5's Enum⁹ capabilities. Each XML file has different tokens for the returning values. Each of the XML tokens that we're interested in is enumerated in an Enum that implements the XMLToken interface. This abstraction helps factor a lot of the XML processing out to the base class.

Typically, the retrieved response from the providers contains date strings; for example, the last updated time for the blog entry or the date the blog entry was created. Unfortunately, different providers use different formats for the date string.

⁸ http://java.sun.com/j2se/1.4.2/docs/api/org/xml/sax/helpers/DefaultHandler.html

⁹ http://java.sun.com/j2se/1.5.0/docs/guide/language/enums.html

Figure 5.7 The base class for SAX parsing handlers

"Mon, 01 Jan 2007 04:20:38 GMT" and "24 Dec 06 01:44:00 UTC" are examples of date formats that are returned from providers—refer to table 5.2 for a more complete list. A DateFormat object is used to parse the String into a Date object.

Table 5.2 The different date formats returned by the different providers

Date format	Example	Blog-tracking providers
yyyy-MM-dd HH:mm:ss	2008-01-10 11:25:56	Technorati—tag search
EEE, dd MMM yy HH:mm:ss zzz	Mon, 01 Jan 2007 04:20:38 GMT	Bloglines
yyyy-MM-dd HH:mm:ss zzz	2007-01-10 19:21:49 GMT	Technorati—query search
dd MMM yy HH:mm:ss zzz	24 Dec 06 01:44:00 UTC	RSS feed, MSN, Blogdigger

With that overview, let's look at listing 5.10, which has the first part of the code for BlogSearchResponseHandlerImpl. This listing shows the constructor along with the attributes for the class.

```
Listing 5.10 Constructor and attributes for BlogSearchResponseHandlerImpl
```

```
package com.alag.ci.blog.search.impl;
import java.text.*;
import java.util.*;
```

```
import org.xml.sax.*;
  import org.xml.sax.helpers.DefaultHandler;
  import com.alag.ci.blog.search.*;
  public abstract class BloqSearchResponseHandlerImpl extends
    DefaultHandler implements BlogSearchResponseHandler {
     private BlogQueryResultImpl result = null;
                                                              Stores result
     private List<RetrievedBlogEntry> entries = null;
     private RetrievedBlogEntryImpl item = null;
     private XmlToken whichToken = null;
                                               \triangleleft
                                                         Tracks which token
     private Map<String, XmlToken> tagMap = null;
                                                        is being parsed
     private String charString = null;
     private DateFormat dateFormat = null;
     private DateFormat timeZoneDateFormat = null;
                                                             Formats for handling
     private DateFormat timeZoneDayDateFormat = null;
                                                             date parsing
     private DateFormat timeZoneYearDateFormat = null;
     public BlogSearchResponseHandlerImpl() {
        this.result = new BlogQueryResultImpl();
        this.entries = new ArrayList<RetrievedBlogEntry>();
        this.result.setResults(this.entries);
        this.tagMap = new HashMap<String, XmlToken>();
        for (XmlToken t : getXMLTokens()) {
                                                   \triangleleft
                                                            XML tokens we're
           this.tagMap.put(t.getTag(), t);
                                                            interested in
        }
        this.dateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
        this.timeZoneDayDateFormat =
      new SimpleDateFormat("EEE, dd MMM yy HH:mm:ss zzz");
        this.timeZoneYearDateFormat =
      new SimpleDateFormat("yyyy-MM-dd HH:mm:ss zzz");
        this.timeZoneDateFormat =
      new SimpleDateFormat("dd MMM yy HH:mm:ss zzz");
     }
                                                                       Determines if
     protected abstract XmlToken [] getXMLTokens();
                                                                       token create
                                                                       new item
  protected abstract boolean isBlogEntryToken(XmlToken t) ;
  //get methods
     }
The attributes
```

```
private BlogQueryResultImpl result = null;
private List<RetrievedBlogEntry> entries = null;
private RetrievedBlogEntryImpl item = null;
```

store the resulting BlogQueryResult, the List of RetrievedBlogEntry objects, and the current RetrievedBlogEntry being processed.tagMap contains the list of tokens we're interested in. Each subclass implements the abstract getXMLTokens() method to return an array of tokens we're interested in. The subclasses also implement another abstract method, isBlogEntryToken(), which specifies which XML token creates a new entry in the result object.

Next, let's look at listing 5.11, which contains the parsing-related methods.

In SAX parsing, startElement and endElement are the methods that get called at the start and end of an element. The startElement method takes four parameters. The first is the namespaceURI, which is left empty if there is no namespace. The second is localName (without prefix), or an empty String if namespace processing isn't being performed—both the namespaceURI and localName are empty strings for our sample XML. The third is the fully qualified element name; for example, weblog or name. The fourth parameter lists any attributes attached to the element. The endElement takes only the first three parameters, since end tags aren't permitted any attributes.

The following code

checks to see if a new instance of an item is available and resets the charString. The method characters() gets called by the SAX parser to report each chunk of character data. This method may be called multiple times for an element; the charString takes care of concatenating the String of characters together.

The utility method getParsedDate() contains logic to select the right date parser and convert the String to a Date object.

That takes care of all the base implementations in our framework. Now, let's look at how this framework will be extended to integrate the different blog-tracking providers.

5.3.5 Extending the framework

Figure 5.8 gives an overview of the classes that we build. Basically, for each integration, we extend the three classes: BlogSearcherImpl for blog searching, BlogSearch-ResponseHandlerImpl for handling the XML response, and BlogQueryParameterImpl for configuring the search parameters.

Figure 5.8 The interfaces and their implementing classes

Figure 5.9 shows the classes that will extend BlogQueryParameterImpl to configure the URL that the instance of BlogSearcher will access.

So far we've implemented the base classes for our framework. Now let's integrate various blog-tracking providers. We begin with integrating Technorati, who tracks the largest number of blogs—more than 112.8 million blogs as of September 2008. I selected Technorati and Bloglines for their popularity, as well as to illustrate how to integrate a custom API.

Figure 5.9 The classes extending BlogQueryParameterImpl

5.4 Integrating Technorati

In early December 2006, Jeremy Caplan of Time magazine profiled Technorati, calling it the "Searchlight for the Blogosphere." In his words:

If Google is the Web's reference library, Technorati is becoming its coffeehouse, where people go to find out what's being said and by whom. Rather than send you to Madonna's web site if you punch her name into its search box, Technorati tells you the latest buzz about her career—and her adoption saga.

Technorati provides an API¹⁰ that allows developers to

- Search for blog postings that use specified keywords or are tagged with those keywords. Furthermore, you can find out which blogs link to a particular URL.
- Get the list of top tags that have been indexed by Technorati.
- Get detailed information about a blog, such as its available feeds and how many other blogs link to it.
- Get information about a Technorati member.

In this section, we look at how to use our framework to search for relevant blogs using the two APIs provided, search and tag. Using this approach, you should be able to extend the framework to query Technorati for other functionality.

To access Technorati's API, you first need to sign up for the Technorati developer program and agree to the terms of service. Technorati's API returns results in its own proprietary XML as well as common feed formats such as RSS. In this section, we extend our framework to use Technorati's custom API, which provides a richer set of information than the RSS feed. Once you sign up for the service, you'll get a unique API key from Technorati, which you can see at the Technorati API information page.

5.4.1 Technorati search API overview

Using the Technorati API, you can search for blog entries using either the search query or the tag query. The query parameters and response XML are similar in both cases. Technorati uses a RESTful interface for their API, where you can send either a Post or a Get. Let's look at the details for both these queries.

TECHNORATI SEARCH QUERY

The search API allows you to search for blog entries that contain the given search string. This gives the same result as entering a search string into Technorati's search box. We need to send either a Get or a Post to

http://api.technorati.com/search?key=[apikey]&query=[words]

with mandatory parameters key and query, and the following optional parameters:

- format: Output format, either XML or RSS, with XML being the default.
- language: Two-character language code to retrieve results specific in that language. For example, en for English. This feature is in beta and may not work for all languages.

¹⁰ http://www.technorati.com/developers/api/

- start: This parameter, along with the next one (limit), is useful for retrieving paginated results. If the limit is set to 20, its default value, and start is set to 0, the API will return entries from 0 to 20. Similarly, if you set start to 40+1, you'll get the third set of results from 41 to 60.
- limit: The number of values returned, which should be between 0 and 100. There are two more optional parameters: authority, to filter results to those from blogs with at least the Technorati Authority specified, and claim, to include user information with each link. We ignore these parameters, as they aren't supported by other providers. If you'd like to add them to the API, you need to extend the enums in QueryParameters and modify the Technorati-BlogSearcherImpl to take these into account.

Listing 5.12 shows the response XML for the search request, with elements that we're interested in shown in **bold**.

```
Listing 5.12 Technorati response XML for search query
<?xml version="1.0" encoding="utf-8"?>
<!-- generator="Technorati API version 1.0 /search" -->
<!DOCTYPE tapi PUBLIC "-//Technorati, Inc.//DTD TAPI 0.02//EN"
   "http://api.technorati.com/dtd/tapi-002.xml">
<tapi version="1.0">
<document>
<result>
 <query>[query string] </query>
 <querycount> [number of matches] </querycount>
 <querytime>[duration of query]</querytime>
 <rankingstart>[value of start parameter] </rankingstart>
</result>
<item>
 <weblog>
  <author>
    <firstname></firstname>
    <lastname></lastname>
    <username>[username]</username>
    <description></description>
    <bio></bio>
   <thumbnailpicture></thumbnailpicture>
   </author>
   <name>[name of blog containing match] </name>
   <url>[blog URL] </url>
   <rssurl>[blog RSS URL] </rssurl>
   <atomurl>[blog Atom URL] </atomurl>
   <inboundblogs>[inbound blogs]</inboundblogs>
   <inboundlinks>[inbound links]</inboundlinks>
   <lastupdate>[date blog last updated] </lastupdate>
 </weblog>
 <title>[title of entry] </title>
 <excerpt>[blurb from entry with search term highlighted]</excerpt>
 <created>[date entry was created] </created>
 <permalink>[URL of blog entry]</permalink>
</item>
```

```
...
</document>
</tapi>
```

The element querycount gives the total number of responses. firstname and lastname correspond to the first and last name of the author—these are combined together. name, url, title, excerpt, and created correspond to elements in the RetrievedBlogEntry.

TECHNORATI TAG QUERY

The tag query returns a list of blog entries that have the given tag associated with them. The API consists of sending either a Get or a Post to http://api.technorati.com/ tag?key=[apikey]&tag=[tag] with the mandatory parameters key and tag, along with additional optional parameters. format, limit, and start are the same parameters as described for the search query. There are two other optional parameters:

- excerptsize: The number of word characters to include in the post excerpt. We use the default 100 word characters.
- topexcerptsize: The number of word characters to include in the first post excerpt. We use the default 150 word characters.

The XML response is similar to that for the search query.

5.4.2 Implementing classes for integrating Technorati

There are four classes that we need to implement:

- TechnoratiSearchBlogQueryParameterImpl: a search-related query parameter
- TechnoratiTagBlogQueryParameterImpl: a tag-related query parameter
- TechnoratiBlogSearcherImpl: an instance of BlogSearcher that coordinates the search
- TechnoratiResponseHandler: to handle the XML response

Let's begin by looking at the two implementations for the QueryParameters.

TECHNORATI QUERY PARAMETERS

TechnoratiSearchBlogQueryParameterImpl implements the QueryParameter for the search query as shown in listing 5.13.

```
Listing 5.13 TechnoratiSearchBlogQueryParameterImpl
package com.alag.ci.blog.search.impl.technorati;
import com.alag.ci.blog.search.impl.BlogQueryParameterImpl;
public class TechnoratiSearchBlogQueryParameterImpl extends
     BlogQueryParameterImpl {
                                                                 URL for
  private static final String TECHNORATI SEARCH API URL =
                                                                 search query
      "http://api.technorati.com/search";
                                                        \sim
                                                                  Sets
  public TechnoratiSearchBloqQueryParameterImpl() {
                                                                  query type
      super(QueryType.SEARCH,TECHNORATI SEARCH API URL);
                                                             <1-
}
```

The constructor simply sets the query type to search and the URL for the query. Note that the client code simply needs to create an instance, such as

```
BlogQueryParameter tbqp = new TechnoratiSearchBlogQueryParameterImpl();
```

without having to worry about the URL or kind of search.

Similarly, TechnoratiTagBlogQueryParameterImpl sets the query type to tag-related search and sets the URL for the tag search:

```
private static final String TECHNORATI_TAG_API_URL =
    "http://api.technorati.com/tag";
```

TECHNORATIBLOGSEARCHERIMPL

Listing 5.14 contains the code for TechnoratiBlogSearcherImpl, the Technoratirelated blog searcher. Remember there are two abstract method that this extending class needs to implement. Further, since both Get and Post can be used, we develop methods for both.

```
Listing 5.14 TechnoratiBlogSearcherImpl
package com.alag.ci.blog.search.impl.technorati;
import java.util.*;
import org.apache.commons.httpclient.HttpMethod;
import org.apache.commons.httpclient.methods.GetMethod;
import org.apache.commons.httpclient.methods.PostMethod;
import com.alaq.ci.bloq.search.BloqQueryParameter;
import com.alag.ci.blog.search.BlogSearchResponseHandler;
import com.alag.ci.blog.search.BlogSearcherException;
import com.alaq.ci.bloq.search.BloqQueryParameter.QueryParameter;
import com.alag.ci.blog.search.impl.BlogSearcherImpl
public class TechnoratiBlogSearcherImpl extends BlogSearcherImpl {
  public TechnoratiBlogSearcherImpl() throws BlogSearcherException {
                                                       Maps parameters to
                                                      Technorati-specific strings
  protected void initializeParamStringMap() {
     super.initializeParamStringMap();
     Map<QueryParameter, String> paramStringMap = getParamStringMap();
     paramStringMap.put(QueryParameter.KEY, "key");
     paramStringMap.put(QueryParameter.START INDEX, "start");
     paramStringMap.put(QueryParameter.LIMIT, "limit");
     paramStringMap.put(QueryParameter.QUERY, "query");
     paramStringMap.put(QueryParameter.TAG, "tag");
     paramStringMap.put(QueryParameter.LANGUAGE, "language");
   }
  protected HttpMethod qetMethod (BloqQueryParameter param) {
     // return getPostMethod(param);
                                                             Use either
     return getGetMethod(param);
                                                            Get or Post
   }
  private HttpMethod getPostMethod(BlogQueryParameter param) {
     PostMethod method = new PostMethod(param.getMethodUrl());
     Collection<QueryParameter> paramColl = param.getAllParameters();
     for (QueryParameter qp : paramColl) {
```

```
String key = getParamStringMap().get(qp);
        if (key != null) {
           method.addParameter(key, param.getParameter(qp));
     }
     return method;
  private HttpMethod getGetMethod(BlogQueryParameter param) {
     String url = param.getMethodUrl() + "?";
     Collection<QueryParameter> paramColl = param.qetAllParameters();
     for (QueryParameter qp : paramColl) {
        String key = getParamStringMap().get(qp);
        if (key != null) {
           url += "&" + key + "=" + urlEncode(param.getParameter(qp));
        }
     }
     return new GetMethod(url);
 protected BlogSearchResponseHandler getBlogSearchResponseHandler() {
     return new TechnoratiResponseHandler();
  )
ļ
```

The method initializeParamStringMap() sets the strings for the various query parameters to those expected by Technorati. These parameters are set in the Post method and the Get method to compose the URL.

NOTE You can use either Get or Post within our framework, and most of the work is done by the base class that TechnoratiBlogSearcherImpl extends. However, some providers support only HTTP GET.

Lastly, we need to look at TechnoratiResponseHandler, which handles the response and is shown in listing 5.15. Note that most of the implementation deals with implementing the three abstract methods that were specified in the base class BlogSearch-ResponseHandlerImpl: getXMLTokens(), isBlogEntryToken(), and characters().

```
private String tag = null;
     TechnoratiXmlToken(String tag) {
        this.tag = tag;
      }
     public String getTag() {
        return this.tag;
   }
  private String firstName = null;
  protected XmlToken [] getXMLTokens() {
     return TechnoratiXmlToken.values();
                                                             Which token
                                                             corresponds
                                                            to new item
  protected boolean isBlogEntryToken(XmlToken t) {
     return (TechnoratiXmlToken.ITEM.compareTo(
            (TechnoratiXmlToken)t) == 0);
   }
  public void characters(char buf[], int offset, int len)
      throws SAXException {
     String s = this.getCharString() + new String(buf, offset, len);
     this.setCharString(s);
     TechnoratiXmlToken token = (TechnoratiXmlToken) getWhichToken();
     RetrievedBlogEntryImpl item = getItem();
                                                     Set attribute
     if (token != null) {
                                                     based on token
        switch (token) {
           case POSTSMATCHED: {
              this.getResult().setQueryCount(new Integer(s));
              break;
            }
//... Setting other fields when appropriate tokens are matched
        }
      }
   }
```

The TechnoratiXmlToken contains a list of XML tokens that we're interested in: this list is returned to the base class by the getXMLToken() method.

New blog entries are created whenever TechnoratiXmlToken.ITEM token is encountered, as shown by the implementation of the isBlogEntryToken() method:

```
protected boolean isBlogEntryToken(XmlToken t) {
   return (TechnoratiXmlToken.ITEM.compareTo(
         (TechnoratiXmlToken)t) == 0);
}
```

}

Lastly, in the characters () method, appropriate fields in RetrievedBlogEntryImpl and BlogQueryResultImpl are populated.

That's all that's required to integrate Technorati into our framework. Next, let's look at how to call this API. Listing 5.16 shows the output from a unit test that calls this API.

This output was generated using the unit test in listing 5.17.

Searching Technorati using our framework consists of three steps. First, we create an instance of TechnoratiBlogSearcherImpl:

BlogSearcher bs = new TechnoratiBlogSearcherImpl();

Second, we create an instance of TechnoratiSearchBlogQueryParameterImpl and set the query parameters. In this case, we're searching for English blog entries containing the keyword *collective intelligence*.

```
BlogQueryParameter searchQueryParam = new
TechnoratiSearchBlogQueryParameterImpl();
```

Third, we perform the search:

```
BlogQueryResult searchResult =bs.getRelevantBlogs(searchQueryParam);
```

Doing a tag-based search is similar, except you'll create an instance of Technorati-TagBlogQueryParameterImpl:

```
BlogQueryParameter tagQueryParam = new
TechnoratiTagBlogQueryParameterImpl();
```

and set the parameter:

With this example, you should have a sense of how easy it is to integrate new blog providers and invoke them to get relevant blogs. In the next section, we integrate another blog-tracking provider, Bloglines, using their custom API. This demonstrates how to handle responses that return information in attributes.

5.5 Integrating Bloglines

Time featured Bloglines as one of its 50 coolest websites in 2004.¹¹ Bloglines is a free online service that allows people to search, subscribe, share, and create new feeds, blogs, and rich content. The site indexes "tens of millions of live Internet content feeds, including articles, blogs, images, and audio," and allows people to create personalized news pages. Based in San Francisco, Bloglines is a fully owned subsidiary of IAC/InterActiveCorp.

In this section, we look at how to integrate Bloglines into our framework to search for relevant blogs. Let's begin by briefly looking at their API.

5.5.1 Bloglines search API overview

In addition to the blog search API, Bloglines provides three other APIs. These are

- Notifier—For counting unread items in a Bloglines account
- Sync—For accessing subscription lists and unread blog items
- Blogroll—For incorporating subscription lists into other sites

We concentrate on the search API in this section, but you should be able to use the concepts developed in this chapter to access the other APIs.

BLOGLINES SEARCH API

The search API requires a username and key to be submitted in the request for user authentication. You need to register with Bloglines to retrieve your key. You can find your key once you're logged in under the Developers tab under My Account.

The search API supports Get calls with four required parameters:

- format=publicapi: specifies that the search page return a publicapi query result in XML
- apiuser: the username or email address from the user's Bloglines account
- apikey: the API key generated on the Developer Tools tab under Profile Options
- q: the URL-encoded search query terms

Here is an example URL call:

```
http://www.bloglines.com/search?format=publicapi&apiuser=myusername
&apikey=275938797F98797FA9879AF&q=collective+intelligence
```

Listing 5.18 contains a sample response with the tokens that we're interested in shown in **bold**.

¹¹ http://www.time.com/time/techtime/200406/news.html

Note that the total number of items retrieved is listed in the attributes for resultset with the name found, and the date of the blog entry is an attribute for the element result.

5.5.2 Implementing classes for integrating Bloglines

To integrate Bloglines, we need to create three classes: BlogLineSearchBlogQuery-ParameterImpl for the query parameters, BlogLinesBlogSearcherImpl for searching, and BlogLinesResponseHandler for handling the XML response.

BlogLineSearchBlogQueryParameterImpl is similar to the TechnoratiSearch-BlogQueryParameterImpl class shown in listing 5.13, except that the URL passed in is http://www.bloglines.com/search. The constructor BlogLineSearchBlogQuery-ParameterImpl() also sets the query type to search.

Next, let's look at the implementation of the BlogLinesBlogSearcherImpl, which carries out the search.

IMPLEMENTING BLOGLINESBLOGSEARCHERIMPL

BlogLinesBlogSearcherImpl is responsible for carrying out the search, and simply needs to implement the two abstract methods in the base class:

```
protected abstract BlogSearchResponseHandler
getBlogSearchResponseHandler();
protected abstract HttpMethod getMethod(BlogQueryParameter param);
```

The implementation for BlogLinesBlogSearcherImpl is shown in listing 5.19.

Listing 5.19 Implementation of BlogLinesBlogSearcherImpl

package com.alag.ci.blog.search.impl.bloglines;

import org.apache.commons.httpclient.HttpMethod; import org.apache.commons.httpclient.methods.GetMethod;

```
import com.alaq.ci.bloq.search.BloqQueryParameter;
import com.alaq.ci.bloq.search.BloqSearchResponseHandler;
import com.alag.ci.blog.search.BlogSearcherException;
import com.alag.ci.blog.search.BlogQueryParameter.QueryParameter;
import com.alag.ci.blog.search.impl.BlogSearcherImpl;
public class BloqLinesBloqSearcherImpl extends BloqSearcherImpl {
  public BlogLinesBlogSearcherImpl() throws BlogSearcherException {
  protected BlogSearchResponseHandler getBlogSearchResponseHandler() {
     return new BlogLinesResponseHandler();
                                                        Specifies response handler
   ļ
  protected HttpMethod getMethod(BlogQueryParameter param) {
                                                                    Creates
     String url = param.getMethodUrl() + "?" +
                                                                     HttpMethod
      "format=publicapi&apiuser=" +
     param.getParameter(QueryParameter.APIUSER) +
      "&apikey=" + param.getParameter(QueryParameter.KEY) +
      "&q=" + urlEncode(param.getParameter(QueryParameter.QUERY));
     GetMethod method = new GetMethod(url);
     return method;
   }
}
```

The method getMethod() takes three parameters: APIUSER, KEY, and a QUERY set in a BlogQueryParameter to compose the URL.

Lastly, we need to create a handler, BlogSearchResponseHandler, to handle the XML response.

IMPLEMENTING BLOGLINESRESPONSEHANDLER

BlogLinesResponseHandler is responsible for parsing the XML returned from Bloglines and converting it to a BlogQueryResult object. Listing 5.20 contains the code for BlogLinesResponseHandler.

Listing 5.20 BlogSearchResponseHandler

```
package com.alag.ci.blog.search.impl.bloglines;
import org.xml.sax.Attributes;
import org.xml.sax.SAXException;
import com.alag.ci.blog.search.XmlToken;
import com.alaq.ci.bloq.search.impl.BloqSearchResponseHandlerImpl;
import com.alaq.ci.bloq.search.impl.RetrievedBlogEntryImpl;
public class BlogLinesResponseHandler
                                                               Enum for elements
    extends BlogSearchResponseHandlerImpl {
                                                               of interest
  public enum BlogLinesXmlToken implements XmlToken {
      NAME("name"), URL("url"), TITLE("title"), RESULT("result"),
//.. and other tokens specific to BlogLines
  protected XmlToken [] getXMLTokens() {
     return BlogLinesXmlToken.values();
                                                            Tag for
                                                            next item
  protected boolean isBlogEntryToken(XmlToken t) {
     return (BlogLinesXmlToken.RESULT.compareTo(
```

```
(BloqLinesXmlToken)t) == 0);
  public void startElement (String namespaceURI, String localName,
        String qName, Attributes atts) throws SAXException {
     super.startElement(namespaceURI, localName, qName, atts);
     String dateValue = atts.getValue(
          BloqLinesXmlToken.CREATED.getTag());
                                                   ⊲— Get date
     if (dateValue != null) {
        RetrievedBlogEntryImpl item = getItem();
        item.setCreationTime(getParsedDate(dateValue));
                                                    Get total number
     String numFound = atts.getValue(
                                                    of responses
       BlogLinesXmlToken.FOUND.getTag());
                                               <1-
     if (numFound != null) {
        this.getResult().setQueryCount(new Integer(numFound));
     this.setCharString("");
  public void characters(char buf[], int offset, int len)
        throws SAXException {
     String s = this.getCharString() + new String(buf, offset, len);
     this.setCharString(s);
     BlogLinesXmlToken token = (BlogLinesXmlToken) this.getWhichToken();
     RetrievedBlogEntryImpl item = getItem();
                                                    Set other
     if (token != null) {
                                                    attributes
        switch (token) {
                                         <1
        //set item elements base on token
     }
  }
}
```

The enum BlogLinesXmlToken keeps a list of tokens that we're interested in. New blog entries are created by the tag RESULT, which leads to the implementation of the abstract isBlogEntryToken() method:

The date of the blog entry and the number of items are extracted from the attributes in the method startElement(), while the other attributes are set in the method characters().

That takes care of all the classes we need to implement to integrate Bloglines. The process of calling Bloglines is similar to that for Technorati. There are three steps involved in executing the search.

First, we need to create an instance of the BlogSearcher:

BlogSearcher bs = new BlogLinesBlogSearcherImpl();

Second, we need to set the parameters: login-name, key, and the search query:

```
BlogQueryParameter searchQueryParam =
    new BlogLineSearchBlogQueryParameterImpl();
searchQueryParam.setParameter(
    QueryParameter.APIUSER, "[login-name]");
searchQueryParam.setParameter(QueryParameter.KEY, "[key]");
searchQueryParam.setParameter(
    QueryParameter.QUERY, "collective intelligence");
```

Third, we need to execute the search:

BlogQueryResult searchResult = bs.getRelevantBlogs(searchQueryParam);

The output from this query is similar to the one for Technorati.

So far, we've demonstrated how two different blog-tracking providers, Technorati and Bloglines, can be integrated using their proprietary APIs. Most blog-tracking providers provide an RSS 2.0 XML response. Though this RSS response may not be as rich in content as a provider's proprietary API, it can still be useful for integrating providers.

5.6 Integrating providers using RSS

In section 5.1.2, we briefly reviewed RSS and its history. Most providers support the RSS 2.0 format for responding to a search query. A typical RSS 2.0 XML response was shown in listing 5.1. The total number of results isn't available in this XML response.

Adding a new provider consists of adding three new classes:

- An instance of the QueryParameter
- An instance of the BlogSearcher that implements getMethod()
- An instance of BlogSearchResponseHandler that handles the XML parsing

In this section, we develop each of these classes in a generic manner.

5.6.1 Generalizing the query parameters

Rather than creating a specific instance of these classes for each provider, let's generalize the approach. Table 5.3 shows the URL used to query MSN and Blogdigger.

Table 5.3 Query URLs for some blog-tracking providers

Provider	URL
MSN	http://search.msn.com/results.aspx?q=collective+intelligence&format=rss&first=1&count=2
Blogdigger	http://www.blogdigger.com/rss.jsp?sortby=date&q=collective+intelligence&si=1&pp=2

You can decompose the query URL into five elements, as shown in table 5.4. These elements are

- URL—The provider URL for the query
- *First element*—The term used to specify the index of the first element
- *Number items*—The term used to specify the number of items
- *Sort*—The term used to specify the sort element
- *Format type*—The term used to specify the format used

Table 5.4 Decomposing the query parameters across providers

Provider	URL	First element	Number items	Sort	Format type
MSN	http://search.msn.com/results.aspx	first	count		format
Blogdigger	http://www.blogdigger.com/rss.jsp	si	pp	sortby	

RSSFeedBlogQueryParameterImpl, whose code is shown in listing 5.21, encapsulates the parameters shown in table 5.4.

```
Listing 5.21 RSSFeedBlogQueryParameterImpl
package com.alag.ci.blog.search.impl.rss;
import com.alag.ci.blog.search.impl.BlogQueryParameterImpl;
public class RSSFeedBlogQueryParameterImpl extends BlogQueryParameterImpl {
      public enum RSSProviderURL {
BLOGDIGGER("http://www.bloqdiqqer.com/rss.jsp","si","pp","sortby","",
      QueryType.SEARCH),
MSN ("http://search.msn.com/results.aspx","first","count","",
       "format",QueryType.SEARCH),
                                             <1----
                                                      Parameters for
     private String url = null;
                                                      the providers
                                           Attributes
     private String firstKey = null;
                                           for enum
     private String numKey = null;
     private String sortKey = null;
     private String formatKey = null;
     private QueryType queryType = null;
     RSSProviderURL(String url, String firstKey, String numKey,
           String sortKey, String formatKey, QueryType queryType) {
//set the instance variables
     }
//Get methods for the parameters
   }
                                                         Each instance has
                                                         RSSProviderURL
                                                    <1-
  private RSSProviderURL rssProviderUrl = null;
  public RSSFeedBlogQueryParameterImpl(RSSProviderURL rssProviderUrl) {
     super(rssProviderUrl.getQueryType(),rssProviderUrl.getUrl());
     this.rssProviderUrl = rssProviderUrl;
  public RSSProviderURL getRSSProviderURL() {
     return this.rssProviderUrl;
}
```

The enum RSSProviderURL has an enumerated type for each of the providers that specifies the values for the various parameters. Now we can use this to develop a generic instance of the blog searcher.

5.6.2 Generalizing the blog searcher

Most of the heavy lifting required to implement RSSFeedBlogQueryParameterImpl has already been done in the base class, as shown in listing 5.22.

RSSFeedBlogQueryParameterImpl needs to implement the abstract method get-Method(). This method uses the parameters specified in RSSFeedBlogQueryParameterImpl to create the appropriate query URL.

The last thing we need to implement is the handler to parse the XML, which is in RSS 2.0 format.

5.6.3 Building the RSS 2.0 XML parser

Listing 5.23 shows the implementation for RSSFeedResponseHandler, which is the handle for parsing the RSS 2.0 XML response.

Listing 5.23 RSSFeedResponseHandler package com.alag.ci.blog.search.impl.rss; import org.xml.sax.SAXException; import com.alag.ci.blog.search.XmlToken;

```
import com.alag.ci.blog.search.impl.*;
public class RSSFeedResponseHandler extends BlogSearchResponseHandlerImpl {
  public enum RSSFeedXmlToken implements XmlToken {
      ITEM("item"), TITLE("title"), AUTHOR("author"), LINK("link"),
          DESCRIPTION("description"), PUBDATE("pubDate");
                                                                \triangleleft
                                                                     Tokens that
                                                                     are handled
      private String tag = null;
      RSSFeedXmlToken(String tag) {
         this.tag = tag;
      public String getTag() {
         return this.tag;
   protected XmlToken[] getXMLTokens() {
      return RSSFeedXmlToken.values();
   protected boolean isBlogEntryToken(XmlToken t) {
      return (RSSFeedXmlToken.ITEM.compareTo((RSSFeedXmlToken) t) == 0);
  public void characters(char buf[], int offset, int len)
     throws SAXException {
      String s = this.getCharString() + new String(buf, offset, len);
      this.setCharString(s);
     RSSFeedXmlToken token = (RSSFeedXmlToken) this.getWhichToken();
      RetrievedBlogEntryImpl item = getItem();
      if (token != null) {
                              \triangleleft
                                      Handling of
         switch (token) {
                                     tokens to set
         case LINK: {
                                     attribute
            if (item != null) {
               item.setUrl(s);
            }
            break;
         }
       //similar handling of tokens
         }
      }
   }
}
```

There are six tokens that are handled:

```
ITEM("item"), TITLE("title"), AUTHOR("author"), LINK("link"),
DESCRIPTION("description"), PUBDATE("pubDate");
```

Appropriate elements of the items are also set.

A typical result using the RSS feed is shown in listing 5.24. Note that the total number of blog entries isn't returned.

Listing 5.24	Output from	Blogdigger query for "co	llective intelligence"
http://www.	blogdigger.c	com/rss.jsp?q=collect	ive+intelligence&si=1&
pp=2&se Total=null	ortby=date	URL for query	Total number of
1 Name: BLOG	: Random The	oughts From Last Night	results not returned

```
Url: http://baseballcrank.com/archives2/2007/05/blog_random_tho.php
Title: BLOG: Random Thoughts From Last Night
Excerpt: I was switching back and forth last night between the ...
LastUpdateTime: Wed May 16 10:30:45 PDT 2007
Author: Baseball Crank
```

The code was generated using the test shown in listing 5.25, which is similar to listing 5.17.

```
Listing 5.25 Output from Blogdigger query for "collective intelligence"
public void runBlogdiggerTest() throws Exception{
    Specify provider as
    BlogQueryParameter tagQueryParam = new
        Blogdigger
    RSSFeedBlogQueryParameterImpl(RSSProviderURL.BLOGDIGGER);
    BlogSearcher bs = new RSSFeedBlogSearcherImpl();
    tagQueryParam.setParameter(QueryParameter.START_INDEX, "1");
    tagQueryParam.setParameter(QueryParameter.LIMIT, "1");
    tagQueryParam.setParameter(QueryParameter.QUERY,
        "collective intelligence");
    BlogQueryResult tagResult = bs.getRelevantBlogs(tagQueryParam);
    System.out.println(tagResult);
}
```

You can add other providers by decomposing the query URL into the five parameters specified in table 5.4 and adding an enum value to RSSFeedBlogQueryParameterImpl. RSSProviderURL.

In this section, we've shown how blog-tracking providers can be added using RSS. The approach is generic and can be extended to add other blog-tracking providers. Once you have the URL to the blog, you can download the text of the blog entry, analyze it to generate its term vector, and compute its similarity to items of interest.

5.7 Summary

It's helpful to search the blogosphere to obtain relevant information and to monitor what's being said about your product and application. There are a number of blogtracking providers, companies that track what's being said in the blogosphere. RSS is an XML specification that's widely used for content changes. Most blog-tracking providers provide an RSS-based API to query.

In this chapter, we've developed a generic framework for searching the blogosphere by integrating blog-tracking providers. Searching the blogosphere involves four steps: creating the search query, sending it to a blog-tracking provider in a format the provider can understand, parsing the response from the provider, and lastly, converting it to a standard result format. We've demonstrated this process by adding four providers, two using proprietary APIs and the rest using RSS.

In the next chapter, we continue with our theme of collecting relevant information from outside your application by looking at web crawling.

5.8 Resources

Apache commons.feedparser. http://jakarta.apache.org/commons/sandbox/feedparser/ "Argos." https://argos.dev.java.net/ "Argos: Simple Java Search Engine Wrapper API." techno.blog("Dion"). April, 2005. http://almaer.com/blog/argos-simple-java-search-engine-wrapper-api

Atom. http://atomenabled.org/

- Atom Publishing Format and Protocol (atompub). http://www.ietf.org/html.charters/ atompub-charter.html
- Blog Search Engine. http://www.blogsearchengine.com/
- Blogdigger. http://www.blogdigger.com/rss.jsp
- Blogger Data API. http://code.google.com/apis/blogger/gdata.html
- Bloglines API Documentation. http://www.bloglines.com/services/api/
- BlogPulse API FAQ. http://www.blogpulse.com/about.html#showcase_3
- Brown, Larry, and Marty Hall. XML Processing with Java. 2002. Prentice Hill. http:// www.phptr.com/articles/article.asp?p=26351&seqNum=4&rl=1
- Caplan, Jeremy. "Searchlight for the Blogosphere." *Time*. Dec. 3, 2006. http://www.time.com/ time/globalbusiness/article/0,9171,1565540,00.html
- DateFormat and SimpleDateFormat Examples. http://javatechniques.com/public/java/docs/ basics/dateformat-examples.html
- Dmoz open directory. http://dmoz.org/Computers/Internet/On_the_Web/Weblogs/ Search_Engines/
- Fagan Finder, Blogs and RSS Search Engines. http://www.faganfinder.com/blogs/

Full list of ping services to go. http://www.onlinemoneytip.com/blogging/rss-ping-list/

Google Blog Search. http://www.google.com/help/about_blogsearch.html

HttpClient Tutorial. http://jakarta.apache.org/commons/httpclient/tutorial.html

- Icerocket.com. http://www.icerocket.com/
- Jakarta Commons HttpClient. http://hc.apache.org/httpclient-3.x/
- "Java API for XML Processing (JAXP) Sources." Sun Microsystems Inc. https://jaxp-sources. dev.java.net/
- Johnson, Dave. RSS and Atom in Action. 2006. Manning Publications.
- MSN Live Search. http://search.msn.com/results.aspx
- RSS, Wikipedia. http://en.wikipedia.org/wiki/RSS_%28file_format%29
- RSS 2.0 Specification. RSS Advisory Board. http://www.rssboard.org/rss-specification
- RSS 2.0 Specification. http://blogs.law.harvard.edu/tech/rss
- RSS Tutorial for Content Publishers and Webmasters. http://www.mnot.net/rss/tutorial/
- Sayer, Robert. "Atom: The Standard in Syndication." *IEEE Internet Computing*, vol. 9, no. 2, 2005, pp. 71-75.
- SAX API Javadoc. http://www.saxproject.org/apidoc/overview-summary.html

SimpleDateFormat. http://java.sun.com/j2se/1.4.2/docs/api/java/text/ SimpleDateFormat.html

- Tailrank. http://tailrank.com/code.php
- Technorati API Documentation. http://www.technorati.com/developers/api/
- "Time's 50 Best Websites."
- Time. http://www.time.com/time/techtime/200406/news.html
- UrlEncoder. http://java.sun.com/j2se/1.4.2/docs/api/java/net/URLEncoder.html
- Winer, Dave. "RSS History." April, 2004. http://blogs.law.harvard.edu/tech/rssVersionHistory
- "Xerces2 Java Parser Readme." Apache XML. http://xerces.apache.org/xerces2-j/

Intelligent web crawling

This chapter covers

- A brief overview of web crawling and intelligent crawling
- A step-by-step implementation of a web crawler
- Crawling with Nutch
- Scalable web crawling

No one knows the exact number of web pages on the Internet. But we do know that the World Wide Web is

- Huge, with billions of web pages
- Dynamic, with pages being constantly added, removed, or updated
- Growing rapidly

Given the huge amount of information available on the Internet, how does one find information of interest?

In this chapter, we continue our theme of gathering information from outside one's application. You'll be introduced to the field of intelligent web crawling to retrieve relevant information. Search engines crawl the web periodically to index available content. You may be interested in crawling the web to harvest information from external sites, which can then be used in your application. Search engines such as Google and Yahoo! constantly crawl the web to gather data for their search results.

HOW BIG IS THE WEB? In late July 2008, Google announced that they had detected more than a trillion unique URLs on the web; with the internet growing by several billion individual pages every day. Of course, not all the content has been indexed by Google, but a large portion has. To get a sense of the number of pages indexed by Google it is useful to look at the number of pages indexed by Google for a site—type site:*website*, for example, site:facebook.com, to search for the pages indexed by Google for Facebook (this number incidentally was more than 76 million pages as of July 2008). Other providers, such as Alexa, Compete.com, and Quantcast also provide useful data on the kinds of searches carried out on various sites.

This chapter is organized in three sections:

- First, we look at the field of web crawling, how it can be used in your application, the details of the crawling process, how the process can be made intelligent, how to access pages that aren't retrievable using traditional methods, and the available public domain crawlers that you can use.
- Second, to understand the basics of intelligent (focused) crawling, we implement a simple web crawler that highlights the key concepts related to web crawling.
- Third, we use Apache Nutch, an open source Java-based scalable crawler. We also discuss making Nutch distributed and scalable, using concepts known as Hadoop and MapReduce.

6.1 Introducing web crawling

Web crawling is the automated process of visiting web pages with the aim of retrieving content. The content being extracted could be in many forms: text, images, or videos. A *web crawler* is a program that systematically visits web pages, retrieves content, extracts URLs to other relevant links, and then in turn visits those links if allowed. Web crawlers are also commonly known as *web spiders, bots,* or *automated indexers.*

As we'll see later in this chapter, it's easy to write a simple web crawler. But building a crawler that's sophisticated enough to efficiently crawl the complete web (or parts of it that can be crawled) is a whole different ball game. We discuss these challenges throughout this chapter.

In this section, we look at how crawling the web may be useful to you, the basics of web crawling, how crawling can be made focused or intelligent, how invisible content can be made available, and some of the available open source web crawlers.

6.1.1 Why crawl the Web?

The primary goal of web crawling is to collect data from external sites. Following are some of the many ways web crawling is typically used:

- *Content aggregation and indexing external content*—Search engines build a catalog of content available on the web by periodically crawling the web. They then allow their users to search for relevant content using the data retrieved. You can also aggregate external data that may be relevant to your application and present hyperlinks to those pages from within your application.¹
- *Searching for specific information*—Focused crawling deals with crawling the web specifically looking for relevant information. In essence, the crawler visits a fraction of the total pages available by visiting pages that show promise. We also refer to this as *intelligent crawling*.
- *Triggering events*—Based on your domain, it may be helpful to crawl a set of web sites in search of relevant information that can be used as triggers or events in your application. For example, if your application is in the real estate domain, where you provide a valuation for a house, it may be helpful to crawl public domain sites that post information about recent sales. A house sale could be an event in your financial model for the price of homes in a neighborhood.
- *Detecting broken links*—Since a web crawler is good at visiting a page, extracting hyperlinks, and then visiting those pages, you can use a web crawler to detect whether you have any broken links in your application.
- Searching for copyright infringement—If you have copyrighted content, you can use intelligent web crawling to detect sites that are inappropriately using your content.

Next, let's look at the process of crawling the web used by web crawlers.

6.1.2 The crawling process

The basic process of web crawling is fairly straightforward, as shown in figure 6.1. Later, in section 6.2, we implement a simple web crawler using the algorithm outlined in figure 6.1. The basic steps involved in web crawling are

- 1 *Seeding the web crawler*—The web crawler is seeded with a set of URLs to be visited. Place these URLs in a queue data structure. The crawler queries the queue to get the next URL that it needs to crawl.
- 2 *Checking for exit criteria*—As long as the criteria for the crawler to continue crawling are met, the crawler retrieves the next URL to be visited. The exit criteria for a crawler could be based on one of many conditions—when the number of pages retrieved or visited reaches a certain threshold, how long the crawler has run, when there are no more available URLs to visit, and so on.
- **3** *Get the next URL to be visited*—There are some sites that don't allow crawlers to visit certain pages. Sites typically give permissions to crawlers to visit a set of pages in a file called robots.txt. The next step is to get the next URL that the crawler is allowed to visit.

¹ It may not be appropriate to show the content within your application if it is copyrighted.

- 4 *Retrieve content*—The crawler visits the URL and retrieves the content. Since you want the crawling process to be efficient—to avoid duplication—the URL visited is added to the list of URLs visited.
- 5 Is the retrieved content relevant?—This step is optional and is used when implementing focused crawling. Here, the retrieved content is checked against a model to see if the content is relevant to what we're searching for. If it is, then the content is saved locally.
- 6 *Extract URLs*—When the content is of interest, the text in the content is parsed for hyperlinks. Hyperlinks that haven't been visited are then placed in the queue of URLs.
- 7 Inject delay—If the crawling process is too fast or if multiple threads are being used, it can sometimes overwhelm the site. Sites protect themselves by blocking the IP addresses of misbehaving crawlers. You may want to optionally inject a delay between subsequent hits to a site.

This algorithm carries out its search using *breadth-first search* (*BFS*)—the roots of extracted URLs are visited first before going deep and visiting the children. Given that there are costs associated with the time to crawl, the network bandwidth used, and the number of machines used in the crawl, sophisticated methods have been developed to determine which URL should be visited next. These methods to estimate the potential quality of a URL include using historic information from previous crawls to determine a URL's weight, using the number of pages connecting to the URL (also known as *authority*) and the number of outward links, and analyzing the graph of connections on the site. Of course, though understanding these basic analysis algorithms is conceptually simple, the practical details of implementing them are complex and usually proprietary.

Figure 6.1 The basic process of web crawling

Web crawlers typically work in combination with a search library, which is used to index and search the content retrieved. For example, Nutch, which we use in section 6.3, uses Lucene, a Java-based open source search engine library, which we also use later in this book.

Given the dynamic nature of the Web, with pages being constantly added, modified, or deleted, crawling is performed periodically to keep the pages fresh. A site may have a number of *mirror* sites, and smart crawlers can detect these sites and avoid duplication by downloading from the fastest or freshest server.

A crawler can face a number of challenges during the crawl process, one of them being a *spider trap*. A spider trap could be created unintentionally or intentionally to guard a site against spam crawlers. Common techniques used to create spider traps include creating an infinitely deep directory structure and creating an infinite number of dynamically generated pages. Most crawlers stay with five levels of URL hierarchy.

Spammers use a variety of methods to mislead crawlers and boost their search engine rankings. These techniques include

- *Doorway pages*—Pages that are optimized for a single keyword, which then redirects to the real target page.
- *Keyword spamming*—Location and word frequency are two commonly used metrics used by text analysis algorithms. Spammers add misleading meta-keywords, repeat words excessively, or add hidden text.
- *Link spamming*—Some sites have numerous domains that point or redirect to a target page.
- *Cloaking*—Some sites detect when a request is from a web crawler and may serve fake spam content.

With this general overview of the crawling process, let's next focus on step 5 of the crawling process—focused crawling, where we want to focus the crawling process to get only items of interest.

6.1.3 Intelligent crawling and focused crawling

Given the sheer size of the web and the time and cost associated, crawling the complete Web can be daunting and potentially infeasible. Many times you may be interested in gathering information relevant to a particular domain or a topic; this is where focused crawling, also known as *topical crawling*, comes into play. Focused crawling is based on the simple principle that the more relevant a page to a topic of interest, the higher the probability that the linked pages contain relevant content. Therefore, it's advantageous to first explore these linked pages. A simple way to compute the relevancy of a page to a topic of interest is to match on keywords. The use of similarity computation between two term vectors using the term-frequency and inverse-document-frequency (TF-IDF) computation is a generalization of this idea.

Charkrabarti formally introduced focused crawling in 1999. In focused crawling, one first builds a model, also known as a *classifier*, that's trained to predict how relevant a piece of content is to the topic being searched. If you're searching for content

that's similar to a set of documents, a simple approach is to create a composite termvector representation, similar to CompositeContentTypes, which we looked at in section 4.4.1, and then compute the similarity between the retrieved content and this composite representation. Of course, there are a variety of approaches that can be used to build predictive models, which we discuss in part 2 of this book.

Assume that we've built a classifier that can emit a number between 0 and 1 to predict the *relevancy* of a piece of content, such that the higher the number, the higher the probability that the item is relevant to our topic. Content that has a value above a certain threshold is accepted, and hyperlinks from these pages are added to the pool of URLs to be visited with the weight of the relevancy of the parent. The URLs in the URL queue are sorted by relevancy, such that the URL with the highest predicted relevancy is selected.

A metric commonly used to measure the effectiveness of a crawler is its *harvest rate*: the proportion of pages retrieved that are relevant to the topic of interest for the crawler. Typically, a number of heuristics depending on the domain and the item being searched for are used to improve a crawler's harvest rate.

In the sixth step of the crawling process, we discussed how the crawler finds additional links by parsing through the content. However, not all content is accessible through this process. Next, let's look at how this content can be made available to the web crawler.

6.1.4 Deep crawling

Deep or invisible web pages are pages that can't be reached by following the links on a page. This is especially true when a site uses AJAX and crawlers can't navigate to the content. One way to solve this is to use the sitemaps protocol, a URL inclusion protocol. Sitemaps work together with the robots.txt specification, which is a URL exclusion protocol. The sitemap protocol has wide adoption, including support from AOL, Microsoft, and Yahoo!

Sitemaps are XML documents that tell web crawlers which URLs are available for crawling. They also contain additional information about the URLs, such as how often they change, when they were last updated, and the relative importance of a URL with respect to other URLs on the site. For more details on the sitemaps specification, refer to the official site at http://www.sitemaps.org/protocol.php and the Google sitemap site at https://www.google.com/webmasters/tools/docs/en/protocol.html. Since there is a limit of 50,000 URLs and up to 10MB for a sitemap file, you can also use a sitemap index specifying the locations of your sitemap in your robots.txt file, which we look at in section 6.2.2.

Leveraging search engine optimization and the use of sitemaps is one of the cheapest ways of marketing your content. When done correctly, your application web page will show up high in the search results of search engines such as Google and Yahoo!, and this could generate relevant traffic to your site. To show up high on results from search engines such as Google, you also need to increase the authority—sites linking to your site—of your domain. For more information on making your site Google crawlerfriendly, check out the Google Webmaster site: https://www.google.com/webmasters/ tools/docs/en/about.html. Using the Google Webmaster tools, you can see information about what content has been indexed by the Google crawler, Googlebot; when it was last indexed; pages that the crawler had problems with; and so forth. As shown in figure 6.2, you can also submit a link to your sitemap file through the Google Webmaster tools and check for any errors in the XML files.

Dashboard > Sitemap:	s > Add Sitemap
Overview Diagnostics Statistics Links Sitemaps Overview Add Sitemap Tools	Add Sitemap ③ Satnamalag typepad.com/my_web/og ~ You can add a Sitemap to your account to provide us with additional information about your site. We will process your Sitemap and provide information on any errors in Add General Web Sitemap ▼ Lists pages that are meant to be accessed by desktop browsers. 1. Ive created a Sitemap in a supported format. ③ 2. Ive uploaded my Sitemap to the highest-level directory to which I have access. 3. My Sitemap URL is: http://satnamalag.typepad.com/my_weblog/ Example: sitewap.com/ Mdd General Web Sitemap

Figure 6.2 Submitting your site's sitemap using Google Webmaster tools

It's also helpful to list your site with the Open Directory Project (http://www.dmoz.org/), which is used by a number of search crawlers and will help you increase the page rank for your site.

6.1.5 Available crawlers

A number of open source web crawlers written in Java are available. Refer to http://www. manageability.org/blog/stuff/open-source-web-crawlers-java/view for a list of available open source crawlers, with Nutch² and Heritrix³ perhaps being the two most popular.

Heritrix is the Internet Archive's open source, extensible, web-scale web crawler project. Nutch was built by Doug Cutting in an effort to provide a free and open web search engine. It's built on top of Lucene,⁴ which we use in chapter 11 when we discuss intelligent search, and has shown good scalability. Nutch has been designed to scale to over 1 billion pages, and a demo index of more than 100 million documents was created in 2003. Both Nutch and Lucene are Apache projects and carry the Apache license.

² http://lucene.apache.org/nutch/

³ http://crawler.archive.org/

⁴ Lucene is an open source software library for full-text search.

Later, in section 6.3, we use Nutch to crawl the web. Before we use an out-of-the-box crawler such as Nutch, it's useful to go through the process of building a web crawler ourselves—it'll help us better appreciate the complexities associated with crawling, especially as we try to make it scale.

Now that we know the basics of web crawling, let's systematically build a simple web crawler. This will give us useful insight into the inner workings of web crawlers and some of the issues related to web crawling.

6.2 Building an intelligent crawler step by step

In this section, we build a simple focused web crawler that follows hyperlinks to gather URLs of interest. To make the crawl focused, we use a regular expression matcher as the model for computing the relevance of content visited by the crawler. I've found this crawler to be useful in retrieving content of interest when I'm researching a particular topic. In our example, we retrieve content related to "collective intelligence" and seed the crawler by pointing it to the page on Wikipedia on collective intelligence.

6.2.1 Implementing the core algorithm

To implement our crawler, we build two classes:

- **1** NaiveCrawler implements the crawling process.
- 2 CrawlerUrl encapsulates the URL visited by the crawler.

Let's begin by looking at listing 6.1, which shows the crawl () method implemented by the crawler. This method follows the steps outlined in figure 6.1.

```
Listing 6.1 The crawl() method in the NaiveCrawler class
public void crawl() throws Exception {
     while (continueCrawling()) {
                                       1
        CrawlerUrl url = getNextUrl();
                                            2
        if (url != null) {
           printCrawlInfo();
                                                  B
           String content = getContent(url);
           if (isContentRelevant(content, regexpSearchPattern)) {
                                                                       4
              saveContent(url, content);
                                                 6
              Collection<String> urlStrings =
                   extractUrls(content, url);
                                                   6
              addUrlsToUrlQueue(url, urlStrings);
           } else {
              System.out.println(url + " is not relevant ignoring ...");
           Thread.sleep(this.delayBetweenUrls);
                                                      8
        }
      }
     closeOutputStream();
   }
```

The crawler consists of eight steps:

• continueCrawling(): checks to make sure that the crawl exit criteria aren't met

2 getNextUrl(): gets the next URL to be visited

getContent (url): retrieves the content associated with the URL

isContentRelevant(content, this.regexpSearchPattern): checks to see if the retrieved content is of interest

5 saveContent (url, content): saves the content if the URL is of interest

6 extractUrls (content, url): extracts URLs by parsing the content

🕖 addUrlsToUrlQueue(url, urlStrings): adds the extracted URLs to the URL queue

Thread.sleep(this.delayBetweenUrls): injects a delay before processing the next URL

We visit each of these steps in the next few sections. Before we go too far, let's look at the constructor for the NaiveCrawler, which is shown in listing 6.2.

Listing 6.2 The constructor for NaiveCrawler package com.alag.ci.webcrawler; import java.io.*; import java.net.URL; import java.util.*; import java.util.regex.*; import org.apache.commons.httpclient.*; import org.apache.commons.httpclient.methods.GetMethod; import org.apache.commons.httpclient.params.HttpMethodParams; Regular expression public class NaiveCrawler { to extract private static final String USER AGENT = "User-agent:"; out URLs private static final String DISALLOW = "Disallow:"; public static final String REGEXP HTTP = ""; public static final String REGEXP RELATIVE = ""; private int maxNumberUrls; **Regular expression** private long delayBetweenUrls; private int maxDepth; pattern to focus crawling private Pattern regexpSearchPattern; <1private Pattern httpRegexp; Map keeps track private Pattern relativeRegexp; of URLs visited private Map<String, CrawlerUrl> visitedUrls = null; private Map<String, Collection<String>> sitePermissions = null; private Queue<CrawlerUrl> urlQueue = null; <⊢ Map keeps track of private BufferedWriter crawlOutput = null; \triangleleft site permissions private BufferedWriter crawlStatistics = null; Extract next private int numberItemsSaved = 0; URL to visit public NaiveCrawler(Queue<CrawlerUrl> urlQueue, int maxNumberUrls, int maxDepth, long delayBetweenUrls, String regexpSearchPattern) throws Exception { Output URLs this.urlQueue = stored in two files urlOueue; this.maxNumberUrls = maxNumberUrls; this.delayBetweenUrls = delayBetweenUrls; this.maxDepth = maxDepth; this.regexpSearchPattern = Pattern.compile(regexpSearchPattern); this.visitedUrls = new HashMap<String, CrawlerUrl>();
```
this.sitePermissions = new HashMap<String, Collection<String>>();
this.httpRegexp = Pattern.compile(REGEXP_HTTP);
this.relativeRegexp = Pattern.compile(REGEXP_RELATIVE);
crawlOutput = new BufferedWriter(new FileWriter("crawl.txt"));
crawlStatistics = new BufferedWriter(new FileWriter(
        "crawlStatistics.txt"));
```

The crawler is seeded with an initial queue of CrawlerUrls, the maximum number of URLs to be visited, the maximum depth to be visited, the delay to be injected between visiting URLs, and a regular expression to guide the crawling process. This is shown in the constructor:

```
public NaiveCrawler(Queue<CrawlerUrl> urlQueue, int maxNumberUrls,
int maxDepth, long delayBetweenUrls, String regexpSearchPattern)
throws Exception
```

At this point it's also helpful to look at the code for CrawlerUrl, as shown in listing 6.3.

```
Listing 6.3 The code for CrawlerUrl
package com.alag.ci.webcrawler;
import java.net.MalformedURLException;
import java.net.URL;
                                   Depth
public class CrawlerUrl {
                                  of URL
                                              String value
                                                           Determines if
  private int depth = 0;
                                             for URL
                                                           crawler is
  private String urlString = null;
                                                           allowed to
  private URL url = null;
                                                           visit this URL
  private boolean isAllowedToVisit;
                                                  <1-
  private boolean isCheckedForPermission = false;
                                                         4
                                                              Determines
  private boolean isVisited = false;
                                                              if crawler
                                                              has visited
  public CrawlerUrl(String urlString, int depth) {
                                                              this URL
      this.depth = depth;
      this.urlString = urlString;
      computeURL();
  private void computeURL() {
      try {
         url = new URL(urlString);
      } catch (MalformedURLException e) {
         // something is wrong
   public URL getURL() {
      return this.url;
   public int getDepth() {
      return this.depth;
   public boolean isAllowedToVisit() {
```

```
return isAllowedToVisit;
public void setAllowedToVisit(boolean isAllowedToVisit) {
  this.isAllowedToVisit = isAllowedToVisit;
  this.isCheckedForPermission = true;
}
public boolean isCheckedForPermission() {
  return isCheckedForPermission;
public boolean isVisited() {
  return isVisited;
public void setIsVisited() {
  this.isVisited = true;
public String getUrlString() {
  return this.urlString;
}
@Override
public String toString() {
  return this.urlString + " [depth=" + depth + " visit="
        + this.isAllowedToVisit + " check="
        + this.isCheckedForPermission + "]";
}
@Override
public int hashCode() {
  return this.urlString.hashCode();
@Override
public boolean equals(Object obj) {
  return obj.hashCode() == this.hashCode();
```

The CrawlerUrl class represents an instance of the URL that's visited by the crawler. It has utility methods to mark whether the URL has been visited and whether the site has given permission to crawl the URL.

}

Next, let's look in more detail at how the crawler gets the next URL for the crawl, which is shown in listing 6.4.

```
while ((nextUrl == null) && (!urlQueue.isEmpty())) {
      CrawlerUrl crawlerUrl = this.urlOueue.remove();
      if (doWeHavePermissionToVisit(crawlerUrl)
            && (!isUrlAlreadyVisited(crawlerUrl))
            && isDepthAcceptable(crawlerUrl)) {
        nextUrl = crawlerUrl;
      }
   }
   return nextUrl;
                                                          Prints details
                                                          of crawler run
private void printCrawlInfo() throws Exception {
   StringBuilder sb = new StringBuilder();
   sb.append("Queue length = ").append(this.urlQueue.size()).append(
         " visited urls=").append(getNumberOfUrlsVisited()).append(
         " site permissions=").append(this.sitePermissions.size());
  crawlStatistics.append("" + qetNumberOfUrlsVisited()).append(
         "," + numberItemsSaved).append("," + this.urlQueue.size())
         .append(", " + this.sitePermissions.size() + "\n");
  crawlStatistics.flush();
  System.out.println(sb.toString());
}
                                                Returns number
                                                of URLs visited
private int getNumberOfUrlsVisited() {
   return this.visitedUrls.size();
                                                             Closes all
                                                             output streams
private void closeOutputStream() throws Exception {
  crawlOutput.flush();
  crawlOutput.close();
  crawlStatistics.flush();
   crawlStatistics.close();
                                                                      Checks
}
                                                                     depth
                                                                     of URL
private boolean isDepthAcceptable(CrawlerUrl crawlerUrl) {
   return crawlerUrl.getDepth() <= this.maxDepth;
}
private boolean isUrlAlreadyVisited(CrawlerUrl crawlerUrl) {
   if ((crawlerUrl.isVisited())
         (this.visitedUrls.containsKey(
                                                              Checks if
            crawlerUrl.getUrlString()))) {
                                                               URL has
                                                            been visited
      return true;
   }
   return false;
}
```

The method continueCrawling checks whether the crawler should stop crawling. Crawling stops when we run out of URLs to crawl or we've visited the maximum number of specified URLs. The method getNextUrl retrieves the next available URL that hasn't been visited, has acceptable depth, and that we're allowed to visit. To find out if we're allowed to visit a particular URL, we need to look at the robots.txt file.

6.2.2 Being polite: following the robots.txt file

A site can disallow web crawlers from accessing certain parts of the site by creating a robots.txt file and making it available via HTTP at the local URL /robots.txt. The

robots.txt⁵ specification was created in 1994. There's no agency that enforces the permissions provided by the site to the web crawlers, but it's considered good manners to respect the permissions provided by the site to the crawlers. Web crawlers that don't follow the guidelines risk having their IP blocked.

Let's look at a sample robots.txt file that I've taken from the Manning web site. It's shown in listing 6.5. This will help us understand the structure and the terms used to allow and disallow access to certain URLs.

```
Listing 6.5 Example robots.txt file at http://www.manning.com/robots.txt
```

```
User-agent: *
Disallow: /_mm/
Disallow: /_notes/
Disallow: /_baks/
Disallow: /MMWIP/
User-agent: googlebot
Disallow: *.csi
```

Note the following about the permissions set in this robots.txt file:

User-agent: * implies that this set of rules is valid for all web crawlers.

```
Disallow: /_mm/
Disallow: /_notes/
Disallow: /_baks/
Disallow: /MMWIP/
```

This specifies that no robots are allowed to visit content in any of the following directories: /_mm/, /_notes/, /_baks/, /MMWIP/.

The next specification, User-agent: googlebot, is applicable for the web crawler googlebot, which is forbidden to visit any pages that end with .csi. The specification requires only one directory per Disallow: line.

