
Creating
Maintainable
APIs

A Practical, Case-Study Approach
—
Ervin Varga

www.allitebooks.com

http://www.allitebooks.org

 Creating Maintainable
APIs

 A Practical, Case-Study Approach

 Ervin Varga

www.allitebooks.com

http://www.allitebooks.org

Creating Maintainable APIs: A Practical, Case-Study Approach

Ervin Varga
Expro I.T. Consulting, Kikinda
Serbia

ISBN-13 (pbk): 978-1-4842-2195-2 ISBN-13 (electronic): 978-1-4842-2196-9
DOI 10.1007/978-1-4842-2196-9

Library of Congress Control Number: 2016959187

Copyright © 2016 by Ervin Varga

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material
contained herein.

Cover image designed by Freepik

Managing Director: Welmoed Spahr
Lead Editor: Steve Anglin
Technical Reviewer: Jaroslav Tulach and Sverrir Sigmundarson
Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black, Louise Corrigan,

Jonathan Gennick, Robert Hutchinson, Celestin Suresh John, Nikhil Karkal, James Markham, Susan
McDermott, Matthew Moodie, Natalie Pao, Gwenan Spearing

Coordinating Editor: Mark Powers
Copy Editor: Teresa F. Horton
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com ,
or visit www.springeronline.com . Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com , or visit www.apress.com .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales .

 Any source code or other supplementary materials referenced by the author in this text are available to
readers at www.apress.com/9781484221952 . For detailed information about how to locate your book’s source
code, go to www.apress.com/source-code/ . Readers can also access source code at SpringerLink in the
Supplementary Material section for each chapter.

Printed on acid-free paper

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
http://www.apress.com/9781484221952
http://www.apress.com/source-code/
http://www.allitebooks.org

 To my family (my wife Zorica with my sons Andrej and Stefan),
who put in the lion's share of the effort to make this book a reality. I'm grateful to them!

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Author ... xiii

About the Technical Reviewers ...xv

Acknowledgments. ..xvii

Introduction ..xix

 ■Chapter 1: Information Hiding and APIs .. 1

 ■Chapter 2: Modular Design .. 17

 ■Chapter 3: Designing Classes for Reuse .. 45

 ■Chapter 4: TDD as an API Design Technique .. 69

 ■Chapter 5: Identifying Resources .. 97

 ■Chapter 6: Versioning REST APIs ... 109

 ■Chapter 7: Encoding Actions on Resources ... 119

 ■Chapter 8: Implementing Synchronous and Asynchronous REST APIs 135

 ■Chapter 9: Documenting REST APIs ... 143

 ■Chapter 10: Testing REST APIs .. 159

 ■Chapter 11: Implementing Messaging APIs .. 171

 ■Chapter 12: Apache Kafka as a Messaging Hub .. 187

 ■Chapter 13: Testing Messaging APIs ... 203

 ■Chapter 14: Schema-Based Messages .. 215

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS AT A GLANCE

vi

 ■Chapter 15: The Core JSON API ... 229

 ■Chapter 16: Evolving the JSON API.. 249

 ■Chapter 17: Katharsis .. 269

Index ... 289

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

About the Author ... xiii

About the Technical Reviewers ...xv

Acknowledgments. ..xvii

Introduction ..xix

 ■Chapter 1: Information Hiding and APIs .. 1

Entropy and Its Impact on Assumptions ... 4

Case Study: API for Calculating an Integral of a Function .. 8

Version I: Direct Summation (Riemann Sum) .. 8

Version II: Simpson’s Rule .. 9

Version III: Romberg’s Method .. 13

Summary .. 14

References ... 16

 ■Chapter 2: Modular Design .. 17

API-Driven Development .. 18

Use Case ... 19

Abstraction ... 20

Data .. 20

Encapsulation ... 22

Type Coercion Case Study .. 22

Standard Java’s Limitations ... 27

OSGi as a Disruptive Technology .. 28

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS

viii

OSGi in Action ... 29

Modular Integral Calculation .. 30

Summary .. 40

References ... 43

 ■Chapter 3: Designing Classes for Reuse .. 45

Case Study: Client of Reuse ... 47

Version I .. 47

Version II ... 51

Version III .. 55

Conclusion .. 57

Case Study: Provider of Reuse ... 59

Summary .. 65

References ... 67

 ■Chapter 4: TDD as an API Design Technique .. 69

Case Study: TDD Doesn’t Replace OOD Principles.. 71

Conclusion .. 74

Case Study: Tests Are Rubbish Without TDD ... 75

Case Study: Retrofi tting Tests to Follow TDD .. 77

Case Study: Introduction to BDD .. 81

Case Study: TDD for APIs Is a Complex Topic ... 87

The Subtleties of the Spliterator API ... 88

Checking for API Incompatibilities Between Different Versions .. 88

Postprocessor as a Rescue for Bugs .. 89

Better Serialization Support ... 89

Performance Guarantees Are Mandatory ... 89

The Reworked Version Ready for Publication ... 89

Summary .. 93

References ... 95

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS

ix

 ■Chapter 5: Identifying Resources .. 97

Case Study: Problem Reports Microservice ... 99

Discovering and Describing Resources .. 99

Summary .. 106

References ... 107

 ■Chapter 6: Versioning REST APIs ... 109

The Main Traits of REST API Versioning .. 110

Altering the Resource URLs .. 111

API Keys as a Way to Control Versioning .. 112

The Importance of Stable UR[IL]s ... 112

Switching API Versions ... 116

Upgrading the HTTP Version ... 117

Summary .. 117

Reference ... 118

 ■Chapter 7: Encoding Actions on Resources ... 119

Implementing the Core Features .. 121

Interaction of Resources via Hypermedia Controls ... 121

Skeleton of the Service .. 122

The Remaining Representations and Controllers ... 125

Smoke Testing the Service ... 129

Adding an Ontology .. 132

Summary .. 132

References ... 133

 ■Chapter 8: Implementing Synchronous and Asynchronous REST APIs 135

Client-Controlled Asynchrony ... 135

Server-Controlled Asynchrony .. 137

Case Study: Favorite Problem Report ... 139

Summary .. 141

Reference ... 141

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS

x

 ■Chapter 9: Documenting REST APIs ... 143

Case Study: Attempting the Universal Method ... 145

Case Study: Producing a Swagger API Specifi cation .. 150

Extending the Service to Implement This New Specifi cation ... 154

Smoke Testing the Service ... 156

Generating the Dynamic HTML Client ... 156

Summary .. 156

Reference ... 157

 ■Chapter 10: Testing REST APIs .. 159

Case Study: Testing with a Level 2 Tool .. 159

Examine the Service Use Case ... 160

Find General Information Use Case .. 161

Delete a Problem Report Use Case ... 164

Load Testing the Examine the Service Use Case .. 165

Case Study: Testing with a Level 3 Tool .. 165

Summary .. 168

Reference ... 169

 ■Chapter 11: Implementing Messaging APIs .. 171

Case Study: Load Profi le Generator .. 172

Message Design ... 174

Project Setup .. 177

RPC Protocol Design ... 178

Service Implementation .. 179

Integration Test ... 183

Summary .. 184

References ... 185

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS

xi

 ■Chapter 12: Apache Kafka as a Messaging Hub .. 187

Case Study: Distributed LP Classifi cation System .. 187

Setting Up Kafka ... 188

Refactoring the Smart Meter to Use Kafka ... 190

Implementing the LP Classifi er ... 196

Summary .. 199

References ... 201

 ■Chapter 13: Testing Messaging APIs ... 203

Case Study: Attaining Automated Integration Tests .. 203

Refactoring the ClientServerTest Test Case .. 204

Testing the LP Classifi er ... 207

Full End-to-End Test ... 209

Summary .. 212

Reference ... 213

 ■Chapter 14: Schema-Based Messages .. 215

Version 1.0.0: Simple Lottery Ticket ... 217

Version 1.0.1: Bug Fix ... 219

Version 1.1.0: Going International .. 221

Version 1.2.0: Automaton-Pick Feature .. 222

Version 2.0.0: Multigame Lottery Ticket ... 223

Version 2.1.0: Separate Game Start Times ... 226

Summary .. 227

References ... 227

 ■Chapter 15: The Core JSON API ... 229

Case Study of an Industry Standard Message Format ... 231

Common Information Model of a Power System .. 232

Serialization of a Power Network with CIM/XML .. 233

 ■ CONTENTS

xii

Practical Guide to JSON API ... 236

Fetching an Individual Resource .. 236

Fetching Related Resources with Autoinclusion ... 238

Fetching Relationships ... 240

Fetching a Collection of Resources .. 241

Fetching Related Resources with Explicit Inclusion ... 242

Fetching a Partial View of an Individual Resource .. 243

Creating a New Resource ... 244

Updating a Resource .. 245

Deleting a Resource ... 246

Summary .. 246

References ... 247

 ■Chapter 16: Evolving the JSON API.. 249

A Case Study of Integrating Disparate Data Sources ... 249

Main Directions to Evolve the JSON API ... 255

Extensions .. 255

Profi les.. 264

Summary .. 265

References ... 267

 ■Chapter 17: Katharsis .. 269

Community Game Service .. 270

The Architecture of the Community Game Service ... 273

Specifying Resources ... 277

Specifying Resource and Relationship Repositories .. 280

A Sample Session with the Community Game Service ... 282

Summary .. 286

Reference ... 288

Index ... 289

xiii

 About the Author

 Ervin Varga has been in the software industry as a professional software
engineer since 1994. As an owner of the software consulting company
Expro I.T. Consulting (www.exproit.rs), he is always in touch with
production software. He is an IEEE Software Engineering Certified
Instructor, and an assistant professor at the University of Novi Sad, Faculty
of Technical Sciences, Novi Sad, Serbia. He was the primary technical
reviewer for the book Thinking in Java (4th ed.) written by Bruce Eckel.
He was also the co-author with Bruce Eckel of the book Thinking in Java
(4th ed.) Annotated Solutions Guide published by MindView LLC in 2007.

 Ervin actively participates in open-source projects. He is the author of
the Docker image (evarga/jenkins-slave) to serve as a Jenkins slave node in
distributed builds.

 He has an MSc in computer science and a PhD in electrical
engineering. His thesis was an application of software engineering and
computer science in the domain of electrical power systems.

 LinkedIn profile: linkedin.com/in/ervinvarga
 E-mail: e.varga@ieee.org

http://www.exproit.rs/
https://rs.linkedin.com/in/ervinvarga

xv

 About the Technical Reviewers

 Jaroslav Tulach is the founder and initial architect of NetBeans, later acquired by Sun Technologies. As
creator of the technology behind NetBeans, he is still with the project to find ways to improve design skills
among the programmers who contribute to the success of the NetBeans open source project.

 Sverrir Sigmundarson has more than 15 years of industry experience building high-performance, mission-
critical software for the finance and software industries. He holds an MSc degree in Computer Science from
Reykjavik University in Iceland. He is currently on a special assignment as a stay-at-home-dad living in
Strasbourg, France, with his wife and son. He can be contacted through his web site, coruscantconsulting.
co.uk or via linkedin.com/in/sverrirs .

xvii

 Acknowledgments

 Publishing a book is a team effort. I am really thankful to the team at Apress, especially Steve Anglin,
Mark Powers, Laura Berendson, Alexander James, and Amrita Stanley for their tremendous support and
professionalism. Their experience in the book publication domain was indispensable.

 I am also happy and indebted that Jaroslav Tulach accepted the role of the technical reviewer. His
comments and mathematically precise methodological reviewing approach made huge quality improvements
in the text. I would also like to thank Dr. Heinz Kabutz for recommending and introducing me to Jaroslav.

 Many thanks to Sverrir Sigmundarson for reviewing Chapters 10 through 13 and his useful remarks.

http://dx.doi.org/10.1007/978-1-4842-2196-9_10
http://dx.doi.org/10.1007/978-1-4842-2196-9_13

xix

 Introduction

 The goal of this book is to teach you how to design maintainable application programming interfaces (APIs)
with reuse in mind. Of course, by reuse I don’t mean simply visiting http://www.programmableweb.com
and starting to search the API directory, although if you find something interesting there, then it might be
a good source of inspiration. It is hard to encompass everything regarding APIs in a single book. It is even
impossible to fully cover just one particular type of API (like REST) in one book. Therefore, the focus here is
solely on the gist of producing evolvable APIs. Nevertheless, learning the foundations is the most important
thing before crafting more complex solutions (including a business model around APIs using some of the
available API platforms, like the one provided by Apigee).

 The book is made up of four logical parts: basic principles of API design in the realm of object-oriented
design (OOD) and object-oriented programming (OOP), HTTP REST APIs, messaging APIs, and JSON API as
a concrete, powerful hypermedia-driven media type. These parts can be read in any order, but I suggest you
start with Part I. This presents some essential topics, which are required to understand the rest of the text.
Part III is independent of Parts II and IV. I would recommend reading Part II before Part IV. Of course, the
best result is achieved by following the text in a linear fashion.

 The book tries to balance stability and pragmatism. The main ideas are presented in a form that will
hopefully remain valid for the next couple of years. On the other hand, to make the elaborations practical,
I was forced to stick to concrete versions of frameworks, which will surely change much quicker than the
accompanying principles and methods. On the other hand, without practical case studies, the reader will
have a hard time mapping high-level concepts to everyday situations. To compensate on the side of volatility
for the referenced frameworks, the book also has a Github repository belonging to Apress. This will be
updated as new versions of the frameworks are published. Some novel, interesting projects, like GraphQL
(http://graphql.org), were not examined as they are mostly in draft form, so considerable changes are
expected in their specifications in the near future.

 The book also tries to introduce the reader to the Semantic Web technology in a very lightweight
manner. This is done in an attempt to demonstrate the semantic gap problem in current REST APIs, and
how it could be mitigated by using linked data concepts. Many advanced topics, like semantic inference and
reasoning, aren’t scrutinized, although they are the most beautiful and powerful aspects of the Semantic
Web movement.

http://www.programmableweb.com/
http://graphql.org/

1© Ervin Varga 2016
E. Varga, Creating Maintainable APIs, DOI 10.1007/978-1-4842-2196-9_1

CHAPTER 1

Information Hiding and APIs

Encapsulation, information hiding, interface segregation principle, dependency inversion principle, and
the list goes on. Is it really the case that they talk about fundamentally different things? Can we find some
common denominator? How does this relate to application programming interfaces (APIs)? Certainly, there
are object-oriented design (OOD) and object-oriented programming (OOP) principles that aren’t directly
applicable to APIs. There are some that are hard to apply in the correct way. Without entering an endless
fight about rationalism versus empiricism (for more details visit http://wiki.apidesign.org/wiki/
RationalismVsEmpriricism), we will discover universal principles to create maintainable and evolvable
APIs. As we will see, all of them aim to tame complexity and control changes.

I still remember as a student an enlightening lecture about the basics of electrical power systems. The
professor told us that we should forget those complex and convoluted formulas to reason about physical
processes. If we wanted to understand why we need shielding, to get a feel about the level of the needed
shielding, to judge about the size of the wires, then we needed something much simpler. In other words,
we have to touch the crux of the things. In this case, it was the relationship P = UI (these are electrical
engineering symbols). If we want to operate an appliance (having some fixed power) with a lower voltage,
then we will need a higher current and thicker wires. On the contrary, if we use thinner wires, then we
will need a higher voltage, but also more protective shielding. In this chapter, we try to find the P = UI
equivalent to maintainable APIs. Our quest here is to unearth the essential forces behind changes, and to
illuminate some techniques to control those changes. To make the whole discussion comprehensible, we
also present a simulation about what typically happens in the software industry during development and
maintenance in relation to APIs.

1Does it help if I say that reactive power exists in an AC circuit when the current and voltage are out of phase? Or maybe
to say that the presence of capacitors or inductors in a circuit would create such power? Or even better, that reactive
power helps active power flow through the network? None of these are satisfactory, nor illuminate the essence of reactive
power. However, everybody agrees that reactive power is crucial to maintain the operation of a power grid. The same is
true with an API. Even if you don’t fully understand it, it will still dictate the destiny of your software system, so it is
advantageous to grasp it!

Electronic supplementary material  The online version of this chapter (doi:10.1007/978-1-4842-2196-9_1)
contains supplementary material, which is available to authorized users.

http://wiki.apidesign.org/wiki/RationalismVsEmpriricism
http://wiki.apidesign.org/wiki/RationalismVsEmpriricism
http://dx.doi.org/10.1007/978-1-4842-2196-9_1

Chapter 1 ■ Information Hiding and APIs

2

■■ Tip  We also need to outline what we mean by an API. In some ways, it is hard to define, like asking
someone to explain what the reactive power is in power transmission and distribution networks.1 Whatever
definition you use it must embrace an important goal: It is the responsibility of the author of the API to make it
right! There can be no excuses that users misused it and no excuses that the previous version was bad, and
we needed to break compatibility. I would recommend you read Jaroslav Tulach’s excellent book Practical
API Design (Apress, 2008) to get a better insight into the types of APIs we’re going to talk about in this part
of the book. His book will also equip you with concrete technical knowledge (with a focus on Java) about
evolving APIs. At any rate, we will leave the question “What is an API?” open for now, and let you synthesize the
definition of it by yourself (after reading this book).

Why is there a need to give so much attention to an API? It’s predominantly because APIs cannot be
treated as an afterthought of development; that is, it isn’t straightforward to bolt them on top of existing
applications and expect that everything will just work out well.2 An API has to grow from inside by letting an
application expand around it. To create maintainable APIs, we first need to analyze what forces influence our
decisions, and what happens to a software system during its exploitation.

The maintainability of an API entails the search for likely changes in the future. The idea is to make the
system more flexible and thus easy to modify, in the areas where we expect those changes to happen. The
requirements should reflect those concerns (give some hints), as it is nearly impossible to design a system
with pieces that are all straightforwardly malleable. Therefore, we start with an initial set of assumptions and
group them into two broad categories: those that remain relatively fixed, and those that are expected to be
in flux. Of course, at any given time ostensibly all assumptions are rock solid. The next quote sets the stage
between assumptions and induced changes in a system.

Death is very likely the single best invention of Life. It is Life’s change agent. It clears out the
old to make way for the new.

—Steve Jobs, 2005 Stanford Commencement Address

This is exactly the driving force behind changes, the death of assumptions about the state of things
inside the software and its surroundings (see the sidebar “Types of Software Systems” to better understand
how an environment affects the software). Figure 1-1 shows a continuous sequence of changes during
the software’s life cycle. We see here that a die out of an assumption triggers a change, which results in
the establishment of a new (possibly better) assumption about the real world, hence our software. If
this assumption turns out to be unstable, then it will eventually expire. That would initiate a new cycle
(this is similar to the notion of systems with a feedback control loop). Another way to look at this is like
an evolutionary race, where the goal is for stakeholders to reach the Nash equilibrium3 in regard to
assumptions.

2One of the biggest mistakes is to take an existing implementation and simply treat it as an API. That doesn’t work. On
the other hand, it is possible to develop an API for existing applications. For example, Amarok (see https://amarok.
kde.org) has a JavaScript extension API: you can add new menu items, modify a list of songs, and so on. Originally it
had no API at all. Another superb example is the hue demonstration video of adding a hypermedia-driven REST API on
top of an existing non-hypermedia-based API (see reference 1 in Chapter 7).
3For more information see https://www.khanacademy.org/economics-finance-domain/microeconomics/
nash-equilibrium-tutorial.

https://amarok.kde.org/
https://amarok.kde.org/
http://dx.doi.org/10.1007/978-1-4842-2196-9_7
https://www.khanacademy.org/economics-finance-domain/microeconomics/nash-equilibrium-tutorial
https://www.khanacademy.org/economics-finance-domain/microeconomics/nash-equilibrium-tutorial

Chapter 1 ■ Information Hiding and APIs

3

TYPES OF SOFTWARE SYSTEMS

We can classify software systems in various ways. One such approach is especially useful from the
viewpoint of maintenance, and is based on the nature of a system’s interaction with its environment.
This model suggests that the necessity of changing software is directly proportional to the intensity of
such interactions. By intensity we mean the strength of the environmental influence on the software.
We can even extend this model by saying that a software system might also affect its environment,
and trigger changes in it. Systems highly dependent on their environment could even have an API for
self-adapting mechanisms, if such autoregulation is feasible for the matching system.4 At any rate, this
classification might help us to better understand the potential sources of changes.

The following are the three categories of software systems.

1.	 S type systems: The environment is only taken into account during the initial
requirements specification. Systems of this type are static, and solve some well-
defined problem. There is no interaction with an environment during execution (we
don’t assume providing input data by a user as a classical interaction). If initial
conditions change, then a brand new system is realized. For example, the popular
Tic-Tac-Toe game is an S type system. The problem space is totally searchable
(all possible moves can be easily enumerated and evaluated in real time), and
there is a straightforward optimal strategy for both players. In other words, if both
players play optimally, then all games will end in a draw.

2.	 P type systems: These systems have a very complex and vast problem space. There
is no way to iterate over all positions in real time (in case of a board game, like
chess or go). For this reason, a system of this type employs a simplified abstract

4Self-adapting systems are commonplace in distributed control systems, with an API to tune configuration parameters, or
other aspects of self-adaptation. The JMX technology (for a good overview, visit https://docs.oracle.com/javase/
tutorial/jmx/) might be handy for exposing management characteristics of a system to tune control parameters.

Figure 1-1.  The perpetual cycle of changes initiated by invalidated assumptions. We can name this cycle
Assume–Implement–Employ–Assess, where during an assessment phase we discover the death of assumptions.

https://docs.oracle.com/javase/tutorial/jmx/
https://docs.oracle.com/javase/tutorial/jmx/

Chapter 1 ■ Information Hiding and APIs

4

model as a replacement of the original domain. Of course, solving this simplified
model will not necessarily result in producing an optimal answer. Therefore, model
improvement efforts are an extra source of changes compared to the previous S type
systems. Nevertheless, the original problem domain doesn’t change over time.5

3.	 E Type Systems: These are the most complex systems. They have a complex
problem domain, so simplified models are needed as in the case of P type systems.
However, the execution environment (i.e., real world) is an integral part of it. Many
times, especially in regulated markets, the environment is the principal reason for a
change. For example, accounting software definitely must follow all financial rules
established by a government. The problem is that those changes cannot be always
predicted with 100% accuracy. They do sometimes pose a huge challenge, when
the solution cannot nicely fit into an existing architecture.

If we treat these categories (established in Lehman’s law of software evolution; see [3]) as indicators of
how much we can assume about the future, then as we move from S to E type the amount of “stability”
declines. The main problem with most university curricula6 and software books is that they dodge E type
systems. On the contrary, reality loves them.

The former Sun Certified Java 2 Developer certification process (I got certified before Oracle took over Sun)
exhibits a lot of the cycle from Figure 1-1. The requirements specification for the assignment was intentionally
written in a vague manner. The goal was to leave plenty of opportunities for assumptions, and to somehow
simulate E type systems. The beauty of the certification process was that all assumptions were supposed to be
properly documented. Any unmentioned assumption was treated like an omission, as if the developer didn’t even
think about it during the implementation. For example, if pagination (as a technique to control the amount of
returned data) was not mentioned, but the implementation returned all data at once, then this was an unconscious
assumption (one of the wickedest sort).7 The assessment phase was basically the evaluation of your submission,
together with the set of associated assumptions. Of course, documented but wrong assumptions were also
penalized. All in all, the soundness of the solution heavily depended on the initial set of assumptions. The points
loss rate was directly proportional to the assumptions die-out pace (unconscious assumptions died instantly).

Entropy and Its Impact on Assumptions
Entropy is a fundamental phenomenon that permeates our physical world. We have all experienced its effects in
our everyday lives. Murphy’s law (you can find lots of references of this kind at http://www.rationality.net/
murphy.htm) even states that “things will go wrong in any given situation, if you give them a chance.” The truth is
that you don’t even need to do anything; entropy will spontaneously raise the chance above zero. Entropy is the
degree of randomness of a system; that is, the level of its disorganization. Nature will always strive to dismantle
any organized system into a total fuzziness. A software system is also on an entropy’s target list.

Suppose we start with an uninitialized computer system. Its memory is filled with garbage. When you turn
on your computer (assuming the memory gets initialized arbitrarily), then the probability is actually zero that
the bytes will arrange themselves into a useful program. If we would like to use this computer, then we need

5Well, this is not quite true, as the rules of chess did change over its history. However, such changes are extremely rare,
and nobody anticipates further alterations to chess rules in the future.
6Just imagine the reaction of a student, after she or he is informed (at the last minute) that some of the settings in her or
his semester project was changed! I, as a professor, would surely have consequences.
7For another example of a wicked assumption (undocumented software features) you can read my LinkedIn blog post at
https://www.linkedin.com/pulse/instead-rules-tell-story-ervin-varga. The example in the article is tightly
associated with an eager empirical programming, where perceived behavior prevails over the specification itself.

https://www.google.com/url?q=http://www.rationality.net/murphy.htm&sa=D&ust=1472335914670000&usg=AFQjCNGQFE_dNidULzrocvZ2yldYWZFXNQ
https://www.google.com/url?q=http://www.rationality.net/murphy.htm&sa=D&ust=1472335914670000&usg=AFQjCNGQFE_dNidULzrocvZ2yldYWZFXNQ
https://www.linkedin.com/pulse/instead-rules-tell-story-ervin-varga

Chapter 1 ■ Information Hiding and APIs

5

to fill its memory with instructions and data, which entails bringing order into a system. By increasing order,
we basically defy entropy. As a positive side effect, we also acquire efficiency. At least we can use the computer
now for our own purposes. On the other hand, this is the moment when the fight begins. We constantly need
to push back entropy’s attempts to rob us of the pleasure of further exploiting our computer system. At any
moment, what stands between us and the computer is an API, which enables us to reach out to the features of
our computer system (we hand wave a bit here, as we equalize API and the user interface).

The corollary is that if you don’t invest energy in keeping something useful, it will simply rot over time.
Broken windows theory is a good allegory for what happens to unmaintained buildings as well as to messy
software. Entropy is an inherent state of nature.

Figure 1-2 shows the three major intents we like to achieve in relation to an API, taking entropy into
account. As long as we maintain order we defy entropy and preserve efficiency. As we invest more energy
into an API, we actually combat the natural tendency of disorder. There might be entropy and disorder on the
left or right side of the universe (see Figure 1-3), but the goal of the API is to prevent it from flowing from one side
to the other. The API is a gatekeeper. It also gives us a simplified view of how things look on the “other side.” We
might not fight the entropy in the whole universe, but if we invest correctly into APIs at right places, then we’ll be
able to keep entropy in isolated locations, where it cannot do as much harm. In general, an API has two goals:

•	 To protect client programmers from changes inside a target system: A well-defined API
hides the internal details of a system and localizes the effects of a change behind an
API. Client programmers don’t need to worry about being endangered by the ripple
effects of a change in the system.

•	 To protect the target system from whims of client programmers: A well-organized API
prevents client programmers from bringing disorder into the system, because a weak
API allows loose behavior. If we expose too many internal details, then we need to
bring in futile rules and expect people to follow them. Entropy will kick in and ruin
everything. Therefore, by exposing less we actually reduce the surface area over
which entropy can penetrate (through an API) into a system.

Figure 1-2.  We would like our API to be stable, efficient, and useful. These have to be balanced in the context
of entropy. We can always create a supergeneric, but utterly useless API (I used to call microservices of this sort
neutrino-services). Conversely, it is not hard to make a superefficient but totally unstable API.

Chapter 1 ■ Information Hiding and APIs

6

Figure 1-3 illustrates the previous two points, which have mentioned exposure for the first time so
far. Hiding details not relevant for external parties (other components, or a client programmer) is what
information hiding is all about. Without it we wouldn’t be able to control the development and operation
of a software system, as entanglement (both static and dynamic) would be unbearable. The main message
is that the author of an API must be responsible for both directions. If you expose a field directly, without
shielding it with methods, then that is your decision. If, for some reason, the user sets the field in a wrong
way, or at a wrong moment, then this is your fault. All this boils down to the entropy of assumptions. If more
is exposed than necessary, then the number of safe assumptions drops; that is, we have reduced the set of
assumptions for which we can surely state that they will remain valid over some period of time.

Figure 1-3.  The API protects clients from internal changes, and allows them to be clueless. Also, the API
protects the system against careless usage. Be aware that the same client could be both clueless and careless.
However, all of them will relentlessly criticize you and your API if things go amiss.

8The behavior of software is what determines whether it is functionally compatible with its past or possibly
future versions.

Entropy, assumptions, and information hiding also explain the amoeba effect (see [1] for more details),
which is a dichotomy between the actual state of a software system and our expectations (how we think it
behaves8). The expectations are nothing but assumptions. If the system is sloppy in regard to information
hiding, then our ability to safely set valid assumptions is rather limited. This will have dire consequences
later on, when we start to discover that our previous assumptions were wrong. In other words, a high die-out
rate of assumptions will trigger lots of code changes on both sides.

Chapter 1 ■ Information Hiding and APIs

7

It is tempting to combat entropy by making an overly generic API. If we mechanically parameterize
every aspect of a function, then we will miss an opportunity to make clients’ lives easier. The API, as well
as the client’s code relying on it, will become cumbersome. Here is a concrete example, using MIT Scheme
(a variant of Lisp, and my favorite language) to illustrate the point (it is always beneficial to cultivate the
polyglot programming principle). Suppose we came up with the following accumulate function:

(define (accumulate combiner null-value term a next b)
 (if (> a b)
 null-value
 (combiner (term a) (accumulate combiner null-value term (next a) next b))))

The Scheme is a functional programming language treating functions as first-class citizens in the program.
The accumulate accepts the combiner, term, and next functions as parameters. The idea is to return an
accumulated value of the combiner function (starting with an initial value of null-value) over an interval
[a, b], where points inside the interval are converted by the term function. The next function is used for
stepping through the interval. The accumulate is a recursive function, where the first point of the current interval
is combined with the result of the accumulation over the rest of the interval. In Scheme (<operator function>
<argument-list>) applies the operator function over the given arguments (these could also be expressions).

Using this version of accumulate we can easily calculate the maximum value of the sin function (this is
quite a brute-force tactic):

(accumulate max -1.0 sin 0.0 (lambda (x) (+ x 0.1)) 4.0)

We will get the result of 0.9995736030415051, which is indeed close to 1. Despite the power of accumulate,
it is hard to decipher what the given call is supposed to achieve. It begs for a comment, which is a clear sign that
the code isn’t comprehensible; that is, it isn’t self-documenting. The corollary is that an API should serve a clear
purpose, the utility of which has to be judged in the context of the target “audience.” It might be the case that this
version of accumulate is perfect in some low-level framework intended for experts. Obviously, it is a blunder to
use it directly inside a high-level application code. In the next chapter we more systematically couple APIs with
abstractions, and illuminate how proper abstractions restrict entropy’s negative effects.

■■ Note T here are two opposite forces that you as a software engineer need to keep in balance. One is
entropy with an aim to ruin the stability of assumptions, and the other one is the desire to keep the API
stable. The API cannot just simply “follow” the entropy. Once an API is published it must be available forever.9
Therefore, any change of an API needs to be done, at least, in a backward-compatible manner, annulling the
effects of entropy.

9My favorite example for this is Java’s Thread class. Since its first version it contains the next four deprecated
methods for synchronizing threads: resume, suspend, stop, and destroy. They are deadlock-prone, and unsafe
(see a detailed explanation at docs.oracle.com/javase/8/docs/technotes/guides/ concurrency/thread-
PrimitiveDeprecation.html). As far as I know, nobody is using them, but they are still with us even in the latest
edition of Java!

https://docs.oracle.com/javase/8/docs/technotes/guides/concurrency/threadPrimitiveDeprecation.html)
https://docs.oracle.com/javase/8/docs/technotes/guides/concurrency/threadPrimitiveDeprecation.html)

Chapter 1 ■ Information Hiding and APIs

8

Case Study: API for Calculating an Integral of a Function
This case study demonstrates how the leakage of implementation details jeopardizes an API’s stability.
I also clearly circumscribe what I mean by a stable API (people often fallaciously think that stable necessarily
means fixed). The task here is to specify an API for calculating the definite integral of a function f (with one
real argument) between the limits a and b. We do not delve into implementation details, but keep our focus
on only the API.

The API presented in this section is intended to be used both by client programmers and framework
providers. These parties are at the opposite end of a spectrum; that is, they “subsist” at different sides of
an API. Therefore, they have a diverse perception of what a compatible change means. We, as designers of
the API, must be aware of this situation, and take it into account. The upcoming examples illustrate what
conflicts might arise by not following the counsel that the API for clients and providers shouldn’t be mixed
(we separate them in Chapter 2).

The case study sheds light on a couple of aspects of maintainable API design. The goal is to put
those aspects into a proper context for you to be able to find matching techniques (optimized for your
programming language) to achieve them. Most of the time errors stem from improper usage of otherwise
sound techniques, due to misunderstanding the preconditions for their application.

Version I: Direct Summation (Riemann Sum)
The integral can be approximated numerically, for relatively small values of dx, using this formula:10

a

b

f f a
dx

f a dx
dx

f a dx
dx

ò = +æ
è
ç

ö
ø
÷+ + +æ

è
ç

ö
ø
÷+ + +æ

è
ç

ö
ø
÷+

é

ë
ê

ù

û
ú2 2

2
2

 ddx

It is enticing to be fast, and come up with the next variant of an API (we will use purely Java interfaces
here inside the default package11):

import java.util.function.Function;

/**
 * API for calculating an integral of a function.
 */
public interface Integral {
 /**
 * Calculates the definite integral of a function between the limits a and b.
 *
 * @param f the integrand.
 * @param a the lower bound of the limit.
 * @param b the upper bound of the limit.
 * @param dx a small step size for iterating over the specified interval.
 * @return the numerical approximation of the definite integral.
 * @throws IllegalArgumentException if b <= a or f is null or dx <= 0.
 */
 double calculate(Function<Double,Double> f, double a, double b, double dx);
}

10The summation continues until the argument to f is lower than b. We are using middle values here, therefore this is the
middle Riemann sum.
11For production you will need to introduce unique package names.

http://dx.doi.org/10.1007/978-1-4842-2196-9_2

Chapter 1 ■ Information Hiding and APIs

9

At first glance, nothing is wrong here. The interface Integral is properly documented (forget now the
@author field), the method calculate has a meaningful signature, and again it is decently described. You are
ready for the next steps:

	 1.	 Write unit tests.

	 2.	 Provide implementation according to this API.

	 3.	 Package up your stuff in the form of a jar file.

	 4.	 Publish the jar together with the javadoc documentation in some repository.

If creating APIs were be so easy, then you wouldn’t need books about them. The major hindrance in
designing a maintainable API is that you usually don’t realize your mistake until it is too late (after the API
is already published). Can you spot a problem? Is there a problem at all? That depends on what is going to
happen in the future. If this will be your sole version of the API, and you don’t plan to evolve it ever, then
you’re really done. However, a software framework’s life truly begins after the publication of its first version.
The first version is always easy, as that is when people feel like artists. However, once you switch into a so-
called sustaining mode, all the freedom is gone. Only a tough engineering job remains for the future.

Version II: Simpson’s Rule
Soon after the release of the first version, clients reported issues with performance and accuracy. The natural
choice was to harness Simpson’s Rule, which uses the following formula:

a

b

n n n kf
h

y y y y y y y y h
b a

n
y f aò = + + + + +¼+ + +[] =

-
= +- -3

4 2 4 2 2 40 1 2 3 4 2 1 , , kkh()

The first idea that usually comes to mind is to simply keep the current API, and replace the
implementation behind it. Unfortunately, we cannot do this. Simpson’s Rule expects an even number n
instead of dx. We have a problem, and none of the following choices are adequate:

•	 Let the client provide an equivalent of n in the form of dx: The client would need to
calculate the step size, which would give back the number of steps for the given
interval. For example, if n should be 10 for the interval [0,1], then dx would be 0.1.
This hack is just seemingly appropriate, and backward compatible. The ugliness of
the API is not even the biggest problem. The main issue is that old clients would get
different results, as the new version of the framework isn’t functionally compatible
with the past version.

•	 Add a new overloaded calculate method taking n instead of dx: Adding a new
method to an interface is not a backward-compatible change. Framework providers
will complain that their code doesn’t compile anymore. Here is the visible
consequence of not separating the client and provider APIs.

•	 Announce that dx from now on represents n: This is perhaps the worst incompatible
tactic here.

Faced with this riddle, a typical reaction of most developers is to start looking at programming language
mechanisms as a remedy. They will start to read blog posts, articles, and books, and stumble across the
following pieces of advice:

•	 Interfaces are bad, bare classes are better.

•	 Bare classes are bad, abstract classes are better.

Chapter 1 ■ Information Hiding and APIs

10

•	 Abstract classes are bad, final classes are better.

•	 Final classes are bad, Java 8 interfaces with default methods are better.

Some even get so emotionally attached to interfaces over abstract classes or vice versa, that they
will vehemently defend their “baby” under all circumstances. What they fail to notice is that all of these
statements are meaningless when taken out of context. They do have a value, but only when considered in
the context of higher level principles.

■■ Caution N o technical magic can compensate for the leakage of an implementation detail into an API (in our
case the dx parameter). Most technical advice written down in books and articles contains a section explaining
the prepositions of their usage (just like design patterns). You cannot neglect the context!

An API is all about clarity (see http://wiki.apidesign.org/wiki/ClarityOfTypes). It is about the
communication between the writer and users of the API. If the communication isn’t clear, it will generate
noise. How to eliminate such noise? An effective tactic is to make sure that the API can be used in only one
correct way. Clearly, Version I is far from being evident. For example, there is no guidance about how to get
an implementation for the interface. In Chapter 2 we will see how to solve this conundrum in a standard
fashion. Moreover, the method calculate has an overloaded meaning.

At this moment, an alluring strategy is to bite the bullet, and come up with the proper solution (despite
the fact that it will not be backward compatible).12 After all, it seems better to improve the situation now than
to defer the inevitable rework for later. Postponing this task will just make it harder. What should we do?

Well, we must be responsible, and preserve backward compatibility. Compatibility is a matter of an
attitude and will, rather than a pure technical skill of the API designer. Hence, we will mark the first version
of our API as deprecated (using the @Deprecated annotation), and clearly document the reason. Moreover,
we will point users to the new version. Nevertheless, we will have to support this old version forever.

In the new version (note the introduction of the IntegralV2 interface), we need to separate the
definite integral’s definition from its implementation-related part. The implementation aspect must be a
wrapper with a new abstraction, so that clients may explicitly choose the algorithm and specify custom
parameters. This approach is embodied in the principle called separation of concerns. A similar principle is
the separation of a mechanism from its policy. All in all, instead of dx or n we need to pass an instance of the
matching portfolio for grouping algorithm-specific parameters (see more about the Portfolio pattern in [4],
which is also close to the Request/Response pattern as described at http://wiki.apidesign.org/wiki/
RequestResponse). The type of the portfolio will implicitly designate the desired algorithm. Here is the new
API with the full definitions of portfolios (only the entity names shown in bold):

import java.util.function.Function;

/**
 * API for calculating an integral of a function.
 */
public interface IntegralV2 {
 /**
 * Calculates the definite integral of a function between the limits a and b.
 *
 * @param f the integrand.

12As you’ve seen, even this innocuous example contained a hideous trap. Imagine how hard the API design endeavor for
complex frameworks is (e.g., Netbeans integrated development environment [IDE], Java collections framework, etc.).

https://www.google.com/url?q=http://wiki.apidesign.org/wiki/ClarityOfTypes&sa=D&ust=1472335914731000&usg=AFQjCNHBc65Et7rT5Pfg-gRcLQDK3zDyBw
http://dx.doi.org/10.1007/978-1-4842-2196-9_2
https://www.google.com/url?q=http://wiki.apidesign.org/wiki/RequestResponse&sa=D&ust=1472335914711000&usg=AFQjCNE3cpgT76b1YUrKeLygihZC291Tlw
https://www.google.com/url?q=http://wiki.apidesign.org/wiki/RequestResponse&sa=D&ust=1472335914711000&usg=AFQjCNE3cpgT76b1YUrKeLygihZC291Tlw

Chapter 1 ■ Information Hiding and APIs

11

 * @param a the lower bound of the limit.
 * @param b the upper bound of the limit.
 * @param spec the algorithm and its associated parameters.
 * @return the numerical approximation of the definite integral.
 * @throws IllegalArgumentException if b <= a or f is null or spec is null.
 */
 double calculate(Function<Double,Double> f, double a, double b,
 IntegralPortfolio spec);
}

/**
 * The base portfolio marker class from which concrete algorithm specific
 * versions are derived.
*/
public abstract class IntegralPortfolio {};

/**
 * The portfolio for the Direct Summation method.
 */
public final class DirectSummation extends IntegralPortfolio {
 private final double dx;

 /**
 * Creates a new immutable instance of this class.
 *
 * @param dx a small step size for iterating over the specified interval.
 * @throws IllegalArgumentException if dx <= 0.
 */
 public DirectSummation(double dx) {
 if (dx <= 0) {
 throw new IllegalArgumentException(
 "The step size must be greater than zero.");
 }

 this.dx = dx;
 }

 public double getDx() {
 return dx;
 }
}

/**
 * The portfolio for the Simpson's Rule method.
 */
public final class SimpsonsRule extends IntegralPortfolio {
 private final int n;

Chapter 1 ■ Information Hiding and APIs

12

 /**
 * Creates a new immutable instance of this class.
 *
 * @param n an even positive integer representing the number of summands.
 * @throws IllegalArgumentException if n <= 0 or not even.
 */
 public SimpsonsRule(int n) {
 if (n <= 0 || (n % 2 != 0)) {
 throw new IllegalArgumentException(
 "The number of summands must be a positive even integer.");
 }

 this.n = n;
 }

 public int getN() {
 return n;
 }
}

The IntegralV2 interface can be implemented by using a switch over the instance type of
IntegralPortfolio, or via the double-dispatch approach. Nonetheless, this decision isn’t completely hidden
from implementers (see the next version). Figure 1-4 shows the class diagram of our new API (for a good
overview of the UML you can visit http://holub.com/goodies/uml/index.html).

Figure 1-4.  The class diagram of the improved API (Version II) for calculating an integral of a function. Recall
that the old interface (not shown here) is still available for clients.

The various portfolios contain selectors (getters) for the private instance field(s). In general, getters
and setters should be avoided, but here getters are returning the parameters that the matching portfolio
is supposed to hold. They are okay here, as a portfolio is reminiscent of a data transfer object
(see http://martinfowler.com/eaaCatalog/dataTransferObject.html).

http://holub.com/goodies/uml/index.html
http://martinfowler.com/eaaCatalog/dataTransferObject.html

Chapter 1 ■ Information Hiding and APIs

13

Version III: Romberg’s Method
Some sophisticated clients demand more control over accuracy and performance. They’ve specifically
requested the implementation of Romberg’s method. It is not unusual that clients drive the evolution by also
proposing solutions (besides just reporting problems, or asking for extensions). The formula is recurrent,
and you can read about it in some good books about mathematical analysis. It is interesting to note that
Simpson’s Rule is a special case of Romberg’s method. All in all, the method is fully specified with two
positive integers: n and m.

Luckily, this is now easy for us to support. We just need to introduce a new portfolio type,
RombergsMethod, and we are done. This change is absolutely backward compatible. Figure 1-5 shows the
new class diagram of our API.

Figure 1-5.  The class diagram of the latest API (Version III) for calculating an integral of a function. Again,
the old interface is still alive.

■■ Note  If your API isn’t ready for evolution, then you could easily lose your users. It is especially important
to respond quickly to requests and incorporate all changes in a backward-compatible manner. Responding
to requests quickly brings you new users, but making the changes in a backward-compatible manner keeps
the existing users. Finding the proper balance is the delicate art of doing good API frameworks. Preserving
compatibility builds up trust, which is the key enabler for the growth of your community and your software.
Trusted clients will be motivated to formulate constructive feedback, and that is the best way to know what to
include in the next version.

The code for the new portfolio is shown here:

/**
 * The portfolio for Romberg's method.
 */
public final class RombergsMethod extends IntegralPortfolio {
 private final int n;
 private final int m;

Chapter 1 ■ Information Hiding and APIs

14

 /**
 * Creates a new immutable instance of this class.
 *
 * @param n a positive integer representing the first dimension in the formula.
 * @param m a positive integer representing the second dimension in the formula.
 * @throws IllegalArgumentException if n <= 0 or m <= 0.
 */
 public RombergsMethod(int n, int m) {
 if (n <= 0 || m <= 0) {
 throw new IllegalArgumentException(
 "The dimensions must be positive integers.");
 }

 this.n = n;
 this.m = m;
 }

 public int getN() {
 return n;
 }

 public int getM() {
 return m;
 }
}

We have just witnessed what is a stable API. Stability entails that an API can be straightforwardly evolved
in a backward-compatible manner. Stable doesn’t mean fixed; quite contrary, it designates a flexible, dynamic
and maintainable API. The principal mechanism to achieve stability is to properly judge the potential vector of
changes. These vectors indicate the directions from which changes will most probably emanate. Never assume
that your API is finalized. It isn’t. Always think about what you’ll do, when it is found to be insufficient.

At any rate, many open questions are still unanswered (we will see in Chapter 2 how OSGi might help us
in getting suitable answers):

•	 How can a client find out that a particular implementation of the IntegralV2
interface supports the Simpson’s Rule algorithm (or any other for that matter)?

•	 What will a client receive after making a probationary call (to check the previous
guess)? Is there a way for a client to avoid making such a call?

•	 Will a client get an exception? Is this documented?

Summary
What is then the P = UI equivalent for maintainable APIs? This expression tries to formulate the answer:

<Assumptions> = <Information Hiding><Software Type (S, P, or E)>

In other words, the set of valid assumptions is directly proportional to the achieved information hiding in the
context of the type of a software system. This is tightly related to entropy. For an E type software, the surface
area over which entropy may penetrate into a system is much larger than for an S type software. This means
that this surface area has to be reduced by careful abstractions and information hiding. We always have to
strive to control an E type software as it would be an S type one.

www.allitebooks.com

http://dx.doi.org/10.1007/978-1-4842-2196-9_2
http://www.allitebooks.org

Chapter 1 ■ Information Hiding and APIs

15

This chapter has highlighted the importance of information hiding and some other associated
principles in creating maintainable APIs. The next chapter builds on this one, and explains the role
of abstractions and modules to control complexity. Again, the focus will be on APIs rather than on
implementation.

MONTE CARLO INTEGRATION

The Importance of Proper Naming

Monte Carlo integration relies on the Monte Carlo simulation to estimate the integral. This is a totally
different approach than we have seen so far. It belongs to the class of probability methods, where
the output value cannot be exactly predicted. Instead of an integrand, the method generally expects a
predicate function. A canonical example of Monte Carlo integration is the estimation of π.

Consider adding support for this kind of integration into our API. Does it fit nicely? If you would choose
to add an additional API to this nondeterministic group of methods, how would you name it? Does it hurt
that we already have such a generic name as Integral? Wouldn’t be better if we would have named it
differently, like RiemannIntegral?

This exercise tries to drive your attention to the fact that improper naming can cause havoc in an API.
Always try to avoid exceedingly generic names. The ancient Egyptian people were possessed with
names, and they invented the cartouche to write them down. We should be equally preoccupied about
naming software artifacts.