If for whatever reason you don't want any crawlers visiting your site, simply create the following robots.txt file:

```
User-agent: *
Disallow: /
```

Next, let's look at listing 6.6, which contains the methods to parse through the robots.txt file at a site to see if the crawler is allowed to visit the specified URL.

```
Listing 6.6 Parsing the robots.txt file to check for permissions
public boolean doWeHavePermissionToVisit(CrawlerUrl crawlerUrl) {
    if (crawlerUrl == null) {
        return false;
    }
    if (!crawlerUrl.isCheckedForPermission()) {
        crawlerUrl
        .setAllowedToVisit(computePermissionForVisiting(crawlerUrl));
    }
```

⁵ www.robotstxt.org/wc/norobots.html

```
return crawlerUrl.isAllowedToVisit();
private boolean computePermissionForVisiting(CrawlerUrl crawlerUrl) {
  URL url = crawlerUrl.getURL();
                                                   Site permissions
  boolean retValue = (url != null);
                                                   cached in local
   if (retValue) {
                                                  variable
      String host = url.getHost();
      Collection<String> disallowedPaths =
          this.sitePermissions.get(host);
      if (disallowedPaths == null) {
         disallowedPaths = parseRobotsTxtFileToGetDisallowedPaths (
                      host);
                                \triangleleft
                                       Parses content
      }
                                       of robots.txt
      String path = url.getPath();
                                                             Checks for
      for (String disallowedPath : disallowedPaths) {
                                                             disallowed path
         if (path.contains(disallowedPath)) {
            retValue = false;
      }
   }
   return retValue;
}
private Collection<String> parseRobotsTxtFileToGetDisallowedPaths(
      String host) {
                                                       Gets robots.txt file
  String robotFilePath = getContent(
       "http://" + host + "/robots.txt");
                                                               ~
  Collection<String> disallowedPaths = new ArrayList<String>();
   if (robotFilePath != null) {
      Pattern p = Pattern.compile(USER AGENT);
                                                      \triangleleft
                                                                Pattern
      String[] permissionSets = p.split(robotFilePath);
                                                                matching
      String permissionString = "";
                                                                to extract
      for (String permission : permissionSets) {
                                                                disallowed
         if (permission.trim().startsWith("*")) {
                                                                paths
            permissionString = permission.substring(1);
      }
      p = Pattern.compile(DISALLOW);
      String[] items = p.split(permissionString);
      for (String s : items) {
         disallowedPaths.add(s.trim());
      }
   }
   this.sitePermissions.put(host, disallowedPaths);
   return disallowedPaths;
```

Once the robots.txt file has been parsed for a site, the permissions are cached in a local variable disallowedPaths. This ensures that we don't waste resources hitting the site unnecessarily.

The location of the sitemap can be specified in the robots.txt file by adding the following line (see section 6.1.4):

```
Sitemap: <sitemap location>
```

Next, let's look at how our crawler retrieves content.

6.2.3 Retrieving the content

As in the previous chapter, we retrieve content from a URL by using the org.apache. commons.httpclient package, as shown in listing 6.7.

```
Listing 6.7 Retrieving content from URLs
 private String getContent(String urlString) {
      return getContent(new CrawlerUrl(urlString, 0));
                                                                       Retrieves
   private String getContent(CrawlerUrl url) {
                                                                       content
      HttpClient client = new HttpClient();
                                                                       from URL
      GetMethod method = new GetMethod(url.getUrlString());
      method.getParams().setParameter(HttpMethodParams.RETRY HANDLER,
           new DefaultHttpMethodRetryHandler(3, false));
      String text = null;
      try {
         int statusCode = client.executeMethod(method);
         if (statusCode == HttpStatus.SC OK) {
            text = readContentsFromStream(new InputStreamReader(method
                  .getResponseBodyAsStream(),
                  method.getResponseCharSet()));
                                                      \leq -
                                                           Used as
         }
                                                           recommended
      } catch (Throwable t) {
                                                           by package
         System.out.println(t.toString());
         t.printStackTrace();
      } finally {
         method.releaseConnection();
                                                                Converts
      markUrlAsVisited(url);
                                                           stream to String
      return text;
                                                            representation
   private static String readContentsFromStream(Reader input)
         throws IOException {
      BufferedReader bufferedReader = null;
      if (input instanceof BufferedReader) {
        bufferedReader = (BufferedReader) input;
      } else {
         bufferedReader = new BufferedReader(input);
      StringBuilder sb = new StringBuilder();
      char[] buffer = new char[4 * 1024];
      int charsRead;
      while ((charsRead = bufferedReader.read(buffer)) != -1) {
         sb.append(buffer, 0, charsRead);
      }
      return sb.toString();
                                                             Marked as visited
                                                             when content is
                                                             retrieved
   private void markUrlAsVisited(CrawlerUrl url) {
      this.visitedUrls.put(url.getUrlString(), url);
      url.setIsVisited();
```

The method getContent retrieves the content for the specified URL using the Http-Client and GetMethod objects. The method extracts the content from the visited URL by using the method readContentsFromStream. Once we have the content, we need to go through it to extract additional URLs that are within the content.

6.2.4 Extracting URLs

We extract two types of hyperlinked URLs.

First are hyperlinks with an absolute path, for example:

[1]

For this, we use the simple regular expression . This regular expression looks for strings starting with . Note the \ after href=, which is used to escape the " character in Java.

Second are relative paths, an example of which is

```
<a href="/wiki/Systems_intelligence" title="Systems intelligence">
Systems intelligence</a>
```

For this, we use the simple regular expression $\langle a \rangle = \left| (.) * \right|^{>}$. The code to extract these two kinds of URLs is shown in listing 6.8.

```
Listing 6.8 Extracting the URLs
```

```
public List<String> extractUrls(String text, CrawlerUrl crawlerUrl) {
  Map<String, String> urlMap = new HashMap<String, String>();
  extractHttpUrls(urlMap, text);
                                                                        Extracts
  extractRelativeUrls(urlMap, text, crawlerUrl);
                                                                     HTTP-based
  return new ArrayList<String>(urlMap.keySet());
                                                                   absolute URLs
}
private void extractHttpUrls(Map<String, String> urlMap, String text) {
  Matcher m = httpRegexp.matcher(text);
  while (m.find()) {
      String url = m.group();
      String[] terms = url.split("a href=\"");
      for (String term : terms) {
         if (term.startsWith("http")) {
            int index = term.indexOf("\"");
            if (index > 0) {
               term = term.substring(0, index);
            urlMap.put(term, term);
         }
      }
   }
}
private void extractRelativeUrls(Map<String, String> urlMap,
  String text, CrawlerUrl crawlerUrl) {
                                            \triangleleft
                                                    Extracts
  Matcher m = relativeRegexp.matcher(text);
                                                    relative
  URL textURL = crawlerUrl.getURL();
                                                    URLs
  String host = textURL.getHost();
  while (m.find()) {
      String url = m.group();
      String[] terms = url.split("a href=\"");
```

```
for (String term : terms) {
         if (term.startsWith("/")) {
            int index = term.indexOf("\"");
            if (index > 0) {
               term = term.substring(0, index);
            }
            String s = "http://" + host + term;
            urlMap.put(s, s);
         }
      }
   }
                                                       Adds extracted
                                                       URLs to queue
private void addUrlsToUrlQueue(CrawlerUrl url,
                                                      if unvisited
  Collection<String> urlStrings) {
                                             < -
   int depth = url.getDepth() + 1;
   for (String urlString : urlStrings) {
      if (!this.visitedUrls.containsKey(urlString)) {
         this.urlQueue.add(new CrawlerUrl(urlString, depth));
      }
   }
```

The method extractUrls extracts two types of URLs. First, using the method extractHttpUrls, it extracts URLs that begin with http and follow a particular pattern. Second, using the method extractRelativeUrls, it extracts relative URLs using the a href prefix. All extracted URLs are added to the queue.

So far we've looked at the basic implementation of the crawler. Next, let's look at what's required to make the crawler intelligent or focused.

6.2.5 Making the crawler intelligent

To guide the crawling process, we use a simple regular expression pattern matcher as shown in listing 6.9.

```
Listing 6.9 Checking for relevant content
 public static boolean isContentRelevant (String content,
         Pattern regexpPattern) {
                                            Content is relevant
      boolean retValue = false;
                                            when it matches pattern
      if (content != null) {
        Matcher m = regexpPattern.matcher(content.toLowerCase());
         retValue = m.find();
      }
      return retValue;
                                                                     Relevant
                                                                     URLs written
   private void saveContent (CrawlerUrl url, String content)
                                                                     to file
    throws Exception {
      this.crawlOutput.append(url.getUrlString()).append("\n");
      numberItemsSaved++;
```

The implementation of the isContentRelevant method simply tests to see if the content matches a regular expression. In our case, the saveContent method simply adds the URL to the list of interesting URLs. We're now ready to make the crawler do some work for us.

6.2.6 Running the crawler

Now we're ready to launch our crawler to find relevant information for us in the web. Since this book is about collective intelligence, we use our crawler to find content related to collective intelligence. We seed our crawler with the page on Wikipedia relating to collective intelligence—http://en.wikipedia.org/wiki/Collective_intelligence—as shown in listing 6.10.

Listing 6.10 Main program for the crawler	
<pre>public static void main(String[] args) { try {</pre>	Seed crawler with Wikipedia page
Queue <crawlerurl> urlQueue = new LinkedList<crawler< td=""><td>:Url>();</td></crawler<></crawlerurl>	:Url>();
String url =	
"http://en.wikipedia.org/wiki/Collective_intell:	igence";
String regexp = "collective.*intelligence"; urlQueue.add(new CrawlerUrl(url, 0)); NaiveCrawler crawler = new NaiveCrawler(urlQueue, 2	000, 5,
<pre>1000L,regexp);</pre>	Crawl focused for terms <i>collective</i> and <i>intelligence</i>

In our main program, we simply seed the crawler with a link to the Wikipedia site, set it to search for content having phrase *collective intelligence*, and allow the crawler to crawl.

Figure 6.3 shows the graph of the number of relevant URLs found by the crawler as a function of how many URLs it visits. Note the couple of steep gradients where the crawler finds a bunch of relevant content and then chugs along.

Listing 6.11 shows a sample of the relevant URLs that were discovered by the crawler. Imagine the usefulness of this tool when you're researching a particular topic of interest. This simple crawler can save you a considerable amount of time and effort by automating the process of following hyperlinks to discover relevant content.

Figure 6.3 Number of relevant URLs retrieved as a function of number of URLs visited


```
http://en.wikipedia.org/wiki/Collective intelligence
http://en.wikipedia.org/wiki/Douglas Engelbart
http://en.wikipedia.org/wiki/Francis Heylighen
http://ko.wikipedia.org/wiki/%EC%A7%91%EB%8B%A8%EC%A7%80%EC%84%B1
http://de.wikipedia.org/wiki/Kollektive Intelligenz
http://en.wikipedia.org/wiki/Category:Collective intelligence
http://en.wikipedia.org/wiki/Superorganism
http://en.wikipedia.org/wiki/Crowd psychology
http://pt.wikipedia.org/wiki/Intelig%C3%AAncia coletiva
http://en.wikipedia.org/wiki/Collaborative filtering
http://en.wikipedia.org/wiki/Group think
http://zh.wikipedia.org/wiki/%E7%BE%A4%E9%AB%94%E6%99%BA%E6%85%A7
http://www.TheTransitioner.org
http://it.wikipedia.org/wiki/Intelligenza collettiva
http://en.wikipedia.org/wiki/Swarm Intelligence
http://en.wikipedia.org/wiki/Special:Whatlinkshere/Collective intelligence
http://www.axiopole.com/pdf/Managing_collective_intelligence.pdf
http://www.communicationagents.com/tom atlee/
http://cci.mit.edu/index.html
http://www.pmcluster.com/
. . .
```

In section 11.5.4, we use this output to create a specialized search engine.

So far in this section, we've implemented a simple web crawler and made it intelligent. This gave you an overview of the various components that are required to make a crawler. Before we can use this in the real world, we need to make some enhancements, which we look at next.

6.2.7 Extending the crawler

If your goal is to crawl the entire Web or major parts of it, you'll need a crawler that's much more efficient than our simple single-threaded crawler. The bottleneck in a typical crawling process is the network delay in downloading content. Ideally, you want to download content from different hosts simultaneously. For this, you may want to enhance the crawler to have a pool of worker threads that work in parallel drawing URLs from the URL queue. Or even better, you may want to enhance the crawler to execute in parallel on distributed machines. You'll need to store the URLs visited and the queue of URLs to be visited in a database that's accessible to all the machines. You may also want to partition the URL space among the many machines, perhaps using namespaces for the URLs.

The model that we've used to focus the search is a simple pattern matcher. You'll want to use more sophisticated models, which we develop in the second part of this book. You may also want to enhance your crawler to visit URLs based on their relevance. Some crawling processes prefer to visit URLs that are referenced by many other sites; that is, sites with a high authority. Hubs—summary pages with many outgoing links—are also typically preferred by crawlers.

Given the dynamic nature of the web, you'll want to visit pages periodically to keep the content fresh. Commercial crawlers refresh content more often from sites that have shown to be historically more dynamic. For example, a news site or the home page of a site with user-generated content is far more dynamic than static web pages for a company web site. Efficient crawlers also have a way to detect mirror sites and duplicate pages that a site may contain. Our simple crawler injects time delay between successive URL requests; you may want to enhance it to inject a delay between successive URL requests to the same host.

By this time, you should have a good understanding of how a web crawler works and the issues related to building a truly scalable web crawler, which is a nontrivial task. For large-scale web crawling, you'll really want to use a scalable open source crawler, such as Nutch, which we look at next.

6.3 Scalable crawling with Nutch

Nutch is a Java-based open source web crawler that has been demonstrated to scale well. It was developed by Doug Cutting and is built on top of Lucene, an API for indexing and searching that we use throughout this book. Nutch uses a plug-in-based architecture, allowing it to be easily customized. Its processing is segmented, allowing it to be distributed. Nutch consists of two main components: the crawler and the searcher.

There are some excellent freely available tutorials to help set up Nutch and crawl the Web.⁶ There are a couple of excellent articles on Java.net by Tim White that provide a great overview of how to crawl and search with Nutch version 0.7.

In this section, we briefly go through the process of setting up and running version 0.9 of Nutch on Windows. This section consolidates information from the many tutorials and articles available on the Net, and there are some differences between 0.9 and the earlier versions. This section may well save you hours going through the various tutorials on the Web. After this section, we talk about more advanced concepts of Hadoop and MapReduce, which are used by Nutch to scale and run in a distributed mode. If you're serious about large-scale crawling, you probably want to go through this section and its referenced material in detail.

6.3.1 Setting up Nutch

Let's set up Nutch to crawl Wikipedia, starting with the Wikipedia page on collective intelligence. For this, we seed the engine with the same base URL that we used in the previous section: http://en.wikipedia.org/wiki/Collective_intelligence. You need to perform the following eight steps to carry out this intranet crawl.

GETTING THE REQUIRED SOFTWARE

- 1 Download Nutch. You can download the latest version from http://apache. mirrors.hoobly.com/lucene/nutch/. This section works with version 0.9 (nutch-0.9. tar.gz; about 68Mb), which was released in April 2007. Unzip the contents of the zipped file to create a directory nutch/nutch-0.9.
- 2 Nutch requires a Unix-like environment to run its shell scripts to create indexes. If you're trying this out in the Windows environment, you'll need to download and install Cygwin (http://www.cygwin.com/).

⁶ See http://wiki.apache.org/nutch/Nutch_-_The_Java_Search_Engine, http://wiki.apache.org/ nutch/Nutch_0%2e9_Crawl_Script_Tutorial, and http://lucene.apache.org/nutch/tutorial.html.

- **3** We need a servlet container. If you don't already have one, download Apache Tomcat from http://tomcat.apache.org/download-55.cgi. I used Tomcat version 6.0.13 (apache-tomcat-6.0.13.zip; 6.2 Mb).
- **4** Set NUTCH_JAVA_HOME to the root of your JVM installation. You'll need Java 1.4.x or better. For example, I set this variable to C:\dev\Java\jdk1.5.0_06 on my local system.
- **5** Make sure that Java, Tomcat, and Nutch are in your classpath. For example, my classpath includes C:\nutch\nutch-0.9\bin;C:\apache-tomcat-6.0.13\apache-tom-cat-6.0.13\bin; %JAVA_HOME%.

CREATING AN INDEX

- 6 Nutch uses a file to create an index of the content retrieved. Create a file nutch/nutch-0.9/urls on your local file system.
- 7 Create a file called seed-urls with the following as the only entry in the file: http://en.wikipedia.org/wiki/Collective_intelligence

CONFIGURING FOR INTRANET CRAWL

8 Edit the file conf/crawl-urlfilter.txt and replace MY.DOMAIN.NAME with the name of the domain you wish to crawl. For our example, we limit the crawl to the wikipedia.org domain, so the line should read

```
# accept hosts in MY.DOMAIN.NAME
+^http://([a-z0-9]*\.)*wikipedia.org/
```

This regex will include any URL in the domain wikipedia.org.

6.3.2 Running the Nutch crawler

You're now ready to launch the Wikipedia crawl. In your Cygwin window, go to the directory nutch/nutch-0.9 and run this command:

```
nutch crawl urls -dir crawl.wiki-ci -depth 2
```

This launches the crawl process with a maximum depth of 2. The -dir option specifies the directory in which content from the crawl should be stored. This creates a directory crawl.wiki-ci under the nutch directory (C:\nutch\nutch-0.9\crawl.wiki-ci on my system). Your Cygwin window should be similar to the one shown in figure 6.4.

After a few minutes, the crawl should finish and there should be a new directory under nutch-0.9 called crawl. wiki-ci, as shown in figure 6.5.

Nutch has created four main directories to store the crawling information:

- *Crawldb*—Stores the state of the URLs along with how long it took to fetch, index, and parse the data.
- Indexes—A set of indexes created by Lucene.
- *Linkdb*—This directory contains the links associated with each URL, including the source URL and the anchor text of the link.
- *Segments*—There are a number of segments in this directory. Each segment is named based on the date and time that it was created and contains the pages that are fetched by the crawler during a particular run.

🖃 🚞 nutch Image: Contract of the second seco 표 🚞 091507apache 🛅 bin Conf 🖃 🧰 crawl.wiki-ci 🖃 🧰 crawldb 🖃 🚞 current art-00000 index indexes 🛅 part-00000 🖃 🧰 linkdb 표 🚞 current 🖃 🧰 segments E 20070915103026 E 20070915103036 🗉 🗀 docs

Figure 6.5 The directory structure after the crawl

Next, let's look at statistics associated with the crawldb. Execute the following command:

nutch readdb crawl.wiki-ci/crawldb -stats

You should see output similar to that shown in figure 6.6.

\$ nutch readdb crawl.wiki-ci/	crawldb -stats
GrawIDb statistics start: cra	wl.wiki-ci/crawldb
Statistics for CrawlDb: crawl	.wiki-ci/crawldb
TOTAL urls: 1971	
retry 0: 1971	
min score: 0.0	
avg score: 0.0020	
max score: 1.005	
status 1 (db_unfetched):	1917
status 2 (db_fetched): 50	
status 3 (db_gone): 2	
status 5 (db_redir_perm):	2
CrawlDb statistics: done	

Figure 6.6 The stats associated with the crawldb

It's also helpful to dig deeper into the crawldb and get a dump of the contents in the database. Execute the following command:

```
nutch readdb crawl.wiki-ci/crawldb -dump crawl.wiki-ci/stats
```

This generates a file C:\nutch\nutch-0.9\crawl.wiki-ci\stats part-000, the contents of which will be similar to listing 6.12.

```
Listing 6.12 Dump of the URLs from the crawldb

http://ar.wikipedia.org/wiki/%D8%BA%D8%A7%D8%A1 Version: 5

Status: 1 (db_unfetched)

Fetch time: Sat Sep 15 10:32:03 PDT 2007

Modified time: Wed Dec 31 16:00:00 PST 1969

Retries since fetch: 0

Retry interval: 30.0 days

Score: 2.3218017E-4
```

```
Signature: null
Metadata: null
http://ca.wikipedia.org/wiki/M%C3%A8trica_%28matem%C3%A0tiques%29
    Version: 5
Status: 1 (db_unfetched)
Fetch time: Sat Sep 15 10:32:02 PDT 2007
Modified time: Wed Dec 31 16:00:00 PST 1969
Retries since fetch: 0
Retry interval: 30.0 days
Score: 3.1979533E-4
Signature: null
Metadata: null
```

You can look into the contents of the segments in a similar manner:

```
nutch readseg -dump crawl.wiki-ci/
segments/20070915103026 crawl.wiki-ci/stats/segments
```

This create a file dump in C:\nutch\nutch-0.9\crawl.wiki-ci\stats\segments.

Next, in listing 6.13 let's see how we can search the newly created search index using the Nutch web application.

```
Listing 6.13 Dump of a Nutch segment
```

```
Recno:: 0
URL:: http://en.wikipedia.org/
CrawlDatum::
Version: 5
Status: 67 (linked)
Fetch time: Sat Sep 15 10:30:33 PDT 2007
Modified time: Wed Dec 31 16:00:00 PST 1969
Retries since fetch: 0
Retry interval: 30.0 days
Score: 0.016949153
Signature: null
Metadata: null
Recno:: 1
URL:: http://en.wikipedia.org/skins-1.5
CrawlDatum::
Version: 5
Status: 67 (linked)
Fetch time: Sat Sep 15 10:30:33 PDT 2007
Modified time: Wed Dec 31 16:00:00 PST 1969
Retries since fetch: 0
Retry interval: 30.0 days
Score: 0.016949153
Signature: null
Metadata: null
```

With this overview, let's next look at how we can set up Nutch to search for the contents that have been crawled.

6.3.3 Searching with Nutch

When you unzip your Nutch installation, you should find the nutch.war file. Place this war file in your Tomcat webapps directory. The Nutch web application finds its indexes in the /segments directory where you start Tomcat, so we need to point Nutch to where we have the crawled data. Therefore, go to

 $\label{eq:c:apache-tomcat-6.0.13} we bapps \nutch \WEB-INF \classes \nutch-site.xml$

Change the contents of this file to those shown in listing 6.14.

```
Listing 6.14 Configuring nutch-site.xml
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<!-- Put site-specific property overrides in this file. -->
<configuration>
<property>
<name>searcher.dir</name>
<value>C:\nutch\nutch-0.9\crawl.wiki-ci</value>
</property>
</configuration>
```

Now, start up Tomcat (startup.sh) and point your browser to the following URL (assuming that Tomcat is running on its default port of 8080):

```
http://localhost:8080/nutch
```

Your browser window should show the Nutch search screen, as shown in figure 6.7.

Figure 6.7 The search screen for the Nutch application

Figure 6.8 Searching for collective intelligence using the Nutch search application

Search for the term *collective intelligence* and your browser should look similar to the one in figure 6.8. Play around with the various links, especially the explain and anchors links that are associated with each result.

So far in this section, we've gone through a simple example to crawl Wikipedia, starting with its page on collective intelligence. We've gone through the various directories generated by Nutch and looked at how to use the search tool. This should have given you a good overview of how to use Nutch. I referred you to the various references to set up the system to do a full Internet crawl and maintain the crawled data. Before we end this section, it's useful to briefly go through two important concepts: Apache Hadoop and MapReduce. These are the principles on which Nutch has been built to scale to billions of pages using commodity hardware in a distributed platform.

6.3.4 Apache Hadoop, MapReduce, and Dryad

Apache Hadoop is a software platform that lets you write and run applications for processing large datasets using commodity hardware in a distributed platform. Hadoop uses the Hadoop Distributed File System⁷ (HDFS) and implements MapReduce.⁸

HDFS is a part of Apache Hadoop project, which in turn is a subproject of Apache Lucene. HDFS is motivated by concepts used in the Google File System.⁹ The MapReduce concept has been extensively used by Google and deals with dividing the application into small units of work that can be executed in a distributed environment.

⁷ See http://lucene.apache.org/hadoop/hdfs_design.htm.

⁸ See Dean, J., and Ghemawat, S., MapReduce: Simplified Data Processing on Large Clusters, http://labs.google.com/papers/mapreduce.html.

⁹ http://labs.google.com/papers/gfs.html

Apache Hadoop aims to provide an open source implementation of MapReduce that anyone can use in their own distributed environment.

In the MapReduce paradigm, computation is split into two parts. First, apply a map function to each logical record to generate a set of intermediate key/value pairs. Then apply a reduce operation to compute a final answer that combines all the values for a given key.

A simple example best illustrates the paradigm, and is illustrated in figure 6.9. Assume that we need to compute the term frequencies associated with the various terms in a page. Using part of the example we looked at in section 4.3, let's assume that a page consists of the following text:

Collective Intelligence: Collective intelligence improves user experience

To process this, we would write a map method that is passed, say, an ID for the page as the key and the page text as the value. This method then generates seven intermediate key value pairs, one for each word, as shown in figure 6.9. These intermediate values are processed by the reduce function that counts the values for each of the keys. The output from the reduce function consists of five terms with their associated frequencies. Using this paradigm, a developer doesn't need to worry about distribution; the code is automatically parallelized.

Nutch uses Apache Hadoop and the MapReduce paradigm to scale to crawling and indexing billions of pages. For more details on Hadoop and MapReduce, see the references on this topic.

Microsoft's answer to MapReduce has been the development of Dryad.¹⁰ Dryad is a distributed computing platform developed by Microsoft Research and designed to provide operating system–level abstraction for thousands of PCs in a data center. Like MapReduce, a programmer can leverage parallel processing capabilities of thousands of machines without knowing anything about concurrent programming. With Dryad, you write several sequential programs and then connect them using one-way channels.

¹⁰ http://research.microsoft.com/research/sv/dryad/

Resources

The computation can be represented as a directed graph, with each vertex corresponding to a program and channels corresponding to the edges of the graph. A job in Dryad corresponds to traversing a directed acyclic graph, whose structure can change even during execution. Dryad infrastructure manages the creation, management, monitoring, and visualization of jobs. It provides fault-tolerance to machine failures and automatically re-executes failed jobs.

In this section, we looked at using the open source crawler, Nutch, for crawling the web. We also looked at how Nutch can be used for searching through the retrieved content and the various options for building a scalable web crawler.

6.4 Summary

Web crawlers are programs that retrieve content from sites by following hyperlinks in the document. Crawlers are useful for retrieving content from external sites. When the crawling process is guided by relevancy, it's called focused or intelligent crawling.

A typical focused crawling process consists of seeding the crawler with some seed URLs. The crawler visits the next available URL, retrieves the content, and measures the relevance of the content to the topic of interest. If the content is acceptable, then it parses the content to extract URLs and in turn visits these URLs.

There are significant costs associated with crawling the entire Web. These include costs for the software and hardware, high-speed network access, storage devices, and administrating the infrastructure. Using a focused crawler can help retrieve relevant information by crawling a subset of available crawling URLs.

With this chapter, we conclude the first part of the book that deals with gathering information from within and outside your application. In the next part, we look at how to analyze this information and build models to make your application more intelligent.

6.5 Resources

A Standard for Robots Exclusion. http://www.robotstxt.org/wc/norobots.html

- Chakrabarti , Soumen. Mining the Web. Discovering Knowledge from Hypertext Data. 2005. Morgan Kaufmann Publishers.
- Chakrabarti, Soumen, Martin H. Van den Berg, and Byron E. Dom. "Focused Crawling: A New Approach to Topic-Specific Web Resource Discovery." 1999. Proceedings of the 8th International WWW Conference, pp. 545-562.
- Cutting, Doug. "MapReduce in Nutch." http://wiki.apache.org/nutch-data/attachments/ Presentations/attachments/mapred.pdf
- Dean, J., and S. Ghemawat. "MapReduce: Simplified Data Processing on Large Clusters." http://labs.google.com/papers/mapreduce.html
- De Bra, Paul, Geert-Jan Houben, Yoram Kornatzky, and Renier Post. "Information Retrieval in Distributed Hypertexts." 1994. Proceedings of the 4th RIAO (Computer Assisted Information Retrieval) Conference, pp. 481-491.
- Ghemawat, Sanjay, Howard Gobioff, and Shun-Tak Leung. "The Google File System." http://labs.google.com/papers/gfs.html
- Gulli, A., and A. Signorini. "The Indexable Web is more than 11.5 billion pages." 2005. http://www.cs.uiowa.edu/~asignori/web-size/
- Hadoop. http://lucene.apache.org/hadoop/

"How Google Works." http://www.baselinemag.com/article2/0,1540,1985048,00.asp

- Isard, Michael, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. "Dryad, Distributed Data-Parallel Programs from Sequential Building Blocks." Eurosys '07. http:// research.microsoft.com/users/mbudiu/eurosys07.pdf
- Lucene Hadoop Wiki. http://labs.google.com/papers/gfs.html
- "Nutch 0.9 Crawl Script Tutorial." http://wiki.apache.org/nutch/Nutch_0%2e9_Crawl_Script_Tutorial
- $Nutch, the Java Search Engine. \ http://wiki.apache.org/nutch/Nutch_The_Java_Search_Engine. \ http://wiki.apache.org/nutch~Search_The_Java_Search_The_Java_Search_The_Java_Search_The_Search_The_Search_The_Search_The_Search_The_Search_The_Search_The_Search_The_Search_The_Searc$

Nutch Wiki. http://wiki.apache.org/nutch/

- NutchHadoop Tutorial. "How to Setup Nutch and Hadoop."
- http://wiki.apache.org/nutch/NutchHadoopTutorial
- Perez, Juan Carlos, IDG News Service. "Google Counts More Than 1 Trillion Unique Web URLs", http://www.pcworld.com/businesscenter/article/148964/ google_counts_more_than_1_trillion_unique_web_urls.html

"Simple MapReduce Tutorial." http://wiki.apache.org/nutch/SimpleMapReduceTutorial

- Sitemaps. http://en.wikipedia.org/wiki/Sitemaps
- "The Hadoop Distributed File System: Architecture and Design." http://lucene.apache.org/hadoop/ hdfs_design.htm
- What are sitemaps? http://www.sitemaps.org/
- White, Tom. Tom White's Blog. "MapReduce." http://weblogs.java.net/blog/tomwhite/archive/2005/09/mapreduce.html
- "Introduction to Nutch, Part 1: Crawling." http://today.java.net/pub/a/today/2006/01/10/ introduction-to-nutch-1.html
- "Introduction to Nutch, Part 2: Searching." http://today.java.net/pub/a/today/2006/02/16/ introduction-to-nutch-2.html
- Zhuang, Ziming, Rohit Wage, and C. Lee Giles. "What's There and What's Not? Focused Crawling for Missing Documents in Digital Libraries." 2005. JCDL, pp. 301-310.

Part 2

Deriving intelligence

ow that we've collected data, in this part we focus on deriving intelligence from it. Part 2 consists of four chapters—an introduction chapter to the data mining process, standards, and toolkits, followed by chapters on developing a textanalysis toolkit, finding patterns through clustering, and making predictions.

Chapter 7 should give you a good overview of the data mining process, along with a basic understanding of WEKA, the open source data mining toolkit, and JDM, the standard data mining API. Next, in chapter 8 we develop a text-processing toolkit to analyze unstructured content. This toolkit is useful for converting text into a format that's usable by the learning algorithms. Chapter 9 deals with finding patterns of similar items using the process of clustering. Lastly, chapter 10 looks at how we can make predictions by using classification and regression algorithms.

At the end of this part, you should have a good understanding of the data mining process, the various APIs, and the key algorithms for deriving intelligence.

Data mining: process, toolkits, and standards

This chapter covers

- A brief overview of the data mining process
- Introduction to key mining algorithms
- WEKA, the open source data mining software
- JDM, the Java Data Mining standard

The data mining process enables us to find gems of information by analyzing data. In this chapter, you'll be introduced to the field of data mining. The various data mining algorithms, tools, and data mining jargon can be overwhelming. This chapter provides a brief overview and walks you through the process involved in building useful models. Implementing algorithms takes time and expertise. Fortunately, there are free open source data mining frameworks that we can leverage. We use WEKA—Waikato Environment for Knowledge Analysis—a Java-based open source toolkit that's widely used in the data mining community. We look at the core packages of WEKA and work through a simple example to show how WEKA can be used for learning. We really don't want our implementation to be specific to WEKA. Fortunately, two initiatives through the Java Community Process—JSR 73 and JSR 247—provide a standard API

for data mining. This API is known as *Java Data Mining (JDM)*. We discuss JDM in the last section of this chapter and review its core components. We take an even deeper look at JDM in chapters 9 and 10, when we discuss clustering and predictive models.

7.1 Core concepts of data mining

Data mining is the automated process of analyzing data to discover patterns and build predictive models. Data mining has a strong theoretical foundation and draws from many fields, including mathematics, statistics, and machine learning. *Machine learning* is a branch of artificial intelligence that deals with developing algorithms that machines can use to learn the patterns in data in an automated manner. Data mining is different from data analysis, which typically deals with fitting data to already-known models. Querying for data and analyzing the data for summaries and trends—commonly known as *reporting* and *OLAP* (*online analytic processing*)—are common forms of data analysis. Data mining, on the other hand, deals with the discovery of previously unknown patterns or models by analyzing the data. They provide new insight into the data being analyzed. Reporting, OLAP, and data mining all fall in the general area of *business intelligence*.

In this section, we look at some of the core concepts associated with the process of data mining. We first discuss the three forms of attributes: numerical, ordinal, and nominal. Next, we look at supervised and unsupervised learning, some of the key learning algorithms, and the data mining process.

7.1.1 Attributes

A learning algorithm needs data in order to learn and find patterns; this data can be in the form of examples, where each example consists of a set of *attributes* or *dimensions*. Each attribute should be independent of other attributes; it shouldn't be possible to compute the value of an attribute based on another attribute's value. Depending on whether the attributes can be ordered and the kind of values they can take, we can categorize attributes into the following three forms:

- Numerical values have a real number associated with them. Two numerical values can be compared. Further, numerical values can be continuous (for example, a person's age) or can take only discrete values, such as the number of images uploaded by a user. Since every numerical value can be compared to another numerical value, there is ordering associated with numerical attributes. Furthermore, the difference in magnitude between two numerical values provides a measure of closeness—for example, the number 5 is closer to 3 than the number 10.
- *Ordinal* values are also discrete, but there is ordering associated with them. For example, {small, medium, large} may be used to characterize the size of an article. Here, there's no absolute measurement of how much smaller small is compared to medium; just that medium is larger than small, while large is larger than medium.

Nominal values consist of discrete values that are in no particular order, also sometimes called categorical. For example, the color of a person's eyes could be {blue, green, black, brown}. Here, a linear distance measure isn't helpful in getting a measure of closeness between two points—for example, there's no way to state that blue is closer to green than black in the previous example.

There are a number of algorithms that work either with continuous values or with nominal values. It's possible to convert a continuous variable into a discrete variable and vice versa.

Continuous numeric values can be discretized by creating appropriate bins. For example, the number of times a user has logged in to the application in a week can be converted into discrete values, *small, medium*, and *large*. One such binning criteria might be this: if the number of logins is one, then it falls in the *small* category, two to five logins corresponds to the *medium* category, while greater than five amounts to a *large* number of logins.

Discrete variables can be converted to numerical variables in the following manner. First, let's consider the example of a person's eye color. There were four values associated with this nominal variable: {blue, green, black, brown}. This can be transformed into four attributes: *blue, green, black*, and *brown*. These attributes have a value of 1 when the color of the person's eyes matches the attribute; otherwise the value is 0.

Ordinal variables that are discrete and have an ordering associated with them can be treated differently. Let's consider an attribute that takes three values, *small, medium*, and *large*. This can be converted into three attributes, *small, medium*, and *large*. When a variable takes the *large* value, all these three attributes take the value of 1; *medium* corresponds to setting the *small* and *medium* attributes to a value of 1; while a value of *small* will correspond to simply setting the variable *small* to 1. Table 7.1 summarizes the common terms used to describe the different kinds of attributes.

Algorithms that discover relationships between different attributes in a dataset are known as *association rule* algorithms, while algorithms that analyze the importance of an attribute in relation to predicting the value of another attribute or in clustering data are known as *attribute importance* algorithms.

Attribute type	Description	Discrete/ continuous	Example
Continuous	Takes real values	Continuous	The amount of time spent by a user on the site
Ordinal	There is ordering in the fixed set of val- ues that the attribute can take	Discrete or continuous	Length of session expressed as {small, medium, large}
Nominal	There is no ordering related to the values taken from the fixed set by the attribute	Discrete	Gender of a person {male, female}

Table 7.1 Common terms used to describe attributes

Based on how data is analyzed, algorithms can be classified into supervised and unsupervised learning, which we look at next.

7.1.2 Supervised and unsupervised learning

In *supervised learning*, we have a training dataset, with a set of instances or examples for which the predicted value is known. Each example consists of input attributes and a predicted attribute, as shown in figure 7.1. The aim of the algorithm is to build a mathematical model that can predict the output attribute value given a set of input attribute values. Decision trees, neural networks, regression, Bayesian belief networks, and so on are all examples of *predictive* models. The predictive models built by some algorithms such as decision trees, belief networks, and rule induction are easier to understand than those of other algorithms such as neural networks and regres-

sion. The accuracy of a predictive model is measured by means of how well the model does on previously unseen data. When the predicted attribute—the *target*—is a categorical attribute, the prediction model is also known as a *classifier* and the problem is one of *classification*. For example, a predictive modeler might classify a blog entry into appropriate categories. When the output attribute is a continuous, it's also known as a *regressor* and the problem is one of *regression*.

In *unsupervised* learning, there's no predicted value to be learned. The algorithm analyzes the multidimensional data to form clusters—groups of similar points. For example,

figure 7.2 shows two clusters formed by analyzing twodimensional data. K-means clustering, hierarchical clustering, and density-based clustering are examples of commonly used clustering algorithms. Unsupervised learning is good at analyzing the data and discovering patterns in an automated manner.

Now that we've classified the various learning algorithms into supervised and unsupervised learning, let's briefly look at some commonly used learning algorithms. We revisit a few of these algorithms in greater detail in chapters 9 and 10.

In this section, we provide a high-level overview of some the commonly used learning algorithms: decision trees, clustering, regression, neural networks (MLP and RBF), SVM, and Bayesian algorithms.

A *decision tree* is one of the most commonly used classifiers and deals only with nominal attributes. Let's go through an example to understand the basic concepts. Let's assume that we want to predict whether a user will like a recently introduced new feature in our application. Assume that we've created a dataset consisting of two

Figure 7.1 A predictive model makes a prediction based on the values for the input attributes.

Figure 7.2 Two clusters in a two-dimensional attribute space found by analyzing the proximity of the data points

attributes: user gender and number of logins. The first step is to create all the attributes into nominal attributes. By the process of binning, the number of logins gets converted into three values: {small, medium, and large}. The user's gender is already nominal and can take two values: {male, female}. Let's assume that we've created a dataset where each instance is a user with these two outputs, along with whether the user liked the new feature. Figure 7.3 shows an example decision tree, which consists of nodes and links. A node in the tree corresponds to an attribute value evaluation. The root node in this example corresponds to the attribute number of logins.

The arcs correspond to the categorical values associated with the attribute. There are three links from the parent node corresponding to the three nominal values associated with the attribute: {small, medium, large}.

It's easy to translate decision trees into rules to understand the logic discovered. For example, the rule for the output from the second row is

Figure 7.3 An example decision tree showing two attributes

If {number of logins = "small"} and {gender = male} then If {number of logins = "small"} and {gender = female} then

Among clustering algorithms, k-means is perhaps one of the most well-known. The algorithm is typically seeded with k randomly selected clusters, where k is the number of predefined clusters. Each example is then associated with the cluster whose center is closest to that point. At the end of the iteration, the means of the k clusters are recomputed by looking at all the points associated with the cluster. This process of learning continues until the examples don't move between clusters or a maximum number of iterations is reached.

Hierarchical clustering is another popular clustering algorithm. In this algorithm, each data point starts as its own cluster. Next, two points that are most similar are combined together into a parent node. This process is repeated until we're left with no more points to combine.

Density-based clustering algorithms try to find high-density areas that are separated by low-density areas. These algorithms automatically determine the number of clusters by omitting low-density regions, which are treated as noise. We look at clustering algorithms in greater detail in chapter 9.

Given two points in a two-dimensional space, it's fairly straightforward to compute the two constants associated to find a line that joins two points. Now extend this concept to finding the line or other higher-dimensional functions that best fit multiple points in a multi-dimensional space. Regression-based algorithms represent the data in a matrix form and transform the matrix to compute the required parameters. Regression-based techniques require numerical attributes to create the predictive models. These algorithms aim to minimize the sum of the squared error between the predicted value and the actual value for all the cases in the training dataset. Multi-layer perceptron (MLP) and radial basis functions (*RBF*) are two of the most commonly used *neural networks*. Neural networks are useful both as predictive models and as classifiers.

An MLP consists of a number of layers, beginning with the input layer as shown in figure 7.4. The number of input nodes corresponds to the number of input attributes. Depending on the nature of the transformation function used by the node, the input values

Figure 7.4 A multi-layer perceptron where the input from one layer feeds into the next layer

may be scaled between -1 and 1. Links in the network correspond to a weight by which the output from the node is multiplied. In a three-layer network, the second set of nodes is known as *hidden nodes*. The input to a node is the sum of the outputs from the nodes, multiplied by the weight associated with the link. The third layer is the *output layer* and predicts the attribute of interest.

Building an MLP predictive model consists of estimating the weights associated with each of the links. Typically, a gradient descent algorithm is used to learn the weights associated with an MLP; the learning procedure is known as *back propagation*. With this procedure, there's no guarantee of finding a global minimum, and the learning process may be enhanced to run in conjunction with some optimization methodologies, such as simulated annealing or genetic algorithms.

In an RBF, first the data is clustered into k-clusters using the k-means clustering algorithm. Each cluster corresponds to a node in the network, the output from which is dependent on the proximity of the input to the center of the node. The output from this layer is transformed into the output using weights. Learning the weights associated with these links is a linear regression problem.

A relatively new algorithm that's becoming popular for classification problems is the *support vector machines (SVM)* algorithm. Consider a two-dimensional space with a large number of points. There are a large number of lines that can be used to divide the points into two segments; let these lines be known as *separating lines*. Now define *margin* as the distance between a separating line and a parallel line that passes through the closest point to the line. SVM selects the line that has the maximum margin associated with it. Points that this second, parallel line passes through are known as *support vector points*. SVM generalizes this concept across multiple dimensions and has been observed to work well. The output variable can be discrete, containing two values, or continuous.

Algorithms based on probability theory are commonly known as *Bayesian algorithms*. One such simple but good classifier is the Naïve Bayes' classifier. This algorithm assumes independence between the input attributes and makes a prediction based on estimating probabilities from the training data. *Bayesian belief networks* (*BBN*), also known as *probabilistic belief networks*, are another approach at estimating the probabilities using the Bayes' theorem. BBNs are directed acyclic graphs (DAG), where a link signifies conditional distribution function between the parent and the child node.

Table 7.2 summarizes the different kinds of algorithms used for mining data, along with the kinds of input and output attributes.

Type of algorithm	Description	Type of input	Type of output	Example
Regression	Builds a predictive model that predicts the output variable based on the val- ues of the inputs	Continuous	Continuous	Regression, neural networks
Classification	Predicts the output value for the discrete output variable	Discrete ^a	Discrete	Decision tree, Naïve Bayes'
Clustering	Creates clusters in data to find patterns	Discrete or continuous	None	k-means, hierarchical clustering, density-based algorithms
Attribute importance	Determines the impor- tance of attributes with respect to predicting the output attribute	Discrete or continuous	None	Minimum description length, decision tree pruning
Association rules	Finds interesting relation- ships in data by looking at co-occurring items	Discrete	None	Association rules, Apriori

Table 7.2 Summary of different kinds of data mining algorithms

a. Many tool sets allow the use of both continuous and discrete variables as input for regression and classification.

There's a lot more involved in understanding and implementing these algorithms. We take a more detailed look at a few of them in later chapters. Fortunately, rather than having to reimplement all these algorithms, there are a few open source data mining platforms that we can leverage, one being WEKA. You can find the list of data mining tool vendors at http://www.dmoz.org//Computers/Software/Databases/Data_Mining/Tool_Vendors/.

With this brief overview on the different kinds of learning algorithms, we're now ready to look at the process of analyzing data to discover intelligence.

7.1.4 The mining process

Analyzing data to build a predictive model or discover clusters consists of the following six steps. Typically, the process is iterative, where you may repeat these steps in the quest for a better model or to refine an existing one:

- 1 Modeling and selecting the attributes—We first need to understand what we're looking for. Is our aim to build a predictive model or find patterns in the data? Based on the needs, identify the attributes that are available for use in the analysis.
- 2 Creating the learning dataset—We need a set of examples—a dataset—to be used by the algorithm. The dataset is typically broken up into two datasets: the training dataset which usually contains 90 percent of the data and is used for creating the predictive model, and the testing dataset, which is used for evaluating the quality of the predictive model. It may be computationally infeasible or too expensive to analyze all entries in a large dataset. In this case, random sampling is used to create a smaller dataset that's expected to be representative of the complete dataset.

- **3** Normalizing and cleaning the data—Instances that have missing values for any of the attributes are removed from the dataset. Further, each attribute may be normalized between the scales of [-1, 1] or [0, 1]. Typically, a distance measure is used, and normalizing the data ensures that an attribute doesn't skew the distance measurement due to a bigger range of values. For example, an attribute that takes a value between 0 and 100 will show a bigger distance measure for two points than an attribute that takes values between 0 and 1.
- 4 *Analyzing the data*—The training dataset is analyzed to either build a predictive model or discover clusters. A common problem to avoid in analyzing the data is overfitting the data—the model memorizes the training data, leading to poor predictive capabilities. The algorithm may be intelligent enough to prune the number of attributes being used based on their effectiveness in predicting the attribute of interest.
- **5** *Evaluating the quality of the predictive model*—The quality of the predictive model is evaluated using the testing dataset.
- 6 *Embedding the predictive model*—Once a predictive model has been built, it can be embedded in your application to make predictions.

A common approach to avoid overfitting and select the best predictive model is to use the *k*-fold cross validation strategy. This approach is typically used when the number of examples available for learning and testing is small. In this case, the dataset is broken randomly into *k* subsets. *K* sets of learning runs are executed, where one of the *k* sets is used for validating the predictive model while the other remaining (k-1) datasets are used for the learning process. Typically, the error associated with a predictive model is the average error in the test data across the *k* runs. A number of predictive models may be created using different algorithms or different settings, and the one with the least average error across the *k* runs is selected.

With this background on the data mining process and the key learning algorithms, it's helpful to work through an example to see the learning process in action. Writing learning algorithms can be complex and tedious; fortunately, a lot of work has been done in the open source community for us. We leverage one such open source data mining framework: WEKA.

7.2 Using an open source data mining framework: WEKA

The Waikato Environment for Knowledge Analysis, commonly known as WEKA, is one of the most popular suites of data mining algorithms that have been written in Java. WEKA is available under the GNU General Public License.¹ WEKA was developed at the University of Waikato in New Zealand. Early work on WEKA began in 1993; work on the Java version started in 1997. In September 2006, Pentaho,² a developer of open source business intelligence software, bought WEKA. WEKA contains tools for data pre-processing, classification, regression, clustering, association rules, and visualization. It

¹ http://www.gnu.org/copyleft/gpl.html

² http://www.pentaho.com/

also has a GUI application through which you can apply the various data mining algorithms to datasets. We are more interested in its Java API and will use that directly.

Over the years, the WEKA APIs have been leveraged to build additional tools and packages—you can see a list of these at http://weka.sourceforge.net/wiki/index.php/Related_Projects. RapidMiner,³ formerly known as Yet Another Learning Environment (YALE), is one such project that leverages WEKA to provide an environment for data mining. There's also an excellent book on data mining and WEKA written by two of the professors⁴ associated with WEKA.

In this section, we familiarize ourselves with the WEKA learning platform. We begin with a brief tutorial in which we use the WEKA learning environment to orient ourselves with the WEKA Java packages and key classes. Next, we write a simple example that invokes the WEKA API. At the end of this section, you should be familiar with WEKA, its GUI application and Java API, and what's involved in embedding the platform. We leverage WEKA later in chapters 9, 10, and 12.

7.2.1 Using the WEKA application: a step-by-step tutorial

We begin with a brief tutorial to guide us through installing and running WEKA on Windows.

INSTALLING WEKA

First, we need to download the WEKA package from http://www.cs.waikato.ac.nz/ml/ weka/. We use the developer version 3.5.6. Note that the WEKA book uses an older version, 3.4. If you don't have Java, download the self-extracting executable that includes Java VM 5.0 (weka-3-5-6jre.exe; 31,661,572 bytes); otherwise download the WEKA version (weka-3-5-6.exe; 15,665,809 bytes) that doesn't have the JVM. Install the software using the default values. I installed mine at C:\Program Files\Weka-3-5. If you open this directory on your machine, it should look similar to figure 7.5.

File Edit View Favorites Tools Help				1
G Back • 🔘 🧭 🔎 Search 🜔	Folders			
Address C:\Program Files\Weka-3-5				🖌 🛃 Go
Folders	× Name +	Size	Туре	Date Modified
Weka-35 drangelogs drangelogs drangelogs drangelogs drangelogs drangelogs drangelogs weka with associations attributeSelection with desofiers doubterrs with dusterrs with dusterrs with antrx with negloburesarch wattrix with negloburesarch with stemmers with stemmers	dotargelogs dotargelogs dota dota dota dota dota dota dotargelogs dot	431 KB 18 KB 3 KB 412 KB 371 KB 13 KB 13 KB 1 KB 4 KB 4 KB 30 KB 3 KB 4 A08 KB 2 KB 4,700 KB	File Folder File Folder Adobe Acrobat 7.0 File Cascading Style She Firefox Document Adobe Acrobat 7.0 Adobe Acrobat 7.0 Adobe Acrobat 7.0 File Configuration Settings CLASS File Adobe Acrobat 7.0 Application GIF Image Icon Executable Jar File Shortout Executable Jar File	5/4/2008 8:41 PM 5/4/2008 8:41 PM 5/4/2008 8:41 PM 5/31/2007 10:04 P 5/31/2007 10:04 P

Figure 7.5 The directory structure and some of the files for WEKA

³ http://rapid-i.com/content/blogcategory/10/69/

⁴ Ian H. Witten and Eibe Frank Data Mining: Practical machine learning tools and techniques, 2nd Edition. Morgan Kaufmann, San Francisco, 2005.

Figure 7.6 WEKA documentation that's available in the install

A good place to start is to open the documentation.html page that's available in the Weka-3-5 directory, a screenshot of which is shown in figure 7.6.

The top three links on the page are tutorials for the three environments for which WEKA has a GUI application. These components are

- Explorer—An environment for exploring data
- Experimenter—An environment for performing experiments and comparing different learning algorithms
- KnowledgeFlow—An environment that's similar to Explorer but supports dragand-drop functionality to carry out the learning process

The Package Documentation link points to the JavaDoc for the WEKA classes, which we explore later in this section. Next, it's worthwhile to spend a few minutes exploring

the WEKA GUI application. Start the GUI application by going to the Start menu of your window's computer and selecting the Weka 3.5 (with console) option in the Weka 3.5.6 program menu. You should see a window similar to the one shown in figure 7.7. Before we jump into the API, you may want to spend a few minutes playing with the Explorer application. The Explorer Guide link shown in figure 7.6 is a good reference to go through.

Alternatively, here's a simple five-step exercise that you may find useful to explore the application:

Figure 7.7 WEKA GUI with options to start one of four applications

- 1 Select the Explorer option under the Applications menu to start Explorer.
- 2 Click on Open File and go to the data directory data. Select the iris.arff dataset.
- **3** This should open up a window similar to the one in figure 7.8. Note that there are five attributes shown in the Attributes window, and you can find out the details about each attribute in the two windows on the right side.

gram Applications Tools Visualization Windows Hel Explorer		3
Classify Cluster Associate Select attributes visualize		
Open hie Open URL Open DS Ge	erate Unoo Edit Save	
lter		
Choose None	Apply	
urrent relation	Selected attribute	
Relation: iris Instances: 150 Attributes: 5	Name: sepallength Type: Numeric Missing: 0 (0%) Distinct: 35 Unique: 9 (6%)	
ttributes	Statistic Value	
	Minimum 4.3	
All None Invert Pattern	Maximum 7.9	
No. No.	Mean 5,843	
vo. rvame	0.000	
2 separativity		
3 petallength		
4 petalwidth		
5 class	Class: class (Nom) Visualize All	
Berryon		Figure 7.8 The five attributes o the iris.arff data
Kemövé		with dotails abo
Remo	e selected attributes. 6.1 7.9	
atus		the genallend

- **4** As shown in figure 7.9, we convert the sepallength variable into a discrete variable. Select the Choose button and then select Discretize Filter, as shown in figure 7.9. This variable is now a nominal attribute that can take three values.
- 5 Click the Visualize All option to see a visual representation of the five attributes.

Similarly, spend some time exploring the capabilities of the Experimenter and the KnowledgeFlow application.

With that brief overview of the WEKA application, we're now ready to explore the WEKA APIs.

Figure 7.9 Converting a continuous variable into a discrete variable using filters in WEKA

7.2.2 Understanding the WEKA APIs

In this section, we explore the WEKA APIs. A good introduction to the WEKA JAVA APIs is the tutorial.pdf file, part of the WEKA installation in the C:\Program Files\Weka-3-5 directory.

If you use an IDE such as Eclipse, you may also want to add the WEKA source available in the weka-src.jar file to your Eclipse project.⁵ The compiled Java classes are in weka.jar; you'll want to add the jar file to your project lib file so that Java can find it at runtime.

At this stage, it'll be useful to look at the JavaDoc for the APIs. Click on the Package Documentation link as shown in figure 7.6. Table 7.3 contains six of the most important packages that we use.

Package	Description
weka.core	Core package containing common components used by other pack- ages. Classes for modeling attributes, dataset, converters, matrix manipulation, text parsing, tree representation, and XML.
weka.classifiers	Contains implementation of the various classification algorithms. These include algorithms for numerical prediction.
weka.clusterers	Contains implementations of the various clustering algorithms.
weka.attributeselection	Algorithms associated with selecting attributes.
weka.associations	Algorithms related to finding associations.
weka.filters	Classes related to applying filters on the dataset; for example, to remove an attribute from analysis.

Table 7.3 The key packages in WEKA

The weka.core package contains the representation for a dataset. As shown in figure 7.10, each dataset is represented by the class Instances, which contains a list of examples, represented by the class Instance. Each Instance is composed of a number of attributes. WEKA uses its own implementation for a vector, FastVector.

To load data from various sources, WEKA defines the Loader interface, as shown in figure 7.11. This has the following method to create a dataset:

Instances getDataSet() throws IOException;

⁵ Unzip this jar file in the src/java directory and include the files in your project.

There are a number of Loader implementations, including reading data from a csv file and from the database.

The weka.classifier package contains implementations for classification and prediction algorithms. As shown in figure 7.12, a Classifier learns its model using Instances. It then can classify an Instance. The WEKA library contains a large set of classification and prediction algorithms, some of which are shown in figure 7.12.

Similarly, the weka.clusterer package contains the implementation for the various clustering algorithms. Each Clusterer creates clusters from the Instances and

Figure 7.13 Clusterer uses instances to build the model and associate an instance with the appropriate cluster.

then associates an Instance with the appropriate cluster, as shown in figure 7.13. The figure also shows some of the clustering algorithms that are available.

The weka.associations package contains two algorithms, Apriori and Predictive-Apriori, that are available to learn association rules, as shown in figure 7.14. All

association-learning algorithms extend the Associator interface. CARuleMiner is an optional interface for those schemes that can produce class association rules.

So far, you should have a good understanding about the core packages of WEKA. You're encouraged to explore other packages mentioned in table 7.3: weka. attributeselection and weka.filters. Now it's time to write some Java code to demonstrate the learning process. We create a dataset, build a model, and then evaluate it using the WEKA API.

Figure 7.14 Association-learning algorithms available in WEKA

7.2.3 Using the WEKA APIs via an example

In this section, we use the WEKA API to create a dataset and build a predictive model to predict values. There's also a tutorial on the WEKA wiki.⁶ We write the code to solve the following learning problem.

Imagine that we want to predict the number of times a user is expected to log in to our application within a week. Unfortunately, we're still a relatively new company and we have data for only four users, which is shown in table 7.4. We've captured two attributes during the registration process about the user: age and gender. Age is a

⁶ http://weka.sourceforge.net/wiki/index.php/Programmatic_Use and http://weka.sourceforge.net/wiki/ index.php/Use_Weka_in_your_Java_code

continuous attribute, while gender is a nominal attribute. We know that the learning dataset is really small, and potentially we may not even find a good predictor, but we're keen to try out the WEKA mining APIs, so we go ahead and build the predictive model in preparation for future better times.

User	Age	Gender	Number of logins
John	20	male	5
Jane	30	female	2
Ed	40	male	3
Amy	35	female	4

For our example, we do the following five steps:

- **1** Create the attributes.
- **2** Create the dataset for learning.
- **3** Build the predictive model.
- 4 Evaluate the quality of the model built.
- 5 Predict the number of logins for a new user.

We implement a class WEKATutorial, which follows these five steps. The code for this class is shown in listing 7.1.

The main method for our tutorial simply invokes the method executeWekaTutorial(), which consists of invoking five methods that execute each of the five steps. Let's look at the first step, createAttributes(), the code for which is shown in listing 7.2.

Remember, as shown in figure 7.10, WEKA uses its own implementation, FastVector, for creating a list of objects. There are two ways to create an Attribute.

For continuous attributes, such as age, we need to simply pass in the name of the attribute in the constructor:

Attribute ageAttribute = new Attribute("age");

For nominal attributes, we first need to create a FastVector that contains the various values that the attribute can take. In the case of attribute *gender*, we do this with the following code:

```
FastVector genderAttributeValues = new FastVector(2);
genderAttributeValues.addElement("male");
genderAttributeValues.addElement("female");
```

The constructor for nominal attributes takes in the name of the attribute and a Fast-Vector containing the various values that this attribute can take. Therefore, we create the genderAttribute as follows:

Attribute genderAttribute = new Attribute("gender", genderAttributeValues);

Next, we need to create the dataset for the data contained in table 7.4. A dataset is represented by Instances, which is composed of a number of Instance. Each Instance has values associated with each of the attributes. The code for creating the Instances is shown in listing 7.3.

```
Listing 7.3 Implementation of the method createLearningDataSet

private Instances createLearningDataSet(FastVector allAttributes) {

Instances trainingDataSet =

new Instances("wekaTutorial", allAttributes, 4);

trainingDataSet.setClassIndex(2);

addInstance(trainingDataSet, 20.,"male", 5);

addInstance(trainingDataSet, 30.,"female", 2);

Constructor

for Instances

Specifying attribute

to be predicted
```

```
addInstance(trainingDataSet, 40., "male", 3);
  addInstance(trainingDataSet, 35., "female", 4);
  return trainingDataSet;
}
private void addInstance(Instances trainingDataSet,
     double age, String gender, int numLogins) {
  Instance instance = createInstance(trainingDataSet, age,
       gender, numLogins);
  trainingDataSet.add(instance);
}
private Instance createInstance(Instances associatedDataSet,
     double age, String gender, int numLogins) {
                                                    Creating an
  Instance instance = new Instance(3);
                                                        Instance
  instance.setDataset(associatedDataSet);
  instance.setValue(0, age);
  instance.setValue(1, gender);
  instance.setValue(2, numLogins);
  return instance;
}
```

To create the dataset for our example, we need to create an instance of Instances:

The constructor takes three parameters: the name for the dataset, the FastVector of attributes, and the expected size for the dataset. The method createInstance creates an instance of Instance. Note that there needs to be a dataset associated with each Instance:

instance.setDataset(associatedDataSet);

Now that we've created the learning dataset, we're ready to create a predictive model. There are a variety of predictive models that we can use; for this example we use the radial basis function (RBF) neural network. The code for creating the predictive model is shown in listing 7.4.

Listing 7.4 Creating the predictive model private Classifier learnPredictiveModel(Instances learningDataset) throws Exception { Classifier classifier = getClassifier(); Create Classifier to be used classifier.buildClassifier(learningDataset); \rightarrow **Build predictive** return classifier; model using } learning dataset private Classifier getClassifier() { RBFNetwork rbfLearner = new RBFNetwork(); rbfLearner.setNumClusters(2); <1----Set number return rbfLearner; of clusters ļ

The constructor for creating the RBF is fairly simple:

```
RBFNetwork rbfLearner = new RBFNetwork();
```

We go with the default parameters associated with RBF learning, except we set the number of clusters to be used to 2:

```
rbfLearner.setNumClusters(2);
```

Once we have an instance of a classifier, it's simple enough to build the predictive model:

```
Classifier classifier = getClassifier();
classifier.buildClassifier(learningDataset);
```

Having built the predictive model, we need to evaluate its quality. To do so we typically use another set of data, commonly known as *test dataset*; we iterate over all instances and compare the predicted value with the expected value. The code for this is shown in listing 7.5.

```
Listing 7.5 Evaluating the quality and predicting the number of logins
private Evaluation evaluatePredictiveModel(Classifier classifier,
    Instances learningDataset) throws Exception {
    Evaluation learningSetEvaluation =
        new Evaluation(learningDataset);
    learningSetEvaluation.evaluateModel(classifier,
        learningDataset);
    return learningSetEvaluation;
}
```

Evaluating the quality of the model built is fairly straightforward. We simply need to create an instance of an Evaluation object and pass in the classifier for evaluation:

Lastly, we use the predictive model for predicting the number of logins for previously unknown cases. The code is shown in listing 7.6.

```
Listing 7.6 Predicting the number of logins
   private void predictUnknownCases (Instances learningDataset,
     Classifier predictiveModel)
      throws Exception {
                                                                    Create
      Instance testMaleInstance =
                                                                    Instance
         createInstance(learningDataset,32., "male", 0) ;
                                                                     Pass
      Instance testFemaleInstance =
                                                                     Instance to
         createInstance(learningDataset, 32., "female", 0) ;
                                                                     model for
      double malePrediction =
                                                                   ___ prediction
         predictiveModel.classifyInstance(testMaleInstance);
      double femalePrediction =
        predictiveModel.classifyInstance(testFemaleInstance);
      System.out.println("Predicted number of logins [age=32]: ");
      System.out.println("\tMale = " + malePrediction);
      System.out.println("\tFemale = " + femalePrediction);
```

We try to predict the number of logins for two users. The first user is a 32-year-old male; the second is a 32-year-old female. Listing 7.7 shows the output from running the program.

Listing 7.7	The output from the	main method
Correlatic	n coefficient	0.4528
Mean absol	ute error	0.9968
Root mean s	squared error	0.9968
Relative a	bsolute error	99.6764 %
Root relat	ive squared error	89.16 %
Total Numb	er of Instances	4
Predicted : Male = 3 Female :	number of logins [ag 8.3578194529075382 = 2.950342935832086	ge=32]: 5

Listing 7.7 shows the details of how well the predicted model performed for the training data. As shown, the correlation coefficient⁷ measures the quality of the prediction; for a perfect fit, this value will be 1. The predicted model shows an error of about 1.

The model predicts that the 32-year-old male is expected to log in 3.35 times, while the 32-year-old female is expected to log in 2.95 times. Using the data presented to the model, the model predicts that male users are more likely to log in than female users.

This example has been helpful in understanding the WEKA APIs. It also brings out an important issue: the example we implemented makes our application highly dependent on WEKA. For example, the WEKA APIs use FastVector instead of perhaps a List to contain objects. What if tomorrow we wanted to switch to a different vendor or implementation? Switching to a different vendor implementation at that point would be painful and time consuming. Wouldn't it be nice if there were a standard data mining API, which different vendors implemented? This would make it easy for a developer to understand the core APIs and if needed easily switch to a different implementation of the specification with simple changes, if any, in the code. This is where the Java Data Mining (JDM) specification developed under Java Community Process JSR 73 and JSR 247 comes in.

7.3 Standard data mining API: Java Data Mining (JDM)

JDM aims at building a standard API for data mining, such that client applications coded to the specification aren't dependent on any specific vendor application. The JDBC specification provides a good analogy to the potential of JDM. The promise is that just like it's fairly easy to access different databases using JDBC, in the same manner, applications written to the JDM specification should make it simple to switch between different implementations of data mining functions. JDM has wide support from the industry, with representations from a number of companies including Oracle, IBM, SPSS, CA, Fair Isaac,

⁷ See http://mathworld.wolfram.com/CorrelationCoefficient.html for more details.

SAP, SAS, BEA, and others. Oracle⁸ and KXEN⁹ have implementations compliant with the JDM specification as of early 2008. It's only a matter of time before other vendors and data mining toolkits adopt the specification.

Work on JSR 73¹⁰ began in July 2000, with the final release in August 2004. JDM supports the five different types of algorithms we looked at in section 7.1: clustering, classification, regression, attribute importance, and association rules. It also supports common data mining operations such as building, evaluating, applying, and saving a model. It defines XML Schema for representing models as well as accessing data mining capabilities from a web service.

JSR 247,¹¹ commonly known as *JDM 2.0*, addresses features that were deferred from JDM 1.0. Some of the features JSR 247 addresses are multivariate statistics, time series analysis, anomaly detection, transformations, text mining, multi-target models, and model comparisons. Work on the project started in June 2004, and the public review draft was approved in December 2006.

If you're interested in the details of JDM, I encourage you to download and read the two specifications—they're well written and easy to follow. You should also look at a recent well-written book¹² by Mark Hornick, the specification lead for the two JSRs on data mining and JDM. He coauthored the book with two other members of the specification committee, Erik Marcadé, from KXEN, and Sunil Venkayala from Oracle.

Next, we briefly look at the JDM architecture and the core components of the API. Toward the end of the section, we write code that demonstrates how a connection can be made to a data mining engine using the JDM APIs. In later chapters, when we discuss clustering, predictive models, and other algorithms, we review relevant sections of the JDM API in more detail.

7.3.1 JDM architecture

The JDM architecture has the following three logical components. These components could be either collocated or distributed on different machines:

- **1** The API: The programming interface that's used by the client. It shields the client from knowing about any vendor-specific implementations.
- **2** The Data Mining Engine (DME): The engine that provides data mining functionality to the client.
- **3** Mining object repository (MOR): The repository to store the data mining objects.

All packages in JDM begin with javax.datamining. There are several key packages, which are shown in table 7.5.

⁸ http://www.oracle.com/technology/products/bi/odm/odm_jdev_extension.html

⁹ http://kxen.com/products/analytic_framework/apis.php

¹⁰ http://www.jcp.org/en/jsr/detail?id=73

¹¹ http://www.jcp.org/en/jsr/detail?id=247

¹² Java Data Mining: Strategy, Standard, and Practice, 2007, Morgan Kaufmann.

Concept	Packages	Comments
Common objects used throughout	Javax.datamining	Contains common objects such as MiningObject, Factory that are used throughout the JDM packages
Top-level objects used in other packages	Javax.datamining.base	Contains top-level interfaces such as Task, Model, BuildSettings, AlgorithmSettings. Also introduced to avoid cyclic package dependencies
Algorithms- related packages	Javax.datamining.algorithm Javax.datamining.association Javax.datamining.attributeimportance Javax.datamining.clustering Javax.datamining.supervised Javax.datamining.rule	Contains interfaces associated with the different types of algorithms, namely: association, attribute importance, clus- tering, supervised learning—includes both classification and categorization. Also contains Java interfaces represent- ing the predicate rules created as part of the models, such as tree model.
Connecting to the data min- ing engine	Javax.datamining.resource	Contains classes associated with con- necting to a data mining engine (DME) and metadata associated with the DME.
Data-related packages	Javax.datamining.data Javax.datamining.statistics	Contains classes associated with repre- senting both a physical and logical data- set and statistics associated with the input mining data.
Models and tasks	Javax.datamining.task Javax.datamining.modeldetail	Contains classes for the different types of tasks: build, evaluate, import and export. Provides detail on the various model representations.

			10.84	
lable	1.5	ĸey	JDIN	packages

Next, let's take a deeper look at some of the key JDM objects.

7.3.2 Key JDM objects

The MiningObject is a top-level interface for JDM classes. It has basic information such as a name and description, and can be saved in the MOR by the DME. JDM has the following types of MiningObject, as shown in figure 7.15.

- Classes associated with describing the input data, including both the physical (PhysicalDataSet) and logical (LogicalDataSet) aspects of the data.
- Classes associated with settings. There are two kinds of settings, first related to setting for the algorithm. AlgorithmSettings is the base class for specifying the setting associated with an algorithm. Second is the high-level specification for building a data mining model. BuildSettings is the base implementation for the five different kinds of models: association, clustering, regression, classification, and attribute importance.

- Model is the base class for mining models created by analyzing the data. There
 are five different kinds of models: association, clustering, regression, classification, and attribute importance.
- Task is the base class for the different kinds of data mining operations, such as applying, testing, importing, and exporting a model.

We look at each of these in more detail in the next few sections. Let's begin with representing the dataset.

7.3.3 Representing the dataset

JDM has different interfaces to describe the physical and logical aspects of the data, as shown in figure 7.16. PhysicalDataset is an interface to describe input data used for data mining, while LogicalData is used to represent the data used for model input. Attributes of the PhysicalDataset, represented by PhysicalAttribute, are mapped to attributes of the LogicalData, which is represented by LogicalAttribute. The separation of physical and logical data enables us to map multiple PhysicalDatasets into one LogicalData for building a model. One PhysicalDataset can also translate to multiple LogicalData objects with variations in the mappings or definitions of the attributes.

Each PhysicalDataset is composed of zero or more PhysicalAttributes. An instance of the PhysicalAttribute is created through the PhysicalAttributeFactory. Each PhysicalAttribute has an AttributeDataType, which is an enumeration and contains one of the values {double, integer, string, unknown}. The PhysicalAttribute also has a PhysicalAttributeRole; another enumeration is used to define special roles that some attributes may have. For example, taxonomyParentId represents a column of data that contains the parent identifiers for a taxonomy.

Figure 7.16 Key JDM interfaces to describe the physical and logical aspects of the data

LogicalData is composed of one or more LogicalAttributes. Each Logical-Attribute is created by the LogicalAttributeFactory and has an associated AttributeType. Each AttributeType is an enumeration with values {numerical, categorical, ordinal, not specified}. Associated with a LogicalAttribute is also a DataPreparation-Status, which specifies whether the data is prepared or unprepared. For categorical attributes, there's also an associated CategorySet, which specifies the set of categorical values associated with the LogicalAttribute.

Now that we know how to represent a dataset, let's look at how models are represented in the JDM.

7.3.4 Learning models

The output of a data mining algorithm is represented by the Model interface. Model, which extends MiningObject, is the base class for representing the five different kinds of data mining models, as shown in figure 7.17. Each model may have an associated ModelDetail, which captures algorithm-specific implementations. For example, NeuralNetworkModelDetail in the case of a neural network model captures the detailed representation of a fully connected, MLP network model. Similarly, Tree-ModelDetail contains model details for a decision tree, and contains methods to traverse the tree and get information related to the decision tree. To keep figure 7.17 simple, the subclasses of ModelDetail are omitted.

Table 7.6 shows the six subclasses of the Model interface. Note that Supervised-Model acts as a base interface for both ClassificationModel and RegressionModel.

So far, we've looked at how to represent the data and the kinds of model representation. Next, let's look at how settings are set for the different kinds of algorithms.

Figure 7.17 The model representation in JDM

Table 7.6	Key subclasse	s for Model
-----------	---------------	--------------------

Model type	Description
AssociationModel	Model created by an association algorithm. It contains data asso- ciated with itemsets and rules.
AttributeImportanceModel	Ranks the attributes analyzed. Each attribute has a weight associ- ated with it, which can be used as an input for building a model.
Clustering Model	Represents the output from a clustering algorithm. Contains infor- mation to describe the clusters and associate a point with the appropriate cluster.
SupervisedModel	Is a common interface for supervised learning-related models.
ClassificationModel	Represents the model created by a classification algorithm.
RegressionModel	Represents the model created by a regression algorithm.

7.3.5 Algorithm settings

AlgorithmSettings, as shown in figure 7.18, is the common base class for specifying the settings associated with the various algorithms. A DME will typically use defaults for the settings and then use the specified settings to override the defaults.

Figure 7.18 The settings associated with the different kinds of algorithms

Each specific kind of algorithm typically has its own interface to capture the settings. For example, KMeansSettings captures the settings associated with the k-means algorithm. This interface specifies settings such as the number of clusters, the maximum number of iterations, the distance function to be used, and the error tolerance range.

So far in this section, we've looked at the JDM objects for representing the dataset, the learning models, and the settings for the algorithms. Next, let's look at the different kinds of tasks that are supported by the JDM.

7.3.6 JDM tasks

There are five main types of tasks in JDM. These are tasks associated with building a model, evaluating a model, computing statistics, applying a model, and importing and exporting models from the MOR. Figure 7.19 shows the interfaces for some of the tasks in JDM. Tasks can be executed either synchronously or asynchronously. Some of the tasks associated with data mining, such as learning the model and evaluating a

Figure 7.19 The interfaces associated with the various tasks supported by JDM

large dataset, take a long time to run. JDM supports specifying these as asynchronous tasks and monitoring the status associated with them.

The Task interface is an abstraction of the metadata needed to define a data-mining task. The task of applying a mining model to data is captured by ApplyTask. DataSet-ApplyTask is used to apply the model to a dataset, while RecodApplyTask is used to apply the mining model to a single record. ExportTask and ImportTask are used to export and import mining models from the MOR.

Task objects can be referenced, reexecuted, or executed at a later time. DME doesn't allow two tasks to be executed with the same name, but a task that has completed can be re-executed if required. Tasks executed asynchronously provide a reference to an ExecutionHandle. Clients can monitor and control the execution of the task using the ExecutionHandle object.

Next, we look at the details of clients connecting to the DME and the use of ExecutionHandle to monitor the status.

7.3.7 JDM connection

JDM allows clients to connect to the DME using vendor-neutral connection architecture. This architecture is based on the principles of Java Connection Architecture (JCX). Figure 7.20 shows the key interfaces associated with this process.

Figure 7.20 The interfaces associated with creating a Connection to the data-mining service

The client code looks up an instance of ConnectionFactory, perhaps using JNDI, and specifies a user name and password to the ConnectionFactory. The Connection-Factory creates Connection objects, which are expected to be single-threaded and are analogous to the Connection objects created while accessing the database using the JDBC protocol. The ConnectionSpec associated with the ConnectionFactory contains details about the DME name, URI, locale, and the user name and password to be used.

A Connection object encapsulates a connection to the DME. It authenticates users, supports the retrieval and storage of named objects, and executes tasks. Each Connection object is a relatively heavyweight JDM object and needs to be associated with a single thread. Clients can access the DME via either a single Connection object or via multiple instances. Version specification for the implementation is captured in the ConnectionMetaData object.

The Connection interface has two methods available to execute a task. The first one is used for synchronous tasks and returns an ExecutionStatus object:

```
public ExecutionStatus execute(Task task, java.lang.Long timeout)
    throws JDMException
```

The other one is for asynchronous execution:

```
public ExecutionHandle execute(java.lang.String taskName)
    throws JDMException
```

It returns a reference to an ExecutionHandle, which can be used to monitor the task's status. The Connection object also has methods to look for mining objects, such as the following, which looks for mining objects of the specified type that were created in a specified time period:

```
public java.util.Collection getObjectNames(java.util.Date createdAfter,
        java.util.Date createdBefore,
        NamedObject objectType) throws JDMException
```

With this overview of the connection process, let's look at some sample code that can be used to connect to the DME.

7.3.8 Sample code for accessing DME

It's now time to write some code to illustrate how the JDM APIs can be used to create a Connection to the DME. The first part of the code deals with the constructor and the main method, which calls the method to create a new connection. This is shown in listing 7.8.

```
Listing 7.8 Constructor and main method for JDMConnectionExample
package com.alag.ci.jdm.connect;
import java.util.Hashtable;
import javax.datamining.JDMException;
import javax.datamining.resource.Connection;
import javax.datamining.resource.ConnectionFactory;
import javax.datamining.resource.ConnectionSpec;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;
public class JDMConnectionExample {
  private String userName = null;
  private String password = null;
  private String serverURI = null;
                                                          Constructor for
                                                    JDMConnectionExample
  private String providerURI = null;
  public JDMConnectionExample (String userName, String password,
        String serverURI, String providerURI) {
                                                               4
     this.userName = userName;
     this.password = password;
     this.serverURI = serverURI;
                                                          Get connection using
     this.providerURI = providerURI;
                                                        JDMConnectionExample
   ļ
                                                                    instance
  public static void main(String [] args) throws Exception {
     JDMConnectionExample eg = new JDMConnectionExample("username",
      "password", "serverURI",
     "http://yourHost:yourPort/yourDMService");
     Connection connection = eg.createANewConnection();
```

In our example, we use a JDMConnectionExample object to create a new instance of the Connection object. The constructor for JDMConnectionExample takes in four parameters: the username and password for the DME, the URI for the DME server, and the URI for the provider. Sample values are shown in the main method. The main method creates a Connection object with the following call:

Connection connection = eg.createANewConnection();

There are three steps involved in getting a new Connection, as shown in listing 7.9.

First, we need to create an instance of the ConnectionFactory. Next, we need to obtain a ConnectionSpec from the ConnectionFactory, populate it with the credentials, and then create a new Connection from the ConnectionFactory using the ConnectionSpec.

Listing 7.10 contains the remaining part of the code for this example, and deals with creating the connection factory and the initial context.

```
Listing 7.10 Getting a ConnectionFactory and ConnectionSpec
  private ConnectionFactory createConnectionFactory()
    throws NamingException {
     InitialContext initialJNDIContext = createInitialContext();
     return (ConnectionFactory) initialJNDIContext.lookup("java:com/env/
  jdm/yourDMServer");
                                                             Create InitialContext
                                                                 for JNDI lookup
  private InitialContext createInitialContext() throws NamingException {
     Hashtable<String, String> environment=
                                                              Environment
       new Hashtable<String,String>();
                                                              variables set
     environment.put(Context.INITIAL CONTEXT FACTORY,
                                                              in Hashtable
 "com.your-company.javax.datamining.resource.initialContextFactory-impl");
     environment.put(Context.PROVIDER_URL, this.providerURI);
     environment.put(Context.SECURITY PRINCIPAL, this.userName);
     environment.put(Context.SECURITY CREDENTIALS, this.password);
     return new InitialContext (environment);
  }
  private ConnectionSpec getConnectionSpec(
     ConnectionFactory connectionFactory) {
     ConnectionSpec connectionSpec =
                                                     Get ConnectionSpec
        connectionFactory.getConnectionSpec();
                                                    from ConnectionFactory
     connectionSpec.setName(this.userName);
     connectionSpec.setPassword(this.password);
     connectionSpec.setURI(this.serverURI);
     return connectionSpec;
  }
```

To get the ConnectionFactory, we first need to create the InitialContext for the JNDI lookup. The constructor for InitialContext takes a Hashtable, and we set the provider URL, username, and password for the lookup. Here the code

```
(ConnectionFactory) initialJNDIContext.lookup(
    "java:com/env/jdm/yourDMServer");
```

provides access to the ConnectionFactory. We get access to the ConnectionSpec with

ConnectionSpec connectionSpec = connectionFactory.getConnectionSpec();

The ConnectionSpec object is populated with the serverURI, the name, and password credentials, and a new Connection object is created from the ConnectionFactory by the following code:

connectionFactory.getConnection(connectionSpec);

Once you have a Connection object, you can execute the different types of Tasks that are available, per the JDM specification. This completes our JDM example and a brief overview of the JDM architecture and the key APIs. Before we end this chapter, it's useful to briefly discuss how JDM fits in with PMML, an XML standard for representing data mining models.

7.3.9 JDM models and PMML

Predictive Model Markup Language (PMML) is an XML standard developed by the Data Mining Group¹³ (DMG) to represent predictive models. There's wide support among the vendors to import and/or export PMML models. But PMML doesn't specify the settings used to create the model, so there may be some loss of information when JDM models are converted to PMML format and vice versa; this is dependent on each vendor's JDM model implementation. PMML does contain adequate information to apply and test the model. PMML models map readily to JDM. JDM also influenced certain aspects of the PMML 2.0 release.

7.4 Summary

Data mining is the automated process of analyzing data to discover previously unknown patterns and create predictive models. Mining algorithms need test data in order to learn. A dataset is composed of a number of examples. Each example consists of values for a set of attributes. An attribute can be continuous or discrete. Discrete values that have an ordering associated with them are known as ordinal, while those that don't have any ordering are called nominal.

There are five major types of mining algorithms:

- *Attribute importance*—Ranks the available attributes in terms of importance for predicting the output variable
- Association rules—Finds interesting relationships in data by looking at co-occurring items
- Clustering—Finds clusters of similar data points
- *Regression*—Predicts the value of the output variable based on the input attributes
- Classification—Classifies a discrete attribute into one of enumerated value

¹³ http://www.dmg.org/

Resources

Writing mining algorithms is complex. Fortunately, there are a few open source data mining platforms that one can use. WEKA is perhaps the most commonly used Javabased open source data mining platform. WEKA includes all the five different types of learning algorithms along with APIs to represent and manipulate the data.

You don't want to tie your application code with a specific vendor implementation of data mining algorithms. Java Data Mining (JDM) is a specification developed under Java Community Process JSR 73 and JSR 247. JDM aims at providing a set of vendorneutral APIs for accessing and using a data-mining engine. There are couple of datamining engines that are compliant with the JDM specification, and it's expected that more companies will implement it in the future.

With this background, you should have a basic understanding of the data mining process; the algorithms; WEKA, the open source data mining toolkit; and JDM, the Java Data Mining standard.

For the learning process, we need a dataset. In the next chapter, chapter 8, we build a text analysis toolkit, which enables us to convert unstructured text into a format that can be used by the learning algorithms. We take a more detailed look at some of the data-mining algorithms, especially those associated with clustering and predictive models in chapter 9 and chapter 10.

7.5 Resources

- Burges, Christopher J. C. "A tutorial on support vector machines for pattern recognition." 1998. *Data Mining and Knowledge Discovery*. http://www.umiacs.umd.edu/~joseph/ support-vector-machines4.pdf
- "Familiarize yourself with data mining functions and algorithms." 2007. JavaWorld. http://www.javaworld.com/javaworld/jw-02-2007/jw-02-jdm.html?page=2
- Hornick, Mark, Erik Marcadé, and Sunil Venkayala. Java Data Mining: Strategy, Standard, and Practice. 2007. Morgan Kaufmann.
- Java Data Mining API 1.0. JSR 73. http://www.jcp.org/en/jsr/detail?id=73
- Java Data Mining API 2.0. JSR 247. http://www.jcp.org/en/jsr/detail?id=247
- Jose, Benoy. "The Java Data Mining API." Java Boutique. http://javaboutique.internet.com/ articles/mining_java/
- Moore, Andrew. "Statistical Data Mining Algorithms." http://www.autonlab.org/tutorials/
- Sommers, Frank. "Mine Your Own Data with the JDM API." 2005. -http://www.artima.com/ lejava/articles/data_mining.html
- Tan, Pang-Ning, Michael Steinbach, and Vipin Kumar. Introduction to Data Mining. 2006.
- "Use Weka in your Java Code." http://weka.sourceforge.net/wiki/index.php/ Use_Weka_in_your_Java_code
- Vapnik, Vladimir. Statistical Learning Theory. 1998. Wiley Science.
- Venkayala, Sunil. "Using Java Data Mining to Develop Advanced Analytics Applications: The predictive capabilities of enterprise Java apps." Java Developer Journal, http://jdj.sys-con.com/read/49091.htm
- Witten, Ian H. and Eibe Frank. Data Mining: Practical Machine Learning Tools and Techniques, 2nd Edition. 2005. Morgan Kaufmann, San Francisco.

Building a text analysis toolkit

This chapter covers

- A brief introduction to Lucene
- Understanding tokenizers, TokenStream, and analyzers
- Building an analyzer to detect phrases and inject synonyms
- Use cases for leveraging the infrastructure

It's now common for most applications to leverage user-generated-content (UGC). Users may generate content through one of many ways: writing blog entries, sending messages to others, answering or posing questions on message boards, through journal entries, or by creating a list of related items. In chapter 3, we looked at the use of tagging to represent metadata associated with content. We mentioned that tags can also be detected by automated algorithm.

In this chapter, we build a toolkit to analyze content. This toolkit will enable us to extract tags and their associated weights to build a term-vector representation for the text. The term vector representation can be used to

- Build metadata about the user as described in chapter 2
- Create tag clouds as shown in chapter 3
- Mine the data to create clusters of similar documents as shown in chapter 9
- Build predictive models as shown in chapter 10
- Form a basis for understanding search as used in chapter 11
- Form a basis for developing a content-based recommendation engine as shown in chapter 12

As a precursor to this chapter, you may want to review sections 2.2.3, 3.1–3.2, and 4.3. The emphasis of this chapter is in implementation, and at the end of the chapter we'll have the tools to analyze text as described in section 4.3. We leverage Apache Lucene to use its text-parsing infrastructure. Lucene is a Java-based open source search engine developed by Doug Cutting. Nutch, which we looked at in chapter 6, is also based on Lucene. We begin with building a text-parsing infrastructure that supports the use of stop words, synonyms, and a phrase dictionary. Next, we implement the term vector with capabilities to add and compute similarities with other term vectors. We insulate our infrastructure from using any of Lucene's specific classes in its interfaces, so that in the future if you want to use a different text-parsing infrastructure, you won't have to change your core classes. This chapter is a good precursor to chapter 11, which is on intelligent search.

8.1 Building the text analyzers

This section deals with analyzing content—taking a piece of text and converting it into tags. Tags may contain a single term or multiple terms, known as *phrases*. In this section, we build the Java code to intelligently process text as illustrated in section 4.3. This framework is the foundation for dealing with unstructured text and converting it into a format that can be used by various algorithms, as we'll see in the remaining chapters of this book. At the end of this section, we develop the tools required to convert text into a list of tags.

In section 2.2.3, we looked at the typical steps involved in text analysis, which are shown in figure 8.1:

- **1** *Tokenize*—Parsing the text to generate terms. Sophisticated analyzers can also extract phrases from the text.
- 2 *Normalize*—Converting text to lowercase.
- 3 *Eliminate stop words*—Eliminating terms that appear very often.
- 4 Stem—Converting the terms into their stemmed form; removing plurals.

At this point, it's useful to look at the example in section 4.3, where we went through the various steps involved with analyzing text. We used a simple blog entry consisting of a title and a body to demonstrate analyzing text. We use the same example in this chapter.

Figure 8.2, which shows a typical web page with a blog entry in the center of the page, demonstrates the applicability of the framework developed in this chapter. The figure consists of five main sections:

- Main context—The blog entry with the title and body is at the center of the page.
- **2** *Related articles*—This section contains other related articles that are relevant to the user and to the blog entry in the first section. We develop this in chapter 12.
- **3** *Relevant ads*—This section shows advertisements that are relevant to the user and to the context in the first section. Tags extracted from the main context and the user's past behavior are used to show relevant advertisem

Figure 8.2 Example of how the tools developed in this chapter can be leveraged in your application

behavior are used to show relevant advertisements.

- **4** *Tag cloud visualization*—This section shows a tag cloud representation of the tags of interest to the user. This tag cloud (see chapter 3) can be generated by analyzing the pages visited by the user in the past.
- 5 Search box—Most applications have a search box that allows users to search for content using keywords. The main content of the page—the blog entry—is indexed for retrieval via a search engine, as shown in chapter 11.

First, we need some classes that can parse text. We use Apache Lucene.

8.1.1 Leveraging Lucene

Apache Lucene¹ is an open source Java-based full-text search engine. In this chapter, we use the analyzers that are available with Lucene. For more on Lucene, Manning has an excellent book, *Lucene in Action*, by Gospodnetic and Hatcher. You'll find the material in chapter 4 of the book to be particularly helpful for this section.

Lucene can be freely downloaded at http://www.apache.org/dyn/closer.cgi/ lucene/java/. Download the appropriate file based on your operating system. For example, I downloaded lucene-2.2.0-src.zip, which contains the Lucene 2.2.0 source, and lucene-2.2.0.zip, which contains the compiled classes. Unzip this file and make sure that lucene-core-2.2.0.jar is in your Java classpath. We use this for our analysis.

The first part of the text analysis process is tokenization—converting text into tokens. For this we need to look at Lucene classes in the package org.apache. lucene.analysis.

KEY LUCENE TEXT-PARSING CLASSES

In this section, we look at the key classes that are used by Lucene to parse text. Figure 8.3 shows the key classes in the analysis package of Lucene. Remember, our aim is to convert text into a series of terms. We also briefly review the five classes that are shown in figure 8.3. Later, we use these classes to write our own text analyzers.

¹ http://lucene.apache.org/

An Analyzer is an abstract class that takes in a java.io.Reader and creates a Token-Stream. For doing this, an Analyzer has the following method:

public abstract TokenStream tokenStream(String fieldName, Reader reader);

The abstract class TokenStream creates an enumeration of Token objects. Each Tokenizer implements the method:

```
public Token next() throws IOException;
```

A Token represents a term occurring in the text.

There are two abstract subclasses for TokenStream. First is Tokenizer, which deals with processing text at the character level. The input to a Tokenizer is a java.io.Reader. The abstract Tokenizer class has two protected constructors. The first is a no-argument constructor; the second takes a Reader object. All subclasses of a Tokenizer have a public constructor that invokes the protected constructor for the parent Tokenizer class, passing in a Reader object:

protected abstract Tokenizer(Reader input)

The second subclass of TokenStream is TokenFilter. A TokenFilter deals with words, and its input is another TokenStream, which could be another TokenFilter or a Tokenizer. There's only one constructor in a TokenFilter, which is protected and has to be invoked by the subclasses:

```
protected TokenFilter(TokenStream input)
```

The composition link from a TokenFilter (see the black diamond in figure 8.3) to a TokenStream in figure 8.3 indicates that token filters can be chained. A TokenFilter follows the composite design pattern and forms a "has a" relationship with another TokenStream.

Table 8.1 summarizes the five classes that we have discussed so far.

Next, we need to look at some of the concrete implementations of these classes.

Class	Description
Token	Represents a term occurring in the text, with positional information of where it occurs in the text.
Analyzer	Abstract class for converting text in a java.io.Reader into TokenStream.
TokenStream	An abstract class that enumerates a sequence of tokens from a text.

Table 8.1 Common terms used to describe attributes

Class	Description
Tokenizer	A TokenStream that tokenizes the input from a Reader. It deals with individual characters.
TokenFilter	A TokenStream whose input is another TokenStream. It deals with words.

Table 8.1 Common terms used to describe attributes (continued)

LUCENE TOKENIZERS, FILTERS, AND ANALYZERS

In this section, we look at the available implementations for tokenizers, token filters and analyzers from Lucene. We'll leverage these when we develop our own analyzers.

First let's look at the concrete implementations of Tokenizer provided by Lucene. As shown in figure 8.3, we're currently interested in five of the available tokenizers. These are shown in table 8.2, which should give you a good flavor of available tokenizers. Of course, it's simple enough to extend any of these Tokenizers. Either a StandardTokenizer or a LowercaseTokenizer should work well for most applications.

Tokenizer	Details
StandardTokenizer	Tokenizer for most European languages. Removes punctuation and splits words at punctuation. But if a dot isn't followed by white space, it's considered part of the token. Splits words at hyphens unless there's a number, in which case the whole token isn't split. Recognizes Internet host names and email addresses.
CharTokenizer	An abstract base class for character-oriented simple Tokenizers.
WhitespaceTokenizer	Divides text at white spaces.
LetterTokenizer	Divides text at non-letters. Works well for European languages but not for Asian languages, where words aren't separated by spaces.
LowerCaseTokenizer	Converts text into lowercase and divides text into non-words.
RussianLetterTokenizer	Extends LetterTokenizer by additionally looking up letters in a given "Russian charset."

Table 8.2 Available tokenizers from Lucene

Next, let's look at the available set of TokenFilters, which is shown in figure 8.4. Table 8.3 contains details about a few of them.

Of particular importance to us is the StopFilter, which we use for adding stop words, and the PorterStemFilter, which we use to stem words. Note that there are language-specific filters, for example, the RussianLowerCaseFilter and Russian-StemFilter for the Russian language, and the GermanStemFilter for German words.

Figure 8.4 Some of the concrete implementations for Tokenizer and TokenFilter

Lastly, let's look at some of the analyzers that are available from Lucene. Figure 8.5 shows some of the Analyzer classes available to us.

Table 8.3 Available filters from Lucene

TokenFilter	Details
StandardFilter	Normalizes tokens by removing s, S, and periods. Works in conjunc- tion with a StandardTokenizer.
LowerCaseFilter	Normalizes the token text to lowercase.
StopFilter	Removes words that appear in the provided stop word list from the token stream.
PorterStemFilter	Stems the token using the Porter stemming algorithm. Tokens are expected to be lowercase.
RussianLowerCaseFilter	Converts text into lowercase using a Russian charset.
RussianStemFilter	Stems Russian words, which are expected to be lowercase.
GermanStemFilter	A stem filter for German words.

Table 8.4 contains the details about each of the available analyzers.

Table 8.4	Common Analy	vzer C	lasses that	are available	in ا	Lucene
	Common Anal	удет с	asses mai		,	LUCCIIC

Analyzer	Details
SimpleAnalyzer	Uses the LowerCaseTokenizer
StopAnalyzer	Combines a LowerCaseTokenizer with a StopFilter
WhitespaceAnalyzer	Uses the WhitespaceTokenizer
PerFieldAnalyzerWrapper	Useful for when different fields need different ${\tt Analyzers}$
StandardAnalyzer	Uses a list of English stop words and combines StandardTokenizer, StandardFilter, LowerCaseFilter, and StopFilter
GermanAnalyzer	Analyzer for German language
RussianAnalyzer	Analyzer for Russian language

At this stage, we're done with Lucene classes. We build on what we've learned so far in this chapter by leveraging the available Lucene analyzers and token filters to write two custom Analyzers:

- **1** PorterStemStopWordAnalyzer: A custom analyzer that normalizes tokens; it uses stop words and Porter stemming.
- 2 SynonymPhraseStopWordAnalyzer: An analyzer that injects synonyms and detects phrases. It uses a custom TokenFilter that we'll build: the Synonym-PhraseStopWordFilter.

Figure 8.6 shows the class diagram for the two analyzers and token filter that we build next.

We next look at implementing the PorterStemStopWordAnalyzer.

8.1.2 Writing a stemmer analyzer

It's helpful to have an analyzer that can take care of plurals by stemming words. We also want to add the capability to first normalize the tokens into lowercase and use a custom stop word list. PorterStemStopWordAnalyzer is such an analyzer; the code is shown in listing 8.1.

To keep things simple, we provide the analyzer with an internal stop word list. This list is customized according to the text analysis example we worked through in section 4.3. There are quite a few stop word lists that are available if you search the Web. For example, you can use Google's stop word list² or a more detailed list.³ You may want to customize your stop word list based on your application and the domain to which it's applied.

² http://www.ranks.nl/tools/stopwords.html

³ http://www.onjava.com/onjava/2003/01/15/examples/EnglishStopWords.txt

Our analyzer extends the Analyzer class from Lucene, and we need to implement one method:

public TokenStream tokenStream(String fieldName, Reader reader)

In this method, we first create a Tokenizer using the StandardTokenizer, which removes all punctuation and splits the text at punctuation.

```
Tokenizer tokenizer = new StandardTokenizer(reader);
```

Let's write a simple test to see the effect of PorterStemStopWordAnalyzer on the text "Collective Intelligence and Web2.0." Listing 8.2 shows the code for the test method.

```
Listing 8.2 Test method to see the effect of PorterStemStopWordAnalyzer
```

```
public void testPorterStemmingAnalyzer() throws IOException {
    Analyzer analyzer = new PorterStemStopWordAnalyzer();
    String text = "Collective Intelligence and Web2.0";
    Reader reader = new StringReader(text);
    TokenStream ts = analyzer.tokenStream(null, reader);
    Token token = ts.next();
    while (token != null) {
        System.out.println(token.termText());
        token = ts.next();
    }
}
```

The output from the test program is three tokens:

collect intellig web2.0

Note that *collective* is stemmed to *collect*, while *intelligence* is stemmed to *intellig*. Also, *web2.0* is a tag; the analyzer didn't split the term *web2.0*.

Next, we chain three TokenFilter instances, starting with the LowerCaseFilter, followed by the StopFilter, and lastly the PorterStemFilter. We put this analyzer into practice later in section 8.2, when we look at building our text analysis infrastructure.

8.1.3 Writing a TokenFilter to inject synonyms and detect phrases

In section 4.3.5, we discussed the need for detecting multiple-term tokens when analyzing text. Multiple-term tags are more specific than single-term tags and typically have a higher inverse document frequency value. If you use human-generated tags, either through professionals or users, it's necessary to detect multiple-term tags that may have been entered. These human-generated tags in essence form the universe of phrases that you'd be interested in detecting. Similarly, synonyms help in matching tags that have the same meaning. For example, *CI* is a commonly used synonym for *collective intelligence*.

In this section, we build a custom TokenFilter that does two things:

- 1 It looks at two adjoining non-stop word terms to see if they form a phrase we're interested in. If the bi-term is a valid phrase then it's injected into the token stream.
- **2** It looks at a synonym dictionary to see if any of the terms or phrases in the token stream have synonyms, in which case the synonyms are injected into the token stream.

To illustrate the process of how phrases can be detected, we use a fairly simple strategy—considering two adjoining non–stop word terms. You can enhance the phrase detection strategy by using more than two terms or using a longer window of terms to find phrases. A window size of two means considering the two terms adjoining to the term of interest. You'll have to balance the benefits of performing complicated logic against the additional computation time required to analyze the text. You can also use a variable size window, especially if there is a set of phrases you're trying to detect from the text.

Before we can write our custom token filter, we need to get access to phrases and synonyms. For this, we define two additional entities:

- 1 PhrasesCache: to determine whether a phrase is of interest to us
- 2 SynonymsCache: a cache of synonyms

Listing 8.3 shows the implementation for the interface PhrasesCache, which has only one method: isValidPhrase.

```
Listing 8.3 Interface to validate phrases
package com.alag.ci.textanalysis;
import java.io.IOException;
public interface PhrasesCache {
   public boolean isValidPhrase(String text) throws IOException;
}
```

Listing 8.4 shows the implementation for SynonymsCache. It has only one method, getSynonym, which returns the list of synonyms for a given text.

```
Listing 8.4 Interface to access synonyms
package com.alag.ci.textanalysis;
import java.io.IOException;
import java.util.List;
public interface SynonymsCache {
   public List<String> getSynonym(String text) throws IOException;
}
```

With this background, we're now ready to write our custom token filter. Listing 8.5 shows the first part of the implementation of the SynonymPhraseStopWordFilter. This part deals with the attributes, the constructor, and the implementation of the next() method.

The SynonymPhraseStopWordFilter extends the TokenFilter class. Its constructor takes in another TokenStream object, a SynonymsCache, and a PhraseCache. It internally uses a Stack to keep track of injected tokens. It needs to implement one method:

```
public Token next() throws IOException {
```

The attribute previousToken keeps track of the previous token. Phrases and synonyms are injected by the following code:

```
Token token = input.next();
if (token != null) {
   String phrase = injectPhrases( token);
   injectSynonyms(token.termText(), token);
   injectSynonyms(phrase, token);
   this.previousToken = token;
}
```

Note that the code

injectSynonyms(phrase, token);

checks for synonyms for the injected phrases also. Listing 8.6 contains the remainder of the class. It has the implementation for the methods injectPhrases and injectSynonyms.

<pre>private String injectPhrases(Token currentToken) throws IOException { if (this.previousToken != null) {</pre>	
<pre>String phrase = this.previousToken.termText() + " " + currentToken.termText(); if (this.phrasesCache.isValidPhrase(phrase)) { Token phraseToken = new Token(phrase, currentToken.startOffset(), currentToken.endOffset(),"phrase"); phraseToken.setPositionIncrement(0); this.injectedTokensStack.push(phraseToken); return phrase; } Checks against dictionary return null;</pre>	s
<pre>} private void injectSynonyms(String text, Token currentToken) throws IOException { if (text != null) { List<string> synonyms = this.synonymsCache.getSynonym(text); if (synonyms != null) { for (String synonym: synonyms) {</string></pre>	⊲− ns, the am

For injecting phrases, we first concatenate the text from the previous token, a space, and the current token text:

```
String phrase = this.previousToken.termText() + " " +
currentToken.termText();
```

We check to see if this is a phrase of interest. If it is, a new Token object is created with this text and injected onto the stack.

To inject synonyms, we get a list of synonyms for the text and inject each synonym into the stack. Next, we leverage this TokenFilter to write an analyzer that uses it. This analyzer normalizes the tokens, removes stop words, detects phrases, and injects synonyms. We build this next.

8.1.4 Writing an analyzer to inject synonyms and detect phrases

In this section we write an analyzer that uses the token filter we developed in the previous section. This analyzer normalizes tokens, removes stop words, detects phrases, and injects synonyms. We use it as part of our text analysis infrastructure.

Listing 8.7 shows the implementation for the SynonymPhraseStopWordAnalyzer.

SynonymPhraseStopWordAnalyzer extends the Analyzer class. Its constructor takes an instance of the SynonymsCache and the PhrasesCache. The only method that we need to implement is

public TokenStream tokenStream(String fieldName, Reader reader) {

For this method, we first normalize the tokens, remove stop words, and then invoke our custom filter, SynonymPhraseStopWordFilter.

Next, we apply our analyzer to the sample text: "Collective Intelligence and Web2.0."

8.1.5 Putting our analyzers to work

Our custom analyzer, SynonymPhraseStopWordAnalyzer, needs access to an instance of a PhrasesCache and SynonymsCache. As shown in figure 8.7, we implement PhrasesCacheImpl and SynonymsCacheImpl. The common implementations for both classes will be in their base class, CacheImpl.

Listing 8.8 shows the implementation for the CacheImpl class. We want the lookup for phrases and synonyms to be independent of plurals; that's why we compare text using stemmed values.

```
Listing 8.8 Implementation of the CacheImpl class
package com.alag.ci.textanalysis.lucene.impl;
import java.io.*;
import org.apache.lucene.analysis.*;
public class CacheImpl {
                                               Uses PorterStemStopWordAnalyzer
  private Analyzer stemmer = null;
                                                                 for stemming
   public CacheImpl() {
      this.stemmer = new PorterStemStopWordAnalyzer();
                                                                        1
   }
   protected String getStemmedText (String text) throws IOException {
     StringBuilder sb = new StringBuilder();
     Reader reader = new StringReader(text);
     TokenStream tokenStream = this.stemmer.tokenStream(null, reader);
     Token token = tokenStream.next();
                                                                   Method to get
      while (token != null) {
                                                                   stemmed text
         sb.append(token.termText());
         token = tokenStream.next();
         if (token != null) {
            sb.append(" ");
      }
     return sb.toString();
```

There's only one method in this class:

String getStemmedText(String text) throws IOException

We use our custom analyzer PorterStemStopWordAnalyzer to get the stemmed value for a text. This method iterates over all the terms in the text to get their stemmed text and converts phrases with a set of quotes ("") between the terms.

To keep things simple, we implement a class, SynonymsCacheImpl, which has only one synonym—*collective intelligence* has the synonym *ci*. For your application, you'll probably maintain a list of synonyms either in the database or in an XML file. Listing 8.9 shows the implementation for SynonymsCacheImpl.

Note that to look up synonyms, the class compares stemmed values, so that plurals are automatically taken care of. Similarly, in our PhrasesCacheImpl, we have only one phrase, *collective intelligence*. Listing 8.10 shows the implementation for the PhrasesCacheImpl class.

Again phrases are compared using their stemmed values. Now we're ready to write a test method to see the output for our test case, "Collective Intelligence and Web2.0." The code for analyzing this text using SynonymPhraseStopWordAnalyzer is shown in listing 8.11.

Listing 8.11 Test program using SynonymPhraseStopWordAnalyzer

```
public void testSynonymsPhrases() throws IOException {
    SynonymsCache synonymsCache = new SynonymsCacheImpl();
    PhrasesCache phrasesCache = new PhrasesCacheImpl();
    Analyzer analyzer = new SynonymPhraseStopWordAnalyzer(
        synonymsCache,phrasesCache);
    String text = "Collective Intelligence and Web2.0";
    Reader reader = new StringReader(text);
    TokenStream ts = analyzer.tokenStream(null, reader);
    Token token = ts.next();
    while (token != null) {
        System.out.println(token.termText());
        token = ts.next();
    }
}
```

The output from this program is

```
collective
intelligence
ci
collective intelligence
web2.0
```

As expected, there are five tokens. Note the token *ci*, which gets injected, as it's a synonym for the phrase *collective intelligence*, which is also detected.

So far, we've looked at the available analyzers from Lucene and built a couple of custom analyzers to process text. Text comparisons are done using stemmed values, which take care of plurals.

Next, let's look at how all this hard work we've done so far can be leveraged to build the term vector representation that we discussed in section 2.2.4 and a text analysis infrastructure that abstracts out terminology used by Lucene. That way, if tomorrow you need to use a different text-processing package, the abstractions we create will make it simple to change implementations.

8.2 Building the text analysis infrastructure

The core classes for our text analysis infrastructure will be independent of Lucene classes. This section is split into three parts:

- 1 Infrastructure related to tags
- 2 Infrastructure related to term vectors
- 3 Putting it all together to build our text analyzer class

Figure 8.8 shows the classes that will be developed for this package. We define a class, Tag, to represent tags in our system. Tags can contain single terms or multiple-term

Figure 8.8 The infrastructure for text analysis

phrases. We use the flyweight design pattern, where Tag instances are immutable and cached by TagCache. The TagMagnitude class consists of a magnitude associated with a Tag instance. The term vector is represented by the TagMagnitudeVector class and consists of a number of TagMagnitude instances. In the previous section, we already looked at the SynonymsCache and the PhrasesCache classes that are used to access synonyms and phrases. The TextAnalyzer class is the main class for processing text. The InverseDocFreqEstimator is used for getting the inverse document frequency associated with a Tag. The TextAnalyzer uses the TagCache, SynonymsCache, PhrasesCache, and InverseDocFreqEstimator to create a TagMagnitudeVector for the text.

Next, let's look at developing the infrastructure related to tags.

8.2.1 Building the tag infrastructure

The four classes associated with implementing the tag infrastructure are shown in figure 8.9. These classes are Tag and its implementation TagImpl, along with TagCache and its implementation TagCacheImpl.

A Tag is the smallest entity in our framework. As shown in listing 8.12, a Tag has display text and its stemmed value. Remember we want to compare tags based on their stemmed values.

```
Listing 8.12 The Tag interface
package com.alag.ci.textanalysis;
public interface Tag {
   public String getDisplayText();
   public String getStemmedText();
}
```

Listing 8.13 shows the implementation for TagImpl, which implements the Tag interface. This is implemented as an immutable object, where its display text and stemmed values are specified in the constructor.

```
Listing 8.13 The TagImpl implementation
package com.alag.ci.textanalysis.lucene.impl;
import com.alag.ci.textanalysis.Tag;
public class TagImpl implements Tag {
  private String displayText = null;
  private String stemmedText = null;
  private int hashCode ;
                                                                       Immutable
                                                                       object
   public TagImpl(String displayText, String stemmedText) {
     this.displayText = displayText;
     this.stemmedText = stemmedText;
     hashCode = stemmedText.hashCode();
                                             \triangleleft
                                                   Hashcode
   }
                                                   precomputed for
                                                   faster lookup
   public String getDisplayText() {
     return displayText;
   }
   public String getStemmedText() {
     return stemmedText;
   }
   @Override
   public boolean equals(Object obj) {
      return (this.hashCode == obj.hashCode());
   }
   @Override
   public int hashCode() {
      return this.hashCode;
   }
   @Override
   public String toString() {
     return "[" + this.displayText + ", " + this.stemmedText + "]";
}
```

Note that two tags with the same stemmed text are considered equivalent. Depending on your domain, you could further enhance the tag-matching logic. For example, to compare multi-term phrases, you may want to consider tags with the same terms equivalent, independent of their position. Remember, from a performance point of view, you want to keep the matching logic as efficient as possible. Tag instances are relatively heavyweight and text processing is expensive. Therefore, we use the flyweight pattern and hold on to the Tag instances. The TagCache class is used for this purpose.

We access an instance of Tag through the TagCache. The TagCache interface has only one method, getTag, as shown in listing 8.14.

```
Listing 8.14 The TagCache interface
package com.alag.ci.textanalysis;
import java.io.IOException;
public interface TagCache {
   public Tag getTag(String text) throws IOException ;
}
```

TagCache is implemented by TagCacheImpl, which is shown in listing 8.15. The implementation is straightforward. A Map is used to store the mapping between stemmed text and a Tag instance.

```
Listing 8.15 The implementation for TagCacheImpl
package com.alag.ci.textanalysis.lucene.impl;
import java.io.IOException;
import java.util.*;
import com.alag.ci.textanalysis.*;
public class TagCacheImpl extends CacheImpl implements TagCache {
  private Map<String,Tag> tagMap = null;
  public TagCacheImpl() {
      this.tagMap = new HashMap<String,Tag>();
   public Tag getTag(String text) throws IOException {
                                                              Looks up
      Tag tag = this.tagMap.get(text);
                                                             instances using
      if (tag == null ) {
                                                             stemmed value
         String stemmedText = getStemmedText(text);
                                                        \leq
         tag = new TagImpl(text, stemmedText);
         this.tagMap.put(stemmedText, tag);
      }
     return tag;
   }
}
```

Note that lookups from the cache are done using stemmed text:

```
getStemmedText(text);
```

With this background, we're now ready to develop the implementation for the term vectors.

8.2.2 Building the term vector infrastructure

Figure 8.10 shows the classes associated with extending the tag infrastructure to represent the term vector. The TagMagnitude interface associates a magnitude with the Tag, while the TagMagnitudeVector, which is a composition of TagMagnitude instances, represents the term vector.⁴

Figure 8.10 Term vector-related infrastructure

TAGMAGNITUDE-RELATED INTERFACES

Listing 8.16 shows the definition for the TagMagnitude interface. It extends the Tag and Comparable<TagMagnitude> interfaces. Implementing the Comparable interface is helpful for sorting the TagMagnitude instances by their weights.

```
Listing 8.16 The TagMagnitude interface
package com.alag.ci.textanalysis;
public interface TagMagnitude extends Tag, Comparable<TagMagnitude> {
    public double getMagnitude();
    public double getMagnitudeSqd();
    public Tag getTag();
}
```

There are only three methods associated with the TagMagnitude interface: one to get the magnitude, a utility method to get the square of the magnitudes, and one to get the associated Tag object.

The TagMagnitudeImpl class implements the TagMagnitude interface and is shown in listing 8.17.

⁴ *Term vector* and *tag vector* are used interchangeably here, though there's a difference between terms and tags. Tags may be single terms or may contain phrases, which are multiple terms.

Note that the TagMagnitudeImpl class is implemented as an immutable class. It has a magnitude attribute that's implemented as a double. The TagMagnitudeImpl class has access to a Tag instance and delegates to this object any methods related to the Tag interface.

TAGMAGNITUDEVECTOR-RELATED INTERFACES

Next, we're ready to define the TagMagnitudeVector interface, which represents a term vector. Listing 8.18 contains the methods associated with this interface.

The TagMagnitudeVector has four methods. The first two, getTagMagnitudes() and getTagMagnitudeMap(), are to access the TagMagnitude instance. The third method, add(), is useful for adding two term vectors, while the last method, dotProduct(), is useful for computing the similarity between two term vectors.

Lastly, let's look at the implementation for TagMagnitudeVectorImpl, which implements the TagMagnitudeVector interface. The first part of this implementation is shown in listing 8.19. We use a Map to hold the instances associated with the term vector. Typically, text contains a small subset of tags available. For example, in an application, there may be more than 100,000 different tags, but a document may contain only 25 unique tags.

```
Listing 8.19 The basic TagMagnitudeVectorImpl class
package com.alag.ci.textanalysis.termvector.impl;
import java.util.*;
import com.alaq.ci.textanalysis.*;
public class TaqMaqnitudeVectorImpl implements TaqMaqnitudeVector {
  private Map<Tag,TagMagnitude> tagMagnitudesMap = null;
  public TaqMaqnitudeVectorImpl(List<TaqMaqnitude> taqMaqnitudes) {
     normalize(tagMagnitudes);
                                        Normalize input list
  private void normalize(List<TaqMaqnitude> taqMaqnitudes) {
     tagMagnitudesMap = new HashMap<Tag,TagMagnitude>();
     if ((tagMagnitudes == null) || (tagMagnitudes.size() == 0)) {
        return;
     double sumSqd = 0.;
     for (TaqMagnitude tm: taqMagnitudes) {
        sumSqd += tm.getMagnitudeSqd();
     if (sumSqd == 0.) {
```

```
sumSqd = 1./taqMagnitudes.size();
                                                      Normalization
                                                      factor set to l
     double normFactor = Math.sqrt(sumSqd);
     for (TaqMagnitude tm: taqMagnitudes) {
        TagMagnitude otherTm = this.tagMagnitudesMap.get(tm.getTag());
        double magnitude = tm.getMagnitude();
        if (otherTm != null) {
           magnitude = mergeMagnitudes(magnitude,
                 otherTm.getMagnitude()*normFactor);
        TagMagnitude normalizedTm = new TagMagnitudeImpl(tm.getTag(),
               (magnitude/normFactor));
        this.tagMagnitudesMap.put(tm.getTag(), normalizedTm);
      }
  public List<TaqMagnitude> getTaqMagnitudes() {
     List<TagMagnitude> sortedTagMagnitudes =
       new ArrayList<TaqMagnitude>();
     sortedTagMagnitudes.addAll(tagMagnitudesMap.values());
     Collections.sort(sortedTagMagnitudes);
                                                       Sorts results
     return sortedTagMagnitudes;
                                                      by magnitude
   }
  public Map<Tag,TagMagnitude> getTagMagnitudeMap() {
     return this.tagMagnitudesMap;
                                                              Formula for
                                                              merging two terms
private double mergeMagnitudes(double a, double b) {
     return Math.sqrt(a*a + b*b);
```

The TagMagnitudeVectorImpl class is implemented as an immutable object. It normalizes the input list of TagMagnitude objects such that the magnitude for this vector is 1.0. For the method getTagMagnitudes, the TagMagnitude instances are sorted by magnitude. Listing 8.20 contains the implementation for two methods. First is the dotProduct, which computes the similarity between the tag vector and another Tag-MagnitudeVector. The second method, add(), is useful for adding the current vector to another vector.

```
Listing 8.20 Computing the dot product in TagMagnitudeVectorImpl
public double dotProduct(TagMagnitudeVector o) {
    Map<Tag,TagMagnitude> otherMap = 0.getTagMagnitudeMap() ;
    double dotProduct = 0.;
    for (Tag tag: this.tagMagnitudesMap.keySet()) {
        TagMagnitude otherTm = otherMap.get(tag);
        if (otherTm != null) {
            TagMagnitude tm = this.tagMagnitudesMap.get(tag);
            dotProduct += tm.getMagnitude()*otherTm.getMagnitude();
        }
    }
    return dotProduct;
}
```

```
public TaqMagnitudeVector add(TaqMagnitudeVector o) {
  Map<Tag,TagMagnitude> otherMap = o.getTagMagnitudeMap() ;
  Map<Tag,Tag> uniqueTags = new HashMap<Tag,Tag>();
                                                         \leftarrow
                                                              Creates superset
   for (Tag tag: this.tagMagnitudesMap.keySet()) {
                                                              of all tags
      uniqueTags.put(tag,tag);
   for (Tag tag: otherMap.keySet()) {
      uniqueTags.put(tag,tag);
   ļ
  List<TagMagnitude> tagMagnitudesList = new
      ArrayList<TagMagnitude>(uniqueTags.size());
   for (Tag tag: uniqueTags.keySet()) {
      TagMagnitude tm = mergeTagMagnitudes(
                                                 Merges magnitudes
         this.tagMagnitudesMap.get(tag),
                                                 for same tag
            otherMap.get(tag));
                                       \sim
      tagMagnitudesList.add(tm);
   }
   return new TagMagnitudeVectorImpl(tagMagnitudesList);
}
public TaqMagnitudeVector add(Collection<TaqMagnitudeVector> tmList) {
  Map<Tag,Double> uniqueTags = new HashMap<Tag,Double>();
   for (TaqMagnitude taqMagnitude: this.taqMagnitudesMap.values()) {
      uniqueTags.put(tagMagnitude.getTag(),
            new Double(taqMagnitude.getMagnitudeSqd()));
   }
   for (TagMagnitudeVector tmv : tmList) {
                                                            <1-
      Map<Tag,TagMagnitude> tagMap= tmv.getTagMagnitudeMap();
      for (TagMagnitude tm: tagMap.values()) {
         Double sumSqd = uniqueTags.get(tm.getTag());
         if (sumSqd == null) {
            uniqueTags.put(tm.getTag(), tm.getMagnitudeSqd());
         } else {
            sumSqd = new Double(sumSqd.doubleValue() + Iterates over
              tm.getMagnitudeSqd());
                                                         all values for
            uniqueTags.put(tm.getTag(), sumSqd);
                                                                 tag
      }
   }
  List<TaqMagnitude> newList = new ArrayList<TaqMagnitude>();
   for (Tag tag: uniqueTags.keySet()) {
      newList.add(new TagMagnitudeImpl(tag,
        Math.sqrt(uniqueTaqs.get(taq))));
   }
   return new TagMagnitudeVectorImpl(newList);
}
private TagMagnitude mergeTagMagnitudes (TagMagnitude a,
  TagMagnitude b) {
  if (a == null) {
      if (b == null) {
         return null;
      }
      return b;
   } else if (b == null) {
      return a;
```

```
} else {
        double magnitude = mergeMagnitudes(a.getMagnitude(),
         b.getMagnitude());
        return new TaqMagnitudeImpl(a.getTag(), magnitude);
     }
  }
  @Override
  public String toString() {
     StringBuilder sb = new StringBuilder();
     List<TaqMagnitude> sortedList = getTagMagnitudes();
     double sumSqd = 0.;
     for (TagMagnitude tm: sortedList) {
        sb.append(tm);
        sumSqd += tm.getMagnitude()*tm.getMagnitude();
     sb.append("\nSumSqd = " + sumSqd);
     return sb.toString();
  }
}
```

To compute the dotProduct between a vector and another vector, the code finds the tags that are common between the two instances. It then sums the multiplied magnitudes between the two instances. For the add() method, we first need to find the superset for all the tags. Then the magnitude for the new vector for a tag is the sum of the magnitudes in the two vectors. At the end, the code creates a new instance

```
new TagMagnitudeVectorImpl(tagMagnitudesList);
```

which will automatically normalize the values in its constructor, such that the magnitude is one.

To compute the resulting TagMagnitudeVector by adding a number of TagMagnitudeVector instances

```
public TagMagnitudeVector add(Collection<TagMagnitudeVector> tmList)
```

we sum the squared magnitudes for a tag in all the TagMagnitudeVector instances. A new TagMagnitudeVector instance is created that has a superset of all the tags and normalized magnitudes. We use this method in clustering.

Next, let's write a simple program to show how this term vector infrastructure can be used. The output from the code sample shown in listing 8.21 is

```
[b, b, 0.6963106238227914] [c, c, 0.5222329678670935] [a, a,
0.49236596391733095]
```

Note that there are three tags, and the two instances of the a tag are automatically merged. The sum of the squares for all the magnitudes is also equal to one.

```
Listing 8.21 A simple example for TagMagnitudeImpl
```

```
public void testBasicOperations() throws Exception {
    TagCache tagCache = new TagCacheImpl();
    List<TagMagnitude> tmList = new ArrayList<TagMagnitude>();
```

```
tmList.add(new TagMagnitudeImpl(tagCache.getTag("a"),1.));
tmList.add(new TagMagnitudeImpl(tagCache.getTag("b"),2.));
tmList.add(new TagMagnitudeImpl(tagCache.getTag("c"),1.5));
tmList.add(new TagMagnitudeImpl(tagCache.getTag("a"),1.));
TagMagnitudeVector tmVector1 = new TagMagnitudeVectorImpl(tmList);
System.out.println(tmVector1);
```

So far we've developed the infrastructure to represent a Tag and TagMagnitudeVector. We're down to the last couple classes. Next, we look at developing the TextAnalyzer.

8.2.3 Building the Text Analyzer class

}

In this section, we implement the remaining classes for our text analysis infrastructure. Figure 8.11 shows the four classes that we discuss. The InverseDocFreq-Estimator provides an estimate for the inverse document frequency (idf) for a Tag. Remember, the idf is necessary to get an estimate of how frequently a tag is used; the less frequently a tag is used, the higher its idf value. The idf value contributes to the magnitude of the tag in the term vector. In the absence of any data on how frequently various tags appear, we implement the EqualInverseDocFreqEstimator, which simply returns 1 for all values. The TextAnalyzer class is our primary class for analyzing text. We write a concrete implementation for this class called LuceneTextAnalyzer that leverages all the infrastructure and analyzers we've developed in this chapter.

Figure 8.11 The TextAnalyzer and the InverseDocFreqEstimator

Listing 8.22 shows the InverseDocFreqEstimator interface. It has only one method, which provides the inverse document frequency for a specified Tag instance.

```
Listing 8.22 The interface for the InverseDocFreqEstimator
package com.alag.ci.textanalysis;
public interface InverseDocFreqEstimator {
    public double estimateInverseDocFreq(Tag tag);
}
```

Listing 8.23 contains a dummy implementation for InverseDocFreqEstimator. Here, EqualInverseDocFreqEstimator simply returns 1.0 for all tags.

```
Listing 8.23 The interface for the EqualInverseDocFreqEstimator
package com.alag.ci.textanalysis.lucene.impl;
import com.alag.ci.textanalysis.InverseDocFreqEstimator;
import com.alag.ci.textanalysis.Tag;
public class EqualInverseDocFreqEstimator implements
    InverseDocFreqEstimator {
    public double estimateInverseDocFreq(Tag tag) {
        return 1.0;
    }
}
```

Listing 8.24 contains the interface for TextAnalyzer, the primary class to analyze text.

Listing 8.24 The interface for the TextAnalyzer

```
package com.alag.ci.textanalysis;
import java.io.IOException;
import java.util.List;
public interface TextAnalyzer {
    public List<Tag> analyzeText(String text) throws IOException;
    public TagMagnitudeVector createTagMagnitudeVector(String text)
        throws IOException;
}
```

The TextAnalyzer interface has two methods. The first, analyzeText, gives back the list of Tag objects obtained by analyzing the text. The second, createTagMagnitude-Vector, returns a TagMagnitudeVector representation for the text. It takes into account the term frequency and the inverse document frequency for each of the tags to compute the term vector.

Listing 8.25 shows the first part of the code for the implementation of LuceneText-Analyzer, which shows the constructor and the analyzeText method.

Listing 8.25 The core of the LuceneTextAnalyzer class package com.alag.ci.textanalysis.lucene.impl; import java.io.*; import java.util.*; import org.apache.lucene.analysis.*; import com.alag.ci.textanalysis.*; import com.alag.ci.textanalysis.termvector.impl.*; public class LuceneTextAnalyzer implements TextAnalyzer { private TagCache tagCache = null; private InverseDocFreqEstimator inverseDocFreqEstimator = null; public LuceneTextAnalyzer(TagCache tagCache, InverseDocFreqEstimator inverseDocFreqEstimator) { this.tagCache = tagCache; this.inverseDocFreqEstimator = inverseDocFreqEstimator;

```
}
public List<Tag> analyzeText(String text) throws IOException {
  Reader reader = new StringReader(text);
  Analyzer analyzer = getAnalyzer();
  List<Tag> tags = new ArrayList<Tag>();
  TokenStream tokenStream = analyzer.tokenStream(null, reader) ;
  Token token = tokenStream.next();
  while (token != null) {
     tags.add(getTag(token.termText()));
     token = tokenStream.next();
   }
  return tags;
protected Analyzer getAnalyzer() throws IOException {
  return new SynonymPhraseStopWordAnalyzer(new SynonymsCacheImpl(),
        new PhrasesCacheImpl());
ļ
```

The method analyzeText gets an Analyzer. In this case, we use SynonymPhraseStop-WordAnalyzer. LuceneTextAnalyzer is really a wrapper class that wraps Lucene-specific classes into those of our infrastructure. Creating the TagMagnitudeVector from text involves computing the term frequencies for each tag and using the tag's inverse document frequency to create appropriate weights. This is shown in listing 8.26.

```
Listing 8.26 Creating the term vectors in LuceneTextAnalyzer
 public TaqMagnitudeVector createTaqMagnitudeVector(String text)
   throws IOException {
     List<Tag> tagList = analyzeText(text);
                                                 Analyze text to create tags
     Map<Tag,Integer> tagFregMap =
       computeTermFrequency(taqList);
                                           Compute term frequencies
     return applyIDF(tagFreqMap);
                                      \triangleleft
                                          Use inverse document frequency
  }
  private Map<Tag,Integer> computeTermFrequency(List<Tag> tagList) {
     Map<Tag,Integer> tagFreqMap = new HashMap<Tag,Integer>();
     for (Tag tag: tagList) {
        Integer count = tagFreqMap.get(tag);
        if (count == null) {
           count = new Integer(1);
        } else {
           count = new Integer(count.intValue() + 1);
        tagFreqMap.put(tag, count);
      }
     return tagFreqMap;
  }
  private TagMagnitudeVector applyIDF(Map<Tag,Integer> tagFreqMap) {
     List<TaqMagnitude> taqMagnitudes = new ArrayList<TaqMagnitude>();
     for (Tag tag: tagFreqMap.keySet()) {
        double idf = this.inverseDocFreqEstimator.
           estimateInverseDocFreg(tag);
        double tf = tagFregMap.get(tag);
```

```
double wt = tf*idf;
    tagMagnitudes.add(new TagMagnitudeImpl(tag,wt));
    }
    return new TagMagnitudeVectorImpl(tagMagnitudes);
    }
    private Tag getTag(String text) throws IOException {
        return this.tagCache.getTag(text);
    }
}
```

To create the TagMagnitudeVector, we first analyze the text to create a list of tags:

List<Tag> tagList = analyzeText(text);

Next we compute the term frequencies for each of the tags:

Map<Tag, Integer> tagFreqMap = computeTermFrequency(tagList);

And last, create the vector by combining the term frequency and the inverse document frequency:

return applyIDF(tagFreqMap);

We're done with all the classes we need to analyze text. Next, let's go through an example of how this infrastructure can be used.

8.2.4 Applying the text analysis infrastructure

We use the same example we introduced in section 4.3.1. Consider a blog entry with the following text (see also figure 8.2):

Title: "Collective Intelligence and Web2.0"

Body: "Web2.0 is all about connecting users to users, inviting users to participate, and applying their collective intelligence to improve the application. Collective intelligence enhances the user experience."