THE LIFE OF A CLIENT

Practicing Empathy

As an API designer you need to care about both developers and users. If you solely optimize the
solution to be developer friendly (easy to implement), then it might be a nightmare for clients
to use. Version III isn’t quite a user-friendly proposition. Imagine that you did introduce an
exception, in case the requested algorithm isn’t supported (a usual practice in Java is to throw an
UnsupportedOperationException exception). The client code would look similar to the following code
snippet (this just illustrates the problem rather than hinting that you should code in this manner):

try {
// RombergsMethod
} catch (UnsupportedOperationException e) {
 try {
 // Simpson's Rule
 } catch (UnsupportedOperationException e) {
 // Fallback to Direct Summation
 }
}

Chapter 1 ■ Information Hiding and APIs

16

Your task here is to come up with a revised approach by separating the client and provider APIs. The
client API can go along the following line:

public final class IntegralClient {
 public double directSummation(...) {...}
 public double simpsonsRule(...) {...}
 public double rombergsMethod(...) {...}
 public Capability supportedAlgorithms() {...}
}

The Capability would contain a description about the available algorithms. You would also need to
have a pluggable service provider interface part as follows:

public inteface IntegralProvider {
 double calculate(...);
}

This interface would be implemented by different providers, such as RombergsMethodImpl,
SimpsonsRuleImpl, and so on. Each provider’s implementation should be linked with an instance of a
client API class.

The client API class could even try to simulate various integral methods, if they aren’t supported by a
particular implementation. For example, if the simpsonsRule is called without the matching provider, it
might convert its argument for the direct summation routine (this is assumed to be the default method).
Think about how the client would signal the acceptance of this behavior through an API.

The preceding API would be a mediator between the caller and implementer. The selection of the right
integral method wouldn’t be a contract between the user and the implementer of the API, but rather an
internal "protocol." This is far simpler from the outside compared to Version III.

References
	 1.	 Tulach, Jaroslav. Practical API Design: Confessions of a Java Framework Architect.

New York: Apress, 2008.

	 2.	 Niku, Saeed Benjamin. Engineering Principles in Everyday Life for Non-Engineers.
Synthesis Lectures on Engineering #26. San Rafael, CA: Morgan & Claypool, 2016.

	 3.	 Pfleeger, Shari Lawrence, and Joanne M. Atlee. Software Engineering: Theory and
Practice, Fourth Edition. Upper Saddle River, NJ: Pearson, 2010.

	 4.	 Fowler, Martin. Analysis Patterns: Reusable Object Models. Reading, MA:
Addison-Wesley, 1997.

	 5.	 Abelson, Harold, Gerald Jay Sussman, and Julie Sussman. Structure and
Interpretation of Computer Programs, Second Edition. Cambridge, MA: MIT
Press, 1996.

17© Ervin Varga 2016
E. Varga, Creating Maintainable APIs, DOI 10.1007/978-1-4842-2196-9_2

 CHAPTER 2

 Modular Design

 In the previous chapter, we analyzed information hiding as a mechanism to hide implementation details from
external parties (clients and providers). However, we haven’t spent a lot of time looking at our subjects as
physical entities. We were complacent with the notion that we do possess some logical entities that need their
own API. We have merely struggled to reduce the amount of exposed implementation details to conceive an
evolvable API. In this chapter, our focus is on the kinds of entities we usually manage in large software projects,
and how such entities are materialized as a unit of use and reuse. Nowadays, these entities are well known by
the name of software modules . Nonetheless, this doesn’t mean that we only deal with one predetermined type,
as software modules are quite diverse. They have different granularity, scope, life cycles, and so on.

 In essence, a software module is a by-product of a program design technique called modularity (see
[1] for more details). The idea is to apply encapsulation to group-related pieces into an independently
deployable unit, and leverage information hiding to shield them from each other. Each unit is then allowed
to communicate with dependent units solely via well-defined interfaces (APIs). Apparently, a module is
made up of a publicly exposed part (API) and an internal implementation. At first glance, we have just
repeated what the class is in an OOP language. Despite the similarity, these are two different things. A class
is purely the blueprint for creating objects; it is meaningful only in the context of object-oriented languages,
and has a fixed scope, granularity, and life cycle (dictated by the rules of the matching programming
language). A module doesn’t have these limitations. At the highest modularity maturity model level (see [2]
for more explanation) it may could even exist in a form of an independent service. To make the discussion
more pragmatic, this chapter introduces examples of software modules using Racket (a functional
programming language) and OSGi 1 (a mature modularity solution for Java).

 At any rate, we are here interested in to see how modularity helps us in creating better APIs as well as to
investigate how APIs may become separate modules having completely independent life cycles from their
realizations (usually an official implementation of an API is called the reference implementation). In other
words, we will amalgamate modularity as a design technique with OSGi as a modular technology to shape
our APIs. Modular design complements object-oriented design, where physical design decisions influence
purely logical ones. All this has a profound effect on APIs, as well. For example, only through modularity we
can start thinking about the environment (the required environment of a module is usually expressed by
its dependencies as elucidated at http://wiki.apidesign.org/wiki/Environment), and its configuration
aspects comprise a separate API. Such a thing doesn’t exist in logical design artifacts (classes and packages).

 1 Another good alternative is the NetBeans module system, which is fully OSGi-compliant since version 6.9 (http://
wiki.apidesign.org/wiki/NetBeans_Runtime_Container). The Eclipse Equinox is an implementation of the OSGi
core framework specification (http://www.eclipse.org/equinox/). Java 9 will come up with a modularity support
called Jigsaw, but at the time of this writing, it is too early to say how it is going to be accepted. I have a feeling that it
will come too late, and will share the destiny of the JDK logging framework. The latter appeared well after Log4J was
already established as a de facto standard Java logging solution.

https://www.google.com/url?q=http://wiki.apidesign.org/wiki/Environment&sa=D&ust=1472430362065000&usg=AFQjCNGM4Ys3TYr8OQfLf3FNyz5OoZeD8g
http://wiki.apidesign.org/wiki/NetBeans_Runtime_Container
http://wiki.apidesign.org/wiki/NetBeans_Runtime_Container
http://www.osgi.org/Specifications/HomePage
http://www.osgi.org/Specifications/HomePage
http://www.eclipse.org/equinox/

CHAPTER 2 ■ MODULAR DESIGN

18

 Without proper APIs, and their backward compatibility, modularity has a very limited scope. It is
still applicable inside a single project, without sharing in mind, but the true benefit comes with reusable
modules. The only benefit of modularity without proper APIs is variability; you build a product once, and
then distribute it to various users in different configurations (set of enabled modules). This scenario might
tolerate the absence of appropriate APIs because the product is always built and distributed as a whole, but
once you start leveraging a truly distributed development with diverse schedules (http://wiki.apidesign.
org/wiki/Distributed_development), then having adequate APIs is a must.

 API-Driven Development
 To understand APIs and their associated entities (classes, modules, or applications and services), we first
need to analyze the metaprocess that substantiates all APIs. Furthermore, we have to describe the following
terms (these are crucial from the viewpoint of modularity and APIs): abstraction , encapsulation, and data .
The biggest challenge, what most books silently skip, is how to acquire the material to work with and apply
to it all those principles, patterns, and techniques that books are so happy to talk about (see [5] for an
insightful introduction into this topic). Figure 2-1 shows the UML activity diagram depicting the metaprocess
of creating an API. A real (concrete) process would be an instance of this metaprocess configured with a set
of principles, patterns, and techniques applied at each activity. A real process would also have additional
activities, but those are omitted to keep the diagram lean and focused.

 Figure 2-1. The use-case-driven API metaprocess is similar to the rational unified process, where use cases
play a central role in shaping the architecture.

https://www.google.com/url?q=http://wiki.apidesign.org/wiki/Distributed_development&sa=D&ust=1472430362131000&usg=AFQjCNGIV3Kb3GwLB57VYU03An34Flr_sQ
https://www.google.com/url?q=http://wiki.apidesign.org/wiki/Distributed_development&sa=D&ust=1472430362131000&usg=AFQjCNGIV3Kb3GwLB57VYU03An34Flr_sQ

CHAPTER 2 ■ MODULAR DESIGN

19

 The creation of a clean API cleans the associated implementation, too. Therefore, focusing on an API
(API-driven development) has a profound effect on code clarity. In other words, it exerts a powerful force
on later design decisions. In some way, an API serves the role of a system specification, a kind of a mediator
between requirements and implementation. On the other hand (in sustaining mode), the need to preserve
backward compatibility might lead to ugly solutions inside the API implementation.

 Use Case
 Here are the most salient benefits of starting with an underpinning use case (for a more detailed treatment
of use cases see [3]):

• It encompasses behavioral requirements.

• It has a clear goal from the primary actor’s perspective.

• It has a designated level helping to identify the target software layer, where this use
case belongs.

• It lists all the stakeholders interested in the use case.

• It describes the main scenario, possibly with alternate flows.

 ■ Note The life of an API must start with a compelling use case; that is, no use case => no API!

 The use case must be validated to properly reflect the intention of the primary actor. The use case later
on serves as a reference to verify the API (whether it truthfully reflects what is stated there). A use case is the
generator of abstractions, which will become part of an API. Note that a single use case could entail multiple
APIs if someone decides, for example, to apply the interface segregation principle (see [4] for more details), to
enhance maintainability, usability and reusability (this is reflected in the grouping abstractions meta-activity).

 A use case may be issued for a new feature, a bug fix (where it describes how to reproduce a bug),
performance improvement, and so on. All in all, it justifies the reason for change.

 The use case description must follow an agreed-on template, and should comply with the same
quality standards as all the other software artifacts. The description should be taken from the main success
scenario with some alternate flows (error situations, variations in the main scenario, etc.). Each step in the
description must clearly state who is performing that step (you will see an example of a concrete use case
later exhibiting one simple template). It is bad practice to put conditional steps in a particular use case
scenario. All these must be placed into alternate flows with pointers about what steps are modified in the
parent scenario (you should also avoid deep nesting of flows). An ambiguous use case description is a sign of
a lack of commitment from the initiator. You cannot produce a proper API if you don’t know exactly what the
user wants. Guesswork rarely pays off, as anything you publish as part of an API will need to remain forever.

 As use cases are just pure textual descriptions, following some predetermined format, they can be
stored in basically any issue tracking system. They could also be part of the documentation, as it should
start with use cases (see also http://wiki.apidesign.org/wiki/Maven#What_Do_API_Users_Say.3F).
If there are lots of interrelated use cases, then you might accompany them with corresponding UML use
case diagrams. You might even model the users (e.g., some use cases are solely offered to users with higher
privileges). However, use case diagrams should never replace the textual description.

https://www.google.com/url?q=http://wiki.apidesign.org/wiki/Maven#What_Do_API_Users_Say.3F&sa=D&ust=1472430362090000&usg=AFQjCNEEmN8qjxAi4WHmmKRDkfjCu2r1UA

CHAPTER 2 ■ MODULAR DESIGN

20

 Abstraction

 The acts of the mind, wherein it exerts its power over simple ideas, are chiefly these three:
1. Combining several simple ideas into one compound one, and thus all complex ideas
are made. 2. The second is bringing two ideas, whether simple or complex, together, and
setting them by one another so as to take a view of them at once, without uniting them into
one, by which it gets all its ideas of relations. 3. The third is separating them from all other
ideas that accompany them in their real existence: this is called abstraction, and thus all
its general ideas are made.

 — John Locke, An Essay Concerning Human Understanding (1690) 2

 This quote nicely defines an abstraction : It is a principal mechanism to cope with complexity, like a living
cell capable of combatting entropy. It purifies noise from the real world, and illuminates only the pertinent
details. All this happens in the context of the use case; that is, we can judge the power of an abstraction only
by relating it to the use case. One persuasive way to test the soundness of an abstraction is to identify it with
a name. A troublesome name implies a problem; for example, GenericGenerator , LoopComponentManager
(I have found this in the superb collection of enterprise naming madness at https://github.com/
EnterpriseQualityCoding/FizzBuzzEnterpriseEdition), and so on. If these samples are all you can come
up with, you should immediately stop. Would you like to use an API filled with such “cool stuff”?

 Abstraction is a precious and scarce asset. It might sound strange that I’m advising you to be sparing
with abstractions, as they don’t consume computer resources; they instead consume someone’s ability to
keep them in her or his head while browsing your API. More is not always better. Miller’s rule states that we
can simultaneously keep 7 ± 2 facts in our memory. If you use more than this, scrolling up and down in your
IDE starts to be your main activity.

 One way to reason about the quality (power) of abstractions that you aim to put into APIs is to estimate
how many design and implementation decisions can be deferred to a later time without affecting the APIs.
If there is an impact, then you should estimate how big it is. Recall Version I of our integral example from
Chapter 1 . The dx parameter leaked into an API, and it was a pure implementation detail. However, it should
have been a decision postponed for a later time. This is why use cases are so important: They emphasize the
primary actor’s goal, not the technicalities around it. All abstractions of an API must be goal-oriented.

 Invest in the abstraction, not the implementation. Abstractions can survive the barrage of
changes from different implementations and new technologies.

 — Andrew Hunt and David Thomas, The Pragmatic Programmer 3

 Data
 In general, we can think of data as defined by some collection of selectors and constructors,
together with specified conditions that these procedures must fulfill in order to be a valid
representation.

 — Harold Abelson, Gerald Jay Sussman, and Julie Sussman, Structure and Interpretation of
Computer Programs, Second Edition 4

 2 You may read the whole book at https://ebooks.adelaide.edu.au/l/locke/john/l81u/index.html .
 3 For more information about this book visit https://pragprog.com/book/tpp/the-pragmatic-programmer .
 4 See [10].

https://github.com/EnterpriseQualityCoding/FizzBuzzEnterpriseEdition
https://github.com/EnterpriseQualityCoding/FizzBuzzEnterpriseEdition
http://dx.doi.org/10.1007/978-1-4842-2196-9_1
https://ebooks.adelaide.edu.au/l/locke/john/l81u/index.html
https://pragprog.com/book/tpp/the-pragmatic-programmer

CHAPTER 2 ■ MODULAR DESIGN

21

 One approach to rigorously formulate the concept of data was introduced by C. A. R. Hoare (1972),
known as the method of abstract models . In this model, abstractions are built on top of each other, very much
like Lego pieces are arranged into bigger forms. Reasoning about complex data objects is then performed by
analyzing the underlying building blocks (checking assertions about the constituent data objects).

 This is a very powerful idea, bringing closer the notion of data to the other elements in the system. Even
more, data is nothing else than an abstraction with a well-defined API, and an accompanying implementation.
In Java, int is a primitive data type. Why primitive? 5 This is stated in the javadoc for the Integer class: “The
 Integer class wraps a value of the primitive type int in an object.” So, what is Integer then? A nonprimitive
data type? The Integer class undeniably appears as a kind of data abstraction, with a public API and
implementation behind it. However, this is also true for int . The only difference is that int ’s API, and the same
is true for the other built-in Java data types, is part of the Java language specification, and implemented by the
Java virtual machine (JVM) itself. Hoare’s abstract models method is depicted in Figure 2-2 .

 ■ Note Modules need to communicate with each other, and most communication entails passing data
around. How you treat data has a fundamental impact on the API. If you pass a primitive data type, then you are
relying on a low-level abstraction provided by the JVM. At any rate, each data type is accompanied with by API,
and this is passed around together with the value.

 Sometimes the runtime environment helps in converting between various data representations.
For example, Java offers autoboxing and unboxing . The former is the automatic conversion between the
primitive types and their corresponding object wrapper classes. Unboxing is the opposite process. At
any rate, what happens is that a client programmer is provided with a suitable API to work with the same
underlying value. Of course, some clever optimizations might happen in the background, like caching of
instances, but users are usually clueless about these minutiae.

 Figure 2-2. Hoare’s abstract models in action. Each layer contains its own set of abstractions exposing a data
API to the layers above. Outer layers are implemented on top of inner layers. Java’s Integer class is realized
using facts about the primitive data type int .

 5 It is an indication that the type isn’t a subclass of java.lang.Object , has special treatment in the Java virtual machine
(JVM), and so on. The notion of primitive types was an attempt to make Java acceptably fast in the 1990s. Nowadays,
optimizing compilers (like Graal; see http://openjdk.java.net/projects/graal/) don’t need such a hint, and can
generate fast code even with “normal” subclasses of Object . The notion of primitive types just complicates the JVM.
Nobody should design a new language with primitive types anymore.

http://openjdk.java.net/projects/graal/

CHAPTER 2 ■ MODULAR DESIGN

22

 Alonzo Church, the father of lambda calculus, invented a method called Church encoding . 6 Here,
natural numbers are represented using lambda notation, and are named Church numerals (see the exercises
at the end of this chapter for an example). Data, as we normally think about them, totally “disappear” in
this method, though. You should keep in mind that in memory, executable code is stored as data. A self-
modifying code (a popular technique in malware) even treats code as ordinary data.

 Encapsulation
 Encapsulation is probably one of the most misunderstood terms. 7 The computer community usually uses it
interchangeably with information hiding, and this is wrong. Encapsulation is a technique to group related
entities (in our case abstractions) together, sharing a common cause for change. Proper encapsulation is
the enabler for achieving high cohesion. It is important to remember that encapsulation is applicable at all
granularity levels (class, package, module, and application or service).

 A properly encapsulated set of abstractions in an API establishes its unique abstraction level. This might
self-protect the API, as nobody should make modifications that are inconsistent with this level. For example,
a high-level API should not be polluted with raw device access details. This also applies to exceptions: It is
wrong to put a “raw” IOException exception into a method signature in a high-level API. By raw I mean a
very implementation-specific IOException , like java.net.SocketException , which would reveal too much.
A high-level consumer would be puzzled by such an implementation detail.

 Type Coercion Case Study
 To make these concepts clearer, we will analyze a small segment from a symbolic algebraic manipulation
system (for the full source code, visit https://github.com/evarga/algebraic-manipulation) pertaining to
type coercion. I am going to use Racket (https://racket-lang.org) with the Scheme dialect (the modules
here are intentionally simplistic without using Racket’s more advanced features). Using a functional
programming language gives me the freedom to focus only on the gist of the material without distractions
due to syntactic sugar to satisfy the language compiler. This will allow you to see only the abstractions, and
nothing else. Additionally, you will experience how the borders between data and procedures simply vanish.
Learning to program in a real functional programming language is very important, as it totally transforms
your way of thinking and enhances your problem-solving capabilities (you can read more about the blub
paradox at http://www.paulgraham.com/avg.html).

 The functional paradigm is gaining momentum in most mainstream languages, and Java is no
exception. To use the power of lambda expressions in Java you need to make a paradigm shift (this is not
easy). Finally, this case study emphasizes the fact that modularity is not Java related, but having a support
from a modular framework 8 is very important. For example, Racket ensures that module relationships are
acyclic, and emits an error otherwise.

 As a starting point, we assume that our system already has the following modules:

• type-tagging : Handles the tagging of data types. A data type is represented as a pair
 (<type tag>, <contents>) . There is a special bridge data type called 'scheme-
number . Its purpose is to provide a transparent autoboxing and unboxing between
built-in scheme numbers and our custom data types.

 6 See [10].
 7 Another one is the stability of an API, where people think that stable means fixed or unmodifiable. In the case of an API,
stable means its readiness for backward-compatible evolution. For a module, greater stability implies bigger resistance to
change. Modules with a high number of incoming dependencies (afferent coupling) are said to be stable. The number of
outgoing dependencies (efferent coupling) defines the module’s weight. A higher weight ruins usability and testability, as
you would need to handle many dependent parts to use and test the module.
 8 For information about Racket’s modular framework, visit https://docs.racket-lang.org/guide/modules.html .

https://github.com/evarga/algebraic-manipulation
https://racket-lang.org)
http://www.paulgraham.com/avg.html
https://docs.racket-lang.org/guide/modules.html

CHAPTER 2 ■ MODULAR DESIGN

23

• function-composition : Creates new functions from existing ones by composing them
together.

 Here are the listings of these modules. Each module is packaged in a separate file (e.g., type-tagging.
rkt), and clearly announces its public API. We see that the unit of release is the unit of reuse. This mapping
is only effective when the grouping of abstractions (encapsulation) is properly done. Mixing unrelated things
together immediately spoils this relationship. Of course, it is possible to circumvent the agreement, and
peek into internal details using intrusive techniques (e.g., someone could use reflection in Java to access
private stuff of an object). However, in this case the developer must do such things intentionally and neglect
what the design is trying to say. After all, somebody can even patch the compiler-generated code to make
forbidden contraptions possible.

 # lang scheme

 (provide attach-tag)
 (provide type-tag)
 (provide contents)

 (define (attach-tag type-tag contents)
 (if (eq? type-tag 'scheme-number)
 contents
 (cons type-tag contents)))

 (define (type-tag datum)
 (cond ((pair? datum) (car datum))
 ((number? datum) 'scheme-number)
 (error "Bad tagged datum -- TYPE-TAG" datum)))

 (define (contents datum)
 (cond ((pair? datum) (cdr datum))
 ((number? datum) datum)
 (error "Bad tagged datum -- CONTENTS" datum)))

 The function car returns the first element of a pair, and cdr the second one. The predicate pair? tests
whether the argument is a pair. The eq? predicate compares symbols for equality. Symbols in Scheme are
prefixed with ' . Finally, define is used to define a function, and cond is the switch statement. However, the
most important is the provide directive. It lists what is exposed in this module. In our case, type-tag and
 contents are selectors (getters in Java), and attach-tag is the constructor. Next is the listing of another
module, function-composition.rkt :

 # lang scheme

 (provide identity)
 (provide compose)
 (provide repeated)

 (define (identity x) x)

 (define (compose f g)
 (lambda (x) (f (g x))))

 (define (repeated f n)

CHAPTER 2 ■ MODULAR DESIGN

24

 (cond ((= n 0) identity)
 ((= n 1) f)
 (else (compose f (repeated f (- n 1))))))

 ; Couple of test cases.
 ; We define here our auxiliary increment and decrement functions.
 (define (inc x) (+ x 1))
 (define (dec x) (- x 1))

 (inc 1)
 ; The output is 1.

 ((identity inc) 1)
 ; The output is also 1.

 ((compose inc dec) 1)
 ; The output is 1, since we are applying the composition (inc(dec(x)) to x=1.

 ((repeated inc 5) 1)
 ; The output is 6, since we are applying the composition (inc(inc(inc(inc(inc(x)))))) to
x=1.

 This is perhaps the first time that you are totally puzzled, especially if you’ve never been exposed to the
charms of functional programming. There is no difference between functions (procedures) and data. This
is the same now in Java 8 with lambda functions. The compose is returning a lambda function applying f to
 g . The expression ((compose inc dec) 1) means that we are applying the result of composition (compose
inc dec) to the first argument. The repeated function is recursive. It says, repeating the function f n times
is basically composing f with its n-1 times repetition. Notice how the auxiliary inc and dec functions are not
visible from outside of a module.

 Another thing to observe is how the abstractions (identity , compose , and repeated) nicely
complement each other. Obviously, they naturally fit together, and provide a cohesive unit.

 ■ Caution Note that there is no safety check (validation) of input arguments in the code. For example, calling
 repeated with a negative number would induce an infinite loop. Never allow an API to be exposed to such
attacks. You always need to apply the defensive programming technique (see [6] for more details). Also, you
need to clearly document your APIs, including the exceptional conditions. Here, all this is omitted to save space.

 Use Case: Coercing Arguments
 We start with the use case definition using a very simple template (see [3] for more details about writing
suitable use cases). Our use case has no alternate flows. Steps 2 and 3 may be rewritten into one, which
would be even more correct to keep all the steps at the same abstraction level. Nevertheless, the current
form’s advantage will be revealed later. This use case is issued by the user of the symbolic algebraic system,
and she or he has a request for a new feature.

 Use Case : Coercing Arguments
 Goal : Arguments are of mixed type, we want the module to coerce them into a single one. This
allows us to sum up a complex number, rational number, and integer directly, and get back a
complex number (as this is the most powerful type in this sample).

CHAPTER 2 ■ MODULAR DESIGN

25

 Scope : Symbolic Algebraic Manipulation System
 Level : Primary task
 Preconditions : All input argument types are known.
 Success End Condition : All arguments are converted into a single type.
 Failed End Condition : Internal system error.
 Primary Actor (Caller) : Algebraic engine subsystem.
 Trigger : When an expression is evaluated containing arguments with mixed types.

 MAIN SUCCESS SCENARIO:
 1. The caller passes the arguments with mixed types to the module.
 2. The module decides what the target type is by leveraging the tower of types.
 3. The module converts all lower types into the target type.
 4. The module returns the coerced arguments to the caller.

 The tower of types is illustrated in Figure 2-3 . To move up in this hierarchy, the algebraic system provides
a polymorphic function raise . For example, a real number can be converted into a complex number by
letting its real part take the value of the real number, and setting its imaginary part to zero. This function will
be provided as input to the type coercion module.

 Type Coercion Module
 The new feature request use case unambiguously describes a compelling business case for us to create a new
module. We know exactly what the user wants to achieve. Use cases are a perfect mechanism for you to get
acquainted with your users, as they are most probably distributed all over the planet. Here is the listing of the
new module called type-coercion.rkt .

 # lang scheme

 (require "type-tagging.rkt")
 (require "function-composition.rkt")

 (provide coerce-args)

 ; The levels are: integer (0), rational (1), real (2) and complex (3).

 Figure 2-3. As we move up in the hierarchy the types are more powerful; that is, they are the superset of the
types below.

CHAPTER 2 ■ MODULAR DESIGN

26

 (define (type-level x)
 (let ((type-of-x (type-tag x)))
 (cond ((eq? type-of-x 'complex) 3)
 ((eq? type-of-x 'rational) 1)
 (else
 (if (exact-integer? (contents x)) 0 2)))))

 ; The 'raise' is an input function raising its argument into a higher level type.
 ; Each line in the implementation below is mapped to the corresponding use case step.
 ; Step 1.
 (define (coerce-args raise args)
 ; Step 2.
 (let ((target-level (foldr max 0 (map type-level args))))
 ; Steps 3-4.
 (map (lambda (x) ((repeated raise (- target-level (type-level x))) x))
 args)))

 The require directive indicates what the outgoing dependencies of this module are. The type-level
internal function returns the data type’s level in the hierarchy (the full system also supports polynomials of type
4). However, the effectiveness of functional programming languages is best exemplified in the implementation
of the coerce-args function. The steps of the use case are essentially part of a pseudo-code documenting the
inner details of this function. The code is nothing but a sequence of abstractions (built-in and custom) arranged
into an engineering novel. You just need to speak the functional language, and all the rest unfolds automatically.

 Let us see what happens in Step 2. This line says that the target-level variable should receive the result
of evaluating the right side expression. That expression says that the input arguments list is first transformed
into a new list using the type-level function (each element in the new list will have a value of (type-level x) ,
where x is an element of args). Finally, by folding the transformed list using the max function, we will get the
maximum element. In other words, we will find what the maximum type level of arguments is.

 The line for Steps 3 and 4 is more interesting. It says to transform the input arguments using the
specified lambda function. That lambda function receives an element from args (represented as x), and
repeatedly applies the raise function to it. The number of such applications is equal to the difference
between the maximum type level (kept in the target-level variable), and the type level of x .

 ■ Caution Don’t be seduced by beauty! It is okay to seek it until the first version of your API. Once you publish
your API, you need to switch over into a maintenance (sustaining) mode. This means that you are obliged to only
make backward-compatible changes in the future, even though that sometimes goes against beauty.

 You’re now hopefully aware of the importance of abstractions and encapsulation in creating evolvable
software artifacts. An API is exposing the most salient abstractions, and these must be carefully postulated.
Any rush work will have negative, long-running consequences. You have also seen that data is another type
of abstraction with an associated API. At any rate, when an API exposes appropriate cohesive abstractions,
the clients’ code will use them in the most natural way. This is evident from the implementation of the
 coerce-args procedure. The imported abstractions nicely interplay with built-in abstractions (foldr , map ,
etc.), and together boost the expressive power of the language. When designing an API, make sure that
you follow the patterns and conventions of the surrounding system. Following the same conventions and
interplaying well makes it easy for programmers to get used to your API. An awkward API will spoil even the
most decent client code. Therefore, as an API designer you have to put yourself into a client’s position when
leveraging your API. If you force the client to use strange, unnatural constructs in a code, chances are that
she or he will switch to a competitor. An inept API cannot lower the cost of ownership for a client, as all the
savings realized by reusing your library will be spent maintaining shoddy code on the client side.

CHAPTER 2 ■ MODULAR DESIGN

27

 Here is what can we conclude from this case study using Racket’s module framework (which is really
tiny compared to the potentials of OSGi):

• A module is the unit of reuse. In Racket, it is the file containing your artifacts. If
the API isn’t cohesive, then reuse isn’t going to be economical, and use will be
troublesome. In this case, you need to rethink your logical design and better group
abstractions.

• Each module clearly signals what it exposes, and what it requires (imports) from
other modules. The exposed part is the published interface (API).

• A module framework helps in managing a module’s life cycle. For example, Racket
automatically loads a module into memory when you reference it. It protects you
from introducing dreaded cyclic relationships between modules.

 Standard Java’s Limitations
 We switch now into the world of Java, which is currently the most popular programming language. All
published versions of Java so far (at the time of this writing Java 8 is current) have a serious limitation
regarding modularity. In Java, a module is physically represented as a jar file. Even if you come up with
a perfect logical design (with properly encapsulated powerful abstractions), there is no way to enforce
information hiding when packaging your artifacts into jar files. Obviously, producing a jar file is inevitable if
you would like to share your module across applications. Figure 2-4 depicts a canonical example of the issue.

 If you package the artifacts from Figure 2-4 into a service.jar module, then there is no way to hide
from users the presence of the implementation class. Moreover, if you publish multiple different versions of
this module, and someone has transitive dependencies that on them, only one will “win” on the classpath.
This causes the infamous jar hell problem. Of course, we are neglecting here many technical details about
how to get an instance of a Service , but for this discussion they aren’t important.

 Figure 2-4. There is no way to hide the ServiceImpl class, if it is declared as public. In other words, you
cannot exclude it from your API. You can put it into the same package as Service , and make it package
private (this would solve the visibility issue). However, for more complex scenarios you would want to keep the
API separate from implementation.

CHAPTER 2 ■ MODULAR DESIGN

28

 Another problem pertains to dynamic class loading via the ClassLoader facility. Each class loader
introduces a separate namespace for classes. This approach is susceptible to all sorts of runtime problems
(like getting ClassCastException or ClassNotFoundException exceptions). Even if the same class is loaded by
two different class loaders, they will not be treated as the same type. However, the biggest issue is that all these
mismatches happen during execution. There is no fail-fast mechanism to let you know at deployment time that
something is wrong (e.g., Spring helps you in this respect). Getting errors earlier is much better, because you
can easily spot the culprit. This is another characteristic of a modular support that is provided by OSGi.

 A naive approach would be to make ServiceImpl a package private class, but that would potentially
deprive other internal module classes from other packages from using it. Another equally naive tactic is to
put into the javadoc comment of ServiceImpl class the phrase, “Please, this is only for internal use!” The
assumption is that if you are honest toward your clients, and they play nice, then the problem is resolved.
Unfortunately, people start to read the documentation when they hit a problem, which might be too late.

 ■ Caution Even the most honest client will start using your implementation class, if she or he finds
advantageous stuff there (even at the price of using reflection to access nonpublic methods). This is especially
true when the time-to-market pressure is high. Your implementation class surreptitiously becomes part of an
API, like it or not. Someone might even publish an article like “Tips & Tricks of Service.jar” on some blog (not to
endorse your API, but to brag about her or his ingenuity).

 OSGi as a Disruptive Technology
 These are the two facets of modularity (see [2]): the development and runtime models. You could engage
only a development model, by relying on core facilities provided by a build tool (like Maven or Gradle), or
you could also bring in a true runtime model (like OSGi). Does the runtime model just make things easier,
or is it a game changer (a disruptive technological advance)? I think it is the latter. OSGi is not only enabling
ecosystems of modules, but has a profound effect on the way you think about design, too. For example, if you
try to “cheat” by using non-API classes in some of your modules, then the OSGi runtime enforcement rules
will clearly reveal all such laziness.

 Let me take a detour, and compare problem-solving approaches in functional programming and
nonfunctional programming worlds (structured programming, OOP, etc.). The well-known divide and conquer
rule revolves around breaking a larger problem into subproblems, solving the subproblems, and merging the
results back to produce the final outcome. However, the subproblem might equally fit into this template, just
on a smaller scale. Therefore, many of you would now think about recursion, and you would be right. But wait!
They have told you that you should ban recursion, as it is expensive. Whoever told you such a bluff was surely not
originating from a functional programming world! Expense is not even the biggest issue here. The problem is that
recursion is simply unnatural in nonfunctional languages. On the other hand, there are some computer science
problems whose formulation until now only exist in recursive form 9 (e.g., the famous coin change problem).

 To give you a glance at how functional programming is a paradigm shift, let us implement a function to
return all subsets of a set. Don’t start coding yet (prune away all those for loops from your head). Just stop,
and think! I have a set. Cool. I want all subsets of it. Even cooler! What if I know how to find all subsets of a
smaller set? Does this help? Look at the following step-by-step algorithm:

 1. Take out the first element from the input set, and name it first-of-s .

 2. Produce all subsets of a smaller set (pretend that you know how to deal with a
smaller problem), and name it smaller-subsets .

 9 Sure, you can always simulate recursion using a stack, but that is like simulating OOP in C (e.g., you will have to fiddle
with virtual method tables and function pointers to get polymorphism, or you could just leverage GLib).

CHAPTER 2 ■ MODULAR DESIGN

29

 3. Attach first-of-s to all subsets of a smaller set. Guess what? You have just
produced all subsets of the input set (the outer append in the following listing
glues together all subordinate subsets from each recursive stage).

 What do you know for sure? Well, all subsets of an empty set are empty sets (this is the exit condition).
This pure fact is all that you need. Now, just translate the preceding algorithm into a form a machine can
understand. Functional programming helps you to perform this task in a most straightforward manner. Here
is the Racket module subsets.rkt implementing the idea:

 # lang scheme

 (provide subsets)

 (define (subsets s)
 (if (null? s)
 (list '())
 (let ((first-of-s (list (car s)))
 (smaller-subsets (subsets (cdr s))))
 (append smaller-subsets
 (map (lambda (t) (append first-of-s t))
 smaller-subsets)))))

 ; Test case to demonstrate how this works.
 (subsets '(1 2 3))
 ;(() (3) (2) (2 3) (1) (1 3) (1 2) (1 2 3))

 Is this a profoundly new way of approaching a problem? I think, so. The same is true for modularity and
OSGi. I want to emphasize that modularity brought in the same fundamentally different way to reason about
the structure of a system as the previously presented divide and conquer strategy. In that sense, they are
comparable. OSGi is here for you to be able to think in modules and their APIs in the most natural way. Even
though a development model might craft a modular design, only the runtime model will make it a reality.
Dynamisms in handling modules directly affect your APIs. We will see an example of this later on.

 We have seen that the divide and conquer rule was a natural fit for a functional programming style.
This is exactly what OSGi achieves regarding modular patterns. They become an integral part of a software
engineer’s toolset for designing a modular system.

 OSGi in Action
 The previous section highlighted an important difference between logical and physical design. What looks
logically sound might be physically problematic. Logical and physical design complement each other,
and modularity is here to address the latter. 10 We strive to achieve reuse, as this is a key enabler of higher
productivity. Reuse comes with the problem of shipping the shared artifacts. The unit of shipment is also the
unit of reuse, so how we package things directly affects the reuse rate.

 Besides reuse, we must take care about use, too. There is nothing more frustrating than having
ultraflexible and reusable parts that are a nightmare to use. Balancing reuse and use is simply an art.
However, both reuse and use depend on APIs. Shielding implementation details is one sure way to craft
reusable and usable APIs at the same time.

 10 This is not true in general, as modularity considerably influences logical design, too. For example, if you notice that a
logical package is split across multiple modules, you need to revisit your logical design to avoid this situation. Also, if
you notice a circular dependency between your modules, then you will surely need to refactor your logical design to
escape circularity in module relationships. In the end, your logical design always benefits from modularity.

CHAPTER 2 ■ MODULAR DESIGN

30

 Another pertinent segment facilitated by modularity is environmental awareness . A logical world might
completely eschew the environment (except modeling its important details through abstractions). On the
contrary, a physical world cannot exist without it. How to externally configure our modules to fit into the
target environment is something only relevant for a physical design. Thus, modularity brings in a completely
new API for configuration purposes.

 The ease with which you can utilize a modular design is directly proportional to the capabilities of your
modular framework. The runtime model of modularity drives the life cycle aspects of your modules during
execution. The next section presents a working modular Java solution to calculate integrals (we continue our
journey from Chapter 1).

 ■ Caution Responsibility without control is a recipe for failure. If you cannot enforce visibility rules in a
module, then an API will start taking on an amoeba shape (entropy will prevail). Modularity is a mechanism to
leverage control over your modules and their APIs.

 Modular Integral Calculation
 We implement the case study from Chapter 1 using Apache Felix Service Component Runtime (Felix SCR;
 http://felix.apache.org) as a reference implementation of the OSGi Declarative Services specification
(see [7]). This will be a perfect opportunity for you to experience a declarative API in practice. Relying on
Felix SCR will shield our modules from the specifics of the OSGi platform, keeping them independent of
the OSGi API. Achieving container independence is very important, as we avoid a danger of polluting our
API with technology-related details. This could seriously hinder future reuse options. Java EE tied beans too
much to the platform, hence they were not reusable outside of it. This is not a desirable direction to follow.

 ■ Note Relying on industry standards is very important. It’s a proven strategy in various engineering
domains, and should be a norm in the software engineering, too. It saves your investment in a technology,
and reduces the learning curve for others joining your project or using your artifacts. OSGi provides many
conventional APIs relevant from the perspective of runtime management of applications and services, and
relying on these aids with maintenance. You should always try to avoid proprietary solutions when there is an
already established standard.

 ■ Tip Before proceeding with the text, study the Apache Felix SCR tutorial (http://felix.apache.org/
documentation/subprojects/apache-felix-service-component-runtime.html).

 Felix also helps in configuring our modules as well as wiring them together (similar to how other
dependency injection frameworks assist us, like Spring, Google Guice, etc.). This again simplifies our APIs,
as we don’t need to concoct custom factory-based instantiations.

 In this example, we separate the client and provider APIs and put them into separate modules.
Separating abstractions from their implementations will enable us to alter the implementations during
runtime (OSGi allows you to dynamically switch modules without a system restart). Moreover, by using
separate API bundles we can explicitly version them independently from their implementations. This has a
tremendous positive effect on controlling an API’s evolution. This agreeably complies with this quote:

http://dx.doi.org/10.1007/978-1-4842-2196-9_1
http://dx.doi.org/10.1007/978-1-4842-2196-9_1
http://felix.apache.org/
http://felix.apache.org/documentation/subprojects/apache-felix-service-component-runtime.html
http://felix.apache.org/documentation/subprojects/apache-felix-service-component-runtime.html

CHAPTER 2 ■ MODULAR DESIGN

31

 Identifying the seams in a system involves identifying clear lines of demarcation in
your architecture. On either side of those lines, you’ll find components that may change
independently, without affecting the components on the other side, as long as the
components on both sides conform to the contract specified by that interface.

 — Grady Booch , James Rumbaugh , and Ivar Jacobson , The UML User Guide, Second
Edition 11

 These delineation lines, what are so explicitly pushed forward by modules, are the most sensitive
parts of the architecture. A change inside a module is confined by that module’s scope. A non-backward-
compatible change in the published API of a module could instigate a ripple effect in the system. One way to
effectively control API changes is to version them by packing API abstractions into a dedicated module. The
drawback is a proliferation of more fine-grained modules in the system, but the benefit ordinarily outweighs
the extra cost. This underpins the adage that more flexibility entails more complexity, so achieving the right
balance is not an easy endeavor.

 Figure 2-5 shows the UML component diagram of modules comprising this demo. We see that module
relationships are acyclic, and the provider interface (API) module has no outgoing dependencies (the client
module also serves as an adapter between client and provider APIs). The provider API is at module level 1
(you might want to read [2] about the Levelized Module pattern, and other modular patterns). Assigning
levels is beneficial both from the build (the pattern driving the build is called Levelized Build) and module
startup perspective (modules should be started up based on their level in an ascending order). Providers are
separated from a client and each other via APIs. Each module is an independent entity.

 The Architecture of the System
 The system is defined as a Maven multimodule project. Each Maven module is responsible for implementing
an OSGi bundle. Bundle is the term for a module in OSGi. It is essentially a jar file with an associated OSGi
manifest file. The Maven build process follows the Levelized Build process. Essentially, the build performs
a topological sort on the graph with vertexes being modules, and edge dependencies between them. The
Levelized Build principle is to build modules according to their level so that all dependencies are satisfied.
Such a leveled approach protects modules from inadvertently referencing each other (so easy to do when the
whole codebase is a huge logical monolith), as an unwanted dependency will produce a build error. Again,
this is something that modularity brings into the foreground.

 The following list includes all the bundles that make up this project:

• provider-api : Contains the API artifacts relevant for providers. The source code
is actually the same as Version III from Chapter 1 (with some slight changes, like,
putting everything into a nondefault package, renaming Integral to IntegralSPI , etc.).
This is the simplest bundle you can imagine in OSGi.

• client-api : This specifies the API for users of the integral framework. It also serves as
an adapter to translate a user’s request into a form understandable by providers. This
bundle is an OSGi μService.

• provider-directsummation : This implements the direct summation integral method.
This is also an example of an OSGI μService.

• demo : This is an OSGi component, a consumer of a service. It shows how to use the
client API.

 11 See [11].

https://www.google.rs/search?tbo=p&tbm=bks&q=inauthor:"Grady+Booch"
https://www.google.rs/search?tbo=p&tbm=bks&q=inauthor:"James+Rumbaugh"
https://www.google.rs/search?tbo=p&tbm=bks&q=inauthor:"Ivar+Jacobson"
http://dx.doi.org/10.1007/978-1-4842-2196-9_1

CHAPTER 2 ■ MODULAR DESIGN

32

 The other two missing providers are left as an exercise (see the exercises at the end of this chapter),
although they are represented in Figure 2-5 .

 The Provider API
 It is instructive for us to look into the pom.xml build file. The details highlighted in the following listing are
all you need to know if you would like to use basic OSGi bundles (just to protect the visibility aspects of a jar
file). This is a perfect example of an incremental API of OSGi. Simple and common things are simple, and
more advanced features require more OSGi knowledge. Therefore, you might start using OSGi right away in
your projects, and later advance as required. Even these “simple” improvements mean a lot from an API’s
perspective. Applying information hiding immediately gives you full control over your jar files.

 <?xml version="1.0"?>
 <project
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-

4.0.0.xsd"
 xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>rs.exproit</groupId>
 <artifactId>modular-integral</artifactId>
 <version>1.0.0</version>
 </parent>
 <artifactId>provider-api</artifactId>
 <version>1.0.0</version>
 <name>Provider API</name>
 <description>
 The bundle that encompasses the common API for integral providers.
 </description>

 Figure 2-5. The modules and their relationships in the system (without the demo bundle). We see that the
 client-api uses the API of providers to invoke them. However, it references only the provider API without
pointing to any implementing service.

CHAPTER 2 ■ MODULAR DESIGN

33

 <packaging>bundle</packaging>
 <build>
 <plugins>
 <plugin>
 <groupId> org.apache.felix </groupId>
 <artifactId> maven-bundle-plugin </artifactId>
 <version>3.2.0</version>
 <extensions>true</extensions>
 <configuration>
 <instructions>
 <Bundle-SymbolicName>

 ${project.groupId}.${project.parent.artifactId}.${project.
artifactId}

 </Bundle-SymbolicName>
 </instructions>
 </configuration>
 </plugin>
 </plugins>
 </build>
 </project>

 All the work is done by the Felix’s Maven Bundle plug-in (for full details, visit http://felix.apache.
org/documentation/subprojects/apache-felix-maven-bundle-plugin-bnd.html). The sections of pom.
xml shown in bold are the interesting parts. The packaging should be bundle . This is one of the packaging
options of the previously mentioned plug-in. The plug-in will create a standard jar file with an associated
OSGi manifest file (when you invoke mvn package). All the rest in your project should be the same as in the
case of a classical Java project.

 Inside the configuration section of the plug-in, you can define various instructions (most have a decent
default value). I recommend you redefine the Bundle-SymbolicName for a multimodule project, as shown earlier.
The Export-Package tells what constitutes the published API of this bundle. By default, all packages and classes
not containing impl are exported (this works for us here, so Export-Package is omitted). The resulting OSGi
manifest file is shown next (it abbreviated a bit for clarity). Again, pay attention to the sections shown in bold.

 Manifest-Version: 1.0
 Bundle-Description: The bundle that encompasses the common API for integral providers.
 Bundle-DocURL: www.exproit.rs
 Bundle-ManifestVersion: 2
 Bundle-Name: Provider API
 Bundle-SymbolicName: rs.exproit.modular-integral.provider-api
 Bundle-Vendor: Expro I.T. Consulting
 Bundle-Version: 1.0.0
 Created-By: Apache Maven Bundle Plugin
 Export-Package: rs.exproit.modular_integral.provider.api;version="1.0.0"
 Require-Capability: osgi.ee;filter:="(&(osgi.ee=JavaSE)(version=1.8))"
 Tool: Bnd-3.2.0. 201605172007

 Notice that the exported package section clearly demarcates the version number. Moreover, the
required capability of this bundle includes the demand for Java SE 8. At any rate, the generated jar file inside
the target folder is ready for installation in Felix. Later I explain how to set up1 and interact with Apache
Felix. The beauty of all this is that the same jar file can be used outside of an OSGi framework. In this case, it
will behave as an ordinary Java jar file.

http://felix.apache.org/documentation/subprojects/apache-felix-maven-bundle-plugin-bnd.html
http://felix.apache.org/documentation/subprojects/apache-felix-maven-bundle-plugin-bnd.html

CHAPTER 2 ■ MODULAR DESIGN

34

 Direct Summation Provider
 This provider is an OSGI μService delivering its functionality in a dynamic fashion. The actual
implementation is just a textual message on a console, printing out the input parameters. If you would like,
you can replace it with a real direct summation algorithm. The service registers itself inside the OSGi Service
Registry . This is a central place where components can pick up the desired service. Using a service registry as
an extension mechanism is fully standardized. You don’t need to come up with a proprietary solution.

 We start in this section with the build file and finish with the actual source code at the end. In this way,
although it is a bit upside down, you will better appreciate the amount of automation done for you. The
following is the snippet from the pom.xml build file highlighting the new details (pay special attention to the
sections shown in bold).

 <dependencies>
 <dependency>
 <groupId>org.osgi</groupId>
 <artifactId>org.osgi.service.component.annotations</artifactId>
 <version>1.3.0</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>rs.exproit</groupId>
 <artifactId>provider-api</artifactId>
 <version>1.0.0</version>
 <scope>provided</scope>
 </dependency>
 [...]
 </dependencies>
 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <version>3.2.0</version>
 <extensions>true</extensions>
 <configuration>
 <instructions>
 <Bundle-SymbolicName>

 ${project.groupId}.${project.parent.artifactId}.${project.
artifactId}

 </Bundle-SymbolicName>
 <Import-Package>
 rs.exproit.modular_integral.provider.api
 </Import-Package>
 </instructions>
 </configuration>
 </plugin>
 </plugins>
 </build>

 If executed as an OSGi module (as in this case study), then Apache Felix will ensure that the provider-api jar
file is on the classpath. If you want to use this jar outside of an OSGi runtime system, though, you might want to alter
the dependency to compile . Otherwise, the Maven plug-in for producing a fat jar file will omit this dependency.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 ■ MODULAR DESIGN

35

 This Maven module uses the OSGi Declarative Service’s annotations, so there is a dependency on it. 12
Another dependency is on the provider API (notice that the scope is set to provided). This entails a clear
order in the build process. Finally, the Import-Package instruction uniquely defines what this module
requires from the other bundles. 13 This is a signal to the OSGi framework to ensure that there is an available
module that exports the required package. Otherwise, an error is generated. This is that fail-fast deploy time
mechanism. The generated manifest file is shown here.