Let's write a simple program that shows the tags associated with analyzing the title and the body. Listing 8.27 shows the code for our simple program.

```
Listing 8.27 Computing the tokens for the title and body
private void displayTextAnalysis(String text) throws IOException {
    List<Tag> tags = analyzeText(text);
    for (Tag tag: tags) {
        System.out.println(tag);
    }
    public static void main(String [] args) throws IOException {
        String title = "Collective Intelligence and Web2.0";
        String body = "Web2.0 is all about connecting users to users, " +
            " inviting users to participate and applying their " +
            " collective intelligence" +
            " collective intelligence" +
            " enhances the user experience" ;
        }
    }
}
```

```
TagCacheImpl t = new TagCacheImpl();
InverseDocFreqEstimator idfEstimator =
    new EqualInverseDocFreqEstimator();
TextAnalyzer lta = new LuceneTextAnalyzer(t, idfEstimator); 
System.out.print("Analyzing the title .... \n");
Ita.displayTextAnalysis(title);
System.out.print("Analyzing the body .... \n");
Creating instance
of TextAnalyzer
```

First we create an instance of the TextAnalyzer class:

```
TagCacheImpl t = new TagCacheImpl();
InverseDocFreqEstimator idfEstimator =
    new EqualInverseDocFreqEstimator();
TextAnalyzer lta = new LuceneTextAnalyzer(t, idfEstimator);
```

Then we get the tags associated with the title and the body. Listing 8.28 shows the output. Note that the output for each tag consists of unstemmed text and its stemmed value.

Listing 8.28 Tag listing for our example

```
Analyzing the title ....
[collective, collect] [intelligence, intellig] [ci, ci] [collective
intelligence, collect intellig] [web2.0, web2.0]
Analyzing the body ....
[web2.0, web2.0] [about, about] [connecting, connect] [users, user] [inviting, invit] [users, user] [participate, particip] [applying,
appli] [collective, collect] [intelligence, intellig] [ci, ci] [collective
intelligence, collect intellig] [improve, improv] [application, applic]
[collective, collect] [intelligence, intellig] [ci, ci] [collective
intelligence, collect intellig] [enhances, enhanc] [users, user]
[experience, experi]
```

It's helpful to visualize the tag cloud using the infrastructure we developed in chapter 3. Listing 8.29 shows the code for visualizing the tag cloud.

```
Listing 8.29 Visualizing the term vector as a tag cloud
 private TagCloud createTagCloud(TagMagnitudeVector tmVector) {
     List<TagCloudElement> elements = new ArrayList<TagCloudElement>();
      for (TagMagnitude tm: tmVector.getTagMagnitudes()) {
        TagCloudElement element = new TagCloudElementImpl(
          tm.getDisplayText(), tm.getMagnitude());
                                                        \triangleleft
                                                              Create
        elements.add(element);
                                                              TagCloudElement
      }
                                                              instances
     return new TagCloudImpl(elements, new
  LinearFontSizeComputationStrategy(3,"font-size: "));
  private String visualizeTagCloud(TagCloud tagCloud) {
     HTMLTaqCloudDecorator decorator = new HTMLTaqCloudDecorator();
     String html = decorator.decorateTagCloud(tagCloud);
     System.out.println(html);
                                                                Use decorator to
     return html;
                                                               visualize tag cloud
   }
```

The code for generating the HTML to visualize the tag cloud is fairly simple, since all the work was done earlier in chapter 3. We first need to create a List of TagCloud-Element instances, by iterating over the term vector. Once we create a TagCloud instance, we can generate HTML using the HTMLTagCloudDecorator class.

The title "Collective Intelligence and Web2.0" gets converted into five tags: [collective, collect] [intelligence, intellig] [ci, ci] [collective intelligence, collect intellig] [web2.0, web2.0]. This is also shown in figure 8.12.

TagCloud (5)	
ci collective collective intelligence intelligence web2.0	Figure 8

Figure 8.12 The tag cloud for the title, consisting of five tags

Similarly, the body gets converted into 15 tags, as shown in figure 8.13.

```
TagCloud (15)
```

}

about applying ci collective collective intelligence connecting enhances experience improve intelligence inviting participate USETS Web2.0

Figure 8.13 The tag cloud for the body, consisting of 15 tags

We can extend our example to compute the tag magnitude vectors for the title and body, and then combine the two vectors, as shown in listing 8.30.

```
Listing 8.30 Computing the TagMagnitudeVector
```

```
TagMagnitudeVector tmTitle = lta.createTagMagnitudeVector(title);
TagMagnitudeVector tmBody = lta.createTagMagnitudeVector(body);
TagMagnitudeVector tmCombined = tmTitle.add(tmBody);
System.out.println(tmCombined);
```

The output from the second part of the program is shown in listing 8.31. Note that the top tags for this blog entry are *users*, *collective*, *ci*, *intelligence*, *collective intelligence*, and *web2.0*.

```
Listing 8.31 Results from displaying the results for TagMagnitudeVector
```

```
[users, user, 0.4364357804719848]
[collective, collect, 0.3842122429322726]
[ci, ci, 0.3842122429322726]
[intelligence, intellig, 0.3842122429322726]
[collective intelligence, collect intellig, 0.3842122429322726]
[web2.0, web2.0, 0.3345216912320663]
[about, about, 0.1091089451179962]
[applying, appli, 0.1091089451179962]
[application, applic, 0.1091089451179962]
[enhances, enhanc, 0.1091089451179962]
[inviting, invit, 0.1091089451179962]
```

```
[improve, improv, 0.1091089451179962]
[experience, experi, 0.1091089451179962]
[participate, particip, 0.1091089451179962]
[connecting, connect, 0.1091089451179962]
```

The same data can be better visualized using the tag cloud shown in figure 8.14.

TagCloud (15)

about application applying ci collective collective intelligence connecting enhances experience improve intelligence inviting participate USETS Web2.0

Figure 8.14 The tag cloud for the combined title and body, consisting of 15 tags

So far, we've developed an infrastructure for analyzing text. The core infrastructure interfaces are independent of Lucene-specific classes and can be implemented by other text analysis packages. The text analysis infrastructure is useful in extracting tags and creating a term vector representation for the text. This term vector representation is helpful for personalization, building predicting models, clustering to find patterns, and so on.

8.3 Use cases for applying the framework

This has been a fairly technical chapter. We've gone through a lot of effort to develop infrastructure for text analysis. It's useful to briefly review some of the use cases where this can be applied. This is shown in table 8.5.

Use case	Description
Analyzing a number of text documents to extract most- relevant keywords	The term vectors associated with the documents can be combined to build a representation for the document set. You can use this approach to build an automated representation for a set of documents visited by a user, or for finding items similar to a set of documents.
Advertising	To show relevant advertisements on a page, you can take the keywords associated with the test and find the subset of keywords that have adver- tisements assigned.
Classification and predictive models	The term vector representation can be used as an input for building pre- dictive models and classifiers.

Table 8.5 Some use cases for text analysis infrastructure

We've already demonstrated the process of analyzing text to extract keywords associated with them. Figure 8.15 shows an example of how relevant terms can be detected and hyperlinked. In this case, relevant terms are hyperlinked and available for a user and web crawlers, inviting them to explore other pages of interest.

There are two main approaches for advertising that are normally used in an application. First, sites sell *search words*—certain keywords that are sold to advertisers. Let's say that the phrase *collective intelligence* has been sold to an advertiser. Whenever the

my nextbio data import community	sian in Treaister for free
NEXTBID	
article > Active and passive smoking, IL6, ESR1, gree> ESR1, estrogen receptor 1,, gree> YBR136W, SAD3, ESR1 ML Stattery, K Curtin, AR Giuliano, C Sweeney, R Baumgartner, S Edwards, RK Wolft, KB Baumgartner, T Byers Division of Epidemiology, Department of Medicine, University of Utah, Salt Lake City, UT, 84117, USA marky slattery@hsc.utah.edu. Breast cancer research and treatment 2008 May PMID. 17394514 abstract We evaluated the association between smoking and risk of breast cancer in non-Hisparic white (NHW) and Hispanic or American Indian (HAI) women living in the Southwestern United States. Data on lifetime exposure to active and passive smoke data were available from 1527 NHW cases and 1601 NHW controls; 796 H compounds HAI 924 HAI controls. Interleukin 6 (LL6) and Estrogen Receptor alpha (ESR1) polymorphisms were asses; compounds HAI, 1-Amin conjunction with smoking. Pack-years of smoking (>/=15) were associated with increased risk of pre- menopausal breast cancer menopausal breast cancer interaction 0.01). Those they smoked >/=15 pack- Rame: The controls. The reme disease ² Breast cancer they smoked >/=15 pack- Mus. Slattery, K Curtin, AR Active and passive smoke ML Slattery, K Curtin, AR Active and passive smoke Mus Slattery, K Curtin, AR Active and passive smoke metastalic malignant neoplasm moving the breast. The vast majority of cases are carcinomas arising from the breast parenchyma or the nipple. Malignant threast	andmark this page anal feedback anal feedback annex search engine serving arch nocyclohexane, 1 collaboration platform for collaboration platform for cientists sed by over 154,800 searchers and clinicians ordwide Bio Enterprise Solution mores Bio Webinar er nove
than in males+ 2003 mc of service site map	

Figure 8.15 An example of automatically detecting relevant terms by analyzing text

user types *collective intelligence* in the search box or visits a page that's related to *collective intelligence*, we want to show the advertisement related to this keyword. The second approach is to associate text with an advertisement (showing relevant products works the same way), analyze the text, create a term vector representation, and then associate the relevant ad based on the main context of the page and who's viewing it dynamically. This approach is similar to building a content-based recommendation system, which we do in chapter 12.

In the next two chapters, we demonstrate how we can use the term vector representation for text to cluster documents and build predictive models and text classifiers.

8.4 Summary

Apache Lucene is a Java-based open source text analysis toolkit and search engine. The text analysis package for Lucene contains an Analyzer, which creates a Token-Stream. A TokenStream is an enumeration of Token instances and is implemented by a Tokenizer and a TokenFilter. You can create custom text analyzers by subclassing available Lucene classes. In this chapter, we developed two custom text analyzers. The first one normalizes the text, applies a stop word list, and uses the Porter stemming algorithm. The second analyzer normalizes the text, applies a stop word list, detects phrases using a phrase dictionary, and injects synonyms.

Next we discussed developing a text-analysis package, whose core interfaces are independent of Lucene. A Tag class is the fundamental building block for this package. Tags that have the same stemmed values are considered equivalent. We introduced the following entities: TagCache, through which Tag instances are created; PhrasesCache, which contains the phrases of interest; SynonymsCache, which stores synonyms used; and InverseDocFreqEstimator, which provides an estimate for the inverse document frequency for a particular tag. All these entities are used by the TextAnalyzer to create tags and develop a term (tag) magnitude vector representation for the text.

The text analysis infrastructure developed can be used for developing the metadata associated with text. This metadata can be used to find other similar content, to build predictive models, and to find other patterns by clustering the data. Having built the infrastructure to decompose text into individual tags and magnitudes, we next take a deeper look at clustering data. We use the infrastructure developed here, along with the infrastructure to search the blogosphere developed in chapter 5, in the next chapter.

8.5 Resources

Ackerman, Rich. "Vector Model Information Retrieval." 2003. http://www.hray.com/5264/ math.htm

Gospodnetic, Otis, and Erik Hatcher. Lucene in Action. 2004. Manning.

"Term vector theory and keywords." http://forums.searchenginewatch.com/archive/ index.php/t-489.html

Discovering patterns with clustering

This chapter covers

- k-means, hierarchical clustering, and probabilistic clustering
- Clustering blog entries
- Clustering using WEKA
- Clustering using the JDM APIs

It's fascinating to analyze results found by machine learning algorithms. One of the most commonly used methods for discovering groups of related users or content is the process of *clustering*, which we discussed briefly in chapter 7. Clustering algorithms run in an automated manner and can create pockets or clusters of related items. Results from clustering can be leveraged to build classifiers, to build predictors, or in collaborative filtering. These unsupervised learning algorithms can provide insight into how your data is distributed.

In the last few chapters, we built a lot of infrastructure. It's now time to have some fun and leverage this infrastructure to analyze some real-world data. In this chapter, we focus on understanding and applying some of the key clustering algorithms. K-means, hierarchical clustering, and expectation maximization (EM) are three of the most commonly used clustering algorithms.

As discussed in section 2.2.6, there are two main representations for data. The first is the low-dimension densely populated dataset; the second is the highdimension sparsely populated dataset, which we use with text term vectors and to represent user click-through. In this chapter, we look at clustering techniques for both kinds of datasets.

We begin the chapter by creating a dataset that contains blog entries retrieved from Technorati.¹ Next, we implement the k-means clustering algorithm to cluster the blog entries. We leverage the infrastructure developed in chapter 5 to retrieve blog entries and combine it with the text-analysis toolkit we developed in chapter 8. We also demonstrate how another clustering algorithm, hierarchical clustering, can be applied to the same problem. We look at some of the other practical data, such as user clickstream analysis that can be analyzed in a similar manner. Next, we look at how WEKA can be leveraged for clustering densely populated datasets and illustrate the process using the EM algorithm. We end the chapter by looking at the clusteringrelated interfaces defined by JDM and develop code to cluster instances using the JDM APIs.

9.1 Clustering blog entries

In this section, we demonstrate the process of developing and applying various clustering algorithms by discovering groups of related blog entries from the blogosphere. This example will retrieve live blog entries from the blogosphere on the topic of "collective intelligence" and convert them to tag vector format, to which we apply different clustering algorithms.

Figure 9.1 illustrates the various steps involved in this example. These steps are

- **1** Using the APIs developed in chapter 5 to retrieve a number of current blog entries from Technorati.
- **2** Using the infrastructure developed in chapter 8 to convert the blog entries into a tag vector representation.
- **3** Developing a clustering algorithm to cluster the blog entries. Of course, we keep our infrastructure generic so that the clustering algorithms can be applied to any tag vector representation.

We begin by creating the dataset associated with the blog entries. The clustering algorithms implemented in WEKA are for finding clusters from a dense dataset. Therefore, we develop our own implementation for different clustering algorithms. We begin with implementing k-means clustering followed by hierarchical clustering algorithms.

It's helpful to look at the set of classes that we need to build for our clustering infrastructure. We review these classes next.

¹ You can use any of the blog-tracking providers we discussed in chapter 5.

9.1.1 Defining the text clustering infrastructure

The key interfaces associated with clustering are shown in figure 9.2. The classes consist of

- Clusterer: the main interface for discovering clusters. It consists of a number of clusters represented by TextCluster.
- TextCluster: represents a cluster. Each cluster has an associated TagMagnitudeVector for the center of the cluster and has a number of TextDataItem instances.
- TextDataItem: represents each text instance. A dataset consists of a number of TextDataItem instances and is created by the DataSetCreator.
- DataSetCreator: creates the dataset used for the learning process.

Listing 9.1 contains the definition for the Clusterer interface.

Figure 9.2 The interfaces associated with clustering text

```
Listing 9.1 The definition for the Clusterer interface
```

```
package com.alag.ci.cluster;
import java.util.List;
public interface Clusterer {
    public List<TextCluster> cluster();
}
```

Clusterer has only one method to create the TextCluster instances:

```
List<TextCluster> cluster()
```

Listing 9.2 shows the definition of the TextCluster interface.

```
Listing 9.2 The definition for the TextCluster interface
```

```
package com.alag.ci.cluster;
import com.alag.ci.textanalysis.TagMagnitudeVector;
public interface TextCluster {
    public void clearItems();
    public TagMagnitudeVector getCenter();
    public void computeCenter();
    public int getClusterId();
    public int getClusterId();
    public void addDataItem(TextDataItem item);
}
```

Each TextCluster has a unique ID associated with it. TextCluster has basic methods to add data items and to recompute its center based on the TextDataItem associated with it. The definition for the TextDataItem is shown in listing 9.3.

```
Listing 9.3 The definition for the TextDataItem interface
package com.alag.ci.cluster;
import com.alag.ci.textanalysis.TagMagnitudeVector;
public interface TextDataItem {
    public Object getData();
    public TagMagnitudeVector getTagMagnitudeVector();
    public Integer getClusterId();
    public Void setClusterId();
}
```

Each TextDataItem consists of an underlying text data with its TagMagnitudeVector. It has basic methods to associate it with a cluster. These TextDataItem instances are created by the DataSetCreator as shown in listing 9.4.

```
Listing 9.4 The definition for the DataSetCreator interface
package com.alag.ci.cluster;
import java.util.List;
public interface DataSetCreator {
    public List<TextDataItem> createLearningData() throws Exception ;
}
```

Each DataSetCreator creates a List of TextDataItem instances that's used by the Clusterer. Next, we use the APIs we developed in chapter 5 to search the blogo-sphere. Let's build the dataset that we use in our example.

9.1.2 Retrieving blog entries from Technorati

In this section, we define two classes. The first class, BlogAnalysisDataItem, represents a blog entry and implements the TextDataItem interface. The second class, BlogDataSetCreatorImpl, implements the DataSetCreator and creates the data for clustering using the retrieved blog entries.

Listing 9.5 shows the definition for BlogAnalysisDataItem. The class is basically a wrapper for a RetrievedBlogEntry and has an associated TagMagnitudeVector representation for its text.

Listing 9.5 The definition for the BlogAnalysisDataItem

package com.alag.ci.blog.cluster.impl;

```
import com.alaq.ci.bloq.search.RetrievedBloqEntry;
import com.alag.ci.cluster.TextDataItem;
import com.alag.ci.textanalysis.TagMagnitudeVector;
public class BlogAnalysisDataItem implements TextDataItem {
  private RetrievedBlogEntry blogEntry = null;
  private TagMagnitudeVector tagMagnitudeVector = null;
  private Integer clusterId;
  public BlogAnalysisDataItem(RetrievedBlogEntry blogEntry,
        TagMagnitudeVector tagMagnitudeVector ) {
     this.blogEntry = blogEntry;
     this.tagMagnitudeVector = tagMagnitudeVector;
  public Object getData() {
     return this.getBlogEntry();
  public RetrievedBlogEntry getBlogEntry() {
     return blogEntry;
  public TagMagnitudeVector getTagMagnitudeVector() {
     return tagMagnitudeVector;
  public double distance(TaqMagnitudeVector other) {
     return this.getTagMagnitudeVector().dotProduct(other);
  public Integer getClusterId() {
     return clusterId;
  public void setClusterId(Integer clusterId) {
     this.clusterId = clusterId;
}
```

Listing 9.6 shows the first part of the implementation for BlogDataSetCreatorImpl, which implements the DataSetCreator interface for blog entries.

The BlogDataSetCreatorImpl uses the APIs developed in chapter 5 to retrieve blog entries from Technorati. It queries for recent blog entries that have been tagged with *collective intelligence*.

Listing 9.7 shows the how blog data retrieved from Technorati is converted into a List of TextDataItem objects.

Listing 9.7	Converting blog entries into a List of TextDataItem objects	
private I	ist <textdataitem> getBlogTagMagnitudeVectors(</textdataitem>	
B	logQueryResult blogQueryResult) throws IOException {	
List	<retrievedblogentry> blogEntries =</retrievedblogentry>	
blc	<pre>gQueryResult.getRelevantBlogs();</pre>	
List	<textdataitem> result = new ArrayList<textdataitem>();</textdataitem></textdataitem>	llood
Inve	rseDocFreqEstimator freqEstimator =	for idf
ne	ew InverseDocFreqEstimatorImpl(blogEntries.size()); 🚽 🛶	
Text.	Analyzer textAnalyzer = new LuceneTextAnalyzer(

```
new TagCacheImpl(), fregEstimator);
                                                                   Combines title,
                                                                   name, author,
     for (RetrievedBlogEntry blogEntry: blogEntries) {
                                                                   and excerpt
        String text = composeTextForAnalysis(blogEntry);
        TagMagnitudeVector tmv =
          textAnalyzer.createTagMagnitudeVector(text);
        for (TagMagnitude tm: tmv.getTagMagnitudes()) {
                                                                  Learns tag
           freqEstimator.addCount(tm.getTag());
                                                                  frequency
        }
                                                                  with tags
     }
     for (RetrievedBlogEntry blogEntry: blogEntries) {
                                                                    Iterates
        String text = composeTextForAnalysis(blogEntry);
                                                                    over all
        TagMagnitudeVector tmv =
                                                                   blog entries
          textAnalyzer.createTagMagnitudeVector(text);
        result.add(new BlogAnalysisDataItem(blogEntry,tmv));
     }
     return result;
  public String composeTextForAnalysis(RetrievedBlogEntry blogEntry) {
     StringBuilder sb = new StringBuilder();
     if (blogEntry.getTitle() != null) {
        sb.append(blogEntry.getTitle());
     if (blogEntry.getName() != null) {
        sb.append(" " + blogEntry.getName());
     if (blogEntry.getAuthor() != null) {
        sb.append(" " + blogEntry.getAuthor());
     if (blogEntry.getExcerpt() != null) {
        sb.append(" " + blogEntry.getExcerpt());
     return sb.toString();
  }
}
```

The BlogDataSetCreatorImpl uses a simple implementation for estimating the frequencies associated with each of the tags:

```
InverseDocFreqEstimator freqEstimator =
    new InverseDocFreqEstimatorImpl(blogEntries.size());
```

The method composeTextForAnalysis() combines text from the title, name, author, and excerpt for analysis. It then uses a TextAnalyzer, which we developed in chapter 8, to create a TagMagnitudeVector representation for the text.

Listing 9.8 shows the implementation for the InverseDocFreqEstimatorImpl, which provides an estimate for the tag frequencies.

Listing 9.8 The implementation for InverseDocFreqEstimatorImpl

```
package com.alag.ci.textanalysis.lucene.impl;
import java.util.*;
import com.alag.ci.textanalysis.InverseDocFreqEstimator;
import com.alag.ci.textanalysis.Tag;
```

```
public class InverseDocFreqEstimatorImpl
      implements InverseDocFreqEstimator {
   private Map<Tag, Integer> tagFreg = null;
  private int totalNumDocs;
   public InverseDocFreqEstimatorImpl(int totalNumDocs) {
     this.totalNumDocs = totalNumDocs;
      this.tagFreq = new HashMap<Tag, Integer>();
   }
                                                            Estimates inverse
                                                            document frequency
   public double estimateInverseDocFreg(Tag tag) {
      Integer freg = this.tagFreg.get(tag);
      if ((freq == null) || (freq.intValue() == 0)) {
         return 1.;
      }
     return Math.log(totalNumDocs/freq.doubleValue());
   }
  public void addCount(Tag tag) {
                                           <1-
                                                    Keeps count
     Integer count = this.tagFreq.get(tag);
                                                   for each tag
      if (count == null) {
         count = new Integer(1);
      } else {
         count = new Integer(count.intValue() + 1);
      }
     this.tagFreq.put(tag, count);
}
```

The inverse document frequency for a tag is estimated by computing the log of the total number of documents divided by the number of documents that the tag appears in:

Math.log(totalNumDocs/freq.doubleValue());

Note that the more rare a tag is, the higher its idf. With this background, we're now ready to implement our first text clustering algorithm. For this we use the k-means clustering algorithm.

9.1.3 Implementing the k-means algorithms for text processing

The k-means clustering algorithm consists of the following steps:

- 1 For the specified number of *k* clusters, initialize the clusters at random. For this, we select a point from the learning dataset and assign it to a cluster. Further, we ensure that all clusters are initialized with different data points.
- 2 Associate each of the data items with the cluster that's closest (most similar) to it. We use the dot product between the cluster and the data item to measure the closeness (similarity). The higher the dot product, the closer the two points.
- **3** Recompute the centers of the clusters using the data items associated with the cluster.
- 4 Continue steps 2 and 3 until there are no more changes in the association between data items and the clusters. Sometimes, some data items may oscillate between two clusters, causing the clustering algorithm to not converge. Therefore, it's a good idea to also include a maximum number of iterations.

We develop the code for k-means in more or less the same order. Let's first look at the implementation for representing a cluster. This is shown in listing 9.9.

```
Listing 9.9 The implementation for ClusterImpl
package com.alag.ci.blog.cluster.impl;
import java.util.*;
import com.alag.ci.blog.search.RetrievedBlogEntry;
import com.alaq.ci.cluster.*;
import com.alag.ci.textanalysis.*;
import com.alag.ci.textanalysis.termvector.impl.TagMagnitudeVectorImpl;
public class ClusterImpl implements TextCluster {
   private TagMagnitudeVector center = null;
                                                  \leftarrow 
                                                       Cluster center
  private List<TextDataItem> items = null;
                                                       represented by
  private int clusterId;
                                                       TagMagnitudeVector
   public ClusterImpl(int clusterId) {
      this.clusterId = clusterId;
      this.items = new ArrayList<TextDataItem>();
   public void computeCenter() {
      if (this.items.size() == 0) {
         return;
     List<TagMagnitudeVector> tmList =
                                                                 Center computed
        new ArrayList<TagMagnitudeVector>();
                                                                    by adding all
      for (TextDataItem item: items) {
                                                                     data points
         tmList.add(item.getTagMagnitudeVector());
      List<TagMagnitude> emptyList = Collections.emptyList();
      TaqMagnitudeVector empty = new TaqMagnitudeVectorImpl(emptyList);
                                                                             <1
      this.center = empty.add(tmList);
   public int getClusterId() {
      return this.clusterId;
   public void addDataItem(TextDataItem item) {
      items.add(item);
   public TaqMagnitudeVector getCenter() {
      return center;
   public List<TextDataItem> getItems() {
      return items;
   public void setCenter(TagMagnitudeVector center) {
      this.center = center;
   public void clearItems() {
      this.items.clear();
```

```
public String toString() {
    StringBuilder sb = new StringBuilder() ;
    sb.append("Id=" + this.clusterId);
    for (TextDataItem item: items) {
        RetrievedBlogEntry blog = (RetrievedBlogEntry) item.getData();
        sb.append("\nTitle=" + blog.getTitle());
        sb.append("\nExcerpt=" + blog.getExcerpt());
    }
    return sb.toString();
}
```

The center of the cluster is represented by a TagMagnitudeVector and is computed by adding the TagMagnitudeVector instances for the data items associated with the cluster.

Next, let's look at listing 9.10, which contains the implementation for the k-means algorithm.

```
Listing 9.10 The core of the TextKMeansClustererImpl implementation
package com.alag.ci.blog.cluster.impl;
import java.util.*;
import com.alag.ci.cluster.*;
public class TextKMeansClustererImpl implements Clusterer{
   private List<TextDataItem> textDataSet = null;
  private List<TextCluster> clusters = null;
  private int numClusters ;
   public TextKMeansClustererImpl(List<TextDataItem> textDataSet,
         int numClusters) {
      this.textDataSet = textDataSet;
      this.numClusters = numClusters;
   }
   public List<TextCluster> cluster() {
      if (this.textDataSet.size() == 0) {
         return Collections.emptyList();
                                                Initialize
      }
                                                clusters
      this.intitializeClusters();
                                       <1-
      boolean change = true;
      int count = 0;
      while ((count ++ < 100) && (change)) {
                                                    Reassign data
         clearClusterItems();
                                                   items to clusters
         change = reassignClusters();
                                           \triangleleft
         computeClusterCenters();
                                       \triangleleft
                                              Recompute centers
      }
                                              for clusters
      return this.clusters;
   }
```

The dataset for clustering, along with the number of clusters, is specified in the constructor:

As explained at the beginning of the section, the algorithm is fairly simple. First, the clusters are initialized at random:

this.intitializeClusters();

This is followed by reassigning the data items to the closest clusters:

reassignClusters()

and recomputing the centers of the cluster:

```
computeClusterCenters()
```

Listing 9.11 shows the code for initializing the clusters.

```
Listing 9.11 Initializing the clusters
```

```
private void intitializeClusters() {
  this.clusters = new ArrayList<TextCluster>();
  Map<Integer, Integer> usedIndexes = new HashMap<Integer, Integer>();
  for (int i = 0; i < this.numClusters; i++ ) {</pre>
     ClusterImpl cluster = new ClusterImpl(i);
     cluster.setCenter(getDataItemAtRandom(usedIndexes).
       getTagMagnitudeVector());
     this.clusters.add(cluster);
   }
}
private TextDataItem getDataItemAtRandom(
   Map<Integer, Integer> usedIndexes) {
  boolean found = false;
  while (!found) {
     int index = (int)Math.floor(
         Math.random()*this.textDataSet.size());
     if (!usedIndexes.containsKey(index)) {
        usedIndexes.put(index, index);
         return this.textDataSet.get(index);
      ļ
  return null;
}
```

For each of the k clusters to be initialized, a data point is selected at random. The algorithm keeps track of the points selected and ensures that the same point isn't reselected. Listing 9.12 shows the remaining code associated with the algorithm.

```
Listing 9.12 Recomputing the clusters
private boolean reassignClusters() {
    int numChanges = 0;
    for (TextDataItem item: this.textDataSet) {
        TextCluster newCluster = getClosestCluster(item);
        if ((item.getClusterId() == null ) ||
        (item.getClusterId().intValue() !=
            newCluster.getClusterId())) {
            numChanges ++;
        }
    }
}
```

```
item.setClusterId(newCluster.getClusterId());
      newCluster.addDataItem(item);
   }
  return (numChanges > 0);
}
private void computeClusterCenters() {
   for (TextCluster cluster: this.clusters) {
      cluster.computeCenter();
   }
}
private void clearClusterItems() {
   for (TextCluster cluster: this.clusters) {
      cluster.clearItems();
   }
}
private TextCluster getClosestCluster(TextDataItem item) {
  TextCluster closestCluster = null;
  Double hightSimilarity = null;
   for (TextCluster cluster: this.clusters) {
      double similarity =
         cluster.getCenter().dotProduct(item.getTagMagnitudeVector()); <-
      if ((hightSimilarity == null) ||
            (hightSimilarity.doubleValue() < similarity)) {</pre>
        hightSimilarity = similarity;
         closestCluster = cluster;
                                                              Dot product shows
      }
                                                                      similarity
   }
   return closestCluster;
}
public String toString() {
  StringBuilder sb = new StringBuilder();
   for (TextCluster cluster: clusters) {
      sb.append("\n\n");
      sb.append(cluster.toString());
   }
  return sb.toString();
}
```

The similarity between a cluster and a data item is computed by taking the dot product of the two TagMagnitudeVector instances:

```
double similarity =
cluster.getCenter().dotProduct(item.getTagMagnitudeVector());
```

We use the following simple main program:

ļ

```
public static final void main(String [] args) throws Exception {
    DataSetCreator bc = new BlogDataSetCreatorImpl();
    List<TextDataItem> blogData = bc.createLearningData();
    TextKMeansClustererImpl clusterer = new
        TextKMeansClustererImpl(blogData,4);
    clusterer.cluster();
}
```

The main program creates four clusters. Running this program yields different results, as the blog entries being created change dynamically, and different clustering runs with the same data can lead to different clusters depending on how the cluster nodes are initialized. Listing 9.13 shows a sample result from one of the clustering runs. Note that sometimes duplicate blog entries are returned from Technorati and that they fall in the same cluster.

Listing 9.13 Results from a clustering run

```
Id=0
Title=Viel um die Ohren
Excerpt=Leider komme ich zur Zeit nicht so viel zum Bloggen, wie ich gerne
würde, da ich mitten in 3 Projekt
Title=Viel um die Ohren
Excerpt=Leider komme ich zur Zeit nicht so viel zum Bloggen, wie ich gerne
würde, da ich mitten in 3 Projekt
Id=1
Title=Starchild Aug. 31: Choosing Simplicity & Creative Compassion..&
Releasing "Addictions" to Suffering
Excerpt=Choosing Simplicity and Creative Compassion...and Releasing
"Addictions" to SufferingAn article and
Title=Interesting read on web 2.0 and 3.0
Excerpt=I found these articles by Tim O'Reilly on web 2.0 and 3.0 today.
Quite an interesting read and nice
Id=2
Title=Corporate Social Networks
Excerpt=Corporate Social Networks Filed under: Collaboration,
Social-networking, collective intelligence, social-software - dorai @
10:28 am Tags: applicatio
Id=3
Title=SAP Gets Business Intelligence. What Do You Get?
Excerpt=SAP Gets Business Intelligence. What Do You Get?
                                                           [IMG]
Posted by: Michael Goldberg in News
Title=SAP Gets Business Intelligence. What Do You Get?
Excerpt=SAP Gets Business Intelligence. What Do You Get?
                                                           [IMG]
Posted by: Michael Goldberg in News
Title=Che Guevara, presente!
Excerpt=Che Guevara, presente! Posted by Arroyoribera on October 7th, 2007
Forty years ago, the Argentine
Title=Planet 2.0 meets the USA
Excerpt= This has been a quiet blogging week due to FLACSO México's visit
to the University of Minnesota. Th
Title=collective intelligence excites execs
Excerpt=collective intelligence excites execs zdnet.com's dion hinchcliffe
provides a tremendous post cov
```

In this section, we looked at the implementation of the k-means clustering algorithm. K-means is one of the simplest clustering algorithms, and it gives good results.

In k-means clustering, we provide the number of clusters. There's no theoretical solution to what is the optimal value for k. You normally try different values for k to see the effect on overall criteria, such as minimizing the overall distance between

each point and its cluster mean. Let's look at an alternative algorithm called hierarchical clustering.

9.1.4 Implementing hierarchical clustering algorithms for text processing

Hierarchical Agglomerative Clustering (HAC) algorithms begin by assigning a cluster to each item being clustered. Then they compute the similarity between the various clusters and create a new cluster by merging the two clusters that were most similar. This process of merging clusters continues until you're left with only one cluster. This clustering algorithm is called *agglomerative*, since it continuously merges the clusters.

There are different versions of this algorithm based on how the similarity between two clusters is computed. The *single-link* method computes the distance between two clusters as the minimum distance between two points, one each of which is in each cluster. The *complete-link* method, on the other hand, computes the distance as the maximum of the similarities between a member of one cluster and any of the members in another cluster. The *average-link* method calculates the average similarity between points in the two clusters.

We demonstrate the implementation for the HAC algorithm by computing a mean for a cluster, which we do by adding the TagMagnitudeVector instances for the children. The similarity between two clusters is computed by using the dot product of the two centers.

To implement the hierarchical clustering algorithm, we need to implement four additional classes, as shown in figure 9.3. These classes are

- HierCluster: an interface for representing a hierarchical cluster
- HierClusterImpl: implements the cluster used for a hierarchical clustering algorithm
- HierDistance: an object used to represent the distance between two clusters
- HierarchialClusteringImpl: the implementation for the hierarchical clustering algorithm

Figure 9.3 The classes for implementing the hierarchical agglomerative clustering algorithm

The interface for HierCluster is shown in listing 9.14. Each instance of a HierCluster has two children clusters and a method for computing the similarity with another cluster.

```
Listing 9.14 The interface for HierCluster
package com.alag.ci.cluster.hiercluster;
import com.alag.ci.cluster.TextCluster;
public interface HierCluster extends TextCluster {
    public HierCluster getChild1();
    public HierCluster getChild2();
    public double getSimilarity();
    public double computeSimilarity(HierCluster o);
}
```

You can implement multiple variants of a hierarchical clustering algorithm by having different implementations of the computeSimilarity method. One such implementation is shown in listing 9.15, which shows the implementation for HierClusterImpl.

```
Listing 9.15 The implementation for HierClusterImpl
package com.alag.ci.blog.cluster.impl;
import java.io.StringWriter;
import com.alag.ci.blog.search.RetrievedBlogEntry;
import com.alag.ci.cluster.TextDataItem;
import com.alag.ci.cluster.hiercluster.HierCluster;
public class HierClusterImpl extends ClusterImpl implements HierCluster {
  private HierCluster child1 = null;
  private HierCluster child2 = null;
  private double similarity;
  public HierClusterImpl(int clusterId, HierCluster child1,
        HierCluster child2, double similarity,
        TextDataItem dataItem) {
                                           4
                                                Constructor
     super(clusterId);
     this.child1 = child1;
     this.child2 = child2;
     this.similarity = similarity;
     if (dataItem != null) {
        this.addDataItem(dataItem);
  public HierCluster getChild1() {
     return child1;
  public HierCluster getChild2() {
     return child2;
  public double getSimilarity() {
     return similarity;
```

```
}
                                                              Computes similarity
                                                              between clusters
  public double computeSimilarity (HierCluster o) {
     return this.getCenter().dotProduct(o.getCenter());
  public String toString() {
     StringWriter sb = new StringWriter();
     String blogDetails = getBlogDetails();
     if (blogDetails != null) {
        sb.append("Id=" + this.getClusterId() + " " + blogDetails);
     } else {
        sb.append("Id=" + this.getClusterId() + " similarity="+
           this.similarity);
     }
     if (this.getChild1() != null) {
        sb.append(" C1=" + this.getChild1().getClusterId());
     }
     if (this.getChild2() != null) {
        sb.append(" C2=" + this.getChild2().getClusterId());
      }
     return sb.toString();
                                              Prints out details
                                              of blog entry
  private String getBlogDetails() {
     if ((this.getItems() != null) && (this.getItems().size() > 0)) {
        TextDataItem textDataItem = this.getItems().get(0);
        if (textDataItem != null) {
           RetrievedBlogEntry blog =
            (RetrievedBlogEntry) textDataItem.getData();
           return blog.getTitle();
        }
     }
     return null;
  }
}
```

The implementation for HierClusterImpl is straightforward. Each instance of HierClusterImpl has two children and a similarity. The toString() and getBlog-Details() methods are added to display the cluster.

Next, let's look at the implementation for the HierDistance class, which is shown in listing 9.16.

```
hashCode = ("" + c1.getClusterId()).hashCode() +
      ("" + c2.getClusterId()).hashCode();
                                                     Overrides equals and
                                                     hashcode methods
public boolean equals(Object obj) {
   return (this.hashCode() == obj.hashCode());
public int hashCode() {
   return this.hashCode;
public HierCluster getC1() {
   return c1;
public HierCluster getC2() {
   return c2;
public double getSimilarity() {
   return this.similarity;
public boolean containsCluster(HierCluster hci) {
   if ( (this.getC1() == null) || (this.getC2() == null) ) {
      return false;
   }
   if (hci.getClusterId() == this.getCl().getClusterId()) {
      return true;
   }
   if (hci.getClusterId() == this.getC2().getClusterId()) {
      return true;
   }
   return false;
}
public void setSimilarity(double similarity) {
   this.similarity = similarity;
                                                            Two distances
                                                            compared based
                                                            on similarities
public int compareTo(HierDistance o) {
                                                    ~
   double diff = o.getSimilarity() - this.similarity;
   if (diff > 0) {
      return 1;
   } else if (diff < 0) {
      return -1;
   }
   return 0;
```

We use an instance of HierDistance to represent the distance between two clusters. Note that the similarity between two clusters, A and B, is the same as the distance between cluster B and A—the similarity is order-independent. The following computation for the hashCode:

}

ensures that two instances of HierDistance with the same two children are equivalent. containsCluster() is a utility method that will be used by the clustering algorithm to prune out links that are no longer valid.

Finally, we look at the first part of the HierarchialClusteringImpl algorithm, which is shown in listing 9.17. This part shows the implementation of the clustering algorithm in the cluster method.

```
Listing 9.17 The cluster method for HierarchialClusteringImpl
package com.alag.ci.blog.cluster.impl;
import java.io.StringWriter;
import java.util.*;
import com.alaq.ci.cluster.*;
import com.alag.ci.cluster.hiercluster.HierCluster;
                                                                       Keeps track
                                                                       of available
public class HierarchialClusteringImpl implements Clusterer {
                                                                      clusters
                                                                   \sim 1
   private Map<Integer,HierCluster> availableClusters = null;
  private List<TextDataItem> textDataSet = null;
                                                                        Distances
   private HierCluster rootCluster ;
                                         \triangleleft
                                               Root cluster at
                                                                        between
                                                                        various
                                               end of clustering
   private int idCount = 0;
                                                                        clusters
  private Map<HierDistance,HierDistance> allDistance = null;
   public HierarchialClusteringImpl(List<TextDataItem> textDataSet) {
     this.textDataSet = textDataSet;
     this.availableClusters = new HashMap<Integer,HierCluster>();
     this.allDistance = new HashMap<HierDistance,HierDistance>();
   public List<TextCluster> cluster() {
                                                   Clustering
     createInitialClusters();
                                                   algorithm
      while (allDistance.size() > 0) {
         addNextCluster();
      }
     List<TextCluster> clusters = new ArrayList<TextCluster>();
     clusters.add(this.rootCluster);
     return clusters;
   }
```

The clustering algorithm in HierarchialClusteringImpl is fairly simple. It first creates an initial list of clusters:

```
createInitialClusters();
```

Next it creates a new cluster from the list of available clusters. This process continues until you're left with only one cluster:

```
while (allDistance.size() > 0) {
    addNextCluster();
}
```

Let's look at the method to create the initial set of clusters, contained in listing 9.18.

```
Listing 9.18 Creating the initial clusters in HierarchialClusteringImpl
 private void createInitialClusters() {
                                              Create initial set of clusters
      createInitialSingleItemClusters();
      computeInitialDistances();
                                     \triangleleft
                                          Compute initial set of distances
  private void createInitialSingleItemClusters() {
      for (TextDataItem dataItem: this.textDataSet) {
         HierClusterImpl cluster = new HierClusterImpl(this.idCount ++,
              null, null, 1., dataItem);
         cluster.setCenter(dataItem.getTagMagnitudeVector());
         this.availableClusters.put(cluster.getClusterId(),cluster);
      }
   }
   private void computeInitialDistances() {
      for (HierCluster cluster: this.availableClusters.values()) {
         for (HierCluster otherCluster:
          this.availableClusters.values()) {
            if (cluster.getClusterId() !=
              otherCluster.getClusterId()) {
              HierDistance hd =
                new HierDistance(cluster,otherCluster);
               if (!this.allDistance.containsKey(hd)) {
                  double similarity =
                   cluster.computeSimilarity(otherCluster);
                 hd.setSimilarity(similarity);
                  this.allDistance.put(hd, hd);
               }
            }
         }
      }
```

Creating an initial set of clusters consists of two steps. First, we create a cluster for each data item:

```
createInitialSingleItemClusters();
```

Second, we compute the distances between each of the clusters using compute-InitialDistances(). These distances are stored in allDistances.

Next, let's look at the code to add a new cluster to the initial set of clusters, shown in listing 9.19.

```
Listing 9.19 Merging the next cluster in HierarchialClusteringImpl
   private void addNextCluster() {
      List<HierDistance> sortDist = new ArrayList<HierDistance>();
      sortDist.addAll(this.allDistance.keySet());
                                                        Get clusters with
      Collections.sort(sortDist);
                                                        best similarity
                                                  \overline{}
      HierDistance hd = sortDist.get(0);
      this.allDistance.remove(hd);
                                            Create new cluster
                                                                    Remove invalid
      HierCluster cluster = createNewCluster(hd);
                                                        1
                                                                    distances
      pruneDistances(hd.getC1(), hd.getC2(), sortDist);
```

```
addNewClusterDistances(cluster);
                                        Add distances from new cluster
  if (this.allDistance.size() == 0) {
                                        Check if we have root node
     this.rootCluster = cluster;
   }
private HierCluster createNewCluster(HierDistance hd) {
  HierClusterImpl cluster = new HierClusterImpl(this.idCount ++,
        hd.getC1(), hd.getC2(), hd.getSimilarity(),null);
  cluster.setCenter(hd.getC1().getCenter().add(
     hd.getC2().getCenter()));
  this.availableClusters.put(cluster.getClusterId(),cluster);
  this.availableClusters.remove(hd.getC1().getClusterId());
  this.availableClusters.remove(hd.getC2().getClusterId());
  return cluster;
}
private void pruneDistances (HierCluster c1, HierCluster c2,
  List<HierDistance> sortDist) {
  for (HierDistance hierDistance: sortDist) {
     if ((hierDistance.containsCluster(c1)) ||
        (hierDistance.containsCluster(c2))) {
        this.allDistance.remove(hierDistance);
     }
   }
}
private void addNewClusterDistances(HierCluster cluster) {
  for (HierCluster hc: this.availableClusters.values()) {
     if (hc.getClusterId() != cluster.getClusterId()) {
        HierDistance hierDistance = new HierDistance(cluster,hc);
        double similarity =
           cluster.getCenter().dotProduct(hc.getCenter());
        hierDistance.setSimilarity(similarity);
        this.allDistance.put(hierDistance, hierDistance);
     }
   }
}
```

Adding a new cluster involves finding the HierDistance that has the highest similarity among all the distance measures. All the distances are sorted, and the best one is used for merging clusters:

```
Collections.sort(sortDist);
HierDistance hd = sortDist.get(0);
```

The method pruneDistances() removes distances associated with the two clusters that have been merged, while the method addNewClusterDistances() adds the distances from the new cluster to all the other clusters that can be merged.

Listing 9.20 shows the code associated with printing the details from the hierarchical clustering algorithm.

```
Listing 9.20 Printing the results from HierarchialClusteringImpl
```

```
public String toString() {
   StringWriter sb = new StringWriter();
```

```
sb.append("Num of clusters = " + this.idCount + "\n");
     sb.append(printClusterDetails(this.rootCluster,""));
     return sb.toString();
  private String printClusterDetails(
      HierCluster cluster, String append) {
     StringWriter sb = new StringWriter();
     if (cluster != null) {
        sb.append(cluster.toString());
        String tab = "\t" + append;
        if (cluster.getChild1() != null) {
           sb.append("\n" + tab + "C1=" +
            printClusterDetails(cluster.getChild1(),tab));
        }
        if (cluster.getChild2() != null) {
           sb.append("\n" + tab + "C2="
            +printClusterDetails(cluster.getChild2(),tab));
        }
     }
     return sb.toString();
  }
}
```

There's nothing complicated in printing the details of the cluster that's created. The code simply formats the results; an example is shown in listing 9.21. This listing shows the results from one of the clustering runs. Note that the titles of the blog entries are shown wherever we have a leaf cluster with a blog entry. Each cluster has a unique ID associated with it and there are a total of 10 clusters.

```
Listing 9.21 Sample output from hierarchical clustering applied to blog entries
Num of clusters = 19
Id=18 similarity=0.00325633040335101 C1=17 C2=9
  C1=Id=17 similarity=0.02342920655844054 C1=16 C2=14
     C1=Id=16 similarity=0.42247390457827866 C1=15 C2=13
        C1=Id=15 similarity=0.04164026486125777 C1=10 C2=6
           C1=Id=10 similarity=0.6283342717309606 C1=1 C2=0
              C1=Id=1 Vote for Cool Software
              C2=Id=0 Vote for Cool Software
           C2=Id=6 Collective Intelligence Applied to the Patent
Process
        C2=Id=13 similarity=0.8021265050360485 C1=12 C2=5
           C1=Id=12 similarity=0.676456586660375 C1=11 C2=7
              C1=Id=11 similarity=0.5542920709331453 C1=4 C2=8
                 C1=Id=4 Collective Intelligence Applied to the
Patent Process
                 C2=Id=8 Collective Intelligence Applied to the
Patent Process
              C2=Id=7 Collective Intelligence Applied to the Patent Process
        C2=Id=5 Collective Intelligence Applied to the Patent Process
     C2=Id=14 similarity=0.0604642261218513 C1=2 C2=3
        C1=Id=2 Wall Street meets social networking
        C2=Id=3 10 Ways to Build More Collaborative Teams
  C2=Id=9 Rencontres ICC'07 : on se voit là bas ?
```

This output was generated using the following code:

Hierarchical algorithms don't scale well. If n is the number of items then the order of complexity is n^2 . Hierarchical algorithms, along with k-means, give good clustering results. Next, let's look at the expectation maximization clustering algorithm.

9.1.5 Expectation maximization and other examples of clustering high-dimension sparse data

An alternative approach to clustering is to use a model to fit the data. The clustering algorithm then tries to optimize the fit between the model and the data. Typically, for continuous attributes, the Gaussian distribution is used to model a variable. Each cluster has a mean and variance associated with it. Given another point, we can compute the probability of that point being a part of that distribution. This probability is a number between 0 and 1. The higher the probability, the higher the chance that the point belongs to the cluster.

The expectation maximization algorithm (EM) is a general-purpose framework for estimating a set of Gaussian distributions for modeling data. Unlike the k-means algorithm, the data points aren't associated with a single cluster; the association is soft in that they're associated with a cluster with a probability for each. Adapting the process to clustering, you can use the following clustering algorithms:

- Initialize the k clusters at random—Each cluster has a mean and variance.
- *Expectation step*—Compute the probability that a point belongs to the cluster.
- *Maximization step*—Maximize the parameters of the distribution to maximize the likelihood of the items.

The algorithm stops when the change in the likelihood of the objects after each iteration becomes small. In section 9.2, we apply the EM clustering algorithm using WEKA.

Analyzing the data corresponding to user click-through in a web application during a period of time leads to a high-dimension dataset, which is sparse. This is similar to the term vector representation for text. In this case, each document that a user can visit forms the terms, while the frequency count of visitation corresponds to the weight of the vector.

In chapter 3, we looked at user tagging. Analyzing the set of tags created by users leads to analysis similar to that done in this section. The tags created or visited by a user can be used to cluster similar users. Next, we look at clustering blog entries using WEKA.
9.2 Leveraging WEKA for clustering

Figure 7.13 in section 7.2.2 showed the classes associated with WEKA for clustering. In this section, we work through the same example of clustering blog data using the WEKA APIs.

You may recall that a dataset in WEKA is represented by the Instances class. Instances are composed of an Instance object, one for each data item. Attributes for the dataset are represented by the Attribute class. To apply the WEKA clustering algorithm, we do the following steps:

- 1 Convert the blog data from Technorati into an Instances representation.
- 2 Create an instance of the Clusterer and associate the learning data.
- **3** Evaluate the results of clustering.

It's helpful to go through figure 9.4, which maps the classes that we will be using in this section.

The class WEKABlogDataSetClusterer, which extends BlogDataSetCreatorImpl, is the main class that we develop in this section. It creates an instance of the dataset, of type Instances. It uses the EM class for applying the expectation maximization algorithm to the Instances class. The ClusterEvaluation class is used for evaluating the result from EM, which is an instance of the Clusterer class.

In this section, we first create the dataset for using the WEKA APIs. This will be followed by using the EM class to cluster the blog entries, and finally we evaluate the quality of the clustering model.

Figure 9.4 The classes for implementing the hierarchical agglomerative clustering algorithm

9.2.1 Creating the learning dataset

To create a learning dataset in WEKA, we first need to define attributes. We take a simple approach of treating each tag as an attribute. Clearly, representing text with tags leads to a high-dimensional dataset. Typically, based on your domain, you may have well over 100,000 tag instances. A common approach is to reduce the dimension space by pruning the number of tags associated with each document. In our example of classifying blog entries, for 10 blog instances, there were typically around 150 unique tags.

Listing 9.22 shows the first part of the WEKABlogDataSetClusterer class, which deals with creating an Instances dataset by retrieving live blog entries from Technorati. This class extends the BlogDataSetCreatorImpl class that we developed in the previous section.

Listing 9.22 The first part of WEKABlogDataSetClusterer

```
package com.alaq.ci.bloq.cluster.weka.impl;
import java.util.*;
import weka.clusterers.*;
import weka.core.*;
import com.alag.ci.blog.cluster.impl.BlogDataSetCreatorImpl;
import com.alag.ci.blog.search.RetrievedBlogEntry;
import com.alag.ci.cluster.TextDataItem;
                                                                   Keeps list of
import com.alag.ci.textanalysis.*;
                                                                   blog entries
import com.alaq.ci.textanalysis.Taq;
public class WEKABloqDataSetClusterer extends BloqDataSetCreatorImpl {
   private List<TextDataItem> blogEntries = null;
                                                                     <
   public Instances createLearningDataSet() throws Exception {
      this.blogEntries = createLearningData();
     FastVector allAttributes = createAttributes();
      Instances trainingDataSet = new Instances("blogClustering",
            allAttributes, blogEntries.size());
                                                                      Each tag
      int numAttributes = allAttributes.size();
                                                                   corresponds
     Collection<Tag> allTags = this.getAllTags();
                                                                 to an attribute
      for (TextDataItem dataItem : blogEntries) {
         Instance instance = createNewInstance(numAttributes,
               trainingDataSet,
               allTags, dataItem );
                                       \triangleleft
                                              Each entry corresponds
         trainingDataSet.add(instance);
                                             to an instance
      }
      return trainingDataSet;
   }
   private FastVector createAttributes() {
     Collection<Tag> allTags = this.getAllTags();
     FastVector allAttributes = new FastVector(allTags.size());
      for (Tag tag : allTags) {
        Attribute tagAttribute = new Attribute(tag.getDisplayText());
         allAttributes.addElement(tagAttribute);
                                                               Each tag is
      }
                                                              an attribute
      return allAttributes;
```

```
private Instance createNewInstance(int numAttributes,
      Instances trainingDataSet, Collection<Tag> allTags,
      TextDataItem dataItem) {
   Instance instance = new Instance(numAttributes);
   instance.setDataset(trainingDataSet);
   int index = 0;
   TagMagnitudeVector tmv = dataItem.getTagMagnitudeVector();
   Map<Tag, TagMagnitude> tmvMap = tmv.getTagMagnitudeMap();
   for (Tag tag : allTags) {
      TagMagnitude tm = tmvMap.get(tag);
      if (tm != null) {
         instance.setValue(index++, tm.getMagnitude());
                                                              \leq -
                                                                 Magnitude
      } else {
                                                                 corresponds
         instance.setValue(index++, 0.);
                                                                 to input value
                                                                 for attribute
   return instance;
```

The method createLearningDataSet first gets the List of TextDataItem instances:

this.blogEntries = createLearningData();

Attribute instances are created by iterating over all the tag entries:

```
for (Tag tag : allTags) {
   Attribute tagAttribute = new Attribute(tag.getDisplayText());
   allAttributes.addElement(tagAttribute);
```

A new Instance is created by using the TagMagnitudeVector and iterating over all the tag instances. A tag attribute that isn't present in the TagMagnitudeVector instance has a magnitude of 0.

It's useful to look at listing 9.23, which shows a typical dump of the Instances class. The dump was created using the toString method for the Instances class.

Listing 9.23 An example dump of the Instances class

@data

The first part of the dump enumerates all the attributes. Each tag instance is a numeric attribute, which takes values between 0 and 1. The data associated with three blog entries is also shown in the listing. Note that the rows are sparsely populated with most of the values being zero.

9.2.2 Creating the clusterer

Now that we've created the dataset, let's look at the second part of the implementation for WEKABlogDataSetClusterer, which corresponds to creating an instance of a Clusterer and clustering the dataset we just created. Listing 9.24 has the code.

```
Listing 9.24 The second part of WEKABlogDataSetClusterer
                                                                Creates dataset
  public void cluster() throws Exception {
                                                                for clustering
     Instances instances = createLearningDataSet();
     Clusterer clusterer = getClusterer(instances);
                                                           Gets Clusterer instance
     evaluateCluster(clusterer, instances);
                                                   Evaluates Clusterer
   }
  private Clusterer getClusterer (Instances instances) throws Exception {
     EM em = new EM();
     em.setNumClusters(-1);
                                  <1-
                                           Selects number of clusters
     em.setMaxIterations(100);
                                           by cross validation
     em.buildClusterer(instances);
     return em;
   }
```

The clustering code is simple and consists of three steps. First, we create the learning dataset:

```
Instances instances = createLearningDataSet();
```

Next, using this Instances, we create an instance of the Clusterer. In our example, we use the expectation maximization (EM) algorithm. The class EM represents an instance of the EM algorithm. We use the no-argument constructor:

EM em = new EM();

Next, we set the parameters for the clusterer:

```
em.setNumClusters(-1);
em.setMaxIterations(100);
```

When the number of clusters is set to -1, EM uses cross validation to select the number of clusters to be used. The algorithm splits the dataset into 10 instances. It assigns the number of clusters to be 1 and then performs tenfold cross validation. The log likelihood is computed for each of the 10 runs and averaged. If the log likelihood increases, then the number of clusters is increased by one and the whole process continues. The Clusterer instance clusters the dataset using the following code:

em.buildClusterer(instances);

Next, let's look at how we can evaluate the results from clustering.

9.2.3 Evaluating the clustering results

To evaluate the results from clustering, we need to use a ClusterEvaluation instance. Listing 9.25 shows the third part of the code for WEKABlogDataSetClusterer, in which we evaluate the results from clustering.

```
Listing 9.25 The third part of WEKABlogDataSetClusterer
  private ClusterEvaluation evaluateCluster(Clusterer clusterer,
        Instances instances) throws Exception {
     ClusterEvaluation eval = new ClusterEvaluation();
                                                                  Displays
     eval.setClusterer(clusterer);
                                                                  information
     eval.evaluateClusterer(instances);
                                                                  about clusterer
                                                             ~
     String evalString = eval.clusterResultsToString();
     System.out.println(evalString);
     int numClusters = eval.getNumClusters();
     double[] assignments = eval.getClusterAssignments();
                                                                  Associates
     System.out.println("NumClusters=" + numClusters);
                                                                  instances with
                                                                  each cluster
     Map<Integer, List<RetrievedBlogEntry>> assignMap =
                                                                  created
           associateInstancesWithClusters(assignments);
                                                             <1
     printClusterEntries(assignMap);
     return eval;
  private Map<Integer, List<RetrievedBlogEntry>>
  associateInstancesWithClusters(double[] assignments) {
     int index = 0;
     Map<Integer, List<RetrievedBlogEntry>> assignMap =
       new HashMap<Integer, List<RetrievedBlogEntry>>();
     for (double assignment : assignments) {
        TextDataItem dataItem = this.blogEntries.get(index++);
        List<RetrievedBlogEntry> entries = assignMap.get(
         (int) assignment);
        if (entries == null) {
           entries = new ArrayList<RetrievedBlogEntry>();
           assignMap.put((int) assignment, entries);
        }
```

```
entries.add((RetrievedBlogEntry) dataItem.getData());
                                                                      Gets
                                                                      retrieved
   }
                                                                      blog entry
  return assignMap;
}
                                                               Prints blog
private void printClusterEntries(Map<Integer,</pre>
                                                               entry details
  List<RetrievedBlogEntry>> assignMap) {
   for (int clusterId = 0; clusterId < assignMap.size();</pre>
      clusterId++) {
      List<RetrievedBlogEntry> entries = assignMap.get(clusterId);
      System.out.println(clusterId);
      for (RetrievedBlogEntry blogEntry : entries) {
         System.out.println(blogEntry.getExcerpt());
      }
   }
}
```

We first create an instance of ClusterEvaluation, associate it with the Clusterer instance, and then evaluate the clusterer:

```
ClusterEvaluation eval = new ClusterEvaluation();
eval.setClusterer(clusterer);
eval.evaluateClusterer(instances);
```

Next, we get the association of each blog entry to a cluster instance:

```
double[] assignments = eval.getClusterAssignments();
```

Next, we use the assignments to create a list of retrieved blog entries with each of the clusters:

Lastly, we print out the assignments using the method printClusterEntries. Listing 9.26 shows the results from one of the clustering runs. Note that similar posts are grouped together in the same cluster. In this instance there are four clusters.

Listing 9.26 Sample output from one of the clustering runs

```
Clustered Instances
      3 (30%)
0
1
      2 (20%)
2
      2 (20%)
      3 (30%)
3
Log likelihood: 222.25086
NumClusters=4
0.0
SAP Gets Business Intelligence. What Do You Get? [IMG]
                                                           Posted by:
Michael Goldberg in News
SAP Gets Business Intelligence. What Do You Get? [IMG]
                                                           Posted by:
Michael Goldberg in News
Che Guevara, presente! Posted by Arroyoribera on October 7th, 2007 Forty
```

```
years ago, the Argentine
1.0
[IMG ] That's what Intel wants you to do with the launch of their new
website called CoolSW. They ar
[IMG ] That's what Intel wants you to do with the launch of their new
website called CoolSW. They ar
2.0
We Are Smarter Than Me | Podcasts We are Smarter than Me is a great new
site on collective intelli
Corporate Social Networks Filed under: Collaboration, Social-networking,
collective intelligence, so
Choosing Simplicity and Creative Compassion...and Releasing "Addictions" to
SufferingAn article and
3.0
?[ruby][collective intelligence] "Collective Intelligence"?????ruby??????
 [IMG Programming Collective Intelligence: Building Smart Web 2.0 Applicat
?[ruby][collective intelligence] "Collective Intelligence"???????????
? ????? del.icio.us ????
```

In this section, we've looked at applying the WEKA APIs for clustering instances. WEKA has a rich set of clustering algorithms, including SimpleKMeans, OPTICS (ordering points to identify clustering structures), EM, and DBScan.

As you must have noticed from this section, it's fairly straightforward to apply clustering using the WEKA APIs. Lastly, before we end the chapter, let's look at key interfaces related to clustering in the JDM APIs.

9.3 **Clustering using the JDM APIs**

The package javax.datamining.clustering contains interfaces for representing a clustering model, for algorithm settings associated with clustering, and for specifying the similarity matrix associated with clustering.

In this section, we briefly look at the key interfaces associated with clustering and look at code for creating a cluster using the JDM interfaces.

9.3.1 Key JDM clustering-related classes

As shown in figure 9.5, the results from a clustering run are represented by a ClusteringModel, which extends the Model interface. A ClusteringModel consists of a number of Cluster instances, which represent the metadata associated with a cluster. The Cluster interface has methods to return parent and children cluster instances (as with hierarchical clustering), statistics about the data associated with the cluster, rules associated with the cluster, and so on.

Figure 9.6 Some of the classes associated with clustering algorithm settings and clustering settings

For building a clustering model, there are two types of settings, as shown in figure 9.6. First are generic settings associated with the clustering process and represented by an instance of ClusteringSettings. Second are settings that are associated with a specific clustering algorithm. An example of such a setting is the KMeansSettings interface, which allows advanced users to specify the details of the k-means clustering algorithm.

The interface BuildSettings has a method setAlgorithmSettings() for setting algorithm-specific settings. Let's walk through some sample code that will make executing the clustering process through the JDM APIs clearer.

9.3.2 Clustering settings using the JDM APIs

In this section, we go through sample code to illustrate the clustering process using the JDM APIs. Our example has four steps:

- **1** Create the clustering settings object.
- **2** Create the clustering task.
- **3** Execute the clustering task.
- 4 Retrieve the clustering model.