 Manifest-Version: 1.0
 Bnd-LastModified: 1469791780001
 Build-Jdk: 1.8.0_101
 Built-By: evarga
 Bundle-Description: A concrete implementation of the Direct Summation
 provider.
 Bundle-DocURL: www.exproit.rs
 Bundle-ManifestVersion: 2
 Bundle-Name: Provider - Direct Summation
 Bundle-SymbolicName: rs.exproit.modular-integral.provider-directsummation
 Bundle-Vendor: Expro I.T. Consulting
 Bundle-Version: 1.0.0
 Created-By: Apache Maven Bundle Plugin
 Import-Package: rs.exproit.modular_integral.provider.api;version="[1.0,2)"
 Provide-Capability: osgi.service;objectClass:List<String>="rs.exproit.
 modular_integral.provider.api.IntegralSPI"
 Require-Capability: osgi.ee;filter:="(&(osgi.ee=JavaSE)(version=1.8))"
 Service-Component: OSGI-INF/rs.exproit.modular_integral.provider.impl.
 directsummation.DirectSummationProvider.xml
 Tool: Bnd-3.2.0.201605172007

 Watch out for the compatible version numbers this module assumes regarding the provider API, which
is an interval [1.0.0, 2) (for a rigorous analysis of OSGi range dependency concerns, see http://wiki.
apidesign.org/wiki/RangeDependenciesAnalysed). This means all versions up to 2.x should be backward
compatible (version 2.x is allowed to introduce a backward-incompatible change). Nothing is exported, as
the implementation package contains impl in its name. The referenced XML file is a descriptor generated by
the Maven Bundle plug-in, the content of which is shown here.

 <?xml version="1.0" encoding="UTF-8"?>
 <component
 name="rs.exproit.modular_integral.provider.impl.directsummation.DirectSummationProvider">
 <implementation

 class="rs.exproit.modular_integral.provider.impl.directsummation.
DirectSummationProvider"/>

 <service>
 <provide interface="rs.exproit.modular_integral.provider.api.IntegralSPI"/>
 </service>
 </component>

 12 Don’t use Felix SCR’s annotations, as they are obsolete (including the Felix SCR Maven plug-in).
 13 In our case, the bnd tool will infer the imports for us, so the pom.xml could be even smaller. I have put it here to
showcase the usage of the Import-Package instruction. The only situation when explicit imports are useful is the desire
to leave out many parts from a huge OSGi bundle.

http://wiki.apidesign.org/wiki/RangeDependenciesAnalysed
http://wiki.apidesign.org/wiki/RangeDependenciesAnalysed

CHAPTER 2 ■ MODULAR DESIGN

36

 The section shown in bold part tells OSGi that this is a service that implements the denoted interface. In
other words, it provides an implementation for this API. The source code of this provider is really lean (the
keywords are not shown in bold to underline only the OSGi-specific details).

 package rs.exproit.modular_integral.provider.impl.directsummation;

 import java.util.function.Function;

 import org.osgi.service.component.annotations.Component;

 import rs.exproit.modular_integral.provider.api.DirectSummation;
 import rs.exproit.modular_integral.provider.api.IntegralPortfolio;
 import rs.exproit.modular_integral.provider.api.IntegralSPI;

 /**
 * A concrete implementation of the Direct Summation provider.
 *
 * @author Ervin Varga
 * @since 1.0
 */
 @Component
 public final class DirectSummationProvider implements IntegralSPI {
 @Override
 public double calculate(Function<Double, Double> f, double a, double b,
 IntegralPortfolio spec) {
 if (b <= a || spec == null || f == null) {
 throw new IllegalArgumentException("Invalid input arguments");
 }

 // Dummy implementation, you may want to replace this with real one.
 final DirectSummation ds = (DirectSummation) spec;
 System.out.println("Received: a=" + a + ", b=" + b + ", dx=" + ds.getDx());
 return 1.0;
 }

 @Override
 public Class<? extends IntegralPortfolio> getPortfolioType() {
 return DirectSummation.class;
 }
 }

 To transform this class into an OSGi service, you just need to include that single annotation; the rest
happens automatically. This is the power of declarative programming and annotations. The plug-in will
detect that this class implements an interface, hence it will become a service. Otherwise, it is treated as an
immediate component. Of course, you can embellish the Component annotations with properties if you
don’t want to use the default values. However, we are keeping everything here as simple as possible to avoid
too much detraction. Another detail to observe is the getPortfolioType method. This is used by the client
API service to find a proper provider.

CHAPTER 2 ■ MODULAR DESIGN

37

 The Client API
 This is the service that consumers of this project will use. It exposes an interface containing utility methods for
users. The client API lets users focus on their tasks without worrying about how things in the background are
set up. Internal APIs are the “glue” that connects the client and provider parts. Moreover, as users only use the
exposed interface, it can evolve in a backward-compatible manner. This works, because the client API bundle is
a versioned artifact. A user can attach to the version that she or he would like to use (see [9] for a brief overview
of OSGi bundle resolution rules), and leave all the rest to OSGi. Here you find version 1.0.0 of the client API.

 package rs.exproit.modular_integral.client.api;

 import java.util.function.Function;

 /**
 * This is the client API consumed by users of this project.
 *
 * @author Ervin Varga
 * @since 1.0
 */
 public interface IntegralClient {
 /**
 * Calculates the definite integral of a function between the limits a and b
 * using the direct summation method.
 *
 * @param f the integrand.
 * @param a the lower bound of the limit.
 * @param b the upper bound of the limit.
 * @param dx a small step size for iterating over the specified interval.
 * @return the numerical approximation of the definite integral.
 * @throws IllegalArgumentException if b <= a or dx <= 0 or f is null.
 * @throws IllegalStateException if there is no provider implementing this method.
 */
 double directSummation(Function<Double,Double> f, double a, double b, double dx);
 }

 Without OSGi this should probably be a final class, to allow smooth evolution of the API. The client
bridge implements this interface inside a separate implementation package. The code for the service is
shown next (the keywords are not shown in bold to underline only the new OSGi-specific details).

 package rs.exproit.modular_integral.client.impl;

 import java.util.List;
 import java.util.function.Function;

 import org.osgi.service.component.annotations.Component;
 import org.osgi.service.component.annotations.Reference;
 import org.osgi.service.component.annotations.ReferenceCardinality;
 import org.osgi.service.component.annotations.ReferencePolicy;

CHAPTER 2 ■ MODULAR DESIGN

38

 import rs.exproit.modular_integral.client.api.IntegralClient;
 import rs.exproit.modular_integral.provider.api.DirectSummation;
 import rs.exproit.modular_integral.provider.api.IntegralPortfolio;
 import rs.exproit.modular_integral.provider.api.IntegralSPI;

 /**
 * Implements the API for clients, and serves as a bridge toward provider API.
 * It tracks provider services, and allows clients to call into them.
 *
 * @author Ervin Varga
 * @since 1. 0
 */
 @Component
 public final class IntegralClientBridge implements IntegralClient {
 /**
 * List of service objects.
 *
 * This field is managed by the Felix SCR and updated
 * with the current set of available integral provider services.
 * At least one integral provider service is required.
 */
 @Reference(policy=ReferencePolicy.DYNAMIC, cardinality=ReferenceCardinality.AT_LEAST_ONE)
 private volatile List<IntegralSPI> providerList;

 @Override
 public double directSummation(Function<Double,Double> f, double a, double b, double dx)
{
 if (b <= a || dx <= 0.0 || f == null) {
 throw new IllegalArgumentException("Invalid input arguments");
 }

 final IntegralSPI provider = findProvider(DirectSummation.class);
 if (provider != null) {
 return provider.calculate(f, a, b, new DirectSummation(dx));
 } else {
 throw new IllegalStateException("Cannot find a provider for this method");
 }
 }

 /**
 * Searches active providers to find the desired one.
 *
 * @param portfolioType the class of the target portfolio type.
 * @return a reference to the proper provider, or {@code null}.
 */
 private IntegralSPI findProvider(Class<? extends IntegralPortfolio> portfolioType) {
 // Put the current set of services in a local field, as the field providerList
 // might be modified concurrently.
 final List<IntegralSPI> providerListCopy = providerList;

CHAPTER 2 ■ MODULAR DESIGN

39

 if (providerListCopy != null) {
 for (IntegralSPI provider : providerListCopy) {
 if (provider.getPortfolioType().isAssignableFrom(portfolioType)) {
 return provider;
 }
 }
 }
 return null;
 }
 }

 OSGi Declarative Services automates all tedious and error-prone service dependency handling. The
Felix SCR dynamically manages the list of available provider services and updates the field annotated with
 Reference . This is all you need to do to use OSGi service discovery. The type of service is determined by the
type of the interface. In our case, the field providerList will contain references to all services providing an
implementation of IntegralSPI .

 The method findProvider searches active providers to find the desired one. Of course, performing this
search, on each call to calculate an integral, would be overkill in a real service. You might want to optimize it to
cache results into a hash map (take care to be properly notified by OSGi after each change in the providerList).

 Demo
 This OSGi bundle is an immediate component; that is, the consumer of a service. It gets instantiated with a
proper client API service. The source code is shown here (the keywords are not shown in bold to underline
only the new OSGi-specific details).

 package rs.exproit.modular_integral.demo;

 import org.osgi.service.component.annotations.Activate;
 import org.osgi.service.component.annotations.Component;
 import org.osgi.service.component.annotations.Reference;

 import rs.exproit.modular_integral.client.api.IntegralClient;

 /**
 * A very simple demo showing how to use the client API.
 *
 * @author Ervin Varga
 * @since 1.0
 */
 @Component
 public final class App {
 @Reference
 private volatile IntegralClient client;

 // You should not follow this rather trivial approach to run your
 // logic from the activate method.
 @Activate
 void calculateIntegral() {
 try {
 System.out.println(

CHAPTER 2 ■ MODULAR DESIGN

40

 "Calculating integral: " + client.directSummation(x -> 1.0, 1.0, 2.0, 0.1));
 } catch (IllegalStateException ex) {
 System.err.println("The requested provider isn't active.");
 }
 }
 }

 OSGi sees that the Component annotation is attached to a class not implementing an interface. This
classifies it as a component instead of a service.

 Summary
 This chapter established a common ground and set expectations regarding modularity and its impact
on APIs and software architecture in general. We have seen that taking into account physical aspects of
deployment complements the logical design in a powerful way. You saw two modular frameworks in
action: the built-in Racket module framework for a functional programming language, and OSGi for Java 8
for an OOP language (more precisely, multiparadigm). At any rate, the principles are the same. You need
a forceful modular framework to leverage the potentials of modularity. We need modular design to create
maintainable APIs around extensibility mechanisms delivered by a modular framework. Similarly, we
require APIs to get the best from modularity.

 SET UP, INSTALL, AND RUN THE DEMO

 Getting Familiar with the Apache Felix Framework

 Apache Felix is the kernel implementing the OSGi specification. Apache Karaf (http://karaf.apache.
org) is a full-blown server built on top of Apache Felix. The features provided by Apache Karaf are surely
required by a true enterprise modular application. We focus here on setting up Apache Felix to run our
modular integral project, but I really suggest you to examine Karaf, too.

 First, you need to download and install the Apache Felix framework (I’ve used version 5.4.0) as
instructed at http://felix.apache.org/documentation/subprojects/apache-felix-framework/
apache-felix-framework-usage-documentation.html . If Felix starts up properly, then exit Felix by
typing Ctrl+C in the console. Download the following subprojects (only the jars) from http://felix.
apache.org/downloads.cgi :

• Configuration Admin

• Metatype

• SCR (Declarative Services)

 Move all these subproject jar files into <Felix installation root>/bundle directory. Now, start up
Felix again. After typing help in the console, you should see commands prefixed with scr . No error
message should pop up during startup. You now have a properly running Apache Felix with SCR support.

 The next step is creating all bundles comprising our modular integral project. Open a command shell
window, and change the working directory to chapter2/java/modular-integral folder. Type mvn
clean package . All bundles should be now situated inside the corresponding target folder (e.g.,
 provider-api/target/ provider-api-1.0.0.jar .

http://karaf.apache.org)
http://karaf.apache.org)
http://felix.apache.org/documentation/subprojects/apache-felix-framework/apache-felix-framework-usage-documentation.html
http://felix.apache.org/documentation/subprojects/apache-felix-framework/apache-felix-framework-usage-documentation.html
http://felix.apache.org/downloads.cgi
http://felix.apache.org/downloads.cgi

CHAPTER 2 ■ MODULAR DESIGN

41

 Now, consult the Apache Felix user manual to install and start these bundles in the order in which they
are built. If you have successfully done everything, you should see the following output in the console:

 Received: a=1.0, b=2.0, dx=0.1
 Calculating integral: 1.0

 Congratulations!

 IMPLEMENT THE REMAINING TWO PROVIDERS

 Practicing OSGi with Apache Felix SCR

 Using the code base of this project, implement the remaining two integral providers. The implementation
should follow the direct summation provider. Install the providers into Apache Felix. You will also need to
extend the client API bundle.

 Analyze how much effort you would need without a sophisticated OSGi runtime model.

 CHURCH ENCODING MODULE

 Data in Lambda Notation 14

 Assume you are given the church-encoding.rkt module (the listing is shown next). This module
exposes the first three Church numerals (zero , one , and two), the function to increment a Church
numeral, and the function to sum up two Church numerals. All these arithmetic functions return
a Church numeral, which is a function. Therefore, all numbers are functions, and arithmetical
computations are performed on these “numbers.”

 # lang scheme

 (require "function-composition.rkt")

 (provide zero)
 (provide one)
 (provide two)
 (provide inc)
 (provide sum)

 (define zero
 (lambda (f) identity))

 14 Cobol programmer (business oriented): “Data?” Basic programmer (“let for loop live forever” oriented): “There, look!”
Java 8 programmer (nothing surprises her or him, who has seen every possible paradigm on Earth): “No, dude, that is
Lieutenant Commander Data from Star Trek.” Turns back and throws a ReflectiveOperationException exception.

CHAPTER 2 ■ MODULAR DESIGN

42

 (define one
 (lambda (f) (lambda (m) (f m))))
 (define two
 (lambda (f) (compose f f)))
 (define (inc n)
 (lambda (f) (compose f (n f))))
 (define (sum n m)
 (lambda (f) (compose (n f) (m f))))

 ; Some test cases to make this more intuitive.
 ; This is an auxiliary function to be used as input for numerals.
 (define (dec x) (- x 1))

 ((zero dec) 1)
 ; This is 1, as we have applied zero times the dec function on 1.
 ((one dec) 1)
 ; This is 0, as we have once applied the dec function on 1.
 ((two dec) 1)
 ; This is -1, as we have twice applied the dec function on 1.
 (((inc two) dec) 1)
 ; This is -2, as we have applied three times (one more than two) the dec function on 1.
 (((sum one two) dec) 1)
 ; This is -2, as we have applied three times (one + two) the dec function on 1.

 These test cases are not real unit tests. You might want to convert these into Racket’s unit tests as an
additional exercise. Take a look at the following documentation for more details: http://docs.racket-
lang.org/rackunit/ .

 Users have requested that you extend the API of this module with an additional function to convert an
ordinary numeral (integer) into the corresponding Church numeral. In other words, they would like to be
able to encode an integer using Church encoding. The function should be named as encode and accept as
an argument an integer i . (Hint: You might find the repeated function handy.) If you are stuck, look at the
accompanying source code of this book for a solution. At any rate, the next expression should return –3:
 (((encode 4) dec) 1) .

 After completing this exercise, notice that the external function-composition.rkt module is 100%
utilized. This is the best testimony of the module’s high cohesion, reusability level, and usefulness. As an
additional exercise, convert this Racket module into Java 8 using its lambda functions.

http://docs.racket-lang.org/rackunit/
http://docs.racket-lang.org/rackunit/

CHAPTER 2 ■ MODULAR DESIGN

43

 References
 1. Parnas, D. L. “On the Criteria to Be Used in Decomposing Systems into Modules.”

 Communications of the ACM 15 (12): 1053–58, 1972. doi: 10.1145/361598.361623

 2. Knoernschild, Kirk. Java Application Architecture: Modularity Patterns with
Examples Using OSGi . Reading, MA: Addison-Wesley Professional, 2012.

 3. Cockburn, Alistair. Writing Effective Use Cases. Reading, MA: Addison-Wesley,
2001.

 4. Dooley, John. Software Development and Professional Practice . New York: Apress,
2011.

 5. Olszak, Andrzej, and Jaroslav Tulach. Software Modularity: Paradoxes, Principles,
and Architectures . http://www.slideshare.net/AndrzejOlszak/javaone12-
software-modularity-paradoxes-principles-and-architectures

 6. McConnell, Steve. Code Complete: A Practical Handbook of Software
Construction, Second Edition . Redmond, WA: Microsoft Press, 2004.

 7. Archer, Simon, Paul VanderLei, and Jeff McAffer. OSGi and Equinox. Reading,
MA: Addison-Wesley, 2010.

 8. Pólya, György. How to Solve It. Princeton, NJ: Princeton University Press, 1945.

 9. Posta, Christian. “Understanding how OSGI bundles get resolved part I.” http://
blog.christianposta.com/osgi/understanding-how-osgi-bundles-get-
resolved-part-i/

 10. Abelson, Harold, Gerald Jay Sussman, and Julie Sussman. Structure and
Interpretation of Computer Programs, Second Edition. Cambridge, MA: MIT
Press, 1996.

 11. Grady Booch , James Rumbaugh , and Ivar Jacobson , The Unified Modeling
Language User Guide, Second Edition. Reading, MA: Addison-Wesley
Professional, 2005.

http://dx.doi.org/10.1145/361598.361623
http://www.slideshare.net/AndrzejOlszak/javaone12-software-modularity-paradoxes-principles-and-architectures
http://www.slideshare.net/AndrzejOlszak/javaone12-software-modularity-paradoxes-principles-and-architectures
http://blog.christianposta.com/osgi/understanding-how-osgi-bundles-get-resolved-part-i/
http://blog.christianposta.com/osgi/understanding-how-osgi-bundles-get-resolved-part-i/
http://blog.christianposta.com/osgi/understanding-how-osgi-bundles-get-resolved-part-i/
https://www.google.rs/search?tbo=p&tbm=bks&q=inauthor:"Grady+Booch"
https://www.google.rs/search?tbo=p&tbm=bks&q=inauthor:"James+Rumbaugh"
https://www.google.rs/search?tbo=p&tbm=bks&q=inauthor:"Ivar+Jacobson"

45© Ervin Varga 2016
E. Varga, Creating Maintainable APIs, DOI 10.1007/978-1-4842-2196-9_3

 CHAPTER 3

 Designing Classes for Reuse

 Software reuse is the major topic in software engineering, because without efficient reuse we cannot be
productive. Reuse is reified in various forms across many dimensions. We can reuse code (by importing a
class or module into our code base), code and design (by using a full-fledged framework), applications or
services (e.g., by creating mashups combining different services into a unified portal), and so on. Software
processes are also amenable for reuse, as are requirements and conceptual domain models. Moreover, we
might want to reuse existent stuff, or we could also opt to build artifacts for reuse. The topic is really broad.
Therefore, we limit ourselves here purely to aspects of reuse pertaining to OO systems, specifically focusing
on APIs. In other words, we analyze how APIs can help or hinder efficient reuse.

 ■ Note Copy-paste isn’t reuse, 1 although it does deceptively look like it is. Each time you clone a source
code, you increase the code base that you need to maintain. Over time, this can easily get out of control,
especially when a future modification has to be carried out in all copies. The problem is that you usually don’t
even know the locations of those copies.

 Reuse is important for both production and test code . Despite differences in their purposes they do
share many quality expectations. Test code should be explicit and comprehensible, so you might want to
achieve a proper level of reuse with the available testing frameworks, and avoid redundancy. However, you
always need to have the right attitude toward compatibility of the API. If there is a test that used to work,
then you (ad absurdum) don’t have a bug, but an API feature. The same code as in your test could have been
written by a user of your API. If you treat compatibility seriously, then you can’t change the test, even if you
now think it is broken or isn’t in a perfect shape. This might induce the demand to copy-paste the original
test to absolutely shield it from later modifications. Therefore, attaining the Don't Repeat Yourself (DRY)
principle is definitely desirable, but you must not approach it as a dogma (this applies to all principles).

 We saw in the previous chapter that an API is made up of suitable abstractions. This set of abstractions
(API) dictates the level of reuse, as they constrain what we can do with everything else behind an API.
Each abstraction, as its name implies, is at some intellectual distance from a real-world entity. The reuse is
effective and economical when the average delta between intellectual distances is small. If our expectations
about distances in a given context are matched with those encompassed by an API, we can fruitfully reuse

 1 I witnessed situations as a consultant in companies where managers even advocated copy-paste, using the excuse that
with copies there is no need to worry about design trade-offs associated with common code base. Although it is true that
each copy can be independently shaped, the price is extraordinary. This approach leads to a maintenance nightmare.
When you start copy-pasting the same code all over the place, you are responsible for keeping those clones in a good
shape. Copy-paste isn't a scalable approach. It might be treated as a reuse for a one-shot action, but not as a general
technique for large code bases. Every action hampering evolution is a recipe for a failure, and must be avoided.

CHAPTER 3 ■ DESIGNING CLASSES FOR REUSE

46

the artifacts represented by that API. Otherwise, we have to fight against the emerged impedance mismatch
issue. One effective way to control and categorize these distances is the application of a stratified design, or
layered approach. Each layer is supposed to contain things at a similar abstraction level. In this setup, we
can purposefully choose the layer onto which to build our own products.

 Proper handling of intellectual distances aids cohesion and provides consistency at a client
programmer’s side. The following list briefly summarizes additional principles and techniques (besides
encapsulation and information hiding) governing proper reuse (I suggest you read [1] for a superb overview
regarding design and reuse in general).

• Law of Demeter (altered a bit to fit APIs): We can apply this law on our distances to
judge the reusability of an API. For example, adding a control parameter (inducing
a control coupling between entities) to a method signature is problematic, and
thwarts reuse. Such a parameter introduces a so-called control coupling between
entities. The main issue is that reuse cannot happen without diving deeper into
the implementation details of a class. We have to know what is happening inside
to control its behavior outside. The Law of Demeter would kick in, saying that we
should only “talk” up to some distance from the API. Anything further than that isn’t
allowed (implementation details of methods are too far). Using a Strategy or State
pattern is a different story. 2 The latter operates on an API level, whereas the former
(control parameter) works at the implementation level. In this context, it is obvious
that indiscriminate getters and setters are evil, as emphasized by Allen Holub [1].

• Liskov substitution principle : Anytime you enter a dangerous zone to break it, then you
should stop and rethink what you’re trying to achieve. One such zone is an overriding
of methods carrying implementation. This means that you’re breaking the Law of
Demeter for APIs and looking behind the method’s signature (specifying the What?
part). A Template pattern is again a different matter. The template method is abstract; 3
hence you are specializing the behavior of the class by just “talking” to the API.

• Programming into/in a language : You should apply the Law of Demeter for
APIs when programming into a language, resisting the temptation to program
in a language. There is a direct relationship between the expressiveness of the
programming language and an API crafted using that language. Nonetheless, it isn’t
advisable to fly above the skies, by pretending that you speak a better language,
to come up with a more sophisticated API. If you try to mimic an object-oriented
API in a standard C program (I’m not thinking here about GLib or ObjectiveC),
then you will surely confuse many C developers. Your API must naturally fit inside
the paradigms of the target programming language; that is, the distance in style
between your API and the one advocated by the language must be short. Therefore,
programming into a language must be a controlled activity. Otherwise, reusing your
API would be cumbersome.

 2 When you have a control coupling, you inherently peek into the implementation (somebody can observe and depend on
it). With a Strategy or State pattern the variances are embodied inside an API and are well encapsulated. It is important to
eschew exposing undesirable control coupling via an API.
 3 The term abstract here is language neutral. This just signals that the behavior described by the template method is expected
to vary in subclasses. In Java that method would be designated as abstract , but in other languages (like SmallTalk) they
could remain “normal.” In some setups, an abstract method might even throw an error when invoked directly.

CHAPTER 3 ■ DESIGNING CLASSES FOR REUSE

47

• Provide an API : This rule might sound a bit harebrained, but it is crucial for reuse.
As a software engineer, you are responsible for both proper and improper reuse of
your stuff. You surely want to disallow the latter by letting an API proactively ensure
adequate reuse. The best way to achieve this is to clearly separate the abstract
definition of an API from its actual implementation; that is, ensure coding against
interfaces. With an appropriate API you prevent a client from sweeping in extra
assumptions outside of the API’s boundaries, thus protecting both a client and
yourself against entropy. In this respect, the extends Java keyword is a misnomer.
It isn’t that extending a class is bad per se, but that it is a signal that you’re probably
letting volatile assumptions creep into your solution space. Of course, using the
 extends keyword with interfaces is a different matter. It is related to type extension
rather than implementation inheritance (a usual case with classes).

 In the rest of this chapter we introduce two fictional case studies. Both of them are going to simulate
what typically happens in the software industry. These case studies complement an approach from [1],
where patterns are presented in the light of real code. In this book, we simulate how that real code is born in
the first place.

 Case Study: Client of Reuse
 In our first case study we are going to demonstrate the hurdles a client might encounter when trying to reuse
artifacts from a framework. The assignment is to implement a graphical user interface (GUI) combo box
showing items in sorted order. Java already provides a mature, stable GUI framework called Swing . If you’ve
not worked with Swing before, then you might read [2] before proceeding.

 Imagine that this same task (realizing a sorted combo box) is given to a more experienced software
engineer in each version; that is, Version I is performed by a novice, Version II by a junior, and so forth. Also,
assume that the task is part of a maintenance effort, and not some greenfield project. These presuppositions
truly reflect what is happening in corporations (software maintenance is habitually considered mundane
work, not at all attractive to hot shots). So, let us start our journey.

 Version I
 A combo box is represented as the JComboBox class , which extends the JComponent class (both of them are
members of the javax.swing package); that is, it is treated as a component. Looking at the description of
the JComboBox class (it is part of the JDK’s API documentation), the novice has concluded that this task
is a piece of cake. He just needs to extend the public nonfinal JComboBox class, and create a new public
class JSortedComboBox . Besides providing constructors, the novice also must override two public nonfinal
methods: addItem and insertItemAt . The happiness was at a level of ecstasy, and the novice even started to
dream about a promotion.

 Here is the full source code 4 of the new class. I’m following the strategy from [1] to give you complete
visibility into the source code.

 package rs.exproit.swing;

 import java.util.Arrays;
 import java.util.Collections;
 import java.util.Vector;

 4 Source syntax coloring is omitted in this chapter to present code in a way you will encounter in the industry. Sometimes
you will need to browse legacy code in a field using a rudimentary editor.

CHAPTER 3 ■ DESIGNING CLASSES FOR REUSE

48

 import javax.swing.ComboBoxModel;
 import javax.swing.JComboBox;

 @SuppressWarnings("serial")
 public class JSortedComboBox<E extends Comparable<E>> extends JComboBox<E> {
 public JSortedComboBox() {}

 public JSortedComboBox(ComboBoxModel<E> aModel) {
 this(toVector(aModel));
 }

 public JSortedComboBox(E[] items) {
 super(sort(items.clone()));
 }

 @SuppressWarnings("unchecked")
 public JSortedComboBox(Vector<E> items) {
 super(sort((Vector<E>) items.clone()));
 }

 /**
 * Adds an item to this combo box, while keeping its sorted order.
 *
 * @param item the item to be added to this combo box.
 */
 @Override
 public void addItem(E item) {
 final int insertionPoint = binarySearch(item);

 if (insertionPoint >= getItemCount()) {
 super.addItem(item);
 } else {
 super.insertItemAt(item, insertionPoint);
 }
 }

 private int binarySearch(E item) {
 int low = 0;
 int high = getItemCount() - 1;
 int insertionPoint = -1;

 while (low <= high) {
 int mid = (low + high) >>> 1;
 E midVal = getItemAt(mid);

 if (midVal.compareTo(item) < 0) {
 low = mid + 1;
 } else if (midVal.compareTo(item) > 0) {
 high = mid - 1;
 } else {
 insertionPoint = mid;

CHAPTER 3 ■ DESIGNING CLASSES FOR REUSE

49

 break;
 }
 }

 if (insertionPoint == -1) {
 insertionPoint = low;
 }
 return insertionPoint;
 }

 /**
 * Adds an item to this combo box, while keeping its sorted order.
 *
 * @param item the item to be added to this combo box.
 * @param index this is ignored, as it is meaningless.
 */
 @Override
 public void insertItemAt(E item, int index) {
 addItem(item);
 }

 private static <E extends Comparable<E>> Vector<E> toVector(ComboBoxModel<E> aModel) {
 final Vector<E> items = new Vector<>(aModel.getSize());

 for (int i = 0; i < aModel.getSize(); i++) {
 items.add(aModel.getElementAt(i));
 }
 return items;
 }

 private static <E extends Comparable<E>> E[] sort(E[] items) {
 Arrays.sort(items);
 return items;
 }

 private static <E extends Comparable<E>> Vector<E> sort(Vector<E> items) {
 Collections.sort(items);
 return items;
 }
 }

 The unit test is provided next (the company where the novice works leverages a well-established
software process, and test-driven development [TDD] 5 is an integral part of it).

 package rs.exproit.swing;

 import static org.junit.Assert.*;

 import java.util.Arrays;

 5 TDD will be the principal topic in the next chapter.

CHAPTER 3 ■ DESIGNING CLASSES FOR REUSE

50

 import java.util.Vector;

 import javax.swing.DefaultComboBoxModel;

 import org.junit.Before;
 import org.junit.Test;

 public class JSortedComboBoxTest {
 private final static String[] testItems = new String[] {"A", "Y", "X", "D", "C"};
 private final static String[] testItemsCopy = testItems.clone();

 @Before
 public void assureTestItemsAreIntact() {
 assertArrayEquals("Original array modified in some of the tests",
 testItemsCopy, testItems);
 }

 @Test
 public final void testNoArgConstructor() {
 final JSortedComboBox<String> cbox = new JSortedComboBox<>();
 assertNotNull(cbox);
 }

 @Test
 public final void testConstructorWithModel() {
 final DefaultComboBoxModel<String> model = new DefaultComboBoxModel<>(testItems);
 final JSortedComboBox<String> cbox = new JSortedComboBox<>(model);

 verifySortedOrder(cbox);
 }

 @Test
 public final void testConstructorWithArray() {
 final JSortedComboBox<String> cbox = new JSortedComboBox<>(testItems);

 verifySortedOrder(cbox);
 }

 @Test
 public final void testConstructorWithVector() {
 final Vector<String> items = new Vector<>();
 items.addAll(Arrays.asList(testItems));
 final JSortedComboBox<String> cbox = new JSortedComboBox<>(items);

 verifySortedOrder(cbox);
 }

 @Test
 public final void testAddingItems() {
 final JSortedComboBox<String> cbox = new JSortedComboBox<>();
 for (String item : testItems) {
 cbox.addItem(item);
 }

CHAPTER 3 ■ DESIGNING CLASSES FOR REUSE

51

 verifySortedOrder(cbox);
 }

 @Test
 public final void testInsertingItems() {
 final JSortedComboBox<String> cbox = new JSortedComboBox<>();
 for (String item : testItems) {
 cbox.insertItemAt(item, 0);
 }

 verifySortedOrder(cbox);
 }

 private void verifySortedOrder(JSortedComboBox<String> cbox) {
 assertEquals("A", cbox.getItemAt(0));
 assertEquals("C", cbox.getItemAt(1));
 assertEquals("D", cbox.getItemAt(2));
 assertEquals("X", cbox.getItemAt(3));
 assertEquals("Y", cbox.getItemAt(4));
 }
 }

 Superficially everything is just perfect. The new class smoothly fits into Swing , and there were no serious
hacks. The test coverage is satisfactory, all tests are passing, and the sorted combo box performs as requested.
The code follows the company’s coding style. The novice has pushed back the changes into the version
control system and published the jar file into the company’s repository manager (e.g., Artifactory). Done!

 The novice has shown a great attention to details. For example, the input data structures (see the
constructors) were cloned to keep them intact (this was even tested). The only murky point is the conversion
of a combo box model into a sorted vector. However, the novice knew nothing about Swing models, and
so improvised a bit (a typical maneuver under pressure, which is another characteristic of a software
maintenance work).

 All in all, what happened in this version is exactly what developers are taught in various courses, and
what book authors like to lament about. Follow the rules, don’t hack, cover your code with tests, document it
properly, keep it tidy, and you’re good.

 Version II
 Soon after the publication of Version I a true scandal has broken out! Seniors have complained that
the solution is outrageous. It breaks every possible principle of OO design; most important, it abuses
implementation inheritance (consult [1] for more details). Moreover, nobody wanted to change the current
code base, which relied on a pure JComboBox class with various models. They demanded a Swing-compliant
result. The novice was puzzled, as according to him, that is exactly what had been provided.

 Version I demonstrates one of the consequences of a slack API. The poor novice trusted that Swing
would give some guidance. 6 Nothing warned the novice that he was strolling on the wrong path. The
 methods addItem and insertItemAt should have been final (better yet, they shouldn’t even exist), hence
undoubtedly signaling that the solution is lurking somewhere else.

 6 Swing is just too open, because it was designed to be like that. Even if you close your API in the first version, though,
after a while, you will get duplications. There will be more ways to achieve the same thing (the old one and the new one).
You can deprecate the old version (if it has some issues), but that is the most that can be done as a remedy.

CHAPTER 3 ■ DESIGNING CLASSES FOR REUSE

52

 ■ Note As you move to system boundary frameworks (like Swing), they tend to be more flexible to cover
a broader number of possible use cases. Such an increase in flexibility is followed by a same increase in
complexity. Part of that complexity stems from the lack of guidance from an API.

 The novice’s boss has reassigned the task to a more experienced software engineer (let’s call her the
junior). The junior was aware that Swing components are built around the Model-View-Controller (MVC)
pattern. Everything that is presented inside a combo box (its content) is handled by the matching model
class. The default model for combo boxes is the DefaultComboBoxModel class (if you create a new JComboBox
object, it comes preinstalled with this default model). At any rate, to have a combo box with sorted items,
the junior has concluded that she needs to implement a custom model. It is easy, she reasoned, as most
of the code can be transferred from the JSortedComboBox class into the new SortedComboBoxModel class,
which will extend the DefaultComboBoxModel . Basically, the methods addItem and insertItemAt should be
renamed addElement and insertElementAt , respectively. Here is the source code of this new class:

 package rs.exproit.swing;

 import java.util.Arrays;
 import java.util.Collections;
 import java.util.Vector;

 import javax.swing.DefaultComboBoxModel;

 @SuppressWarnings("serial")
 public class SortedComboBoxModel<E extends Comparable<E>> extends DefaultComboBoxModel<E> {
 public SortedComboBoxModel() {}

 public SortedComboBoxModel(E[] items) {
 super(sort(items.clone()));
 }

 @SuppressWarnings("unchecked")
 public SortedComboBoxModel(Vector<E> items) {
 super(sort((Vector<E>) items.clone()));
 }

 /**
 * Adds an item to this combo box model, while keeping its sorted order.
 *
 * @param item the item to be added to this combo box model.
 */
 @Override
 public void addElement(E item) {
 final int insertionPoint = binarySearch(item);

 if (insertionPoint >= getSize()) {
 super.addElement(item);
 } else {
 super.insertElementAt(item, insertionPoint);
 }
 }

CHAPTER 3 ■ DESIGNING CLASSES FOR REUSE

53

 private int binarySearch(E item) {
 int low = 0;
 int high = getSize() - 1;
 int insertionPoint = -1;

 while (low <= high) {
 int mid = (low + high) >>> 1;
 E midVal = getElementAt(mid);

 if (midVal.compareTo(item) < 0) {
 low = mid + 1;
 } else if (midVal.compareTo(item) > 0) {
 high = mid - 1;
 } else {
 insertionPoint = mid;
 break;
 }
 }

 if (insertionPoint == -1) {
 insertionPoint = low;
 }
 return insertionPoint;
 }

 /**
 * Adds an item to this combo box model, while keeping its sorted order.
 *
 * @param item the item to be added to this combo box model.
 * @param index this is ignored, as it is meaningless.
 */
 @Override
 public void insertElementAt(E item, int index) {
 addElement(item);
 }

 private static <E extends Comparable<E>> E[] sort(E[] items) {
 Arrays.sort(items);
 return items;
 }

 private static <E extends Comparable<E>> Vector<E> sort(Vector<E> items) {
 Collections.sort(items);
 return items;
 }
 }

 The corresponding test class is listed here:

 package rs.exproit.swing;

 import static org.junit.Assert.*;

CHAPTER 3 ■ DESIGNING CLASSES FOR REUSE

54

 import java.util.Arrays;
 import java.util.Vector;

 import org.junit.Before;
 import org.junit.Test;

 public class SortedComboBoxModelTest {
 private final static String[] testItems = new String[] {"A", "Y", "X", "D", "C"};
 private final static String[] testItemsCopy = testItems.clone();

 @Before
 public void assureTestItemsAreIntact() {
 assertArrayEquals("Original array modified in some of the tests",
 testItemsCopy, testItems);
 }

 @Test
 public final void testNoArgConstructor() {
 final SortedComboBoxModel<String> cbox = new SortedComboBoxModel<>();
 assertNotNull(cbox);
 }

 @Test
 public final void testConstructorWithArray() {
 final SortedComboBoxModel<String> cbox = new SortedComboBoxModel<>(testItems);

 verifySortedOrder(cbox);
 }

 @Test
 public final void testConstructorWithVector() {
 final Vector<String> items = new Vector<>();
 items.addAll(Arrays.asList(testItems));
 final SortedComboBoxModel<String> cbox = new SortedComboBoxModel<>(items);

 verifySortedOrder(cbox);
 }

 @Test
 public final void testAddingItems() {
 final SortedComboBoxModel<String> cbox = new SortedComboBoxModel<>();
 for (String item : testItems) {
 cbox.addElement(item);
 }

 verifySortedOrder(cbox);
 }

 @Test
 public final void testInsertingItems() {
 final SortedComboBoxModel<String> cbox = new SortedComboBoxModel<>();
 for (String item : testItems) {

CHAPTER 3 ■ DESIGNING CLASSES FOR REUSE

55

 cbox.insertElementAt(item, 0);
 }

 verifySortedOrder(cbox);
 }

 private void verifySortedOrder(SortedComboBoxModel<String> cbox) {
 assertEquals("A", cbox.getElementAt(0));
 assertEquals("C", cbox.getElementAt(1));
 assertEquals("D", cbox.getElementAt(2));
 assertEquals("X", cbox.getElementAt(3));
 assertEquals("Y", cbox.getElementAt(4));
 }
 }

 The junior was taught that one of the benefits of an OO technology is that you should only pay attention
to the subset of the system under change. Encapsulation and information hiding will prevent ripple effects.
The junior also assumed that the other unaltered classes will continue to behave as usual. Therefore, she has
concluded that the job was well done, as all tests have passed regarding the new combo box model. The junior
didn’t care to rename the corresponding methods and variables to reflect elements instead of items. Why bother
with such childish activities? The junior was fast with copy-pasting, and any slowdown was not an option.

 It would be better if the junior would have added at least a warning in the documentation that the base
class’s contract was altered. Nevertheless, this would still be a workaround for the erroneous API design.
The documentation is part of an API, and it cannot be considered less important than the code itself. They
should have an equal reputation.

 Version III
 The seniors have complained again, albeit not that as strongly as last time. They still demanded a correct OO
solution, and refrained from abusive implementation inheritance. Moreover, they were not able to control
the sorting order. Items in a combo box were always sorted in type-dependent ascending order. Finally, they
didn’t want to have a limitation of dealing only with elements implementing Comparable .

 The junior’s boss was really desperate, and escalated the issue (he had no senior engineers on his team).
The task was finally assigned to the most experienced software engineer in the company. The senior decided
to perform a thorough analysis of the whole problem before doing any coding. He was cautious (a positive side
effect of being experienced). He has reasoned as follows about the quality attributes of the next resolution:

• The JComboBox should be instantiated with a new model, and must behave as
specified in its API.

• The new combo box model should remain mutable, as this was implicitly asked by
everyone (to allow additions of elements during runtime).

• The sorting mechanism must be separated from a policy; that is, a Strategy pattern
should be applied to define the sorting order.

• The OO principles have to be satisfied as much as possible. Of course, you might
occasionally break a principle for pragmatic reasons, but you should have a good
reason for doing that.

 He started by depicting the Swing’s combo box model class diagram , as shown in Figure 3-1 . He was
deeply disappointed by the image. The senior immediately realized that the clean OO solution would
require more work than initially planned. Later on he will find out an even more shocking fact.

CHAPTER 3 ■ DESIGNING CLASSES FOR REUSE

56

 The biggest concern was the MutableComboBoxModel interface with those dreaded addElement
and insertElementAt methods (it would be more accurate to say operations, but methods is common
terminology). The problem with the addElement method is its public documentation (part of its API): “Adds
an item at the end of the model.” In a sorted combo box a newly added element could end up anywhere, so
adding it at the end is meaningless. Consequently, using composition over inheritance to reuse much of the
 DefaultComboBox functionality wouldn’t help much either, because the API of the new SortedComboBox class
(implementing the previously mentioned interface) would still be wicked.

 The senior’s next idea (honestly, this was more of a desperate attempt instead of something you would
want to follow) was to try creating a new interface called SortedComboBoxModel , which would look like this:

 package rs.exproit.swing;

 import javax.swing.ComboBoxModel;

 /**
 * A sorted combo box model, which is assumed to be mutable.
 */
 public interface SortedComboBoxModel<E> extends ComboBoxModel<E> {
 /**
 * Adds an item to the model. The implementation of this method should notify all
 * registered ListDataListeners that the element has been added.
 *
 * @param element the element to be added.
 */
 void addElement(E element);

 Figure 3-1. Swing’s combo box model class diagram (classes and interfaces)

CHAPTER 3 ■ DESIGNING CLASSES FOR REUSE

57

 /**
 * Removes an element from the model. The implementation of this method should should
 * notify all registered ListDataListeners that the element has been removed.
 *
 * @param element the element to be removed.
 */
 void removeElement(E element);

 /**
 * Removes an element at a given index. The implementation of this method should
 * notify all registered ListDataListeners that the element has been removed.
 *
 * @param index the location of the element to be removed.
 */
 void removeElementAt(int index);
 }

 An astute reader (that is you) will notice that this interface fixes minor naming problems in
the MutableComboBoxModel interface (items are renamed to be elements, and the removeElement
method accepts an object of type E instead of Object). Nevertheless, the senior soon abandoned this
outline. One reason is that it is ugly to have a mutable combo box model type without relating it to the
 MutableComboBoxModel . The biggest problem, though, is that the whole idea is infeasible.

 The JComboBox class’s addItem and insertItemAt methods behave in a pretty strange way. Here is the
citation from the JDK’s documentation for the addItem method (the same is true for the other one): “This
method works only if the JComboBox uses a mutable data model.” What a blow! Hence, if you provide a
 JComboBox an object of type SortedComboBox , then it will become immutable, irrespective of the fact that the
matching combo box model is mutable. There is no other way than to extend the MutableComboBoxModel
interface. However, in that case you will essentially end up in the same position as when directly extending
the DefaultComboBox class (at least from the standpoint of the API)! Game over!

 The senior has advised the management that there is no superior way than to extend the
 DefaultComboBox model (as in Version II) and augment it with an external comparator (see the exercises at
the end of this chapter).

 For a greenfield project there is a much better route. One could leverage the dependency inversion
principle, and introduce a layer of abstraction over Swing (an approach used by the NetBeans Platform).
This UI bridge would contain sound abstractions for dealing with any GUI framework. Any issues with the
target GUI framework, like Swing, will have been handled by this new bridge layer. Unfortunately, it isn’t that
easy to add such abstractions to a legacy code base, and this was an assumption in this case study.

 Conclusion
 The most important part of any API is its set of exposed abstractions. If those abstractions are not adequate
(e.g., when they are radically different from the problem domain in the given context), then nothing else
matters. You can try to use interfaces instead of classes, use composition over inheritance, use aspect-
oriented programming, and so on. The outcome will always be the same, as demonstrated in this case study.

 The MutableComboBoxModel interface is unfortunate, as it ties the mutability aspect of a model to a
concrete implementation (presumes an unordered list). The proper way would have been to simply use
our SortedComboBoxModel and rename it MutableComboBoxModel . However, this cannot be done anymore
without breaking backward compatibility.

 The hidden dependencies, for example, between the JComboBox and MutableComboBoxModel entities,
are especially cumbersome. The IDE cannot help you notice the error until it is too late, when it pops up
during execution.

CHAPTER 3 ■ DESIGNING CLASSES FOR REUSE

58

 All in all, reusing artifacts from a framework isn’t that easy, let alone crafting a brand new one. 7 The reuse
potential is directly proportional to the energy invested into an API. This is reminiscent of a chess game (I was a
former chess player), as depicted in Figure 3-2 . If you mess up the preparation or opening phases (equivalent of
an API), then the rest of the game will be a struggle for a draw. Figure 3-2 also emphasizes the holistic approach
to API design, as you need to evaluate a broad spectrum of possibilities to properly judge the future vector of
changes. Those are the potential directions of evolution. As in chess, you cannot play tournaments without a
plan, 8 deciding what move to make solely based on the current position. Your position wouldn’t be evolvable.

 The case study has also revealed a truth behind maintenance, and why it is so hard. Most often, all that
remains is the source code (possibly with some documentation). This is nothing but a snapshot of a complex
and involved mental process. It is rarely the case that anybody invests the energy to document the whole thing
(there is a time when developers are capable and motivated to create high-quality documentation, as explained
at http://wiki.apidesign.org/wiki/Teamwork) . Sometimes, if you are lucky, you might squeeze out some
information from the version control system, by looking at the history, but chances for success are rather small.

 Figure 3-2. Illustration of the life cycle of the chess game and how different phases can be mapped to software
development (see [3]). In each phase you always need to watch what your opponent is doing, and make
corrections accordingly (these are like constant change requests from a customer). The only huge difference
is, that in software, the maintenance is really when things begin to happen (this is the longest period in the
software’s life cycle).

 7 You should avoid creating a new framework before looking around for already available options. For example, if you
need an additional layer of abstraction and control over the GUI, then you might use the NetBeans platform instead of
plain Swing. As an additional benefit, you would acquire a platform caring about your application’s life cycle.
 8 Opening = first version of an API; chess game plan = evolution plan for the future; struggling after opening = living
with design mistakes from the first version.

https://www.google.com/url?q=http://wiki.apidesign.org/wiki/Teamwork&sa=D&ust=1472670353390000&usg=AFQjCNHlkl04KDR729wA-bIFOj7FOP0tNA

CHAPTER 3 ■ DESIGNING CLASSES FOR REUSE

59

 Case Study: Provider of Reuse
 We will change roles here, and see how it looks when you would like to create an artifact for others to reuse. The
intention is to showcase all the difficulties associated with creating highly reusable entities (this time we will try
to make it proper on the first attempt). The task here is to implement a generic, serializable, randomized “queue”
abstract data type (for a full description of the assignment, without bothering about the client part, visit http://
www.cs.princeton.edu/courses/archive/fall05/cos226/assignments/queues.html). The double-ended
queue is now part of the JDK, so we will not implement that. For an introduction to algorithms, read [4].

 To make this case study more interesting, we will additionally demand that our new data structure fit
into the Java Collections framework . This will allow clients to reuse it in a familiar way (like they reuse the
 ArrayList or LinkedList classes). However, we will relax the constraint regarding Java library functions and
allow ourselves to call them. After all, this chapter is about reuse.

 The first decision is how to properly name our abstraction (remember that naming is one of the
most crucial things to do right). It is obvious that queue is a loose term. Looking at the description of the
 Collection interface, it gives us a hint that bags should implement this interface directly. This is exactly
what we want. Basing our abstraction on the Queue interface would be plain wrong. Therefore, our new data
type will be named RandomizedBag .

 Implementing the Collection interface directly is quite tedious, due to many methods. For this reason,
the Collections framework provides a convenient abstract base class AbstractCollection . 9 Here is the citation
from its documentation: “This class provides a skeletal implementation of the Collection interface, to minimize
the effort required to implement this interface.” Extending this class is okay, because we are principally using
interface inheritance instead of implementation inheritance (e.g., it would be an error to extend the ArrayList
class). We now just need to follow the documentation of the AbstractCollection class to comply with its API.

 The next decision revolves around what to use internally for holding the elements in our collection. The
best candidate is the universal ArrayList class. We use composition instead of inheritance, and check that
 ArrayList does implement Serializable . It turns out it does. So far, so good.

 To generate random numbers, we will use the JDK’s built-in Random class, which also implements
 Serializabl e (this is important, as we would like to get a deserialized object with its random number generator’s
state restored). However, we would like to be able to replace it with any other linear congruential random number
generator. Also, we will allow a client to seed our generator to be able to reproduce a random sequence.

 Finally, we want our class to be evolvable in a backward-compatible fashion. This requirement regularly
has a great impact on an API. The source code of the RandomizedBag class is presented here (the most
important details are shown in bold, some of them because they are wrong).

 package rs.exproit.util;

 import java.io.Serializable;
 import java.util.AbstractCollection;
 import java.util.ArrayList;
 import java.util.Collection;
 import java.util.Collections;
 import java.util.Iterator;
 import java.util.List;
 import java.util.NoSuchElementException;

 9 It is educational to notice the different conventions between the Java Collections framework and Swing. In Swing, this
kind of a convenience class has a suffix Adapter , which is totally misleading. For example, the MouseMotionAdapter ’s
documentation states the following: “An abstract adapter class for receiving mouse motion events. The methods in this
class are empty. This class exists as convenience for creating listener objects.” It serves the same purpose as the
 AbstractCollection , but with a wrong name and an inaccurate documentation (it isn’t abstract at all). It would have
been more appropriate to follow the later JDK convention with the Base/Default prefix/suffix instead of Adapter .

http://www.cs.princeton.edu/courses/archive/fall05/cos226/assignments/queues.html)
http://www.cs.princeton.edu/courses/archive/fall05/cos226/assignments/queues.html)

CHAPTER 3 ■ DESIGNING CLASSES FOR REUSE

60

 import java.util.Random;

 /**
 * Implements the generic randomized "queue" ADT as described
 *
 * here.
 * The randomization process uses a linear congruential random number generator. This may be
 * configured with a seed value, to reproduce the random number sequence.
 *
 * @author Ervin Varga
 *
 * @param <E> the type of elements contained inside this bag.
 */
 public final class RandomizedBag<E> extends AbstractCollection<E>
 implements Serializable {
 private static final long serialVersionUID = 1L;

 private final List<E> elems = new ArrayList<>();
 private final Random rnd;

 public RandomizedBag() {
 rnd = new Random();
 }

 public RandomizedBag(long seed) {
 rnd = new Random(seed);
 }

 public RandomizedBag(Collection<E> c) {
 this();
 addAndshuffleElementsInPlace(c);
 }

 public RandomizedBag(long seed, Collection<E> c) {
 this(seed);
 addAndshuffleElementsInPlace(c);
 }

 private void addAndshuffleElementsInPlace(Collection<E> newElems) {
 assert newElems != null;

 elems.addAll(newElems);
 Collections.shuffle(elems, rnd);
 }

 /**
 * Adds a new element to this collection. The collection permits duplicates, but doesn't
 * allow {@code null} elements.
 *
 * {@inheritDoc}
 */

CHAPTER 3 ■ DESIGNING CLASSES FOR REUSE

61

 @Override
 public boolean add(E e) {
 if (e == null) {
 throw new NullPointerException();
 }

 elems.add(e);

 // Shuffle the last added element with a random one from the queue.
 final int idx = rnd.nextInt(elems.size());
 elems.set(elems.size() - 1, elems.get(idx));
 elems.set(idx, e);
 return true;
 }

 /**
 * Deletes and returns an element from the bag, uniformly at random.
 *
 * @return the deleted element from this bag.
 * @throws NoSuchElementException if the bag is empty.
 */
 public E remove() {
 if (isEmpty()) {
 throw new NoSuchElementException("Cannot remove an element from an empty bag.");
 }

 return elems.remove(0);
 }

 public Iterator<E> iterator() {
 List<E> elemsCopy = new ArrayList<>(elems);
 Collections.shuffle(elemsCopy, rnd);
 return elemsCopy.listIterator() ;
 }

 @Override
 public int size() {
 return elems.size();
 }
 }

 The accompanying test case class is shown here:

 package rs.exproit.util;

 import static org.junit.Assert.*;

 import java.io.ByteArrayInputStream;
 import java.io.ByteArrayOutputStream;
 import java.io.ObjectInputStream;
 import java.io.ObjectOutputStream;

CHAPTER 3 ■ DESIGNING CLASSES FOR REUSE

62

 import java.util.ArrayList;
 import java.util.List;

 import static org.hamcrest.core.IsEqual.*;
 import static org.hamcrest.core.IsNot.*;
 import org.junit.BeforeClass;
 import org.junit.Test;

 public class RandomizedBagTest {
 private static final List<Integer> baseItems = new ArrayList<>();

 @BeforeClass
 public static void setupBaseItems() {
 for (int i = 0; i < 10; i++) {
 baseItems.add(i);
 }
 }

 @Test
 public void testConstructorWithoutCollection() {
 RandomizedBag<Integer> bag = new RandomizedBag<>();
 assertNotNull(bag);
 assertTrue(bag.isEmpty());
 }

 @Test
 public void testConstructorWithCollection() {
 RandomizedBag<Integer> bag = new RandomizedBag<>(baseItems);
 assertNotNull(bag);
 assertEquals(baseItems.size(), bag.size());
 }

 @Test
 public void testConstructorWithCollectionAndSeed() {
 RandomizedBag<Integer> bag1 = new RandomizedBag<>(1, baseItems);
 RandomizedBag<Integer> bag2 = new RandomizedBag<>(1, baseItems);
 Object[] bag1Content = bag1.toArray();
 Object[] bag2Content = bag2.toArray();
 assertArrayEquals(bag1Content, bag2Content);

 bag1 = new RandomizedBag<>(1, baseItems);
 bag1Content = bag1.toArray();
 bag2 = new RandomizedBag<>(2, baseItems);
 bag2Content = bag2.toArray();
 assertThat(bag1Content, not(equalTo(bag2Content)));
 }

 @Test(expected = NullPointerException.class)
 public void addNull() {
 RandomizedBag<Integer> bag = new RandomizedBag<>();
 bag.add(null);

CHAPTER 3 ■ DESIGNING CLASSES FOR REUSE

63

 }

 @Test(expected = NoSuchElementException.class)
 public void removeFromEmptyBag() {
 RandomizedBag<Integer> bag = new RandomizedBag<>();
 bag.remove();
 }

 @Test
 public void addElementsAndIterateOverThem() {
 RandomizedBag<Integer> bag1 = new RandomizedBag<>(3);
 for (Integer e : baseItems) {
 bag1.add(e);
 }
 Integer[] bag1Content = new Integer[baseItems.size()];
 int idx = 0;
 for (Integer e : bag1) {
 bag1Content[idx++] = e;
 }

 RandomizedBag<Integer> bag2 = new RandomizedBag<>(3);
 for (Integer e : baseItems) {
 bag2.add(e);
 }
 Integer[] bag2Content = new Integer[baseItems.size()];
 idx = 0;
 for (Integer e : bag2) {
 bag2Content[idx++] = e;
 }
 assertArrayEquals(bag1Content, bag2Content);
 }

 @Test
 public void removeElementRandomly() {
 RandomizedBag<Integer> bag1 = new RandomizedBag<>(1, baseItems);
 RandomizedBag<Integer> bag2 = new RandomizedBag<>(1, baseItems);
 assertEquals(bag1.remove(), bag2.remove());

 bag1 = new RandomizedBag<>(1, baseItems);
 bag2 = new RandomizedBag<>(2, baseItems);
 assertNotEquals(bag1.remove(), bag2.remove());
 }

 @SuppressWarnings("unchecked")
 @Test
 public void testSerialization() throws Exception {
 RandomizedBag<Integer> bag1 = new RandomizedBag<>(1, baseItems);
 byte[] bag1Memento;
 try (
 ByteArrayOutputStream buffer = new ByteArrayOutputStream();
 ObjectOutputStream objectStream = new ObjectOutputStream(buffer);
) {

CHAPTER 3 ■ DESIGNING CLASSES FOR REUSE

64

 objectStream.writeObject(bag1);
 bag1Memento = buffer.toByteArray();
 }

 RandomizedBag<Integer> bag2;
 try (
 ByteArrayInputStream buffer = new ByteArrayInputStream(bag1Memento);
 ObjectInputStream objectStream = new ObjectInputStream(buffer);
) {
 Object obj = objectStream.readObject();
 bag2 = RandomizedBag.class.cast(obj);
 }

 Object[] bag1Content = bag1.toArray();
 Object[] bag2Content = bag2.toArray();
 assertArrayEquals(bag1Content, bag2Content);
 }

 @Test
 public void verifyThatIteratorHasRemove() {
 RandomizedBag<Integer> bag1 = new RandomizedBag<>(baseItems);
 Iterator<Integer> iter = bag1.iterator();
 assertTrue(iter.hasNext());
 assertNotNull(iter.next());
 // This should not throw an exception.
 iter.remove();
 }
 }

 The RandomizedBag class is final for us to gain full control. It is better to be restrictive than to allow
all sorts of customizations via extension. Clients will definitely find ways to abuse inheritance. As change
requests arrive, we will learn what the weak points are. At any rate, we will be able to expand a final class in a
backward-compatible manner. If nothing helps, then we can introduce a new type later, while retaining the
old one for simple uses.

 The previous musing supposedly goes against the Open/Closed principle . After all, by closing the class
for extensibility (via extends) we actually open it up for evolution (the opposite of what this principle says).
However, there is no paradox. The Open/Closed principle has two facets: implementation and API. The
confusion arises when these are mixed up. By adding new methods to the final class, we are extending its API
(open for extension). We aren’t allowed to break the API (closed for modification of existing stuff). Java interfaces
are extended differently than classes. For interfaces, the extends mechanism is the natural way to evolve.

 It is tempting to be overly assertive and replace the generic parameter E with E extends Serializable .
This would seriously limit the reuse possibilities, as you would suppose that all use cases will involve
serialization, but this is a false assumption.

 The serialVersionUID field is crucial. Once you make your class Serializable , then all the private fields
become part of an API. In the future, to control the serialization format, you will need versioning. Another
more advanced possibility is implementing Externalizable . The latter gives you more control of what is saved
into an output stream. Of course, Externalizable comes with its own baggage of restrictions, and Java binary
serialization is a bit obsolete nowadays. This is the reason XML/JSON serialization is much better.

CHAPTER 3 ■ DESIGNING CLASSES FOR REUSE

65

 The class internally uses an ArrayList . This is a fine example of a composition over inheritance.
Extending the ArrayList , or for that matter any concrete class, would be a serious mistake. Our
 RandomizedBag can be seen as an ordinary Collection , which increases its reuse potentials. Moreover, it
can be adorned with decorators provided by the Collections class (e.g., to make thread-safe or immutable
variants). An additional improvement could be the replacement of public constructors with factory methods.

 The private methods should be protected by assertions (they blow up in a stronger way than a code
throwing ordinary exceptions), but public methods should explicitly implement the principles of defensive
programming. In a production run, assertions are usually turned off.

 The way the shuffling is implemented in the add method is important to remember, although more
efficient methods are possible (for more details, refer to [4]). A naive approach to always reshuffle the
complete array would be wrong and slow at the same time.

 The no-arg remove method is new, and it isn’t part of the Collection interface. It is okay to augment the
interface with extra methods in your class as long as you fully obey the contract of that interface.

 Returning a listIterator ensures that elements can be removed through it. If a collection is mutable,
then its iterator must support element removal.

 ■ Warning There are severe undisclosed troubles in the RandomizedBag class and its associated test. If you
notice five serious problems, then you are an ace. Otherwise, try to figure them out yourself before reading
further (especially Chapter 4).

 To give you a hint of how to analyze the code, I reveal here one important concern (so you are now left
with four additional issues). The private addAndshuffleElementsInPlace method uses an assertion to verify
whether the input collection is null (this is how books teach you). This wouldn’t be a problem by itself, if
the public constructors weren’t relying on this private method as a guarantee that a client hasn’t provided
 null . In production, assertions are turned off. Luckily, this method has a nonintuitive side effect (in this case
a positive one): Even in production it will properly signal a NullPointerException . Its behavior depends
on the addAll method of ArrayList (it throws the previous exception if the input is null). Where is this
functionality tested and documented? This is the biggest problem. There is no test case to check whether the
constructors will throw such an exception. During maintenance, if an unsuspecting developer changes the
 ArrayList to something else, which doesn’t behave as ArrayList , then a new bug will appear in an allegedly
“correct” code. Who is to blame: the maintainer or the original irresponsible author? With a proper test this
would be immediately discovered. At least there would be a clear statement how constructors should handle
a null input. This fact would be part of an API, and not some hidden “pearl” of the software.

 Summary
 This chapter has reinforced the statements about the importance of proper abstractions to create reusable
and maintainable APIs. The OO technology doesn’t give you the ability to reuse artifacts for free. You must
work hard to reach a satisfactory reuse level. Of course, once you master the secrets, then your productivity
will undeniably improve. This is especially true in multiparadigm languages, like Java 8, where you can
combine various paradigms to boost your expressive power.

http://dx.doi.org/10.1007/978-1-4842-2196-9_4

CHAPTER 3 ■ DESIGNING CLASSES FOR REUSE

66

 We have also attested that each time you introduce a framework into your code base, you bring in lots
of stuff. You must be aware of the framework’s power and limitations. If you see that the framework’s API is
sloppy, then you should be remarkably vigilant. Examine lots of code, browse through the test cases (they are
sometimes the best documentation 10), and read high-quality books. I recommend you look for a book written
by the author who is also the main contributor in the matching open source framework (if you are searching for
purely technology-related books). Blogs are okay, but only if you have already accrued a decent knowledge and
experience in the corresponding area. Forget about Wikipedia, unless you’re an expert, and want to fix errors.

 AUGMENT THE SORTED COMBO BOX MODEL

 Practice Design Patterns

 The SortedComboBoxModel model from Version II doesn’t allow a client to customize the sorting
behavior. This is a serious limitation. Your task is to come up with Version IV enabling a client to pass a
custom Comparator (an example of the Strategy design pattern).

 You should also remove an ill-advised restriction on a generic type; for example, instead of E extends
Comparable<E> , it should be just E .

 VERSION IV

 Admire the Importance of Good API Design

 There is another possibility to implement a sorted combo box without actually creating a new subclass
of the combo box component or its model. Swing provides an interface called ListDataListener ,
and this is implemented by the JComboBox component (for more information visit https://docs.
oracle.com/javase/tutorial/uiswing/events/listdatalistener.html). The DefaultComboBox
has a method to register ListDataListener instances. The model’s addElement method should
notify all registered listeners. Those listeners might do anything, including reordering of elements (the
Javadoc of the ListDataListener doesn’t prevent users from doing that, nor it is prevented in the
implementation).

 Your task is to implement Version IV of the sorted combo box component. You would want to
encapsulate the registration mechanism inside your custom listener (to accept a combo box for what it
needs to handle the sorting). Notice that you will be able to find out the source of the event by calling
the getSource method of the ListDataEvent object (this is passed to listeners).

 This approach might be the least invasive, but it doesn’t solve the main problem. You will still need to
trigger the event via that addItem method. The added element could end up anywhere, so the contract
is still broken.

 10 It is important to differentiate tests written to illustrate a use cases from those produced to reproduce bugs (usually,
these tests are quite cluttered). There is a Maven plug-in that allows you to extract code snippets from use case tests (as
they are tidy) and embed them into Javadoc. The plug-in is available at https://github.com/jtulach/codesnip-
pet4javadoc . This relieves you from manually copy-pasting material.

https://docs.oracle.com/javase/tutorial/uiswing/events/listdatalistener.html
https://docs.oracle.com/javase/tutorial/uiswing/events/listdatalistener.html
https://www.google.com/url?q=https://github.com/jtulach/codesnippet4javadoc&sa=D&ust=1472670353301000&usg=AFQjCNFpaHccbxfwoCZD0Ns38SMhIVoJiQ
https://www.google.com/url?q=https://github.com/jtulach/codesnippet4javadoc&sa=D&ust=1472670353301000&usg=AFQjCNFpaHccbxfwoCZD0Ns38SMhIVoJiQ

CHAPTER 3 ■ DESIGNING CLASSES FOR REUSE

67

 References
 1. Holub, Allen. Holub on Patterns: Learning Design Patterns by Looking at Code.

New York: Apress, 2004.

 2. “Trail: Creating a GUI with JFC/Swing.” Oracle. https://docs.oracle.com/
javase/tutorial/uiswing/

 3. Varga, Ervin. “The Holistic Approach to Software Engineering.” Presented at
the 5th PSU-UNS International Conference on Engineering and Technology
(ICET-2011), Thailand, 2011.

 4. Sedgewick, Robert, and Kevin Wayne. Algorithms, Fourth Edition. Reading, MA;
Addison-Wesley Professional, 2011.

https://docs.oracle.com/javase/tutorial/uiswing/
https://docs.oracle.com/javase/tutorial/uiswing/

69© Ervin Varga 2016
E. Varga, Creating Maintainable APIs, DOI 10.1007/978-1-4842-2196-9_4

 CHAPTER 4

 TDD as an API Design Technique

 TDD is usually associated with the phrase “Write tests first, and then implement.” However, this is a rather
distorted and reduced view of TDD. I would say that it misses all the major points of it. TDD is a paradigm
shift, a brand new way of thinking about how to specify, design, and implement a software system. It is
applicable as a concept in all phases of a software’s life cycle. The previously mentioned phrase is bad, as it
also suggests that TDD can be used only on greenfield projects. This chapter demonstrates quite the opposite.
Before proceeding, I would suggest you read an excellent treatment of TDD [1], which also introduces tools
supporting TDD. This chapter essentially complements the methods presented in that book.

 TDD is a powerful mental shift about asking questions. Traditional software engineering processes (not
necessarily crude waterfall, but definitely formal) tend to introduce delineations between major software
life cycle phases. In this manner, implementation (construction) is treated differently than requirements;
that is, there are strict perceptions of domain (problem) space and solution space. Programmers, who are
mainly concerned with software construction, used to move and think purely inside the solution area.
Consequently, the main question they ask is “How?” The people dealing with a problem domain are taught
to forget about “How?” and focus on “What?” This could lead to a serious dichotomy, as the resulting
conceptual and architectural models, which were challenged by only “What?” aspects, might not fit well
into the “How?” space. In other words, they might be cumbersome to implement in the target programming
language and environment. On the contrary, programs crafted by following solely the “How?” concerns
frequently couldn’t even address the core needs of the customer. TDD is a paradigm change to cross this
chasm. 1 By proactively thinking about testability of requirements, design, and code (known in the theory as
 Testing V), TDD forces all participants to ask both questions at the same time. For example, a requirement
cannot be stated without a clear indication of how it is going to be tested during acceptance tests. This has a
profound positive effect on a quality of the system requirements specification, hence on further analysis and
design artifacts. In a similar manner, a code cannot be created without first answering the question “ What
am I supposed to implement here; that is, what use case(s) are my code supposed to realize?”

 Another common question, what TDD puts forward to all participants, is “To whom?” There is a
huge difference between a closed-form and open-form test (these terms are mine, so I apologize if they’re
unwieldy at this moment; I will try to explain them in a moment from the viewpoint of a programmer).

 A closed-form test is written by a programmer for herself or himself in a most selfish manner. It serves
to assure the programmer that the code “works.” The semantic behind the word work is again defined by
the same programmer. A closed-form test is totally confined by the programmer’s view of the project. The
answer to the question “To whom?” is “Only to me.”

 An open-form test is written by a programmer for everybody to look at. This test tries to verify that the
code is following the needs of a business (it is use-case driven). The matching test is also intended to be a
documentation for other programmers, who must understand what is going on (especially important during

 1 A similar abyss crossing movement is DevOps, where construction isn’t totally isolated from deployment and opera-
tional aspects of the produced system.

CHAPTER 4 ■ TDD AS AN API DESIGN TECHNIQUE

70

the maintenance phase). An open-form test might even be specified to be readable by nontechnical people
(we will see an example of this later on). By caring about what to implement (an influence of TDD) the
programmer automatically starts to appreciate the demands of the project. He or she wants to implement a
useful code. This change in attitude changes the way he or she specifies tests.

 ■ Note TDD brings use cases to programmers, and equips analysts and architects with pragmatism. In other
words, TDD raises programmers from the muddy ground, and prevents analysts and architects from entering
outer space, where Earth looks like an electrical point charge. Software modules are a common denominator for
both architects and programmers, when they are confronted with an overall testability aspect of the product. In
this respect, TDD fosters modularity.

 Software testing is a quality control technique (with limited efficacy). TDD is a quality assurance technique with
a high impact on the overall quality of a software product. Thinking about testability produces better design,
which supports software development and evolution. Moreover, higher quality tests boost the quality control
efficiency of bare testing, thus lowering the chance that undetected bugs will end up in a release.

 The next list enumerates the primary benefits of using TDD (the list isn’t ordered by any means, so all
bullet points are equally important).

• Produces a battery of high-quality tests (we assume that these are all automated) for
detecting bugs as well as helping maintenance activities (these happen throughout
the software’s life cycle, not just in its maintenance and evolution phase). Constant
refactoring cannot happen without frequent regression testing. As new features are
added, without doing perfective maintenance in parallel, they will make the code
more complex. Uncontrolled complexity hampers further evolution.

• Produces a better design by advocating loose coupling and high cohesion (strongly
coupled and low cohesive units are hard to test). The desire to break dependencies
to control peer classes (to mock them out) frequently introduces new abstractions
(dependency inversion in action). TDD drives you to think about design principles
and patterns and apply them judiciously in your code.

• Subjugates entropy and acts as a powerful risk mitigation technique (you reduce
the probability of a catastrophic failure in production). Exposing code to tests
early abolishes surprises in later phases of development. TDD is very similar to
measurements in quantum physics. A quantum state collapses into a deterministic one
as soon as you apply a measurement to it. When you execute tests, you perform such
“quantum” measurements over the code. Each uncovered bug disappears (collapses)
after a fix, so you reduce the footage of the unknown bug haze in a product.

• Helps make clean and tidy APIs. An API is a window through which all
communications happen with the matching software entity (let us presume a class
now). TDD nudges you think about behavioral aspects of the system and the types of
interactions involving your class. In every such interaction, an instance of the class
plays a specific role, and these roles should be embodied in its API.

 The RandomizedBag class wasn’t created with TDD in mind (see Chapter 3). In the rest of this chapter,
we explain the consequences of not following TDD and present the reworked version of the RandomizedBag
class driven by tests. All this is done via various case studies.

http://dx.doi.org/10.1007/978-1-4842-2196-9_3

CHAPTER 4 ■ TDD AS AN API DESIGN TECHNIQUE

71

 Case Study: TDD Doesn’t Replace OOD Principles
 Suppose TDD is performed by the rookie, who knows nothing about the standard OOD principles, but has
read about “write tests first, and then implement” wisdom in a multitude of blog posts (this is all our rookie
knows about TDD, as is the case with many bloggers, too). This rooker has also been commanded to apply
TDD blindly in the company, where he is employed. Let us simulate what typically happens in this situation,
for the same task of creating a randomized “queue” class. Also, let’s forget about our previous attempt with
 RandomizedBag , and let the rookie start from scratch; of course (for rookies), let’s start with a wrong class
name (a typical blunder coming along with bad design choices). Therefore, the rookie has started with the
following test case for testing the two mandatory constructors that have to be provided according to the
 Collection interface’s specification.

 package rs.exproit.util;

 import static org.junit.Assert.*;

 import java.util.LinkedList;
 import java.util.List;
 import org.junit.BeforeClass;
 import org.junit.Test;

 public class RandomizedQueueTest {
 private static final List<Integer> baseItems = new LinkedList<>();

 @BeforeClass
 public static void setupBaseItems() {
 for (int i = 0; i < 10; i++) {
 baseItems.add(i);
 }
 }

 @Test
 public void testConstructorWithoutCollection() {
 RandomizedQueue<Integer> queue = new RandomizedQueue<>();
 assertNotNull(queue);
 assertTrue(queue.isEmpty());
 }

 @Test
 public void testConstructorWithCollection() {
 RandomizedQueue<Integer> queue = new RandomizedQueue<>(baseItems);
 assertNotNull(queue);
 assertEquals(baseItems.size(), queue.size());
 }
 }

 The new data type was named RandomizedQueue because the rookie has chosen to extend it from the
 LinkedList class. He figured that it already delivers 90% of the implementation, so it would be a good choice
as the parent class. The two constructors were added to this child class to come up with the first version.
Here is the listing (the Javadoc comments are omitted for brevity).

CHAPTER 4 ■ TDD AS AN API DESIGN TECHNIQUE

72

 package rs.exproit.util;

 import java.util.Collection;
 import java.util.Collections;
 import java.util.LinkedList;
 import java.util.Random;

 @SuppressWarnings("serial")
 public final class RandomizedQueue<E> extends LinkedList<E> {

 public RandomizedQueue() {
 }

 public RandomizedQueue(Collection<E> c) {
 super(c);
 Collections.shuffle(this);
 }
 }

 All of the test passed. The LinkedList class implements Serializable , and the warning about the
missing serialVersionUID 2 was silenced with the @SuppressWarnings("serial") annotation (beginners
are especially rapid on muting warnings). Nonetheless, the rookie was not satisfied with the test case, as
he was not sure whether the given collection was really shuffled or not. The test case was extended in the
following manner (the parts shown in bold are the most interesting ones).

 package rs.exproit.util;

 import static org.junit.Assert.*;

 import java.util.Collection;
 import java.util.Collections;
 import java.util.LinkedList;
 import java.util.List;
 import java.util.Random;

 import org.junit.BeforeClass;
 import org.junit.Test;

 public class RandomizedQueueTest {
 @SuppressWarnings("serial")
 private static class MyRandomizedQueue extends RandomizedQueue<Integer> {
 public MyRandomizedQueue() {}

 public MyRandomizedQueue(Collection<Integer> c) {
 super(c);
 }

 2 This is one of the lint checks performed by the Java compiler. For an excellent overview of the possible options, you
might want to read the JavaWorld article “javac’s -Xlint Options,” which is available at http://www.javaworld.com/
article/2073587/javac-s--xlint-options.html .

http://www.javaworld.com/article/2073587/javac-s--xlint-options.html
http://www.javaworld.com/article/2073587/javac-s--xlint-options.html

CHAPTER 4 ■ TDD AS AN API DESIGN TECHNIQUE

73

 @Override
 public Random createRandom() {
 return new Random(1L);
 }
 };

 private static final List<Integer> baseItems = new LinkedList<>();
 private static final List<Integer> shuffledBaseItems = new LinkedList<>();
 private static final Random rnd = new Random(1L);

 @BeforeClass
 public static void setupBaseItems() {
 for (int i = 0; i < 10; i++) {
 baseItems.add(i);
 shuffledBaseItems.add(i);
 }
 Collections.shuffle(shuffledBaseItems, rnd);
 }

 @Test
 public void testConstructorWithoutCollection() {
 RandomizedQueue<Integer> queue = new MyRandomizedQueue();
 assertNotNull(queue);
 assertTrue(queue.isEmpty());
 }

 @Test
 public void testConstructorWithCollection() {
 RandomizedQueue<Integer> queue = new MyRandomizedQueue(baseItems);
 assertNotNull(queue);
 assertEquals(baseItems.size(), queue.size());
 assertArrayEquals(shuffledBaseItems.toArray(), queue.toArray());
 }
 }

 The corresponding new version of the target class is given next (notice the parts shown in bold).

 package rs.exproit.util;

 import java.util.Collection;
 import java.util.Collections;
 import java.util.LinkedList;
 import java.util.Random;

 @SuppressWarnings("serial")
 public class RandomizedQueue<E> extends LinkedList<E> {
 private Random rnd;

 public RandomizedQueue() {
 rnd = createRandom();
 }

CHAPTER 4 ■ TDD AS AN API DESIGN TECHNIQUE

74

 public RandomizedQueue(Collection<E> c) {
 super(c);
 rnd = createRandom();
 Collections.shuffle(this, rnd);
 }

 public Random createRandom() {
 return new Random();
 }

 public void setRandom(Random rnd) {
 this.rnd = rnd;
 }
 }

 The rookie has rightly concluded, that without controlling the random number generator it is
impossible to test the RandomizedQueue class. He has stumbled across the Factory Method design pattern,
and the solution was at his fingertips. He was so happy, because using design patterns is just cool (he has
heard about patterns, when senior engineers talked about them in the company’s café)! So, the rookie
introduced a createRandom factory method that was aimed to be overridden by classes not satisfied with
the default generator. He also figured, to make the class even more flexible, that a setter method would be
handy, too. He also removed the final modifier on the class because it was an obstacle for implementing
the factory method (he even wondered why anybody would use such an annoying final on the class). 3

 The rookie has announced to his boss that the implementation will be ready in a minute. After all, the
hardest parts are already solved. The remaining add method is a piece of cake. His boss was also pleased,
and added, “I’ve told you that TDD is good!”

 Conclusion
 If you think that I have embellished the example, believe me that I didn’t. As a consultant, I’ve seen much
worse production code (let alone code written by some of my students). Nevertheless, the case study shows
what happens when TDD is applied out of context. The biggest issue is that people afterward conclude that
the problem is with the TDD, and not the preconditions regarding its usage. These are some of the most
salient problems in the preceding solution:

 1. Extending the RandomizedQueue class from the LinkedList one is a brutal abuse
of implementation inheritance. You might find examples of this even in the
JDK: Stack extends Vector , Properties extends Hashtable , and so on. Try to
enumerate how many ways you can thwart the RandomizedQueue class’s integrity
by using methods inherited from the LinkedList class.

 2. Giving away the Random class is a brutal violation of the encapsulation and
information hiding principles. Classes cannot be made flexible and reusable
by just deciding to give away all of their internal details. Look at the API of the
preceding RandomizedQueue class. It’s awful.

 3 Adding an instrumentation API for testing purposes is a sound practice, but it should never weaken the main API. The
aim is to increase testability without giving up on information hiding, encapsulation, or both (e.g., it isn’t advisable to
remove a private modifier just to make something testable). Otherwise, this instrumentation API is a standard practice in
electronics, where you have so-called reference points in circuitry. If you make measurements with an oscilloscope on
test points, then you can compare the measured signals to the expected ones. Any mismatch is an indication of an error.
At any rate, if your test needs “privileged” access to the code, then you might leverage a library to help you with this
(e.g., take a look at https://code.google.com/archive/p/privilegedaccessor/).

https://code.google.com/archive/p/privilegedaccessor/

CHAPTER 4 ■ TDD AS AN API DESIGN TECHNIQUE

75

 3. The motivation to introduce a factory method by the rookie is shocking (together
with the act of removing the final modifier). A factory method should never
break encapsulation and information hiding, and is aimed to return an instance
implementing an abstraction, the concrete class of which is unknown or hidden.
The factory method here is used to configure the internal Random instance. What
a misapplication!

 4. You should never call a nonfinal method from the constructor. Clients might
override it, and make some forbidden actions on a half-baked instance. This has
caused a famous threading bug in the JDK’s SwingWorker class. If you do need to
call such a method from one of your constructors, then take care to document it
properly, including all potential consequences.

 ■ Note TDD requires a holistic approach to software engineering. It is not a replacement for all solid
principles of OOD and OOP (including SOLID itself 4), but is rather their supplement. Lack of a proper OOD
knowledge and experience considerably diminishes the effects of TDD.

 You should avoid the pitfall of writing tests first, and then just greedily trying to find ways to pass
them. After all, if you know your tests, then it is easy to pass them without implementing anything useful.
Sometimes, this is exacerbated with code coverage tools and a frantic desire to achieve 100% coverage. This
all happens when TDD is deeply misunderstood. The next case study highlights these problems.

 Case Study: Tests Are Rubbish Without TDD
 Let us revisit again our class from Chapter 3 . As hinted there, the RandomizedBagTest test class is
troublesome. After this section you might even say that it is rubbish (to phrase it politely). Can you believe
that it will pass 100% (generate a bunch of false positives) for the next version of the randomized bag type
(it is appropriately called RandomizedBagRubbish)?

 package rs.exproit.util;

 import java.io.Serializable;
 import java.util.AbstractCollection;
 import java.util.ArrayList;
 import java.util.Collection;
 import java.util.Collections;
 import java.util.Iterator;
 import java.util.List;
 import java.util.NoSuchElementException;
 import java.util.Random;

 @SuppressWarnings("serial")
 public final class RandomizedBagRubbish<E> extends AbstractCollection<E>
 implements Serializable {
 private final List<E> elems = new ArrayList<>();

 4 The word solid is an adjective, whereas SOLID as an acronym introduced by M. Feathers for the five most important
OOD principles of Robert C. Martin: single responsibility, open-closed, Liskov substitution, interface segregation, and
dependency inversion.

http://dx.doi.org/10.1007/978-1-4842-2196-9_3

CHAPTER 4 ■ TDD AS AN API DESIGN TECHNIQUE

76

 public RandomizedBagRubbish() {
 }

 public RandomizedBagRubbish(long seed) {
 }

 public RandomizedBagRubbish(Collection<E> c) {
 elems.addAll(c);
 }

 public RandomizedBagRubbish(long seed, Collection<E> c) {
 this(c);
 Collections.shuffle(elems, new Random(seed));
 }

 @Override
 public boolean add(E e) {
 if (e == null) {
 throw new NullPointerException();
 }

 elems.add(e);
 return true;
 }

 public E remove() {
 if (isEmpty()) {
 throw new NoSuchElementException("Cannot remove an element from an empty bag.");
 }

 return elems.remove(0);
 }

 public Iterator<E> iterator() {
 return elems.listIterator();
 }

 @Override
 public int size() {
 return elems.size();
 }
 }

 As you might notice, this class barely does anything more than implement a minimalistic collection.
The only moment when shuffling is performed (it is shown in bold) is in the constructor accepting a
collection with an initial seed value. What happened, taking into account the fact that RandomizedBagTest
covered the whole original code base? Well, this is a consequence of having tests that are not written using
TDD. It is not surprising, then, that the class under test might contain dozens of bugs, but none of them will
be found during testing. Without applying a true TDD you will just fool yourself that “Write tests first, and
then implement” is your motto toward a triumph.

CHAPTER 4 ■ TDD AS AN API DESIGN TECHNIQUE

77

 At the heart of any OO system is the graph of collaborating objects talking to each other. In every
such instance of a communication, participants take specific roles. These roles are associated with
well-defined behaviors. You might want to assure in your tests that the APIs cover these scenarios, and
objects behave properly. In other words, your tests must reflect the use cases; that is, give answers to all
sorts of “What?” questions. For example, you might find in the original test case the test with the name
of verifyThatIteratorHasRemove . What is the purpose of this test? Is it really the case that somebody is
interested in that an iterator has a remove? Isn’t it better to ask whether the RandomizedBag provides an
iterator through which elements could be removed? The difference in how you formulate your questions,
and accordingly your tests, is profound. That is what TDD is about!

 Without acquiring the fundamentals of TDD, programmers habitually write tests just to bulldozer
over all the paths of execution of a code, like warthogs. When they reach coverage above 90% (you can
find suggestions about how much tests are enough at https://openide.netbeans.org/tutorial/test-
patterns.html#enough), then they stop. This is an abomination. The RandomizedBagTest from Chapter 3 is
a perfect example how the outcome looks by following this “variant” of TDD.

 Case Study: Retrofitting Tests to Follow TDD
 In this case study we will fix the problems in the RandomizedBagTest test class as well as the target class (it
contains a serious bug). This study proves that TDD is applicable in all phases of a software’s life cycle. TDD
is a paradigm, and as such has no physical limits. You just need to tune your mind to ask proper questions,
and follow your knowledge and experience to come up with correct answers. Here is the new version of the
test class (I’ve retained its name).

 package rs.exproit.util;

 import static org.junit.Assert.*;
 import static org.hamcrest.CoreMatchers.*;
 import java.io.*;
 import java.util.*;
 import org.junit.*;

 public class RandomizedBagTest {
 private static final long SEED_ONE = 1L;
 private static final List<Integer> baseItems = new ArrayList<>();
 private static final List<Integer> baseItemsCopy = new ArrayList<>();
 private static final List<Integer> shuffledBaseItemsWithSeedOne = new ArrayList<>();

 @BeforeClass
 public static void setupBaseItems() {
 for (int i = 0; i < 10; i++) {
 baseItems.add(i);
 baseItemsCopy.add(i);
 }
 shuffledBaseItemsWithSeedOne.addAll(Arrays.asList(6, 8, 0, 2, 5, 7, 1, 4, 9, 3));
 }

 @Before
 public void verifyThatBaseItemsAreIntact() {
 assertEquals("base items should be intact", baseItemsCopy, baseItems);
 }

https://openide.netbeans.org/tutorial/test-patterns.html#enough
https://openide.netbeans.org/tutorial/test-patterns.html#enough
http://dx.doi.org/10.1007/978-1-4842-2196-9_3

CHAPTER 4 ■ TDD AS AN API DESIGN TECHNIQUE

78

 @Test(expected = NullPointerException.class)
 public void tryToCreateABagWithNullInputCollection() {
 new RandomizedBag<>(null);
 }

 @Test(expected = NullPointerException.class)
 public void tryToCreateABagWithNullInputCollectionAndAPredefinedSeed() {
 new RandomizedBag<>(SEED_ONE, null);
 }

 @Test
 public void createAnEmptyBag() {
 RandomizedBag<Integer> bag = new RandomizedBag<>();
 assertNotNull("bag should exist", bag);
 assertTrue("bag should be empty", bag.isEmpty());
 }

 @Test
 public void createAnEmptyBagWithAPredefinedSeed() {
 RandomizedBag<Integer> bag = new RandomizedBag<>(SEED_ONE);
 assertNotNull("bag should exist", bag);
 assertTrue("bag should be empty", bag.isEmpty());
 }

 @Test
 public void createANonEmptyBag() {
 RandomizedBag<Integer> bag = new RandomizedBag<>(baseItems);
 assertNotNull("bag should exist", bag);
 assertEquals("bag's size equals collection's size", baseItems.size(), bag.size());
 assertTrue("bag contains all items", bag.containsAll(baseItems));
 assertThat("bag should be shuffled",
 baseItems.toArray(), is(not(equalTo(bag.toArray()))));
 }

 @Test
 public void createANonEmptyBagWithAPredefinedSeed() {
 RandomizedBag<Integer> bag = new RandomizedBag<>(SEED_ONE, baseItems);
 assertNotNull("bag should exist", bag);
 assertEquals("bag's size equals collection's size", baseItems.size(), bag.size());
 assertThat("bag should be shuffled with a given seed",
 shuffledBaseItemsWithSeedOne.toArray(), is(equalTo(bag.toArray())));
 }

 @Test(expected = NullPointerException.class)
 public void tryToAddANullItem() {
 RandomizedBag<Integer> bag = new RandomizedBag<>();
 bag.add(null);
 }

 @Test(expected = NoSuchElementException.class)
 public void tryToRemoveFromAnEmptyBag() {

CHAPTER 4 ■ TDD AS AN API DESIGN TECHNIQUE

79

 RandomizedBag<Integer> bag = new RandomizedBag<>();
 bag.remove();
 }

 @Test
 public void addItemsToABag() {
 RandomizedBag<Integer> bag = new RandomizedBag<>();
 for (Integer e : baseItems) {
 bag.add(e);
 }
 assertEquals("bag's size equals collection's size", baseItems.size(), bag.size());
 assertTrue("bag contains all items", bag.containsAll(baseItems));
 assertThat("bag should be shuffled",
 baseItems.toArray(), is(not(equalTo(bag.toArray()))));
 }

 @Test
 public void removeItemsFromABag() {
 RandomizedBag<Integer> bag = new RandomizedBag<>(SEED_ONE, baseItems);
 for (Integer e : shuffledBaseItemsWithSeedOne) {
 assertEquals("bag's head should follow the shuffling", e, bag.remove());
 }
 }

 @Test
 public void saveAndReadFromAnObjectStreamUsingStandardSerialization() throws Exception {
 RandomizedBag<Integer> originalBag = new RandomizedBag<>(SEED_ONE, baseItems);
 RandomizedBag<Integer> streamBag = readFromStream(saveIntoStream(originalBag));
 assertArrayEquals("deserialized bag should equal the original",
 originalBag.toArray(), streamBag.toArray());
 }

 @SuppressWarnings("unchecked")
 private RandomizedBag<Integer> readFromStream(byte[] bagMemento)
 throws ClassNotFoundException, IOException {
 try (
 ByteArrayInputStream buffer = new ByteArrayInputStream(bagMemento);
 ObjectInputStream objectStream = new ObjectInputStream(buffer);
) {
 Object obj = objectStream.readObject();
 return RandomizedBag.class.cast(obj);
 }
 }

 private byte[] saveIntoStream(RandomizedBag<? extends Serializable> bag)
 throws IOException {
 byte[] bagMemento;
 try (
 ByteArrayOutputStream buffer = new ByteArrayOutputStream();
 ObjectOutputStream objectStream = new ObjectOutputStream(buffer);
) {

CHAPTER 4 ■ TDD AS AN API DESIGN TECHNIQUE

80

 objectStream.writeObject(bag);
 bagMemento = buffer.toByteArray();
 }
 return bagMemento;
 }

 @Test
 public void iterateOverItemsOfABag() {
 RandomizedBag<Integer> bag = new RandomizedBag<>(SEED_ONE, baseItems);
 Iterator<Integer> bagIterator = bag.iterator();

 for (int i = 0; i < shuffledBaseItemsWithSeedOne.size(); i++) {
 assertEquals("bag's iterator should follow the shuffling",
 shuffledBaseItemsWithSeedOne.get(i), bagIterator.next());
 }
 }

 @Test(expected = IllegalStateException.class)
 public void tryToRemoveAnItemFromABagViaItsIteratorWithoutFirstGettingTheNextItem() {
 RandomizedBag<Integer> bag = new RandomizedBag<>();
 Iterator<Integer> bagIterator = bag.iterator();
 bagIterator.remove();
 }

 @Test
 public void removeItemsFromABagViaItsIterator() {
 RandomizedBag<Integer> bag = new RandomizedBag<>(SEED_ONE, baseItems);
 Iterator<Integer> bagIterator = bag.iterator();

 bagIterator.next();
 bagIterator.remove();
 assertEquals("bag's size should be reduced after remove",
 baseItems.size() - 1, bag.size());
 for (int i = 1; i < shuffledBaseItemsWithSeedOne.size(); i++) {
 assertEquals("bag's iterator should follow the shuffling",
 shuffledBaseItemsWithSeedOne.get(i), bagIterator.next());
 }
 }
 }

 This test fails with the original RandomizedBag class. It turns out that the iterator method was
improperly implemented. It returned a listIterator instance over a copy of the internal data store instead
of the data store itself. There was no way to remove an element through this iterator. Moreover, it reshuffled
the items unnecessarily. This new test will also fail with the RandomizedBagRubbish class, hence avoid
producing false positives. You should notice how the names of tests now truly reflect the various behaviors
for what clients might be interested in. Some names are really long, but in tests this is okay. After all, you will
not need to type them more than once. The fixed iterator method is shown here.

 public Iterator<E> iterator() {
 return elems.listIterator();
 }

CHAPTER 4 ■ TDD AS AN API DESIGN TECHNIQUE

81

 Case Study: Introduction to BDD
 Behavior-driven development (BDD) is really just a variant of TDD. BDD is associated with higher level tests
(integration and end-to-end tests). There are two approaches to writing them:

• Use JUnit directly, and introduce Hamcrest custom matchers and factory methods
to create tests (possibly with mock objects to control dependencies), which are
readable even by nontechnical people. A superb tutorial for this style is found in [1].

• Use a higher level tool to create BDD tests. We will demonstrate this tactic using
Cucumber for Java (https://cucumber.io). In Cucumber, you specify a test using a
formatted English text. This is executed by matching segments of that text via regular
expressions. Each matched expression triggers an appropriate action implemented
in a target programming language. All actions are run under JUnit, as Cucumber
provides its own test runner.

 BDD is useful for introducing your APIs to a broader audience, to allow them to reason about the APIs’
applicability at a system level. The way the BDD test is specified is understandable to even nontechnical
people, so they can also actively participate in specifying the API’s behavior. Sometimes the API is very close
to end users (like in this case study), and the tests must follow that elevated level of abstraction.

 We implement here a small client application using our fixed RandomizedBag class. The client
application will read in k unique strings from a command line (forming a set), and print out k subsets
of them in a random order. We have already seen how to produce subsets of a set, this time we will
implement it in Java (see the accompanying source code of the book for the class PowerSet and its test
class PowerSetTest). Of course, we will start first with a test case, watch it fail, and after providing a correct
implementation, see it in green. We will repeat this loop couple of times (to save space I will just show an
end result of each artifact). The next listings show our first test specification in plain English as well as the
accompanying Java code implementing custom test steps.

 @ClientApplicationTest
 Feature: Generating Subsets Using a Command Line Interface
 I want to generate subsets of a set (given as sequence of unique strings
 on a command line) and print them out in random order.
 The number of subsets printed must equal the input length (the number of unique strings).

 Background: A Running Client Application
 Given the client application is running

 Scenario: Missing Input
 When I do not provide input
 Then the application should show an error

 Scenario Outline: Creating Subsets
 When I read an input: <inputSet>
 Then the response should contain: <outputCardinality> subsets
 And the subsets should be in random order
 And the subsets should be members of the power set

 Examples:
 | inputSet | outputCardinality |
 | A B | 2 |
 | A | 1 |
 | A B C | 3 |

https://cucumber.io)

CHAPTER 4 ■ TDD AS AN API DESIGN TECHNIQUE

82

 I recommend you use an appropriate plug-in for your IDE to edit a Cucumber specification file.
The extension of the file is features . I’ve marked with bold the keywords for what you need to provide
step definitions (the text following the corresponding keyword is also part of the step definition). Each
scenario describes one particular user story (a concrete occurrence of an interaction with the application).
The outline scenario is a template, which receives data from examples (see the Examples table earlier).
Scenarios are grouped into a feature. I recommend you spend some time giving your feature a good title
and description. The background is a generic precondition that is applied at the beginning of each scenario
(remember that an outline scenario will produce as many scenarios as there are rows in the Examples table).

 The main advantage of using Cucumber tests is its comprehensibility even for nontechnical people.
They can just read a plain English text, and understand what is going on. All the gory details are hidden
inside the step definitions. There is no better way to showcase the capabilities of your APIs.