Listing 9.27 shows the code associated with the example and the settings process.

```
Listing 9.27 Settings-related code for the clustering process

package com.alag.ci.jdm.clustering;

import java.util.Collection;

import javax.datamining.algorithm.kmeans.ClusteringDistanceFunction;

import javax.datamining.algorithm.kmeans.KMeansSettings;

import javax.datamining.algorithm.kmeans.KMeansSettingsFactory;

import javax.datamining.clustering.*;

import javax.datamining.resource.Connection;

import javax.datamining.task.*;

public class JDMClusteringExample {
```

```
public void cluster (Connection connection ) throws JDMException {
   createClusteringSettings(connection);
                                             < \vdash
                                                  Four steps
   createClusteringTask(connection);
                                                  associated
   executeClusteringTask(connection);
                                                  with example
   retrieveClusteringModel(connection);
private void createClusteringSettings(Connection connection)
   throws JDMException {
   ClusteringSettingsFactory clusSettingsFactory =
     (ClusteringSettingsFactory)
   connection.getFactory(
         "javax.datamining.clustering.ClusteringSettingsFactory");
   ClusteringSettings clusteringSettings =
    clusSettingsFactory.create();
   clusteringSettings.setMaxNumberOfClusters(100);
                                                       < -
                                                             Clustering
   clusteringSettings.setMinClusterCaseCount(10);
                                                             process-related
   ClusteringAlgorithmSettings algorithmSettings =
                                                             settings
     createKMeansClusteringSettings(connection);
   clusteringSettings.setAlgorithmSettings(algorithmSettings);
   connection.saveObject("clusteringSettings",
         clusteringSettings, false);
private ClusteringAlgorithmSettings createKMeansClusteringSettings (
  Connection connection) throws JDMException {
   KMeansSettingsFactory kmeansSettingsFactory =
       (KMeansSettingsFactory) connection.getFactory(
         "javax.datamining.algorithm.kmeans.KMeansSettingsFactory");
   KMeansSettings kmeansSettings =
     kmeansSettingsFactory.create();
                                              <1
                                                     Algorithm-specific
   kmeansSettings.setDistanceFunction(
                                                     settings
      ClusteringDistanceFunction.euclidean);
   kmeansSettings.setMaxNumberOfIterations(100);
   kmeansSettings.setMinErrorTolerance(0.001);
   return kmeansSettings;
}
```

The example first creates an instance of ClusteringSettings and sets attributes associated with the clustering process. For this, it sets the maximum and the minimum number of clusters to be created:

```
clusteringSettings.setMaxNumberOfClusters(100);
clusteringSettings.setMinClusterCaseCount(10);
```

Next, an instance of KMeansSettings is created to specify settings specific to the kmeans algorithm. Here, the distance function is set to be Euclidean. The maximum number of iterations and the minimum error tolerance are also specified:

```
kmeansSettings.setDistanceFunction(ClusteringDistanceFunction.euclidean);
     kmeansSettings.setMaxNumberOfIterations(100);
     kmeansSettings.setMinErrorTolerance(0.001);
```

The algorithm settings are set in the ClusteringSettings instance:

```
clusteringSettings.setAlgorithmSettings(algorithmSettings);
```

Next, let's look at creating the clustering task.

9.3.3 Creating the clustering task using the JDM APIs

To create an instance of the BuildTask for clustering we use the BuildTaskFactory as shown in Listing 9.28.

```
Listing 9.28 Creating the clustering task
```

The BuildTaskFactory creates an instance of the BuildTask. The create method to create a BuildTask needs the name of the dataset to be used, the name of the settings object, and the name of the model that is to be created. In our example, we will use the dataset "buildDataPhysicalDataSet", use the setting specified in the object "clusteringSettings", and the model that will be created from this run will be stored using the name "clusteringModel".

9.3.4 Executing the clustering task using the JDM APIs

To execute a build task, we use the execute() method on the Connection object as shown in listing 9.29.

```
Listing 9.29 Executing the clustering task
private void executeClusteringTask(Connection connection)
throws JDMException {
    ExecutionHandle executionHandle = connection.execute(
        "clusteringBuildTask");
    int timeoutInSeconds = 100;
    ExecutionStatus executionStatus =
        executionHandle.waitForCompletion(timeoutInSeconds);
    executionStatus = executionHandle.getLatestStatus();
    if (ExecutionState.success.equals(executionStatus.getState())) {
        //successful state
    }
}
```

The following code:

```
ExecutionStatus executionStatus =
    executionHandle.waitForCompletion(timeoutInSeconds);
```

waits for the clustering task to complete and specifies a timeout of 100 seconds. Once the task completes, it looks at execution status to see whether the task was successful.

Next, let's look at how we can retrieve the clustering model that has been created.

9.3.5 Retrieving the clustering model using the JDM APIs

Listing 9.30 shows the code associated with retrieving a ClusteringModel using the name of the model and a Connection instance.

```
Listing 9.30 Retrieving the clustering model
```

```
private void retrieveClusteringModel(Connection connection)
    throws JDMException {
        ClusteringModel clusteringModel = (ClusteringModel)
            connection.retrieveObject("clusteringModel",
            NamedObject.model);
        Collection<Cluster> clusters = clusteringModel.getClusters();
        for (Cluster cluster> clusters) {
            System.out.println(cluster.getClusterId() + " " +
            cluster.getName());
        }
    }
}
```

Once a ClusteringModel is retrieved, we can get the set of Cluster instances and display information related to each of the clusters.

In this section, we've looked at the key interfaces associated with clustering and the JDM APIs. As you must have noticed from this chapter, using the JDM APIs to apply clustering is fairly straightforward. We've looked at some sample code associated with creating clustering settings, creating and executing a clustering task, and retrieving the clustering model.

9.4 Summary

Clustering is the automated process of analyzing data to discover groups of related items. Clustering the data can provide insight into the distribution of the data, and can then be used to connect items with other similar items, build predictive models, or build a recommendation engine.

Clustering text documents involves creating a term vector representation for the text. This representation typically yields a high dimension and is sparsely populated. Analyzing the clickstream for a set of users has a similar representation. Creating a dataset using the attributes of a set of items typically leads to a dense, low-dimension representation for the data.

K-means is perhaps the simplest clustering algorithm. For this algorithm, we specify the number of clusters for the data. The algorithm iteratively assigns each item to a cluster based on a similarity or a distance measure. The centers of the clusters are recomputed based on the instances assigned to them. In hierarchical clustering, the algorithm begins with assigning a cluster to each item. Next, a new cluster is created by combining two clusters that are most similar. This process continues until you're left with only one cluster. The expectation maximization (EM) algorithm uses a probabilistic approach to cluster instances. Each item is associated with different clusters using a probabilistic distribution. The WEKA package has a number of algorithms that can be used for clustering. The process of clustering consists of first creating an instance of Instances to represent the dataset, followed by an instance of a Clusterer, and using a ClusterEvaluation to evaluate the results.

The process of clustering using the JDM APIs involves creating a ClusterSettings instance, creating and executing a ClusteringTask, and retrieving the Clustering-Model that's created.

Now that we have a good understanding of clustering, in the next chapter we'll look at building predictive models.

9.5 Resources

- Beil, Florian, Martin Ester, and Xiaowei Xu. "Frequent term-based text clustering." Proceedings of the Eighth ACM SIGKDD international Conference on Knowledge Discovery and Data Mining. (Edmonton, Alberta, Canada, 2002). KDD '02. ACM, New York, NY. 436–442. DOI= http://doi.acm.org/10.1145/775047.775110
- Böhm, Christian, Christos Faloutsos, Jia-Yu Pan, and Claudia Plant. "Robust informationtheoretic clustering." Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (Philadelphia, PA, 2006). KDD '06. ACM, New York, NY. 65–75. DOI= http://doi.acm.org/10.1145/1150402.1150414
- "Tutorial: Clustering Large and High-Dimensional Data." CIKM 2005. http://www.csee.umbc.edu/~nicholas/clustering/

Making predictions

This chapter covers

- Classification fundamentals using decision trees, Naïve Bayes, and belief networks
- Building predictors using regression and neural networks
- Leveraging the WEKA APIs for making predictions
- Classification and regression using JDM APIs

In this chapter, we build *predictive models*. A predictive model makes a prediction for the value of an output attribute using the values associated with other input attributes. Predictive models can be categorized into two types based on whether the predicted attribute is continuous or discrete. When the predicted attribute is discrete, the problem is one of *classification*, whereas when the attribute is continuous, the problem is one of *regression*. Some predictive models, as in the case of neural networks, can be built to predict multiple output attributes, while others predict a single attribute.

There are two steps involved with using predictive models: the learning phase and the application phase. In the *learning phase*, given a dataset of examples where each example has a set of input and output attributes, the learning process tries to build a mathematical model that predicts the output attribute value based on the input values. Once a mathematical model has been built, the second step is to apply the model to make predictions. The application of the mathematical model for predictions is typically fast, and can be used for real-time predictions in an application, while the amount of time taken to build the predictive model is much greater and is typically done asynchronously in the application.

In this chapter, we review some of the key supervised learning algorithms used for both classification and regression. We build on the example from the previous chapter of clustering blog entries. We use a simple example to illustrate the inner workings of the algorithms. We also demonstrate how to build classifiers and predictors by using the WEKA APIs. For this, we apply the APIs to live blog entries retrieved from Technorati. Three commonly used classification algorithms are covered in this chapter: decision trees, Naïve Bayes, and Bayesian networks (also known as belief networks or probabilistic networks). The key regression algorithms covered in this chapter include linear regression, multi-layer perceptron, and radial basis functions. We also briefly review the JDM APIs related to classification and regression. At the end of this chapter, you should have a good understanding of the key classification and regression algorithms, how they can be implemented using the WEKA APIs, and the related key JDM concepts.

10.1 Classification fundamentals

In most applications, content is typically categorized into segments or categories. For example, data mining–related content could be categorized into clustering, classification, regression, attribute importance, and association rules. It's quite useful, especially for user-generated content, to build a classifier that can classify content into the various categories. For example, you may want to automatically classify blog entries generated by users into one of the appropriate categories for the application.

One common example of a classification problem is email filtering. Here, the classifier predicts whether a given email is spam. The classifier may use a variety of information to make the prediction, such as the name of the sender, the number of individuals the email has been sent to, the content of the email, the prior history of the user interacting with similar emails, the size of the email, and so forth. The process of classifying emails is fairly involved and complex. and there are a number of commercial products that do this task. Therefore, we use a simpler example later in this section to illustrate the classification process.

In this section, we review three of the most commonly used classifiers: decision trees, Naïve Bayes, and belief networks. In Section 10.2, we use WEKA APIs to apply these classifiers to the problem of classifying blog entries.

10.1.1 Learning decision trees by example

Decision trees are one of the simplest and most intuitive classifiers used in the industry. The model generated from a decision tree can be converted to a number of ifthen rules, and the relationships between the output attributes and input attributes are explicit. In section 7.1.3, we briefly described a decision tree. In this section, we work through an example to better understand the concepts related to building one. In our example, we have a number of advertisements that we can potentially show to a user. We want to show the advertisement that the user is most likely to click (and then buy the advertised item). One such advertisement is for an expensive Rolex watch. In our example, we want to build a predictive model that will guide us as to whether we should show this Rolex advertisement to a user. Remember, we want to optimize the likelihood of the user actually buying the item as opposed to simply clicking on the ad to browse the content. In essence, we want to optimize the *look-to-book ratio* for our product—the proportion of users who've looked at an item and who then bought the item.

Based on some past analysis of the kind of people who tend to buy this watch, we've identified three attributes—in the real world, you'll probably have many more:

- Is this a high-net-worth individual?—Our user has provided the ZIP code of his home address during the registration process. We've correlated this ZIP code with average home values in that area and have converted this into a Boolean attribute {true, false} indicating whether this individual has a high net worth.
- *Is the user interested in watches*?—This again is a Boolean attribute. It assumes a value of {true, false}. A user is deemed to be interested in watches if recently (in the current interaction session) the user has either searched for content on the site that has a keyword *watch* or *rolex* or has visited content related to these keywords.
- Has the user bought items before?—This again takes a Boolean value {true, false} based on whether the user has transacted before on the site.

Some of the other attributes you can use to build such a predictive model are the user's gender, the age, the referring page, and so on.

We've collected the data of users who clicked on the ad for the watch and whether they actually bought the item. Table 10.1 contains some sample data that we use in our analysis. Note that User 3 and User 4 have the same input attributes but different outcomes. You may want to look at the data to see if you can find any patterns that you can use for predicting whether the user is likely to buy the watch.

Remember that a decision tree consists of nodes and links. Each node has an associated attribute. The number of links originating from the node equals the number of discrete values that the attribute can take. In our case, all the attributes are binary and take a value of {true, false}. Based on the given data, we need to determine the best attribute that we can use to create the decision tree.

	High net worth	Interested in watches	Has purchased before	Purchased item
User 1	F	Т	Т	F
User 2	Т	F	Т	F
User 3	Т	Т	F	Т
User 4	Т	Т	F	F
User 5	Т	Т	Т	Т

 Table 10.1
 Raw data

 used in the example

Intuitively, we want to select the attribute that can best predict the output. A commonly used measurement for this is *information entropy*—this measures the amount of chaos associated with the distribution of values. The lower the entropy, the more uniform the distribution. To see how entropy is calculated, let's look at the first attribute: *high net worth.* Splitting the dataset based on the values of this attributes leads to two sets:

- False with output case {F}
- True with output cases {F, T, F, T}

Given a set of p positive cases and n negative cases, we can compute the gain¹ associated with the distribution using the code shown in listing 10.1.

```
Listing 10.1 Computing the gain associated with a distribution
```

```
public double gain(double p, double n) {
   double sum = p+n;
   double gain = p*log2(p/sum)/sum + n*log2(n/sum)/sum;;
   return -gain;
}
private double log2(double x) {
   if (x <= 0.) {
      return 0.;
   }
   return Math.log10(x)/Math.log10(2.);
}</pre>
```

Note that a perfect attribute will be one that splits the cases into either all positives or all negatives—in essence, Gain(1,0) = 0. On the other hand, an attribute that splits the space into two equal segments will have the following information gain: Gain(1,1) = 1.

Let's calculate the gain associated with the initial set of data, which consist of three negative cases and two positive cases:

$$Gain(2, 3) = (2/5)*log2 (2/5) + (3/5)*log2 (3/5)$$

= 0.97

Now, one can compute the entropy associated with splitting on the first attribute, which creates two sets {F} and {F, T, F, T} by the following process:

$$Gain(0,1) = 0 + (1) * \log 2 (1)$$

= 0
$$Gain(2,2) = (2/4) \log 2 (2/4) + (2/4) \log 2(2/4)$$

= 1

Both these gains are added in the ratio of the number of samples that appear:

Net Gain (attribute = high net worth) = (1/5) * 0 + (4/5) * 1= 0.8

The overall information gain associated with splitting the data using the first attribute is

¹ Please refer to the references at the end of the chapter for more details on the computation of information entropy and how it came about.

Net Info Gain (attribute = high net worth) = Gain (before split) – Gain (after split) = 0.97 - 0.8= 0.17

Similarly, the second attribute, *interested in watches*, splits the dataset into two sets, which happen to be the same as with the first attribute:

- False with output case {F}
- True with output cases {F, T, F, T}

Therefore, Info Gain(interested in watches) = 0.17

Lastly, the third attribute, *has purchased before*, splits the dataset into the following two sets:

- False with values {T, F}
- True with values {F, F, T}

Net Info Gain (attribute = has purchased before} = -0.97 - { (2/5) Gain(1,1) + 3/5 Gain(1,2)} = 0.02

Selecting either the first or the second attribute leads to the highest net information gain. We arbitrarily select the first attribute to break this tie. Figure 10.1 shows the first node we've created for our decision tree, along with the set of cases that are available for the node.

Next, let's consider the case when the individual doesn't have a high net worth. Table 10.2 contains the one case that's applicable for this node.

Note that because there's just one case, all cases have the same predicted value. The information gain even without further splitting is Info Gain(0,1) = 0.

Figure 10.1 The first node in our decision tree

There's nothing to be gained by further splitting any of the other attributes when the user isn't a high-net-worth individual. We can safely predict that the user won't buy the Rolex watch.

Next, let's consider the case when the user has a high net worth. Table 10.3 shows the data associated with high-net-worth individuals.

Interested in watches	Has purchased items	Purchased
F	Т	F
т	F	Т
Т	F	F
т	Т	Т
	Interested in watches	Interested in watchesHas purchased itemsFTTFTFTFTT

There are two positive cases and two negative cases. The information gain associated with not splitting this node further is Info Gain(2, 2) = 1.

Next, for this dataset, let's compute the information gain associated with the two remaining attributes: is the user interested in watches, and has the user purchased items before?

Using the attribute *interested in watches*, we can split the dataset into the following two sets:

- True leads to {True, False, True}
- False leads to {False}

Net Info Gain = 1 - { (3/4) gain(2,1) + (1/4) gain(1,1)} = 1 - 0.69 = 0.31

Similarly, splitting the data using the attribute *has purchased before*, leads to the following two datasets:

- True leads to {False, True}
- False leads to {True, False}

Net Info Gain = 1 - { (1/2) gain(1,1) + (1/2) gain (1,1) } = 0

Note that splitting on *interested in watches* has the maximum net information gain, and this is greater than zero. Therefore, we split the node using this attribute. Figure 10.2 shows the decision tree and the available data using this attribute for splitting.

Next, let's consider the case when the user has a high net worth but isn't interested in watches. Table 10.4 contains the data associated with this case.

	Has purchased items	Purchased	
User 2	Т	F	

Table 10.4Data when userhas high-net-worth individual butis not interested in watches

Again, there's only one case, so this falls into the category where all the output cases have the same prediction. Therefore, we can predict that the user won't buy the Rolex watch for this node.

Next, let's consider the case that the user has a high net worth and is interested in watches. Table 10.5 shows the set of data available for this node.

	Has purchased items	Purchased	
User 3	F	Т	
User 4	F	F	Table 10.5 Data when user
User 5	т	Т	has high-net-worth individual and is interested in watches

First, the information gain by not splitting is Info Gain(2,1) = 0.92.

Splitting on the last attribute, has purchased before, leads to the following two datasets:

- False with cases {True, False}
- True with case {True}

Net Info Gain (attribute = has purchased items before) = $0.92 - \{(2/3) \text{ gain } (1,1) + (1/3) \text{ gain } (1,0)\}$ = 0.59.

It's worthwhile to split on this attribute. Remember, we don't want to over-fit the data. The net information gain associated with splitting on an attribute should be greater than zero.

Figure 10.3 shows the final decision tree. Note that each leaf node can be converted into rules. We can derive the following four rules from the tree by following the paths to the leaf nodes:

- 1 If the user doesn't have a high net worth then she won't buy the watch.
- **2** If the user has a high net worth but isn't interested in watches then she won't buy the watch.

- **3** If the user has a high net worth and is interested in watches, and has bought items before, then she will buy the watch.
- 4 If the user has a high net worth and is interested in watches, but hasn't bought items before, then the user might or might not buy the watch, with equal probability.

With these four rules, we can decide whether it's worthwhile to show the Rolex advertisement for a user who's visiting our site. Our click-through rates for this ad should be higher than if we decide randomly whether to show the Rolex ad.

The example we've just worked through uses attributes with binary values. The same ideas are generalized for attributes with more than two discrete values. CART, ID3, C4.5, and C5.0 are some of the common implementations of decision trees. In section 10.2, we use the WEKA libraries to learn decision trees. Next, we use probability theory to build our next classifier, called Naïve Bayes' classifier.

10.1.2 Naïve Bayes' classifier

Before we look at the implementation of the Naïve Bayes' algorithm, we need to understand a few basic concepts related to *probability* theory. First, the probability of a certain event happening is a number between zero and one. The higher the number, the greater the chances of that event occurring. One of the easiest ways to compute an event's probability is to take its frequency count. For example, for the data in table 10.1, in two cases out of five, the individuals bough the watch. Therefore, the probability of a user buying the watch is 2/5 = 0.4.

Next, let's calculate some probabilities using the data available in table 10.1. We assume that each attribute associated with the user has an underlying probability distribution. By taking the frequency count we have the probabilities shown in table 10.6.

	Value=True	Value=False
High net worth	4/5 = 0.8	1/5 =0.2
Interested in watches	4/5 = 0.8	1/5 = 0.2
Has purchased before	3/5 = 0.6	2/5 = 0.4

Now, let's find the probability that a user is both a high-net-worth individual and is interested in watches. The last three rows in table 10.1 are of interest to us. Hence, this probability is 3/5 = 0.6.

What if we wanted to find out the probability that a user is either a high-net-worth individual or is interested in watches (or both)? Again, looking at the data in table 10.1, we're interested in all the rows that have True in either the first or second column. In this case, all five rows are of interest to us, and the associated probability is 5/5 = 1.0.

But we could have computed the same information by adding the probability of a user being a high-net-worth individual (0.8) and the probability of the user being interested in watches (0.8) and subtracting the probability of both these attributes being present together (0.6):

= 0.8 + 0.8 - 0.6 = 1.0

More formally, the probability associated with either of the two variables occurring is the sum of their individual probabilities, subtracting the probability of both variables occurring:

 $Pr{A \text{ or } B} = Pr{A} + Pr{B} - Pr{A \text{ and } B}$

Next, let's say that we want to compute the probability of A and B occurring. This can happen in one of two ways:

- Variable A occurs and then variable B occurs.
- Variable B occurs and then variable A occurs.

We use the notation $Pr\{B \mid A\}$ to refer to the probability of B occurring, given that A has already occurred. Thus, the probability of A and B occurring can be computed as

 $Pr{A and B} = Pr{A}Pr{B|A}$ $= Pr{B} Pr{A|B}$

This formula is also known as *Bayes' Rule* and is widely used in probability-based algorithms. Again, it's helpful to work through some concrete numbers to better understand the formulas.

Following this formula:

Pr{high net worth and interested in watches}

- = Pr{high net worth} Pr{interested in watches | high net worth}
- = Pr{interested in watches} Pr {high net worth | interested in watches}

To compute the conditional probability Pr {interested in watches | high net worth}, we need to look at the bottom four rows that have True in the first column. When the individual has high net worth, in three cases out of four, the user is interested in

watches. Hence, the conditional probability is 3/4 = 0.75. Similarly, the conditional probability of the user having a high net worth given that the user is interested in watches is three out of four: 3/4 = 0.75.

Substituting the values, we get

Pr{high net worth and interested in watches} = 0.8 * 0.75= 0.8 * 0.75= 0.6

With this basic overview of probability theory, we're now ready to apply it to the problem of classification. Our aim is to calculate the probability of a user buying a watch, given the values for the other three attributes. We need to shorten the description for the attributes. For the sake of brevity, let's call the three attributes A, B, and C, and the predicted attribute P, as shown in table 10.7.

	Description
А	Is the user a high-net-worth individual?
В	Is the user interested in watches?
С	Has the user bought items before?
Ρ	Will the user buy the watch?

Let's assume that a user who has a high net worth, is interested in watches, and has purchased items before is visiting the site. We want to predict the probability that the user will buy the item:

```
 \begin{array}{l} \Pr \left\{ P{=}T \;\middle|\; A{=}T, B{=}T, C{=}T \right\} = \Pr \left\{ A{=}T, B{=}T, \; C{=}\;T \;\middle|\; P{=}T \right\} \Pr \left\{ T \right\} / \; \Pr \left\{ A{=}T, B{=}T, \; C{=}\;T \right\} \\ \Pr \left\{ P{=}F \;\middle|\; A{=}T, B{=}T, C{=}T \right\} = \Pr \left\{ A{=}T, B{=}T, \; C{=}\;T \;\middle|\; P{=}F \right\} \Pr \left\{ F \right\} / \; \Pr \left\{ A{=}T, B{=}T, \; C{=}\;T \right\} \\ \end{array}
```

Computing Pr {A=T,B=T, C= T | P = T} is typically not that easy, especially with a large number of attributes and when the learning data is sparse.² To simplify matters, we assume that all three attributes are *conditionally independent* of each other, given the output attribute. Therefore, to compute Pr {A=T,B=T, C= T | P = T}, let's first split the examples into two sets based on the value of the output variable, as shown in figure 10.4.

Using the cases where the output attribute is True, we can calculate the following conditional probabilities:

$\Pr \{A = T \mid P = T\} = 1$	• $\Pr \{A = F \mid P = T\} = 0$
n (n min m) a	

• $\Pr \{B = T \mid P = T\} = 1$ • $\Pr \{C = T \mid P = T\} = 1/2$ • $\Pr \{C = F \mid P = T\} = 1/2$

Similarly, using the cases where the output attribute if False, we can calculate the following conditional probabilities:

- $Pr \{A = T \mid P = F\} = 2/3$ $Pr \{A = F \mid P = F\} = 1/3$
- Pr {B = T | P = F} = 2/3 Pr {B = F | P = F} = 1/3

 Pr {C = T | P = F} = 2/3 Pr {C = F | P = F} = 1/3

² For example, note that there is no data in our dataset to compute $Pr \{A=F,B=T, C=T \mid P=T\}$.

Figure 10.4 Splitting the dataset based on the value of the output attributes to compute the conditional probabilities

Also, the prior probabilities are as follows:

 $Pr \{P = T\} = 0.4 and Pr \{P = F\} = 0.6$

Hence, we can calculate $Pr \{A=T, B=T, C=T \mid P=T\}$:

 $\begin{array}{l} \Pr \left\{ A = T, B = T, \ C = T \ \middle| \ P = T \right\} = \Pr \left\{ A = T \ \middle| \ P = T \right\} \Pr \left\{ B = T \ \middle| \ P = T \right\} \Pr \left\{ C = T \ \middle| \ P = T \right\} \\ = 1 * 1 * (1/2) = (1/2) \end{array}$

Here, we've simply expanded the formula and substituted the known values. Similarly:

 $\begin{array}{l} \Pr \left\{ A = T, B = T, \ C = T \mid P = F \right\} = \Pr \left\{ A = T \mid P = F \right\} \Pr \left\{ B = T \mid P = F \right\} \Pr \left\{ C = T \mid P = F \right\} \\ = (2/3) * (2/3) * (2/3) = 8/27 \end{array}$

The likelihood of a user buying the watch can be computed as follows:

 $\begin{array}{l} \Pr \left\{ \text{P=T} \mid \text{A=T,B=T,C=T} \right/ \Pr \left\{ \text{P=F} \mid \text{A=T,B=T,C=T} \right\} \\ = \Pr \left\{ \text{A=T,B=T, C=T} \mid \text{P=T} \right\} \Pr \{\text{T} \mid \text{P} \mid \text{A=T,B=T, C=T} \mid \text{P=F} \right\} \Pr \{\text{F} \\ = (1/2)^* (2/5) / \left\{ (8/27)^* (3/5) \right\} \\ = 27/24 \\ = 9/8 \end{array}$

This implies that the user is more likely to buy the watch when all three conditions are met. This prediction is the same as one of the nodes that was derived by the decision tree.

When the conditional independence assumption is used, the algorithm is known as *Naïve Bayes*.

The probability-based approach can handle missing variables. For example, let's say that we don't know whether the individual has a high net worth. In this case, we can calculate the likelihood of the user buying the watch as

```
 \begin{array}{l} \Pr \left\{ \text{P=T} \mid \text{B=T,C=T} \right\} / \Pr \left\{ \text{P=F} \mid \text{B=T,C=T} \right\} \\ = \Pr \left\{ \text{B=T, C=T} \mid \text{P=T} \right\} \Pr \{\text{T}\} / \Pr \left\{ \text{B=T, C=T} \mid \text{P=F} \right\} \Pr \{\text{F}\} \\ = (1/2)^* (2/5) / \left\{ (1/3)^* (3/5) \right\} \\ = 0.5 \end{array}
```

In this case, a user is more likely to not buy the watch—a value of 1 would imply an equal chance between buying and not buying. Given that we only have three binary inputs and there are only (23 = 8) cases, we can summarize the probabilities and make a prediction for each case. This is shown in table 10.8.

High net worth	Interested in watches	Has purchased	Will buy = True	Will buy = False	Prediction
Т	Т	Т	1/5	8/45	Buy
Т	т	F	1/5	4/45	Buy
т	F	Т	0	4/45	Not Buy
т	F	F	0	2/45	Not Buy
F	Т	F	0	4/45	Not Buy
F	Т	F	0	2/45	Not Buy
F	F	Т	0	2/45	Not Buy
F	F	F	0	1/45	Not Buy

Table 10.8 The prediction table for our example

Note that the sum of the probabilities for predicted value being true is = (1/5 + 1/5) = 0.4, and the probability for the predicted value being false is 27/45 = 0.6, which is equal to the *a priori probability*—the probability of the two events occurring in the absence of any evidence. Also, in the second row in table 10.8—when the user has a high net worth and is interested in watches but hasn't bought items before (A = T & B = T & C = F)—the Naïve Bayes' analysis predicts that the user is more likely to buy the watch, with a like-lihood of 9/4. You may recall that in the previous section, using the decision tree, the prediction had an equal likelihood of the user buying the watch.

Even though the Naïve Bayes' process is simple, it's known to give results as good as, if not better than, some of the other, more complicated classifiers. The probabilitybased approach can be generalized and represented using a graph. The resulting network is commonly known as a *Bayesian belief network*, also called *probabilistic reasoning*, which we look at next.

10.1.3 Belief networks

Belief networks are a graphical representation for the Naïve Bayes' analysis that we did in the previous section. More formally, a belief network is a *directed acyclic graph* (*DAG*) where nodes represent random variables, and links between the nodes correspond to conditional dependence between child and parent nodes. Each variable may be discrete, in which case it assumes an arbitrary number of mutually exclusive and collectively exhaustive values, or it may be continuous. The absence of an arrow between two nodes represents conditional independence between the variables. The network is *directed*—there's a direction associated with the nodes—and *acyclic*—there

are no cycles between the connections. Each node has a conditional probability table that quantifies the effects that the parents have on the node. The parents of a node are all those nodes that have arrows pointing to them. For our example, belief networks are best illustrated using a graphical representation.

Figure 10.5 shows the belief network for our example. Note the following:

- The arrow from P, the predicted attribute, to the three children nodes A, B, and C implies that when P occurs, it has an effect on each of its children. There's a *causal* or *cause-effect* relationship between the parent and the child node.
- Associated with each variable is a conditional probability table. The node P has
 no parents and the associated probabilities with the node are known as *a priori*probabilities.
- Given the parent, P, the three children nodes A, B, and C are assumed to be conditionally independent of each other.

In the absence of any additional information about the values for A, B, and C, the network predicts the probability of $Pr \{P = T\} = 0.4$. Let's say that we know that the person has a high net worth: A = T. With this new evidence, what's the new probability associated with P? Figure 10.6 shows the belief network associated with this case. There are just two nodes in the network.

Figure 10.6 The simplified belief network when only A is known

From this, we can compute the following:

$$\begin{array}{l} \Pr \left\{ P = T \mid A = T \right\} = \Pr \left\{ A = T \right\} \Pr \left\{ P = T \right\} \Pr \left\{ P = T \right\} / \Pr \left\{ A = T \right\} \\ = 1 * (0.4) \ / \ 1. = 0.4 \end{array}$$

This is the same as when we didn't know whether A was True. However, if we knew that A = False, we can compute the following:

$$Pr \{P = T | A = F\} = Pr \{A = F | P = T\} Pr \{P = T\}/Pr \{A = F\} = 0 * (0.4) / 1. = 0$$

Doing the inference in the network to take into account new evidence amounts to applying the Bayes' Rule, and there are well-known algorithms for doing this computation. Belief networks can be singly or multiply connected. An acyclic graph is *singly connected* if there's at most one chain (or undirected path) between a pair of variables. Networks with undirected cycles are *multiply connected*.

There are a number of inference algorithms for a simply-connected network. There are three basic algorithms for evaluating multiply connected networks: clustering methods, conditioning methods, and stochastic simulation. There are also wellknown algorithms for constructing belief networks using test data. Expert-developed belief networks have been used extensively in building knowledge-based systems.

At this point, it's helpful to review the Bayesian interpretation of probability. One prevalent notion of probability is that it's a measure of the frequency with which an event occurs. A different notion of probability is the *degree of belief* held by a person that the event will occur. This interpretation of probability is called *subjective* or *Bayesian* interpretation.

We're done with our Rolex advertisement example. In the next section, we use a new example, classifying blog entries, to illustrate the use of WEKA APIs for classification.

10.2 Classifying blog entries using WEKA APIs

In this section, we build on our example of clustering blog entries from the previous chapter. We demonstrate the process of classification by retrieving blog entries from Technorati on a variety of topics. We categorize the blog entries into two sets—one of interest to us and the other not of interest to us. In this section, we apply a variety of classifiers, using the WEKA APIs to classify the items into the two categories. Later in the chapter, when we deal with regression, we use the same example to build predictors, after converting the attributes into continuous attributes. At the end of this section, you should be familiar with the classification process and the use of WEKA APIs to apply one of many classification algorithms.

Figure 10.7 outlines the four classes that we use in this chapter. You may recall that BlogDataSetCreatorImpl, which we developed in section 9.1.2, is used to retrieve blog entries from Technorati. WEKAPredictiveBlogDataSetCreatorImpl extends this class and creates the dataset that's used for classification and regression. WEKABlogClassifier is a wrapper class to WEKA, which invokes the WEKA APIs to classify blog entries using the dataset created by WEKAPredictiveBlogDataSetCreatorImpl. In section 10.5,

we extend WEKABlogClassifier to create WEKABlogPredictor, which is used for invoking WEKA regression APIs.

Next, let's look at the implementation for the first of our classes, WEKAPredictive-BlogDataSetCreatorImpl.

10.2.1 Building the dataset for classifying blog entries

Classification algorithms typically deal with nominal or discrete attributes, while regression algorithms normally deal with continuous attributes. We build predictive models to predict whether a blog entry is of interest. To create the dataset for learning, we do the following:

- **1** Retrieve blog entries from Technorati for a set of tags. Blog entries associated with each tag are marked to be either an item of interest or an item in which we aren't interested.
- 2 Similar to our approach in chapter 9, we parse through the retrieved blog entry to create a term vector representation for each of the blog entries. Each term vector is associated with the predicted value of whether this entry is of interest.
- **3** Each term vector gets converted into the WEKA Instance object. A collection of these Instance objects forms the dataset and is represented by the Instances object.
- 4 For nominal attributes, we convert each of the tags into a Boolean attribute, which takes a value of true if the tag appears in the blog entry and a value of false if it's absent. Of course, you can use more sophisticated techniques to discretize the term vector into categorical attributes.

Listing 10.2 shows the first part of the code for WEKAPredictiveBlogDataSetCreator-Impl, which deals with creating the dataset with positive and negative test cases.

Listing 10.2 Retrieving blogs

```
package com.alag.ci.blog.dataset.impl;
import java.io.IOException;
import java.util.*;
import weka.core.*;
import com.alag.ci.blog.search.BlogQueryResult;
import com.alag.ci.cluster.TextDataItem;
import com.alag.ci.textanalysis.*;
import com.alag.ci.textanalysis.Tag;
public class WEKAPredictiveBloqDataSetCreatorImpl extends
     BlogDataSetCreatorImpl {
  private List<TextDataItem> blogEntries = null;
  public WEKAPredictiveBlogDataSetCreatorImpl() throws Exception {
   }
  private List<TextDataItem> createLearningDataSet(boolean isContinuous)
      throws Exception {
     String [] positiveTags = { "collective intelligence",
```

```
"data mining", "web 2.0"};
  String [] negativeTags = { "child intelligence", "AJAX"};
   return createLearningDataSet (positiveTags, negativeTags,
     isContinuous);
}
                                                               Creating positive
private List<TextDataItem> createLearningDataSet(
                                                               and negative test
      String [] positiveTags, String [] negativeTags,
                                                               cases
      boolean isContinuous) throws Exception {
  List<TextDataItem> data = new ArrayList<TextDataItem>();
   for (String tag: positiveTags) {
      data.addAll(getBlogData(tag, true));
   for (String tag: negativeTags) {
      data.addAll(getBlogData(tag, false));
   }
                                                               Retrieving data
   return data;
                                                               from Technorati
}
private List<TextDataItem> getBlogData(String tag, boolean isRelevant)
   throws Exception {
  BlogQueryResult bqrCI = getBlogsFromTechnorati(tag);
                                                                     < \perp
  return getBlogTagMagnitudeVectors(bqrCI,isRelevant);
protected List<TextDataItem> getBlogTagMagnitudeVectors(
      BlogQueryResult blogQueryResult, boolean isRelevant)
      throws IOException {
  List<TextDataItem> tdiList =
     super.getBlogTagMagnitudeVectors(blogQueryResult);
   for (TextDataItem dataItem: tdiList) {
      dataItem.setCiRelated(isRelevant);
   }
   return tdiList;
```

To create the dataset, we specify a set of positive and negative test cases. For example, in the code

```
String [] positiveTags = { "collective intelligence",
   "data mining", "web 2.0"};
String [] negativeTags = { "child intelligence", "AJAX"};
```

we retrieve blog entries from Technorati using the following tags for the positive cases—*collective intelligence, data mining,* and *web 2.0*—and the following tags for the negative cases—*child intelligence* and *AJAX.*

The method getBlogData() uses the specified tag to retrieve relevant blog entries from Technorati, and predicts whether they'll be relevant. Of course, we're really interested in getting a WEKA dataset representation—an instance of Instances using the retrieved blog entries. For this, we need to look at listing 10.3.

```
Listing 10.3 Creating the dataset

protected List<TextDataItem> getBlogTagMagnitudeVectors(

BlogQueryResult blogQueryResult, boolean isRelevant,

boolean isContinuous) throws IOException {
```

```
List<TextDataItem> tdiList =
      super.getBlogTagMagnitudeVectors(blogQueryResult);
   for (TextDataItem dataItem: tdiList) {
      dataItem.setCiRelated(isRelevant);
   }
   return tdiList;
                                                                  Creating
                                                                  WEKA
                                                                  dataset for
public Instances createLearningDataSet (String datasetName,
                                                                  learning
   boolean isContinuous) throws Exception {
   this.blogEntries = createLearningDataSet(isContinuous);
   FastVector allAttributes = createAttributes(isContinuous);
   Instances trainingDataSet = new Instances(datasetName,
         allAttributes, blogEntries.size());
   int numAttributes = allAttributes.size();
   Collection<Tag> allTags = this.getAllTags();
   for (TextDataItem dataItem : blogEntries) {
      Instance instance = createNewInstance(numAttributes,
            trainingDataSet,
            allTags, dataItem, isContinuous );
      trainingDataSet.add(instance);
                                                                  Creating
   }
                                                                  Attribute
   return trainingDataSet;
                                                             representation
}
protected FastVector createAttributes(boolean isContinuous) {
                                                                     <1-
   Collection<Tag> allTags = this.getAllTags();
   FastVector allAttributes = new FastVector(allTags.size());
   for (Tag tag : allTags) {
     Attribute tagAttribute =
createAttribute(tag.getDisplayText(),isContinuous);
      allAttributes.addElement(tagAttribute);
  Attribute classificationAttribute =
createAttribute("ClassificationAttribute",isContinuous);
  allAttributes.addElement(classificationAttribute);
  return allAttributes;
```

There's only one public method in the class WEKAPredictiveBlogDataSetCreator-Impl: createLearningDataSet(). This method takes in a name for the dataset and whether we want continuous or discrete attributes. It first retrieves all the blog entries from Technorati, creates an attribute representation, and creates the dataset by converting each blog entry into an Instance object.

The method createAttributes() creates an Attribute representation for each tag by invoking the similarly named createAttribute() method. Details of create-Attribute() are shown in listing 10.4.

```
Listing 10.4 Creating Instance in WEKAPredictiveBlogDataSetCreatorImpl

private Attribute createAttribute(String attributeName,

boolean isContinuous) {

if (isContinuous) {

return createContinuousAttribute(attributeName);
```

```
}
   return createBinaryNominalAttribute(attributeName);
                                                               Creates binary
                                                               representation
private Attribute createBinaryNominalAttribute(
                                                               for attribute
  String attributeName) {
  FastVector attNominalValues = new FastVector(2);
  attNominalValues.addElement("true");
  attNominalValues.addElement("false");
  return new Attribute(attributeName, attNominalValues);
                                                    Creates continuous
                                                    representation for
private Attribute createContinuousAttribute(
                                                    attribute
   String attributeName) {
                                        \triangleleft
  return new Attribute(attributeName);
}
protected Instance createNewInstance(int numAttributes,
      Instances trainingDataSet, Collection<Tag> allTags,
      TextDataItem dataItem, boolean isContinuous) {
                                                                Creates new
   Instance instance = new Instance(numAttributes);
                                                                instance for
   instance.setDataset(trainingDataSet);
                                                               blog entries
   int index = 0;
   TagMagnitudeVector tmv = dataItem.getTagMagnitudeVector();
  Map<Taq, TaqMaqnitude> tmvMap = tmv.getTaqMaqnitudeMap();
   for (Tag tag : allTags) {
      TagMagnitude tm = tmvMap.get(tag);
      if (tm != null) {
         setInstanceValue(instance, index++, tm.getMagnitude(),
            isContinuous);
      } else {
         setInstanceValue(instance, index++, 0., isContinuous);
      }
  BlogAnalysisDataItem blog = (BlogAnalysisDataItem) dataItem;
   if (blog.isCiRelated()) {
      setInstanceValue(instance, index, 1., isContinuous);
   } else {
      setInstanceValue(instance, index, 0., isContinuous);
   }
   return instance;
}
private void setInstanceValue(Instance instance, int index,
  double magnitude, boolean isContinuous) {
   if (isContinuous) {
      instance.setValue(index, magnitude);
   } else {
      if (magnitude > 0.) {
         instance.setValue(index, "true");
      } else {
         instance.setValue(index, "false");
   }
}
```

The method createAttribute() creates either discrete or continuous attributes based on the isContinuous flag. The method createNewInstance() creates a new

instance for each blog entry. It iterates over all the tags and sets the instance value through the method setInstanceValue(). The value associated with an attribute in an instance is either true or false for discrete attributes, or the magnitude of the term in the term vector for continuous attributes.

Now that we have a dataset that can be used for learning, let's look at how we can leverage the WEKA APIs to apply various classification algorithms on this dataset.

10.2.2 Building the classifier class

In this section, we build a wrapper class for calling the WEKA APIs. WEKABlogClassifier is a generic class that, given an Algorithm, creates the dataset for learning, creates an instance of the classifier, builds the classifier using the available data, and then evaluates it. Listing 10.5 shows the implementation for the WEKABlogClassifier class.

```
Listing 10.5 The implementation of the WEKABlogClassifier class
package com.alag.ci.blog.classify.weka.impl;
import java.util.Enumeration;
import weka.classifiers.Classifier;
import weka.classifiers.Evaluation;
import weka.classifiers.bayes.BayesNet;
import weka.classifiers.bayes.NaiveBayesSimple;
import weka.classifiers.functions.LibSVM;
import weka.classifiers.trees.J48;
                                                                 Enumeration of
import weka.core.Instance;
                                                                some algorithms
import weka.core.Instances;
import com.alaq.ci.bloq.dataset.impl.WEKAPredictiveBloqDataSetCreatorImpl;
public class WEKABlogClassifier {
  public enum Algorithm {DECISION TREE, NAIVE BAYES, BAYES NET,
     LINEAR REGRESSION, MLP, RBF};
  public void classify(Algorithm algorithm) throws Exception {
     Instances instances = createLearningDataset();
     Classifier classifier = getClassifier (instances, algorithm);
     evaluateModel(instances, classifier);
  protected Instances createLearningDataset() throws Exception {
     WEKAPredictiveBlogDataSetCreatorImpl dataSetCreator =
                                                                       Classify
        new WEKAPredictiveBlogDataSetCreatorImpl();
                                                                        using
     return dataSetCreator.createLearningDataSet(
                                                                      specified
       "nominalBlogData", false);
                                                                     algorithm
  protected void evaluateModel (Instances instances,
     Classifier classifier)
     throws Exception {
     Evaluation modelEval = new Evaluation (instances);
     modelEval.evaluateModel(classifier, instances);
     System.out.println(modelEval.toSummaryString("\nResults\n", true));
     for (Enumeration e = instances.enumerateInstances() ;
```

```
e.hasMoreElements();) {
        printInstancePrediction((Instance)e.nextElement(),classifier);
     }
  }
  protected void printInstancePrediction(Instance instance,
        Classifier classifier) throws Exception {
     double classification = classifier.classifyInstance(instance);
     System.out.println("Classification = " + classification);
  }
                                                                      Last
  protected Classifier getClassifier (Instances instances,
                                                                      attribute
      Algorithm algorithm) throws Exception {
                                                                      used for
     Classifier classifier = getClassifier(algorithm);
                                                                   _{<} \downarrow prediction
     instances.setClassIndex(instances.numAttributes() - 1);
     classifier.buildClassifier(instances);
     return classifier:
  }
  protected Classifier getClassifier (Algorithm algorithm)
       throws Exception {
                                                                      Selecting
       Classifier classifier = null;
                                                                      right
        if (Algorithm.DECISION TREE.equals(algorithm)) {
                                                                      algorithm
           classifier = new J48();
        } else if (Algorithm.NAIVE BAYES.equals(algorithm)) {
           classifier = new NaiveBayesSimple() ;
        } else if (Algorithm.BAYES NET.equals(algorithm)) {
           classifier = new BayesNet() ;
        }
       return classifier;
  }
}
```

We first define an enumeration, Algorithm, that contains some of the classifier and regression algorithms supported by WEKA. Note that WEKA supports many more algorithms—more than 50. The method to classify blog entries is fairly straightforward:

public void classify(Algorithm algorithm) throws Exception

It consists of three steps:

- **1** Creating the dataset to be used for learning
- **2** Getting the classifier instance based on the specified algorithm and building the model
- 3 Evaluating the model that's created

Note that for classification and regression algorithms, you need to specify the predicted output attribute. We do this in the method getClassifier:

```
instances.setClassIndex(instances.numAttributes() - 1);
```

It's helpful to look at the output from our classification process. Listing 10.6 shows the output from one of the runs. It shows a decision tree that correctly classified 55 of the 60 blog entries presented to it. The details of the decision tree are also shown (using System.out.println(((J48)classifier).graph());).

Listing 10.6	Sample output from a dee	cision tree	
Results			
======			
Correctly Cl	assified Instances	55	91.6667 %
Incorrectly	Classified Instances	5	8.3333 %
Kappa statis	Stic	0.8052	
Real absolut	le error	0.1425	
Root mean sy		21 0444 8	
Relacive abs	a squared error	56 6295 8	
Total Number	of Instances	60	
10001100000		0.0	
digraph J487	Tree {		
NO [label="c			
NU->NI [labe]	el="= true"]		1
NI [Iabel="(rue (6.0) " snape=box s	cyre=rirred .]
NO = NZ [labe] = VZ	eriew"]		
$N_2 > N_3$ []abe			
N3 [label="t	rue (3, 0) shape-box s	tyle-filled	1
N2 - N4 []abe	el="= false"]	cyic=lilica	1
N4 [label="n	achine"]		
N4->N5 [labe	el="= true"]		
N5 [label="t	rue (3.0) " shape=box s	tyle=filled]]
N4->N6 [labe	el="= false"]	-	
N6 [label="t	echnology"]		
N6->N7 [labe	el="= true"]		
N7 [label="t	crue (3.0/1.0)" shape=b	ox style=fil	led]
N6->N8 [labe	el="= false"]		
N8 [label="v	veb"]		
N8->N9 [labe	el="= true"]		
N9 [label="c	online"]		
N9->N10 [lab	pel="= true"]		
N10 [label='	'false (2.0)" shape=box	style=fille	d]
N9->N11 [lab	pel="= false"]		
N11 [label='	'true (2.0)" shape=box	style=filled	.]
N8->N12 [lab	pel="= false"]		
N12 [label=' }	'false (41.0/4.0)" shap	e=box style=	filled]

In this specific example, the root node, N0, is with the term "ci". When the blog contains the term "ci", it gets classified into the node N1, which has a "true" prediction; if the blog doesn't have the term, it leads to node N2. The node N2 has two children nodes, N3 and N4. One can follow down the node hierarchy to visualize the generated decision tree.

Later in section 10.5, we discuss JDM APIs related to the classification process. So far, we've looked at building predictive models for discrete attributes. Next, let's briefly look at building predictive models for continuous attributes.

10.3 Regression fundamentals

Perhaps the simplest form of predictive model is to use standard statistical techniques, such as linear or quadratic regression. Unfortunately, not all real-world problems can

be modeled as successfully as linear regression; therefore more complicated techniques such as neural networks and support vector machine (SVM) can be used. The process of building regression models is similar to classification algorithms, the one difference being the format of the dataset—for regression, typically all the attributes are continuous. Note that regression algorithms can also be used for classification, where the predicted numeric value is mapped to an appropriate categorical value.

In this section, we briefly review linear regression, and follow with an overview of two commonly used neural networks—the multi-layer perceptron and the radial basis function. In the next section, we use the WEKA APIs for regression.

10.3.1 Linear regression

In linear regression, the output value is predicted by summing all values of the input attributes multiplied by a constant. For example, consider a two-dimensional space with x and y axes. We want to build a linear model to predict the y value using x values. This in essence is the representation of a line. Therefore

y = a x + b $= [x 1] [a b]^{T}$

where a and b are constants that need to be determined.

We can generalize this equation into a higher dimension using a matrix representation. Let *Y*, *A*, and *X* be matrices such that

Y = A X

Note that A^TA is a square matrix. The constant *X* can be found

 $\mathbf{X} = (\mathbf{A}^{\mathrm{T}}\mathbf{A})^{-1} \ (\mathbf{A}^{\mathrm{T}}\mathbf{Y})$

A concrete example helps to visualize and understand the process of linear regression. To illustrate this process, we use the same example of a Rolex ad that we used earlier in the chapter. Table 10.9 shows the data that we use for our example. This is the same as table 10.1, except that we've converted the True values into 1.0 and False values into 0. Note the data for rows corresponding to User 3 and User 4—the input attribute values for both cases are the same but the output is different.

Table 10.9 The data used for regression

	High net worth	Interested in watches	Has purchased items	Bought the item
User 1	0	1	1	0
User 2	1	0	1	0
User 3	1	1	0	1
User 4	1	1	0	0
User 5	1	1	1	1

Let, *Y* be the predicted value, which in our case is whether the user will buy the item or not, and let x0, x1, x2, and x3 correspond to the constants that we need to find. Based on the data in table 10.9, we have

Y =	[0 0 1 0 1]	$]^{\mathrm{T}}$ X = [y	x0 x1 x2 x3] ^T [
	1011		1011	
	1101		1101	
A=	1110	$A^{T}A =$	1110	
	1110		1110	
	_1 1 1 1 _		_1 1 1 1 _	

Note that the matrix A^TA is a square matrix with a number of rows and columns equal to the number of parameters being estimated, which in this case is four.

Now, we need to compute the inverse of the matrix. The inverse of a matrix is such that multiplying the matrix and its inverse gives the identity matrix. Refer to any book on linear algebra on how to compute the inverse of a matrix.³

And its inverse is

$$(A^{T}A)^{-1} = \begin{bmatrix} 6.5 & -3 & -3 & -2.5 \\ -3 & 2 & 1 & 1 \\ -3 & 1 & 2 & 1 \\ -2.5 & 1 & 1 & 1.5 \end{bmatrix}$$

Also, $A^{T}y = [2 2 2 1]$

Solving for the four constants, we come to the following predictor model:

P = -1.5 + 1*A + 1*B + 0.5*C

The predicted values for the five cases are shown in table 10.10. Our linear regression-based predictive model does pretty well in predicting whether the user will purchase the item. Note that the predictions for User 3 and User 4 are the average of the two cases in the dataset.

³ Or use an online matrix inverter such as http://www.bluebit.gr/matrix-calculator/ and http://www.unibonn.de/~manfear/matrixcalc.php for matrix multiplication. The weka.core.matrix.Matrix class in WEKA provides a method to compute the inverse of a matrix.

	Purchased the item	Prediction	
User 1	0	0	-
User 2	0	0	
User 3	1	0.5	
User 4	0	0.5	Table 10.10 The raw an
User 5	1	1	the predicted values usin linear regression (continu

Building a predictive model using linear regression is simple, and, based on the data, may provide good results. However, for complex nonlinear problems, linear-regressionbased predictive models may have problems generalizing. This is where neural networks come in: They're particularly useful in learning complex functions. Multi-layer perceptron (MLP) and radial basis function (RBF) are the two main types of neural networks, which we look at next.

10.3.2 Multi-layer perceptron (MLP)

A multi-layer perceptron has been used extensively for building predictive models. As shown in figure 10.8, an MLP is a fully-connected network in which each node is connected to all the nodes in the next layer. The first layer is known as an *input layer* and the number of nodes in this layer is equal to the number of input attributes. The second layer is known as a *hidden layer* and all nodes from the input layer connect to the hidden layer. In figure 10.8 there are three nodes in the hidden layer.

The input feeds into each of the first-layer nodes. The output from a node is split into two

Figure 10.8 A multi-layer perceptron with one hidden layer. The weight Wxy is the weight from node x to node y. For example, W25 is the weight from node 2 to node 5.

computations. First, the weighted sum of the input values of a node is calculated. Next, this value is transformed into the output value of the nodes using a nonlinear activation function. Common activation functions are the sigmoid and the tan hyperbolic functions. The advantage of using these activation functions is that their derivatives can be expressed as a function of the output. Also associated with each node is a threshold that corresponds to the minimum total weighted input required for that node to fire an output. It's more convenient to replace the threshold with an extra input weight. An extra input whose activation is kept fixed at -1 is connected to each node. Linear outputs are typically used for the output layer.

For example, the output from node 3 is computed as

Activation function (W13 * value of node 1 + W23 * value of node 2 - W03)

The *back-propagation* algorithm is typically used for training the neural network. The algorithm uses a *gradient search* technique to find the network weight that minimizes
the sum-of-square error between the training set and the predicted values. During the training process, the network is initialized with random weights. Example inputs are given to the network; if the network computes an output vector that matches the target, nothing is done. If there's a difference between the output and the target vector, the weights are changed in a way that reduces the error. The method tries to assess blame for the error and distributes the error among contributing weights. The algorithm uses a batch mode, where all examples are shown to the network. The corresponding error is calculated and propagated through the network. A net gradient direction is then defined that equals the sum of the gradients for each example. A step is then taken in the direction opposite to this gradient vector. The step size is chosen such that the error decreases with each step. The back-propagation algorithm normally converges to a local optimal solution; there's no guarantee of a *global solution*.

A neural network with a large number of hidden nodes is in danger of overfitting the data. Therefore, the process of *cross-validation* with a test dataset is used to avoid over-learning. Unlike linear regression, an MLP is a "black box" where it's difficult to interpret the parameters of the network, and consequently it's difficult to understand the rationale of a prediction made by a neural network. An MLP network requires a large amount of time to train the parameters associated with the network, but once the network has been trained, the computation of the output from the network is fast. An MLP works well when the problem space is large and noisy.

Next, let's look at another type of commonly used neural network: radial basis functions.

10.3.3 Radial basis functions (RBF)

An RBF, as shown in figure 10.9, consists of two different layers. The inputs feed into a hidden layer. The hidden layer produces a significant nonzero response only when the input vector falls within a small localized region of the input space. The output layer supplies the network's response to the activation patterns applied to the input layer. The transformation from the input space to the hidden unit space is nonlinear, whereas the transformation from the hidden unit space to the output space is

linear. The most common basis for the hidden nodes is the Gaussian kernel function. The node outputs are in the range of zero to one, so that the closer the input is to the center of the Gaussian cluster, the larger the response of the node. Each node produces an identical output that lies a fixed radial distance from the center of the kernel. The output layer nodes form a weighted linear combination of the outputs from the Gaussian clusters.

Learning in the RBF network is accomplished by breaking the problem into two steps:

- 1 Unsupervised learning in the hidden layer
- 2 Supervised learning in the output layer

The k-means algorithm (see section 9.1.3) is typically used for learning the Gaussian clusters. K-means is a greedy algorithm for finding a locally optimal solution, but it generally produces good results and is efficient and simple to implement. Once learning in the hidden layer is completed, learning in the output layer is done using either the back-propagation algorithm or the matrix inversion process we identified in section 10.3.1. The output from the output node is linear. The connection weights to the output node from the Gaussian clusters can be learned using linear regression. One advantage of RBF over MLP is that learning tends to be much faster.

In theory, the RBF network, like the MLP, is capable of forming an arbitrary close approximation to any continuous nonlinear mapping. The primary difference between the two is the nature of their basis functions. The hidden layer in an MLP forms sigmoidal basis functions that are nonzero over an infinitely large region of the input space; the basis functions in the RBF network cover only small localized regions.

With this overview of some of the key regression algorithms, let's look at how to apply regression using the WEKA APIs.

10.4 Regression using WEKA

In this section, we use the WEKA APIs to build predictive models using regression. The section is similar to section 10.2; in fact most of the heavy lifting has already been done. As discussed in section 10.2 and in figure 10.7, we simply need to implement WEKABlogPredictor, which is shown in listing 10.7.

```
Listing 10.7 Implementing regression using the WEKA APIs
package com.alaq.ci.bloq.predict.weka.impl;
import weka.classifiers.Classifier;
import weka.classifiers.functions.LinearRegression;
import weka.classifiers.functions.MultilayerPerceptron;
import weka.classifiers.functions.RBFNetwork;
import weka.core.Instance;
import weka.core.Instances;
import com.alag.ci.blog.classify.weka.impl.WEKABlogClassifier;
import com.alaq.ci.bloq.dataset.impl.WEKAPredictiveBloqDataSetCreatorImpl;
public class WEKABlogPredictor extends WEKABlogClassifier {
  protected Instances createLearningDataset() throws Exception {
     WEKAPredictiveBlogDataSetCreatorImpl dataSetCreator =
        new WEKAPredictiveBlogDataSetCreatorImpl();
                                                               Creating
     return dataSetCreator.createLearningDataSet(
                                                              continuous dataset
       "continuousBlogData",true);
   }
  protected Classifier getClassifier(Algorithm algorithm)
                                                                 Creating correct
                                                                 instance of
     throws Exception {
                                                                 classifier
                                                       4
     Classifier classifier = null;
```

```
if (WEKABlogClassifier.Algorithm.LINEAR REGRESSION.
       equals(algorithm)) {
        classifier = new LinearRegression();
     } else if (WEKABloqClassifier.Algorithm.MLP.equals(algorithm)) {
        classifier = new MultilayerPerceptron() ;
     } else if (WEKABlogClassifier.Algorithm.RBF.equals(algorithm)) {
        classifier = new RBFNetwork();
     return classifier;
  protected void printInstancePrediction(Instance instance,
        Classifier classifier) throws Exception {
     double [] prediction =
       classifier.distributionForInstance(instance);
     System.out.print("\nPrediction = ");
     for (double value: prediction) {
        System.out.print(value + ", ");
     }
  }
}
```

We simply need to overwrite two methods from the parent WEKABlogClassifier class. First, in the method createLearningDataset(), we pass in parameters indicating that we want to create continuous attributes. Second, we need to overwrite the getClassifier() method to get the appropriate classifier based on the specified algorithm. The listing shows the code for creating instances for three of the algorithms covered in this chapter: linear regression, MLP, and RBF.

So far we've looked at how we can build predictive models for both the discrete and continuous attributes. Next, let's briefly look at how the standard JDM APIs deal with classification and regression.

10.5 Classification and regression using JDM

In this section, we briefly review the key JDM interfaces related to classification and regression algorithms. The javax.datamining.supervised package contains the interfaces for representing the supervised learning model. It also contains subpackages for classification and regression.

This section is analogous to section 9.3, where we covered JDM-related APIs for clustering. This section covers JDM-related APIs for supervised learning—both classification and regression. We begin by looking at the key JDM supervised learning interfaces. This is followed by developing code to build and evaluate predictive models.

10.5.1 Key JDM supervised learning-related classes

As shown in figure 10.10, the results from supervised learning create either a ClassificationModel or a RegressionModel. Both models have a common parent, SupervisedModel, which extends Model and is a MiningObject.

For building a supervised learning model, there are two types of settings: SupervisedSettings and SupervisedAlgorithmSettings.

SupervisedSettings, as shown in figure 10.11, are generic settings associated with the supervised learning process. ClassificationSettings extends this interface to contain generic classification-related settings. It supports methods for setting the cost matrix and prior probabilities that may be used by the classifier. RegressionSettings also extends SupervisedSettings and contains generic regression-related settings.

Settings that are specific to a particular algorithm extend the AlgorithmSettings interface. SupervisedAlgorithmSettings, which extends AlgorithmSettings as shown in figure 10.12, is a common interface for all algorithm-related settings. Feed-ForwardNeuralNetSettings, NaiveBayesSettings, SVMClassificationSettings, SVMRegressionSettings, and TreeSettings are five specific algorithm settings.

Next, let's walk through some sample code that will illustrate the process of creating predictive models using the JDM APIs.

Figure 10.11 Setting interfaces related to supervised learning

10.5.2 Supervised learning settings using the JDM APIs

In this section, we follow an approach similar to section 9.3.2, which illustrated the use of JDM APIs for clustering. The process for regression and classification is similar; we illustrate the process for classification.

We work through an example that has the following five steps:

- **1** Create the classification settings object.
- **2** Create the classification task.
- **3** Execute the classification task.
- 4 Retrieve the classification model.
- **5** Test the classification model.

Listing 10.8 shows the code associated with the example and the settings process.

```
Listing 10.8 Settings-related code for the classification process
package com.alag.ci.jdm.classification;
import javax.datamining.*;
import javax.datamining.algorithm.svm.KernelFunction;
import javax.datamining.algorithm.svm.classification.*;
import javax.datamining.resource.Connection;
import javax.datamining.supervised.SupervisedAlgorithmSettings;
import javax.datamining.supervised.classification.*;
import javax.datamining.task.*;
public class JDMClassificationExample {
  public void classify(Connection connection) throws JDMException {
      createClassificationSettings(connection);
                                                     \leq \vdash
                                                           Four steps
      createClassificationTask(connection);
                                                           associated
      executeClassificationTask(connection);
                                                           with example
```

```
retrieveClassificationModel(connection);
     testClassificationModel(connection);
  }
  private void createClassificationSettings(Connection connection)
    throws JDMException {
     ClassificationSettingsFactory classifSettingsFactory =
       (ClassificationSettingsFactory)
                                                                 Classification
                                                                process-related
     connection.getFactory(
                                                                     settings
"javax.datamining.supervised.
            classification.ClassificationSettingsFactory");
     ClassificationSettings classificationSettings =
  classifSettingsFactory.create();
     classificationSettings.setCostMatrixName("costMatrixName");
     classificationSettings.setTargetAttributeName(
      "targetAttributeName");
     SupervisedAlgorithmSettings algorithmSettings =
  createSVMClassificationSettings(connection);
     classificationSettings.setAlgorithmSettings(algorithmSettings);
     connection.saveObject("classificationSettings",
      classificationSettings, false);
  }
  private SupervisedAlgorithmSettings
        createSVMClassificationSettings (Connection
        connection) throws JDMException {
     SVMClassificationSettingsFactory svmClassificationSettingsFactory =
       (SVMClassificationSettingsFactory)
     connection.getFactory(
                                                           Algorithm-specific
           "javax.datamining.algorithm.svm.
                                                                   settings
           classification.SVMClassificationSettingsFactory");
     SVMClassificationSettings svmSettings =
       svmClassificationSettingsFactory.create();
     svmSettings.setKernelFunction(KernelFunction.kGaussian);
     return svmSettings;
  ļ
```

The example first creates an instance of ClassificationSettings and sets attributes associated with the classification process. For this, it sets the cost matrix and the name of the target attribute:

```
classificationSettings.setCostMatrixName("costMatrixName");
classificationSettings.setTargetAttributeName("targetAttributeName");
```

Next, an instance of SVMClassificationSettings is created to specify settings specific to the SVM classification algorithm. Here, the kernel function is specified to be Gaussian:

```
svmSettings.setKernelFunction(KernelFunction.kGaussian);
```

The algorithm settings are set in the ClusteringSettings instance:

```
classificationSettings.setAlgorithmSettings(algorithmSettings);
```

Next, let's look at creating the classification task.