 The next step is to prepare the scaffolding for running Cucumber tests inside JUnit. You will need to add
the following dependencies to your pom.xml file (besides the JUnit jar file itself):

 <dependency>
 <groupId>info.cukes</groupId>
 <artifactId>cucumber-java</artifactId>
 <version>1.2.4</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>info.cukes</groupId>
 <artifactId>cucumber-junit</artifactId>
 <version>1.2.4</version>
 <scope>test</scope>
 </dependency>

 Because this client application uses the RandomizedBag class, you will also need to install its jar file into
your local Maven repository (just run mvn clean install from the chapter4/java/randomized-queue-
correct-impl folder), and add the dependency to it. After this you can create a simple test class to drive the
Cucumber session (it could also contain auxiliary tests to try out particular edge cases, like in our case later).
Here is the code.

 package rs.exproit.client.cucumber;

 import org.junit.runner.RunWith;

 import cucumber.api.CucumberOptions;
 import cucumber.api.junit.Cucumber;

 @RunWith(Cucumber.class)
 @CucumberOptions(
 monochrome = true,
 plugin = {"pretty", "json:target/cucumber.json", "rerun:target/rerun.txt"},
 dryRun = false
)
 public class ClientApplicationTest {
 @Test(expected = NullPointerException.class)
 public void illegalStartupWithANullInputArgument() {
 ClientApplication.main(null);
 }
 }

CHAPTER 4 ■ TDD AS AN API DESIGN TECHNIQUE

83

 I suggest you set monochrome to true , otherwise you will get some strange characters in your IDE’s
console. Now, you are ready to implement the step definitions. These are shown next (the parts shown in
bold are especially important).

 package rs.exproit.client.cucumber;

 import static org.junit.Assert.*;
 import java.util.Arrays;
 import java.util.Collection;
 import java.util.HashSet;
 import java.util.Iterator;
 import java.util.Set;

 import cucumber.api.java.Before;
 import cucumber.api.java.en.And;
 import cucumber.api.java.en.Given;
 import cucumber.api.java.en.Then;
 import cucumber.api.java.en.When;
 import rs.exproit.client.ClientApplication;
 import rs.exproit.client.PowerSet;

 public final class GeneratingSubsetsStepdefs {
 private Exception lastThrownException;
 private Set<Set<String>> lastGeneratedPowerSet;

 @Before("@ClientApplicationTest")
 public void cleanupBeforeScenario() {
 lastThrownException = null;
 lastGeneratedPowerSet = null;
 }

 @Given("^the client application is running$")
 public void the_client_application_is_running() {
 // Do nothing here, as our client application is trivial.
 }

 @When("^I do not provide input$")
 public void i_do_not_provide_input() {
 try {
 ClientApplication.main(new String[0]);
 } catch (IllegalArgumentException e) {
 lastThrownException = e;
 }
 }

 @Then("^the application should show an error$")
 public void the_application_should_show_an_error() {
 assertNotNull("application should generate an exception", lastThrownException);
 assertTrue("the exception should be for illegal arguments",
 lastThrownException instanceof IllegalArgumentException);
 }

CHAPTER 4 ■ TDD AS AN API DESIGN TECHNIQUE

84

 private static Collection<Set<String>> lastGeneratedRandomOutput;

 public static final class TestOutputBuilder implements
 ClientApplication.OutputBuilder<String> {
 @Override
 public void startOutput() {
 lastGeneratedRandomOutput = new HashSet<>();
 }

 @Override
 public void addContent(Set<String> subset) {
 lastGeneratedRandomOutput.add(subset);
 }

 @Override
 public String finalizeOutput() {
 return lastGeneratedRandomOutput.toString();
 }
 }

 @When("^I read an input: (.+)$")
 public void i_read_an_input(String inputSeq) {
 String[] args = inputSeq.split("\\s+");
 lastGeneratedPowerSet = new PowerSet(new HashSet<>(Arrays.asList(args))).subsets();
 ClientApplication.setOutputBuilder(TestOutputBuilder.class);
 ClientApplication.main(args);
 }

 @Then("^the response should contain: (\\d+) subsets$")
 public void the_response_should_contain(int outputCardinality) {
 assertEquals(outputCardinality, lastGeneratedRandomOutput.size());
 }

 @And("^the subsets should be in random order$")
 public void the_subsets_should_be_in_random_order() {
 // For a very small power set it might be the case that the shuffled
 // set is the same as the original.
 if (lastGeneratedPowerSet.size() > 4) {
 boolean allSame = true;
 Iterator<Set<String>> powerSetIter = lastGeneratedPowerSet.iterator();
 Iterator<Set<String>> randomOutputIter = lastGeneratedRandomOutput.iterator();

 while (randomOutputIter.hasNext()) {
 allSame = randomOutputIter.next().equals(powerSetIter.next());
 }
 assertFalse(allSame);
 }
 }

 @And("^the subsets should be members of the power set$")
 public void the_subsets_should_be_members_of_the_power_set() {

CHAPTER 4 ■ TDD AS AN API DESIGN TECHNIQUE

85

 assertTrue(lastGeneratedPowerSet.containsAll(lastGeneratedRandomOutput));
 }
 }

 Our feature is tagged with @ClientApplicationTest , so that we may refer to it from the Before
annotation. Tagging features is handy to introduce feature-specific hooks into the process. For larger test
bases you can group common step definitions and reuse them from feature-specific ones.

 The step definition to test whether the output is shown in a random order is rather trivial. To judge how
well the specimen follows a particular distribution (in our case uniform) you would need a more stringent
statistical test, but this is outside the scope of this book. If you are interested, you can explore the possibilities
by using a good statistics book.

 package rs.exproit.client;

 import java.util.Arrays;
 import java.util.HashSet;
 import java.util.Set;

 import rs.exproit.util.RandomizedBag;

 /**
 * This client application reads in k unique strings from a command line (forming a set),
 * and prints out k subsets of them in a random order.
 *
 * @author Ervin Varga
 * @since 1.0
 */
 public final class ClientApplication {
 /**
 * This is an API to build the output, which is based on the Builder pattern.
 *
 * @param <T> the type of output to generate.
 */
 public interface OutputBuilder<T> {
 void startOutput();
 void addContent(Set<String> subset);
 T finalizeOutput();
 }

 private static final class ConsoleOutputBuilder implements OutputBuilder<String> {
 private final StringBuilder buffer = new StringBuilder();

 @Override
 public void startOutput() {
 buffer.append("Selected subsets of an input set in random order:\n");
 }

 @Override
 public void addContent(Set<String> subset) {
 buffer.append(subset.toString());
 buffer.append('\n');
 }

CHAPTER 4 ■ TDD AS AN API DESIGN TECHNIQUE

86

 @Override
 public String finalizeOutput() {
 return buffer.toString();
 }
 };

 private static Class<? extends OutputBuilder<?>> activeOutputBuilder =
 ConsoleOutputBuilder.class;
 private static final ClientApplication app = new ClientApplication();

 /**
 * Sets the active output builder for this application.
 *
 * @param newOutputBuilder a class definition of the new output builder.
 */
 public static <T> void setOutputBuilder(
 Class<? extends OutputBuilder<T>> newOutputBuilder) {
 activeOutputBuilder = newOutputBuilder;
 }

 private Set<Set<String>> producePowerSet(String[] inputSeq) {
 assert inputSeq != null && !(inputSeq.length == 0);
 Set<String> inputSet = new HashSet<>(Arrays.asList(inputSeq));
 return new PowerSet(inputSet).subsets();
 }

 private RandomizedBag<Set<String>> randomizePowerSet(Set<Set<String>> powerSet) {
 assert powerSet != null;
 return new RandomizedBag<Set<String>>(powerSet);
 }

 @SuppressWarnings("unchecked")
 private String generateConsoleOutput(String[] inputSeq) {
 assert inputSeq != null && !(inputSeq.length == 0);
 RandomizedBag<Set<String>> rndPowerSet = randomizePowerSet(producePowerSet(inputSeq));
 try {
 OutputBuilder<String> output =
 (OutputBuilder<String>) activeOutputBuilder.newInstance();
 output.startOutput();
 for (int i = 0; i < inputSeq.length; i++) {
 output.addContent(rndPowerSet.remove());
 }
 return output.finalizeOutput();
 } catch (Exception e) {
 return e.toString();
 }
 }

 /**
 * Main entry point of this client application.
 *

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 4 ■ TDD AS AN API DESIGN TECHNIQUE

87

 * @param args the strings forming an input set. They should be separated by space.
 * @throws NullPointerException if the input parameter is {@code null}.
 * @throws IllegalArgumentException if the input argument list is empty.
 */
 public static void main(String[] args) {
 if (args == null) {
 throw new NullPointerException("The input argument cannot be null");
 }

 if (args.length == 0) {
 throw new IllegalArgumentException("The input argument list cannot be empty");
 }

 System.out.println(app.generateConsoleOutput(args));
 }
 }

 This case study has revealed the importance of using adequate tools for the task at hand. BDD is
valuable to exercise your artifacts in the context of the overall application. As you work with higher level
tests, you should expect to have nontechnical people on board. For them, showing the test specification in
plain English is surely more plausible than through “raw” Java code.

 Case Study: TDD for APIs Is a Complex Topic
 We are not done yet with our RandomizedBag class, at least not if we want to publish it as a generic abstract data
type. So far, and this is showcased in the previous client application, we have been the master of use cases; that
is, we knew in advance all the different ways our abstraction is going to be leveraged. In some way, we had an
opportunity to optimize for only those possibilities. However, this isn’t the case when you publish an API for
general use. You cannot know in advance how it will be (ab)used. In this sense, designing maintainable APIs
is like coming up with a new security solution. The hardest part in security engineering is to enumerate all
possible ways a malicious person (or a software acting on her or his behalf) might try to penetrate a system.

 The latest version of the RandomizedBag class’s API isn’t ready for publication for the following reasons:

• It doesn’t obey the Collection interface contract 100% (we are assuming here Java
8). This might come as a surprise to you, but this is only because this fact hasn’t been
important for us, yet. However, it might be for some user. It is better to be precise
from the very beginning than to start lazy and accumulate problems over time.
One viable approach is to show as little as possible at the start. So, when problems
(missing features) accumulate over time, then we can resolve them using our API
evolution plan. Again, it is crucial to have a plan.

• We haven’t included in our build process any way to trace changes from the perspective
of backward compatibility. We cannot compare the base API with subsequent releases
and judge whether are we moving in the right direction. You see, we are just asking the
right question: What technique should I use to ensure that method signatures in the API
are compatible with the base snapshot? This is TDD in action.

• We haven’t included any statistical analyzer in our build process. We will do it soon.
It is mandatory to use proper tools, which could help avoid embarrassing errors.

• The serialization support is really amateurish. We will improve this. This is going to
affect the API, too.

CHAPTER 4 ■ TDD AS AN API DESIGN TECHNIQUE

88

• We haven’t provided any hints about performance of our data type. We will fix this,
too. The performance statement will become part of an API. If you look at classes
from JFC, they all do contain such guarantees (usually in Big-O notation).

 Now, if you managed to detect all these issues (as announced in the previous chapter), including the
bug in the original RandomizedBag class, you are a guru. Let’s start handling these bullet points one by one.

 The Subtleties of the Spliterator API
 If you haven’t heard about the Spliterator interface, then you should read the JDK API documentation
before proceeding. It has quite an extensive treatment of this interface. The RandomizedBag class inherits it
from the AbstractCollection . The default implementation is really just for testing purposes, and definitely
not for a production release. Besides performance issues, it isn’t even appropriate for our class. If we try to
directly give back a Spliterator instance from the embedded ArrayList object, we will again encounter a
similar glitch. It doesn’t apply out of the box for the RandomizedBag class.

 The RandomizedBag class doesn’t guarantee any ordering in its returned iterator. Therefore, we
cannot use the one we would receive from the ArrayList , as it is ordered. On the other hand, we disallow
 null elements in our collection. Therefore, we must signal this characteristic in our Spliterator . Again,
 ArrayList doesn’t do this, as you can put null into an ArrayList object. All in all, we must return a custom
 Spliterato r to comply with the Collection API.

 Checking for API Incompatibilities Between Different Versions
 We will use the tool SigTest with an associated Maven plug-in to check for incompatible changes (for more
information visit http://wiki.netbeans.org/SigTest). It basically solves all our needs. The idea is to make
a base signature file for version 1.0.0, and check subsequent releases against this one (or some other). You
could try to experiment with the tool on your own, by making changes and see what it will report (don’t
forget to alter the version number after each release).

 Here is the snippet showing what needs to be added into the pom.xml file to create the signature
snapshot for the initial version:

 <plugin>
 <groupId>org.netbeans.tools</groupId>
 <artifactId>sigtest-maven-plugin</artifactId>
 <version>1.0</version>
 <executions>
 <execution>
 <goals>
 <goal>generate</goal>
 </goals>
 </execution>
 </executions>
 <configuration>
 <packages>rs.exproit.util</packages>
 </configuration>
 </plugin>

 After executing mvn clean install it will produce the signature file and install it inside your local
Maven repository (you might even want to publish it together with your jar file in a public Maven repo).

http://wiki.netbeans.org/SigTest)

CHAPTER 4 ■ TDD AS AN API DESIGN TECHNIQUE

89

 Postprocessor as a Rescue for Bugs
 We will include in our build the FindBugs analyzer for Java (see http://findbugs.sourceforge.net). It
comes with a Maven plug-in. It is amazing how many bugs can be discovered in this effortless fashion. There
is no justification to omit a tool when there is one on the market (especially when it is open source). Here is
the snippet that has to be included in the pom.xml file (note the parts shown in bold).

 <reporting>
 <plugins>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>findbugs-maven-plugin</artifactId>
 <version>3.0.4</version>
 <configuration>
 <effort>Max</effort>
 <threshold>Low</threshold>
 </configuration>
 </plugin>
 </plugins>
 </reporting>

 You just need to execute mvn site , and the project report will be ready for you as part of the Maven-
generated site documentation.

 Better Serialization Support
 Just dumping everything into an object stream isn’t a smart solution for serialization. We will enhance the
 RandomizedBag class to use the Externalizable API. Besides improved performance, this will really give us
full control over what is put, read into, and from a stream.

 Performance Guarantees Are Mandatory
 We simply cannot publish a new ADT without saying anything about the performance guarantees, at least,
expressed using the Big-O notation (see the ArrayList documentation for an example of how it is done in
the JDK). The RandomizedBag class should execute all operations approximately in a constant amortized time
(remove requires a linear time). Talking in terms of this is usually enough and feasible (naturally, we cannot
say anything about exact runtime values of methods). The amortized time is calculated over a sequence of
N operations. If we start from an empty bag, and execute N add/remove/size/iterator operations, then it
should scale in O(N) steps. In other words, each action will take O(1) time to execute on average. Sometimes
an add operation will take more time (e.g., the garbage collector kicks in), but over a long period of time, we
might say that it has an O(1) time dependence. We insert this guarantee in our API.

 Again, if you want to make strong performance guarantees, then you will need to implement the
internal storage yourself. Nevertheless, you should always watch out what you state in your API.

 The Reworked Version Ready for Publication
 Here is the reworked RandomizedBag class (note the sections shown in).

 package rs.exproit.util;

http://findbugs.sourceforge.net)

CHAPTER 4 ■ TDD AS AN API DESIGN TECHNIQUE

90

 import java.io.*;
 import java.util.*;

 /**
 * Implements the generic randomized "queue" ADT as described
 * <a href="http://www.cs.princeton.edu/courses/archive/fall05/cos226/assignments/queues.

html">
 * here.
 * The randomization process uses a linear congruential random number generator. This may be
 * configured with a seed value, to reproduce the random number sequence.
 *
 * All operations are executed approximatively in a constant amortized time
 * (remove requires a linear time).
 *
 * @author Ervin Varga
 *
 * @param <E> the type of elements contained inside this bag.
 */
 public final class RandomizedBag<E> extends AbstractCollection<E>
 implements Externalizable {
 private static final String serialVersion = "1.0";

 private final List<E> elems = new ArrayList<>();
 private Random rnd;

 public RandomizedBag() {
 rnd = new Random();
 }

 public RandomizedBag(long seed) {
 rnd = new Random(seed);
 }

 public RandomizedBag(Collection<E> c) {
 this();
 if (c == null) {
 throw new NullPointerException();
 }
 addAndshuffleElementsInPlace(c);
 }

 public RandomizedBag(long seed, Collection<E> c) {
 this(seed);
 if (c == null) {
 throw new NullPointerException();
 }
 addAndshuffleElementsInPlace(c);
 }

 private void addAndshuffleElementsInPlace(Collection<E> newElems) {
 assert newElems != null;
 addAll(newElems);

CHAPTER 4 ■ TDD AS AN API DESIGN TECHNIQUE

91

 }

 /**
 * Adds a new element to this collection. The collection permits duplicates, but doesn't
 * allow {@code null} elements.
 *
 * {@inheritDoc}
 */
 @Override
 public boolean add(E e) {
 if (e == null) {
 throw new NullPointerException();
 }

 elems.add(e);

 // Shuffle the last added element with a random one from the queue.
 final int idx = rnd.nextInt(elems.size());
 elems.set(elems.size() - 1, elems.get(idx));
 elems.set(idx, e);
 return true;
 }

 /**
 * Deletes and returns an element from the bag, uniformly at random.
 *
 * @return the deleted element from this bag.
 * @throws NoSuchElementException if the bag is empty.
 */
 public E remove() {
 if (isEmpty()) {
 throw new NoSuchElementException("Cannot remove an element from an empty bag.");
 }

 return elems.remove(0);
 }

 public Iterator<E> iterator() {
 return elems.listIterator();
 }

 @Override
 public Spliterator<E> spliterator() {
 return Spliterators.spliterator(elems,
 Spliterator.SIZED | Spliterator.SUBSIZED | Spliterator.NONNULL);
 }

 @ Override
 public int size() {
 return elems.size();
 }

CHAPTER 4 ■ TDD AS AN API DESIGN TECHNIQUE

92

 @Override
 public void writeExternal (ObjectOutput out) throws IOException {
 out.writeUTF(serialVersion);
 // Save the whole state of our random number generator (peeking into it via
 // reflection to get the seed isn't advised at all).
 out.writeObject(rnd);
 // Write out all the contained items.
 out.writeInt(size());
 for (E item : this) {
 out.writeObject(item);
 }
 }

 @SuppressWarnings("unchecked")
 @Override
 public void readExternal (ObjectInput in) throws IOException, ClassNotFoundException {
 // Currently, we ignore the serial version number, but in the future it will be

important.
 in.readUTF();
 // Restore the random number generator.
 rnd = (Random) in.readObject();
 // Read in all the saved items.
 int numItems = in.readInt();
 for (int i = 0; i < numItems; i++) {
 Object item = in.readObject();
 elems.add((E) item);
 }
 }
 }

 The refactored original tests all pass. It was expanded with the following test.

 @ Test
 public void iterateOverItemsOfABagInParallel() {
 RandomizedBag<Integer> bag = new RandomizedBag<>(SEED_ONE, baseItems);
 Spliterator<Integer> spliter = bag.spliterator();

 assertNotNull("should have a spliterator", spliter);
 assertTrue("should be SIZED", spliter.hasCharacteristics(Spliterator.SIZED));
 assertTrue("should be SUBSIZED", spliter.hasCharacteristics(Spliterator.SUBSIZED));
 assertTrue("should be NONNULL", spliter.hasCharacteristics(Spliterator.NONNULL));
 assertEquals("should have a proper size estimate", bag.size(), spliter.estimateSize());

 Spliterator<Integer> partition = spliter.trySplit();
 assertTrue("partition should be bigger or equal than half size of the original",
 partition.estimateSize() >= bag.size() / 2);
 }

CHAPTER 4 ■ TDD AS AN API DESIGN TECHNIQUE

93

 The refactored test suite also contains the following two test cases to explicitly test for null during
construction:

• tryToCreateABagWithNullInputCollection

• tryToCreateABagWithNullInputCollectionAndAPredefinedSeed

 These are necessary, as the new version of our bag doesn’t piggyback anymore on the ArrayList
addAll method to test for null . We have already seen in Chapter 3 why such a practice is terribly wrong.

 FindBugs were not able to find any issues. We cannot spot any obvious problems, either (we could
improve the class by replacing the constructors with factory methods). Nevertheless, after you publish your
work, users will report bugs. They will ask for improvements. The evolution will start when development is
done, and it’s the longest period in a software’s life cycle. How long this will last depends foremost on the
maintainability of your APIs.

 Summary
 TDD has a tremendous positive impact on the quality of software (including its APIs). It is a game changer
regarding how you approach design in general. Those who design a system also have to design test cases for
it. This is an amazing observation. In some way, it even goes up to Karl Popper’s falsifiability principle (read
more about it at http://plato.stanford.edu/entries/popper/), which states that those who design a
system or theory also need to say when it will not work or will become invalid.

 We have witnessed through these case studies what happens without TDD, and how it helps improve
the solution, once properly applied in concert with other standard OO practices. Of course, one chapter
can only scratch the surface of TDD. Nevertheless, I hope that you’ve grasped its main tenets. The most
important thing is to start using it as soon as possible. Just look back, and notice how many aspects were
considered during the implementation of the RandomizedBag class. The tests are longer than the target class.
Imagine how hard is to come up with a decent solution without driving your tests as TDD dictates.

 EXTEND THE CLIENT APPLICATION

 Learn How to Drive GUI Tests

 The client would like to change the UI to a Swing-based graphical one. The wire frame of the new GUI is
presented in Figure 4-1 . You need to apply TDD to implement this change request.

http://dx.doi.org/10.1007/978-1-4842-2196-9_3
http://plato.stanford.edu/entries/popper/

CHAPTER 4 ■ TDD AS AN API DESIGN TECHNIQUE

94

 Driving the end-to-end tests through a GUI is nearly impossible without a sophisticated tool. The
JDK has a built-in java.awt.Robot class to help you in this endeavor. Here is the citation from
its documentation: “This class is used to generate native system input events for the purposes
of test automation, self-running demos, and other applications where control of the mouse and
keyboard is needed. The primary purpose of Robot is to facilitate automated testing of Java platform
implementations.”

 However, using the Robot class directly is still hard. If you use DukeScript , then you could use an
equivalent “clicking” driver (see https://dukescript.com/update/2015/12/23/webdriver-
release.html). [1] uses Window Licker , contains a good overview of its capabilities, and provides
lots of examples. Another viable option is to use the open source Marathon framework (https://
marathontesting.com).

 Finally, you might want to switch a viewpoint, and solve the GUI testing by harnessing another
architectural style. If you haven’t heard about the Model-View-ViewModel (MVVM) concept, then you
should read the article about combining MVVM with TDD by using DukeScript (the blog is available at
 https://dukescript.com/best/practices/2015/02/16/tdd-with-dukescript.html).

 Figure 4-1. A wire frame showig a tentative GUI for the new version of the client application (the screen was
made using the commercial MockupScreens tool; see http://www.mockupscreens.com). Such mockups are
really useful to discuss the various UI choices in a rapid manner.

https://dukescript.com/update/2015/12/23/webdriver-release.html
https://dukescript.com/update/2015/12/23/webdriver-release.html
https://marathontesting.com)
https://marathontesting.com)
https://dukescript.com/best/practices/2015/02/16/tdd-with-dukescript.html
http://www.mockupscreens.com)

CHAPTER 4 ■ TDD AS AN API DESIGN TECHNIQUE

95

 BETTER WAY TO SERIALIZE AN OBJECT

 Practice the writeObject/readObject Methods

 Our last bag implementation relies on the Externalizable mechanism to serialize itself. However,
 Externalizable restricts you in the following ways:

• There needs to be a public default constructor.

• The read/write methods are public (very bad for an API), so everyone can call them.

 To improve control over what is being written and read you might consider the
 readObject / writeObject methods of the standard serialization facility (see the JDK for more
information). This can give you absolute control without those limitations associated with the
 Externalizable API.

 References
 1. Freeman, Steve, and Nat Pryce. Growing Object-Oriented Software, Guided by

Tests. Reading MA: Addison-Wesley Professional, 2009.

 2. Watkins, John, and Simon Mills. Testing IT: An Off-the-Shelf Software Testing
Process, Second Edition. Cambridge, UK: Cambridge University Press, 2011.

97© Ervin Varga 2016
E. Varga, Creating Maintainable APIs, DOI 10.1007/978-1-4842-2196-9_5

 CHAPTER 5

 Identifying Resources

 A resource is the central element in resource-oriented architectures (ROAs) , and a system built around the
REpresentational State Transfer (REST) architectural style is a member of ROA. There are many ingredients
to REST. As is the case with recipes, you could end up with an unpalatable meal using the same ingredients
as for a truly tasty one. It all depends on the chef. The same is true with REST. There is a huge misconception
that by using HTTP, sending back and forth XML/JSON documents, and using URLs to mark endpoints of an
API is what counts toward being RESTful (the major three constituents associated with REST in marketing
campaigns). Many development tools are built around this fallacy. REST is an instance of a profound
paradigm shift pertaining to network-based architectures. It isn’t about HTTP per se, 1 although HTTP is a
preferable choice due to its widespread use in WWW (an inspirational example of a successful large-scale
distributed system). Again, the software engineer’s knowledge and experience determines whether the
outcome will be a truly RESTful solution or some botched “variant” of it.

 A resource is an abstraction, and as such inherits all of its properties (see Chapter 2). In a RESTful
world, a resource’s main purpose is to tame complexity by shielding clients from knowing anything about
processes implementing it. This is in contrast with a remote procedure call (RPC) approach (SOAP/HTTP is
its Web variant), where clients are driving processes via RPCs. A resource could be anything you care about
(document, business process, problem domain concept, another resource, etc.).

 A resource is the mechanism by which you organize information sharing between the server responsible
for a particular set of resources and clients interested in those resources. A resource is publicly exposed via its
representation, and exchanging different representations of a resource (this is that information-sharing part)
between a client and a server is what drives state changes in a RESTful system. On the contrary, in the case of
an RPC, a client sends actions instead of new representations toward the server to propel changes. This has
a huge effect on an API. In a RESTful case, a client sends an altered representation to tell the server about the
preferred state of the system. This might trigger a chain of events on the server side to carry out the necessary
state change(s). In RPC , a client explicitly tells the server what to do to arrive at a desired state of the system
(making calls in the wrong order could cause an illegal state exception, so the client does need to maintain a
sort of shared state with the server 2). Therefore, a REST communication tends to be high-grained, whereas an
RPC anticipates greater chattiness. 3 Furthermore, when a client is constantly interested in a very small subset
of a resource’s representation, the borderline between RESTful and RPC approaches is starting to blur.

 1 Embedded systems can be built using the same REST principles without using HTTP. There is a standard called
Constrained Application Protocol (CoAP) defined in RFC 7252 (see http://coap.technology and [1]) for devices with
low capacity. CoAP delivers a non-HTTP REST model for such small devices.
 2 This might occur in RESTful services, too. For example, with security (based on obtaining a token), making a secure call
without having the right token produces an exception. Web sites and browsers sometimes exchange shared state with cookies.
 3 With HTTP 2.0, even REST services will be able to allow efficient, fine-grained communication patterns. It is a
binary protocol, uses header compression (only differences are passed along), and implements an efficient pipelining
mechanism. HTTP 2.0 has the notion of a stream , which is a bidirectional virtual channel in a connection. Streams carry
frames (a unit of data), and multiple frames constitute a logical request and response message. Frames can be interleaved
in a connection. HTTP 2.0 doesn’t have the head-of-line blocking problem.

http://dx.doi.org/10.1007/978-1-4842-2196-9_2
http://coap.technology/

CHAPTER 5 ■ IDENTIFYING RESOURCES

98

It is very easy to start a RESTful frenzy, by trying to make every service RESTful (this tendency is heavily driven
by the market, as being RESTful is nowadays a matter of prestige). REST isn’t a silver bullet, though, so you
should be careful. Be aware that a REST service is usually more expensive than its RPC equivalent (you might
take a look at Apache Thrift for building RPC services; for more details visit https://thrift.apache.org).
I recommend you prefer RPC services for internal use, unless you have clear arguments against this.

 The following are the most salient traits of a resource inside a REST-based system.

• It is a representable stateful abstraction with a clear purpose and role(s) : A resource might
not physically exist, but should have a well-defined function in a given context (dictated by
the matching use cases of a system). A resource could play various roles in different usage
scenarios. Each role might entail a specific representation, and this is the way a resource’s
role is materialized from the viewpoint of its clients. The state of the resource is kept on the
server, and state transitions are initiated by altering and exchanging representations.

• It is uniquely identified : Every resource must be uniquely identified using a URL
(this identifier should preferably remain stable 4). A client doesn’t “see” the resource
directly, but its representation. Therefore, a representation must be retrievable and
the identifier must be resolvable. Sometimes, there is a 1:1 mapping between a
resource and its representation. It could also happen that various representations
are associated with different URLs. The uniqueness of all these URLs is the
sole responsibility of the server; that is, the provider of the resource and its
representations. There is no central authority to decide what URLs are attached to
resources. To guarantee uniqueness, the server’s domain name (this is allocated by
a central authority) is usually part of a resource’s URL. At any rate, even if a resource
alters its state, that resource’s URL should remain intact.

• It can easily migrate in a distributed system : Migrating code in a heterogeneous
distributed system is quite a challenging task. All sorts of complications could
hinder the endeavor, depending on the type of process-to-resource 5 bindings. In a
REST system, a client is completely shielded from processes. A resource is just an
abstraction with a well-specified address. A client doesn’t care who implements that
resource. If hitting a new URL would enable a smooth operation of a client, then that
is what migration is all about from a client’s perspective. The only remaining issue
is to inform clients about that new URL (luckily, this is already part of an HTTP, and
you will see examples of it later on). The biggest difference between a REST and RPC
 system regarding code migration revolves around self-descriptive representations and
stateless communication. These are the two most important constraints imposed by
a REST style. A client holding such a self-describing representation could use it with a
migrated service, as nothing would have happened. There is no need to worry about
the server’s state, nor provide extra contextual data. We will see that those previously
mentioned characteristics also enable efficient caching of responses.

 4 It is possible to use persistent URLs (PURLs), which is another indirection mechanism for Web resources (for more
information, visit https://purl.org). This might give protection against domain name changes. Another more
advanced possibility is to publish an OWL (see https://www.w3.org/OWL/) document with the following content (it is
presented here in N-Triples format):
 @prefix owl: < http://www.w3.org/2002/07/owl #> .
<old URL> owl:sameAs <new URL>
 5 Don’t mix the meaning of a resource here with our REST notion of a resource (a fine proof that most words in software
engineering are pretty overloaded). The resources in this context are low-level system resources, like files, sockets,
devices, and so on. Most often a process (as an executable code) cannot be migrated without migrating all referenced
resources. It is easy to copy over a static file, but not that easy to transfer the state of the memory.

https://thrift.apache.org/
https://purl.org/
https://www.w3.org/OWL/
http://www.w3.org/2002/07/owl

CHAPTER 5 ■ IDENTIFYING RESOURCES

99

• It can be combined and augmented in a decentralized manner : A resource hosted by
one server may be extended by another resource in a fully decentralized manner.
Dynamically linking resources and establishing various relationships between them
is simply a game changer. All this could happen without the awareness of the source
server. Interlinking resources on an Internet scale essentially boils down to referencing
them via URLs. It’s that simple! Moreover, the relationships themselves may be
promoted into resources if they comprise part of a shareable information space.

 ■ Tip I highly suggest you watch the brief webinars mentioned in [2] and [5] about building modern REST-
based services. You can also learn more about this topic from [1] and [4].

 Case Study: Problem Reports Microservice
 The aim of this case study is to showcase the use case (behavior–centric) API design methodology resulting
in a set of resources and their representations. It is important to emphasize that we will only perform design
work here (the whole process is iterative, but we will proceed in a linear fashion to save space, and to be able to
present it in a book). In some sense, resources will bubble up as a consequence of this design effort, or surface as
an implementation detail. Nevertheless, they are part of the design process, as clients are going to retrieve and
manipulate them via their representations. Knowing about these resources and their roles is therefore crucial.

 Our HTTP REST microservice for problem reports should accept problem descriptions from clients and
store them in local storage. The concept of a microservice is related to a set of architectural features on top of
SOA, portraying the service as a self-contained, independently deployable unit (a kind of a service we intend
to build). The service needs to provide a capability to list reported problems and search them using various
criteria. The reports should be correlated with each other, if possible. The service should support both
XML and JSON payloads. The basic media types advertised by the service have to be application/xml and
 application/json . This is the bare minimum for the first version of this service.

 The service is aimed at extending the abilities of an existing Web production system, which already uses
these base XML and JSON media types . This is a fine example, when the choice of a media type is fixed in the
requirements. I don’t typically recommend the bare application/xml and application/json media types,
as they result in another fiat (proprietary) standard defying the principles of Web of Data (interlinked and
interoperable services). We thoroughly examine the JSON API (as a superb choice for a hypermedia-driven
media type) later in this book.

 Discovering and Describing Resources
 At this stage we will try to enroll the different resources (more precisely, their representations) handled by
the service, including transitions between them. All this should happen in the context of the use cases; that
is, driven by the goals of external clients of this service. In Chapter 7 , we expand the list of goals to allow
clients to learn affordances (see [3] for a definition of this term) regarding resources. This list enumerates the
main goals, and Figure 5-1 shows the UML use case diagram for our service.

• List all reported problems.

• Search (filter) the reported problems to get a reduced list (e.g., to retrieve related
problems).

• Create a new problem report by sending in all data.

• Delete a problem report from the system.

• Update an existing problem report.

• Retrieve favorite reports (presented in Chapter 8).

http://dx.doi.org/10.1007/978-1-4842-2196-9_7
http://dx.doi.org/10.1007/978-1-4842-2196-9_8

CHAPTER 5 ■ IDENTIFYING RESOURCES

100

 This list of goals resembles the typical create/read/update/delete (CRUD) operations over resources.
In the classical approach of a REST service design, the focus would be only on problem domain resources
and their associated operations. However, our focus is on behavior and transitions between resource states
embodied in various representations. Using this technique, we discover resources that might not even
appear as such in the traditional approach. Figure 5-2 shows the static resource model .

 Figure 5-1. The UML use case diagram showing clients and their associations with major use cases. The
nonprivileged client can browse what the service offers (visiting the Home and About pages), but cannot access
the problem reports (implementing the security aspects is covered in Chapter 9). We see here an inheritance
relationship between actors. The privileged client is also a client, and thus can also access those ancillary use
cases. Usually the associations are bidirectional, which is a natural situation on the programmable Web.

http://dx.doi.org/10.1007/978-1-4842-2196-9_9

CHAPTER 5 ■ IDENTIFYING RESOURCES

101

 Figure 5-2 depicts two resources not mentioned this far: HomePage and AboutPage . These are preparing
the terrain for a true hypermedia-driven REST service, which is finalized in the next chapter. At any rate, the
home page represents the starting point for a client. The URL associated with this page is sometimes called
the billboard URL (as this is usually advertised on panels). The about page is the conventional place for
presenting some general information about the service.

 The ProblemReports resource is just a collection of individual ProblemReport instances. Each instance
groups together attributes describing a single problem. Most fields are self-explanatory, except for the
correlation id, which is used to relate problems. Namely, in the microservices architectural style, the
emphasis is on collaboration among services. Each occurrence of a collaboration may be designated by
an identifier (frequently, this id is created at the beginning of a sequence of actions related to a particular
business use case). As services call each other they also have to pass along this correlation identifier
(Chapter 16 includes an example of how this same principle can be used to group log entries). Problems
are always reported with this id. The overall benefit is that by looking at the whole group of related problem
reports, we can get better insight into error propagation patterns across the system.

 The static picture isn’t satisfactory to build a modern Level 3 REST service (see [2] for details about the
RMM classification). We also need to showcase the transitions between resource states. Figure 5-3 illustrates
the dynamic resource model.

 Figure 5-2. The UML class diagram showing the static relationships between resources. An association
between two entities means a link from one resource representation to the other. For example, a client can
reach the about page from the home page, and vice versa.

http://dx.doi.org/10.1007/978-1-4842-2196-9_16

CHAPTER 5 ■ IDENTIFYING RESOURCES

102

 A safe transition doesn’t change the matching resource’s state, whereas an idempotent operation can
be repeated multiple times with the same outcome (e.g., deleting the same resource multiple times cannot
do any harm). We see in Chapter 7 how these transitions are mapped onto actions. Figure 5-3 shows all
possible transitions and ways in which resources are interlinked. This is reminiscent of screen-flow diagrams
showcasing the dynamics of the UI. At any rate, we have identified our major resources, and now we need to
see how to properly describe them. The initial list of attributes was just a hint.

 Rapid Application Development (RAD) Tactic
 The name reconciliation stage (see the next section of the text) of the REST API design is the most neglected
one in practice (even Figure 5-3 and dynamic modeling is skipped altogether). The traditional approach
is satisfied by having discovered the ProblemReports and ProblemReport entities. The implementation
immediately starts, as nobody sees any reason to lose more precious time. The domain objects are
annotated, and development tools (including IDEs) generate all the RESTful parts. The outcome is an API
exposing the complete internal storage model of a system, creating a rigid and brittle solution. The clients
are usually programmed in a similar fashion, hard-coding all the relationships and affordances in advance.
Let me demonstrate this tactic by using the Restlet Studio (https://restlet.com) to implement this service.
If all this sounds familiar to you, then an acronym like HATEOAS is probably scary at this moment, but there
is nothing to “hate” about it.

 Figure 5-3. The state diagram depicting state transitions of resources. Transitions are marked with qualifiers
 safe , unsafe , idempotent , and non-idempotent .

http://dx.doi.org/10.1007/978-1-4842-2196-9_7
https://restlet.com/

CHAPTER 5 ■ IDENTIFYING RESOURCES

103

 Figure 5-4 shows a screenshot of the Restlet Studio with the finalized API definition for this service.
It took me about 20 minutes to complete everything, including comments. The Restlet Studio has
autogenerated both the server and client skeletons for Node (you could also choose to produce Java code).
Also, I’ve exported the matching RAML file. All this can be found in the accompanying source code (see the
 chapter5/node folder). The autogenerated material even contains readme files to give instructions how to
start up the server and use the client skeleton. After you start up the server with node index.js , then you
will be able to hit the built-in Swagger UI at http://localhost:8081/docs . Figure 5-5 shows how it looks. It
is a live documentation ready to exercise your service.

 Figure 5-4. The screenshot of the Restlet Studio showing the API definition for this service. You can reproduce
the design steps by importing the RAML file, which is included in the source code for this book (the file is
located inside the chapter5/node directory). Restlet Studio is free while working with one API at a time.

http://localhost:8081/docs

CHAPTER 5 ■ IDENTIFYING RESOURCES

104

 All this might sound fantastic, but there is one “small” problem: The implemented service has minimal
connection with the actual REST philosophy . If you look into the autogenerated code, you will notice that
everything is hard-coded. Once developers start adding more features to these server and client skeletons,
nobody will be able to touch the API anymore without breaking backward compatibility.

 There is another problematic factor in Figure 5-4 . The URL designating an individual report is specified
via the URI Template (defined in RFC 6570) /reports/report/{reportId} . Figure 5-2 doesn’t suggest such a
firm containment. By encoding structural relationships between resources (in our case between a report list
and a report) inside URLs, those relationships are cemented once and for all. Honestly, the list of reports is
more an auxiliary collection resource than a genuine business entity.

 ■ Note The Restlet ecosystem (Studio, framework, etc.) is very powerful. However, when using such a
powerful tool you must always recall Voltaire’s famous adage: “With great power comes great responsibility.”
The preceding example demonstrated what happens due to a total lack of responsibility. We revisit this API tool
support in Chapter 9 with greater attention to correctness.

 Name Reconciliation
 If you skip name reconciliation and just take into account the dynamic model (including directions laid out
in Chapter 6), then you would still miss the doctrines of the Linked Data movement. Your API will become a
semantic island, incomprehensible outside of corporate boundaries. You will also need to craft custom code
to process your resources, as only you can understand the meaning of the fields. Much of this can be changed
by reusing terms already defined in public vocabularies (ontologies) as well as by looking after more suitable
media types (in our case we have to stick to the basic application/xml and application/json types).

 Figure 5-5. Screenshot of the Swagger UI for trying out the Problem Reports microservice. c

http://dx.doi.org/10.1007/978-1-4842-2196-9_9
http://dx.doi.org/10.1007/978-1-4842-2196-9_6

CHAPTER 5 ■ IDENTIFYING RESOURCES

105

 You should bookmark the following sources while engaging in API design:

• IANA registered link relation types (http://www.iana.org/assignments/link-
relations). For example, it already contains the term about , which is exactly what
we need to link the home and about pages together.

• Schema.org (http://schema.org) vocabulary. It is filled with dozens of predefined
structured contents. For example, there is a definition of an AboutPage (http://
schema.org/AboutPage). For our purposes, we might just reuse a single field for
the general information called text (http://schema.org/text). There is no need to
concoct fields like genInfo , aboutContent , and so on.

• Application-Level Profile Semantics (ALPS; http://alps.io). The mission of ALPS is
described on its site: “ALPS profile documents describe hypermedia interfaces (data
elements and state transitions) that are helpful when implementing a service and
when implementing client applications that will access services.”

• Activity Streams (http://activitystrea.ms). This has a very useful set of
definitions, and we will use it to define the list of reports.

• The FOAF Project (http://www.foaf-project.org). We will use it for the home
transition, and it will appear again in Chapter 16 .

• IANA registered media types (http://www.iana.org/assignments/media-types). A
media type isn’t strictly speaking an ontology, but it does specify terms and rules related
to the given representation format (we will see a very sophisticated specimen later). If
there is a domain-specific media type, then it should be considered part of the solution.
Even if you cannot use it directly, it might contain hints helping you considerably.
For example, by browsing through the registered types you might stumble across
 application/problem+json and application/problem+xml . 6 They are both elaborated
on in RFC 7807 (https://tools.ietf.org/html/rfc7807). After peeking into it we
can conclude that it talks about individual problem reports, the kind of thing we must
define. This is huge progress, as it solves most of our dilemmas regarding fields. RFC
7807 also contains suggestions for how to extend the initial set of problem report fields.
The best would be to just use it as it is, but we will need to find a side route.

 Table 5-1 contains the mappings of terms from Figure 5-3 onto known published names (the name of a
data field is usually called a semantic descriptor). During this translation, resource names can also change.
Moreover, we will translate the names of state transitions, too (they will become registered link relation
types). Currently, we are just dealing with API design; in Chapter 7 we focus on encoding actions. This
entails creating proper representations for our resources, together with definitions of profiles (semantic
attachments referencing public ontologies; that is, giving proper context for all our terms). This struggle
of referencing known terms is trying to mitigate the semantic gap problem inherent in current distributed
systems. We cannot solve it fully, in the sense of having autonomous software agents acting on behalf of
humans in all possible scenarios, but at least we can close some cracks.

 6 When you return a media type in a response, then the response must fully follow that type. You cannot mix multiple types
and just signal one of them. This is the reason it is a better strategy to choose a flexible, well-established hypermedia media
type as a base (like JSON API), and customize it using a profile (e.g., by leveraging JSON-LD as presented in Chapter 7).

http://www.iana.org/assignments/link-relations/link-relations.xhtml)
http://www.iana.org/assignments/link-relations/link-relations.xhtml)
http://schema.org/
http://schema.org/AboutPage)
http://schema.org/AboutPage)
http://schema.org/text)
http://alps.io)
http://activitystrea.ms/
http://www.foaf-project.org/
http://dx.doi.org/10.1007/978-1-4842-2196-9_16
http://www.iana.org/assignments/media-types)
https://tools.ietf.org/html/rfc7807)
http://dx.doi.org/10.1007/978-1-4842-2196-9_7
http://dx.doi.org/10.1007/978-1-4842-2196-9_7

CHAPTER 5 ■ IDENTIFYING RESOURCES

106

 The ProblemReport resource will contain fields from the problem class, and we will basically serve it as
plain application/xml or application/json . This is not an optimal way to do things, but at least we can
refer to RFC 7807 for the full description. Once we get a chance to deliver the proper media type, we will not
need to alter anything in the code or the representation. At any rate, what we definitely need to provide is an
explanation for that extra correlationId field.

 Sometimes the mapping is ambiguous. For example, the Collection term can be reused from Activity
Streams (as in our case), or from Hydra (see http://www.hydra-cg.com/spec/latest/core/#collections).
Even with these issues, it is still better to reference already published nomenclatures than to invent new ones.

 Summary
 This chapter has presented the strict API design work for a RESTful service via a small case study. We expand
on this example in Chapter 7 by adding hypermedia controls. The API design must be motivated by use
cases and requires dedication. Using shortcuts offered by tools is a suspicious long-term strategy.

 It might turn out, that some state isn’t encompassed by an API. For example, if some portion of a
client’s application state (defines where the client is currently positioned inside a Web service graph) is
also important for the server, then it might be better to transform it into a resource state. This would trigger
the creation of a new resource. In a REST API, additions are pretty well tolerated from the standpoint of
backward compatibility. Therefore, you might be reluctant to include everything in an API (it isn’t like
ordinary Java interfaces, where additions are troublesome).

 Table 5-1. Mapping of Custom Terms onto Known Names and Types (Many of Them Are Already in a Proper
Form)

 Resource Transition Context Standard Name/Type

 about IANA Link Relations about

 Billboard URL FOAF homepage

 home FOAF homepage

 AboutPage Schema.org AboutPage

 HomePage Schema.org WebPage

 reports IANA Link Relations contents

 report Activity Streams Collection#items

 parent IANA Link Relations collection

 related reports IANA Link Relations related

 Self IANA Link Relations self

 Search IANA Link Relations search

 Update IANA Link Relations edit + HTTP PUT

 Delete IANA Link Relations edit + HTTP DELETE

 create report IANA Link Relations edit + HTTP POST

 ProblemReports Activity Streams Collection

 ProblemReport IANA Media Type problem (as per RFC
7807) + correlationId

http://www.hydra-cg.com/spec/latest/core/#collections
http://dx.doi.org/10.1007/978-1-4842-2196-9_7

CHAPTER 5 ■ IDENTIFYING RESOURCES

107

 GENERAL INFORMATION ABOUT THE HOST

 Getting Used to RFCs

 The Web host metadata is sometimes served by servers according to the rules specified in RFC 6415
(https://tools.ietf.org/html/rfc6415). Analyze this RFC, and augment our example service’s API
to allow clients to retrieve such metadata from the Well Known URL (a client has to issue an HTTP GET
request on /.well-known/host-meta or /.well-known/host-meta.json , depending on whether it
wants an XML or JSON response).

 Think about the AboutPage resource. Wouldn’t it be better to include it as part of the host metadata
instead of serving it from the home page?

 As an additional exercise, take a look at the proc ess of registering a Well-Known URI (https://tools.
ietf.org/html/rfc5785).

 CREATE A CUSTOM PROFILE

 Acquire Experience with Ontologies

 In Chapter 7 we will produce a custom profile for our service, referencing standard names depicted in
Table 5-1 . We will do it for the JSON format using JSON-LD.

 Your task is to try specifying a similar profile using ALPS for XML. You can read the following document,
which contains couple of ALPS profile examples: http://alps.io/spec/alps-to-html/ . Notice how
ALPS nicely differentiates between semantic descriptors and affordances (transitions).

 References
 1. Ruby , Sam, Mike Amundsen , and Leonard Richardson . RESTful Web APIs.

Sebastopol, CA: O’Reilly Media, 2013.

 2. Amundsen, Mike. REST, Hypermedia, and the Semantic Gap. Sebastopol, CA:
O’Reilly Media, 2015.

 3. Norman, Don. “Affordances and Design.” 2004. http://www.jnd.org/dn.mss/
affordances_and_desi.html

 4. Sletten, Brian. Resource-Oriented Architecture Patterns for Webs of Data. San
Rafael, CA: Morgan & Claypool, 2013.

 5. Amundsen, Mike. API Design Methodology. Sebastopol, CA: O’Reilly Media,
2014.

https://tools.ietf.org/html/rfc6415)
https://tools.ietf.org/html/rfc5785)
https://tools.ietf.org/html/rfc5785)
http://dx.doi.org/10.1007/978-1-4842-2196-9_7
http://alps.io/spec/alps-to-html/
https://www.safaribooksonline.com/search/?query=author:"Sam Ruby"&sort=relevance&highlight=true
https://www.safaribooksonline.com/search/?query=author:"Mike Amundsen"&sort=relevance&highlight=true
https://www.safaribooksonline.com/search/?query=author:"Leonard Richardson"&sort=relevance&highlight=true
http://www.jnd.org/dn.mss/affordances_and_desi.html
http://www.jnd.org/dn.mss/affordances_and_desi.html

109© Ervin Varga 2016
E. Varga, Creating Maintainable APIs, DOI 10.1007/978-1-4842-2196-9_6

 CHAPTER 6

 Versioning REST APIs

 In an ideal world, we wouldn’t need explicit version numbers (or any version identifiers for that matter)
in our REST APIs. If you think that such a world doesn’t exist, well, it is all around us. It is the Web! Our
web browsers can handle all sorts of web sites, usually without significant problems (we assume that our
modern browser understands different dialects of HTML, and the site is not specifically targeted for another
browser). Part of the magic stems from hypermedia controls embedded in an HTML content. Take a look
at the source HTML (try to load some complex web page into your browser, and ask it to show the page
source), and you will encounter all sorts of links to other web pages, various forms for uploading data, as
well as forms for performing custom searches, and so on. All this Web content processing happens without
a need to upgrade the browser when a site changes its content, or when you visit a brand new web page.
Moreover, you don’t need to remember anything except the entry point URL (usually just a domain name
without any version number). All the rest inside your browser is driven by hypermedia controls (in Chapter 7
we analyze how to create similar programmable web APIs).