10.5.3 Creating the classification task using the JDM APIs

To create an instance of BuildTask for clustering, we use the BuildTaskFactory as shown in listing 10.9.

```
Listing 10.9 Create the classification task
```

```
private void createClassificationTask(Connection connection)
  throws JDMException {
    BuildTaskFactory buildTaskFactory = (BuildTaskFactory)
        connection.getFactory(
        "javax.datamining.task.BuildTaskFactory");
    BuildTask buildTask = buildTaskFactory.create(
        "buildDataPhysicalDataSet",
        "classificationSettings", "classificationModel");
    connection.saveObject("classificationBuildTask", buildTask, false);
}
```

The BuildTaskFactory creates an instance of the BuildTask. The create() method to create a BuildTask needs the name of the dataset to be used, the name of the settings object, and the name of the model to be created. In our example, we use the dataset buildDataPhysicalDataSet, the setting specified in the object classificationSettings, and the model name classificationModel.

10.5.4 Executing the classification task using the JDM APIs

To execute a build task, we use the execute method on the Connection object, as shown in listing 10.10.

```
Listing 10.10 Execute the classification task

private void executeClassificationTask(Connection connection)
    throws JDMException {
    ExecutionHandle executionHandle =
    connection.execute("classificationBuildTask");
    int timeoutInSeconds = 100;
    ExecutionStatus executionStatus = executionHandle.
    waitForCompletion(timeoutInSeconds);
    executionStatus = executionHandle.getLatestStatus();
    if (ExecutionState.success.equals(executionStatus.getState())) {
      //successful state
    }
}
```

The code

```
ExecutionStatus executionStatus =
executionHandle.waitForCompletion(timeoutInSeconds);
```

waits for the completion of the classification task and specifies a timeout of 100 seconds. Once the task completes, it looks at execution status to see if the task was successful.

Next, let's look at how we can retrieve the classification model that has been created.

10.5.5 Retrieving the classification model using the JDM APIs

Listing 10.11 shows the code associated with retrieving a ClassificationModel using the name of the model and a Connection instance.

```
Listing 10.11 Retrieving the classification model
```

```
private void retrieveClassificationModel(Connection connection)
    throws JDMException {
    ClassificationModel classificationModel = (ClassificationModel)
        connection.retrieveObject("classificationModel",
        NamedObject.model);
    double classificationError = classificationModel.
        getClassificationError();
}
```

Once a ClassificationModel is retrieved, we can evaluate the quality of the solution using the getClassificationError() method, which returns the percentage of incorrect predictions by the model.

10.5.6 Retrieving the classification model using the JDM APIs

}

Listing 10.12 shows the code to compute the test metrics associated with the classification model.

```
Listing 10.12 Testing the classification model
private void testClassificationModel(Connection connection)
  throws JDMException {
    ClassificationTestTaskFactory testTaskFactory =
    (ClassificationTestTaskFactory)connection.getFactory(
    "javax.datamining.supervised.classification.ClassificationTestTask");
    ClassificationTestTask classificationTestTask =
    testTaskFactory.create("testDataName", "classificationModel",
    "testResultName");
    classificationTestTask.computeMetric(
      ClassificationTestMetricOption.confusionMatrix);
    }
}
```

The ClassificationTestTask is used to test a classification model to measure its quality. In this example, we're testing the confusion matrix—a two-dimensional matrix that indicates the number of correct and incorrect predications a classification algorithm has made.

The JDM specification contains additional details on applying the model; for more details on this, please refer to the JDM specification.

In this section, we've looked at the key interfaces associated with supervised learning and the JDM APIs. We've looked at some sample code associated with creating classification settings, creating and executing a classification task, retrieving the classification model, and testing the classification model.

10.6 Summary

In your application, you'll come across a number of cases where you want to build a predictive model. The prediction may be in the form of automatically segmenting content or users, or predicting unknown attributes of a user or content.

Predictive modeling consists of creating a mathematical model to predict an output attribute using other input attributes. Predictive modeling is a kind of supervised learning where the algorithm uses training examples to build the model. There are two kinds of predictive models based on whether the output attribute is discrete or continuous. Classification models predict discrete attributes, while regression models predict continuous attributes.

A decision tree is perhaps one of the simplest and most commonly used predictive models. Decision tree learning algorithms use the concept of information gain to identify the next attribute to be used for splitting on a node. Decision trees can be easily converted into if-then rules. The Naïve Bayes' classifier uses concepts from probability theory to build a predictive model. To simplify matters, it assumes that given the output, each of the input attributes are conditionally independent of the others. Although this assumption may not be true, in practice it often produces good results. Bayes' networks or probabilistic reasoning provide a graphical representation for probability-based inference. Bayes' networks deal well with missing data.

In linear regression, the output attribute is assumed to be a linear combination of the input attributes. Typically, the process of learning the model constants involves matrix manipulation and inversion. MLP and RBF are two types of neural networks that provide good predictive capabilities in nonlinear space.

The WEKA package has a number of supervised learning algorithms, both for classification and regression. The process of classification consists of first creating an instance of Instances to represent the dataset, followed by creating an instance of a Classifier and using an Evaluation to evaluate the classification results.

The process of classification and regression using the JDM APIs is similar. Classification with the JDM APIs involves creating a ClassificationSettings instance, creating and executing a ClassificationTask, and retrieving the ClassificationModel that's created.

Now that we have a good understanding of classification and regression, in the next chapter we look at intelligent search.

10.7 Resources

- Alag, Satnam. A Bayesian Decision-Theoretic Framework for Real-Time Monitoring and Diagnosis. 1996. Ph.D dissertation. University of California, Berkeley.
- Jensen, Finn. An Introduction to Bayesian Networks. 1996. Springer-Verlag.
- Quinlan, J. Ross. C4.5: Programs for Machine Learning. 1993. Morgan Kaufmann Series in Machine Learning.

Russel, Stuart J. and Peter Norvig. Artificial Intelligence: A Modern Approach. 2002. Prentice Hall.

Tan, Pang-Ning, Michael Steinbach, and Vipin Kumar. *Introduction to Data Mining*. 2005. Addison Wesley.

Witten, Ian H. and Eibe Frank. Data Mining: Practical Machine Learning Tools and Techniques, Second Edition. 2005. Morgan Kaufmann Series in Data Management Systems.

Part 3

Applying intelligence in your application

In this last part of the book, we focus on applying some of the concepts that we've developed throughout the book. Part 3 consists of two chapters: the first on intelligent search, and the second on building a recommendation engine.

Chapter 11 on intelligent search should give you a good overview of embedding search into your application using Lucene, along with some discussion of trends in the area of intelligent search. Chapter 12 deals with building a recommendation engine using both content-based and collaborative-based approaches. We also go through real-world case studies of personalization by Amazon, Google News, and Netflix.

This chapter covers

- Understanding search fundamentals
- Indexing and searching using Lucene
- Useful tools and framework for intelligent search
- Six trends in the area of intelligent search

Search is ubiquitous and a multi-billion-dollar business. According to Nielsen Net Ratings, in the month of July 2008, an estimated 4.8 billion searches¹ were carried out by Google. This amounted to 60 percent of all searches performed in the US during this period. There's hardly any application now that doesn't provide a search capability within the application. In this chapter, we look at how you can add search capabilities to your application using Lucene and how you can make the search intelligent.

Intelli<mark>g</mark>ent sea<mark>rc</mark>h

If you haven't done so, it's worthwhile to review chapter 6. In that chapter, we looked at intelligent web crawling using Nutch, which uses Lucene. As a precursor to this chapter, you should have also reviewed chapter 8, in which we introduced the various Lucene analyzers and the fundamentals of text parsing.

¹ http://www.nielsen-netratings.com/pr/pr_080819_3.pdf

We begin the chapter by looking at some of the fundamental concepts related to text search. We briefly review the process of creating an index and searching the index with Lucene. After that, we take a deeper look at indexing. Then we review the process of searching with Lucene and some of the advanced search concepts that we later use in the section about intelligent search. We look at some useful search-related tools and frameworks. Finally, we look at how search within your application can be made more intelligent and personalized for the user. At the end of this chapter, you should be able to add search to your application, make it intelligent, and personalize it for the user.

11.1 Search fundamentals

Given a query—a keyword or a phrase—search is the process of retrieving documents that are relevant to the query. The list of documents is generally returned in the order of how relevant they are to the query. You're already familiar with term vectors; in essence, search is the process of creating a term-vector representation for the query and retrieving documents whose term vector is most similar to that of the query term vector. Of course, we want the results to return quickly, and to make our search service scalable so that it can handle multiple simultaneous queries.

Recall and *precision* are two commonly used metrics to quantify the quality of search results—this is similar to evaluating the quality of documents retrieved by a crawler, as discussed in chapter 6. Recall is the percentage of relevant documents that were returned, while precision is the percentage of documents that you found relevant. For example, if there are 10 relevant documents and a search result returned 8 results, 5 of which were relevant, then recall is 5/10 = 50%, while precision is 5/8 = 62.5%. Furthermore, we want to make our search intelligent by using additional contextual information, such as the user's interests.

Manning has an excellent book on Lucene, *Lucene in Action*, by Gospodnetic and Hatcher. This book is a must read if you're going to be doing any serious work with Lucene in your application.

In this section, we briefly introduce some of the key search concepts. We review the key Lucene classes that will be used and end the section by implementing an example that demonstrates the search process. We begin with a brief introduction reviewing the process involved in adding search to your application. This is followed by looking at some of the core Lucene classes and working through an example.

11.1.1 Search architecture

As shown in figure 11.1, there are four entities involved in adding search to your application: documents to be indexed, an asynchronous indexing service, the search index, and a synchronous query service.

There are two main services that you need to build to add search to your application. First is an asynchronous indexing service, which is responsible for creating a search index—a reverse index of terms with related documents. Depending on the

size of your documents, it may take a long time to create a full index, and this process is typically done offline or asynchronously. Once a search index has been created, this service may update the index, either through periodic polling for document changes or by being notified of changes through an event notification. The indexing service is responsible for keeping the search index created up-to-date.

The second service is the query or search service. This service is responsible for taking a user query and converting it into an appropriate term-vector representation and retrieving relevant documents from the search index. This search service is stateless—it receives a query and returns a response back, without holding on to any state information—which makes it possible to have multiple instances of this service servicing client requests. The service can be collocated in the same JVM as your web application, or it may be distributed on remote machines. Having multiple instances of the stateless search services, front-ended with a load balancer and servicing requests over HTTP, is a common architecture used to deploy search services. In this architecture, as load increases, more instances of the service are added to the load balancer.

With that brief overview, let's look at some of the core classes that are used for indexing and searching using Lucene.

11.1.2 Core Lucene classes

As shown in figure 11.2, IndexWriter is the main class for creating and maintaining a Lucene index. An IndexWriter uses a Directory object to create an index. It also uses an Analyzer (refer to section 8.1) to analyze documents. A Document is a set of fields with a name and a textual value. Each field should correspond to information that you'll search against or display in the search results. Documents are atomic entities that are added to an index and retrieved from the index through search. Not all documents in an index need have the same set of fields. Also, the weight associated with each document or field for searching can be different, using a process known as *boosting*.

The IndexReader class contains methods for deleting Document instances from the index. At any given time, only one thread, either IndexReader or IndexWriter, should modify an index. If you look at the source of the IndexWriter and IndexReader, you'll find a number of synchronized checks that ensure that the same instance can be shared across multiple threads. An IndexReader is unaware of any changes to the

index once it's been opened; you may need to periodically reopen it to see any changes made after it was opened.

A QueryParser uses an Analyzer—this should be the same as the one used for indexing—to convert a user query into a Query object. An instance of a Searcher then uses this Query to search through the search index to return a Hits object. It's safe to have multiple search queries—read-only operations—executed on an index in parallel, even while an index is being created or modified by a different thread.

The search index is accessed using the Directory object. The Hits object contains by composition a number of Hit objects. Each Hit object provides access to the underlying document. Figure 11.2 shows two types of the Searcher—the IndexSearcher for searching a single index and the MultiSearcher for searching through multiple indexes sequentially. ParallelMultiSearcher searches multiple indexes in parallel. Figure 11.2 also shows two kinds of Directory classes—the first, FSDirectory, is used for storing the index on the file system, while the second one, RAMDirectory, is used for creating an in-memory index. The in-memory index is useful for writing tests, whereas the index is created as a part of the test and then destroyed at the end of the test. Since RAMDirectory does everything in memory, it's much faster than FSDirectory and can also be used for services that require fast performance, such as an autocomplete service.

Next, let's put these core classes into action. We illustrate the basic process of indexing and searching by applying it to an example.

Figure 11.2 The key Lucene classes for creating and searching an index

11.1.3 Basic indexing and searching via example

We build on our example from the previous chapters of retrieving blog entries from the blogosphere using Technorati. We first create an index of all the blog entries we've retrieved and then search through them using the Lucene APIs. If you haven't done so, it'll be worthwhile to review chapter 5 and section 9.1.2, which contains the implementation for BlogDataSetCreatorImpl. BlogDataSetCreatorImpl is used in this example to retrieve data from the blogosphere.

This example is split into three main parts and relates to the steps shown in figure 11.1:

- 1 Retrieving blog data from the blogosphere
- 2 Creating a Lucene index using the blog entries
- 3 Searching the Lucene index for certain phrases

We implement a class called BlogSearchExample for this section. The code for this class is split into three parts, one for each of the three parts. At this stage it's helpful to look at listing 11.1, which shows the main method for the BlogSearchExample.

The main method consists of three main lines of code, corresponding to the three parts enumerated previously.

RETRIEVING BLOG ENTRIES FROM TECHNORATI

Listing 11.2 shows the first part of the code for BlogSearchExample, which deals with retrieving blog entries from Technorati.

```
Listing 11.2 Retrieving blog entries from Technorati

package com.alag.ci.search.lucene;

import java.io.IOException;

import java.util.*;

import org.apache.lucene.analysis.Analyzer;

import org.apache.lucene.document.*;

import org.apache.lucene.index.IndexWriter;

import org.apache.lucene.queryParser.QueryParser;

import org.apache.lucene.search.*;

import org.apache.lucene.store.Directory;
```

```
import com.alag.ci.blog.dataset.impl.BlogDataSetCreatorImpl;
import com.alag.ci.blog.search.*;
import com.alag.ci.textanalysis.lucene.impl.*;
public class BlogSearchExample {
    public BlogQueryResult getBlogsFromTechnorati(String tag)
        throws BlogSearcherException {
        return (new BlogDataSetCreatorImpl()).getBlogsFromTechnorati(tag);
    }
```

To retrieve data from Technorati, we use BlogDataSetCreatorImpl, which we developed in section 9.1.2 and listing 9.6. The method getBlogsFromTechnorati returns a BlogQueryResult object using the passed-in tag. Next, let's look at how this data is converted into a search index.

CREATING A SEARCH INDEX

Listing 11.3 shows the next part of the code for BlogSearchExample, which deals with creating a search index.

```
Listing 11.3 Creating a search index
  public Directory createSearchIndex(String path,
                                                                  Create
        BlogQueryResult blogQueryResult) throws Exception{
                                                                  IndexWriter
     IndexWriter indexWriter = new IndexWriter(path,
                                                                  using
         qetAnalyzer(), true);
                                                                  specified path
     indexWriter.setUseCompoundFile(false);
                                                  Don't use compound file
     Directory indexDirectory = indexWriter.getDirectory();
                                                                  Add blog
     indexBlogEntries(indexWriter,
                                                                  entries to index
        blogQueryResult.getRelevantBlogs());
     System.out.println("Number of docs indexed = " +
        indexWriter.docCount());
     indexWriter.optimize();
     indexWriter.close();
                                    Optimize and
     return indexDirectory;
                                    close index
  private void indexBlogEntries(IndexWriter indexWriter,
        List<RetrievedBlogEntry> blogEntries) throws Exception {
     int count = 1;
     for (RetrievedBlogEntry blogEntry: blogEntries) {
        indexWriter.addDocument(getDocument(blogEntry));
        System.out.println("" + count ++ + blogEntry + "\n");
     }
}
  private Document getDocument (RetrievedBlogEntry blogEntry) {
     Document document = new Document();
                                                                 Create field with
     BlogDataSetCreatorImpl dataSetCreator =
                                                                   complete text
         new BlogDataSetCreatorImpl();
     String completeText = dataSetCreator.composeTextForAnalysis(
           blogEntry);
     addField(document,"completeText",completeText, Field.Store.YES,
           Field.Index.TOKENIZED , Field.TermVector.YES);
     addField(document, "name", blogEntry.getName(), Field.Store.YES,
```

```
Field.Index.TOKENIZED , Field.TermVector.YES);
     addField(document,"title",blogEntry.getTitle(), Field.Store.YES,
            Field.Index.TOKENIZED , Field.TermVector.YES);
     addField(document, "excerpt", blogEntry.getExcerpt(),
           Field.Store.YES,
           Field.Index.TOKENIZED , Field.TermVector.YES);
     addField(document, "url", blogEntry.getUrl(), Field.Store.YES,
           Field.Index.UN TOKENIZED , Field.TermVector.YES);
     addField(document, "author", blogEntry.getAuthor(), Field.Store.NO,
            Field.Index.UN TOKENIZED , Field.TermVector.YES);
     return document;
   }
private void addField (Document document, String fieldName, String value,
        Field.Store fieldStore, Field.Index fieldIndex,
        Field.TermVector fieldTermVector) {
     Field field = new Field(fieldName, getNotNullValue(value),
           fieldStore, fieldIndex, fieldTermVector);
     document.add(field);
   }
  private String getNotNullValue(String s) {
     if (s != null) {
        return s;
      }
     return "";
   }
                                                               Custom Analyzer
                                                               from section 8.1.4
  private Analyzer getAnalyzer() throws IOException {
     return new SynonymPhraseStopWordAnalyzer(
           new SynonymsCacheImpl(), new PhrasesCacheImpl());
   }
```

We first create an instance of the IndexWriter using the specified directory path name and the Analyzer. The last parameter, true, specifies that it's okay to create the index or overwrite the existing one. Passing in false would've appended to an existing index:

```
IndexWriter indexWriter = new IndexWriter(path, getAnalyzer(), true);
```

Note that we use the SynonymPhraseStopWordAnalyzer, which we developed in section 8.1.4. The following code

```
indexWriter.setUseCompoundFile(false);
```

implies that we don't want to use compound files. If it had been turned on, it would signify that multiple files for each segment would be merged into a single file when a new segment is flushed. Refer to http://lucene.apache.org/java/docs/filefor-mats.html if you're interested in learning more about the Lucene index format.

The following line of code

```
indexBlogEntries(indexWriter, blogQueryResult.getRelevantBlogs());
```

iterates over each blog entry, creates a document, and adds it to the index. The method getDocument() creates a Document object from a blog entry. For each blog entry, we first create a Field using the complete text representation for the blog entry:

To create the Field:

We specify the field name, set a non-null value and specify whether the field is to be stored in the index and whether it's to be tokenized, and whether we want to store the term vector for that field in the index. Storing a field implies that the content of the field will be literally stored in the index and can be retrieved later from search results. A field that isn't stored is still indexed by Lucene. Note that we don't tokenize the URL. Fields that are tokenized (Field.Index.TOKENIZED) can't be used for sorting the results obtained by querying the index. So if you plan to use Lucene for sorting the results using a sort order other than relevance, you need to add a field that's Field.Index.UN TOKENIZED. Setting the option to Field.Index.NO implies that the value of the field won't be indexed by Lucene. When the document.add() method is called multiple times with the same field name but different value objects, Lucene internally will concatenate all the values together for that particular field. As a rule of thumb, in most applications, you want to store all the parameters that you'll show in your search results. This typically includes title, URL, and abstract; avoid having to make a database call to show each of the results in your search results page. Try to retrieve all the information that's displayed from Lucene.

Once all the blog entries have been added to the index, we print out the number of entries added to the index using indexWriter.docCount(). Lastly, we optimize and close the index using

Listing 11.4 shows sample output from the code for one of the runs.

Listing 11.4 Sample output from indexing the blogs

```
1 Name: Wikinomics
Url: http://204.15.36.163:8080/blog
Title: Is Digg Making Us Dumber?
Excerpt: If you started reading this post based on the title, you've
already half proven the point I'm about to argue. Sensationalism
combined with social med
LastUpdateTime: Mon Feb 25 20:03:23 PST 2008
2 Name: Wikinomics
Url: http://www.wikinomics.com/blog
Title: Is Digg Making Us Dumber?
Excerpt: If you started reading this post based on the title, you've
already half proven the point I'm about
```

LastUpdateTime: Tue Feb 26 06:19:03 PST 2008

```
3 Name: BSG Alliance - Next Generation Enterprises. On Demand.
Url: http://www.bsgalliance.com
Title: Is Digg Making Us Dumber?
Excerpt: Citation - content was aggregated by Kalivo Listener from 3rd
party: Credited Author: Naumi Haque So
LastUpdateTime: Mon Feb 25 22:40:00 PST 2008
```

```
4 Name: Social Media Explorer
Url: http://www.socialmediaexplorer.com
Title: Exploring Social Media Measurement: Collective Intellect
Excerpt: This entry in our ongoing exploration of social media
measurement firms focuses on Collective Intel
LastUpdateTime: Mon Feb 25 11:00:53 PST 2008
Author: Jason Falls
```

......

```
10 Name: Et si l'on parlait Marketing
Url: http://henrikaufman.typepad.com/et_si_lon_parlait_marketi
Title: Imagination 3.0
Excerpt: En Octobre 2007, j'avais analysé l'excellent livre de mon ami
Brice Auckenthaler : L'Imagination C
LastUpdateTime: Mon Feb 25 23:22:20 PST 2008
```

That's it! We've added all the blog entries to our index and we can now search the index.

SEARCHING THE INDEX

Searching the index using a query is fairly straightforward. Listing 11.5 shows the third part of the code for this example, which deals with searching the index.

```
Listing 11.5 Searching the index
 public void searchForBlogs (Directory directory, String queryString)
  throws Exception {
    IndexSearcher indexSearcher =
      new IndexSearcher(directory);
                                   Create instance of IndexSearcher
    QueryParser queryParser = new QueryParser(
      Query query =
      Hits hits =
      indexSearcher.search(query);
                                  Retrieve Hits from IndexSearcher
    System.out.println("Number of results = " + hits.length() +
          " for " + queryString);
    Iterator iterator = hits.iterator();
                                                 Retrieve
    while (iterator.hasNext()) {
                                                 Document from
       Hit hit = (Hit) iterator.next();
                                                 Hit object
       Document document = hit.getDocument();
       System.out.println(document.get("completeText"));
       Explanation explanation = indexSearcher.explain(weight,
          hit.getId());
                                                          Explain
       System.out.println(explanation.toString());
                                                           query
                                                           result
```

```
}
}
indexSearcher.close();
}
```

We first create an instance of the IndexSearcher using the Directory that was passed in to the index. Alternatively, you can use the path to the index to create an instance of a Directory using the static method in FSDirectory:

```
Directory directory = FSDirectory.getDirectory(luceneIndexPath);
```

Next, we create an instance of the QueryParser using the same analyzer that we used for indexing. The first parameter in the QueryParser specifies the name of the default field to be used for searching. For this we specify the completeText field that we created during indexing. Alternatively, one could use MultiFieldQueryParser to search across multiple fields. Next, we create a Query object using the query string and the QueryParser. To search the index, we simply invoke the search method in the IndexSearcher:

```
Hits hits = indexSearcher.search(query);
```

The Hits object holds the ranked list of resulting documents. It has a method to return an Iterator over all the instances, along with retrieving a document based on the resulting index. You can also get the number of results returned using hits.length(). For each of the returned documents, we print out the title and excerpt fields using the get() method on the document. Note that in this example, we know that the number of returned blog entries is small. In general, you should iterate over only the hits that you need. Iterating over all hits may cause performance issues. If you need to iterate over many or all hits, you should use a HitCollector, as shown later in section 11.3.7.

The following code demonstrates how Lucene scored the document for the query:

```
Explanation explanation = indexSearcher.explain(weight, hit.getId());
```

We discuss this in more detail in section 11.3.1.

It is useful to look at listing 11.6, which shows sample output from running the example. Note that your output will be different based on when you run the example—it's a function of whichever blog entries on collective intelligence have been created in the blogosphere around the time you run the program.

```
Listing 11.6 Sample output from our example
```

```
Number of docs indexed = 10
Number of results = 3 for collective intelligence
Collective Knowing Gates of the Future From the Middle I
recently wrote an article on collective intelligence that I will share h
0.8109757 = (MATCH) sum of:
0.35089532 = (MATCH) weight(completeText:collective in 7), product of:
0.5919065 = queryWeight(completeText:collective), product of:
1.9162908 = idf(docFreq=3)
```

```
0.30888134 = queryNorm
   0.5928222 = (MATCH) fieldWeight(completeText:collective in 7),
product of:
    1.4142135 = tf(termFreq(completeText:collective)=2)
    1.9162908 = idf(docFreg=3)
    0.21875 = fieldNorm(field=completeText, doc=7)
 0.46008033 = (MATCH) weight (completeText:intelligence in 7), product of:
   0.80600667 = queryWeight(completeText:intelligence), product of:
    2.609438 = idf(docFreq=1)
    0.30888134 = queryNorm
   0.57081455 = (MATCH) fieldWeight (completeText:intelligence in 7),
product of:
    1.0 = tf(termFreq(completeText:intelligence)=1)
    2.609438 = idf(docFreq=1)
    0.21875 = fieldNorm(field=completeText, doc=7)
Exploring Social Media Measurement: Collective Intellect Social Media
Explorer Jason Falls This entry in our ongoing exploration of
social media measurement firms focuses on Collective Intel
0.1503837 = (MATCH) product of:
 0.3007674 = (MATCH) sum of:
  0.3007674 = (MATCH) weight (completeText:collective in 3), product of:
    0.5919065 = queryWeight (completeText:collective), product of:
     1.9162908 = idf(docFreq=3)
     0.30888134 = queryNorm
    0.5081333 = (MATCH) fieldWeight(completeText:collective in 3),
        product of:
     1.4142135 = tf(termFreq(completeText:collective)=2)
     1.9162908 = idf(docFreq=3)
     0.1875 = fieldNorm(field=completeText, doc=3)
 0.5 = coord(1/2)
Boites a idées et ingeniosité collective Le perfoloque, le blog pro de
la performance et du techno management en entreprise. Alain Fernandez
Alain Fernandez Les boîte à idées de new génération Pour capter
l'ingéniosité collective, passez donc de la boîte à
0.1002558 = (MATCH) product of:
 0.2005116 = (MATCH) sum of:
   0.2005116 = (MATCH) weight (completeText:collective in 4), product of:
    0.5919065 = queryWeight (completeText:collective), product of:
     1.9162908 = idf(docFreg=3)
     0.30888134 = queryNorm
    0.33875555 = (MATCH) fieldWeight(completeText:collective in 4),
  product of:
     1.4142135 = tf(termFreq(completeText:collective)=2)
     1.9162908 = idf(docFreq=3)
     0.125 = fieldNorm(field=completeText, doc=4)
 0.5 = coord(1/2)
```

As expected, 10 documents were retrieved from Technorati and indexed. One of them had *collective intelligence* appear in the retrieved text and was ranked the highest, while the other two contained the term *collective*.

This completes our overview and example of the basic Lucene classes. You should have a good understanding of what's required to create a Lucene index and for searching the index. Next, let's take a more detailed look at the process of indexing in Lucene.

11.2 Indexing with Lucene

During the indexing process, Lucene takes in Document objects composed of Fields. It analyzes the text associated with the Fields to extract terms. Lucene deals only with text. If you have documents in nontext format such as PDF or Microsoft Word, you need to convert it into plain text that Lucene can understand. A number of open source tool kits are available for this conversion; for example PDFBox is an open source library available for handling PDF documents.

In this section, we'take a deeper look at the indexing process. We begin with a brief introduction of the two Lucene index formats. This is followed by a review of the APIs related to maintaining the Lucene index, some coverage of adding incremental indexing to your application, ways to access the term vectors, and finally a note on optimizing the indexing process.

11.2.1 Understanding the index format

A Lucene index is an *inverted text index*, where each term is associated with documents in which the term appears. A Lucene index is composed of multiple segments. Each segment is a fully independent, searchable index. Indexes evolve when new documents are added to the index and when existing segments are merged together. Each document within a segment has a unique ID within that segment. The ID associated with a document in a segment may change as new segments are merged and deleted documents are removed. All files belonging to a segment have the same filename with different file extensions. When the compound file format is used, all the files are merged into a single file with a .CFS extension. Figure 11.3 shows the files created for our example in section 11.1.3 using a non-compound file structure and a compound file structure.

Once an index has been created, chances are that you may need to modify the index. Let's next look at how this is done.

Name 🔺	Size T	уре	Name 4	L	Size	Туре
🚾 _3.fdt	5 KB FE	DT File	🚾 _0.cfs		13 KB	CFS File
🔟 _3.fd×	1 KB FE	DX File	🖬 segme	nts.gen	1 KB	GEN File
🔟 _3.fnm	1 KB FN	NM File	🖬 segme	nts_3	1 KB	File
🚾 _3.frq	1 KB FF	RQ File				
🔟 _3.nrm	1 KB NF	RM File		b. Compo	ound file	
🚾 _3.prx	1 KB PR	RX File				
🔟 _3.tii	1 KB TI	II File				
🚾 _3.tis	4 KB TI	IS File				
🔟 _3.tvd	1 KB TV	VD File				
🚾 _3.tvf	4 KB TV	VF File				
🚾 _3.tvx	1 KB TV	VX File				
🔟 segments.gen	1 KB GB	EN File				
🚾 segments_9	1 KB Fil	le				
a. Nor	n-compound file	Fi	gure 11.3	Non-compound a	nd compound	index files

11.2.2 Modifying the index

Document instances in an index can be deleted using the IndexReader class. If a document has been modified, you first need to delete the document and then add the new version of the document to the index. An IndexReader can be opened on a directory that has an IndexWriter opened already, but it can't be used to delete documents from the index at that point.

There are two ways to delete documents from an index, as shown in listing 11.7.

```
Listing 11.7 Deleting documents using the IndexReader
  public void deleteByIndexId(Directory indexDirectory, int docIndexNum)
   throws Exception {
     IndexReader = IndexReader.open(indexDirectory);
     indexReader.deleteDocument(docIndexNum);
                                                  \leq -
                                                        Delete document based
     indexReader.close();
                                                        on index number
   }
  public void deleteByTerm(Directory indexDirectory, String externalId)
    throws Exception {
     Term deletionTerm = new Term("externalId", externalId);
     IndexReader = IndexReader.open(indexDirectory);
     indexReader.deleteDocuments(deletionTerm);
                                                    \leq -
                                                           Delete documents
     indexReader.close();
                                                          based on term
   }
```

Each document in the index has a unique ID associated with it. Unfortunately, these IDs can change as documents are added and deleted from the index and as segments are merged. For fast lookup, the IndexReader provides access to documents via their document number. There are four static methods that provide access to an IndexReader using the open command. In our example, we get an instance of the IndexReader using the Directory object. Alternatively, we could have used a File or String representation to the index directory.

```
IndexReader = IndexReader.open(indexDirectory);
```

To delete a document with a specific document number, we simply call the delete-Document method:

indexReader.deleteDocument(docIndexNum);

Note that at this stage, the document hasn't been actually deleted from the index—it's simply been marked for deletion. It'll be deleted from the index when we close the index:

```
indexReader.close();
```

A more useful way of deleting entries from the index is to create a Field object within the document that contains a unique ID string for the document. As things change in your application, simply create a Term object with the appropriate ID and field name and use it to delete the appropriate document from the index. This is illustrated in the method deleteByTerm(). The IndexReader provides a convenient method, undeleteAll(), to undelete all documents that have been marked for deletion. Opening and closing indexes for writing tends to be expensive, especially for large indexes. It's more efficient to do all the modifications in a batch. Further, it's more efficient to first delete all the required documents and then add new documents, as shown in listing 11.8.

Listing 11.8 Batch deletion and addition of documents
public void illustrateBatchModifications (Directory indexDirectory,
List <term> deletionTerms,</term>
List <document> addDocuments) throws Exception {</document>
IndexReader indexReader = IndexReader.open(indexDirectory);
for (Term deletionTerm: deletionTerms) {
indexReader.deleteDocuments(deletionTerm); Batch deletion
}
indexReader.close();
IndexWriter indexWriter = new IndexWriter(indexDirectory,
<pre>qetAnalyzer(),false);</pre>
for (Document document: addDocuments) { Batch addition
indexWriter.addDocument(document);
}
indexWriter.optimize();
indexWriter.close();
}

Note that an instance of IndexReader is used for deleting the documents, while an instance of IndexWriter is used for adding new Document instances.

Next, let's look at how you can leverage this to keep your index up to date by incrementally updating your index.

11.2.3 Incremental indexing

Once an index has been created, it needs to be updated to reflect changes in the application. For example, if your application is leveraging user-generated content, the index needs to be updated with new content being added, modified, or deleted by the users. A simple approach some sites follow is to periodically—perhaps every few hours—re-create the complete index and update the search service with the new index. In this mode, the index, once created, is never modified. However, such an approach may be impractical if the requirement is that once a user generates new content, the user should be able to find the content shortly after addition. Furthermore, the amount of time taken to create a complete index may be too long to make this approach feasible. This is where *incremental indexing* comes into play. You may still want to re-create the complete index periodically, perhaps over a longer period of time.

As shown in figure 11.4, one of the simplest deployment architectures for search is to have multiple instances of the search service, each having its own index instance. These search services never update the index themselves—they access the index in read-only mode. An external indexing service creates the index and then propagates the changes to the search service instances. Periodically, the external indexing service batches all the changes that need to be propagated to the index and incrementally updates the index. On completion, it then propagates the updated index to the

search instances, which periodically create a new version of the IndexSearcher. One downside of such an approach is the amount of data that needs to be propagated between the machines, especially for very large indexes.

Note that in the absence of an external index updater, each of the search service instances would have to do work to update their indexes, in essence duplicating the work.

Figure 11.5 shows an alternate architecture in which multiple search instances are accessing and modifying the same index. Let's assume that we're building a service, IndexUpdaterService, that's responsible for updating the search index. For incremental indexing, the first thing we need to ensure is that at any given time, there's only one instance of an IndexReader modifying the index.

First, we need to ensure that there's only one instance of IndexUpdaterService in a JVM—perhaps by using the Singleton pattern or using a Spring bean instance. Next, if multiple JVMs are accessing the same index, you'll need to

implement a global-lock system to ensure that only one instance is active at any given time. We discuss two solutions for this, first using an implementation that involves the database, and second using the Lock class available in Lucene. The second approach involves less code, but doesn't guard against JVM crashes. When a JVM crashes, the lock is left in an acquired state and you have to manually release or delete the lock file.

The first approach uses a timer-based mechanism that periodically invokes the IndexUpdaterService and uses a row in a database table to create a lock. The Index-UpdaterService first checks to see whether any other service is currently updating the index. If no services are updating the index—if there's no active row in the database table—it inserts a row and sets its state to be active. This service now has a lease on updating the index for a period of time. This service would then process all the changes—up to a maximum number that can be processed in the time frame of the lease—that have to be made to the index since the last update. Once it's done, it sets the state to inactive in the database, allowing other service instances to then do an

update. To avoid JVM crashes, there's also a timeout associated with the active state for a service.

The second approach is similar, but uses the file-based locking provided by Lucene. When using FSDirectory, lock files are created in the directory specified by the system property org.apache.lucene.lockdir if it's set; otherwise the files are created in the computer's temporary directory (the directory specified by the java.io.tmpdir system directory). When multiple JVM instances are accessing the same index directory, you need to explicitly set the lock directory so that the same lock file is seen by all instances.

There are two kinds of locks: *write locks* and *commit locks*. Write locks are used whenever the index needs to be modified, and tend to be held for longer periods of time than commit locks. The IndexWriter holds on to the write lock when it's instantiated and releases it only when it's closed. The IndexReader obtains a write lock for three operations: deleting documents, undeleting documents, and changing the normalization factor for a field. Commit locks are used whenever segments are to be merged or committed. A file called *segments* names all of the other files in an index. An IndexReader obtains a commit lock before it reads the segments file. IndexReader keeps the lock until all the other files in the index have been read. The IndexWriter also obtains the commit lock when it has to write the segments file. It keeps the lock until it deletes obsolete index files. Commit locks are accessed more often than write locks, but for smaller durations, as they're obtained only when files are opened or deleted and the small segments file is read or written.

Listing 11.9 illustrates the use of the isLocked() method in the IndexReader to check whether the index is currently locked.

```
Listing 11.9 Adding code to check whether the index is locked
public void illustrateLockingCode(Directory indexDirectory,
    List<Term> deletionTerms,
    List<Document> addDocuments) throws Exception {
    if (!IndexReader.isLocked(indexDirectory)) {
        IndexReader indexReader = IndexReader.open(indexDirectory);
        //do work
    } else {
        //wait
    }
}
```

Another alternative is to use an application package such as Solr (see section 11.4.2), which takes care of a lot of these issues. Having looked at how to incrementally update the index, next let's look at how we can access the term frequency vector using Lucene.

11.2.4 Accessing the term frequency vector

You can access the term vectors associated with each of the fields using the IndexReader. Note that when creating the Field object as shown in listing 11.3, you need to set the

third argument in the static method for creating a field to Field.TermVector.YES. Listing 11.10 shows some sample code for accessing the term frequency vector.

```
Listing 11.10 Sample code to access the term frequency vector for a field
public void illustrateTermFreqVector(Directory indexDirectory)
throws Exception {
    IndexReader indexReader = IndexReader.open(indexDirectory);
    for (int i = 0; i < indexReader.numDocs(); i ++) {
        System.out.println("Blog " + i);
        TermFreqVector termFreqVector =
            indexReader.getTermFreqVector(i, "completeText");
        String [] terms = termFreqVector.getTerms();
        int [] freq = termFreqVector.getTermFrequencies();
        for (int j = 0; j < terms.length; j ++) {
            System.out.println(terms[j] + " " + freq[j]);
        }
    }
}</pre>
```

The following code

```
TermFreqVector termFreqVector =
indexReader.getTermFreqVector(i, "completeText");
```

passes in the index number for a document along with the name of the field for which the term frequency vector is required. The IndexReader supports another method for returning all the term frequencies for a document:

TermFreqVector[] getTermFreqVectors(int docNumber)

Finally, let's look at some ways to manage performance during the indexing process.

11.2.5 Optimizing indexing performance

Methods to improve² the time required by Lucene to create its index can be broken down into the following three categories:

- Memory settings
- Architecture for indexing
- Other ways to improve performance

OPTIMIZING MEMORY SETTINGS

When a document is added to an index (addDocument in IndexWriter), Lucene first stores the document in its memory and then periodically flushes the documents to disk and merges the segment. setMaxBufferedDocs controls how often the documents in the memory are flushed to the disk, while setMergeFactor sets how often index segments are merged together. Both these parameters are by default set to 10. You can control this number by invoking setMergeFactor() and setMaxBufferedDocs() in the IndexWriter. More RAM is used for larger values of mergeFactor. Making this number

² http://wiki.apache.org/lucene-java/ImproveIndexingSpeed

large helps improve the indexing time, but slows down searching, since searching over an unoptimized index is slower than searching an optimized index. Making this value too large may also slow down the indexing process, since merging more indexes at once may require more frequent access to the disk. As a rule of thumb, large values for this parameter (greater than 10) are recommended for batch indexing and smaller values (less than 10) are recommended during incremental indexing.

Another alternative to flushing the memory based on the number of documents added to the index is to flush based on the amount of memory being used by Lucene. For indexing, you want to use as much RAM as you can afford—with the caveat that it doesn't help beyond a certain point.³ Listing 11.11 illustrates the process of flushing the Lucene index based pm the amount of RAM used.

Listing 11.11 Illustrate flushing by RAM

```
public void illustrateFlushByRAM(IndexWriter indexWriter,
      List<Document> documents) throws Exception {
   indexWriter.setMaxBufferedDocs(MAX_BUFFER_VERY LARGE NUMBER);
   for (Document document: documents) {
                                                           Set max to large value
      indexWriter.addDocument(document);
      long currentSize = indexWriter.ramSizeInBytes();
                                                                 Check RAM
      if (currentSize > LUCENE MAX RAM) {
                                                                 used after
         indexWriter.flush();
                                   <----
                                          Flush RAM
                                                                 every addition
      }
                                          when it exceeds
   }
                                          maximum
 ļ
```

It's important to first set the number of maximum documents that will be used before merging to a large number, to prevent the writer from flushing based on the document count.⁴ Next, the RAM size is checked after each document addition. When the amount of memory used exceeds the maximum RAM for Lucene, invoking the flush() method flushes the changes to disk.

To avoid the problem of very large files causing the indexing to run out of memory, Lucene by default indexes only the first 10,000 terms for a document. You can change this by setting setMaxFieldLength in the IndexWriter. Documents with large values for this parameter will require more memory.

INDEXING ARCHITECTURE

Here are some tips for optimizing indexing performance:

- In memory indexing, using RAMDirectory is much faster than disk indexing using FSDirectory. To take advantage of this, create a RAMDirectory-based index and periodically flush the index to disk using the FSDirectory index's addIndexes() method.
- To speed up the process of adding documents to the index, it may be helpful to use multiple threads to add documents. This approach is especially helpful

³ See discussion http://www.gossamer-threads.com/lists/lucene/java-dev/51041.

⁴ See discussion http://issues.apache.org/jira/browse/LUCENE-845.

when it may take time to create a Document instance and when using hardware that can effectively parallelize multiple threads. Note that a part of the addDocument() method is synchronized in the IndexWriter.

- For indexes with large number of documents, you can split the index into n instances created on separate machines and then merge the indexes into one index using the addIndexesNoOptimize method.
- Use a local file system rather than a remote file system.

OTHER WAYS TO OPTIMIZE

Here are some way to optimize indexing time:

- Version 2.3 of Lucene exposes methods that allow you to set the value of a Field, enabling it to be reused across documents. It's efficient to reuse Document and Field instances. To do this, create a single Document instance. Add to it multiple Field instances, but reuse the Field instances across multiple document additions. You obviously can't reuse the same Field instance within a document until the document has been added to the index, but you can reuse Field instances across documents.
- Make the analyzer reuse Token instances, thus avoiding unnecessary object creation.
- In Lucene 2.3, a Token can represent its text as a character array, avoiding the creation of String instances. By using the char [] API along with reusing Token instances, the creation of new objects can be avoided, which helps improve performance.
- Select the right analyzer for the kind of text being indexed. For example, indexing time increases if you use a stemmer, such as PorterStemmer, or if the analyzer is sophisticated enough to detect phrases or applies additional heuristics.

So far, we've looked in detail at how to create an index using Lucene. Next, we take a more detailed look at searching through this index.

11.3 Searching with Lucene

In section 11.3, we worked through a simple example that demonstrated how the Lucene index can be searched using a QueryParser. In this section, we take a more detailed look at searching.

In this section, we look at how Lucene does its scoring, the various query parsers available, how to incorporate sorting, querying on multiple fields, filtering results, searching across multiple indexes, using a HitCollector, and optimizing search performance.

11.3.1 Understanding Lucene scoring

At the heart of Lucene scoring is the vector-space model representation of text (see section 2.2.4). There is a term-vector representation associated with each field of a document. You may recall from our discussions in sections 2.2.4 and 8.2 that the weight associated with each term in the term vector is the product of two terms—the

term frequency in the document and the inverse document frequency associated with the term across all documents. For comparison purposes, we also normalize the term vector so that shorter documents aren't penalized. Lucene uses a similar approach, where in addition to the two terms, there's a third term based on how the document and field have been boosted—we call this the boost value. Within Lucene, it's possible to boost the value associated with a field and a document; see the setBoost() method in Field and Document. By default, the boost value associated with the field and document is 1.0. The final field boost value used by Lucene is the product of the boost values for the field and the document. Boosting fields and documents is a useful method for emphasizing certain documents or fields, depending on the business logic for your domain. For example, you may want to emphasis documents that are newer than historical ones, or documents written by users who have a higher authority (more wellknown) within your application.

Given a query, which itself is converted into a normalized term vector, documents that are found to be most similar using the dot product of the vectors are returned. Lucene further multiplies the dot product for a document with a term that's proportional to the number of matching terms in the document. For example, for a threeterm query, this factor will be larger for a document that has two of the queried terms than a document that has one of the query terms.

More formally, using the nomenclature used by Lucene, the Similarity⁵ class outlines the score that's computed between a document d for a given query q:

$$Score(q, d) = coord(q, d) \cdot (norm(q)) \sum_{t \cdot in \cdot q} tf(t \cdot in \cdot d) \cdot (idf(t)) \cdot boost(t \cdot field \cdot in \cdot d) \cdot (norm(t, d))$$

Note that the summation is in essence taking a dot product. Table 11.1 contains an explanation of the various terms used in scoring.

Term	Description
Score(q,d)	Relevance of query q to a document d
tf(t in d)	Term frequency of term t in the document
ldf(t)	Inverse document frequency of term t across all documents
Boost(t field in d)	Boost for the field—product of field and document boost factors
Norm(t,d)	Normalization factor for term t in the document
Coord(q,d)	Score factor based on the number of query terms found in document d
Norm(q)	Normalization factor for the query

Table 11.1 Explanation of terms used for computing the relevance of a query to a document

The DefaultSimilarity class provides a default implementation for Lucene's similarity computation, as shown in Figure 11.6. You can extend this class if you want to override the computation of any of the terms.

⁵ http://lucene.zones.apache.org:8080/hudson/job/Lucene-Nightly/javadoc/org/apache/lucene/search/ Similarity.html

The IndexSearcher class has a method that returns an Explanation object for a Weight and a particular document. The Weight object is created from a Query (query.weight(Searcher)). The Explanation object contains details about the scoring; listing 11.12 shows a sample explanation provided for the query term *collective intelligence*, using the code as in listing 11.4 for searching through blog entries.

```
Listing 11.12 Sample explanation of Lucene scoring
Link permanente a Collective Intelligence SocialKnowledge
Collective Intelligence Pubblicato da Rosario Sica su
Novembre 18, 2007
                  [IMG David Thorburn]Seqna
0.64706594 = (MATCH) sum of:
 0.24803483 = (MATCH) weight (completeText:collective in 9), product of:
   0.6191303 = queryWeight(completeText:collective), product of:
    1.5108256 = idf(docFreq=5)
    0.409796 = queryNorm
  0.40061814 = (MATCH) fieldWeight(completeText:collective in 9),
product of:
    1.4142135 = tf(termFreq(completeText:collective)=2)
    1.5108256 = idf(docFreg=5)
    0.1875 = fieldNorm(field=completeText, doc=9)
 0.3990311 = (MATCH) weight (completeText:intelligence in 9), product of:
   0.7852883 = queryWeight (completeText:intelligence), product of:
    1.9162908 = idf(docFreq=3)
    0.409796 = queryNorm
  0.5081333 = (MATCH) fieldWeight(completeText:intelligence in 9),
product of:
    1.4142135 = tf(termFreq(completeText:intelligence)=2)
    1.9162908 = idf(docFreg=3)
    0.1875 = fieldNorm(field=completeText, doc=9)
```

Using the code in listing 11.4, first a Weight instance is created:

Weight weight = query.weight(indexSearcher);

Next, while iterating over all result sets, an Explanation object is created:

```
Iterator iterator = hits.iterator();
while (iterator.hasNext()) {
   Hit hit = (Hit) iterator.next();
```

```
Document document = hit.getDocument();
System.out.println(document.get("completeText"));
Explanation explanation = indexSearcher.explain(weight,
hit.getId());
System.out.println(explanation.toString());
}
```

Next, let's look at how the query object is composed in Lucene.

11.3.2 Querying Lucene

In listing 11.4, we illustrated the use of a QueryParser to create a Query instance by parsing the query string. Lucene provides a family of Query classes, as shown in figure 11.7, which allow you to construct a Query instance based on the requirements.

Table 11.2 contains a brief description for queries shown in figure 11.7. Next, let's work through an example that combines a few of these queries, to illustrate how they can be used.

Table 11.2 Description of the query classes

Query class name	Description
Query	Abstract base class for all queries
TermQuery	A query that matches a document containing a term
PhraseQuery	A query that matches documents containing a particular sequence of terms
PrefixQuery	Prefix search query
BooleanQuery	A query that matches documents matching Boolean combinations of other queries
RangeQuery	A query that matches documents within an exclusive range
SpanQuery	Base class for span-based queries
MultiTermQuery	A generalized version of $\tt PhraseQuery,$ with an added method $\tt add(\tt Term[])$

Table 11.2 Description of the query classes (continued)

Query class name	Description
WildCardQuery	Wildcard search query
FuzzyQuery	Fuzzy search query

Let's extend our example in section 11.1.3, where we wanted to search for blog entries that have the phrase *collective intelligence* as well as a term that begins with *web**. Listing 11.13 shows the code for this query.

```
Listing 11.13 Example code showing the use of various Query classes
  public void illustrateQueryCombination(Directory indexDirectory)
     throws Exception {
     IndexSearcher indexSearcher = new IndexSearcher(indexDirectory);
     PhraseQuery phraseQuery = new PhraseQuery();
     phraseQuery.add(new Term("completeText","collective"));
                                                                   < -
                                                                         Adding
     phraseQuery.add(new Term("completeText","intelligence"));
                                                                         phrase
     phraseQuery.setSlop(1);
                                               \triangleleft
                                                      Setting slop
                                                                         terms
                                                     for terms
     PrefixQuery prefixQuery = new PrefixQuery(
       new Term("completeText", "web"));
                                                 Creating prefix query
                                                           Combining queries
     BooleanQuery booleanQuery = new BooleanQuery();
     booleanQuery.add(phraseQuery, BooleanClause.Occur.MUST);
     booleanQuery.add(prefixQuery, BooleanClause.Occur.MUST);
     System.out.println(booleanQuery.toString());
     Hits hits = indexSearcher.search(booleanQuery);
   }
```

We first create an instance of the PhraseQuery and add the terms *collective* and *intelligence*. Each phrase query has a parameter called slop. Slop by default is set to 0, which enables only exact phrase matches. When the slop value is greater than 0, the phrase query works like a within or near operator. The slop is the number of moves required to convert the terms of interest into the query term. For example, if we're interested in the query *collective intelligence* and we come across a phrase *collective xxxx intelligence*, the slop associated with this phrase match is 1, since one term —*xxx*—needs to be moved. The slop associated with the phrase *intelligence collective* is 2, since the term *intelligence* needs to be moved two positions to the right. Lucene matches exact matches higher than sloppy matches.

For the preceding Boolean query, invoking the toString() method prints out the following Lucene query:

```
+completeText:"collective intelligence"~1 +completeText:web*
```

Next, let's look at how search results can be sorted using Lucene.

11.3.3 Sorting search results

In a typical search application, the user types in a query and the application returns a list of items sorted in order of relevance to the query. There may be a requirement in

the application to return the result set sorted in a different order. For example, the requirement may be to show the top 100 results sorted by the name of the author, or the date it was created. One naïve way of implementing this feature would be to query Lucene, retrieve all the results, and then sort the results in memory. There are a couple of problems with this approach, both related to performance and scalability. First, we need to retrieve all the results into memory and sort them. Retrieving all items consumes valuable time and computing resources. The second problem is that all the items are retrieved even though only a subset of the results will eventually be shown in the application. For example, the second page of results may just need to show items 11 to 20 in the result list. Fortunately, Lucene has built-in support for sorting the results sets, which we briefly review in this section.

The Sort class in Lucene encapsulates the sort criteria. Searcher has a number of overloaded search methods that, in addition to the query, also accept Sort as an input, and as we see in section 11.3.5, a Filter for filtering results. The Sort class has two static constants: Sort.INDEXORDER, which sorts the results based on the index order, and Sort.RELEVANCE, which sorts the results based on relevance to the query. Fields used for sorting must contain a single term. The term value indicates the document's relative position in the sort order. The field needs to be indexed, but not tokenized, and there's no need to store the field. Lucene supports three data types for sorting fields: String, Integer, and Float. Integers and Floats are sorted from low to high. The sort order can be reversed by creating the Sort instance using either the constructor:

```
public Sort(String field, boolean reverse)
```

or the setSort() method:

setSort(String field, boolean reverse)

The Sort object is thread safe and can be reused by using the setSort() method.

In listing 11.3, we created a field called "author". Let's use this field for sorting the results:

addField(document,"author",blogEntry.getAuthor(), Field.Store.NO, Field.Index.UN_TOKENIZED , Field.TermVector.YES);

Listing 11.14 shows the implementation for the sorting example using the "author" field.


```
Hit hit = (Hit) iterator.next();
Document document = hit.getDocument();
System.out.println("Author = " + document.get("author"));
}
```

In the case of two documents that have the same values in the Sort field, the document number is used for displaying the items. You can also create a multiple field Sort by using the SortField class. For example, the following code first sorts by the author field, in reverse alphabetical order, followed by document relevance to the query, and lastly by using the document index number:

```
SortField [] sortFields = {new SortField("author", false),
SortField.FIELD_SCORE, SortField.FIELD_DOC};
Sort multiFieldSort = new Sort(sortFields);
```

So far we've been dealing with searching across a single field. Let's look next at how we can query across multiple fields.

11.3.4 Querying on multiple fields

In listing 11.3, we created a "completeText" field that concatenated text from the title and excerpt fields of the blog entries. In this section, we illustrate how you can search across multiple fields using the MultiFieldQueryParser, which extends FieldQueryParser as shown in figure 11.2.

Let's continue with our example from section 11.1.3. We're interested in searching across three fields—"name", "title", and "excerpt". For this, we first create a String array:

```
String [] fields = {"name", "title", "excerpt"};
```

Next, a new instance of the MultiFieldQueryParser is created using the constructor:

```
new MultiFieldQueryParser(fields, getAnalyzer());
```

Lucene will search for terms using the OR operator—the query needs to match any one of the three fields. Next, let's look at how we can query multiple fields using different matching conditions. Listing 11.15 illustrates how a multifield query can be composed, specifying that the match should occur in the "name" field, and the "title" field, and shouldn't occur in the "excerpt" field.

```
Listing 11.15 MultiFieldQueryParser example
   public Query getMultiFieldAndQuery(String guery) throws Exception {
      String [] fields =
           {"name", "title", "excerpt"};
                                              \triangleleft
                                                    Create
                                                                      Create array
      BooleanClause.Occur[] flags = {
                                                                      with conditions
                                                    array with
            BooleanClause.Occur.SHOULD,
                                                    field names
                                                                      for combining
            BooleanClause.Occur.MUST,
            BooleanClause.Occur.MUST NOT};
                                                         ~
                                                                         Invoke parse
      return MultiFieldQueryParser.parse(query, fields,
                                                                         method
           flags, getAnalyzer());
                                                         < -
   }
```
This example constructs the following query for Lucene:

(name:query) +(title:query) -(excerpt:query)

Next, let's look at how we can use Filters for filtering out results using Lucene.

11.3.5 Filtering

Lots of times, you may need to constrain your search to a subset of available documents. For example, in an SaaS application, where there are multiple domains or companies supported by the same software and hardware instance, you need to search through documents only within the domain of the user. As shown in figure 11.8, there are five Filter classes available in Lucene.

Figure 11.8 Filters available in Lucene

Table 11.3 contains a brief description of the various filters that are available in Lucene.

Class	Description
Filter	Abstract base class for all filters. Provides a mechanism to restrict the search to a subset of the index.
CachingWrapperFilter	Wraps another filter's results and caches it. The intent is to allow filters to simply filter and then add caching using this filter.
QueryFilter	Constrains search results to only those that match the required query. It also caches the result so that searches on the same index using this filter are much faster.
RangeFilter	Restricts the search results to a range of values. This is similar to a RangeQuery.
PrefixFilter	Restricts the search results to those that match the prefix. This is similar to a PrefixQuery.

Table 11.3 Description of the filter classes

Next, let's look at some code that illustrates how to create a filter and invoke the search method using the filter. Listing 11.16 shows the code for creating a RangeFilter using the "modifiedDate" field. Note that the date the document was modified is converted into a String representation using yyyymmdd format.

Listing 11.16 Filtering the results

```
CachingWrapperFilter cachedFilter =
    new CachingWrapperFilter(rangeFilter);
Hits hits = indexSearcher.search(query, cachedFilter, sort);
}
Wrap RangeFilter in
CachingWrapperFilter
```

The constructor for a RangeFilter takes five parameters. First is the name of the field to which the filter has to be applied. Next are the lower and the upper term for the range, followed by two Boolean flags indicating whether to include the lower and upper values. One of the advantages of using Filters is the caching of the results. It's easy enough to wrap the RangeFilter instance using the CachingWrapperFilter. As long as the same IndexReader or IndexSearcher instance is used, Lucene will use the cached results after the first query is made, which populates the cache.

11.3.6 Searching multiple indexes

In figure 11.2, you may have noticed two Searcher classes, MultiSearcher and ParallelMultiSearcher. These classes are useful if you need to search across multiple indexes. It's common practice to partition your Lucene indexes, once they become large. Both MultiSearcher and ParallelMultiSearcher, which extends Multi-Searcher, can search across multiple index instances and present search results combined together as if the results were obtained from searching a single index. Listing 11.17 shows the code for creating and searching using the MultiSearcher and ParallelMultiSearcher classes.

```
Listing 11.17 Searching across multiple instances
  public void illustrateMultipleIndexSearchers(Directory index1,
        Directory index2, Query query, Filter filter) throws Exception {
     IndexSearcher indexSearcher1 = new IndexSearcher(index1);
      IndexSearcher indexSearcher2 = new IndexSearcher(index2);
     Searchable [] searchables = {indexSearcher1, indexSearcher2};
                                                                         4
     Searcher searcher = new MultiSearcher(searchables);
     Searcher parallelSearcher = new ParallelMultiSearcher(searchables);
     Hits hits = searcher.search(query, filter);
                                                                Create array of
   //use the hits
                                                            Searchable instances
      indexSearcher1.close();
      indexSearcher2.close();
                                                         Constructor takes array of
   }
                                                              Searchable instances
```

ParallelMultiSearcher parallelizes the search and filter operations across each index by using a separate thread for each Searchable.

Next, let's look at how we can efficiently iterate through a large number of documents.

11.3.7 Using a HitCollector

So far in this chapter, we've been using Hits to iterate over the search results. Hits has been optimized for a specific use case. You should never use Hits for anything other than retrieving a page of results, or around 10–30 instances. Hits caches documents, normalizes the scores (between 0 and 1), and stores IDs associated with the document

using the Hit class. If you retrieve a Document from Hit past the first 100 results, a new search will be issued by Lucene to grab double the required Hit instances. This process is repeated every time the Hit instance goes beyond the existing cache. If you need to iterate over all the results, a HitCollector is a better choice. Note that the scores passed to the HitCollector aren't normalized.

In this section, we briefly review some of the HitCollector classes available in Lucene and shown in figure 11.9. This will be followed by writing our own HitCollector for the blog searching example we introduced in section 11.1.

Figure 11.9 HitCollector-related classes

Table 11.4 contains a brief description for the list of classes related to a HitCollector. HitCollector is an abstract base class that has one abstract method that each HitCollector object needs to implement:

```
public abstract void collect(int doc,float score)
```

In a search, this method is called once for every matching document, with the following arguments: its document number and raw score. Note that this method is called in an inner search loop. For optimal performance, a HitCollector shouldn't call Searcher.doc(int) or IndexReader.document(int) on every document number encountered. The TopDocCollector contains TopDocs, which has methods to return the total number of hits along with an array of ScoreDoc instances. Each ScoreDoc has the document number, along with the unnormalized score for the document. Top-FieldDocs extends TopDocs and contains the list of fields that were used for sorting.

Table 11.4 Description of the HitCollector-related classes

Class	Description
HitCollector	Base abstract class for all HitCollector classes. It has one primary abstract method: collect().
TopDocCollector	HitCollector implementation that collects the specified number of top documents. It has a method that returns the TopDocs.

Class	Description
TopDocs	Contains the number of results returned and an array of ScoreDoc, one for each returned document.
ScoreDoc	Bean class containing the document number and its score.
TopFieldDocCollector	HitCollector that returns the top sorted documents, returning them as TopFieldDocs.
TopFieldDocs	Extends TopDocs. Also contains the list of fields that were used for the sort.

Table 11.4 Description of the HitCollector-related classes (continued)

Next, let's look at a simple example to demonstrate how the HitCollector-related APIs can be used. This is shown in listing 11.18.

```
Listing 11.18 Example using TopDocCollector
   public void illustrateTopDocs (Directory indexDirectory, Query query,
         int maxNumHits) throws Exception {
                                                        Create instance of
      IndexSearcher indexSearcher =
                                                        TopDocCollector
         new IndexSearcher(indexDirectory);
      TopDocCollector hitCollector =
                                                              Ouery searcher
        new TopDocCollector(maxNumHits);
                                                              using HitCollector
      indexSearcher.search(guery, hitCollector);
     TopDocs topDocs = hitCollector.topDocs();
     System.out.println("Total number results=" + topDocs.totalHits);
      for (ScoreDoc scoreDoc: topDocs.scoreDocs) {
         Document document = indexSearcher.doc(scoreDoc.doc);
         System.out.println(document.get("completeText"));
      }
                                                           Retrieve document
      indexSearcher.close();
                                                              from ScoreDoc
   }
```

In this example, we first create an instance of the TopDocCollector, specifying the maximum number of documents that need to be collected. We invoke a different variant of the search method for the Searcher, which takes in a HitCollector. We then iterate over the results, retrieving the Document instance using the ScoreDoc.

Next, it's helpful to write a custom HitCollector for our example. Listing 11.19 contains the code for RetrievedBlogHitCollector, which is useful for collecting RetrievedBlogEntry instances obtained from searching.

```
Listing 11.19 Implementing a custom HitCollector

package com.alag.ci.search.lucene;

import java.io.IOException;

import java.util.*;

import org.apache.lucene.document.Document;

import org.apache.lucene.search.*;

import com.alag.ci.blog.search.RetrievedBlogEntry;

import com.alag.ci.blog.search.impl.RetrievedBlogEntryImpl;
```

```
public class RetrievedBloqHitCollector extends HitCollector{
  private List<RetrievedBlogEntry> blogs = null;
  private Searcher searcher = null;
  public RetrievedBlogHitCollector(Searcher searcher) {
     this.searcher = searcher;
     this.blogs = new ArrayList<RetrievedBlogEntry>();
                                                                  Collect method
   }
                                                                  needs to be
                                                                  implemented
  public void collect(int docNum, float score) {
     try {
        Document document = this.searcher.doc(docNum);
        RetrievedBlogEntryImpl blogEntry =
          new RetrievedBlogEntryImpl();
        blogEntry.setAuthor(document.get("author"));
        blogEntry.setTitle(document.get("title"));
        blogEntry.setUrl(document.get("url"));
        this.blogs.add(blogEntry);
      } catch (IOException e) {
        //ignored
      }
  public List<RetrievedBlogEntry> getBlogEntries() {
     return this.blogs;
   }
}
```

In our example, we create an instance of RetrievedBlogEntryImpl and populate it with the attributes that will be displayed in the UI. The list of resulting RetrievedBlog-Entry instances can be obtained by invoking the getBlogEntries() method.