 Of course, we must admit that our browser has a powerful companion: us. Therefore, the content
parsing subject is a human being and not a machine. The biggest problem with machines today is their
inability to cross semantic chasms. For a machine, a word means nothing, unless it is instructed to obey
specific rules regarding that word. A traditional approach of REST API implementation, as demonstrated
in Chapter 5 , tries to fix everything. All the details regarding the API are kept in a human-readable
documentation. This embodies protocol details as well as the meaning of all data structures. Even machine-
readable material is deceptive, as it is just a blueprint for code generators , or a helper for UI front ends to
exercise various endpoints of an API. Fixing everything can speed up the initial development, but is an API
maintenance nightmare. For this sort of API, no versioning strategy can buttress its evolution.

 However, if we can “teach” software to recognize some generic control commands, then it might be
able to autonomously figure out the structure of an API. Obviously, such an API should try to avoid reliance
on non-computer-processable documentation. Hypermedia controls (as we have mentioned them in
relation to HTML) could help a lot. They enable the server to signal back to a client what affordances are
allowed at any given moment regarding the data passed down the line. In this sense, we don’t need to
fix in advance the overall structural dependencies between entities (as we did in that /reports/report/
{reportId} URL), nor predefine all possible interactions. Nonetheless, we might still have a situation in
which a client can recognize a new element in the data space, but has no clue how to proceed. This issue
is especially reinforced when those newly added elements start to be mandatory. Old clients wouldn’t be
able to properly communicate with a new server, and will probably get 4xx errors. We also need to stress
that even if someone can conceive a supersmart client boosted by artifical intelligence (AI), it isn’t realistic
to have them in production yet. These are the principal reasons we need versioning, as we cannot totally
bridge the semantic gap.

http://dx.doi.org/10.1007/978-1-4842-2196-9_7
http://dx.doi.org/10.1007/978-1-4842-2196-9_5

CHAPTER 6 ■ VERSIONING REST APIS

110

 The Main Traits of REST API Versioning
 REST APIs differ from modular OO APIs regarding versioning. In Java, you can publish a new jar file using an
ordinary version number (e.g., following the semantic versioning scheme), and it becomes the responsibility
of the dependency manager tool to handle the versions properly. In Maven, it is simply enough to reference
a specific version of a jar file, and all the rest happens automatically 1 (you can also publish artifacts in a
similar fashion). All in all, there is no design work associated with version numbers. In REST APIs you have
to decide the location of version numbers, hence the versioning strategy does affect the API.

 The major drawback of this extra flexibility (obviously too much freedom isn’t always beneficial) is the
lack of common consensus on how to annotate a REST API with a version number. Again, nobody in the
Java world worries about this, as everything is more or less standardized by the dependency manager (most
Java software uses Maven’s scheme). There are many proposals, and an organization implementing the
REST service has to choose among them. The main problem is that once you implement a concrete strategy
it is a non-backward-compatible change to abruptly switch to another one (it is possible to use multiple
versioning schemes in parallel, but that is an agony). It isn’t surprising that frequently the versioning
resolution is postponed until the last moment. 2 Sometimes delaying a decision might help, but it is usually
hard to tell in advance how the chosen approach will work out in the future. 3

 There is, however, a definite advantage of REST APIs over their OO counterparts in regard to versioning.
For example, in Java there is no way for a framework to redirect old clients to a new version in some standard
fashion. Such redirection isn’t a first-class citizen, although there are some approaches mimicking this
(see http://wiki.apidesign.org/wiki/Visitor). The connection between a client and a provider is rigid
from the viewpoint of software versioning. In HTTP REST APIs the situation is much better, as the HTTP
protocol includes couple of procedures for telling clients how to upgrade.

 To better understand the various versioning options, it is beneficial to highlight the principal sections of
a REST API that could change in the future, and hence require versioning .

• Resource identifiers (URLs) encompassed by an API: These are the regular URLs ,
which denote endpoints of a REST API.

• State transitions as well as media-type-related aspects dictating the application and
protocol semantics between a client and a server. The protocol changes might also
include a switch from HTTP version number 1.1 to 2.0 (we will see how this might be
negotiated between parties). We assume that the underlying Transmission Control
Protocol (TCP) network protocol will remain fixed.

• Message payloads exchanged between parties: For example, adding a new required
field into a resource’s representation (we assume that a client will still work
properly if an optional field is added to the representation) is surely a backward-
incompatible change.

 1 Maven efficiently handles dependencies for the compilation phase, but the runtime might be different (via the provided
and system scopes). For example, in the case of OSGi, just plain Maven versioning might not be enough.
 2 I’ve also seen quite an “extreme” approach in the industry, where the first version of the service is released without
any versioning at all (a common mistake in any API). For example, even OSGi gurus (who are very scrupulous about
versioning) have made the same mistake (see http://wiki.apidesign.org/wiki/PropertyFiles). At first glance,
this might sound ingenious, but under the hood it silently acknowledges the URL versioning scheme. At any rate, I
recommend you make a firm decision about versioning before releasing the first production system. The versioning
scheme must be part of an API from the very beginning.
 3 This conundrum is similar to the situation regarding what kind of authentication to use in a REST service. General
advice is to start with OAuth in mind as early as possible, because switching an authentication scheme isn’t a
straightforward process (in addition, it is an incompatible change for a production system).

https://www.google.com/url?q=http://wiki.apidesign.org/wiki/Visitor&sa=D&ust=1473859740830000&usg=AFQjCNGeNlFXcIpHqmxGjPrxQWe3Dgnyqw
https://www.google.com/url?q=http://wiki.apidesign.org/wiki/PropertyFiles&sa=D&ust=1473859740834000&usg=AFQjCNHGhh6765icu5Z3NGbDNlwYhmYj2A

CHAPTER 6 ■ VERSIONING REST APIS

111

 ■ Note In a layered architecture there might be various intermediaries between a client and a server (e.g.,
various proxies, gateways, etc.). These could affect the functional compatibility of the whole distributed system
after being updated or upgraded, but we will omit such effects from our analysis.

 Altering the Resource URLs
 The most common convention 4 (also supported by many tools) is to specify the version number inside a
URL by applying, for example, the URI template : http(s)://<host>/api/{versionIdentifier} . Usually
the version identifier is of the form vX (e.g., v1 , v2 , etc.). 5 The outcome is a partitioned set of URLs, where
each set designates a particular version of the API. A similar result could be achieved by using subdomains
(instead of example.com/api/v1 , we would have api-v1.example.com), query parameters, or custom HTTP
headers. Partitioning completely isolates version-specific application and protocol semantics from each
other. Clients might deliberately choose the desired version, and work solely with resource representations
associated with that version.

 Another less common approach is to embed hypermedia links in the home (start) page, and let a client
choose the appropriate link. RFC 5829 (https://tools.ietf.org/html/rfc5829) defines link relation types
dealing with version history. The server may deliver the home page with default content (related to the
latest version), and provide inside the Link HTTP response header the version-history “pointer.” This allows
navigation through other versions of the home page (the last versions would be explicitly denoted using the
 latest-version relation type). Effectively, a client could start with any supported version of the home page,
hence any version of the system. Of course, such version history could be attached to any resource, not just
the home page. The benefit of this technique is that it relies on a documented process, and there is no need
to come up with a proprietary solution. Moreover, accessing a complete version history, a client can figure
out what versions are supported by the server, without a trial-and-error tactic (e.g., an old client hitting v1
might get an error from a server already on version v5). The downside is that a client will have to make some
additional roundtrips with the server to reach the desired version.

 The previous proposal has many variations . For example, the version history might be part of the
home page with embedded version-specific links. An older client, which doesn’t understand the new
version, would only follow the link for the version it can manage. This is somehow similar to the approach
of encoding a version number inside a System property on the JVM platform. A software component, which
doesn’t know anything about a new version, would never be configured with nor reference future System
property values. Furthermore, a server might prefer an older default version of the service (instead of
sticking to the latest one). At any rate, the previous approach can only work with clients aware of the version
history. Otherwise, they would break when trying to parse the content related to the latest version of the
system (unless the changes are backward compatible).

 In all these cases, the version identifier should denote a full system generation. 6 In other words, in
the version template vX , the number X should play the role of the major version number in the semantic
versioning scheme (see http://semver.org). Incompatible changes are forbidden without modifying X . We
will see in Chapter 7 that hypermedia-driven REST APIs rarely need to alter the version number.

 4 In case of Java, this would be similar to releasing a new version of an API inside a different package. That is a brute
force coexistence (see http://wiki.apidesign.org/wiki/Co-existence), but is probably better than perpetrating
incompatible changes.
 5 Sometimes you will bump into dates instead of familiar version identifiers. For a REST API it is more natural to have
version identifiers, as mentioned in this book. However, Semantic Web documents are better controlled via dates, as the
Semantic Web technology primarily deals with vocabularies and descriptions rather than service implementations.
 6 This is an interesting question in modular design, too. Should we version each module independently, or rather mark the
whole release with a single version? The answer depends on the use case: If you want to plug a module into some version
of the product, then it is easier to have a uniform version number for all the modules. However, if you are building reusable
modules, which are also leveraged inside an application, then it is better to have a separate version for each of them.

https://tools.ietf.org/html/rfc5829
http://semver.org/
http://dx.doi.org/10.1007/978-1-4842-2196-9_7
https://www.google.com/url?q=http://wiki.apidesign.org/wiki/Co-existence&sa=D&ust=1473859740818000&usg=AFQjCNEhR6GBrB_3UMQcx89Lce2uiUXpqA

CHAPTER 6 ■ VERSIONING REST APIS

112

 API Keys as a Way to Control Versioning
 Modern REST APIs employ the concept of an API key to identify the caller of the service. This identification
is most often related to authentication and authorization purposes for a system to see what data and
actions are allowed for the matching client. The API key is generated by a server, and is an opaque binary
token (the client cannot interpret it). Usually it is a pair of tokens, with public and private parts. You can
look into Amazon Web Services documentation for more details, which uses the term Access Keys to
allow programmatic usage of its services. This is available at http://docs.aws.amazon.com/IAM/latest/
UserGuide/id_credentials_access-keys.html .

 The API key is passed inside the URL each time a client issues an HTTP request. The path parameter is
frequently named key , and the request looks like this: http(s)://<host>/api/<some endpoint>?key=<API
key> . However, nothing prevents a server from partitioning the API key space based on versions. The client
would indicate explicitly what version of an API key it needs from a server during registration. The generated
API key would incorporate all the necessary version information. As long as the client will use that specific
API key, all requests will refer to that concrete version of the system. Henceforth, API keys could save URLs
from pollution regarding version identifiers.

 The Importance of Stable UR[IL]s
 There is a general consensus that cool URIs (see [1] for details) should be simple, stable, and manageable
(this is associated with a need to version them). Confusion arises among developers when URIs are mixed
up with URLs, and resources are substituted for their representations.

 URI is an abbreviation for uniform resource identifier (see RFC 3986 at https://tools.ietf.org/
html/rfc3986), and URL stands for uniform resource locator. 7 All URLs are also URIs, but the opposite isn’t
true. URIs are used to identify real-world objects , the kind of things that don’t even need to exist as software
entities (e.g., a person, business concept, physical object, etc.). URLs identify things that can be located and
retrieved on the Web. In other words, URLs implicitly contain protocol details, as without a proper protocol
nothing can be downloaded from a server. In a RESTful world, we mostly deal with URLs.

 A URL in the REST realm is a bit of a misnomer. It would be more appropriate to call it a uniform
representation locator. Nevertheless, to fully understand what should be cool (a URI or URL), and what
should remain stable (resource or representation locators), we will take a small detour into the domain
of the Semantic Web . Figure 6-1 shows the relationships between the URI for a real-world entity (abstract
resource), the URL for a REST entity (information resource), and the URL for a representation. The whole
discussion is simplified to make it more appealing for a broader audience (I hope it isn’t oversimplified),
and accommodated to programmable Web (the original Semantic Web documents are referring to the
Web in general). As an additional constraint, we require that a client should be able to retrieve from the
Web at least a description for any abstract resource (let us assume that those descriptions are offered as
RDF documents).

 7 The uniform resource name (URN), which was used for a stable name, is deprecated in favor of the URI.

http://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986

CHAPTER 6 ■ VERSIONING REST APIS

113

 Let me refer to our example REST service (see Chapter 5) to make this elaboration tangible. The
service’s name was ProblemReports , and we will pretend that our domain is example.org (you can visit
 http://example.org to get some details about its purpose). The service itself, from an organization’s
viewpoint, is an abstract asset. Nevertheless, it is identifiable, and an organization can talk about it, offer it
for sale (in case it is a commercial product), and so on. Its URI is http://example.org/asset/2016/01#Prob
lemReports . 8 What should happen when a client hits this URI? Recall that we have demanded live URIs.

 First, we need to clarify how this URI is reconciled by an HTTP server. Our URI is a so-called Hash URI
(very popular in the Semantic Web realm), as it contains the # symbol. According to the HTTP convention,
everything on the right side of the hash mark is simply pruned away. Therefore, from the HTTP server’s
viewpoint, our URI is resolved to http://example.org/asset/2016/01 . This means that any description
document served “from” this URI will have to contain all entities mentioned with a hash mark (one of them
is our ProblemReports term). This strategy is useful when the matching description document isn’t too big;
otherwise, the abstract URI space has to be further partitioned.

 There are many options, but we will proceed using the HTTP 303 redirect approach with content
negotiation. A client has to specify what content it requires, so the media type can be used as a general
switch toward the matching representation. Here is a client’s corresponding HTTP request:

 GET /asset/2016/01#ProblemReports HTTP/1.1
 Host: example.org
 Accept:text/turtle, text/html;q=0.8
 Accept-Language: en

 Figure 6-1. The different reincarnations of a resource inside the global Web. In a RESTful purview only
URL representation space is “delivering” content to clients. As we move toward higher hierarchical levels, the
stability of UR[IL]s turns out to be more important.

 8 Stay away from premature conclusions whether this URI is also a URL. Having http inside it doesn’t inevitably mean it
is a URL. You need to be able to resolve that address, and get back an apt representation to qualify it as a URL. The HTTP
404 Not Found response isn’t a viable representation, though.

http://dx.doi.org/10.1007/978-1-4842-2196-9_5
http://example.org/
http://example.org/asset/2016/01#ProblemReports
http://example.org/asset/2016/01#ProblemReports
http://example.org/asset/2016/01

CHAPTER 6 ■ VERSIONING REST APIS

114

 A client has expressed that it has a slight preference for RDF description using the Turtle format
(http://www.w3.org/TR/turtle/) over an HTML variant using RDFa (see https://rdfa.info). This means
it is more interested in to machine process the description rather than to view it in a human-readable form.
The language parameter is especially relevant for the latter case. At any rate, the server can figure out what
the client wants, and will respond in the following manner (the URL below is just an example):

 HTTP/1.1 303 See Other
 Location: http://example.org/data/2016/01/OfferedServices

 The server has responded with a redirection instruction, as it couldn’t deliver the abstract notion
of the service from the original address. Fragment identifiers might avoid 303 redirections and the need
to poke around with the Access-Control-Allow-Origin HTTP response header. The idea is pertaining
to the assumption that such URIs cannot point to concrete stuff, as fragments are removed by the server.
However, this triggers a paradox, by which UR[IL]s shouldn’t be treated in a special fashion, although
we have just treated them as such. Moreover, the original assumption doesn’t even hold. For example, a
browser would scroll the content to match the exact section of a web page if it contains headings and you
reference one of them.

 At any rate, the client now has to issue a new request, using the address from the Location header:

 GET /data/2016/10/OfferedServices HTTP/1.1
 Host: example.org
 Accept:text/turtle, text/html;q=0.8
 Accept-Language: en

 This time the server can return the matching representation (it has managed to fulfill the client’s desire
for a machine-plausible RDF document):

 HTTP/1.1 200 OK
 Content-Type: text/turtle
 Content-Language: en
 Content-Location: http://example.org/data/2016/01/OfferedServices.en.turtle

 @base <http://example.org/asset/2016/01/> .
 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
 @prefix foaf: <http://xmlns.com/foaf/0.1/> .

 <#ProblemReports>
 a foaf:Project ; # This designates products under development, as they're still
projects.
 foaf:name "Problem Reports Service" ;
 foaf:homepage <http://example.org/api/ProblemReports> .
 # Other Turtle (subject, predicate, object) triples about this service.

 The Content-Location header should point to the concrete document hosted by the server. The RDF
description documents are regularly static files, as they don’t change often. If the client would directly
use the http://example.org/data/2016/01/OfferedServices.en.turtle URL, then the server would
also signal back the canonical URL toward the base descriptor resource. Such a canonical URL would be
provided in the Link HTTP response header as follows:

 Link: <http://example.org/data/2016/01/OfferedServices>; rel="canonical"

http://www.w3.org/TR/turtle/
https://rdfa.info/
http://example.org/data/2016/01/OfferedServices.en.turtle

CHAPTER 6 ■ VERSIONING REST APIS

115

 The home page URL denotes the entry point resource for the service (it omits the version identifier, so
it refers to the default version). This is where a client should start the navigation (this is the Billboard URL).
The representation of the home page should be again chosen by specifying the media type (in our case
 application/xml or application/json). You shouldn’t put any implementation details into a resource URL
(belonging to Level 2). That would make it fragile, in the same way as when you directly reference a class’s
field instead of its method. Representation URLs are allowed to have all sorts of appendixes, as they are
related to implementation. Once again, clients should negotiate them based on a media type.

 The home page resource (more precisely its representation) should refer to its RDF description via
the alternate link relation type (the link could be provided via the Link header). This is the mechanism
to interconnect a resource with its formal description. We should also state that the resource reifies its
abstract description. In the next chapter, we see how media types are expanded with profiles, which are also
semantic descriptions.

 Figure 6-2 shows the RDF graph resulting from the previous service description in Turtle (the graph was
autogenerated by the tool EasyRDF available at http://www.easyrdf.org).

 9 Instead of a URI, a company could also use a more generic internationalized resource identifier (IRI), defined in RFC
3987 (see https://tools.ietf.org/html/rfc3987). Furthermore, by exposing a SPARQL endpoint (usually at the
relative URL of /sparql), anyone could issue DESCRIBE <Company's IRI> to get RDF descriptions about that resource.
You can read more about the SPARQL protocol and query language at http://www.w3.org/TR/sparql11-protocol/
and http://www.w3.org/TR/sparql11-query/ , respectively. It is even possible to translate terms (implement the
dictionary from Chapter 16) by using the CONSTRUCT instruction.

 Figure 6-2. The visual representation of the RDF statements written down in Turtle format

 ■ Tip A handy way for a company to advertise its products with live demos is to publish the top abstract
service (resource) URI. 9 Clients interested in machine-processing the offerings would only retrieve the
corresponding RDF descriptions. Otherwise, they could ask for the entry point location. The server could
generate a time-limited API key and return it together with the home page representation. The API key could
also encompass the latest version identifier for the service.

 The next two techniques, versioning of media types and profiles, are intended to preserve the stability
of URIs. I mention them here as they are tightly related to URIs. For example, a profile itself can be versioned
using a versioned URL. We talk more about profiles in the next chapter.

http://www.easyrdf.org/
https://tools.ietf.org/html/rfc3987
http://www.w3.org/TR/sparql11-protocol/
http://www.w3.org/TR/sparql11-query/
http://dx.doi.org/10.1007/978-1-4842-2196-9_16

CHAPTER 6 ■ VERSIONING REST APIS

116

 Versioning of Media Types
 The media type is dictating some parts of the application and protocol semantics (we will see in later
chapters how a media type can be very powerful in this respect). The idea is to leverage the HTTP content
negotiation mechanism to select the required version of the system. There are two possibilities:

• Create your own domain-specific media type with versioning support.

• Use an existing media type with versioning support.

 The second option is only viable if you happen to stick to a media type that already has versioning.
Obviously, you cannot just pick an arbitrary media type, because it has such versioning aid. The problem is
that a very limited number of media types already include the version number. On the other hand, the first
option isn’t scalable, and should be avoided.

 Introducing a domain-specific media type is only feasible if it really embodies a large part of the
application and protocol semantics. In this case, it should be generalized, and published for the others to
reuse. A client using your custom media type (indicated via the vnd. prefix) would define the HTTP Accept
request header as follows:

 Accept: application/vnd.my-media-type?version=X

 The biggest challenge is how to evolve the media type in a controlled manner. You should keep in
mind that it does comprise part of your API. If it starts to pull in too many API aspects, then you will need
to version it. Suddenly you will end up having an overloaded version designator. All in all, a much more
scalable approach is to use a well-established base media type and customize it via profiles.

 ■ Warning If you use any sort of media type-based versioning, your server must set the Vary HTTP response
header (don't use the wildcard shortcut). This is a signal to any intermediaries (proxies, gateways, etc.) that
the same URL might return different responses based on the Accept header (in this case, a pure URL-based
caching will not work).

 Versioning of Profiles
 A profile might segregate the chunks of application semantics that might break clients if they change. The
media type would comprise those parts, which may be driven by hypermedia, and could vary dynamically.
A client can designate the desired profile using the profile link relation type (it is specified inside the Link
header). It is also possible to use content negotiation, if the media type supports the profile section (in this
case the previous warning also applies). The nice thing is that you can provide multiple versions of your API
in parallel, by letting clients choose among available profiles.

 Switching API Versions
 After some period, you’ll inevitably come to the stage when a brand new version of the API is the only
choice. Naturally, you cannot just make a switch in one swoop, even if the period for which you’ve
guaranteed to provide support has expired. Breaking existing clients isn’t a prudent strategy. The best
option is to keep multiple versions of your API in parallel for some time (after an expiration of the
previous version). The good news is that HTTP REST APIs are quite tolerable to this setup. The procedure
might look like this.

CHAPTER 6 ■ VERSIONING REST APIS

117

 1. Advertise to clients that the current API will cease to exist, and give a firm
shutdown date. Stop issuing API keys (if applicable) for this version for new
clients (this is another benefit of using API keys for versioning purposes).

 2. Deploy a new version of your API in parallel to the current one. This could work
out smoothly if you proactively included versioning support in your API from the
very beginning.

 3. During the transition period, always include the successor-version link relation
type in responses hitting the old version. This is a reminder for old clients that a
new version is available.

 4. After reaching the end date, your server should respond to old API requests with
the status code of 410 Gone . The Link header should contain the link relation
type latest-version pointing to the actual version of the system.

 Upgrading the HTTP Version
 As HTTP 2.0 gains momentum, we might expect in the future that servers will stop supporting the current
1.1 version (this will not happen soon, as the story with IPv6 shows). HTTP already includes rules for a client
and a server to negotiate the desired HTTP version. The next steps demonstrate how this might happen (for
a thorough treatment, refer to RFC 7540 at https://tools.ietf.org/html/rfc7540).

 1. A client sends a connection upgrade request using HTTP 1.1 by setting the
following headers:

 Connection: Upgrade, ...

 Upgrade: h2c

 2. If the upgrade is possible, then the server responds with the status code of 101
Switching Protocols . It will immediately start speaking HTTP 2.0 with the given
client. Otherwise, the server will ignore the upgrade request, and continue to
speak with the old version.

 Summary
 We have seen various ways to put evolution of a REST API under our control. It isn’t possible to change
things without taking into account their possible impacts on existing clients. The only way to control this
process is to leverage versioning. This chapter has introduced different options to version REST APIs. There
is no single best answer to this conundrum. Each choice has its benefits and drawbacks. By knowing the
implications of each variant, though, you will be in a better position to select the optimal strategy. At any
rate, if you can solve versioning without frequently altering the URLs, then it is definitely a positive result. In
the next chapter, we focus our attention on hypermedia and how it might help us in crafting REST APIs with
a high tolerance to change.

https://tools.ietf.org/html/rfc7540

CHAPTER 6 ■ VERSIONING REST APIS

118

 USER-FRIENDLY SEMANTIC WEB DOCUMENTS

 Getting Acquainted with RDFa

 Currently, we have only one description of the service in Turtle format. It isn’t quite good for people to
consume, and most browsers don’t understand the text/turtle format. Luckily, there is an HTML
format with embedded RDF.

 Translate the Turtle format into RDFa, and devise a strategy for clients to negotiate the new format
starting with the abstract service URI.

 Reference
 1. Sauermann, Leo, and Richard Cyganiak. “ Cool URIs for the Semantic Web .”

December 2008, W3C Note. https://www.w3.org/TR/cooluris

https://www.w3.org/TR/cooluris
https://www.w3.org/TR/cooluris

119© Ervin Varga 2016
E. Varga, Creating Maintainable APIs, DOI 10.1007/978-1-4842-2196-9_7

 CHAPTER 7

 Encoding Actions on Resources

 In Chapters 5 and 6 we dealt mainly with the design aspects of our REST API. In this chapter we partially
implement the example service for you to see things in action (some parts will be left as an exercise). We use
Spring HATEOAS (a subproject of the famous Java framework Spring available at http://projects.spring.
io/spring-hateoas/) to realize our hypermedia-driven service, as well as JSON-LD (http://json-ld.org)
to attach an ontology. Because we are building an HTTP REST API, we will inherit features from HTTP (like
the uniform interface concept).

 It is important to understand the role of HTTP and what it brings into the picture. First, HTTP as a
protocol is well established, and is the main web protocol of the. From the viewpoint of a programmable Web,
it establishes a uniform interface made up of the following major parts: URLs, methods (verbs), request and
response headers, and response status codes (you might want to consult [1] for a good overview of these).
HTTP offers the next standardized methods advantageous from an API’s viewpoint: GET , POST , PUT , DELETE ,
 PATCH , HEAD , and OPTIONS (this last one is a bit obsolete due to hypermedia controls inside a representation). 1
The uniform interface relieves clients from learning fundamentally new ways of handling resources.
Everything happens via URLs (these are identifiers and handles of resources at the same time) and HTTP
regular methods (see the sidebar “Identifier vs. Handle” later in this chapter for more details about them).

 Superficially, the richness of an interaction between a client and a server is far bigger than what is
possible to describe with only these methods. Thus, it appears that we need many more methods to define
an API (something similar to what we are used to doing in an RPC-based API). However, it turns out that
this isn’t the case; that is, the previously enrolled methods are quite enough. The trick lies in the fact that the
richness of the communication is encompassed inside the variety of resources and their representations.
In classical (Level 2) REST APIs, much of the knowledge about resources, their representations, and
the allowable actions on them are fixed and burned inside the code. The rules governing the resource
manipulations are mostly documented in human-readable form. The idea behind the hypermedia-driven
REST API is to get rid of these predetermined assumptions as much as possible, thus reducing the amount of
documentation. This has a profound effect on clients and a server. They can evolve independently, as future
changes will be communicated toward clients in a dynamic fashion.

 1 The OPTIONS can be used by a client to figure out the affordances regarding a particular resource. The response would
be a set of HTTP methods (GET , PUT , etc.). In a Level 3 REST API the server sends this information proactively using
hypermedia controls. Therefore, the client isn’t any more motivated to issue OPTIONS , nor in doubt about what is
affordable with a resource (you can read more about this HTTP header at http://zacstewart.com/2012/04/14/
http-options-method.html).

http://dx.doi.org/10.1007/978-1-4842-2196-9_5
http://dx.doi.org/10.1007/978-1-4842-2196-9_6
http://projects.spring.io/spring-hateoas/
http://projects.spring.io/spring-hateoas/
http://json-ld.org/
http://zacstewart.com/2012/04/14/http-options-method.html
http://zacstewart.com/2012/04/14/http-options-method.html

CHAPTER 7 ■ ENCODING ACTIONS ON RESOURCES

120

 IDENTIFIER VS. HANDLE

 The Similarities and Differences between These Terms

 The identifier is just a mechanism to point to something. It could even be a purely abstract thing. The handle
is an asset by which you can manipulate a resource. Think about an ordinary file. It has a full path (identifier),
but to alter the file you need to open it first. The operating system (OS) would return a file handle (honestly,
this is again a kind of an OS-specific identifier), by which you can operate on a file. In REST, these two things
are melded, and you have a URL that both identifies a resource and serves as its handle.

 Another analogy is the URL (identifier) and URLConnection (handle) classes in Java. We have already
mentioned that every URL is also a URI. Interestingly this isn’t reflected in the class hierarchy in JDK. The
 URL class has no relationship with the URI class. They are totally separate entities having the root Object
class as their common parent. This is definitely an API design flaw. The variety of hypermedia controls
built into the corresponding resource representation are dictated by the chosen media type. This is why it
is crucial to select a proper media type, as it has a huge impact on the capabilities of your API. There is a
formal classification regarding the level of hypermedia support in a media type aptly named the H factor
(see http://amundsen.com/hypermedia/hfactor/ and [1] for a brief introduction). It is interesting to note
that HTML embodies quite a large set of hypermedia factors (it isn’t surprising then, that our browsers
can handle so many different web pages without any problems). The quote that follows nicely conveys the
idea behind the hypermedia, and why it is important for us to incorporate as many machine-processable
elements in REST APIs as possible.

 When I say hypertext, I mean the simultaneous presentation of information and controls
such that the information becomes the affordance through which the user (or automaton)
obtains choices and selects actions. Hypermedia is just an expansion on what text means
to include temporal anchors within a media stream; most researchers have dropped the
distinction. Hypertext does not need to be HTML on a browser. Machines can follow links
when they understand the data format and relationship types.

 —Roy T. Fielding, http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

 ■ Warning As an API designer, you must know from where things have emanated; that is, you have to be
aware of the history. You shouldn't repeat the QWERTY keyboard mistake in a RESTful manner! Traditionally,
HTML didn’t buttress the CR H factor (you cannot specify the desired response type for GET links). Therefore,
developers introduced a workaround by placing response type suffixes to URLs (e.g., http://example.com/
mySite/resource.json or http://example.com/mySite/resource.xml). This isn’t a settlement; this is a pure
hack. You should use HTTP content negotiation to choose the preferred media type. If you have to make dirty
stunts, then at least be aware of why you do it.

 A REST service is meant to be part of a larger distributed system, and for practical purposes (to make the
client’s life easier) it is beneficial to formulate actions to be idempotent. This makes distributed failure handling
much easier, as a client can just repeat its previous action (until getting a response, or after hitting the maximum
number of retries) without any undesirable side effects. Generally, GET , PUT , and DELETE are idempotent (GET must
also be safe). The PATCH request can be made idempotent by using HTTP’s conditional processing. POST is by
definition an unsafe and nonidempotent operation. HEAD and OPTIONS are also safe, but aren’t used very often.

http://amundsen.com/hypermedia/hfactor/
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://example.com/mySite/resource.json
http://example.com/mySite/resource.json
http://example.com/mySite/resource.xml

CHAPTER 7 ■ ENCODING ACTIONS ON RESOURCES

121

 Implementing the Core Features
 We first set up a Spring HATEOAS Maven project (to set up a new project just follow the instructions from the
guide at https://spring.io/guides/gs/rest-hateoas/) and implement the resources. We have already
decided that the entry point URL for our service will be http://example.org/api/ProblemReports (in our
case, the host will be localhost:8080 as we don’t own the example.org domain). The semantic descriptors
(field names inside the document) will be those described in Chapter 5 . The only new detail is the encoding of
links. Spring HATEOAS gives nice support for creating links and associating them with Spring MVC controllers.

 Selecting a media type is an implementation detail, and should precede any actual coding. In our case,
it was baked in as part of the requirements specification (usually this isn’t the case). Nevertheless, we will see
that even into a basic JSON/XML message payload we can incorporate lots of hypermedia controls, thanks
to the existence of the standardized link relation types. This will also allow us to confer our vocabulary
(expressed in JSON-LD) in an unobtrusive fashion. The links will be contained inside the links property.
Each individual link will have a name as given in Table 5-1 (see Chapter 5).

 Our goal here is to convey the benefits of having hypermedia controls in representations as well as to
showcase the importance of choosing the right frameworks. Part IV of the book is devoted to JSON API, and
will show you a more complex example with a real database in the background. You might want to compare
this solution to the one from Chapter 17 to see the importance of selecting a powerful, well-established
base media type (nowadays, there are couple of them competing in the field of JSON). As an added benefit,
you will have an opportunity to choose among many frameworks for jump-starting your implementation
efforts. The current version of Spring HATEOAS (at the time of this writing it was 0.20.0) has built-in support
for Hypertext Application Language (HAL; http://stateless.co/hal_specification.html) and Atom
Syndication Format (Atom; https://tools.ietf.org/html/rfc4287).

 Interaction of Resources via Hypermedia Controls
 The home page should respond to an HTTP GET request, and return an HTTP status code 200 OK together
with the representation of the HomePage resource inside the body of the message. We might expect the
following content (the output is beautified here, but in reality you wouldn’t pass around extra white space).

 {
 "name":"Problem Reports service's home page",
 "links":[
 {
 "rel":"self",
 "href":"http://localhost:8080/api/ProblemReports/"
 },
 {
 "rel":"about",
 "href":"http://localhost:8080/api/ProblemReports/About"
 },
 {
 "rel":"contents",
 "href":"http://localhost:8080/api/ProblemReports/Reports"
 }
]
 }

https://spring.io/guides/gs/rest-hateoas/
http://example.org/api/ProblemReports
http://dx.doi.org/10.1007/978-1-4842-2196-9_5
http://dx.doi.org/10.1007/978-1-4842-2196-9_5
http://dx.doi.org/10.1007/978-1-4842-2196-9_17
http://stateless.co/hal_specification.html
https://tools.ietf.org/html/rfc4287

CHAPTER 7 ■ ENCODING ACTIONS ON RESOURCES

122

 The HomePage is of the type schema.org/WebPage , so it has the name property (this is all now implicit,
but later on we will use JSON-LD to make these facts explicit). The links section contains IANA registered
links to the about page, home page itself (a self-referencing link 2) and to the contents of the service (the list
of reported problems). Notice that you don’t need to additionally explain the meaning of these links, as they
are all standardized by IANA. Moreover, this nicely illustrates why URL design isn’t that important. When
you designate the URL with an about link, it doesn’t really matter how you have structured it.

 By following the about link, the client should arrive at the AboutPage resource. Again, it is assumed that the
server will return an HTTP status code of 200 OK for the GET request. The response body should look like this.

 {
 "name": "About the Problem Reports service",
 "about": "Stores problem reports registered in a system",
 "text": "The example micro-service for chapter 7.",
 "links":[
 {
 "rel":"self",
 "href":"http://localhost:8080/api/ProblemReports/About"
 },
 {
 "rel":"http://xmlns.com/foaf/spec/#term_homepage",
 "href":"http://localhost:8080/api/ProblemReports"
 }
]
 }

 The AboutPage is of the type schema.org/AboutPage (a subclass of the WebPage) so it has the name ,
 about , and text properties. It also has a link to the home page using the homepage term from FOAF (it uses
link expansion to reference the term, as it isn’t registered with IANA).

 Skeleton of the Service
 In Spring HATEOAS you model a resource representation by introducing the matching resource
representation class. It is beneficial to extend the ResourceSupport class , as it implements the necessary
methods to handle links (allows you to add instances of the Link class, and performs the rendering as shown
before). Spring uses the Jackson library to do JSON serialization of representations. Instructions for Jackson
are incorporated via annotations. A similar remark applies for XML support using JAXB. Here is the listing
for the about page resource representation class (watch out for the sections shown in bold).

 package rs.exproit.problem_reports.resource;

 import javax.xml.bind.annotation.XmlAttribute;
 import javax.xml.bind.annotation.XmlRootElement;

 import org.springframework.hateoas.ResourceSupport;

 2 It is also possible to use the url property of the WebPage , but it is better to be consistent across your APIs. In case you
need a self-link from a representation, which isn’t a WebPage per se, then you would need to come up with a new
convention. Consistency is only one of the myriad quality attributes of an API (read [3] for a good overview).

CHAPTER 7 ■ ENCODING ACTIONS ON RESOURCES

123

 import com.fasterxml.jackson.annotation.JsonCreator;
 import com.fasterxml.jackson.annotation.JsonProperty;

 @XmlRootElement(name = "AboutPage")
 public final class AboutPage extends ResourceSupport {
 @JsonProperty @XmlAttribute
 private final String name = "About the Problem Reports service";

 @JsonProperty @XmlAttribute
 private final String about = "Stores problem reports registered in a system";

 @JsonProperty @XmlAttribute
 private final String text = "The example micro-service for chapter 7.";

 @JsonCreator
 public AboutPage() { }

 public final String getName() {
 return name;
 }

 public final String getAbout() {
 return about;
 }

 public final String getText() {
 return text;
 }
 }

 To serve resource representations (handle HTTP requests) you must define the corresponding resource
controller classes. A resource controller will attach the necessary links to the base resource representation.
This is a fine example of how internal data storage details are not necessarily mapped to resource
representations. Again, everything happens via annotations. Here is the code for the about page resource
controller (watch out for the sections shown in bold).

 package rs.exproit.problem_reports.controller;

 import static org.springframework.hateoas.mvc.ControllerLinkBuilder.*;

 import org.springframework.http.HttpEntity;
 import org.springframework.http.HttpStatus;
 import org.springframework.http.ResponseEntity;
 import org.springframework.web.bind.annotation.RestController;

 import rs.exproit.problem_reports.resource.AboutPage;

 import org.springframework.web.bind.annotation.RequestMapping;
 import org.springframework.web.bind.annotation.RequestMethod;

CHAPTER 7 ■ ENCODING ACTIONS ON RESOURCES

124

 @RestController
 public class AboutPageController {
 @RequestMapping(path = "/About", method = RequestMethod.GET)
 public HttpEntity<AboutPage> aboutPage() {
 AboutPage aboutPage = new AboutPage();
 aboutPage.add(linkTo(methodOn(AboutPageController.class).aboutPage()).

withSelfRel());
 aboutPage.add(linkTo(HomePageController.class)
 .withRel("http://xmlns.com/foaf/spec/#term_homepage"));

 return new ResponseEntity<AboutPage>(aboutPage, HttpStatus.OK);
 }
 }

 The benefit of reusing the link handling from Spring HATEOAS is that many background tasks are
carried out for you automatically. For example, a usual practice is to hide services behind a proxy. If you
configure the proxy to pass the X-FORWARDED-HOST header, then the serialized links will pick up the host
provided by the proxy instead of reflecting the current location of the running service. Nevertheless, the
main benefit is the existence of the ControllerLinkBuilder class, which allows you to point back to
controller classes (either to a full class, or to one of its HTTP request handler methods). Imagine how hard
would it be to manually construct those absolute URLs for links. Because a controller class already specifies
relative paths, all the rest (protocol, host, port number, and base path) is dynamically attached by the Spring
HATEOAS link handling facility. The self -link is so important that it is even predefined.

 Finally, to create a working HTTP service we need to package everything up. There are two possibilities:
create the WAR file to be used inside an external web server, or make a fat jar file with an embedded HTTP
server. We use the latter choice by using Spring’s Tomcat servlet container. The Spring Boot Maven plug-
in does most of the packaging work for us, so we just need to create the main application class. Here is the
listing (notice the part shown in bold).

 package rs.exproit.problem_reports;

 import org.springframework.boot.SpringApplication;
 import org.springframework.boot.autoconfigure.SpringBootApplication;

 @SpringBootApplication
 public class ProblemReportsService {
 public static void main(String[] args) {
 SpringApplication.run(ProblemReportsService.class, args);
 }
 }

 The single @SpringBootApplication annotation performs all the work. It triggers the scan for resource
controller classes and brings them in. Also, Spring will read the configuration file application.properties
(located inside the src/main/resources folder) and set the base path and port number of the service
accordingly. The last line deactivates automatic HAL responses (a client needs to explicitly ask for HAL via
content negotiation). Here is the content of the configuration file.

 server.contextPath=/api/ProblemReports
 server.port=8080

 spring.hateoas.use-hal-as-default-json-media-type=false

CHAPTER 7 ■ ENCODING ACTIONS ON RESOURCES

125

 The Remaining Representations and Controllers
 The problem reports are going to be stored in an ad-hoc, prepopulated, in-memory database. It will contain
for now some basic methods to manipulate the data set. Nonetheless, we first need to define the problem
report resource representation. Its listing is provided here (the getters are omitted for brevity).

 package rs.exproit.problem_reports.resource;

 import javax.xml.bind.annotation.XmlAttribute;
 import javax.xml.bind.annotation.XmlRootElement;

 import org.springframework.hateoas.ResourceSupport;
 import org.springframework.hateoas.core.Relation;

 import com.fasterxml.jackson.annotation.JsonCreator;
 import com.fasterxml.jackson.annotation.JsonInclude;
 import com.fasterxml.jackson.annotation.JsonProperty;

 @XmlRootElement(name = "problem")
 @Relation(collectionRelation = "items")
 @JsonInclude(JsonInclude.Include.NON_EMPTY)
 public final class ProblemReport extends ResourceSupport {
 @JsonProperty @XmlAttribute
 private final String reportNumber;

 @JsonProperty @XmlAttribute
 private final String type;

 @JsonProperty @XmlAttribute
 private final String title;

 @JsonProperty @XmlAttribute
 private final Integer status;

 @JsonProperty @XmlAttribute
 private final String correlationId;

 public ProblemReport(String id, String type, String title, Integer status,
 String correlationId) {
 this.reportNumber = id;
 this.type = type;
 this.title = title;
 this.status = status;
 this.correlationId = correlationId;
 }

 @JsonCreator
 public ProblemReport() { }

CHAPTER 7 ■ ENCODING ACTIONS ON RESOURCES

126

 The @Relation annotation is useful for HAL serialization to control the name of the collection JSON
property. @JsonInclude is required to avoid empty links sections in the output. It is very important to
define a default no-arg constructor, otherwise XML serialization wouldn’t work. The following code is the
implementation of our simple database 3 (you can browse the associated unit test class in the accompanying
source code for this book).

 package rs.exproit.problem_reports.db;

 import java.util.ArrayList;
 import java.util.Iterator;
 import java.util.List;

 import rs.exproit.problem_reports.resource.ProblemReport;

 public final class ProblemReportDB {
 private static List<ProblemReport> database = new ArrayList<>();

 static {
 database.add(new ProblemReport("1",
 "http://example.org/errors/out-of-memory", "Out of memory error", 500,

"T1"));
 database.add(new ProblemReport("2",
 "http://example.org/errors/authorization-error", "Invalid token", 401,

"T2"));
 database.add(new ProblemReport("3",
 "http://example.org/errors/resource-not-found", "Resource not found", 404,
 "T2"));
 database.add(new ProblemReport("4",
 "http://example.org/errors/out-of-credit", "Out of credit", 403, "T3"));
 database.add(new ProblemReport("5",
 "http://example.org/errors/invalid-request", "Invalid request", 400, "T4"));
 }

 public static ProblemReport findProblemReport(String reportNumber) {
 for (ProblemReport report : database) {
 if (report.getReportNumber().equals(reportNumber)) {
 return report;
 }
 }
 return null;
 }

 public static List<ProblemReport> getAllProblemReports() {
 return database;
 }

 3 This is throwaway code, and is using static methods, which aren’t proper for an API. See the exercises at the end of this
chapter for more directions on how to refactor it.

CHAPTER 7 ■ ENCODING ACTIONS ON RESOURCES

127

 public static List<ProblemReport> findAllProblemReports(String correlationId) {
 List<ProblemReport> result = new ArrayList<>();

 for (ProblemReport report : database) {
 if (report.getCorrelationId().equals(correlationId)) {
 result.add(report);
 }
 }
 return result;
 }

 public static void deleteProblemReport(String reportNumber) {
 Iterator<ProblemReport> it = database.iterator();
 while (it.hasNext()) {
 ProblemReport report = it.next();
 if (report.getReportNumber().equals(reportNumber)) {
 it.remove();
 return;
 }
 }
 }
 }

 In production, you would not store the resource representations directly, but use separate domain
model entities. The problem report resource controller 4 is depicted here (the imports are omitted).

 package rs.exproit.problem_reports.controller;

 @RestController
 @RequestMapping("/Reports/{reportNumber}")
 public class ProblemReportController {
 @RequestMapping(method = RequestMethod.GET)
 public HttpEntity<ProblemReport> getReport (@PathVariable String reportNumber) {
 ProblemReport report = ProblemReportDB.findProblemReport(reportNumber);
 if (report == null) {
 return new ResponseEntity<ProblemReport>(HttpStatus.NOT_FOUND);
 } else {
 report.add(linkTo(methodOn(ProblemReportController.class)
 .getReport(reportNumber)).withSelfRel());
 report.add(linkTo(methodOn(ProblemReportsController.class)
 .getReports(report.getCorrelationId())).withRel("related"));
 report.add(linkTo(methodOn(ProblemReportController.class)
 .getReport(reportNumber)).withRel("edit"));
 report.add(linkTo(ProblemReportsController.class).withRel("collection"));

 return new ResponseEntity<ProblemReport>(report, HttpStatus.OK);
 }
 }

 4 Read more about the PathVariable annotation in the Spring documentation.

CHAPTER 7 ■ ENCODING ACTIONS ON RESOURCES

128

 @RequestMapping(method = RequestMethod.DELETE)
 public HttpEntity<ProblemReport> deleteReport(@PathVariable String reportNumber) {
 ProblemReportDB.deleteProblemReport(reportNumber);
 return new ResponseEntity<ProblemReport>(HttpStatus.NO_CONTENT);
 }
 }

 It already supports the deletion of problem reports (the update is left as an exercise). Finally, we present
the problem reports controller, which creates a collection of problem reports (the imports are omitted).

 package rs.exproit.problem_reports.controller;

 @RestController
 @RequestMapping(value = "/Reports")
 public class ProblemReportsController {
 @RequestMapping(method = RequestMethod.GET)
 public Resources<ProblemReport> getReports(
 @RequestParam(value = "correlationId", required = false) String correlationId) {
 List<Link> links = new ArrayList<Link>();
 links.add(linkTo(methodOn(ProblemReportsController.class)
 .getReports(correlationId)).withSelfRel());
 links.add(linkTo(HomePageController.class)
 .withRel("http://xmlns.com/foaf/spec/#term_homepage"));
 links.add(createSearchLink());

 List<ProblemReport> reports =
 correlationId != null ? ProblemReportDB.findAllProblemReports(correlationId) :
 ProblemReportDB.getAllProblemReports();

 return new Resources<>(toResources(reports), links);
 }

 private Link createSearchLink() {
 UriComponents uriComponents = UriComponentsBuilder.fromUri(
 linkTo(ProblemReportsController.class).toUri()).build();
 UriTemplate template = new UriTemplate(uriComponents.toUriString())
 .with("correlationId", TemplateVariable.VariableType.REQUEST_PARAM);

 return new Link(template, "search");
 }

 private List<ProblemReport> toResources(List<ProblemReport> reports) {
 for (ProblemReport report : reports) {
 if (!report.hasLink("self")) {
 report.add(linkTo(methodOn(ProblemReportController.class)
 .getReport(report.getReportNumber())).withSelfRel());
 }
 }

 return reports;
 }
 }

CHAPTER 7 ■ ENCODING ACTIONS ON RESOURCES

129

 There is no separate collection resource representation; this is created on the fly by the controller.
The createSearchLink method is an example of how to create links with URI templates. The toResources
method illustrates how to produce a collection of resource representations. In our case, it just adds a self-link
to each report, if it doesn’t already have one.