Before we end this section, it's useful to look at some tips for improving search performance.

11.3.8 Optimizing search performance

In section 11.2.5, we briefly reviewed some ways to make Lucene indexing faster. In this section, we briefly review some ways to make searching using Lucene faster⁶:

- If the amount of available memory exceeds the amount of memory required to hold the Lucene index in memory, the complete index can be read into memory using the RAMDirectory. This will allow the SearchIndexer to search through an in-memory index, which is much faster than the index being stored on the disk. This may be particularly useful for creating auto-complete services—services that provide a list of options based on a few characters typed by a user.
- Use adequate RAM and avoid remote file systems.
- Share a single instance of the IndexSearcher. Avoid reopening the Index-Searcher, which can be slow for large indexes.

⁶ Refer to http://wiki.apache.org/lucene-java/ImproveSearchingSpeed.

- Optimized indexes have only one segment to search and can be much faster than a multi-segment index. If the index doesn't change much once it's created, it's worthwhile to optimize the index once it's built. However, if the index is being constantly updated, optimizing will likely be too costly, and you should decrease mergeFactor instead. Optimizing indexes is expensive.
- Don't iterate over more hits than necessary. Don't retrieve term vectors and fields for documents that won't be shown on the results page.

At this stage, you should have a good understanding of using Lucene, the process of creating an index, searching using Lucene, sorting and filtering in Lucene, and using a HitCollector. With this background, we're ready to look at some ways to make searching using Lucene intelligent. Before that, let's briefly review some tools and frameworks that may be helpful.

11.4 Useful tools and frameworks

Given the wide popularity and use of Lucene, a number of tools and frameworks have been built. In chapter 6, we used Nutch, which is an open source crawler built using Lucene. In section 6.3.4, we also discussed Apache Hadoop, a framework to run applications that need to process large datasets using commodity hardware in a distributed platform. In this section, we briefly look at Luke, a useful tool for looking at the Lucene index, and three other frameworks related to Lucene that you should be aware of: Solr, Compass, and Hibernate search. Based on your application and need, you may find it useful to use one of these frameworks.

11.4.1 Luke

Luke is an open source toolkit for browsing and modifying the Lucene index. It was created by Andrzej Bialecki and is extensible using plug-ins and scripting. Using Luke, you can get an overview of the documents in the index; you can browse through documents and see details about their fields and term vectors. There's also an interface where you can search and see the results of the search query. You can start Luke using the Java Web Start link from the Luke home page at http://www.getopt.org/luke/. Figure 11.10 shows a screenshot of Luke in the document browse mode. You can browse through the various documents and look at their fields and associated terms and term vector. If you're experimenting with different analyzers or building your own analyzer, it's helpful to look at the contents of the created index using Luke.

11.4.2 Solr

Solr is an open source enterprise search server built using Lucene that provides simple XML/HTTP and JSON APIs for access. Solr needs a Java servlet container, such as Tomcat. It provides features such as hit highlighting, caching, replication, and a web administration interface.

Solr began as an in-house project at CNET Networks and was contributed to the Apache Foundation as a subproject of Lucene in early 2006. In January 2007, Solr graduated from an incubation period to an official Apache project. Even though it's a

Z Luke - L	ucene Index To	olbo	x, v 0.7	.1 (2007	7-06-3	20)				
File Tools	<u>S</u> ettings <u>H</u> elp		_							
Ø Overview	Documents		Search	🖱 Files	SPI	ugins				
Browse by d	loc. number:		Br (Hi	owse by int: enter a	term: substri	ng and press Next to sta	art at the nea	rest term).		
D00. #. 0		9	F	irst Term	Terr	n: completeText 👻			🔿 Next Term	
Reconstruc	t & Edit 🕱 De	lete	D	oc freq of	this te	rm: 7				
Ad	d document			First Do	oc	A Next Doc	1	Document: ? of	7	
			s	how All D	ow All Docs 📴 Delete All Docs Term freq in this doc: ?					
Field <author> <completet< th=""><th>ITSVopOLBC I-SV ex ITSV</th><th>Boos 1.0 1.0</th><th>st String</th><th>킨 Tern き Ter</th><th>n Vect m vec</th><th>or tor for the field: co</th><th>mpleteTex</th><th>t</th><th></th><th>g]F</th></completet<></author>	ITSVopOLBC I-SV ex ITSV	Boos 1.0 1.0	st String	킨 Tern き Ter	n Vect m vec	or tor for the field: co	mpleteTex	t		g]F
<excerpt></excerpt>	ITSV	1.0	[IMG ex	Freq.	Terr	n				ttr
<name></name>	ITSV	1.0	Networ	2	ned	uisile estrian				
<title></title>	ITSV	1.0	Pedest	2	sen	rice				
<url></url>	I-S	1.0	http://tra	1	08					
				1	200	8				
				1	3					
				1	6				*	
Field's Terr	n Vector				(ж		Copy to Clipboar	ď	nt
Index name:	C:\ci\src\eclips	e\Cli	Action	blogSea	rchin	dex				1

Figure 11.10 Screenshot of Luke in the Documents tab

relatively new project, it's being used extensively by a number of high-traffic sites.⁷ Figure 11.11 shows a screenshot of the Solr admin page.

Solr/Lucene Statement	golr		
Start Row	0		
Maximum Rows Returned	10		
Fields to Return	*.score		
Query Type	standard		
Output Type	standard		
Debug: enable	🔲 Note: you may	need to "view source" in your browser to see explain() correctly in	dented.
Debug: explain others		Apply original query scoring to matches of this query to se	e how they compare.
Enable Highlighting			
Fields to Highlight			
	Search		

Figure 11.11 Screenshot of the Solr admin page

⁷ http://wiki.apache.org/solr/PublicServers

11.4.3 Compass

Compass is a Java search engine framework that was built on top of Lucene. It provides a high level of abstraction. It integrates with both Hibernate and Spring, and allows you to declaratively map your object domain model to the underlying search engine and synchronize changes with the data source. Compass also provides a Lucene JDBC, allowing Lucene to store the search index in the database. Compass is available using the Apache 2.0 license. Read more about Compass at http://www.opensymphony.com/compass/.

11.4.4 Hibernate search

Hibernate search solves the problem of mapping a complex object-oriented domain model to a full-text search-based index. Hibernate search aims to synchronize changes between the domain objects and the index transparently, and returns objects in response to a search query. Hibernate is an open source project distributed under the GNU Lesser General Public License. Read more about Hibernate at http://www.hibernate.org/410.html.

In this section, we've looked at tools built on top of Lucene. For most applications, using a framework such as Solr should be adequate, and should expedite adding search capabilities. Now that we have a good understanding of the basics of search, let's look at how we can make our search intelligent.

11.5 Approaches to intelligent search

One of the aims of this chapter is to make search more intelligent. In this section, we focus on techniques that leverage some of the clustering, classification, and predictive models that we developed in part 2 of the book. We also look at some of the current approaches being used by search companies. There are a lot of companies innovating within the search space.⁸ While it's impossible to cover them all, we discuss a few of the well-known ones.

In this section, we cover six main approaches to making search more intelligent:

- Augmenting the document by creating new fields using one or more of the following: clustering, classification, and regression models
- Clustering the results from a search query to determine clusters of higher-level concepts
- Using contextual and user information to boost the search results toward a particular term vector
- Creating personal search engines, which search through a subset of sites, where the list of sites is provided by a community of users; and using social networking, where users can tag sites, and the search engine blocks out irrelevant sites and selects sites selected by other users
- Linguistic-based search, where the level of words and their meanings is used
- Searching through data and looking for relevant correlations

⁸ http://www.allthingsweb2.com/mtree/SEARCH_2.0/

For most of them, we also briefly look at how you could apply the same concept in your application.

11.5.1 Augmenting search with classifiers and predictors

Consider a typical application that uses user-generated comment (UGC). The UGC could be in many forms; for example, it could be questions and answers asked by users, images, articles or videos uploaded and shared by the user, or tagged bookmarks created by the user. In most applications, content can be classified into one or more categories. For example, one possible classification for this book's content could be tagging, data collection, web crawling, machine learning, algorithms, search, and so on. Note that these classifications need not be mutually exclusive—content can belong to multiple categories. For most applications, it's either too expensive or just not possible to manually classify all the content. Most applications like to provide a "narrow by" feature to the search results. For example, you may want to provide a general search feature and then allow the user to subfilter the results based on a subset of classification topics that she's interested in.

One way to build such functionality is to build a classifier that predicts whether a given piece of content belongs to a particular category. Here is the recipe for adding this functionality:

- Create a classifier for each of the categories. Given a document, each classifier predicts whether the document belongs to that category.
- During indexing, add a field, classificationField, to the Lucene Document, which contains the list of applicable classifiers for that document.
- During search, create a Filter that narrows the search to appropriate terms in the classificationField.

Predictive models can be used in a manner similar to classifiers.

An example of using a classification model to categorize content and use it in search is Kosmix⁹: Kosmix, which aims at building a home page for every topic, uses a categorization engine that automatically categorizes web sites. Figure 11.12 shows a screenshot of the home page for *collective intelligence* generated by Kosmix.

11.5.2 Clustering search results

The typical search user rarely goes beyond the second or third page of results and prefers to rephrase the search query based on the initial results. Clustering results, so as to provide categories of concepts gathered from analyzing the search results, is an alternative approach to displaying search results. Figure 11.13 shows the results of clustering using Carrot2¹⁰ clustering for the query *collective intelligence*. You can see the higher-level concepts discovered by clustering the results. The user can then navigate

⁹ http://www.kosmix.com/.

¹⁰ http://project.carrot2.org/index.html

Figure 11.12 Screenshot of the home page for collective intelligence at Kosmix

Figure 11.13 Clustering search results using Carrot2 clustering

to dig deeper into concepts of interest. Clusty¹¹ is a well-known search engine that applies this principle. Clusty carries out a meta-search across multiple search engines and then clusters the results.

Carrot2 is an open source engine that automatically clusters search results. Integration with Lucene results is fairly straightforward.¹² Carrot2 has been successfully used in a number of commercial applications.

11.5.3 Personalizing results for the user

The main motivation behind this approach is to use any available contextual information to modify the search query to make the search more relevant. The contextual information could be in the form of a term-vector representation for the user's interests or profile. Or a click on a tag might modify the search query to add additional contextual information. An example should help you understand the concept better. Let's say that a user makes a general query *computers* on a site that sells computers. Now, if there is a profile associated with the user that has information on the kind of products that the user tends to buy or look at—perhaps whether the user enjoys expensive products or a particular brand—this additional information can be used to modify and sort the information that's retrieved.

11.5.4 Community-based search

Community-based search engines allow users to create custom search engines by specifying a set of web sites. These sites are either emphasized or are the only web sites searched. This approach is useful for creating vertically focused search engines. Google custom search (http://www.google.com/coop/), Eurekster (http:// www.eurekster.com/), and Rollyo (http://rollyo.com/) are a few of the companies that follow this approach and allow users to create custom search engines. Figure 11.14 shows a screenshot of a personalized search engine that I created on Google using the URLs that I obtained running the focused crawler we developed in chapter 6.

One way of applying this concept within your application is to allow your users to tag content within the application. In essence, each tag categorizes the content. You can allow users to create custom search engines within your application by allowing them to combine sets of tags. Hence, when a search is carried out within a custom search engine, only content that has one or more of the required tags is considered for search results.

¹¹ http://clusty.com

¹² http://carrot2.svn.sourceforge.net/viewvc/carrot2/trunk/carrot2/applications/carrot2-demo-api-example/src/org/carrot2/apiexample/LuceneExample.java?view=markup

Figure 11.14 Screenshot of a personalized search engine on collective intelligence developed using Google Custom Search

11.5.5 Linguistic-based search

Natural language-based search engines, such as Hakia (http://www.hakia.com/), Powerset (http://www.powerset.com/), and Lexee (http://www.lexxe.com/), aim to go beyond simple text matching by trying to get the content of the query. They look at the syntactic relationships and try to retrieve pages that are similar based on analyzing their content.

11.5.6 Data search

On February 29, 2008, Bloomberg.com reported that George Church, a professor of genetics at Harvard Medical School, plans to spend \$1 billion to create a database for finding new drugs by correlating each person's personal health history to DNA-related information. Church, whose research led to the first direct genomic sequencing method and also helped initiate the Human Genome Project, is backed by Google and OrbiMed Advisors, LLC. Church plans to decode the DNA of 100,000 people in the world's biggest gene sequencing project.

The entire human genome has more than 3 billion DNA base pairs. Humans have 24 unique chromosomes and an estimated 20,000–25,000 unique genes. A *gene* is a portion of the genomic sequence that encodes proteins—building blocks of cells and tissues. Variations in genes and other parts of the DNA have been linked to various types of diseases. DNA chips or microarrays enable researchers to generate large amounts of DNA-related data. *Computational biology* or *bioinformatics* is an active area of research that deals with deriving intelligence from biological data. Companies such as 23andme.com, navigenics.com, and decodeme.com provide a service by

which consumers' DNA is converted into single nucleotide polymorphisms (SNP) data, with the promise that it can be used to calculate the levels of risks associated with various diseases.

These are just some examples of the growing trends in the life sciences area. Data is being generated at a fast pace within this field. So far in this chapter, we've mainly concentrated on text-based search. However, searching through large amounts of experimental data, where you normalize the data and use actual experimental values from the data along with any meta-text or associated annotations to discover new relationships, is a form of *data-based search*. Such search engines typically also leverage an ontology and complex biological relationships to guide their searches. One such company that I'm associated with is NextBio.¹³ At NextBio, we leverage all publicly available life sciences–related data, along with user-contributed data, to provide a platform for life scientists to discover new relationships, perhaps between genes, diseases, and treatments. Going back to the original example of Church's plan to decode the DNA of 100,000 people, I hope that all that data will be publicly available in the future for search engines to use and help discover new drugs for diseases.

Figure 11.15 shows a screenshot from NextBio for the gene TP53. Note that the search engine has returned lists of diseases, tissues, and treatments that may be related to this gene.

¹³ www.nextbio.com. Disclaimer: I'm currently the VP of engineering at NextBio.

Resources

In this section, we've looked at six current trends in the area of making search more intelligent. It is impossible to discuss all the innovation happening in the large number of new search engines being built. You may want to look at a couple of additional upcoming search engines: Cuil,¹⁴ which claims to have a larger index than Google, and Searchme,¹⁵ which has an innovative way of displaying search results. Search is a multibillion-dollar business, so expect more innovation in this area in the years to come.

11.6 Summary

Search is the process of retrieving relevant results in response to a query. The process of searching consists of first creating an inverted index of terms and then searching through the inverted index. The vector-space model and the term-vector representation of content are the basis for retrieving relevant documents in response to a search query.

Lucene provides two main classes, FSDirectory and RAMDirectory, for creating an index. Content is added to the index using a Document instance. Each Document instance consists of Field instances, each of which has a name and a String value. Field objects can be stored in the index for future retrieval, tokenized for search, or untokenized for sorting, and can have an associated term vector stored with them. The same analyzer needs to be used for both indexing and searching.

Searches within Lucene are carried out using an instance of a Searcher and a Query object. Query instances are created using either a QueryParser or by instantiating appropriate Query instances. Hits, which is a container for results from a query, contains access to the resulting documents. It's more appropriate to use a HitCollector when you need to traverse through a large number of result documents. Lucene provides extensive support for sorting and filtering the results.

Approaches to make search more intelligent include using classification and prediction algorithms to classify content, clustering results to present concepts, creating personal search engines, leveraging user tagging information to filter results, and using natural language processing to determine concepts to aid search.

Now that we have a good understanding of search, in the next chapter, we look at how we can build a recommendation engine using both collaborative and contentbased analysis.

11.7 Resources

Apache Lucene Index File Format. http://lucene.apache.org/java/docs/fileformats.html Apache Lucene Scoring. http://lucene.apache.org/java/docs/scoring.html

"The Best of Web 2.0 Searching and Search Engine." http://www.allthingsweb2.com/mtree/ SEARCH_2.0/

Carrot and Lucene. http://project.carrot2.org/faq.html#lucene-integration

Carrot Clustering. http://project.carrot2.org/

Compass. http://www.opensymphony.com/compass/content/about.html

Delecretaz, Bertrand. "Solr: Indexing XML with Lucene and REST." xml.com, August 2006. http://www.xml.com/pub/a/2006/08/09/solr-indexing-xml-with-lucene-andrest.html

¹⁴ http://www.cuil.com/

¹⁵ http://www.searchme.com/

- Ezzy, Ebharim. Search 2.0 Vs Traditional Search. 2006. http://www.readwriteweb.com/ archives/search_20_vs_tr.php
- Fleisher, Peter. "Google's search policy puts the user in charge." *Financial Times*, May 2007. http://www.ft.com/cms/s/2/560c6a06-0a63-11dc-93ae-000b5df10621.html
- Google Custom Search. http://www.google.com/coop/
- Hatcher, Otis Gospodnetic and Erik. Lucene in Action. 2004. Manning Publications.
- Hibernate Search Apache Lucene Integration. http://www.hibernate.org/hib_docs/search/ reference/en/html/index.html
- Hibernate Search. http://www.hibernate.org/410.html
- Hotchkiss, Gord. "The Pros & Cons Of Personalized Search." Search Engine Land, March 2007. http://searchengineland.com/070309-081324.php
- Hunter, David J., Muin J. Khoury, and Jeffrey M. Drazen. "Letting the genome out of the bottle—will we get our wish?" *New England Journal of Medicine*. 2008 Jan 10;358(2):105-7 http://content.nejm.org/cgi/content/full/358/2/105
- Improve Indexing Speed. Lucene Wiki. http://wiki.apache.org/lucene-java/ ImproveIndexingSpeed
- Lauerman, John. "Google Backs Harvard Scientist's 100,000-Genome Quest." February 29, 2008. http://www.bloomberg.com/apps/news?pid=newsarchive&sid=abC4lpqJ0TZs
- Lucene FAQ. http://wiki.apache.org/lucene-java/LuceneFAQ
- Lucene Resources. http://wiki.apache.org/lucene-java/Resources
- Luke. http://www.getopt.org/luke/
- Newcomb, Kevin. "A Look at the Next Generation of Search?" February, 2007. http:// searchenginewatch.com/showPage.html?page=3624837
- Nielsen online. "Nielsen Announces February US Search Share Rankings." March 2–8. http://www.nielsen-netratings.com/pr/pr_080326.pdf
- Owens, Steven J. Lucene Tutorial. http://www.darksleep.com/lucene/
- Rich II's Conference Trip. http://ils501.blogspot.com/
- Smart, John Ferguson. Integrate advanced search functionalities into your apps. Java-World.com. 2006. http://www.javaworld.com/javaworld/jw-09-2006/jw-0925-lucene.html

Solr. http://lucene.apache.org/solr/

"Updating an index." http://wiki.apache.org/lucene-java/UpdatingAnIndex

Building a recommendation engine

This chapter covers

- Fundamentals for building a recommendation engine
- A content-based approach for building a recommendation engine
- A collaborative-based approach for building a recommendation engine
- Real-world case studies of Amazon, Google News, and Netflix

In recent years, increasing amount of user interaction has provided applications with a large amount of information that can be converted into intelligence. This interaction may be in the form of rating an item, writing a blog entry, tagging an item, connecting with other users, or sharing items of interest with others. This increased interaction has led to the problem of information overload. What we need is a system that can recommend or present items to the user based on the user's interests and interactions. This is where personalization and recommendation engines come in.

Recommendation engines aim to show items of interest to a user. Recommendation engines in essence are matching engines that take into account the context of where the items are being shown and to whom they're being shown. Recommendation engines are one of the best ways of utilizing collective intelligence in your application.

Netflix, the world's largest online movie rental service, provides a good proofpoint of how important recommendation engines are to commerce. Netflix offers personalized recommendations to over 8.4 million subscribers with a catalog of more than 100,000 movie titles.¹ Netflix's recommendation engine is very effective, with about 60 percent of Netflix members selecting their movies based on movie recommendations that have been tailored to their individual tastes. Later in this chapter (see section 12.4.3), we briefly review the approach Netflix took to build their recommendation system.

In this chapter, we look at how to develop a recommendation engine. To do this, we use most of the concepts that we've developed in previous chapters. We begin with a brief introduction to various concepts related to building a recommendation engine. Next, continuing with our running example of using blog entries from Technorati, we build a recommendation engine using a content-analysis approach. For this, we first leverage Lucene and then use the text analytics framework developed in chapter 8. Next, we look at the various collaborative approaches to building recommendation engines. This will be followed by reviewing a few approaches—Amazon, Google News, and Netflix—to building recommendation engines in the industry. At the end of this chapter, you should be comfortable building a recommendation engine using both content-based and collaborative approaches.

12.1 Recommendation engine fundamentals

One of the best-known examples of a recommendation engine is Amazon.com. Amazon provides personalized recommendations in a number of ways, one of which is shown in figure 12.1. Figure 12.1 shows the recommendations provided by Amazon when you look at the book *Lucene in Action* by Gospodnetic and Hatcher. Note that they recommend a number of books under the heading "Customers Who Bought

Figure 12.1 An example of the output of a recommendation engine at Amazon.com

¹ As of September 2008; see http://www.netflix.com/MediaCenter?id=5379#about

This Item Also Bought." This is an example of an *item-based* recommendation, where items related to a particular item are being recommended.

In this section, we introduce basic concepts related to building a recommendation engine. Let's begin by taking a deeper look at the many forms of recommendation engines.

12.1.1 Introducing the recommendation engine

As shown in figure 12.2, a recommendation engine takes the following four inputs to make a recommendation to a user:

- The user's profile—age, gender, geographical location, net worth, and so on
- Information about the various items available—content associated with the item
- *The interactions of the users*—ratings, tagging, bookmarking, saving, emailing, browsing content
- *The context of where the items will be shown*—the subcategory of items that are to be considered

As we mentioned in section 2.2.1, a user is also an item. In social networking, other users are recommended based on the context of the application.

One of the easiest forms of a recommendation list is the "Top Item List," where items that have been viewed, tagged, bought, or saved the most in a period of time are presented to the user. While promoting top products is useful,

Figure 12.2 The inputs and outputs of a recommendation engine

what we really want is to create a personalized list of recommendations for users.

Recommendation engines can help build the following types of features in your application:

- Users who *acted on* this item also took *action on* these other items, where the *acted on* could be watched, purchased, viewed, saved, emailed, bookmarked, added to favorites, shared, created, and so on
- Other users you may be interested in
- Items related to this item
- Recommended items

Here are some concrete examples of these use cases:

- Users who watched this video and also watched these other videos
- New items related to this particular article
- Users who are similar to you
- Products that you may be interested in

In recommendation systems, there's always a conflict between *exploitation* and *exploration*. Exploitation is the process of recommending items that fall into the user's sweet spot, based on things you already know about the user. Exploration is being presented with items that don't fall into the user's sweet spot, with the aim that you may find a new sweet spot that can be exploited later. Greedy recommenders, with little exploration, will recommend items that are similar to the ones that the user has rated in the past. In essence, the user will never be presented with items that are outside their current spot. A common approach to facilitating exploration is to not necessarily recommend just the top n items, but to add a few items selected at random from candidate items. It's desirable to build in some diversity in the recommendation set provided to the user.

Next, let's look at the two basic approaches to building recommendation engines.

12.1.2 Item-based and user-based analysis

There are two main approaches to building recommendation systems, based on whether the system searches for related items or related users.

In item-based analysis, items related to a particular item are determined. When a user likes a particular item, items related to that item are recommended. As shown in figure 12.3, if items A and C are highly similar and a user likes item A, then item C is

Figure 12.3 Item-based analysis: similar items are recommended

recommended to the user. You may recall our discussion in section 2.2.3, where we looked at two approaches to finding similar items. First was content-based analysis, where the term vector associated with the content was used. The second was collaborative filtering, where user actions such as rating, bookmarking, and so forth are used to find similar items.

In user-based analysis, users similar to the user are first determined. As shown in figure 12.4, if a user likes item A, then the same item can be recommended to other

users who are similar to user A. Similar users can be obtained by using profile-based information about the user—for example cluster the users based on their attributes, such as age, gender, geographic location, net worth, and so on. Alternatively, you can find similar users using a collaborative-based approach by analyzing the users' actions.

Later on in section 12.4, we look at examples of both: item-based analysis as used in Amazon and user-based analysis as used by Google News. Here are some tips that may help you decide which approach is most suitable for your application:

Figure 12.4 User-based analysis: items liked by similar users are recommended

- If your item list doesn't change much, it's useful to create an item-to-item correlation table using item-based analysis. This table can then be used in the recommendation engine.
- If your item list changes frequently, for example for news-related items, it may be useful to find related users for recommendations.
- If the recommended item is a user, there's no option but to find related users.
- The dimensionality of the item and user space can be helpful in deciding which approach may be easier to implement. For example, if you have millions of users and an order of magnitude fewer items, it may be easier to do item-based analysis. Whenever users are considered, you'll deal with sparse matrices. For example, a typical user may have bought only a handful of items from the thousands or millions of items that are available in an application.
- If there are only a small number of users, it may be worthwhile to bootstrap your application using item-based analysis. Furthermore, there's no reason (other than perhaps time to implement and performance) why these two approaches can't be combined.
- It's been shown empirically that item-based algorithms are computationally faster to implement than user-based algorithms and provide comparable or better results.

Both user- and item-based analysis require the computation of a *similarity* metric. Next, let's look at how this is done.

12.1.3 Computing similarity using content-based and collaborative techniques

Regardless of whether you use item-based or user-based analysis, there are two main approaches for computing similarity, depending on whether you're analyzing text or user actions. If you can represent the content associated with an item or a user in terms of a term vector, then taking the dot product of two normalized vectors provides a measure of how close two term vectors are. This corresponds to invoking the method for the TagMagnitudeVector class we introduced in section 8.2.2.

public double dotProduct(TagMagnitudeVector o)

In content-based analysis, recommending items simply amounts to finding items that have similar term vectors.

As described in section 2.4 and illustrated in table 12.1, a typical collaborative filtering algorithm represents each customer as an N-dimensional vector of items, where N is the number of distinct items in the system. Each cell value in the vector corresponds to either a positive number quantifying how well the user liked the item or a negative number if the user disliked the item. Similar to the inverse-document frequency, where commonly used words have less weight, a factor may be used to compensate for best-selling or highly rated items—the weight for this factor is inversely proportional to the number of entries that this item has in its column.

	ltem 1	Item 2	 	Item N	
User 1	2				
User 2	5	1			
				1	
User m			2		Table 12.1 Representing the user as an N-dimensional vector

Note that this vector will be sparse for almost all users—a typical user would have acted on only a handful of the N items. In section 12.3.3, we look at one of the ways to deal with sparse matrices: reducing dimensionality using singular value decomposition (SVD).

We look at collaborative filtering algorithms in more detail in section 12.3. For now, you may recall from section 2.4 that there are three main approaches to computing the similarities while using collaborative filtering:

- 1 Cosine-based similarity computation
- 2 Correlation-based similarity computation (Pearson-r correlation)
- 3 Adjusted cosine-based similarity computation

In section 12.3, we develop the infrastructure to compute these similarities. Next, let's look at the advantages and disadvantages of content-based and collaborative techniques.

12.1.4 Comparison of content-based and collaborative techniques

The following are some advantages and disadvantages of collaborative and contentbased techniques.

- Collaborative-based techniques have the advantage that they treat an item as a black-box—they don't use any information about the content itself. Unlike content-based techniques, the same infrastructure is applicable across domains and languages. So if you build a recommendation engine that works well in the English language, you can use the same infrastructure for your site in Chinese. For content such as images, music, and videos that might not have text associated with them, content-based analysis may not be an option, unless of course you allow users to tag the items (see chapter 3 for more on tagging).
- In content-based analysis, the algorithm has no notion of the item's quality—it's all based on the term vector. There's no notion of how good or bad a particular item is—the algorithm doesn't know whether an article is well-written or poorly written. On the other hand, in collaborative-based approaches, you have usable quantitative information about the quality of the item. Web search engines provide a good analogy to this. Prior to Google, most search engines used content-based approaches for showing search results. Google, with its page rank, uses a collaborative approach—it uses how various sites have been linked together to compute a rank for each site.

- Over a period of time, the results from content-based analysis don't change much; text associated with the item may not change much. As time progresses, there may be some changes in the term vector due to changes in the inverse document frequency for the terms in the document, but on the whole things don't change much for an item. Collaborative-based approaches rely on user interaction, and over a period of time user interaction on the item may change. For example, a video on a current topic may be rated highly. Over a period of time, as new content comes in and the video is no longer relevant to current issues, it may get lower ratings.
- Collaborative-based systems rely on using the information provided by a user to find other related users and recommend items based on the ratings from similar users. In the absence of an adequate amount of data, these systems can perform poorly in their prediction capabilities. For a new user with little interaction history, there may not be enough information to find similar users using the user's interaction history for a collaborative approach. Typically, to overcome this, user-profile information—age, gender, demographics, and so forth—is also used to find similar users.
- Collaborative-based systems won't recommend new items added to the system unless they've been rated by a substantial number of users.

Some recommendation systems use a hybrid approach, combining content-based and collaborative analysis. The combination could be in the form of implementing the two methods separately and then combining the results. Another way is to use the user's profile to find similar users when a user hasn't rated enough items. Recommendation systems may also leverage additional information that may affect the prediction, for example, the time of the year, or month, or week.

Now that we have a basic understanding of content-based and collaborative-based approaches, we take a more detailed look at how to implement these two approaches. In the next two sections, we first cover content-based analysis, followed by collaborative-based analysis.

12.2 Content-based analysis

Fortunately, most of the work that needs to be done to build a recommendation engine based on content analysis has already been done in prior chapters, more specifically in chapters 8, 9, and 11. In this section, we demonstrate finding related items using Lucene; using the text analytics framework developed in chapter 8; finding related items for a set of documents; and lastly how content-based results can be further personalized for a user.

12.2.1 Finding similar items using a search engine (Lucene)

In this section, we demonstrate how you can find similar items using a search engine such as Lucene. The basic approach is to compose a query, based on the content of the document you want to find related items for, and query the index for items that best match this query. At this stage, it's helpful to look at the output from some of the code that we write in this section. Listing 12.1 shows the output from one of the runs from the sample code we implement next (listing 12.2). In this example, 10 blog entries for the tag *collective intelligence* were retrieved from Technorati and indexed using Lucene. Then related blog entries for each blog entry were computed—these are shown as tabbed entries below the blog entry.

Listing 12.1 Sample output from related blogs

```
Social Media is Just the Next Logical Step in Technology
http://mindblogging.typepad.com/whataconcept
  our learning wiki http://www.estuyajuan.com/blog
  The Dilemma of Personalized Library Services
http://sowebup.wordpress.com
Companies using the Power of WE - The Consumers! http://www.we-magazine.net
  our learning wiki http://www.estuyajuan.com/blog
  The Dilemma of Personalized Library Services
http://sowebup.wordpress.com
Pagerank isn' for humans http://fmeyer.org
  our learning wiki http://www.estuyajuan.com/blog
  A Tool to Attract More People to Your Cause
http://www.movingfrommetowe.com
  Le web 2.0 affiche ses vraies valeurs : financières, s'ntend. A
l'xemple de Google et son
  The Dilemma of Personalized Library Services
http://sowebup.wordpress.com
  Programming Collective Intelligence: Building Smart Web 2.0
Applications http://2.smilesquare.com
   Supporting occupation - Gordon Brown in Israel
http://heathlander.wordpress.com
Programming Collective Intelligence: Building Smart Web 2.0 Applications
http://2.smilesquare.com
  our learning wiki http://www.estuyajuan.com/blog
  Le web 2.0 affiche ses vraies valeurs : financières, s'ntend. A
l'xemple de Google et son
   Pagerank isn' for humans http://fmeyer.org
  The Dilemma of Personalized Library Services
http://sowebup.wordpress.com
```

First, let's take a simple approach of hand-crafting this query. Listing 12.2 shows a simple method that uses the TermFreqVector associated with a document field to create a BooleanQuery.

```
Listing 12.2 Creating a BooleanQuery using the term vector in Lucene
private Query composeTermVectorBooleanQuery(IndexReader indexReader,
    int docNum, String fieldName, float boost ) throws Exception {
    TermFreqVector termFreqVector =
        indexReader.getTermFreqVector(docNum, fieldName);
    BooleanQuery booleanQuery = new BooleanQuery();
    String [] terms = termFreqVector.getTerms();
    for (String term: terms) {
```

```
Query termQuery = new TermQuery(new Term(fieldName,term));
booleanQuery.add(termQuery, BooleanClause.Occur.SHOULD);
}
Creates
booleanQuery.setBoost(boost);
return booleanQuery;
}
Applies
BooleanQuery,
boostfactor
for query
```

We first obtain the TermFreqVector associated with the specified document and the field. Next, we create an instance of BooleanQuery, to which we add all the terms (or a subset of terms) from the term vector. Note that we specify the condition Boolean-Clause.Occur.SHOULD, which means that not all the terms are required. Lastly, since we combine the query with other Boolean queries, we set a boost factor for this query.

Let's apply this approach to our running example of blog entries. We build on our example from chapter 11, where we indexed blog entries. Let's find related blog entries for each blog entry in our Lucene index. Listing 12.3 shows the code for obtaining related blog entries for a given blog in our index.

```
Listing 12.3 Creating a composite BooleanQuery and retrieving blog entries
                                                                       Creates
private List<RetrievedBlogEntry> getRelatedBlogEntries(
                                                               BooleanQuery for
       IndexSearcher indexSearcher, int docNum)
                                                               title and boosts it
       throws Exception {
      IndexReader indexReader = indexSearcher.getIndexReader();
     Query booleanTitleQuery = composeTermVectorBooleanQuery(
        indexReader,
                            docNum,"title", 3.0f);
     Query booleanCompleteTextQuery =composeTermVectorBooleanQuery(
         indexReader, docNum,
         "completeText", 1.0f);
                                                   < \vdash
                                                              Creates BooleanQuery
                                                              for complete text
     BooleanQuery likeThisQuery = new BooleanQuery();
     likeThisQuery.add(booleanTitleQuery, BooleanClause.Occur.SHOULD);
      likeThisQuery.add(booleanCompleteTextQuery,
      BooleanClause.Occur.SHOULD);

    Combines two queries

                                                  <1-
      return getRelatedBlogEntries (indexSearcher, likeThisQuery);
   }
   private List<RetrievedBlogEntry> getRelatedBlogEntries (
    IndexSearcher indexSearcher,
                                                                    Retrieves
         Query query) throws Exception {
                                                                    related entries
     RetrievedBlogHitCollector blogHitCollector =
                                                                    using query
        new RetrievedBlogHitCollector(indexSearcher);
      indexSearcher.search(query, blogHitCollector);
      return blogHitCollector.getBlogEntries();
   ļ
```

Since we want to weigh the title more than other text, we first create an instance of BooleanQuery using the title and apply a boost factor of 3. This is combined with a BooleanQuery representation for the complete text. Lastly, related blog entries are obtained from the index using the RetrievedBlogHitCollector class we implemented in section 11.3.7.

Finally, listing 12.4 shows the code for retrieving all the blog instances from the index and getting the related items for each blog entry.

```
Listing 12.4 Iterating over all documents in the index
public void illustrateMoreLikeThisByQuery(Directory indexDirectory)
     throws Exception {
      IndexSearcher indexSearcher = new IndexSearcher(indexDirectory);
      for (int i = 0; i < indexSearcher.maxDoc(); i ++) {</pre>
         Document document = indexSearcher.doc(i);
         System.out.println(document.get("title") + " " +
         document.get("url"));
         if (document != null) {
           List<RetrievedBlogEntry> relatedBlogs =
            getRelatedBlogEntries( indexSearcher, i) ;
            for (RetrievedBlogEntry relatedBlog : relatedBlogs ) {
               System.out.println("\t" + relatedBlog.getTitle() + +
               " " + relatedBlog.getUrl());
            }
         }
      }
   }
```

Our rather simplistic approach doesn't take into account the term frequency and inverse document frequencies associated with each term in the query. Fortunately, Lucene's contrib/query package provides a fairly good version of this functionality. Download and compile the following Lucene similarity package:

http://svn.apache.org/repos/asf/lucene/java/trunk/contrib/queries/src/java/ org/apache/lucene/search/similar/MoreLikeThis.java

Listing 12.5 shows the same functionality developed using the MoreLikeThis class.

MoreLikeThis is a fairly sophisticated class that creates a query to find items similar to a particular document. It has a number of settings, such as the minimum number of documents in which a term should appear, the minimum term frequency, the minimum and maximum length of words, stop words, and the maximum number of query terms. Using this class is fairly straightforward. We create an instance of More-LikeThis, set the analyzer, specify the fields to be used, and set the minimum document frequency to be 0, because we have few blog entries in our Lucene index.

Next, let's look at building a content-based recommendation engine using the text analytics infrastructure we developed in chapter 8.

12.2.2 Building a content-based recommendation engine

You may recall the TagMagnitudeVector class from section 8.2.2 and listing 8.18. The TagMagnitudeVector class contains a list of tags with magnitudes, where the magnitude terms are normalized such that the sum of the squares of the magnitudes for all the terms is 1. Each term magnitude is obtained by computing the term frequency and the inverse document frequency for the terms. The similarity between two documents can be computed by taking their dot products. For example, for a Tag-MagnitudeVector, use the following method:

```
public double dotProduct(TagMagnitudeVector o) ;
```

Finding similar items for an item amounts to finding items that have the highest dot products with the given item's term vector. Let's illustrate how to build such a recommendation engine. First, we need to define a simple Java bean class RelevanceText-DataItem, which is a container for a TextDataItem along with a double relevance value. Listing 12.6 contains the implementation for RelevanceTextDataItem.

```
Listing 12.6 Implementation for RelevanceTextDataItem
package com.alag.ci.recoengine;
import com.alag.ci.cluster.TextDataItem;
public class RelevanceTextDataItem implements
   Comparable<RelevanceTextDataItem>{
  private double relevance = 0;
  private TextDataItem dataItem = null;
  public RelevanceTextDataItem(TextDataItem dataItem, double relevance) {
     this.relevance = relevance;
     this.dataItem = dataItem;
   }
  public int compareTo(RelevanceTextDataItem other) {
                                                                Implementation
     if(this.relevance > other.getRelevance()) {
                                                                for interface
        return -1;
     if(this.relevance < other.getRelevance()) {</pre>
        return 1;
      }
     return 0;
   }
  public TextDataItem getDataItem() {
     return dataItem;
   }
```

```
public double getRelevance() {
    return relevance;
  }
}
```

Next, let's define a class, ContentBasedBlogRecoEngine, which will retrieve blog entries from Technorati and then find relevant blog entries for each blog entry. Listing 12.7 shows the first part of the code for ContentBasedBlogRecoEngine. This listing shows the main steps in building a content-based recommendation engine—creating the dataset, finding relevant items, and printing it out.

```
Listing 12.7 The main steps for building a content-based recommendation engine
package com.alaq.ci.recoengine;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import com.alag.ci.blog.dataset.impl.BlogDataSetCreatorImpl;
import com.alag.ci.blog.search.RetrievedBlogEntry;
import com.alaq.ci.cluster.DataSetCreator;
import com.alag.ci.cluster.TextDataItem;
import com.alag.ci.textanalysis.TagMagnitudeVector;
public class ContentBasedBlogRecoEngine {
  public static void main(String [] args) throws Exception{
     ContentBasedBlogRecoEngine recoEngine =
        new ContentBasedBlogRecoEngine();
     List<TextDataItem> dataItems = recoEngine.createLearningData();
     recoEngine.illustrateContentRecoEngine(dataItems);
   }
  public List<TextDataItem> createLearningData() throws Exception {
     DataSetCreator creator = new BlogDataSetCreatorImpl();
     return creator.createLearningData();
  public void illustrateContentRecoEngine(List<TextDataItem> dataItems) {
     for (TextDataItem dataItem: dataItems) {
        RetrievedBlogEntry blogEntry =
                                                           Retrieves blog entries
           (RetrievedBlogEntry)dataItem.getData();
                                                           from Technorati
        System.out.println(blogEntry.getTitle());
        List<RelevanceTextDataItem> relevantItems =
              getRelevantDataItems(
              dataItem, dataItems ) ;
        for (RelevanceTextDataItem relevantItem: relevantItems) {
           blogEntry =
            (RetrievedBlogEntry) (
             relevantItem.getDataItem().getData());
           System.out.println("\t" + blogEntry.getTitle() +
             " " + relevantItem.getRelevance());
        }
      }
   }
```

The method createLearningData() uses an instance of BlogDataSetCreatorImpl (see chapter 8) to create a List of TextDataItems. illustrateContentRecoEngine simply iterates over all blog entry instances to print out related items for each entry. Listing 12.8 shows the implementation for the method to find the related items for the blogs.

Listing 12.8 Getting relevant items in ContentBasedBlogRecoEngine

```
private List<RelevanceTextDataItem> getRelevantDataItems (
        TextDataItem parentDataItem,
        List<TextDataItem> candidateDataItems ) {
     TaqMagnitudeVector tmv = parentDataItem.getTagMagnitudeVector();
     List<RelevanceTextDataItem> relevantItems = new
  ArrayList<RelevanceTextDataItem>();
     for (TextDataItem candidateDataItem: candidateDataItems) {
        if (!parentDataItem.equals(candidateDataItem)) {
           double relevance =
  tmv.dotProduct(candidateDataItem.getTagMagnitudeVector());
                                                                      Dot
           if (relevance > 0.) {
                                                                      product
              relevantItems.add(new RelevanceTextDataItem(
                                                                      of term
              candidateDataItem, relevance));
                                                                      vectors
        }
                                                Sort results based
     }
                                               on relevance
     Collections.sort(relevantItems);
     return relevantItems;
  }
}
```

To find related blogs, we simply iterate over all blog instances, compute the similarity with the blog of interest, and then sort all relevant blog items based on the similarity. Listing 12.9 shows sample output from the code developed in this section. Here, you can see the related blog entries for a blog along with the level of relevance between the parent and the children blogs.

Listing 12.9 Related entries for a blog

```
Social Media is Just the Next Logical Step in Technology http://
  mindblogging.typepad.com/whataconcept
  our learning wiki http://www.estuyajuan.com/blog 0.01720982414882634
  The Dilemma of Personalized Library Services
http://sowebup.wordpress.com 0.01403890610073534
Companies using the Power of WE - The Consumers! http://www.we-magazine.net
  our learning wiki http://www.estuyajuan.com/blog 0.0396024241655864
   The Dilemma of Personalized Library Services
http://sowebup.wordpress.com 0.016152829610989242
Pagerank isn' for humans http://fmeyer.org
  our learning wiki http://www.estuyajuan.com/blog 0.04675732078317664
  A Tool to Attract More People to Your Cause
...http://www.movingfrommetowe.com 0.038080852316322855
  Le web 2.0 affiche ses vraies valeurs : financières, s'ntend. A
l'xemple de Google et son 0.029162920196574908
   The Dilemma of Personalized Library Services
http://sowebup.wordpress.com 0.0153460076524816
```

```
Programming Collective Intelligence: Building Smart Web 2.0
Applications http://2.smilesquare.com 0.01044583466318214
Supporting occupation - Gordon Brown in Israel
http://heathlander.wordpress.com 0.006828125603489045
Programming Collective Intelligence: Building Smart Web 2.0
Applications http://2.smilesquare.com
our learning wiki http://www.estuyajuan.com/blog 0.031064220852246284
Le web 2.0 affiche ses vraies valeurs : financières, s'ntend. A
l'xemple de Google et son 0.027501197695123845
Pagerank isn' for humans http://fmeyer.org 0.01044583466318214
The Dilemma of Personalized Library Services
http://sowebup.wordpress.com 0.0036025401391830475
```

So far we've looked at how to build a content-based recommendation engine using a search engine and using the text processing toolkit we built in chapter 8. A common use case is when we have a collection of items, such as a topic or subtopic, and we want to find items that are similar to this collection. We look at this next.

12.2.3 Related items for document clusters

In an application, it's common to define topics or subtopics that have underlying documents associated with them. For example, if you're building a site about data mining, you may have five subtopics: association rules, attribute importance, clustering, classification, and regression. For each of these subtopics, you may have filed a number of documents. You want to build a representation for each of these subtopics by using the content that's been associated with each subtopic.

Fortunately, each document has an associated normalized term vector, and finding a composite representation from the document set simply amounts to adding all the term vectors for the documents. Listing 12.10 illustrates the code for combining the different term vectors.

```
Listing 12.10 Code to illustrate merging of documents
public void illustrateMergingOfDocuments(
   List<TagMagnitudeVector> tagMagnitudeVectors) {
   List<TagMagnitude> tagMagnitudes = Collections.emptyList();
   TagMagnitudeVector emptyTMV =
        new TagMagnitudeVectorImpl(tagMagnitudes);
   TagMagnitudeVector mergedTMV = emptyTMV.add(tagMagnitudeVectors);
   System.out.println(mergedTMV);
}
```

Once we have a combined term vector representation for the subtopic, finding similar items is the same as in section 12.2.2. In section 11.6.3, we looked at trends in intelligent search where you can further personalize search results using metadata associated with the user. We briefly look at this next.

12.2.4 Personalizing content for a user

When there's a tag vector representation for the user, it's also possible to sort the candidate list of items using the term vector representation for the user. Typically, a

candidate list of items is stored for each item of interest (around 20–30 items). Then, based on which user is visiting the content, the user's term vector is used to bubble up the content that may be of most interest to the user. Make sure that the recommendation list isn't completely homogenous and there's enough diversity in the recommendation list to allow the user to explore new areas of interest.

With this overview of content-based recommendation systems, we're now ready to take a more detailed look at collaborative filtering.

12.3 Collaborative filtering

In collaborative filtering, an item is considered as a black box—we don't look at its content—and user interactions (such as rating, saving, purchasing) with the item are used to recommend an item of interest to the user. More formally, given a dataset of user actions (also called the *user-item dataset*), we want to recommend items to a user. As discussed in section 12.1.2, we either find similar users and recommend items liked by these users, or we find items similar to an item of interest. There are two main classes of collaborative filtering algorithms—*memory*-based and *model*-based.

In memory-based algorithms, the entire user-item database is used. The algorithm first finds a set of similar users and then makes a recommendation or set of recommendations (top *n* recommendations) by combining the preferences of the similar users. This approach is also known as *nearest neighbor*. Typically, the expected rating for an item is estimated by combining the ratings of similar users, using the degree of similarity as a measure to combine the ratings. One problem with using the weighted sum to predict the rating is the bias that different users may have in rating items. For example, one user may provide ratings that average 3 while another may provide ratings for a user using the weighted sum of the deviations in ratings of similar users. In section 12.1.3, we looked at the three approaches to computing the similarities between users: cosine-based similarity computation. In an application with a large number of users, it isn't practical to compute similar users for a user in real-time. Therefore, it's common to pre-compute this association either in a lookup table or by creating user clusters.

Model-based collaborative filtering algorithms create a model (see chapters 9 and 10) using the user-item data to predict ratings that a user is likely to give. Model-based algorithms try to model the user based on past ratings and then use the models to predict the ratings on items the user hasn't visited or rated. Commonly used model-based approaches include latent semantic indexing (LSI), Bayesian clustering, probabilistic latent semantic indexing (PLSI), multiple multiplication factor model, Markov Decision process, and latent Dirichlet allocation.

12.3.1 k-nearest neighbor

In section 2.4, we worked through the process of collaborative filtering for generating both an item-to-item correlation matrix and a user-to-user similarity matrix. Collaborative filtering algorithms use the user-item matrix shown in table 12.1 as input. The matrix is transposed—each item becomes a row and users become columns-when related items are to be found.

There are really two steps in applying collaborative filtering. First, we need to determine similar items or users, and then make a prediction using the similar items. This approach is also commonly known as *k*-nearest neighbor (k-NN). The predicted value is typically a weighted sum of the ratings for the k neighboring items. To take care of different biases in ratings among the k neighbors, the weighted sum of the deviations in ratings from the user's average rating value is also used. Let's look at this computation via an example.

We illustrate the process of predicting ratings using the ratings of similar users by working through the example we introduced in section 2.4.1. Table 12.2 shows the user-item matrix associated with this example.

	Photo1	Photo2	Photo3	Average	
John	3	4	2	3	
Jane	2	2	4	8/3	
Doe	1	3	5	3	
Average	2	3	11/3	26/3	Table 12.2 Ratin data used in the e

In section 2.4.1, we worked through three methods for computing the similarities. Using the Pearson-r correlation computation, we arrived at the user-to-user similarity matrix shown in table 12.3.

	John	Jane	Doe	
John	1	-0.866	-0.5	
Jane	-0.866	1	0.87	
Doe	-0.5	0.87	1	Table 12.3 Correla matrix for the users

John is correlated with Jane by -0.866, while he's correlated to Doe by -0.5. Next, let's look at how we can predict John's expected rating for Photo1 using the ratings of similar users Jane and Doe.

Correlation

[ohn's expected rating for Photo1 = [ohn's average rating + w1 * (]ane's rating -]ane'saverage rating) + w2 * (Doe's rating –Doe's average rating)

= 3 + (-0.866/1.366) * (2 - 8/3) + (-0.5/1.366) * (1 - 3)= 4.2

Similarly, the predicted rating for Photo2 from John is

= 3 + (-0.866/1.366) * (2 - 8/3) + (-0.5/1.366) * (3 - 3)= 3.4

If you remember from our discussions in earlier chapters, the inverse document frequency (idf) is used in the term vector to emphasize terms that aren't common across documents. A similar concept, *inverse user frequency*, is used to pre-process the useritem data. Items that are popular aren't very good at capturing similarities between users and items. Therefore, if n is the total number of users and ni of them have rated a particular item, then the inverse user frequency is defined as log (n/ni). Entries in the user-item table are multiplied by their inverse user frequencies before the computation of the similarities.

For large-scale systems, it can be expensive to find k neighbors in real-time. Users are typically clustered offline so as to retrieve the k nearest neighbors in real time. K-NN algorithms need to deal with sparse data, which can affect the quality of the solution. Furthermore, these algorithms can run into scalability issues, as their computation grows with both the number of users and the number of items being processed.

For this reason, large sites, such as Amazon, use item-based collaborative filtering. The example in section 2.4 illustrated the process of item-to-item collaborative filtering. In this process, the user-item table (table 12.1) is transposed to have items as rows and users as columns. In essence, every item has a vector associated with it, each user being a dimension. For every item, the k (a number typically between 10 and 30) closest items are obtained using a similarity function (vector dot product or correlation computation). Related items for an item are stored in the database. Once the related item table has been computed for each item, displaying related items to a user is a simple lookup. This approach scales independently of the number of users on the system.

Next, let's look at how we can implement these algorithms.

12.3.2 Packages for implementing collaborative filtering

There are a number of different options in implementing k-nearest neighbor, which we go through in this section.

The collaborative filtering problem is similar to the text analysis problem—both of them deal with large-dimensional sparse matrices. In chapter 8, we developed the TagMagnitudeVector infrastructure for representing a term vector and computing the cosine similarity between two term vectors. The first option is to leverage this infrastructure. For data represented in the user-item table (see table 12.1), each row corresponding to a user is equivalent to a term vector for a document. This can be represented by a TagMagnitudeVector, and cosine-similarity can be computed by taking the dot product of two TagMagnitudeVector instances. Furthermore, if we wanted to compute the similarity by computing the Pearson-r correlation, we can extend the TagMagnitudeVector class so that all the terms would be normalized to have a zero mean and unit magnitude. Again, the correlation between two such normalized vectors would be their dot product.

The second option is to leverage WEKA (see section 7.2). The weka.core.neighboursearch package contains a number of classes that implement the nearest-neighbor search algorithms. Some of these classes are described in table 12.4 and shown in figure 12.5. All these search classes extend the abstract base class NearestNeigbourSearch.

Class	Description
NearestNeighbourSearch	Abstract class for nearest-neighbor search
BallTree	Implements the BallTree/Metric Tree algorithm for nearest-neighbor search
CoverTree	Implements the CoverTree data structure for nearest-neighbor search
KDTree	Implements the KDTree search algorithm for nearest-neighbor search
LinearNNSearch	Implements the brute force search algorithm for nearest-neighbor search

Table 12.4 NearestNeighborSearch classes in WEKA

In section 10.4, we looked at classifiers available in WEKA. The weka.classifiers. lazy class contains classification algorithms that are based on nearest-neighbor search algorithms. Some of these algorithms are shown in figure 12.5 and described in table 12.5.

Figure 12.5 WEKA classes related to instance-based learning and nearest-neighbor search

Table 12.5	Classifiers in	WEKA based	l on nearest-neight	or search
------------	----------------	------------	---------------------	-----------

Class	Description
IB1	Nearest-neighbor classifier.
IBk	K-nearest neighbors classifier.
KStar	K^* is an instance-based classifier that uses an entropy-based distance function.

Next, let's walk through a simple example that illustrates what's involved in implementing the k-nearest neighbor algorithm using WEKA. We split the implementation into two sections and use the dataset in table 12.2 as our example. The first part deals with creating the Instances to represent the data, while the second part deals with building a classifier and evaluating it. Listing 12.11 shows the implementation for creating the Instances dataset along with the main method that enumerates the three things this example will do: create the attributes, create the learning dataset, and illustrate the k-NN algorithm.

```
Listing 12.11 Creating the dataset for implementing k-NN
package com.alag.ci.cf;
import weka.classifiers.lazy.IBk;
import weka.core.Attribute;
import weka.core.FastVector;
import weka.core.Instance;
                                                               Create three
import weka.core.Instances;
                                                         numerical attributes
public class KNNWEKAExample {
  public static final void main(String [] args) throws Exception {
     KNNWEKAExample eg = new KNNWEKAExample();
     FastVector attributes = eg.createAttributes();
     Instances instances = eq.createLearningDataSet(attributes);
                                                                        <1-
     eg.illustrateClassification(instances);
   }
                                                             Create learning
                                                                   dataset
  private FastVector createAttributes() {
     FastVector allAttributes = new FastVector(3);
     allAttributes.addElement(new Attribute("item1"));
     allAttributes.addElement(new Attribute("item2"));
     allAttributes.addElement(new Attribute("item3"));
     return allAttributes;
   }
  private Instances createLearningDataSet(FastVector allAttributes) {
     Instances trainingDataSet =
        new Instances("wekaCF", allAttributes, 3);
     trainingDataSet.setClassIndex(2);
                                               \sim
                                                        Set third attribute
     addInstance(trainingDataSet, 3,4,2);
                                                       to be predicted
     addInstance(trainingDataSet, 2,2,4);
     addInstance(trainingDataSet, 1,3,5);
     System.out.println(trainingDataSet);
     return trainingDataSet;
   }
  private void addInstance(Instances trainingDataSet,
        double item1, double item2, double item3) {
     Instance instance = new Instance(3);
     instance.setDataset(trainingDataSet);
      instance.setValue(0, item1);
     instance.setValue(1, item2);
     instance.setValue(2, item3);
     trainingDataSet.add(instance);
   ļ
```

The implementation is fairly straightforward. We first create the attributes and then the set of instances:

```
FastVector attributes = eg.createAttributes();
Instances instances = eg.createLearningDataSet(attributes);
```

Note that we set the third attribute, item3, to be the predicted attribute:

```
trainingDataSet.setClassIndex(2);
```

Listing 12.12 shows the output generated by printing out the Instances:

```
System.out.println(trainingDataSet);
```

Note that all the three attributes are mapped as numerical attributes.

```
Listing 12.12 The dataset created from the first part of code
```

```
@relation wekaCF
@attribute item1 numeric
@attribute item2 numeric
@attribute item3 numeric
@data
3,4,2
2,2,4
1,3,5
```

Next, let's look at the second part of the code, which deals with creating a classifier and querying the classifier for the expected values. This is shown in listing 12.13.

```
Listing 12.13 Making predictions using k-nearest neighbor
   public void illustrateClassification(Instances instances)
                                                                       Create
                                                                       instance of
    throws Exception {
                                                                       IBk classifier
      IBk ibk = new IBk(1);
                                                  <1-
      ibk.buildClassifier(instances);
                                                  <1-
                                                               Build classifier
      System.out.println("\nPrediction:");
      for (int i = 0; i < instances.numInstances(); i++) {</pre>
         Instance instance = instances.instance(i);
         double result = ibk.classifyInstance(instance);
         System.out.println("Expected=" + instance.value(2) +
         " Predicted=" + result);
      }
                                                   Classify single instance
   }
}
```

First, we create an instance of the k-nearest neighbor classifier. Since we have only three data points in our example, we set k to be 1:

IBk ibk = new IBk(1);

Next, we build the classifier (ibk.buildClassifier(instances);) and then evaluate each instance for the predicted value for item3. We only have three examples and

each query instance is a perfect match for one of the three cases. Listing 12.14 shows the output for item3 for each of the three cases—as expected, the expected and predicted values matched perfectly.

```
Listing 12.14 The output predicted and expected values for our example
```

```
Prediction:
Expected=2.0 Predicted=2.0
Expected=4.0 Predicted=4.0
Expected=5.0 Predicted=5.0
```

The third alternative is to use one of a number of free packages that implement collaborative filtering in Java. We briefly go through three of the popular Java-based open source packages. Cofi (http://www.nongnu.org/cofi/) is a project available under GPL and is led by Daniel Lemire. The music recommendation site Racofi (http:// racofi.elg.ca/index.html) uses the Cofi package. The Cofi package is fairly lightweight and easy to use. A number of memory-based collaborative filtering algorithms are implemented in this package.

Taste (http://taste.sourceforge.net/) is another collaborative filtering package that's fast and lightweight. It supports both item-based and user-based memory-based collaborative filtering algorithms. It's fairly well-documented and easy to use.

Cofe (http://eecs.oregonstate.edu/iis/CoFE//?q=taxonomy/term/6) is yet another collaborative filtering package that's freely available. It's well-documented and fairly easy to use.

Next, let's look at a commonly used model-based collaborative filtering method known as *latent semantic indexing (LSI)*, which reduces the dimensionality of the useritem matrix using a technique known as *singular value decomposition (SVD)*.

12.3.3 Dimensionality reduction with latent semantic indexing

As noted in section 3.5.2, LSI has been used in content-based analysis to solve the problems of synonymy and polysemy. Consider a term-document matrix as shown in table 12.6, where each row corresponds to terms across documents, while a column represents a document. The *i*th column in this matrix corresponds to the term-vector representation for the *i*th document. In essence, to create this matrix, we first need to create the term vector for each document and then join all the term vectors vertically to create this matrix. Note that a cell value corresponds to the product of the term frequency and inverse document frequency for that term and document.

	Document 1	Document 2	 Document n	
Term 1				
Term 2				
Term m				Table 12.6 Term-document matrix
This matrix is similar to the user-item matrix in table 12.1. In LSI,² the dimensionality of the term-document matrix is reduced using the process of singular value decomposition (SVD). The following are a few motivations for doing such a transformation on the term-document matrix:

- *Necessary evil*—If the term-document matrix is too large from a computational standpoint, an approximation may be more computationally friendly.
- *Filtering noise*—If the term-document matrix is noisy, the transformed matrix may be a better approximation of the concepts.
- *Sparse matrix*—If the term-document matrix is sparse, transforming the matrix may increase its density.

This is analogous to applying SVD to the term-document matrix. To understand this further, we need to first understand SVD and how it transforms the matrix.

An arbitrary matrix A of size $m \ge n$ can be decomposed into three matrices using SVD. Let r be the rank of A. As shown in figure 12.6, the matrices are

- *U*, an orthogonal³ square matrix of size $m \ge r$.
- *S*, a diagonal matrix of size *r* x *r*, with each diagonal value being the eigen value for the matrix. All values of *S* are positive and stored top to bottom in decreasing order of magnitude.
- *V* is an orthogonal square matrix of size *n* x *r*.

We can reduce the $r \ge r$ dimensionality of the matrix *S* to use only the top *k* singular values. As shown in figure 12.6, the matrices *U* and *Vt* are reduced in dimensionality for this approximation of *A*. The lower dimensionality allows us to approximate using *k* singular values.

Next, let's work through the same example as in the previous section, but this time we apply dimensionality reduction to illustrate the SVD process.

Figure 12.6 Illustration of the dimensionality reduction

12.3.4 Implementing dimensionality reduction

JAMA⁴ is a widely used linear algebra package developed by MathWorks⁵ and is intended to be the standard matrix class for Java. WEKA uses JAMA; the weka.core.matrix.Matrix class represents a matrix and has a number of methods, including one to compute the SVD of a matrix. In this section, we develop the Java code to implement dimensionality reduction using the example from section 12.3.1.

⁴ http://math.nist.gov/javanumerics/jama/

² http://lsirwww.epfl.ch/courses/dis/2003ws/papers/ut-cs-94-270.pdf

³ The product of the matrix and its transpose gives the identity matrix. See http://en.wikipedia.org/wiki/ Orthogonal_matrix.

⁵ http://www.mathworks.com/

We develop SVDExample, a simple class that first creates a matrix representation for the data in table 12.2 and computes the SVD for the matrix. Then we approximate the matrix using reduced dimensionality. Listing 12.15 shows the first part of the code that deals with representing the data in a Matrix instance and computing its SVD.