 Smoke Testing the Service
 We are now ready to start our service by invoking the next Maven command from the project’s home folder:
 mvn clean test spring-boot:run . To hit the entry point of our service you should issue the following
command (the -v flag triggers a more verbose output):

 curl -v -H "Accept: application/json" http://localhost:8080/api/ProblemReports/

 We will get the same response as we expected at the beginning of this section. The same is true if we
follow the about link. If we would like to alter the embedded hostname in the links, then we should issue this:

 curl -v -H "Accept: application/json" -H "X-FORWARDED-HOST: example.org" http://
localhost:8080/api/ProblemReports/

 The response would reflect the new host definition, and localhost:8080 will be replaced with example.
org . We can request an XML message with this:

 curl -v -H "Accept: application/xml" http://localhost:8080/api/ProblemReports/

 We will receive the following response (cleaned up a bit):

 > GET /api/ProblemReports/ HTTP/1.1
 > Host: localhost:8080
 > Accept: application/xml
 >
 < HTTP/1.1 200
 < Content-Type: application/xml

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <HomePage xmlns:atom="http://www.w3.org/2005/Atom"
 name="Problem Reports service's home page">
 <atom:link rel="self" href="http://localhost:8080/api/ProblemReports/"/>
 <atom:link rel="about" href="http://localhost:8080/api/ProblemReports/About"/>
 <atom:link rel="contents" href="http://localhost:8080/api/ProblemReports/Reports"/>
 </HomePage>

 This is an Atom protocol message, but signaled as pure XML. We can specifically ask for an Atom format
by demanding the application/atom+xml media type.

 There is also an interesting feature of Spring HATEOAS (you can read an excellent blog about URLs with
and without an ending slash at https://webmasters.googleblog.com/2010/04/to-slash-or-not-to-
slash.html). If you issue the following command:

 curl -v -H "Accept: application/json" http://localhost:8080/api/ProblemReports

 you will get back a 302 redirect with the Location header set to http://localhost:8080/api/
ProblemReports/ . You can instruct curl to automatically follow such redirects by specifying the -L option.
Let us now get back all the registered problem reports:

https://webmasters.googleblog.com/2010/04/to-slash-or-not-to-slash.html
https://webmasters.googleblog.com/2010/04/to-slash-or-not-to-slash.html
http://localhost:8080/api/ProblemReports/
http://localhost:8080/api/ProblemReports/

CHAPTER 7 ■ ENCODING ACTIONS ON RESOURCES

130

 curl -v -H "Accept: application/json" http://localhost:8080/api/ProblemReports/Reports

 The response is as follows (notice the search link relation):

 > GET /api/ProblemReports/Reports HTTP/1.1
 > Host: localhost:8080
 > Accept: application/json
 >
 < HTTP/1.1 200
 < Content-Type: application/json;charset=UTF-8

 {
 "links":[
 {
 "rel":"self",
 "href":"http://localhost:8080/api/ProblemReports/Reports"
 },
 {
 "rel":"http://xmlns.com/foaf/spec/#term_homepage",
 "href":"http://localhost:8080/api/ProblemReports"
 },
 {
 "rel":"search",
 "href":"http://localhost:8080/api/ProblemReports/Reports{?correlationId}"
 }
],
 "content":[
 {
 "reportNumber":"1",
 "type":"http://example.org/errors/out-of-memory",
 "title":"Out of memory error",
 "status":500,
 "correlationId":"T1",
 "links":[
 {
 "rel":"self",
 "href":"http://localhost:8080/api/ProblemReports/Reports/1"
 }
]
 },...
]
 }

 The search link gives a clear instruction for a client on how to filter this collection. The embedded
problem reports are denoted with self-links. Without such links, this couldn’t be treated as a true
hypermedia-driven representation. Let’s retrieve the first problem report:

 curl -v -H "Accept: application/json" http://localhost:8080/api/ProblemReports/Reports/1

 We will receive the following response (notice the parts shown in bold).

CHAPTER 7 ■ ENCODING ACTIONS ON RESOURCES

131

 > GET /api/ProblemReports/Reports/1 HTTP/1.1
 > Accept: application/json
 >
 < HTTP/1.1 200
 < Content-Type: application/json;charset=UTF-8

 {
 "reportNumber":"1",
 "type":"http://example.org/errors/out-of-memory",
 "title":"Out of memory error",
 "status":500,
 "correlationId":"T1",
 "links":[
 {
 "rel":"self",
 "href":"http://localhost:8080/api/ProblemReports/Reports/1"
 },
 {
 "rel":"related",
 "href":"http://localhost:8080/api/ProblemReports/Reports?correlationId=T1"
 },
 {
 "rel":"edit",
 "href":"http://localhost:8080/api/ProblemReports/Reports/1"
 },
 {
 "rel":"collection",
 "href":"http://localhost:8080/api/ProblemReports/Reports"
 }
]
 }

 The related link tells how to get all the other interlinked reports having the same correlation Id (groups
together reports sharing a common context). The edit link assumes that the client will maintain its own
application state (this is different than a resource state taken care of by the server), and will know that it
should use POST only for edit links associated with a problem reports collection (see the exercises at the
end of this chapter). For an individual problem report, the client can use PUT or DELETE . More advanced
hypermedia formats even allow you to transfer the exact template for edits (e.g., HTML has the notion of a
form to specify how the request’s body should look). We now use the edit link, and issue an HTTP DELETE
action:

 curl -v -X DELETE http://localhost:8080/api/ProblemReports/Reports/1

 We will receive the following response.

 > DELETE /api/ProblemReports/Reports/1 HTTP/1.1
 >
 < HTTP/1.1 204

 If we now try to get the same report back, the server will generate the HTTP 404 Not Found error.

CHAPTER 7 ■ ENCODING ACTIONS ON RESOURCES

132

 Adding an Ontology
 We are left with the task of adding an ontology to the returned representations. The ontology adds machine-
processable statements about the terms used in the representations. Moreover, it clearly specifies the types
of those terms. The ontology can be attached as the profile link relation. Here is the minimal JSON-LD
document for our service.

 {
 "@context": {
 "@vocab": "http://example.org/terms#",
 "as": "http://www.w3.org/ns/activitystreams#",
 "schema": "http://shema.org/",
 "xsd": "http://www.w3.org/2001/XMLSchema#",
 "content": {
 "@id": "as:items"
 },
 "reportNumber": {
 "_comment": "The unique report number.",
 "@type": "xsd:string"
 },
 "type": {
 "_comment": "The URI for the type of the problem.",
 "@type": "@id"
 },
 "title": {
 "_comment": "The short description of this problem.",
 "@type": "xsd:string"
 },
 "status": {
 "_comment": "The HTTP reponse code.",
 "@type": "xsd:positiveInteger"
 },
 "correlationId": {
 "_comment": "The ID to group together related reports.",
 "@type": "xsd:string"
 }
 }
 }

 The content is an alias for the items (part of the Activity Streams vocabulary). We could produce similar
aliases for the other terms. For example, instead of saying "schema:WebPage" we might just say "WebPage"
when designating a type. This JSON document can be served from a stable URL with a content type of
 application/ld+json . Another option is to embed this context definition inside each representation, but
this should be avoided.

 Summary
 You have now experienced the power of hypermedia controls in crafting maintainable APIs. Instead of
hard-coding all the details in code, the server is able to actively shape the communication and inform
the client what options are available. This is how the Web works using HTML. There is no reason why the
programmable Web cannot function in a similar fashion.

CHAPTER 7 ■ ENCODING ACTIONS ON RESOURCES

133

 In addition to hypermedia controls, you have also witnessed the effectiveness of content negotiation.
The client dictates the response format, and if the server cannot support that media type, it will return an
error. New formats can be added without jeopardizing the compatibility of an API.

 Providing an ontology helps in boosting the expressiveness of our API. Reusing common terms is far
better than reinventing the wheel with each new service. Linking documents is a solved problem; now we
need to seek opportunities to link data at a web scale (read [4] for an extensive treatment of this topic).

 FINALIZE THE IMPLEMENTATION

 Practice Spring HATEOAS

 You should implement the following features:

• Creating new problem reports. You must add a POST request handler to the problem
reports controller. You should decide how to specify the input template. Don’t forget
to add the matching edit link to the representation. This will send a green light for a
client that it is now allowed to create new reports, too.

• Updating an existing problem report. You have to add a PUT request handler to the
problem report controller. You may reuse the same template as for creating a new
report.

• Attaching the ontology to the returned representations as described earlier. You
may reuse the ALPS profile for XML serialization format, which you created in Chapter 5 .

 You might want to replace the rudimentary in-memory database with a real one. The static methods
there go against sound testing principles; that is, the tests running this code would influence each other. I
would advocate proper engineering, and allow multiple instances of ProblemReportDB class. As a final note,
should the static nature be kept in some other context, then the ProblemReportDB class misses private
constructor(s) to prevent instances of this class to be created (a common API design mistake in Java).

 References
 1. Sletten, Brian. Resource-Oriented Architectures: Hypermedia. Sebastopol, CA:

O’Reilly Media, 2015.

 2. Sletten, Brian. Resource-Oriented Architectures: Linking Data. Sebastopol, CA:
O’Reilly Media, 2015.

 3. Myers, Brad A., and Jeffrey Stylos. “Improving API Usability,” Communications of
the ACM, June 2016, Vol. 59, No. 6. doi: 10.1145/2896587

 4. Sikos, Leslie F. Mastering Structured Data on the Semantic Web: From HTML5
Microdata to Linked Open Data. New York: Apress, 2015.

http://dx.doi.org/10.1007/978-1-4842-2196-9_5
http://dx.doi.org/10.1145/2896587

135© Ervin Varga 2016
E. Varga, Creating Maintainable APIs, DOI 10.1007/978-1-4842-2196-9_8

 CHAPTER 8

 Implementing Synchronous and
Asynchronous REST APIs

 There are two broad categories of API quality attributes : usability (simplicity, consistency, learnability, risk
mitigation, productivity, etc.) and power (expressiveness, maintainability, evolution, etc.). These are not
always in sync. For example, research studies have shown some empirical evidence that the factory pattern
might lower an API’s usability. On the other hand, we definitely know that using factory methods instead of
constructors gives us more control over performance, security, and evolution. Therefore, there are always some
trade-offs pertaining to API design (good IDEs can offer you a list of factory methods for a class or its subclasses,
so they might remedy the usability issue a bit). A similar story holds with the synchronous and asynchronous
programming models. The former is surely easier to understand, but the latter could be critical to achieving the
desired performance level. The HTTP 1.x protocol is inherently synchronous and sequential (this has radically
changed in 2.0), but also has abilities to support the asynchronous reactive paradigm (consult the Reactive
Manifesto for a good summary of the benefits of this style at http://www.reactivemanifesto.org). In this
chapter, we analyze the available options and see how we can use them in REST APIs.

 In the synchronous communication model the client waits for the server to generate the response. This
could be a waste of time for a client, as it might perform some other background tasks. Moreover, end users
don’t like to see an hourglass spinning in front of them. The asynchronous approach is nonblocking. The
client is allowed to do other tasks while the server is processing the request. The communication pattern
can be elected by both a client and a server. Traditionally, servers only supported the synchronous model,
so clients needed a way to enable an asynchronous style even though servers were still running in a purely
synchronous fashion. However, this emulated regime, which brings in a separate client-side API, doesn’t
have any impact on the server-side REST API. The story about asynchronous processing might also emanate
from the server, as it solves many performance issues there. We investigate both sides.

 We do not delve into HTML 2.0 (you can read about it at https://tools.ietf.org/html/rfc7540)
and how it speeds up both sides in an unobtrusive way. It reinforces the so-called Half-Sync Half-Async
architectural pattern (see [1] or http://www.cs.wustl.edu/~schmidt/PDF/PLoP-95.pdf), hiding many
optimization complexities at the HTTP protocol level (header compression, binary format instead of
textual, efficient pipelining of requests, etc.). The good news is that transitioning to HTML 2.0 shouldn’t be
disruptive. Our browsers already support it, as do many web sites.

 Client-Controlled Asynchrony
 The most popular client-side web architectural style is Asynchronous JavaScript and XML (AJAX) , which
relies on a multitude of technologies to deliver an asynchronous programming model (there is a good
tutorial at http://www.w3schools.com/ajax/). All this happens in a totally opaque manner from the server’s
viewpoint. In other words, any existing synchronous REST API can be transformed into an asynchronous
one by introducing this extra AJAX layer. AJAX is responsible for handling all communication with a server

http://www.reactivemanifesto.org/
https://tools.ietf.org/html/rfc7540
http://www.cs.wustl.edu/~schmidt/PDF/PLoP-95.pdf
http://www.w3schools.com/ajax/

CHAPTER 8 ■ IMPLEMENTING SYNCHRONOUS AND ASYNCHRONOUS REST APIS

136

and emulating asynchrony. Figure 8-1 shows the AJAX model. The client might exchange a bit of simplicity
for considerable performance and user experience gains. I’m saying this because AJAX does complicate
the client-side API. It isn’t that transparent, and it might get convoluted when clients want to synchronize
multiple requests in parallel (when the ordering of those requests matter). Here is an example to show how
this works in practice (it is simple enough that even the exposed asynchrony doesn’t make the code difficult
to understand). You can alter the target web site to try retrieving different content. The core of AJAX revolves
around the XMLHttpRequest class 1 (the main API) responsible for driving all data exchanges with a server.
The following code can be run directly from a browser (notice the parts shown in bold).

 <!DOCTYPE html>
 <html>
 <body onLoad = "loadDocument()" >
 <h1>AJAX Demo</h1>
 <div id="placeholder" /div>
 </body>

 <script type="text/javascript">
 function loadDocument() {
 var xhttp = new XMLHttpRequest() ;
 xhttp.onreadystatechange = function() {
 if (this.readyState == 4) {
 if (this.status == 200) {
 document.getElementById("placeholder").innerHTML = this.responseText;
 } else {
 document.getElementById("placeholder").innerHTML = this.statusText
 }
 };
 }
 xhttp.open("GET", "http://exproit.rs?t=" + Math.random()) ;
 xhttp.send() ;
 document.getElementById("placeholder").innerHTML = "Waiting for the response...";
 }
 </script>
 </html>

 1 The XMLHttpRequest class has nothing to do with XML, and it can work on any protocol. Furthermore, it isn’t only a
request, but also a response handler as well. This is an example of a naming problem in an API.

CHAPTER 8 ■ IMPLEMENTING SYNCHRONOUS AND ASYNCHRONOUS REST APIS

137

 The loadDocument function is started by a browser when the page is loaded. The inner anonymous
function is the callback, which is registered with the AJAX engine by assigning it to the onreadystatechange
field. The AJAX engine calls this function multiple times during the request processing (we are interested in
reacting after the last stage, denoted 4). The rest of the code is the driver. The HTTP request is set up in the
 open method (the extra URL parameter is used to circumvent caching to better illustrate the asynchronous
pattern), and activated via the send method. By default, the open method assumes an asynchronous regime
(you can set the third parameter to false to switch into a synchronous mode 2). Nevertheless, the last
statement will execute before the page is retrieved from the remote server. This is an example of how things
happen in “parallel” on the client side.

 With asynchronous processing, you might want to control the time you are ready to wait for an answer.
Properly setting a timeout value is even more critical in synchronous calls (remember that here you’re
blocked while waiting for a response). This is supported by AJAX by setting the timeout value in the property
named timeout . After the expiration of this wait time, the engine generates an error.

 You might think that using AJAX solves all the problems regarding asynchronous communication.
Well, it isn’t that simple. Although the client software can increase its throughput and UX (user experience),
it cannot solve the problem on the server side (there is an apt term DevX, which stands for developer
experience). It might be the case that the server is overloaded and simply cannot accept more requests. It
would be much better if the server could store the request and handle it when appropriate. This is the reason
merely client-side intervention isn’t enough.

 Server-Controlled Asynchrony
 The server might expose endpoints, which aren’t going to be handled in real time. There are three types of
endpoints from the viewpoint of asynchrony (looked at from outside).

• An endpoint is always served in a synchronous manner.

• An endpoint is always served in an asynchronous manner.

 Figure 8-1. The AJAX engine sits at the front of the client’s code and emulates an asynchronous programming
model

 2 You are highly discouraged from using a synchronous mode, and Firefox even prints a warning into its console that it
isn’t recommended.

CHAPTER 8 ■ IMPLEMENTING SYNCHRONOUS AND ASYNCHRONOUS REST APIS

138

• An endpoint is served in a mixed mode. For example, the server might choose
to process only high-priority requests in real time, postponing the others; or the
server might choose a fail-fast approach, and just store the request until the peak
load drops. Finally, the server could choose to let off the client after estimating the
processing time.

 There is no hypermedia support for a server to suggest whether the endpoint is synchronous or
asynchronous. Similarly, the client cannot negotiate this aspect with the server, as is the case with media types.
There are some possibilities, but they aren’t quite sophisticated. The main mechanism by which a server signals
back to a client that the request isn’t going to be served immediately is the 202 Accepted response code. A client
receiving this code can rest assured that the request was valid and accepted by the server. The only problem is
when and how to receive the actual result. Of course, in some use cases waiting is the most reasonable approach.

 Suppose that a client gets a 202 code. The client might try to get the result after a long period of time. If
the server just indefinitely waited for clients to pick up their results, this would open up a security hole (the
server would be easy prey for distributed denial-of-service [DDoS] attacks). On the other hand, if the clients
started polling the server at a high pace, taking into account a potentially huge number of such clients, those
polling activities combined would be a kind of a DDoS assault.

 A client could tell the server how long it is willing to wait for a response before being “rejected” with
202. The HTTP Prefer request header serves this purpose (for more information visit https://tools.ietf.
org/html/rfc7240). This header could contain many more preferences, but we focus our attention here only
on the wait time. For example, the client might issue this request:

 curl -v -X POST
 -H " Prefer: respond-async, wait=5 "
 -H "Content-Type: application/json"
 -H "Accept: application/json"
 -d '{"data":"Sample data"}' http://example.org/some-collection

 The server could choose either to process the request or respond with 202 if it judges that the command will
take more than five seconds to complete. In case of 202, the server should set the Location header toward the
URL to be used to pick up the final result, or to monitor the progress of an operation. Another possibility for the
server is to simply describe the estimate and the location of the status check endpoint inside a document returned
in the response body. This document would be part of an API, and specified using an XML or JSON schema.

 If the server has provided a status check URL inside the Location header, then the client should receive
a 303 See Other response code when the result is ready (after hitting this URL via GET). Again, the location
from which to pick up the final result should be given inside the Location header.

 For the server to control the polling frequency, it might choose to provide its guess when clients should
expect the result. The server can set this expectation inside the Retry-After HTTP response header (for
more information, visit http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.37). This
header is also used with 5xx and 3xx codes, but can be handy with 202, too. The unit of time is seconds, as in
the case of the Prefer header’s wait attribute.

 All the previous possibilities can be combined with an alternate method to polling by leveraging the
Callback pattern. 3 The idea is for a client to register with the server a callback URL. The server would use this
URL to call the client and inform it about the result (or provide error information if something went wrong).
Despite the fact that this method does avoid polling, it has its own drawbacks. With a callback the client must
run a web server to receive HTTP requests. Therefore, most clients would not be able to use this method.
Moreover, there are many situations in which the server simply cannot reach the client; that is, establish a
new connection and perform the call (these reasons are primarily related to security and firewall setups).

 3 A variant of this pattern is known as Webhooks. It is a very popular way to connect a source code repository with the
build server. For example, GitHub uses this approach a lot, and you can read about this topic at https://help.github.
com/articles/about-webhooks/ .

https://tools.ietf.org/html/rfc7240
https://tools.ietf.org/html/rfc7240
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.37
https://help.github.com/articles/about-webhooks/
https://help.github.com/articles/about-webhooks/

CHAPTER 8 ■ IMPLEMENTING SYNCHRONOUS AND ASYNCHRONOUS REST APIS

139

 The biggest issue inherent in asynchronous REST APIs is dealing with persistence. The server must
reliably store the requests as well as the responses to be picked up at a later time by clients. There must
be some associated time-to-live (TTL) period after which the server should simply return 404 Not Found .
Due to all these issues, messaging systems are a much better fit for achieving event-driven asynchronous
solutions. This is the topic of Part III of this book.

 Case Study: Favorite Problem Report
 Suppose that we would like to extend our sample service from Chapter 7 , and introduce a special
subcollection type called Favorite Problem Reports . Furthermore, we presume that computing this collection
is a very time-consuming process, so it would be very expensive to stall server threads while waiting for the
result (those threads could fulfill other requests in the meantime). A new endpoint would be an extension of
the main collection’s URL, so it will be Reports/favorite . The idea is to mimic a synchronous GET request in
an economic manner. Clients should be oblivious to the fact that the server is just simulating a synchronous
model (the Jetty web server was among the first one supporting this with its Continuations API). Again,
we are seeing the Half-Sync Half-Async pattern at work. Of course, a client could also apply a nonblocking
behavior using AJAX. Both sides would be doing useful work while the request is being processed.

 ■ Note If you can provide a synchronous API for clients while using fully asynchronous processing in the
background, then you would achieve a true win–win situation (operating systems have been using this approach for
decades in managing devices). You will increase both the usability and power aspects of your API at the same time!

 We first extend our simple database with a method to retrieve these favorite problem reports (the actual
implementation isn’t at all important, and you can go fancy with Future s). The method will simulate a long-
running process by sleeping for five seconds. Here is the listing.

 public static List<ProblemReport> getFavoriteProblemReports() {
 // Simulate a long running process.
 try {
 Thread.sleep(5000);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 return database.subList(0, database.size() / 2);
 }

 Next we must implement an endpoint for this subcollection of problem reports. We just add a new method
to our ProblemReportsController class. Here is the implementation (notice the parts shown in bold).

 @RequestMapping(path = "/favorite", method = RequestMethod.GET)
 DeferredResult<Resources<ProblemReport>> getFavoriteReports() {
 final DeferredResult<Resources<ProblemReport>> result = new DeferredResult<>();
 final RequestAttributes requestAttributes = RequestContextHolder.
currentRequestAttributes();

 // Simulate that we wait for the result using a separate thread.
 new Thread(new Runnable() {
 @Override
 public void run () {

http://dx.doi.org/10.1007/978-1-4842-2196-9_7

CHAPTER 8 ■ IMPLEMENTING SYNCHRONOUS AND ASYNCHRONOUS REST APIS

140

 RequestContextHolder.setRequestAttributes(requestAttributes);

 List<Link> links = new ArrayList<Link>();
 links.add(linkTo(methodOn(ProblemReportsController.class)
 .getFavoriteReports()).withSelfRel());
 links.add(linkTo(HomePageController.class)
 .withRel("http://xmlns.com/foaf/spec/#term_homepage"));

 List<ProblemReport> favoriteReports =
 toResources(ProblemReportDB.getFavoriteProblemReports());
 result.setResult(new Resources<>(favoriteReports, links));
 }
 }).start();

 return result;
 }

 The core of the solution revolves around the DeferredResult class (similar to the Java Future). If you
return an instance of this class, then Spring will not tie up its request processing thread. The result will be
delivered back to the client when it is ready (signaled by calling the setResult method). The other lines
shown in bold are needed to preserve the proper context and reestablish it inside a new thread. At any rate, it
is mandatory to set up the context before making any link-related calls.

 If we now issue the following curl command, then it will wait for the result, but the server will not waste
any resources.

 curl -v -H "Accept: application/json" http://localhost:8080/api/ProblemReports/Reports/
favorite

 We will get the following response (the output is cleaned up a bit).

 > GET /api/ProblemReports/Reports/favorite HTTP/1.1
 > Accept: application/json
 >
 < HTTP/1.1 200
 < Content-Type: application/json;charset=UTF-8

 {
 "links":[
 {
 "rel":"self",
 "href":"http://localhost:8080/api/ProblemReports/Reports/favorite"
 },
 {
 "rel":"http://xmlns.com/foaf/spec/#term_homepage",
 "href":"http://localhost:8080/api/ProblemReports"
 }
],
 "content":[
 {
 "reportNumber":"1",
 "type":"http://example.org/errors/out-of-memory",
 "title":"Out of memory error",

CHAPTER 8 ■ IMPLEMENTING SYNCHRONOUS AND ASYNCHRONOUS REST APIS

141

 "status":500,
 "correlationId":"T1",
 "links":[
 {
 "rel":"self",
 "href":"http://localhost:8080/api/ProblemReports/Reports/1"
 }
]
 },...
]
 }

 Notice that we don’t support searching inside the favorite collection, so there is no search link. This is
the beauty of a hypermedia-driven design. Clients would immediately get the message.

 Summary
 In this chapter we enrolled various options to boost concurrency of REST services, and analyzed the impact
of an asynchronous model on APIs. We have seen that there are many available choices, but the best solution
is to leverage the Half-Sync Half-Async pattern as much as possible.

 COMPLETE THE HYPERMEDIA STORY

 Continue to Practice Hypermedia Controls with Spring HATEOAS

 The new endpoint isn’t reachable from the Billboard URL (our entry point into the service). Your task is to
augment the set of links available from the home page. You should also consider documenting the new
 favorite term inside our ontology.

 Always refactor your code after making changes. For example, the newly added method repeats the line
for creating the home page link. This redundancy should be eliminated from the code (create a common
private method). Your task is to find all opportunities to tidy up the source code.

 Reference
 1. Schmidt, Douglas C., Michael Stal , Hans Rohnert , and Frank Buschmann .

 Pattern-Oriented Software Architecture: Patterns for Concurrent and Networked
Objects. New York: Wiley, 2000.

http://mailto:Michael.Stal@siemens.com/
http://mailto:Hans.Rohnert@siemens.com/
http://mailto:Frank.Buschmann@siemens.com/

143© Ervin Varga 2016
E. Varga, Creating Maintainable APIs, DOI 10.1007/978-1-4842-2196-9_9

 CHAPTER 9

 Documenting REST APIs

 We have seen in the previous chapters that one of the main goals of having a hypermedia-driven REST
service is to get rid of human-targeted documentation as much as possible. Of course, due to sematic gaps,
we cannot completely eliminate such documentation, but we can reduce its magnitude. The ideal situation
would be to just describe the meaning of domain-specific terms, and let the rest be kept in a machine-
processable form. For example, instead of explicitly writing “this field’s type is a positive integer,” we should
express this fact inside the corresponding schema (both XML and JSON schema allows attaching human-
readable descriptions to elements in the schema). A step further would be to produce an executable version
of the documentation and allow users to interact with a system through its own documentation. In this
sense, the documentation wouldn’t be a passive dust collector artifact (if stored in a printed form), but a
handy UI to communicate with software. From a maintenance viewpoint, this is a huge improvement. Any
stale part of the documentation would be revealed immediately. There is really no difference between a bug
in the documentation or the software; both can cause damage.

 There are two opposite approaches to documenting HTTP REST APIs.

• Adding documentation-related annotations to an existing code base, and producing
API documentation based on them : This is the style mimicking the Javadoc
mechanism, where instead of annotations a developer uses special comments
inside the code. The main idea is to let the documentation faithfully follow the
actual implementation. Therefore, it is beneficial to keep it close with the source
code to enhance its truthfulness. However, for a REST API documentation (it is a
high-level description of a service) things aren’t quite that straightforward. Before
marking up your code with annotations, you need to ensure that REST-related
entities are properly delineated from the rest of the system. It is very easy to reveal
implementation details inside an API, thus restricting future opportunities to
refactor the code (all changes must be done without affecting an API). Nevertheless,
the main limitation of this approach is that your API’s documentation can only
embrace static things from the code. For example, if some parts of the resource
representation are produced dynamically (like the links in our example service),
then it is nearly impossible to include such details in the REST API documentation.
It is definitely a suspicious strategy to alter the code base at the expense of clarity,
maintainability, and comprehensibility just to fit into a concept of annotation-based
API documentation. Another disadvantage is that your development environment
must be equipped with tools to produce such documentation, although the major
frameworks (e.g., Swagger, RAML, and Apiary) do have a broad spectrum of
supported languages.

CHAPTER 9 ■ DOCUMENTING REST APIS

144

• Create API documentation independently, 1 and optionally generate client/server code
based on it : This is a more flexible way to create an API documentation, as you’re not
limited to code constructs to drive the process. You can even generate client/server
code by the documentation tool (to speed up the implementation). The main benefit
of this approach is that you can create API documentation well in advance (before
commencing the implementation), and use it as a facility to help in distributed
development. Teams dependent on your service wouldn’t need to wait for you to
finish the implementation. Moreover, by focusing solely on the API documentation,
it can be distributed early on to other stakeholders for review (together with a mock
implementation usually supplied automatically by the documentation tool). In this
way, rapid change cycles can be carried out without throwing away any code. It is
proven that people tend to have fewer issues with throwing away documentation or
screen mockups than real source code.

 ■ Caution As demonstrated in Chapter 5 , it is very easy to abuse modern tools and eventually produce a
Level 2 REST service, where all assumptions are fixed and hard-coded both by the clients and the server. This is
especially true with an irresponsible code generation usage.

 We continue with our sample service from previous chapters and add documentation to it. The
documentation will be created as a stand-alone entity, retrievable by clients at the relative URL /
swagger.json . 2 The API documentation would contain template definitions for creating and updating
problem reports (something we still miss in our response documents). Again, you wouldn’t want to make
documentation in this fashion after finishing up the implementation, but the book must follow some linear
sequence . Chapters 5 through 8 have established a common ground regarding hypermedia-based REST
APIs, and this chapter builds on that foundation.

 ■ Caution You should be cautious of various marketing fluffs, like the next one cited (at the time of this
writing) from the web site of Apiary 3 (https://apiary.io/how-it-works): “Write an API in 30 minutes.”
You can never write a moderately complex hypermedia-driven API in that short amount of time! The crux of the
Level 3 REST API revolves around careful design work. An API should reflect the decisions made during that
period. If you can squeeze all that into 30 minutes, then you're a genius, at least. I have shown in Chapter 5 that
you can write an API in an even shorter time, but that is far from being a maintainable API.

 Currently, all tools are essentially oriented toward Level 2 REST services (Swagger, RAML, Apiary, Hydra,
etc.). However, this chapter shows you some ideas for how to use them in supporting Level 3 REST APIs (this
is the reincarnation of a well-known programming into vs. programming in a language philosophy). To cross
the chasm between a Level 2 API documentation 4 for a Level 3 REST service, you should limit code generation
as much as possible. Moreover, by introducing an endpoint to retrieve the current API documentation, you
allow clients to get a Level 2 projection of a Level 3 API. Maintaining these snapshots is a repetition of the
truth, but there is no efficient substitute until the appearance of API documentation tools for Level 3 services.

 1 There are even IDEs (for example, the Restlet Studio) to help you produce the REST API specification in a generic
fashion (without a need to prematurely stick to the concrete documentation system, like, Swagger, RAML, etc.).
However, such tools hit their limits quite early, as we will showcase in this chapter.
 2 As this is a static file, without a chance to negotiate content, then it is okay to have a file extension inside the URL.
 3 Apiary is an excellent API specification framework with good support for testing.
 4 Something that is nicely illustrated at http://xkcd.com/1481/ .

http://dx.doi.org/10.1007/978-1-4842-2196-9_5
http://dx.doi.org/10.1007/978-1-4842-2196-9_5
https://apiary.io/how-it-works
http://dx.doi.org/10.1007/978-1-4842-2196-9_5
http://xkcd.com/1481/

CHAPTER 9 ■ DOCUMENTING REST APIS

145

 Case Study: Attempting the Universal Method
 We will start with the Restlet Studio (I assume that you have already created a username at restlet.com) to
create REST API documentation in a format amenable for translation into Swagger 2.0 and RAML 0.8 (these
are the targets supported by the version of Restlet Studio at the time of this writing). Who could object to the
vision (dream) of having a single API source from which you can generate all other variants? Well, the reality
itself, because all this is too good to be true in more advanced cases.

 Our first step is to fill out some generic attributes of the API. We reference an Apache 2.0 License, and
require an HTTP Basic authentication scheme for accessing our service (this is definitely something you should
avoid in a production setup). Here is the output generated for Swagger 2.0 YAML (more human-readable than
raw JSON), which does contain superfluous double quotes (a first sign that it was produced by a machine).

 swagger: "2.0"
 info:
 description: "This is the sample service for Part II of the book \"Creating Maintainable\
 \ APIs.\" The service exposes a level 3 HTTP REST API (hypermedia-driven) for\
 \ storing and searching problem reports (per RFC 7807)."
 version: "0.2.0"
 title: "Problem Reports Service"
 contact: {}
 license:
 name: "Apache 2.0"
 url: "http://www.apache.org/licenses/LICENSE-2.0"
 host: "localhost:8080"
 basePath: "/api/ProblemReports"
 schemes:
 - "http"
 security:
 - problem-reports-realm: []
 paths: {}
 securityDefinitions:
 problem-reports-realm:
 description: "The service should be protected by a minimal basic authentication\
 \ mechanism to prevent inadvertent usage (the assumption is that this service\
 \ will run behind a corporate firewall)."
 type: "basic"

 The lines shown in bold should be removed , as they would indicate that you want to protect all
paths. We will only secure those related to problem reports (see [1] for more details about the HTTP basic
authentication mechanism). The associated RAML 0.8 file doesn’t contain the licensing details, nor does it
have a placeholder for a contact person (its value above is marked as an empty JSON object). Therefore, the
Restlet Studio provides a bridge for different formats, but eventually you might need to tweak the outputs
“manually” (e.g., by using the Swagger Editor for Swagger stuff). The internal format used by the Restlet
Studio isn’t observable.

 The next task is to define sections of an API (Swagger calls them tags). These are handy to group
related content together. We define three sections: Home Page , About Page and Reports. The corresponding
 Swagger definition is shown here (this time in pure JSON).

 "tags": [
 {
 "name": "Home Page",

CHAPTER 9 ■ DOCUMENTING REST APIS

146

 "description": "This is the entry point of the service."
 },
 {
 "name": "About Page",
 "description": "Some generic information about the service."
 },
 {
 "name": "Reports",
 "description": "Stuff related to collection of reports as well as individual reports."
 }
]

 So far, so good. Let us now fully specify the Home Page section. We first add the home page resource
representation (called Representation in the Restlet Studio) and afterward an HTTP GET endpoint of the
home page (called Resource in the Restlet Studio). Figure 9-1 shows the screen shot of Restlet Studio
reflecting the work so far. Both will be put into the Home Page section. The corresponding Swagger 2.0 YAML
sections (paths and definitions) look like this (notice the parts shown in bold).

 paths:
 /:
 get:
 tags:
 - "Home Page"
 summary: "Gets available options."
 description: "Retrieves the initial list of options for a client as well as\
 \ some top level information (like the name of the service)."
 produces:
 - "application/json"
 - "text/xml"
 - "application/xml"
 - "application/atom+xml"
 parameters:
 - name: "Accept"
 in: "header"
 description: "The media type requested by a client: application/json, application/xml,\
 \ application/hal+json or application/atom+xml. The default is application/json."
 required: false
 type: "string"
 x-example : "Accept: application/xml"
 responses:
 200:
 description: "The list of affordances for a client accessing this service.\
 \ The response contains links to further content offered by this service."
 schema:
 $ref: "#/definitions/HomePage"

 definitions:
 HomePage:
 type: "object"
 required:
 - "links"
 - "name"

CHAPTER 9 ■ DOCUMENTING REST APIS

147

 properties:
 links:
 type: "array"
 description: "The hypermedia links to drive behavior of a client."
 items:
 type: "object"
 properties:
 href:
 type: "string"
 description: "The URL to the resource representation."
 rel:
 type: "string"
 description: "The relation's name; for example, self, about, contents, etc."
 required:
 - "href"
 - "rel"
 name:
 type: "string"
 description: "The name of this page."
 description: "The resource representation of this page . It contains\
 \ dynamic links to drive the behavior via hypermedia controls."

 The Restlet Studio has included the x-example vendor extension into Swagger (extensions are prefixed
with x-). This attaches an example snippet of how someone might use the request header. Swagger allows
examples to be associated with definitions.

 Figure 9-1. The Restlet Studio showing the three sections of an API with a GET endpoint for the Billboard URL.

CHAPTER 9 ■ DOCUMENTING REST APIS

148

 The next couple of arguments regarding the Restlet Studio are applicable at the time of this writing.
Once they become implemented, then you might be able to achieve lot more from the tool itself. However,
a general remark applies: You might need to go back and forth between a GUI tool and a text editor to
alter the underlying file. The first problem that we cannot currently solve inside the Restlet Studio is to add
 application/hal+json to the list of available response formats. Another issue is that we cannot specify
generic parameters. For the Accept request header, which is applicable to all endpoints, it is cumbersome to
repeat (redefine) it multiple times. We also want to refactor the HomePage representation by pulling out the
 links as a separate representation (we will need it later on). Finally, the links array definition is too lenient
(e.g., it allows duplicates). Hence, we have to add some constraints, again something not yet supported by
the Restlet Studio. Consequently, we will have to import the current Swagger definition into the Swagger
Edito r (available at http://editor.swagger.io), perform all the changes there, and import the new
Swagger file back into Restlet Studio; at least, that is the plan. Here is the refactored, condensed Swagger 2.0
YAML file (observe the parts shown in bold).

 swagger: "2.0"

 info:
 ...
 contact:
 name: Ervin Varga
 email: e.varga@ieee.org
 ...
 consumes:
 - "application/json"
 - "text/xml"
 - "application/xml"
 produces:
 - "application/json"
 - "text/xml"
 - "application/xml"
 - "application/atom+xml"
 - "application/hal+json"
 externalDocs:
 description: "Click here for more details about the RFC 7807."
 url: "https://tools.ietf.org/html/rfc7807"

 paths:
 /:
 parameters:
 - $ref: "#/parameters/Accept"
 get:
 ...

 parameters:
 Accept:
 name: "Accept"
 in: "header"
 description: "The media type requested by a client: application/json,\
 \ application/xml, application/hal+json or application/atom+xml."
 required: false
 default: "application/json"
 type: "string"
 x-example: "Accept: application/atom+xml"

http://editor.swagger.io/

CHAPTER 9 ■ DOCUMENTING REST APIS

149

 definitions:
 Links:
 description: "Contains links related to all resource representations."
 type: "array"
 minItems: 1
 uniqueItems: true
 items:
 type: "object"
 title: "LinkItem"
 properties:
 href:
 type: "string"
 description: "The URL to the resource representation."
 rel:
 type: "string"
 description: "The relation's name; for example, self, about, contents, etc."
 required:
 - "href"
 - "rel"

 HomePage:
 type: "object"
 required:
 - "links"
 - "name"
 properties:
 links:
 $ref: "#/definitions/Links"
 name:
 type: "string"
 description: "The name of this page. "
 description: "The resource representation of this page. It contains\
 \ dynamic links to drive the behavior via hypermedia controls."

 I’ve kept the extra double quotes. The following major changes have been incorporated:

• The contact field is now properly defined.

• The consumes and produces sections are global, as all endpoints are “working” with
these media types. The produces list contains the application/hal+json format.

• The externalDocs points to the web site of RFC 7807 as a convenience for users.

• The Accept request header is a global parameter, so it can be easily referenced. The
references are JSON Pointers, and # denotes the current document (see RFC 6901
at https://tools.ietf.org/html/rfc6901). Some reusable definitions (like Links
in our case) could even be placed in external files. Furthermore, the default value
is explicitly stated in machine-processable way instead of being kept as part of a
human-readable description.

• The Links representation is a separate entity with additional constraints. The
internal object of an item has a title property. This is not required, but if you
want to avoid having ModelXY autogenerated names inside a generated code, then I
recommend you override the naming of any such internal entity with this property.

https://tools.ietf.org/html/rfc6901

CHAPTER 9 ■ DOCUMENTING REST APIS

150

 If you try to import this new Swagger file into the Restlet Studio the tool will accept the command, but the
content will not be accessible. Therefore, this Restlet Studio Æ Swagger Editor Æ Restlet Studio trick, to still be
able to create an equivalent RAML file for free, will need to wait until the tool becomes more feature rich.

 ■ Note GUI tools are good to jump-start you with development, but sooner or later you will hit their limits.
Working directly with a Swagger YAML file inside the Swagger Editor does require more learning (you must
comprehend Swagger’s specification) than clicking around and filling in some forms, but it gives you full control.
Moreover, text editing is still superior to GUI manipulations for refactoring the code.

 Case Study: Producing a Swagger API Specification
 We continue only with Swagger, and create the full REST API documentation for our example service. Here
are the incremental additions for the about page resource representation (notice the line shown in bold).

 /About:
 parameters:
 - $ref: "#/parameters/Accept"
 get:
 tags:
 - "About Page"
 summary: "Gets general information about this service."
 responses:
 200:
 description: "The general information about this service, and a links to\
 \ navigate through this service."
 schema:
 $ref: "#/definitions/AboutPage"

 AboutPage:
 allOf:
 - $ref: "#/definitions/HomePage"
 - type: "object"
 title: "AboutExtraData"
 required:
 - "about"
 - "text"
 properties:
 about:
 type: "string"
 description: "A short summary about this service."
 text:
 type: "string"
 description: "A detailed description of this service."

 At first glance, the /About endpoint isn’t anything different than the Billboard URL / (except that
it doesn’t contain a separate description element). Nonetheless, this isn’t true. Whereas the / route is
intuitive and pretty stable, the /About path is something the server can dynamically provide. A client should
not hard-code the fact that the about page is accessible via /About . This is the major difference between a

CHAPTER 9 ■ DOCUMENTING REST APIS

151

Level 2 and Level 3 REST service . On the other hand, we have no other way to describe the about page inside
Swagger (or with any other tool for that matter). Moreover, what can be done with an about page resource
is again something a server might tell via hypermedia controls. All in all, this is the reason we can only talk
about a Level 2 snapshot of our service.

 The AboutPage definition contains the allOf construct. This is a way to combine elements in Swagger.
The AboutPage is everything that is contained inside the HomePage plus those additional properties (denoted
here as AboutExtraData).

 What follows is the extra materials related to the individual problem report entity (observe the parts
shown in bold).

 /Reports/ {reportNumber} :
 parameters:
 - $ref: "#/parameters/Accept"
 - name: "reportNumber"
 description: "The unique report number."
 in: "path"
 type: "string"
 required: true
 get:
 security:
 - problem-reports-realm: []
 tags:
 - "Reports"
 summary: "Gets data about an individual problem report."
 responses:
 200:
 description: "The data associated with this problem report, and a links to\
 \ available options regarding this entity."
 schema:
 $ref: "#/definitions/ProblemReport"
 default:
 $ref: "#/responses/UnexpectedServiceError"
 delete:
 security:
 - problem-reports-realm: []
 tags:
 - "Reports"
 summary: "Deletes the given problem report."
 responses:
 204:
 description: "This problem report has been removed from the system."
 default:
 $ref: "#/responses/UnexpectedServiceError"

 responses:
 UnexpectedServiceError:
 description: Unexpected service error (4x or 5x type of error).
 schema:
 $ref: "#/definitions/ProblemReport"

 ProblemReport:
 type: "object"

CHAPTER 9 ■ DOCUMENTING REST APIS

152

 required:
 - "type"
 - "title"
 - "status"
 - "correlationId"
 properties:
 links:
 $ref: "#/definitions/Links"
 reportNumber:
 type: "string"
 description: "The globally unique report identifier."
 type:
 type: "string"
 description: "The type of this report (used to categorize problems)."
 title:
 type: "string"
 description: "The name of this problem report."
 status:
 type: "integer"
 description: "The status code associated with this problem."
 correlationId:
 type: "string"
 description: "The identifier to group related reports together."
 description: "The resource representation of an individual problem report.\
 \ It contains dynamic links to drive the behavior via hypermedia controls."

 The endpoint of the problem report entity contains a path parameter reportNumber . This is signaled by
saying in: path . Both the GET and DELETE methods are marked with a default response (the other endpoints
have been refactored in the same way; you can look up the complete Swagger file in the source code
repository). This is a convenient way to define generic error conditions. We are returning an instance of a
problem report for our own error, too. The global responses are defined inside the responses section.

 The problem report resource representation doesn’t require the links and reportNumber properties.
Recall that this template will be used to create a new report with POST (we don’t know in advance the report
number), and also for returning our own error message (the links field has no meaning in this context).

 The security clause designates the corresponding endpoint as protected. We demand all requests
regarding problem reports to be authenticated.

 Finally, we add details for the collection of problem reports as shown here (see the lines shown in bold).

 /Reports:
 parameters:
 - $ref: "#/parameters/Accept"
 - name: "correlationId"
 description: "The identifier for grouping reports."
 in: "query"
 type: "string"
 get:
 security:
 - problem-reports-realm: []
 tags:
 - "Reports"
 summary: "Gets all registered problem reports, or just its subset filtered by the\
 \ correlation identifier."

CHAPTER 9 ■ DOCUMENTING REST APIS

153

 responses:
 200:
 description: "The collection of problem reports, and links to\
 \ available options regarding this entity."
 schema:
 $ref: "#/definitions/ProblemReports"
 default:
 $ref: "#/responses/UnexpectedServiceError"
 /Reports/favorite:
 parameters:
 - $ref: "#/parameters/Accept"
 get:
 security:
 - problem-reports-realm: []
 tags:
 - "Reports"
 summary: "Gets the favorite problem reports."
 responses:
 200:
 description: "The collection of favorite problem reports, and links to\
 \ available options regarding this entity."
 schema:
 $ref: "#/definitions/ProblemReports"
 default:
 $ref: "#/responses/UnexpectedServiceError"

 ProblemReports:
 type: "array"
 uniqueItems: true
 items:
 $ref: "#/definitions/ProblemReport"
 description: "The collection of problem reports.\
 \ It contains dynamic links to drive the behavior via hypermedia controls."

 We see here an example of an optional query parameter definition. The problem reports resource
representation just references an individual problem report as its items. We are left with just adding the endpoint
for retrieving this Swagger file by clients. Here is the necessary section (notice the parts shown in bold).

 /swagger.json:
 get:
 produces:
 - "application/json"
 summary: "Gets API specification of this service."
 responses:
 200:
 description: "The API specification of this service in Swagger format."
 schema:
 type: "object"
 default:
 $ref: "#/responses/UnexpectedServiceError"

 We override here the generic produces directive , and restrict it only to application/json . The response
is any valid JSON document, so we just denote that the type is object .

CHAPTER 9 ■ DOCUMENTING REST APIS

154

 Extending the Service to Implement This New Specification
 We must add some extensions to our service to fully obey this new API. We should return a Swagger JSON
file via the /swagger.json route as well as incorporate the HTTP basic authentication mechanism. Also, we
should replace the default Spring Boot’s whitelabel error page with our custom problem report instance (see
more at http://docs.spring.io/spring-boot/docs/current/reference/html/howto-actuator.html).

 The first part is rather trivial. Inside the Swagger Editor you should select File → Download JSON. It will
show inside the browser the content of the JSON file. We will save this file into the src/main/resources/static
folder under the name swagger.json . That is all that is required (the rest is handled by the Spring framework).