Listing 12.15 Representing the data to illustrate dimensionality	ty reduction
<pre>package com.alag.ci.cf;</pre>	
<pre>import weka.core.matrix.Matrix; import weka.core.matrix.SingularValueDecomposition;</pre>	
<pre>public class SVDExample {</pre>	
<pre>public static final void main(String [] args) { SVDExample eg = new SVDExample(); Matrix userItem = eg.createUserItemMatrix(); SingularValueDecomposition svd =</pre>	Develop Matrix representation for data
<pre>eg.computeSVD(userItem);</pre>	matrix trate ensionality iction
<pre>public Matrix createUserItemMatrix() { double [] [] values = { {3,4,2}, {2,2,4}, {1,3,5} }, Matrix userItem = new Matrix(values); System.out.println("UserItem: Rank=" + userItem.r System.out.println(userItem); return userItem; } </pre>	; ank ()) ;
<pre>public SingularValueDecomposition computeSVD(Matrix SingularValueDecomposition svd = matrix.svd(); System.out.println("U:\n" + svd.getU()); System.out.println("UtU is orthogonal:\n" + svd.getU().transpose().times(svd.getU())); System.out.println("S:\n" + svd.getS()); System.out.println("Vt:\n" + svd.getV().transpose System.out.println("VtV is orhogonal:\n" + svd.getV().transpose().times(svd.getV())); return svd; }</pre>	<pre>matrix) {</pre>

The example first creates a Matrix representation for the data. Note that the rank of the matrix is also printed in the method createUserItemMatrix(). The output from the first part of the program is shown in listing 12.16. Note that the rank for our matrix is 3.

```
Listing 12.16 Output from running the first part of the code
```

```
UserItem: Rank=3
3 4 2
2 2 4
1 3 5
```

```
U:
0.55 -0.83 0.12
0.54 0.23 -0.81
0.64 0.51 0.57
UtU is orthogonal:
100
010
001
S:
8.93 0
         0
0 2.71 0
   0 0.91
0
Vt:
0.38 0.58 0.72
-0.55 -0.48 0.68
-0.74 0.66 -0.14
VtV is orthogonal:
100
010
001
```

As shown in listing 12.16, *S* contains three eigen values: 8.93, 2.71, and 0.91. Note that they appear in descending order in the diagonal of the matrix. Also, both *U* and *V* are orthogonal matrices. Next, let's approximate the matrices by reducing the dimensionality of the matrix, the code for which is shown in listing 12.17.

```
Listing 12.17 Code illustrating dimensionality reduction
   public Matrix reduceDimension(Matrix userItem,
     SingularValueDecomposition svd, int k) {
     int m = userItem.getRowDimension();
                                                          Compute appropriate
      int n = userItem.getColumnDimension();
                                                         subsets of matrices
      Matrix Uk = matrixSubset(svd.getU(),m,k);
      Matrix Sk = matrixSubset(svd.getS(),k,k);
      Matrix Vtk = matrixSubset(svd.getV().transpose(),k,n);
      Matrix approx = Uk.times(Sk).times(Vtk);
      System.out.println(k + " dimensional approx matrix:\n " + approx);
      return approx;
   }
   private Matrix matrixSubset(Matrix orig, int m, int k) {
     Matrix newMatrix = new Matrix(m,k);
                                                        Approximate original matrix
      for (int i = 0; i < m; i++) {
                                                            using reduced matrices
         for (int j = 0; j < k; j ++) {
            newMatrix.set(i, j, orig.get(i,j));
         }
      }
      return newMatrix;
   }
}
```

For a given value of k—in our example, this is shown for the values 1, 2, and 3—we compute the subset of the three matrices U, S, and V. Next, we approximate the original

matrix using these reduced matrices, the output of which is shown in listing 12.18 for the three different k values.

```
Listing 12.18 Output from running the second part of the code

1 dimensional approx matrix:

1.84 2.84 3.53

1.81 2.79 3.47

2.15 3.33 4.14

2 dimensional approx matrix:

3.08 3.93 2.02

1.45 2.48 3.9

1.39 2.66 5.07

3 dimensional approx matrix:

3 4 2

2 2 4

1 3 5
```

Note that the approximation using k=2 is fairly close to the original values of the initial matrix, and we get back the original matrix for k=3. Lastly, let's look at a probabilistic model-based approach in collaborative filtering.

12.3.5 Probabilistic model-based approach

In chapter 10, we briefly introduced the Bayesian belief network—a directed acyclic graph where nodes correspond to random variables and directed arcs between nodes signify conditional probability between the parent and child nodes. In probabilistic collaborative filtering, each item corresponds to a node in the belief network. The states of a node correspond to the different rating values, with an additional state corresponding to the missing or "no vote" state. The learning algorithm searches for different network topologies corresponding to dependencies for each item. Once the network has been learned, each item will have parent nodes corresponding to items that are best predictors for the expected ratings.

In this section, we've covered various approaches to implementing collaborative filtering. Next, let's look at some real-world examples of how this technology has been applied.

12.4 Real-world solutions

In this section, we cover three case studies of how large-scale recommendation systems have been developed at Amazon.com, Google News, and at Netflix. These three case studies should give you an insight into how large-scale (millions of users and millions of items) recommendation systems have been developed in the real world. We learn something new with each use case. First, we learn about Amazon's item-to-item recommendation engine that scales to millions of users and millions of items. Next, we look at Google News personalization to learn about how to deal with noisy user input high item churn. Lastly, we look at Netflix and learn the approach taken by various researchers to improve the results of a recommendation engine, along with Netflix's approach.

12.4.1 Amazon item-to-item recommendation

Perhaps one of the best-known examples of a recommendation system is at Amazon.com. Amazon reports high click-through and email advertising conversion rates using their recommendation engine, compared to untargeted content such as banner advertisements and top-seller lists. The content of this section is drawn from two sources: first from a paper⁶ published on item-to-item collaborative filtering, and second from Greg Linden's blog⁷ entries. (Linden developed Amazon's recommendation system.)

Figure 12.1 showed an example of the recommendations Amazon provides to a user browsing a book. For a given item (book), Amazon shows related items by analyzing customer purchasing patterns. Figure 12.7 shows another example of personalized recommendations based on items that the user has purchased in the past.

Users can browse through the list of recommended items, and as shown in Figure 12.8, can rate an item and/or remove items from consideration from the recommendation engine.

Figure 12.7 Screenshot of recommendations to a user at Amazon.com

⁶ Linden, G., Smith, B., and York, J. 2003. "Amazon.com Recommendations: Item-to-Item Collaborative Filtering." *IEEE Internet Computing* 7, 1 (Jan. 2003), 76-80. DOI= http://dx.doi.org/10.1109/MIC.2003.1167344.

⁷ http://glinden.blogspot.com/

9. Spring	Spring in Action by Craig Walls Amazon.com purchase Your tass (440) (what's this?) Click to Add: spring framework, Java- spring, app. msc, j2me, craig walls, software development	xi chththt This vas a gift Don't use for recommendations
10. IN ACTION	Boss in Action: Configuring the JBoss Application Server by Javid Jamae Amazon.com purchase Your tass: 446 (Uthat's this?) Glock to Add: Ised Jamae. software. development. Internet	viterstater This was a gift On't use for recommendations

Figure 12.8 To help the recommendation engine at Amazon, a user can rate an item and/or remove items from consideration.

Amazon makes recommendations based on information from multiple contexts, including

- *Short term information*—Recommendations based on recent search terms and item browsing history, as shown in figure 12.9.
- Items available in the shopping basket.
- Purchasing history—Recommendations based on past purchasing history, as shown in figure 12.7. The system also uses available information about the user to send out targeted emails suggesting recommended items.

Figure 12.9 Recommendations based on browsing history

The recommendation system at Amazon has a number of challenges:

- *Large number of items and users*—The system contains huge amounts of data with tens of millions of customers and millions of distinct catalog items.
- Performance and scalability—Results need to be returned within half a second. There are a very large number of transactions—for example, on December 10, 2007,⁸ which was one of Amazon's strongest days, customers ordered more than 5.4 million items, or 62.5 items per second.

⁸ http://phx.corporate-ir.net/phoenix.zhtml?c=97664&p=irol-newsArticle&ID=1089861&highlight=

- *Limited information for new customers*—New customers may have purchased or rated only a few items. Older customers may have purchased or rated a large number (thousands) of items.
- Responsiveness to new information—The algorithm must respond immediately to new information from the customer.

As described in section 12.1.2, Amazon uses an item-based approach, where related items for an item are used for recommendations. This also means that all users get the same list of items as recommended items when they look at a particular item. Given the large number of users⁹ and items, it was found that implementing a typical k-nearest neighbor search ran into severe performance and scalability issues. It was deemed that reducing the dimensionality of the search space—by clustering and partitioning items, or by discarding most popular and unpopular items—would degrade the recommendation quality. Again, from a performance and scalability point of view, a content-based approach for recommendations was not used—for users with thousands of purchases, you would need to combine the term vectors across all instances and query the catalog for related items.

The item-to-item collaborative filtering algorithm implemented by Amazon scales independent of the number of users, and develops the expensive item-to-item table offline. During runtime computing, the list of recommended items is simply a table lookup. You can compute the item-to-item similarity table by iterating over the user-item purchase matrix (similar to table 12.1), but the following iterative algorithm provides a better utilization of memory and computing resources:

- Assume that there are *n* items and a *n* x *n* matrix with items corresponding to rows and columns. Iterate the following steps across all items.
- For a given item (parent item), iterate over all customers who have bought the particular item. For each item purchased (child item) by the customer, increment the count for that item—this is stored in the child item row and parent item column.

At the end of the iteration, to find related items for a the parent item, simply go to the parent item column and retrieve the items in the order of their counts.

A simple example helps illustrate the process. Table 12.7 contains the purchasing pattern for four customers in a catalog with four items. To keep things simple, we ignore modifications to the matrix to reflect the frequency of purchase for the four items (idf).

	ltem 1	Item 2	Item 3	Item 4
User 1	1		1	
User 2		1		1

Table 12.7Sample data foriterative item-to-item algorithm

⁹ Even at 10 million users and 1 million items

	ltem 1	Item 2	Item 3	Item 4
User 3	1	1	1	
User 4			1	1

 Table 12.7
 Sample data for iterative item-to-item algorithm (continued)

Applying our algorithm should result in the item-to-tem matrix shown in Table 12.8. As shown in the table, the items most related to Item 1 are Item 3, followed by Item 2.

	Item 1	Item 2	Item 3	Item 4
Item 1	-	1	2	
Item 2	1	-	1	1
Item 3	2	1	-	1
Item 4		1		-

Once the item-to-item matrix has been computed offline, the recommended items are determined using the related items for each item and combining the scores across all instances.

The item-to-item recommendation algorithm used by Amazon is one of the simplest collaborative filtering algorithms, which works well and scales to huge amounts of data.

12.4.2 Google News personalization

Google News (news.google.com) is a computer-generated news site that aggregates headlines from more than 4,500 news sites, clusters them into related stories, and displays it all in a personalized manner for a user. Figure 12.10 shows a typical news page for a logged-in user.

Google provides personalized recommendations to users who opt in to the search history feature provided by various Google web sites. As a part of the search history, Google records search queries made by the user along with a list of news articles visited. When a user has adequate history of news items clicked, the site recommends news stories of interest to the user in two sections. The first is the Recommended for *youremailaddress* section in the center of the page, just below the Top Stories section. The second place is the Recommended link on the left side, just below the Top Stories link, where the user can get a larger list of recommended items. An example of this page is shown in figure 12.11.

Google News is a good example of building a scalable recommendation system for a large number of users (several million unique visitors in a month) and a large number of items (several million new stories in a two-month period) with constant item churn. This is different from Amazon, where the rate of item churn is much smaller.

Figure 12.10 Google News with recommended stories using the user's web history

The content of this section is drawn from a paper¹⁰ published on this topic and a talk¹¹ given by Mayur Datar from Google.

Figure 12.11 Personalized news stories for a logged-in user

¹⁰ Das, A. S., Datar, M., Garg, A., and Rajaram, S. 2007. Google news personalization: scalable online collaborative filtering. In *Proceedings of the 16th international Conference on World Wide Web* (Banff, Alberta, Canada, May 08 - 12, 2007). WWW '07. ACM, New York, NY, 271-280. DOI= http://doi.acm.org/10.1145/ 1242572.1242610.

¹¹ Slides and video can be obtained from http://sfbayacm.org/events/2007-10-10.php.

Google decided to use collaborative filtering to build the recommendation system, mainly due to the availability of data from Google's large user base, and the advantage that the same collaborative filtering approach could be applied to other application domains, countries, and languages. A content-based recommendation system perhaps may have worked just as well, but may have required language/section-specific tweaking. Google also wanted to leverage the same collaborative filtering technology for recommending images, videos, and music, where it's more difficult to analyze the underlying content.

There are a number of things that are of interest to us in this case study:

- *High churn in items*—One of the unique challenges for the news site has been the high rate of churn associated with the news stories—news stories change every 10–15 minutes. This is unlike our case study of Amazon, where the rate of churn isn't as high. The rapid change in the item set makes it difficult to compute a model representation for item-to-item, since computing that would probably take a few hours, and the news would be obsolete by that time.
- *Noisy ratings*—A user clicking on a story is used as a noisy positive vote for that story. A click is noisier than an explicit 1–5 star rating (see section 2.3) or treating a purchase as a positive vote. As discussed in sections 2.3.4 and 2.4.2, a click on a story corresponds to a rating of 1, while a non-click corresponds to a 0 rating.
- Instant gratification—The system incorporates user clicks instantly in its recommendations, thus providing instant gratification to the user.
- *High performance requirements*—Google has a high performance requirement for the recommendation system—typically the recommendation engine needs to provide a recommendation within a few hundred milliseconds.

The problem of recommending news stories to a user can be modeled into a standard collaborative filtering user-item table, as shown in table 12.1. Here, an item is a news story, while rows are users. The dimensionality of m and n is a few million. The matrix is sparse, where a typical user may have clicked on a few stories, while some users may have clicked on hundreds of stories. Google's approach focuses on algorithms that are scalable and combines three different algorithms—one is a memory-based algorithm while the other two are model-based algorithms. The recommendation engine weighs the scores for each recommended item across the three approaches. The memory-based algorithm (similar to Amazon's algorithm), where users are clustered together based on which pages they've visited. The other two algorithms, MinHash and PLSI, group users into clusters, and recommend stories clicked by one user to others in the same cluster.

User clustering is a batch process that should be done offline and run periodically to not affect the performance of the regular application. While the cluster storycounts are maintained in real-time, new users that haven't been clustered in the previous clustering run are recommended stories based on a covisitation algorithm. Google leverages BigTable¹² and MapReduce to scale the algorithms to the large volume of data. Next, we briefly describe the three algorithms used.

¹² http://labs.google.com/papers/bigtable.html

MEMORY-BASED ALGORITHM: COVISITATION

The first algorithm, known as *covisitation*, uses an item-based approach to compute recommended news items. Similar to Amazon and covered in the previous section, the algorithm displays items that have been viewed by other users who have viewed a given item.

Conceptually, the algorithm is simple, and works as follows. Consider a window of time, typically a few hours. Two stories that have been visited by the same user during this period of time are said to have been *covisited*. Associated with each user is a list of items that have been visited by the user in the given window of time; we call this the user's *click history*. For each item, the system keeps a running count of how many times this story has been covisited with each other story. If two stories have never been covisited then this count is 0. When a user clicks on a new item, the system uses the user's click history and updates the covisitation count for this new item and each item in the user's click history. Given an item, related items are thus other items that have the largest covisitation numbers associated with them. The algorithm also takes into account the temporal nature of the clicks, and discounts the count based on the age of the click and story. These counts are also normalized to a 0 and 1 scale. To generate a list of candidate items for a user, the system uses the user's click history. For each of the items in the user's click history, the list of covisited items along with their scores is retrieved. The scores for the items are added over all items in the user's click history set, and the items with the highest summed weight are recommended to the user.

MODEL-BASED ALGORITHMS

Minwise Independent Permutation Hashing (MinHash) is a probabilistic clustering algorithm that assigns two users to the same cluster, with a probability proportional to the overlap in items they've clicked. A simple similarity function, also known as Jaccard coefficient, is used to compute the similarity between two users. The Jaccard coefficient, a number between 0 and 1, is the ratio of number of items that have been covisited by the two users divided by the total number of unique items that have been visited by either of the two users. A simple approach is to compute the similarities of the users with all the other users and recommend stories using these similarities to weigh the recommendations. However, given the large number of users, this approach isn't scalable. Google therefore uses a sublinear time near-neighbor search technique called *Locality Sensitive Hashing (LSH).* The algorithm works as follows. The complete set of items are randomly arranged. A user is assigned a hash value equal to the index of the first item that the user has visited in this permutation. This process is repeated a number of times (10-20) in parallel. The hash value for a user is equal to the sum of the hash values assigned to the user in each of the runs. Users having the same hash values are assigned to the same cluster. For scalability and performance, the MinHash clustering algorithm is implemented as a MapReduce problem.

PLSI is a collaborative filtering algorithm developed by Hoffmann and is based on probabilistic latent semantic models. It models users and items as random variables, where the relationship between users and items is modeled as a mixture distribution. Hidden variables are used to capture the relationships between the users and the items. The expectation-maximization algorithm is used to learn the parameters of the algorithm. For scalability, the algorithm was reformulated to fit into the Map-Reduce paradigm.

Experiments on the live Google site have shown better click-through rates for recommended stories than those for the top stories for the day. The large dimensionality for items and users along with a high degree of item churn makes this case study interesting.

Lastly, let's look at Netflix.

12.4.3 Netflix and the BellKor Solution for the Netflix Prize

In November 2007, a little over a year after announcing a million-dollar prize for the winning entry in a contest to improve the prediction accuracy of movie ratings by 10 percent, Netflix awarded the first progress prize of \$50,000 to BellKor,¹³ a group of researchers at AT&T Labs. The BellKor (a.k.a. KorBell) team consisting of Yehuda Koren, Robert Bell, and Chris Volinsky, improved on the Netflix recommendation system by 8.43 percent, a little short of the 10 percent required to achieve the million dollar prize. Of course, this improvement is on a test dataset that Netflix provided as a part of the contest, and not integrated into Netflix's recommendation engine yet. The contest in its first year attracted more than 27,000 contestants on more than 2,550 teams from 161 countries.

Netflix believes that any improvements in their recommendation engine will provide them with a competitive advantage. Opening up the process of finding a better recommendation engine with a public contest is yet another example of collective intelligence, where the collective efforts of other users is being used to improve the recommendation engine.

Before we go on to the BellKor solution, it's useful to look at Netflix's recommendation engine. This part of the section draws from a talk given by Jim Bennett, VP of recommendation systems, at the Recommender06.com conference¹⁴ in September 2006.

When a user signs up at Netflix, the user is urged to rate movies in an attempt to learn the user's tastes. Netflix's recommendation engine, Cinematch, uses an item-toitem algorithm (similar to Amazon) with a number of heuristics that aren't disclosed to the public. The offline computation of the item-to-item matrix takes two days to train. To solve the problem of "cold startup" for new titles, items are set up manually; this manual setup is retired over a period of time. Figure 12.12 shows a typical recommendation screen that's shown to a user. Here, movies similar to the movie "Babel" are being recommended to the user.

Figure 12.13 shows the home page for a user, which shows the user's recommended movies.

¹³ http://www.research.att.com/~volinsky/netflix/

¹⁴ http://blog.recommenders06.com/wp-content/uploads/2006/09/bennett.pdf

Figure 12.12 Movies related to a movie being recommended at Netflix

Figure 12.13 Home page for a user at Netflix showing the user's recommended movies

The current Netflix recommendation system uses about 2 billion movie ratings that have been collected from more than 10 million customers. However, Netflix estimates that by sometime around 2010 to 2012, it will

- Have more than 10 billion ratings
- Generate 10 million ratings a day
- Make 5 billion recommendations a day
- Have more than 20 million customers

NETFLIX COMPETITION

The learning dataset for the competition consists of more than 100 million anonymous movie ratings, on a scale of one to five stars, made by 480,000 users on 17,770 movies. Note that the user-item dataset for this problem is sparsely populated, with nearly 99 percent of user-item entries being zero. The distribution of movies per user is skewed. The median number of ratings per user is 93. About 10 percent of the users rated 16 or fewer movies, while 25 percent of the users rated 36 or fewer. Two users rated as many as 17,000movies. Similarly, the ratings per movie are also skewed, with almost half the user base rating one of the popular movies (Miss Congeniality). About 25 percent of the movies had 190 or fewer ratings associated with them. A handful of movies were rated fewer than 10 times. The dataset doesn't contain any personal identifiable information. It contains user ID, movie titles, star ratings, and dates—there are no text reviews in the dataset. In the absence of any content associated with the movies, there's no option but to apply a collaborativebased approach to analyze the data.

The Netflix competition doesn't take into account speed of implementation or scalability of the approach used. It simply focuses on the quality of the recommendation system in terms of minimizing the error between the user rating and the predicted rating. The Netflix data doesn't contain much information to allow the use of a content-based approach; it's for this reason that teams focused on collaborative-based techniques.

The winning team, BellKor, spent more than 2,000 combined hours poring through data to find the winning solution. The winning solution was a linear combination of 107 sets of predictions. Many of the algorithms involved either nearest neighbor method (k-nearest neighbor) or latent factor models such as SVD/factorization and Restricted Boltzmann Machines (RBMs).¹⁵

The winning solution uses k-NN to predict the rating for a user using both the Pearson-r correlation and cosine methods to compute the similarities. Similar to our discussion in section 12.3.1, they found that it was useful to remove item-specific and user-specific biases in the computation. Latent semantic models (see sections 12.3.4 and 12.3.5) were also used widely in the winning solution. RBMs are stochastic neural networks that contains two layers. The first layer corresponds to the observed ratings, while the second layer is hidden and is connected to the first layer.

¹⁵ See http://www.scholarpedia.org/article/Boltzmann_machine and Google Tech Talk "Next Generation of Neural Networks" by Geoffrey Hinton of University of Toronto, http://www.youtube.com/ watch?v=AyzOUbkUf3M.

The BellKor team found that it was important to utilize a variety of models that complemented each others' shortcomings. None of the models by itself could get the BellKor team to the top of the competition. The combined set of models achieved an improvement of 8.43 percent over Cinematch, while the best model—a hybrid of applying k-NN to output from RBMs—improved on the result by 6.43 percent. The biggest improvement by LSI methods was 5.1 percent, with the best pure k-NN model scoring below that. (*K* for the k-NN methods was in the range of 20 to 50.) The BellKor team also applied a number of heuristics to further improve the results.

The BellKor team provides a number of recommendations on what's needed to build a winning solution for a competition:

- Combining complementary models helps improve the overall solution. Note that a linear combination of three models, one each for k-NN, LSI, and RBM, would have resulted in fairly good results—an improvement of 7.58 percent.
- You need a principled approach to optimizing the solution.
- The key to winning is to build models that can predict accurately where there's sufficient data, without over-fitting in the absence of adequate data.

The Netflix competition—the data, the prize money, and the fame factor—have generated a large amount of interest in the field of collaborative filtering. Teams have collaborated with each other and have published their solutions, allowing others to build on their work. Figure 12.14 shows the leaderboard for the competition as of early

Figure 12.14 A screenshot of the Netflix leaderboard as of early 2008 (http://www.netflixprize.com/leaderboard)

Summary

August 2008. Note that the best score is an improvement of 9.15 percent over the benchmark result. The million-dollar question is, Will someone come up with the solution that's good enough to surpass the 10 percent improvement mark? Only time will tell, but given the interest and efforts being made, it's perhaps only a question of time.

In this section, we've covered the solutions for three large-scale recommendation systems—Amazon, Google News, and Netflix. By now, you should understand what a recommendation engine is, and how it can be used and built. In your application, you should be able to start with building perhaps a simple content-based item-to-item recommendation engine and then augment it with a collaborative-based approach. This should help you to personalize your application for every user. The challenge with personalization and building recommendation systems is to find the right balance between the delta improvement in quality and the additional time the user needs to wait for the response. I've found the strategy of starting with something simple and gradually building on top of it over time, along with lots of asynchronous pre-computation, to work well in most cases.

12.5 Summary

One of the best ways to personalize a site for a user is to use a recommendation engine. There are two main approaches to building a recommendation engine: content-based and collaborative-based. In content-based analysis, similar content is recommended by computing the similarity in term vectors between various items. But content-based algorithms can't determine the quality of an item being recommended. For this, we need to use a collaborative approach. In collaborative filtering, each item is treated as black box, and user interactions with the item are used to compute similarities. Collaborative approaches are language-agnostic and are particularly suited for analyzing images, video, and music that might not have any content associated with them.

Approaches to building recommendation systems can be further divided into itembased and user-based analysis. In item-based analysis, items that are similar to items of interest are recommended to the user, while in user-based analysis, first similar users to a user are found, and them items liked by those users are recommended.

The recommendation problem uses a user-item matrix containing rating information (purchasing/voting/click-through) for cell values. In this matrix, a row corresponds to a user, while each column corresponds to an item. This matrix is typically of large dimension and sparse. This large dimensional matrix may be approximated to lower dimensions using singular value decomposition. The k-nearest neighbor algorithm determines the *k* closest users to predict the ratings for a user.

We also looked at three well-known, large-scale recommendation systems: Amazon.com, Google News personalization, and Netflix.

Using the concepts developed in this book, you should now be able to apply collective intelligence to your application. Good luck at providing a personalized experience to your users.

12.6 Resources

- ACM Transactions on Computer-Human Interaction (TOCHI) Special Section on Recommender Systems. Volume 12, Issue 3 (September 2005).
- Adomavicius, Gediminas and Alexander Tuzhilin. "Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions," IEEE Transactions on Knowledge and Data Engineering, Vol. 17, no. 6, pp. 734–749. June, 2005.
- Bell, Robert and Yehuda Koren. "Improved Neighborhood-based Collaborative Filtering." http://public.research.att.com/~yehuda/pubs/cf-workshop.pdf
 - ——"Scalable Collaborative Filtering with Jointly Derived Neighborhood Interpolation Weights." IEEE Conference on Data Mining (ICDM'07). 2007, IEEE.
 - ——"Improved Neighborhood Based Collaborative Filtering." KDD 2007 Netflix Competition Workshop. http://public.research.att.com/~yehuda/pubs/cf-workshop.pdf
- Bell, Robertl, Yehuda Koren, and Chris Volinsky. "The BellKor Solution to Netflix Prize." 2007. http://www.research.att.com/~volinsky/netflix/ProgressPrize2007BellKorSolution.pdf and http://www.netflixprize.com/assets/ProgressPrize2007_KorBell.pdf
- "Modeling relationships at multiple scales to improve accuracy of large recommender systems." http://portal.acm.org/citation.cfm?id=1281192.1281206

——"Chasing \$1,000,000: How We Won The Netflix Progress Prize." ASA Statistical and Computing Graphics Newsletter. Volume 18, Number 2, December 2007. http:// stat-computing.org/newsletter/v182.pdf

BellKor home page. http://www.research.att.com/~volinsky/netflix/

- Berry, M. W., S. T. Dumais, and G. W. O'Brien. "Using linear algebra for intelligent information retrieval." SIAM Review 37(4):573–595. 1995. http://citeseer.ist.psu.edu/ berry95using.html
- Breese, John, David Heckerman, and Carl Kadie. "Empirical Analysis of Predictive Algorithms for Collaborative Filtering." Proceedings of the 14th Annual Conference on Uncertainty in Artificial Intelligence (UAI-98), pgs 43-52. 2002. Morgan Kaufmann.
- Chang, Fay, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. "Bigtable: A Distributed Storage System for Structured Data." OSDI '06: Seventh Symposium on Operating System Design and Implementation, Seattle, WA. November, 2006. http://209.85.163.132/papers/bigtable-osdi06.pdf
- COFE: Collaborative Filtering Engine. http://eecs.oregonstate.edu/iis/CoFE/
- Cofi: A Java-based collaborative filtering library. http://www.nongnu.org/cofi/
- Das, Abhinandan S., Mayur Datar, Ashutosh Garg, and Shyam Rajaram. "Google news personalization: scalable online collaborative filtering." In Proceedings of the 16th international Conference on World Wide Web (Banff, Alberta, Canada, May 08–12, 2007). WWW '07. ACM, New York, NY, 271-280. DOI= http://doi.acm.org/10.1145/1242572.1242610
- Deshpande, Mukund and George Karypis. "Item-based top-n recommendation algorithms." ACM Transactions on Information Systems, 22(1):1–34, 2004. http:// citeseer.ist.psu.edu/article/deshpande04item.html
- Fleder, Daniel M. and Kartik Hosangar. "Recommender systems and their impact on sales diversity." Proceedings of the 8th ACM conference on Electronic commerce. 2007. http:// portal.acm.org/citation.cfm?id=1250910.1250939
- Hoffman, Thomas. "Latent semantic models for collaborative filtering." ACM Transactions on Information Systems (TOIS), Volume 22, Issue 1 (January 2004).
- The Homepage of Nearest Neighbors and Similarity Search. Maintained by Yury Lifshits. http://simsearch.yury.name/tutorial.html

Resources

- IEEE Intelligent Systems Special Issue on Recommender Systems. vol. 22(3), 2007International Journal of Electronic Commerce Special Issue on Recommender Systems. Volume 11, Number 2 (Winter 2006-07).
- Johnson, Aaron. "Using Lucene and MoreLikeThis to Show Related Content." Nov. 2006. http://cephas.net/blog/2006/11/14/using-lucene-and-morelikethis-to-show-related-content/
- KDD Cup and Workshop (KDD'07). ACM Press (2007).
- Kim, Juntae. "Effect of Dimensionality Reduction in Recommendation Systems." AI Workshop, 2002. http://ai.dgu.ac.kr/seminar/pds/AIWorkshop2002.ppt
- Lemire, Daniel and Anna Maclachlan. "Slope One Predictors for Online Rating-Based Collaborative Filtering." Proceedings of SIAM Data Mining (SDM '05), 2005. http:// www.daniel-lemire.com/fr/abstracts/SDM2005.html
- Linden, Greg. Geeking with Greg. Blog. http://glinden.blogspot.com/
- Linden, Greg, Brent Smith, and Jeremy York. "Amazon.com Recommendations: Item-to-Item Collaborative Filtering." *IEEE Internet Computing*. 7, 1 (Jan, 2003), 76-80. DOI= http:// dx.doi.org/10.1109/MIC.2003.1167344
- Porter, Joshua. "Watch and Learn: How Recommendation Systems are Redefining the Web." 2006. http://www.uie.com/articles/recommendation_systems/
- "The Present and Future of Recommender Systems." September 12-13, 2006. Bilbao, Spain. http://www.mystrands.com/corp/summerschool06.vm
- Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining (KDD'07). ACM Press (2007).
- "Reinforcing the Blockbuster Nature of Media: The Impact of Online Recommenders." http://knowledge.wharton.upenn.edu/article.cfm?articleid=1818
- Salakhutdinov, Ruslan, Andriy Mnih, and Geoffrey Hinton. "Restricted Boltzmann machines for collaborative filtering." In Proceedings of the 24th International Conference on Machine Learning (Corvalis, Oregon, June 20 - 24, 2007). Z. Ghahramani, Ed. ICML '07, vol. 227. ACM, New York, NY, 791-798. DOI= http://doi.acm.org/10.1145/ 1273496.1273596
- Sarwra, Badrul, George Karypis, Joseph Konstan, and John Riedl. "Item-based collaborative filtering recommendation algorithms." Proceedings of the 10th International World Wide Web Conference (WWW10), Hong Kong, May 2001. http://citeseer.ist.psu.edu/ sarwar01itembased.html

—"Application of dimensionality reduction in recommender systems—a case study." In ACM WebKDD Workshop, 2000. http://citeseer.ist.psu.edu/sarwar00application.html

SVD Recommendation System in Ruby. 2007. http://www.igvita.com/blog/2007/01/15/ svd-recommendation-system-in-ruby/

Taste: Collaborative filtering for Java. http://taste.sourceforge.net/

Taste. http://code.google.com/soc/2007/taste/about.html

Yahoo Launchcast. http://new.music.yahoo.com/

index

Numerics

23andme.com 345

A

abstraction, content types 83 accessing DME 202-204 accuracy of predictive model 178, 305 activation function 297-298 addIndexes 326 ad-generation engine 8 adjusted cosine 354 adjusted cosine-based similarity 45, 363 advertisements 8, 10, 12-13, 208, 237-238, 276 advertising 8 age 351 attribute 32 agglomerative 253, 262 AJAX 11, 89, 289 Alexa 89, 146 Algorithm. See Waikato Environment for Knowledge Analysis (WEKA) algorithms, key learning 178-181 AlgorithmSettings 195, 199, 269-270, 301, 303 Amazon 10, 18, 29, 34, 37, 39, 350, 365, 373 Analyzer 312 See also Lucene analyzers 94-95, 309

analyzeText 232, 234 analyzing content 207-221 AOL 150 Apache Foundation 339 Hadoop 339 Jakarta Commons 120 Xerces-J 120 APIs, JDM 193-204 application phase 274 application server 85 ApplyTask. See Java Data Mining (JDM) apriori 181, 188, 286 architecture 21 content integration 85 tagging 51, 62-63, 66 arrow 285 articles 7, 14-15, 18-19, 23, 51-52, 60, 80-81, 83 artificial intelligence 11, 176 Asian languages 210 association algorithms 177 association rules 275, 362 asynchronous 21-22 asynchronously 275 Atom Publishing Format 110, 144Attribute 176-182, 184-191, 194-196 attribute 177, 274–275, 362 categorical 27 nominal 27 normalized 27 numerical 27 ordinal 27

attribute selection 181 attributes 27, 176–178 nominal 177 numerical 176 ordinal 176 AttributeType 197 attrition rates 10 authority 148, 163 auto-complete 338 automated indexers 146 average-link 253 averages 41

В

back-propagation 297-299 BallTree 366 banner advertisements 374 base pairs 345 batch process 379 Bayes' theorem 180, 287 Bayes' Rule 282 Bayesian algorithms 178 Bayesian belief networks (BBN) 178, 275, 285, 287, 289,373 Bayesian clustering 363 BBN. See Bayesian belief networks (BBN) Bell, Robert. See BellKor BellKor 381–385 Bennett, Jim 381 **BFS 148** Bialecki, Andrzej 339 BigTable 379 binning 177

390

bioinformatics 345 biological relationships 346 black box 298, 354, 363 blob 91 blog comments 88 blog entries 14, 51, 88, 206, 244-246, 260, 262-263, 267,275 clustering 241-261 retrieving from Technorati 244–247 BlogAnalysisDataItem 244 See also clustering BlogDataSetCreatorImpl 262, 287, 313 Blogdigger 108, 110-111, 124, 139-140, 142-144 BlogEntry 87, 113 Blogflux 111 bloggers 107, 109–110 Bloglines 108, 111, 124, 135, 137-139, 144 blogosphere 9, 16, 22, 87, 89, 104, 107-111 searching 111-116 BlogOueryParameter 112–113, 117, 119–121, 131, 136 BlogOueryResult 112-119, 121-123, 125, 134, 137, 143 blogs 9, 52, 83-90, 103-104, 108 - 111blog-tracking companies 111 searching 111-116 BlogSearcher 113 See also blogs BlogSearchExample 313 BlogSearchResponseHandler 112, 115-116, 121, 123-124, 131, 136–137, 139 blog-tracking companies 111 Bloomberg.com 345 bookmark 14-15, 37, 47, 51, 64, 66, 80, 342 bookmarking 8-9, 15, 28, 36, 351 BooleanQuery 356 See also Lucene boost factor 328, 357 boosting 311, 328 bots 146 breadth-first search 148 buckets 27 buildDataPhysicalDataSet. See Java Data Mining (JDM) building, intelligent crawler 152-164

BuildSettings 195, 269 business intelligence 176

С

C4.5 281 C5.0 281 caching 21 CachingWrapperFilter 334-335 Carrot2, intelligent search 342 **CART 281** CARuleMiner. See Waikato Environment for Knowledge Analysis (WEKA) catalog 375 CategorySet 197 cause-effect. See Bayesian belief networks (BBN) .CFS extension 320 Charkrabarti 149 CharTokenizer 210 chat logs 84 chat sessions 14 child intelligence 289 child nodes 373 Chinese language 354 chromosomes 345 Church, George 345 churn in items 379 CI. See collective intelligence (CI) Cinematch 381, 384 circle of influence 5, 18 classes Lucene 311-312 search 116–127 classification 274-275, 362 See also regression classification terms 83-84, 104 ClassificationModel 305 See also Java Data Mining (JDM) ClassificationSettings 301, 304 ClassificationTestTask 305 classifieds 84 clickstream 37, 241 click-through 241, 261, 374 rates. See decision trees cloaking 149 cluster 257 See also Java Data Mining (JDM) Clusterer 242, 244, 257, 261-267 clusterer, creating 265-266

ClusterEvaluation 262 See also Waikato Environment for Knowledge Analysis (WEKA) clustering 22, 28-29, 32, 240, 242-244, 275, 362 evaluating results 266-268 high-dimension data 261 sparse data 261 with JDM 268-272 with WEKA 262-268 clustering model 198, 262, 269 ClusteringModel 268–272 ClusteringSettings 270 Clusty, intelligent search 344 **CNET Networks 339** Cofe 369 Cofi 369 collaborative analysis 353-354 collaborative approach 93 collaborative filtering 20-21, 29, 363-373 model-based 363 probabilistic 373 collaborative-based 20, 52 Collective Intelligence 30 collective intelligence (CI) 30, 54, 59, 83-84, 86, 89, 91-92, 94, 100–102, 169 benefit 9 classification 14-18 definition 4, 6 example 7-9 extracting 93–102 See also classification collective power 90 commercial crawlers 163 commit lock 324 community 12 Compass 339, 341 Compete 146 complete-link 253 complex-event-processing 24 composite 362 CompositeContentType 103 CompositeContentTypes 92 compound files 315 See also Lucene 320 computational biology 345 computeInitialDistances 258 computing similarities 31 conditional independence. See Naïve Bayes and Bayesian belief networks conditioning methods 287 connecting with other users 349 Connection 201-204, 270-272, 302-305 ConnectionFactory 201-204 ConnectionMetaData 201 ConnectionSpec 203 consists 27 content 82, 85, 103 analyzing 207-221 analyzing example 93 classification 83, 85 external 8 integration 85-86 personalizing 362 retrieving 159-160 types 83-93, 102-103 content aggregation 147 content visited 28 content-based 20, 52 content-based analysis 352-363 recommendation engine 359-362 ContentBasedBlogRecoEngine 360 content-centric applications 12, 50conversion rates 374 core competency 12 corporate website 87 correlation coefficient 193 correlation matrix 363 cosine 34, 41-43, 45-47, 354 cosine-based similarity 363 CoverTree 366 co-visitation 379-380 crawling 146-152 deep 150 process 147-149 crawling the web 145 createInitialSingleItemClusters 258creating search index 314-317 cross-validation 182, 266, 298 crowd sourcing 90 Cuil 347 Cutting, Doug 151, 164 cycles 286-287

D

DAG. *See* directed acyclic graph (DAG) data aggregator service 22 data analysis 176 data collection 342 data mining 4, 16–18, 175 core concepts 176-182 example 362 IDM 193-204 process 181-182 vendors 181 WEKA 182-193 Data Mining Group (DMG) 204 data mining tools vendors 181 data search 345-347 intelligent search 341 data, learning dataset 263-265 database 62-64, 66-70, 78-79,81 data-based search 346 Datar, Mayur 378 DataSetApplyTask 200 DataSetCreator 242 datasets 32, 181, 183, 200, 241, 243, 279-280 DayPop 111 DBScan 268 deadlocks 25 decision trees 275-281 See also classification 178 decodeme.com 345 deep web 150 degree of belief 287 del.icio.us 15, 36 densely populated 241 derived intelligence 14, 16 detecting phrases 100–102, 214 - 218diagonal matrix 370 dictionary of tags 8 Digg 15, 36, 40 dimensionality reduction 369-373 dimensions 31 directed acyclic graph (DAG) 171, 285 directed graph 171 Directory 311 diversity 363 DME, accessing 202-204 See also Java Data Mining (JDM) DMG. See Data Mining Group (DMG) 204 DNA 345 DNA chips 345 Document 311 See also Lucene document frequency 359 doorway pages 149

dot product 34, 42–43, 46–47, 247, 251, 253, 328, 353, 365 dot-com era 3 Dryad 169–171 dynamic navigation 8, 14, 51, 54, 56, 58, 69, 80

Ε

eBay 83 Eclipse 186 eigen value 370, 372 Einstein 11 EM. See expectation maximization (EM) email 36, 351 chain 90 filtering 275 spam. See classification embedding intelligence 21 English language 354 Epinions.com 39 EqualInverseDocFreqEstimator 231See also text analysis ethics 107 Eurekster 344 Evaluation 189, 192 event-driven 25 exceptions handling 116 ExecutionHandle 200-201, 271, 304 ExecutionStatus 201, 271, 304 expectation maximization (EM) 261, 265 experimental data search 346 Experimenter 184 Explanation 317-318, 330 explicit information 7, 14 exploitation 351 exploration 351 Explorer 184 ExportTask 200 external content 8-9 extract phrases 94 extracting URLs 160-161

F

Fair Isaac 193 fame factor 384 FAQ 90 FastVector 186–193, 263, 290–291 FeedForwardNeuralNetSettings 301 Field 314-316 FieldQueryParser 333 Fields 316 file-based locking 324 Filter 210-211 filter 6 filtering 334-335 See also Lucene firewall 85.104 Flickr 50, 57 flyweight pattern 224 focused crawling 147–150, 171, 344 folders 37 folksonomies 8, 56, 60 FontSizeComputationStrategy 72FontSizeComputation-StrategyImpl 73 forward 36 framework, extending 127 freemium 13 frequency count 27 FSDirectory 312 See also Lucene fundamental concepts 21, 25 FuzzyQuery. See Lucene

G

Gaussian cluster 298–299 Gaussian distribution 261 Gaussian kernel function 298 gender 351 See also attribute General Public License (GNU) 341 genes 345 genetic algorithms 180 genomic sequencing 345 geographic location 83, 351 German 210 GermanAnalyzer 212 GermanStemFilter 210 getBlogDetails 255 getSynonym 215, 217 global warming 84 global-lock system 323 Gmail 56 GNU. See General Public License (GNU) Google 29, 59, 111, 128, 144,354 community-based search engines 344 data search 345

search results 309 stop word list 213 YouTube 5 Google File System 169 Google News 350, 377–381 Gospodnetic 350 GPL 369 gradient descent algorithm 180 gradient search 297 greedy recommenders 352 groups 83–84, 86–87, 90–93

Η

HAC. See Hierarchical Agglomerative Clustering (HAC) hackability 11 Hadoop 146, 164, 169-171 Hakia 345 handling exceptions 116 handling response XML 115 hard-to-replicate data 10 Harvard Medical School 345 harvest from external sites 82 harvest rate 150 hashCode 256 Hatcher 350 **HDFS** 169 Heritrix 151 Herren, John 58 Hibernate 30, 341 Hibernate search 339, 341 hidden layer 297, 299 hidden nodes 180, 298 hidden unit 298 Hierarchical Agglomerative Clustering (HAC) 253, 262 hierarchical clustering 241, 253-261 HierarchicalClusteringImpl 253, 257-261 HierCluster 253-260 HierDistance 253-256 high performance 21 high-dimension 32-33 Hinchcliffe, Dion 11 HitCollector. See Lucene Hits 312 See also Lucene Hoffman, Kevin 71 Hoffmann 380 home address 276 homonym 54 Hornick, Mark 194 HTMLTagCloudDecorator 236

HTTP 311 requests 21, 24, 85 HTTPS requests 21 Human Genome Project 345 hyper linking 56

L

IB1 366 IBk 366 IBM 193 IceRocket 111 ID3 281 identity matrix 296 **IETF 110** if-then rules 275, 306 images 354 immutable 223 implicit information 7, 14 ImportTask 200 incremental indexing 322-324 index creating 314-317 files 324 modifying 321-322 optimizing performance 325-327 searching 317-320 indexing 320-327 incremental 322-324 optimizing performance 325-327 indexing service 310 IndexReader 311 IndexSearcher 312 IndexUpdaterService 323 IndexWriter 311, 315 info gain. See decision trees information entropy 277 information retrieval 4, 17, 25, 27,30 infrastructure 240 InitialContext 203 injecting synonyms 214–218 input layer 180, 297-298 installation guide 90 Instance 187–191, 262–264 instant gratification 379 instant messengers 89 integration 85-86 intelligence, extracting 93-102 intelligent crawling 149-150, 152 - 164intelligent search 362 interaction history 8, 18

inverse document frequency (idf) 30, 55, 149, 328, 358, 365, 376 inverse of matrix 296 inverse user frequency 365 InverseDocFreqEstimator 222 InverseDocFreqEstimatorImpl 246 inverted text index 320 invisible web 150 is 327 isValidPhrase 215, 217, 220 Item 102 item churn 377 item-based analysis 351-353 Items 37 items 26 item-to-item 61, 353 Amazon 376

J

Jaccard coefficient 380 **JAMA 370** Java 30 Java Community Process 175, 193, 205 Java Data Mining (JDM) 176, 193-204, 241, 268, 272, 275, 300-305 accessing DME 202-204 architecture 194 clustering 268 clustering settings 269-270 connections 200 datasets 196 key clustering classes 268-269 key objects 195 tasks 199 Java Web Start 339 javax.datamining 202, 268–271, 300 - 304javax.datamining.clustering 195, 268-270 javax.datamining.supervised 195, 300-303 **JDBC 201** JDM. See Java Data Mining (JDM) 272 **JDMConnectionExample** 202 - 203**IDMException 201–203** JNDI lookup 203 Johnson, Dave 111 journal entries 206

JSON APIs 339 JSR 247 175, 193–194, 205 JSR 73 175, 193–194, 205 JVM 323

Κ

k neighbors 365 KDTree 366 kernel function 298, 303 key learning algorithms 178-181 Keyes, Ken 5 Keyword spamming 149 keywords 82-84, 95, 102 k-fold. See cross-validation King Ping 111 k-means 241, 299 implementation 247, 249-253 KMeansSettings 269 k-nearest neighbor (k-NN) 363, 365, 376 knowledge repository 90 KnowledgeFlow. See Waikato Environment for Knowledge Analysis (WEKA) Koren, Yehuda 381 Kosmix intelligent search 342 KStar 366 **KXEN 194**

L

language-independent 29 languages 354 large-scale systems 365 latent classes 29 latent Dirichlet allocation 363 latent semantic indexing (LSI) 80, 369–370 layer 275, 297–299 leaf cluster 260 learning dataset 181, 263-265 learning models 197 learning phase 274 Lemire, Daniel 369 LetterTokenizer. See Lucene Lexee 345 Libby, Dan 109 life sciences 346 Linden, Greg 374 linear algebra 29 linear model 32 linear regression 180, 295–297 LinearNNSearch 366 Linguistic-based search 341 link spamming 149 Linkdb 166 LinkedIn 12 links, decision tree 179 list 7.84 list of related items 206 load balancer 22, 311 Locality Sensitive Hashing (LSH) 380 Lock 323 lock 324 log likelihood 266 logarithmic 71 LogicalAttribute 196–197 LogicalDataSet 195 look-to-book ratio 276 low-dimension 241 LowerCaseTokenizer 210, 212 LSH. See Locality Sensitive Hashing (LSH) LSI. See latent semantic indexing (LSI) Lucene 17, 149, 151, 164, 166, 169, 172, 320-327, 350 architecture 310-311 classes 311-312 core classes 311-312 download 208 finding similar items 355-359 indexing 313, 320 querying 330-331 scoring 327-330 term vector 324-325 Lucene in Action 208, 310 Lucene JDBC 341 Lucene scoring 327–330 LuceneTextAnalyzer 231-235 Luke 339

Μ

machine learning 176, 240, 342 machine-generated tags 83 mailing list 91 manufacturer 83 MapReduce 146, 164, 169–171, 380 margin 180 marketplace 12, 83 Markov Decision process 363 mass behavior 4 mathematical model 306 mathematics 176 MathWorks 370 Matrix 296, 370-371 matrix 295 matrix inversion 299 Meebo 89, 105 memory-based 379 menus 50 message boards 8, 26, 41, 82-86, 91-93, 206 messaging infrastructure 25 messaging server 21-22, 24-25 metadata 46, 51-52, 58-59, 62, 68-69,80 attribute-based 26 content-based 27 example computation 41–46 from text 93 tagging 50-80 user actions 34-40 user-action-based 27 users and items 26-27 MetaDataExtractor 95 MetaDataVector 94, 98 meta-search 344 microarrays 345 Microsoft 107, 150, 170 mining process 181-182 MiningObject 195-197, 300 Minwise Independent Permutation Hashing (MinHash) 380 mirror sites 149, 164 MLP. See multi-layer perceptron (MLP) model-based 29, 196, 379 ModelDetail 197 **MOR** 194 MoreLikeThis 358 movie titles 383 MSN 108, 111, 124, 139-140, 144MultiFieldQueryParser 318, 333 multi-layer perceptron (MLP) 275, 297-298 multiple fields query 327 multiple indexes search 312, 327, 335 multiple multiplication factor model 363 multiple-term tokens 214 MultiSearcher 312, 335 multi-term phrases, detect 95 MultiTermQuery 330 music 17, 354 MyRank 59 MyWeb 59

Ν

NaïveBayes 281 natural language 345 navigation 50, 83-84 links 51 menus 8 navigenics.com 345 N-dimensional vector 353 nearest neighbor. See k-nearest neighbor (k-NN) NearestNeighbourSearch 365 net gain 277 net worth 276, 351 Netflix 29, 350, 381-385 network effect 6 network topologies 373 neural network 29, 178, 274, 295, 297-298, 306 NeuralNetworkModelDetail 197 New York Times 37 news feeds 83 news items 84 news site 379 newsfeed format 110 NextBio 346 Nielsen Net Ratings, search numbers 309 node 179-180, 259, 276-280, 285-286, 294 nodes, decision tree 179 noisy ratings 379 nominal attributes 177 nonlinear 297-299 Normalize 31 normalizeToken 97 numerical attributes 176 Nutch 146, 149, 151, 164, 167-171, 207, 309, 339 running 165-167 searching with 168-169 setting up 164

0

online analytic processing (OLAP) 176 ontology 60, 346 open source crawler 164, 339 OPTICS 268 optimizing memory settings 325 Oracle 193–194 OrbiMed Advisors LLC 345 ordinal attributes 176 orthogonal matrix 370 overfitting 182, 298

Ρ

PageRank 59 pandemic 5 ParallelMultiSearcher 312 parent nodes 285 path followed 28 pattern matcher 161, 163 pdf 320 PDFBox 320 Pearson-r correlation 43, 354, 363 Pentaho 182 PerFieldAnalyzerWrapper 212 perpetual deta 11 persistence model 35 personal health history 345 personal journals 83, 87 personalization 349, 362 Google News 377-381 personalized recommendations 350, 374 Photo 44 photo 82 photos 26, 41-42, 48, 50-52, 80, 84 phrase detection 215-233 phrase dictionary 207 PhraseQuery 330-331 phrases 51, 53-55, 58, 80, 207, 212, 216-218, 221-222, 224, 239 definition 29 detecting 100-102, 214-218 PhrasesCache 215 PhysicalAttribute 196 PhysicalAttributeRole 196 PhysicalDataSet 195–196, 304 pictures 14 pinging 111 Pingoat 111 Pingomatic 111 PLSI. See probabilistic latent semantic indexing (PLSI) PMML. See Predictive Model Markup Language (PMML) 204 podcasters 107 podcasts 14, 51 polling 25 polls 28, 84, 103 polysemy 54, 80, 369 Porter 99, 210-221 PorterStemFilter 210-214 PorterStemmer 327 PorterStemStopWordAnalyzer 212-214, 219

Postami 111 Powerset 345 precision 310 predictive model 274 intelligent search 342 Predictive Model Markup Language (PMML) 204 predictive models 22, 24, 28, 32, 48, 102 PredictiveApriori 188 PrefixFilter 334 PrefixQuery 330-334 price 83 printClusterEntries 266–267 printer 86 prior history 275 probabilistic 373 probabilistic latent semantic indexing (PLSI) 363, 380 probabilistic methods 29 probabilistic networks. See Bayesian belief networks (BBM) probability distribution 281 probability theory 180, 281 products 51,83 professionally developed keywords 26 professionally generated 52 profile 352 profile page 84 Profile selections 28 pruneDistances 258-259 purchasing history 375

Q

quadratic regression 294
quality of the item 354
quality of the predictive model 182
Quantcast 146
Query 312
query results 114
query terms 359
Query. See Lucene
QueryFilter. See Lucene
QueryParser 312
questions and answers 8, 26, 82–83, 103, 206

R

Racofi. *See* Cofi radial basis function (RBF) 275, 295, 298–299 RAM 325 RAMDirectory 312 random 250 RangeFilter 334 RangeQuery 330 RapidMiner. See Waikato Environment for Knowledge Analysis (WEKA) rate 8 ratings 7, 14, 18, 26, 28-29, 35-36, 40-41, 83, 349 example 41-48 persistence model 35 RBF. See radial basis function (RBF) **RBMs 383 RDF** 109 Read A Blog 111 Reader 209 recall 310 RecodApplyTask 200 recommendation 14 recommendation engine 7, 9, 17-18, 21, 24, 37, 41, 102, 349 - 355Amazon 374-377 collaborative-based 8 content-based 359-362 high performance 379 Netflix 381-385 recommendation engines 18 recommendation system 29, 238 hybrid 355 large-scale 373 recommendations 8, 39 reference weblogs 89 ReferenceWeblog. See blogs registration 276 regression 178, 274-275, 362 See also classification RegressionModel 197–198, 300 RegressionSettings 301 RelevanceTextDataItem 359 remixability 11 response XML, handling 115 result objects, implementing 117 RetrievedBlogEntry 244 RetrievedBlogHitCollector 357 retrieving content 159–160 review 6, 9, 14 Reviewer 40 reviews 39-41, 46, 83-84 Revver 39 Rich Site Summary (RSS) 59, 108–109, 111, 124, 128-129, 139, 144

integrating providers with 139–143 parsing 141–143 RSS 2.0 141-143 rich user experience 11 robots.txt 147, 156-158 Rolex watch. See classification Rollvo 344 RSS. See Rich Site Summary (RSS) 108 rule induction 178 running Nutch 165-167 web crawler 162-163 Russian charset 210–211 RussianAnalyzer 212 RussianLetterTokenizer 210 RussianLowerCaseFilter 210 RussianStemFilter 210

S

SaaS. See software-as-a-service (SaaS) SAP 193 SAS 194 saving 9, 28 SAX 116, 119-120, 123-124, 126, 144 scaling 21 Scuttle 63-65, 81 search 9, 17, 102 architecture 310-311 base classes 116–127 definition 310 search engine 8, 85, 87, 90, 92, 104, 207, 362 ranking 10, 90, 149 search engines 145, 147, 354 community-based 344 search history 377-378 search index 22, 310 creating 314-317 search parameters 113 implementing 117 search performance optimization 338 search service 23, 311 search terms 84, 375 Searcher 323, 329, 332 searching blogosphere 111-116 blogs 111-116 with Nutch 168-169 Searchme 347 segment 315, 320, 325

select for update 25 sending messages 206 Service-Oriented Architecture (SOA) 21 services, definition 21 setBoost 328 setMaxBufferedDocs 325-326 setMaxFieldLength 326 setMergeFactor 325 shopping basket 375 sigmoidal basis functions 299 Silicon Valley 7 similarity 27, 247 similarity computation, cosine-based 42 similarity matrix 364 similarity metric 353 SimpleAnalyzer 212 SimpleBiTermStop-WordStemmerMeta-DataExtractor 100 SimpleContentType 103 SimpleKMeans 268 SimpleMetaDataExtractor 95 SimpleStopWordMetaData-Extractor 98 SimpleStopWordStemmerMeta-DataExtractor 99 simulated annealing 180 single neucleotide polymorphisms (SNP) single-link 253 single-signons 86 Singleton 323 singular value decomposition (SVD) 354, 369 sitemaps 150, 172 slop 331 SNP. See singular neucleotide polymorphisms (SNP) SOA. See Service-Oriented Architecture (SOA) social networking 26, 351 sociology 4 software-as-a-service (SaaS) 39, 334 Solr 324, 339 sorting 327 SpanQuery 330 sparse data 365 sparse matrix 353-354, 370 sparsely populated 32-34, 41, 47, 383 Sphere 111 spider trap 149 Spring 30, 59, 341 Spring bean 323

SPSS 193 spurl.net 36 square matrix 295, 370 Stack. See text analysis standard data mining API 193 StandardAnalyzer 212 StandardTokenizer 210 stateless 21 statistical 294 statistics 176 stem 207 stemmer analyzers 213 stemming 31, 58, 94, 99-100, 102, 104definition 29 stickier 8, 10 stochastic simulation 287 stop terms 98 stop words 30, 94, 98-99, 207,358removing 98-99 StopAnalyzer 212 Strategy 71 subcategory 50 supervised learning 178, 299 SupervisedAlgorithmSettings 300-303 SupervisedModel 197, 300 SupervisedSettings 301 support vector machine (SVM) 180, 295 Surowiecki, James 4 SVD. See singular value decomposition (SVD) SVDExample 371 SVM. See support vector machines (SVM) 178 SVMClassificationSettings 303 SVMRegressionSettings 301 sweet spot 351 Synchronous services 21 SynonymPhraseStopWord-Analyzer 212 SynonymPhraseStopWordFilter 216 - 218synonyms 31, 53-55, 58, 207 injecting 214-218 SynonymsCache 215 synonymy 369

T.

Tag 221 tag cloud 8, 15, 208 building 57–59, 62, 69 definition 57 TagCloud.com 59 TagCloudElement 71-75, 77-79 tagging 9, 28, 51–56, 60, 62–63, 65-69, 78-79, 342, 349 introduction 51 TagMagnitude 222, 225 TagMagnitudeVector 225, 244, 246,353 tags 8, 14–15, 18, 207 tan hyperbolic functions 297 Task 195-196 Taste. See collaborative filtering taxonomyParentId 196 Technorati 108, 111, 124, 128, 131, 134–135, 144, 244–247, 262, 275, 287-290 term frequency (TF) 30, 328, 358 term frequency vector 324 term vector 29, 32, 34, 48, 93, 207, 241, 288, 353, 362 infrastructure 225-231 representation 206 term vectors 30-31, 34 term-frequency 149 TermFreqVector 356–357 TermQuery 330 terms, definition 30 text analysis 206-221, 231, 237-239, 350 infrastructure 221-237 text analytics 359 text analyzers 208 stemmer analyzer 213 text clustering 242-244 text parsing 207 text processing 247, 261 TextAnalyzer 232 TextDataItem 242, 359 The Hundredth Monkey 5 The Long Tail 18, 41 The New Yorker 4 The Wall Street Journal 36 threshold 297 Time 128 Token 209 TokenFilter 214-217 tokenization 31,94 definition 208 tokenize 207 Tokenizer 209 Tokenizer, European 210 TokenStream 209-214 Tomcat 339 toolkit, text analysis 206 tools 84 top 10 8

Top Item List 351 top n recommendation 352, 363 Top Reviewers list 39 TopDocCollector 336–337 TopDocs 336–337 TopFieldDocs 336–337 topical crawlers 149 top-seller lists 374 Toxi 63–65, 81 TP53 346 training process 298 transaction history 23–24, 28 TreeSettings 301

U

UGC. See user-generated content (UGC) undirected path 287 University of Waikato 182 unstructured text 25, 27, 30, 40 unsupervised learning 178, 240, 299 URLs, extracting 160-161 user interactions 349, 363 user profile 12, 351 user rating 20, 35, 46 user-based analysis 352-353 user-centric applications 6, 12 - 14user-generated content (UGC) 12, 206, 275, 322 definition 82 tags 26 user-item dataset 363 user-item matrix 364, 369 Userland Software 109 users 26 clustered 9 user-user similarity matrix 363

V

validation window 38 variables 177 vector 27, 30–34, 43, 46–48 space model 30, 327 videos 23, 33, 51–52, 80, 82, 103, 107, 354 content type 84, 102 dataset 33 example analysis 41 integration architecture 23 metadata 26 Revver 39 tagging 14 YouTube 5, 33 viral 5, 7 viral marketing 36 Vista 107 VisualizeTagCloudDecorator 76-77, 79vocabulary 51-53, 60, 80 Volinsky, Chris 381 voting 9, 15, 28, 35, 41, 46

W

Waikato Environment for Knowledge Analysis (WEKA) 175, 182-193, 241, 262-268, 275, 281, 287-288, 290, 292-296, 299-300, 306, 366, 370 APIs 186-193 installation 186 tutorial 183-185 watches 279 Web 2.0 6, 10-11, 14, 19, 39, 62 web 2.0 289 Web 3.0 9, 11, 19 web application 3, 20 web applications 3 web crawler 146, 149-152, 157, 163 building 152-164 running 162-163 web crawling 22, 82, 145-152, 342 deep 150 process 147-149 why 146 web server 24 web spiders 146 Web2.0 94, 106 WEKA APIs 186-193 WEKA. See Waikato Environment for Knowledge Analysis (WEKA) 275 weka.associations 188 weka.attributeselection 188

weka.classifier 187 weka.clusterer 187 weka.core 186 weka.filters 188 WEKABlogClassifier 287, 292, 300 WEKABlogDataSetClusterer 262 WEKABlogPredictor 288, 299 WEKAPredictiveBlogDataSet-CreatorImpl 287 White, Tim 164 WhitespaceAnalyzer 212 WhitespaceTokenizer 210 Wiki 89–90, 105 Wikipedia 89-90, 106, 152, 162, 164 - 165, 169wikis 8-9, 18, 83-84, 86, 89-92, 104 WildCardQuery 331 window of terms 215 Winer, Dave 109 Wisdom of the Crowds 4 word frequency 7 works 298 worksheets 84 world wide web 145 write lock 324

Х

XML response, parsing 123-126

Y

Yahoo 56, 58–59 blog 111 music 17 YALE. See Yet Another Learning Environment (YALE) Yet Another Learning Environment (YALE) 183 YouTube 5, 33

Ζ

ZoomCloud 59 Zopto 111

JAVA/WEB

Collective Intelligence IN ACTION

Satnam Alag

n the internet, harnessing the collective wisdom of users can be a key to success. A new category of programming techniques lets you discover the valuable patterns, inter-relationships, and individual profiles the collective intelligence—locked in the data people leave behind as they traverse and interact on the web.

66 Use these CI techniques to extract valuable data from your applications.

Free ebook

SEE INSERT

-FROM THE FOREWORD BY Richard MacManus, ReadWriteWeb

Collective Intelligence in Action starts with the principles of the subject and ideas for building more interactive sites. It then follows a running example to develop an immediately useful Java-based CI toolkit. You'll learn to mine both your own site and the wider web to uncover trends and make practical predictions and recommendations. Along the way, you'll work with numerous helpful APIs and open source toolkits that substantially reduce development effort. This book is written for Java web developers.

What's Inside

- · Reusable code for intelligent
 - * search
 - recommendations
 - * predictions
- · Web crawling and text analysis using Lucene and Nutch
- · Machine learning using WEKA
- · How to implement the Java Data Mining (JDM) standard

About the Author

Satnam Alag is currently the vice president of engineering at NextBio. He was formerly the Chief Software Architect at Rearden Commerce and has a PhD from UC Berkeley.

Online access to the author, code samples, and (for owners of this book) a free ebook at www.manning.com/alag or www.manning.com/CollectiveIntelligenceinAction

"It's technical, it's theoreticalbut most importantly, it's practical."

> —Taran Rampersand KnowProse.com

"Harness the untapped power of your imagination."

> —John Tyler UBS Investment Bank

"Learn practical, hands-on, machine learning."

-Robi Sen, Twin Technologies

"This is the right book on collective intelligence. I wish I'd had it a few years ago."

> —Jérôme Bernard Elastic Grid LLC

"I recommend this book for any developer of social networking sites."

> —Sopan Shewale TWIKI.NET-Enterprise WIKI