 To replace the default error handler, we should introduce a new controller for the /error route, and
create an instance of a problem report class as the response (we will base our approach on the example
published at https://gist.github.com/jonikarppinen/662c38fb57a23de61c8b) . Here is the shortened
listing of this controller (notice the parts shown in bold).

 package rs.exproit.problem_reports.controller;

 @RestController
 public class DefaultErrorController implements ErrorController {
 private static final String ERROR_PATH = "/error" ;
 private static final String NOT_APPLICABLE = "N/A";

 @Autowired
 private ErrorAttributes errorAttributes;

 @RequestMapping(value = ERROR_PATH, produces = "application/json")
 public ProblemReport errorHandler(HttpServletRequest request,
 HttpServletResponse response) {
 return createReport(request, response);
 }

 @Override
 public String getErrorPath() {
 return ERROR_PATH;
 }

 private ProblemReport createReport(HttpServletRequest request,
 HttpServletResponse response) {
 assert errorAttributes != null : "Error attributes should have been set by Spring";

 RequestAttributes requestAttributes = new ServletRequestAttributes(request);
 Map<String,Object> errorFields =
 errorAttributes.getErrorAttributes(requestAttributes, false);

 return new ProblemReport(
 errorFields. getOrDefault ("path", NOT_APPLICABLE).toString(),
 errorFields.getOrDefault("error", NOT_APPLICABLE).toString(),
 errorFields.getOrDefault("message", NOT_APPLICABLE).toString(),
 response.getStatus(),
 errorFields.getOrDefault("exception", NOT_APPLICABLE).toString());
 }
 }

http://docs.spring.io/spring-boot/docs/current/reference/html/howto-actuator.html
https://gist.github.com/jonikarppinen/662c38fb57a23de61c8b

CHAPTER 9 ■ DOCUMENTING REST APIS

155

 The ErrorController interface is essentially a marker interface to denote that the controller
implementing it is used to render error responses. The controller needs to implement the getErrorPath
method. In our case it just returns the /error route.

 The ErrorAttributes attribute is autowired, which means that Spring will provide a concrete instance.
This is used inside the createReport method to read out information about the error. The reportNumber will
contain the path on which the error has occurred (as a way to identify this report). 5 The correlation identifier
will contain the root exception’s class name. All these assignments are protected via the getOrDefault method.

 Finally, let us implement the HTTP Basic authentication scheme . The idea is to force clients to provide
the username and password on each request accessing problem reports (the home and about pages can be
accessed freely). For our service we will use the venerable Oracle’s combination scott/tiger (you might read
stories about from where all this came on the Web).

 We need to add the following dependency into the pom.xml file.

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-security</artifactId>
 </dependency>

 Here is the listing of the security configurator class (the imports are omitted).

 package rs.exproit.problem_reports.security;

 @Configuration
 @EnableWebSecurity
 public class SecurityConfiguration extends WebSecurityConfigurerAdapter {
 @Override
 protected void configure(AuthenticationManagerBuilder auth) throws Exception {
 auth.inMemoryAuthentication()
 .withUser("scott").password("tiger").roles("USER");
 }

 @Override
 protected void configure(HttpSecurity http) throws Exception {
 http.authorizeRequests()
 .antMatchers("/", "/swagger.json", "/About").permitAll()
 .anyRequest().fullyAuthenticated();
 http.httpBasic();
 http.csrf().disable();
 }
 }

 We see that the paths / , /swagger.json , and /About are unprotected. All the other paths require full
authentication. Cross-Site Request Forgery (CSRF) support is usually not needed for a non-browser-driven
system, so it is disabled (for more details, see https://www.owasp.org/index.php/Cross-Site_Request_
Forgery_(CSRF)_Prevention_Cheat_Sheet).

 5 You might want to refactor the problem report entity and rename reportNumber to reportId . You might also want to
add a timestamp when the error has ensued. Don’t forget to update the API documentation after these changes.

https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet

CHAPTER 9 ■ DOCUMENTING REST APIS

156

 Smoke Testing the Service
 We will smoke test the service using the Swagger UI rendered by the Swagger Editor. To overcome the
CORS issues (see https://github.com/swagger-api/swagger-editor/blob/master/docs/cors.md), I
recommend you use Google Chrome, and activate the Allow-Control-Allow-Origin:* browser extension (it is
freely available). Start up the service in the same way as previously, but this time from the chapter 9 folder.
Go to the http://editor.swagger.io/ web site, and choose the File → Import URL… command. Make sure
that the Use CORS proxy check box is cleared. Now enter the following address into the URL field, and click
Import: http://localhost:8080/api/ProblemReports/swagger.json . The API specification should be
loaded without problems, and the Swagger UI rendered properly on the right side (you can maximize it by
clicking on the left arrow on the divider line).

 Select the Authenticate button in the Security section, and provide the user credentials scott/tiger. Doing
this means all protected requests will have the Authorization header set to Basic c2NvdHQ6dGlnZXI= . Try
out various requests by clicking Try this Operation. You will be offered the possibility to set values to input
parameters. When you are ready, then click Send Request (make sure that the problem-reports-realm check
box is selected for protected calls). You will also get a hint on how to construct the matching curl request.
This is useful in case you get strange errors in your browser related to CORS handling.

 Generating the Dynamic HTML Client
 It is interesting to investigate the dynamic HTML autogenerated client . You should select Generate Client →
Dynamic HTML in the Swagger Editor. It will produce an archive, which you can unpack into some folder on
disk. Now, open a command shell, and cd into this folder. From there execute the following commands:

 npm install
 node main.js

 If all goes well, you should be able to open a web site at http://localhost:8002 . It presents the API of
your service in an interesting way.

 Summary
 We have experienced the comfort of having our REST API properly documented in Swagger. Suddenly we
were able to use our service through the Swagger UI facility. However, all this documentation, as mentioned
earlier, is just a snapshot of the hypermedia-driven service. You should not use it as the basis for generating
client and server code. All the assumptions would become fixed, and evolving the API would be nearly
impossible without breaking existing clients. This is usually what happens in the industry today.

https://github.com/swagger-api/swagger-editor/blob/master/docs/cors.md
http://dx.doi.org/10.1007/978-1-4842-2196-9_9
http://editor.swagger.io/
http://localhost:8080/api/ProblemReports/swagger.json
http://localhost:8002/

CHAPTER 9 ■ DOCUMENTING REST APIS

157

 AUGMENT THE API SPECIFICATION

 Practice Swagger

 If you haven't already done so, solve the exercise from Chapter 7 . Augment the API specification from
this chapter to include the extensions of the service as described in the previously mentioned exercise.
You basically have all the major pieces at your disposal.

 As additional training, try to break out the current monolithic Swagger specification into multiple parts.

 Reference
 1. Gourley, David, Brian Totty, Marjorie Sayer, Anshu Aggarwal, and Sailu Reddy.

 HTTP: The Definitive Guide. Sebastopol, CA: O’Reilly, 2002.

http://dx.doi.org/10.1007/978-1-4842-2196-9_7

159© Ervin Varga 2016
E. Varga, Creating Maintainable APIs, DOI 10.1007/978-1-4842-2196-9_10

 CHAPTER 10

 Testing REST APIs

 Classical testing approaches are exercising REST APIs in a piecewise manner (for a good overview of
different sorts of tests and related processes see [1]). Each path is treated in isolation, with fixed assumptions
about affordances pertaining to the particular resource behind that path. They teleport themselves from one
path to the other without bothering about their interconnectedness (those details are hard-coded on both
sides). This is radically different in a Level 3 REST API. The connections are first-class citizens, and matter as
much as anything else in the API. Islands of interrelated paths shouldn’t exist inside a system API (I’m not
talking here about interoperability concerns of disparate systems). Everything must be accessible by starting
from the home page . Tests should reflect these characteristics.

 The tests should follow the use cases (both main and exceptional routes) by always starting from the
home page, and reacting to content presented by the server. The tests should be equipped with just enough
knowledge to understand the ontology . If a link is missing in the response, then the functionality related
to that link should be skipped accordingly; that is, teleportation and presupposed affordances are strictly
forbidden. Consequently, if a particular use case demands a nonexistent link, then the test would simply fail.

 The major problem is that current testing tools favor Level 2 REST APIs. Level 3 REST APIs can be
exercised via their Level 2 projections (see Chapter 9 for an explanation regarding Level 2 views), and in
that sense they can be tested with current testing methods. These tests cannot cover aspects like linkage
completeness, context-dependent affordances, and so on. However, with some cleverness we could leverage
current tools to carry out Level 3 REST API tests. We also demonstrate some distinct Level 3 testing facilities.
Again, in the spirit of TDD, you would want to write these tests before commencing the construction phase.

 Case Study: Testing with a Level 2 Tool
 There are many tools targeted for Level 2 REST APIs , like, Apache JMeter 1 , Postman for Chrome, SoapUI,
and so on. We use the SoapUI 5.2.1 community (open source) edition. It has a nice integrated environment
for performing functional and load tests as well as support for testing JMS-based systems (something we
will need in the next part of the book). Before proceeding further, you should download SoapUI (http://
soapui.org) for your OS.

 The main advantage of SoapUI is that you can structure your tests in the same familiar way as with
JUnit. The TestSuite contains multiple TestCase s, which are made up of TestStep s. The steps are
actionable items. Moreover, you can turn your functional tests into semiload tests very easily (complex load
tests require more work than a simple button click).

 1 The Swagger Editor could even generate a JMeter client based on your API specification. It will contain an initial test
script for each section of your API. Nonetheless, the generated tests will exercise the Level 2 projection of your Level 3
REST API.

http://dx.doi.org/10.1007/978-1-4842-2196-9_9
http://soapui.org/
http://soapui.org/

CHAPTER 10 ■ TESTING REST APIS

160

 ■ Tip I suggest you familiarize yourself with SoapUI by following its “Getting Started” guide (available at
 https://www.soapui.org/getting-started/introduction.html). It contains a simple REST sample project, too.

 Examine the Service Use Case
 Let’s start by testing an easy use case, examine the service. Figure 10-1 shows the general test structure inside
SoapUI (the tests for the other use cases will follow a similar structure). There is only one GET request to
reach the home page. All the rest should happen via hypermedia controls . You can find the whole test setup
inside the accompanying source code for this chapter (it is best to import the Problem-Reports-Service-
soapui-project.xml file into SoapUI, and browse it from the tool).

 The simplest test step is to check that the name property exists. It uses as an assertion the JSONPath
expression $.name , and ensures that it is evaluated to true (this kind of assertion is termed a JSONPath
existence match). $ marks the current document, and .name is the field inside the top-level JSON object. The
test doesn’t care about the actual content of this field, though.

 ■ Tip You can learn more about JSONPath at http://jsonpath.com . There you will find a useful online
JSONPath evaluator, too.

 The next test interrogates that all pertinent links exist. It has three assertions, one for each link. For
example, the self link is checked by ensuring that the value of the $.links[*].rel[?(@==self)] JSONPath
expression equals [self] . The links[*] matches all items from the links collection. We want to search for
an item with a rel field that has a value of self . The @ symbol denotes the current context. In our case, it is the
value of the rel field. The ? designates the “find” action; that is, defines a filter (its form is ?(<expression>)).

 Figure 10-1. The use case is mapped onto a test case, and the test suite represents a group of related use cases
(in our case it has a 1:1 mapping with tags in the Swagger API documentation from Chapter 9).

https://www.soapui.org/getting-started/introduction.html
http://jsonpath.com/
http://dx.doi.org/10.1007/978-1-4842-2196-9_9

CHAPTER 10 ■ TESTING REST APIS

161

 Finally, the last test checks that the self link indeed points to itself (i.e., to the Billboard URL). It assures
that the expression $.links[*][?(@.rel==self)].href[0] evaluates to ${Check 'self' link#Endpoint} .
The .href[0] suffix selects the href field of the self-link (the zero index is there purely to convert the
expression into an ordinary value). The expected value uses an expression instead of a literal, which is a neat
way to avoid hard-coding the Billboard URL (including the host and port number). It references the Endpoint
property of our test step (given here with its name). There are many other built-in SoapUI properties that you
can reference in your tests. Another possibility is to define custom properties. Besides JSONPath statements,
you may even use a Groovy script. This provides you with the greatest flexibility in specifying a test step.

 The generic GET request is having its endpoint “empty.” The other test steps define their endpoints
explicitly, and use it as a single source of record. This will become handy for dynamic updates of the
endpoints through property-transfer test steps. Another possibility is to leverage custom properties (you can
create a dedicated properties test step), and keep the Base Path property (a built-in SoapUI property) set to
the root of the API (in our case /api/ProblemReports). This is a better option, as it gives more flexibility in
managing the paths. I have chosen the former solution for simplicity reasons.

 If we run our test suite inside the SoapUI’s TestRunner (assuming that the Problem Reports service
is running in the background), we will get the following abbreviated output in the console (only the most
salient parts are presented):

 23:07:22,500 INFO [SoapUITestCaseRunner] Running SoapUI testcase [Examine the service]
 23:07:22,504 INFO [SoapUITestCaseRunner] running step [Ensure that the mandatory properties

exist]
 23:07:23,086 INFO [SoapUITestCaseRunner] Assertion [Find 'name' property] has status VALID
 23:07:23,086 INFO [SoapUITestCaseRunner] running step [Ensure that the mandatory links exist]
 23:07:23,114 INFO [SoapUITestCaseRunner] Assertion [Find 'self' link] has status VALID
 23:07:23,114 INFO [SoapUITestCaseRunner] Assertion [Find 'about' link] has status VALID
 23:07:23,114 INFO [SoapUITestCaseRunner] Assertion [Find 'contents' link] has status VALID
 23:07:23,115 INFO [SoapUITestCaseRunner] running step [Check the 'self' link]
 23:07:23,197 INFO [SoapUITestCaseRunner] Assertion [Validate self-link] has status VALID
 23:07:23,198 INFO [SoapUITestCaseRunner] TestCase [Examine the service] finished with

status [FINISHED] in 222ms

 The test steps are actions comprising distinct scenarios. I recommend you be vigilant when naming
tests and their segments. Don’t be satisfied with default names assigned by the tool. You should even
properly name individual assertions . All is green, and the tests were finished in about quarter of a second.
Notice the output, and the importance of suitably naming the elements of the test (test suites, test cases, test
steps, and assertions). You get a nice report, and everybody can understand what is going on here.

 Find General Information Use Case
 In this test case we need to actually follow the about link from the home page. When we arrive at the about
page, then we need to examine its content (properties and links). In a classical REST API test, you would
simply hard-code the URL toward the about page. This is strictly forbidden here, though. Figure 10-2 shows
the structure of the matching test suite (it is named About Page).

CHAPTER 10 ■ TESTING REST APIS

162

 The about page contains a link back to the home page. To test this link, we need to know what our
 Billboard URL is. This data comes from the self-link of the home page. Therefore, before using any data from
the home page, we would like to have guarantees that it is valid. This is the reason for calling the previous
test case (examine the service) as our first step. All subsequent test cases will follow this approach.

 The next test step’s purpose is to retrieve the content of the home page. This redundancy is intentional
to make the test case self-contained. If the home page changes its content in a noncompatible way (e.g.,
altering the ontology or restructuring the representation), then all affected test cases must fail. The induced
extra pain is desirable as a price that anyone has to pay when introducing an incompatible change. It
develops empathy with the clients of a service.

 ■ Note Always remember that your REST API tests should care more about the clients of your service
than saving the comfort for you and your development team. Developers can always come up with ingenious
solutions for incompatibility-tolerant tests, but these will not keep clients happy.

 Once we have the content of the home page, then we can extract the relevant details (like the self and
 about links). This time we will get the home page in XML format by specifying the HTTP Accept header to be
 application/xml . 2 We need XML to be able to use the responseAsXml property of the Source section of the
property-transfer step. This will be a fine opportunity to introduce you XPath (you can find an XPath tester at
 http://www.freeformatter.com).

 The property-transfer test step is the central piece of this test case. The idea is to read out the about
link’s URL, and pass it down to all consequent test steps. The next three test steps will have their Endpoint
set to the content of the about link. In this way, they will hit the about page, and be able to perform necessary
assertions on it. Besides the about link we also need to transfer the self-link from the home page to the test
step validating the back link. 3 The last test step will receive the self-link in its Domain property (as it is the

 Figure 10-2. This test case has two new elements: the test case runner test step, and the property-transfer test
step . These are crucial to implement the Level 3 REST API testing method.

 2 Changing output formats might potentially leave some code paths untested. In our case, the representation formats are
handled by the Spring HATEOAS framework , whereas our code only contains the core logic of the service. This is a fine
example of the separation of concerns principle, and the importance of using a powerful underlying framework.
 3 At first glance, you might think that a back link could be transferred inside the HTTTP Referer request header. However,
this would entail the need for extra contextual information for interpreting the response message. In Level 3 REST APIs, a
message must be self-describing. The information inside the previously mentioned header would vanish after the matching
request/response cycle is done.

http://www.freeformatter.com/

CHAPTER 10 ■ TESTING REST APIS

163

domain referenced by the home page link). Notice that this test step will have its endpoint set (as mentioned
earlier) to the about page.

 The property-transfer test step might contain multiple transfer definitions. In our case, it has three
transfers of the about link to all subsequent steps, and one transfer of the self-link. SoapUI allows you to
easily clone all sorts of entities (including transfer definitions), so you don’t need to retype them (not a true
reuse, but a time saver nevertheless). Figure 10-3 shows the content of the window for this test step.

 All our transfers have their source as the test step to visit the home page. The three transfers of the about
link use the following XPath expression :

 string(/HomePage/*:link[namespace-uri()='http://www.w3.org/2005/Atom'][@rel='about']/@href)

 It selects the about link’s (notice the filtering part [@rel='about']) href property. The namespace
definition is mandatory, as the response XML format is based on Atom (although returned here as a bare
 application/xml). Another possibility is to use the declare namespace statement before the expression to
select the content. The self-link transfer is similar, but instead of the string function it uses replace with the
regular expression /$ to get rid of the trailing / in the path.

 The Transfer Log (lower part of the window) shows the outcomes of these XPath expressions. SoapUI
allows you to execute test steps individually. For this step to work you first need to execute the step to get the
home page’s content. Running steps separately is a good way to debug.

 It is also worth mentioning that the next three test steps use a JSON response document , as they ask for
 application/json . This is a fine example that you can freely mix content formats inside the same test case if
you are supported by a great framework such as Spring HATEOAS. Also, notice that the self-link check step is a
pure clone (SoapUI allows you to easily create such a clone) of the same test step from the previous test case.

 Figure 10-3. For each transfer you need to fill out the Source and Target sections . The selected content from the
source is moved into the target, hence we transfer properties from one place to another.

CHAPTER 10 ■ TESTING REST APIS

164

 Delete a Problem Report Use Case
 This is the final use case that we present in this chapter (the rest will be left as an exercise). It contains some
novelties completing the picture about SoapUI (it is still just the tip of the iceberg compared to the possibilities
offered by the tool). We will start from the home page, get the contents link, retrieve the list of reports (verifying
that we have at least one), select the self-link of the first report from the list, and delete it. Finally, we will make
an additional check that the report is really gone. Figure 10-4 shows the structure of this test case.

 This test case, as it is currently implemented, leaves the system in an altered state (not a great practice).
A better sequence would be as follows (this will be possible after you’ve implemented the exercise to create
new problem reports):

 1. Insert a new dummy report.

 2. Confirm that this report exists.

 3. Delete this report.

 4. Confirm that this report doesn’t exist anymore.

 The get all reports uses a simple assertion to verify that we can reach the first element in the collection
of reports. The JSONPath existence expression is $.content[0] . Of course, because accessing reports is a
privileged action, the Authorization header is properly set.

 The property-transfer step uses the next JSONPath expression for both transfers to select the self-link of
the first report from the Response property of the previous step:

 $.content[0].links[*][?(@.rel==self)].href[0]

 The step to delete the report is executing an HTTP DELETE method with its Endpoint set by the previous
transfer step (you will need to first create a generic DELETE request besides GET ; see Figure 10-1). It uses an
assertion to check that the returned status value is 204 No Content . The next step is trying to get this report
(after being deleted), and an assertion to verify that the status code is 404 Not Found .

 Figure 10-4. This test case uses a test step to delete the report with an assertion to check the HTTP status code.
Observe that we don’t know anything about URLs except the Billboard URL. Also, we don’t care what the first
report is. Nothing is hard-coded.

CHAPTER 10 ■ TESTING REST APIS

165

 Load Testing the Examine the Service Use Case
 Load testing this use case is a matter of selecting Case → New Load Test . SoapUI will open a window in
which you can set various load test parameters. Figure 10-5 shows the outcome of load testing our use
case with a maximum of 10 virtual users using the Thread strategy. We have also set an assertion that the
 transactions per second (TPS) metric cannot go below 100. Any discrepancy with this threshold is treated as
an error. In the middle you can see the statistics graph.

 Case Study: Testing with a Level 3 Tool
 We demonstrate here Spring HATEOAS’s Traverson API , which is a client-side service traversal facility
(see the Spring HATEOAS reference guide’s client API theme). This time our task is to test the use case for
searching problem reports. We start from the home page, follow the contents link, then use the search link
to hit a specific problem report. The correlationId query parameter will be set to T1 . Finally, we should
ensure that we really got the proper problem report.

 Figure 10-5. The end result of load testing our use case. All this is available with a single selection of a menu
item to create a new load test.

CHAPTER 10 ■ TESTING REST APIS

166

 We request our resources in HAL hypermedia format , as this will give us more flexibility in handling
links. Otherwise, we would always need to use an explicit JSONPath expression to find the URL of a link.
With HAL it is just enough to reference the link via its name. This is again a testimony to the power of content
negotiation. You can choose the format that best fits the job in a given context.

 Here is the source code of the integration test related to searching problem reports (the Java imports are
omitted, and the essential details are shown in bold).

 package rs.exproit.problem_reports.integration;

 @RunWith(SpringJUnit4ClassRunner.class)
 @SpringBootTest(webEnvironment = WebEnvironment.RANDOM_PORT)
 public final class SearchProblemReports {
 private static final String USERNAME = "scott";
 private static final String PASSWORD = "tiger";
 private static HttpHeaders httpHeaders = new HttpHeaders();

 @LocalServerPort
 private int port;

 @Autowired
 private ServletContext servletContext;

 private Traverson traverson;
 ParameterizedTypeReference<Resources<ProblemReport>> collectionReference =
 new ParameterizedTypeReference<Resources<ProblemReport>>() {};

 @BeforeClass
 public static void setupHTTPHeaders() throws UnsupportedEncodingException {
 String authHash =
 Base64.getEncoder().encodeToString ((USERNAME + ":" + PASSWORD).getBytes());
 httpHeaders.add("Authorization", "Basic " + authHash);
 }

 @Before
 public void setupTraversonClient () throws URISyntaxException {
 traverson = new Traverson(
 new URI("http://localhost:" + port + servletContext.getContextPath()),
 MediaTypes.HAL_JSON);
 }

 private Resources<ProblemReport> followTheSearchLink(String correlationId) {
 Map<String, Object> params = new HashMap<>();
 params.put("correlationId", correlationId);

 return traverson.follow("contents")
 .withHeaders(httpHeaders)
 .follow("search")
 .withTemplateParameters(params)
 .toObject(collectionReference);
 }

CHAPTER 10 ■ TESTING REST APIS

167

 @Test
 public void searchForTheReportWithTheGivenCorrelationIdAndVerifyIt() throws Exception {
 Resources<ProblemReport> resources = followTheSearchLink("T1");
 assertThat(resources).isNotNull();

 Collection<ProblemReport> reports = resources.getContent();
 assertThat(reports).isNotNull();
 assertThat(reports).hasSize(1);

 ProblemReport report = reports.iterator().next();
 assertThat(report).isNotNull();
 assertThat(report.getReportNumber()).isEqualTo("1");
 assertThat(report.getType()).isEqualTo("http://example.org/errors/out-of-memory");
 assertThat(report.getStatus()).isEqualTo(500);
 assertThat(report.getTitle()).isEqualTo("Out of memory error");

 Link selfLink = report.getId();
 assertThat(selfLink).isNotNull();
 assertThat(selfLink.getHref()).endsWith("/" + report.getReportNumber());
 }
 }

 This test case is marked to be run by Spring’s JUnit4 test runner . Our integration test demands a running
instance in the background. Test instances should be run frequently, avoiding port collisions. Manually
handling port assignments is quite tedious. This is the reason Spring Boot provides you with the ability to
use a random port number. Spring also takes care to automatically start up and shut down your service. The
system runs using the test application properties (these are situated in the src/test/resources folder). The
servlet context is injected by Spring, and we will need it to read out the context (base) path.

 Performance tests are ordinarily postponed for later phases of the project, because they aren’t intuitive
to set up and run. However, that doesn’t mean that this is a sacred rule. With SoapUI there is no reason
to wait to see whether your service will meet the required Service Level Agreement (SLA) . Performing
measurements early and often isn’t the same as optimizing prematurely and blindly. The latter is bad,
whereas the former is wise.

 The collectionReference uses the Resources template parameter, as it contains a collection of
resources. For a single resource you would use Resource instead of Resources , though.

 As our service will use privileged endpoints we need to set up the Authorization HTTP request header.
The hash value is calculated by Base64 encoding the username:password string. The implementation uses
the Base64 class of Java 8. At any rate, hard-coding login credentials in test cases isn’t recommended, but
here it is done to keep the example code as simple as possible.

 Inside the setupTraversionClient method we clearly demarcate that we would like to get responses
in the HAL hypermedia format. Spring HATEOAS has a very nice support for this format, and makes our life
much easier (at least when links are in question).

 The gist of the test is encompassed inside the followTheSearchLink method . This method accepts the
correlation identifier as a parameter (criteria for filtering). This is put inside the template parameters map. The
Traverson object is then used to follow the links. Finally, the result is converted into a collectionReference .
Notice the technique by which we handle links. This is an example of declarative programming.

 In the actual test method, we retrieve the content from our collectionReference , which is a collection
of problem reports. We only have a single report satisfying the search condition. As a final step we make sure
that the self-link ends with the report number in its path.

CHAPTER 10 ■ TESTING REST APIS

168

 Summary
 At this point it is instructive to compare the two approaches (SoapUI and Traverson Client API). Both
achieve the same goal, although in a different manner. We miht expect more hypermedia support in the
current web frameworks and tools. It would be critical to have a test step type in SoapUI that follows links
and recognizes hypermedia formats to make SoapUI a Level 3 tool.

 COMPLETE THE FUNCTIONAL TESTS

 Practice SoapUI

 First, complete the functional tests for the current code base. Once you implement the additional
features as described in the exercise of Chapter 7 , then add the corresponding test cases. Watch out
for any potential interplays between tests, which might occur if state-changing test cases are run in an
arbitrary order. After completing your functional tests, create the matching load tests, too.

 As an additional assignment, refactor the test structure to avoid setting the Authorization header
explicitly with a fixed Base64-encoded value. In the case of an HTTP Basic scheme, you can provide the
username/password combination by using the following host definition (we use the scot/tiger pair):
 http://scot:tiger@localhost . See the Traverson-based test case for an example of how to perform
Base64 encoding.

 PRODUCE SECURITY TESTS

 Learn About Web Security

 SoapUI enables you to create very sophisticated security tests. These tests are critical, especially if your
service is going to be publicly exposed on the Web. Your service will surely be scrutinized by malicious
users for potential security issues. Suitably securing your service is a very complex endeavor.

 The Basic authentication mechanism, which we have implemented without TLS, is good only for
educational purposes. However, when used in combination with a secure channel, it can be a viable
choice. Nevertheless, take a look at OAuth 2.0 for a more advanced solution.

 YET ANOTHER UNUSUAL TESTING PRACTICE

 Get Acquainted with mountebank

 Mocking out dependencies is the cornerstone of many test scenarios. The goal is to be able to control
the external dependencies while running the tests. There are many well-known frameworks to create
stubs and mocks (Spring also has its own support). However, most of these efforts are related to
creating mocks inside a local environment. Setting up test doubles over the wire (remote imposters) is a
rather atypical case. Imagine that your application has to talk to a remote service, and you need to take
control over things at the protocol level (e.g., HTTP, TCP, etc.). This is where mountebank (http://www.
mbtest.org) comes to your rescue.

http://dx.doi.org/10.1007/978-1-4842-2196-9_7
http://scot:tiger@localhost/
http://www.mbtest.org/
http://www.mbtest.org/

CHAPTER 10 ■ TESTING REST APIS

169

 The idea is to let your test setup routine talk to mountebank (using its HTTP REST API) to define the
remote service's behavior. This would include the protocol, port number, and all the endpoints together
with mock data. Mountebank would set up a remote imposter (test double), and you could point your
application to talk to that test instance. This approach can be very handy during development, too (when
the dependent service isn’t even available).

 Set up a test double for our example service before running the SoapUI functional tests (SoapUI allows you
to define test setup and teardown scripts). The test double would return the same data as our service.

 Reference
 1. Watkins, John, and Simon Mills. Testing IT: An Off-the-Shelf Software Testing

Process, Second Edition. New York: Cambridge University Press, 2011.

171© Ervin Varga 2016
E. Varga, Creating Maintainable APIs, DOI 10.1007/978-1-4842-2196-9_11

 CHAPTER 11

 Implementing Messaging APIs

 XML and JSON are language-independent and generic message formats, but they lag behind binary formats
in efficiency. When you need to craft a system capable of processing high volumes of data, switching to a
binary representation is a viable approach. This remark also applies for communication requirements of
distributed internal services (many of them are RPC based). 1 The decision regarding the concrete format is
very important, as it is usually difficult to switch later to a different one (especially when huge amounts of
data are already stored in the old format). The message format is an important part of the system’s API.

 In a similar fashion as for REST services (they should satisfy a set of architectural constraints of
networked systems), there are some desirable features that a binary message format should have. These are
listed here (see [1] about the history of Apache Avro, 2 and how it incrementally gained these properties):

• Generic : This means that you can easily express arbitrarily complex data structures
including nested constructs. For example, comma-separated values (CSV) files leverage
a predefined table structure. You cannot intuitively arrange everything into this form.

• Self-contained : The format should be accompanied by a schema, and together with
the serialized data comprise a unity. It should contain all details for any reader to
be capable of understanding the overall structure of a message. Of course, we are
neglecting here the semantic gap problem (see Part II of this book).

• User friendly : The schema should be specified in an effortless fashion. We definitely
don’t want to learn yet another cryptic format or to be forced to use some GUI tool
to manipulate it. XML uses XML Schema, and JSON leverages JSON Schema. At any
rate, each uses a generic, human-readable format for its own purposes. Relying on an
already known format reduces the learning curve. Avro’s schemas are written in JSON.

• Efficient : This immediately entails a binary format, as it is always more performant
than its textual counterpart. There are various efficiency criteria. For us they will boil
down to size and speed. Therefore, a serialized message should be compact with
fast read/write operations. Consequently, the data should be kept separate from its
schema to reduce its size. 3

 1 The RPC style tends to introduce more coupling between clients and servers than the REST approach. This is why RPC
services might efficiently flourish only inside corporate boundaries. Once again, I’m not stating that they cannot be
successful in general, just that they are better suited for internal use. On the other hand, there is no justifiable reason to
stick to REST, when RPC could deliver better performance for such inner systems.
 2 You can visit Avro’s web site for extensive documentation at http://avro.apache.org . Avro does support JSON
serialization (besides a binary one), but this is more useful for debugging purposes than in a production setup. REST
services can also use this possibility, but using the bare application/json as a media type isn’t advisable in a Level 3
REST service. All in all, this is the reason Avro is concomitant to a binary encoding of data.
 3 When using a stateless transport in Avro, which boils down to HTTP, each request/response cycle is prefixed with a
handshake. During this period a schema is exchanged, too. Therefore, you might want to use this kind of a transport in
cases when the actual message payload is much larger than the schema alone. You might also want to reduce the number
of such request/response cycles.

http://avro.apache.org/

CHAPTER 11 ■ IMPLEMENTING MESSAGING APIS

172

• Evolvable : The message format should permit dynamic transformations of a message
in most cases without the hurdle of recompiling consumers and producers. 4 We talk
more about rules governing schema evolution later in this chapter. This requires
an unbound data representation, where data isn’t confined inside strict temporal
and spatial boundaries. The data should be usable with another schema (follow an
open schema definition), and be able to live outside of the producer. Apparently,
maintainability is tightly joined with the self-containment property.

• Big Data friendly : Handling large amounts of data is the most compelling reason for a
binary message format (we have already stated that these are more performant than
textual forms). However, solely possessing large data sets without an accompanying
Big Data technology isn’t a winning situation. Hadoop is currently one of the most
popular open source batch processing technologies following the MapReduce
paradigm. A binary format should be Hadoop friendly. Accordingly, it should be
splittable even in a compressed form. These are quite contradictory requirements,
as it is easy to compress a textual file, but nearly impossible to create independent
chunks from such a compressed image.

 This chapter presents Apache Avro (it is a full-fledged data serialization system), which satisfies all of
these constraints. In Chapter 12 , we will see how to use Avro in combination with an efficient messaging hub.

 Case Study: Load Profile Generator
 In this case study, we implement a small simulator of a smart meter, acting as our load profile (LP) generator
inside a smart house (for more information about the overall structure of a smart grid, see http://energy.
gov/oe/services/technology-development/smart-grid). LPs are patterns of electricity usage for a
customer or a group of customers over some period of time. Each LP is associated with a context (denoted
as a load condition) characterizing the corresponding time period. LPs are generated using historical power
usage data. In smart grids, LPs are calculated and collected not only at a transmission and distribution
parts of the network, but also at service delivery points via smart meters (see [2] for a neural-network based
software framework to handle LPs in real time for classification purposes).

 Figure 11-1 shows the components of our sample system. It is made up of the external controller
triggering LP generation based on historical daily data (we assume a daily schedule). The controller is
presumably connected with meteorological devices to collect load condition data (often designated LP
metadata). For now, we assume that the generated LP is saved inside a shared file (accessible by other data
processors). Moreover, we will design our load generator to be an RPC service accepting Avro messages.
Smart meters are embedded devices with much less CPU power than ordinary computers. Therefore,
choosing a lightweight protocol and message format is of utmost importance.

 4 Something we can do with XSL on XML documents (for more details visit http://www.w3schools.com/xsl/).

http://dx.doi.org/10.1007/978-1-4842-2196-9_12
http://energy.gov/oe/services/technology-development/smart-grid
http://energy.gov/oe/services/technology-development/smart-grid
http://www.w3schools.com/xsl/

CHAPTER 11 ■ IMPLEMENTING MESSAGING APIS

173

 There are three general data passing scenarios, listed here, where the last one is compliant with a spirit
of building maintainable messaging APIs.

• Send all data expanded at the schema level : This results in bloated data as well as
schema representations. Such shared extensions unnecessarily tie up otherwise
disparate services.

• Send all data, but put extra stuff into a generic field : Here, the schema is kept lean
while the data grows (we refer here to the number of new data elements put inside
that generic field, not simply the amount of data).

• Leverage references to data, and send only the pointer : This approach builds up a
 directed acyclic graph (DAG) of referenced data elements. The references must be
unique, stable identifiers, which could be used to retrieve the relevant data (in REST
services this would always be URLs).

 It is extremely tempting and dangerous to introduce so-called black holes into an API (the second case
in the preceding list). For example, your service might create a generic extraData field, which presumably
should behave as a black box from the perspective of the called service. However, if other services start to
“communicate” via your service, and make assumptions about what they are going to put there, then you
will open up a Pandora’s box . Services will covertly become tightly coupled via this side channel, without
anybody being aware of it. Therefore, generic sinks should be carefully monitored.

 The third option is especially sensible in our case. Most LP classifiers (a special kind of LP processors)
cannot mix metadata with primary LP data. Present LP handling methods have been mostly used for
so-called transversal grouping , aimed at grouping customers belonging to the same macrocategory in a
given period of time. For each customer, the load data monitored over some period of time is averaged
and a representative load pattern is produced, which is then used as input for classification purposes.
Unfortunately, during this averaging, crucial contextual information is lost. All in all, for these LP classifiers,
passing metadata all the time would be a pure waste of bandwidth and storage capacity. The controller is
thus better off providing a URL for the collected data. We assume that such data will be retained until the LP
classification is done.

 Figure 11-1. After collecting daily sensor data, the controller triggers the LP creation. It passes only a reference
to the daily load condition. An LP processor can use these references in a lazy fashion.

CHAPTER 11 ■ IMPLEMENTING MESSAGING APIS

174

 This brings us to the notion of immutability and versioning of data. Each serialized message should
carry a version number (denoting the schema that was used for creating it), and a unique identifier. 5 Such a
message becomes immutable, as the contained data is the same anytime and anywhere (we are assuming
that the message will not be altered without changing its identifier). Avro ensures that data is always
accompanied with the matching schema (Avro files are created with a schema as input). You will see in the
exercises at the end of Chapter 12 how using schema identifiers instead of full schemas can tremendously
boost messaging performance and facilitate maintenance.

 ■ Note In our example, we compile the message schema using the Avro Maven plug-in. It better simulates
the situation with embedded devices and demonstrates this particular technique. Compilation should be
avoided for dynamic heterogeneous environments, and schemas should be managed by a central registry (see
the exercises at the end of this chapter).

 Message Design
 Our first task is to design our message API for the smart meter service. This is important because external
consumers of the produced data will have to comply with this structure. Avro schemas are specified in the
JSON format (see the exercises at the end of this chapter for an Interface Definition Language [IDL] variant).
We will demand that the caller provide a reference to the load condition data as URL (don’t forget that a URL
might designate a different protocol than HTTP). Here is the Avro schema in the JSON Object form for the
message representing a daily LP (notice the parts shown in bold).

 {
 "namespace": "rs.exproit.load_profile_generator.domain",
 "name": "LoadProfileModel",
 "type": "record",
 "doc": "Load profile (LP) data with a reference to the corresponding load condition.",
 "fields": [
 {
 "name": "organizationId",
 "type": ["null", "string"],
 "default": null,
 "order": "ignore",
 "doc": "The unique identifier of the power distribution company."
 },
 {
 "name": "consumerId",
 "type": ["null", "string"],
 "default": null,
 "order": "ignore",
 "doc": "The unique identifier of the consumer inside the power distribution company."
 },

 5 Often developers choose a simple timestamp (e.g., the creation time in UTC) as an identifier. In an asynchronous
distributed system, there is no global clock. Any timestamp could be drifted away from the “current” time. It could
happen that the same service would regenerate timestamps, if its clock was moved backward by an NTP daemon (it will
try to slow down the fast node, but might even set the time backward in an extreme case). The major problem arises
when such timestamps are also used for reasoning about ordering of events.

http://dx.doi.org/10.1007/978-1-4842-2196-9_12

CHAPTER 11 ■ IMPLEMENTING MESSAGING APIS

175

 {
 "name": "createdAt",
 "type": "int",
 "logicalType": "date",
 "order": "descending",
 "doc": "The calendar date when this LP was created."
 },
 {
 "name": "deviceId",
 "type": "string",
 "doc": "The unique device identifier, which generated this LP."
 },
 {
 "name": "frequency",
 "type": "int",
 "default": 15,
 "order": "ignore",
 "doc": "The sampling frequency in minutes."
 },
 {
 "name": "consumerCategory",
 "type": {
 "name": "Category",
 "type": "enum",
 "symbols": ["INDUSTRIAL", "RESIDENTIAL"]
 },
 "default": "RESIDENTIAL",
 "doc": "The category of this consumer (industrial or residential)."
 },
 {
 "name": "loadCondition",
 "type": ["null", "string"],
 "default": null,
 "order": "ignore",
 "doc": "The identifier for the referenced data (may be null if the controller doesn't

collect meta-data)."
 },
 {
 "name": "data",
 "type": {
 "type": "array",
 "items": "double"
 },
 "order": "ignore",
 "doc": "The array of samples (Double.NAN if the datum is missing)."
 },
 {
 "name": "messageHash",
 "type": [
 "null",
 {

CHAPTER 11 ■ IMPLEMENTING MESSAGING APIS

176

 "type": "fixed",
 "name": "MD5",
 "size": 16
 }
],
 "default": null,
 "order": "ignore",
 "doc": "An MD5 hash value of this message (ensures data integrity)."
 },
 {
 "name": "meta",
 "type": [
 "null",
 {
 "type": "map",
 "values": "bytes"
 }
],
 "default": null,
 "order": "ignore",
 "doc": "Arbitrary meta data attached by the smart meter."
 }
]
 }

 The schema elements can be placed into a namespace (either defined globally, for the whole message as
in our case, or individually). The namespace is used to place the generated code into the designated package
to avoid name collisions. You could also use an expanded name; that is, with a namespace part embedded in
it (e.g., example.org.LoadProfile). It is mandatory for the message to be named and have a top-level type of
 record . Fields are defined inside the fields array. Every piece of the schema can be documented via the doc
item (I do recommend you attach such documentation, as it is an important detail of your API).

 The organizationId is an optional string field with a default value of null . The type of this item is a
union, which is denoted by a JSON array (it could contain multiple type references). The serialized messages
are ordered inside the object container (like an Avro file), and the order field controls the role of the current
item in that process. The default is an ascending ordering, but for fields unimportant from the ordering
perspective, it should be ignore .

 The createdAt and deviceId fields comprise a composite identifier of this message. The former is a
logical type of date with a descending ordering (we would like to have the most recent LPs listed first). A
logical type is a semantic extension of the base type, in our case int . Avro defines a couple of logical types,
which could become handy in making stricter statements about fields.

 The consumerCategory is an enumeration, denoted by the type designator of enum . Enums behave in a
similar way as in C++ (they are not full-blown classes as in Java). We need this enumeration to differentiate
between industrial and residential consumers (they are treated differently in an electrical grid).

 The LP data is stored inside the data field of type array . We see that elements of this array are all double
precision floating point numbers (they are marked as double). They represent samples expressed in kW.
The messageHash is an optional MD5 hash value of type fixed . This is a complex type with a predefined size
(in our case 16 bytes = 128 bits). Finally, the meta is an optional field to store additional metadata produced
by the smart meter. It is a map with keys that are strings (Avro strings are not the same as Java strings,
so conversions are necessary), and values that are sequences of bytes. The Avro file could also contain
metadata, but that applies to a whole file. The meta field in our schema is linked to an individual message .

CHAPTER 11 ■ IMPLEMENTING MESSAGING APIS

177

 ■ Caution Can you spot a dangerous detail in the schema? A seemingly innocuous meta section might turn
into a black hole , as discussed earlier. This could happen if it is abused by components in the system. I have put
it here just to better illustrate the point. You should be very careful what you declare as meta in your API. This
remark also applies in any context where messages are passed around; that is, it is universal.

 Project Setup
 We will set up a Maven project for our smart meter simulator. The pom.xml file should contain the following
elements pertaining to Avro (the avro.version property is set to be 1.8.1).

 <dependency>
 <groupId>org.apache.avro</groupId>
 <artifactId>avro</artifactId>
 <version>${avro.version}</version>
 </dependency>
 <dependency>
 <groupId>org.apache.avro</groupId>
 <artifactId>avro-ipc</artifactId>
 <version>${avro.version}</version>
 </dependency>

 <plugin>
 <groupId>org.apache.avro</groupId>
 <artifactId>avro-maven-plugin</artifactId>
 <version>1.8.1</version>
 <executions>
 <execution>
 <phase>generate-sources</phase>
 <goals>
 <goal>schema</goal>
 <goal>protocol</goal>
 </goals>
 <configuration>
 <sourceDirectory>${project.basedir}/src/main/avro/</sourceDirectory>
 <outputDirectory>${project.basedir}/src/main/java/</outputDirectory>
 </configuration>
 </execution>
 </executions>
 </plugin>

 We will also save our message Avro schema inside the src/main/avro folder in a file named load-
profile.avsc . After invoking Maven to generate sources (summon mvn compile) we will get three
new source files inside the rs.exproit.load_profile_generator.domain package: Category.java ,
 LoadProfile.java , and MD5.java .

 Before proceeding, it would be beneficial to read the Avro specification, and take a look at some RPC
examples (like https://github.com/phunt/avro-rpc-quickstart). If you haven’t worked with Netty
before, you should take a look at that, as well.

https://github.com/phunt/avro-rpc-quickstart

CHAPTER 11 ■ IMPLEMENTING MESSAGING APIS

178

 RPC Protocol Design
 Avro also supports RPC, and allows you to define the RPC API using JSON. For now, we only add a single
method for a controller to trigger the LP creation process. The controller will only pass the URL for load
condition data or null . Here is the Avro protocol schema in JSON, situated inside the same folder as the
message schema, with the name load-profile.avpr (observe the parts shown in bold).

 {
 "namespace": "rs.exproit.load_profile_generator.protocol",
 "protocol": "LoadProfileRPC",
 "doc": "The RPC API of our smart meter.",
 "types": [
 {
 "name": "LPCreationRequest",
 "type": "record",
 "fields": [
 {
 "name": "loadCondition",
 "type": ["null", "string"],
 "default": null,
 "doc": "The identifier for the referenced data (may be null if the controller

doesn't collect meta-data)."
 }
]
 },
 {
 "name": "ServiceError",
 "type": "error",
 "fields": [
 {
 "name": "code",
 "type": "int",
 "doc": "The application error code."
 },
 {
 "name": "message",
 "type": "string",
 "doc": "The application error message."
 }
]
 }
],

 "messages": {
 "lpCreate": {
 "request": [{"name": "request", "type": "LPCreationRequest"}],
 "response": "string",
 "errors": ["ServiceError"]
 }
 }
 }

CHAPTER 11 ■ IMPLEMENTING MESSAGING APIS

179

 RPC is about passing messages containing data about remote method invocations over the network.
Our smart meter implements the LoadProfileRPC protocol with a single method lpCreate . We define
two types here: the LPCreationRequest for describing what to provide as input, and the ServiceError for
explaining the service-specific error response. The messages section contains all the endpoints of our RPC
API (currently only one). These message definitions reference the types we defined earlier in the protocol
schema. As a response we pass back the string representation of the produced load profile. Finally, the
error is effectively a union type of ["string", "ServiceError"] , which is constructed for us by Avro. The
ordinary string type is used for internal server errors (those that don’t even reach our service).

 Service Implementation
 The implementation is rather trivial, as we simulate most complex load profile data acquisition tasks with
some dummy stuff. The RPC subsystem uses the Netty client server framework (see http://netty.io). We
have a service wrapper (to start and stop the internal Netty server) as well as the remote method handler.
Here are the listings for these (Java imports are omitted, and salient details are shown in bold), respectively.

 package rs.exproit.load_profile_generator;

 public final class App {
 private static final String DATA_FILE = "load_profiles.avro";
 private volatile Server server;
 private volatile LoadProfileRPCImpl loadProfileRPC;

 public App() throws IOException {
 loadProfileRPC = new LoadProfileRPCImpl(DATA_FILE);
 }

 public App(LoadProfileRPCImpl loadProfileRPC) throws IOException {
 this.loadProfileRPC = loadProfileRPC;
 }

 /**
 * Starts the service if not already started. Trying to start a previously started

service
 * does nothing.
 * @throws IOException if any error occurs during the startup.
 */
 public void start(int port) throws IOException {
 if (server == null) {
 server = new NettyServer(
 new SpecificResponder(LoadProfileRPC.class, loadProfileRPC),
 new InetSocketAddress(port));
 }
 }

 /**
 * Stops the service if it is running. Once stopped it cannot be restarted anymore.
 */
 public void stop() {
 if (server != null) {
 try {

http://netty.io/

CHAPTER 11 ■ IMPLEMENTING MESSAGING APIS

180

 loadProfileRPC.shutdown();
 } finally {
 server.close();
 }
 }
 }

 /**
 * Get the port number on what the service is running.
 * @throws IllegalStateException if the service isn't running.
 */
 public int port() {
 if (server != null) {
 return server.getPort();
 } else {
 throw new IllegalStateException();
 }
 }

 /**
 * The main entry point of this service.
 *
 * @param args the only command line argument is the port number.
 * @throws IOException if any error occurs during the startup.
 */
 public static void main(String[] args) throws IOException {
 if (args.length != 1) {
 System.err.println("You need to specify the port number!");
 System.exit(1);
 }

 final App app = new App();
 int port = Integer.parseInt(args[0]) ;
 app.start(port);

 Runtime.getRuntime().addShutdownHook(new Thread() {
 @Override
 public void run() {
 app.stop();
 }
 });

 try {
 // We should wait until the Netty server starts up.
 Thread.sleep(5000);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }

 package rs.exproit.load_profile_generator;

CHAPTER 11 ■ IMPLEMENTING MESSAGING APIS

181

 final class LoadProfileRPCImpl implements LoadProfileRPC {
 static final String DEVICE_ID_PREFIX = "SM_";
 private static final DatumWriter<LoadProfileModel> lpDatumWriter =
 new SpecificDatumWriter<>(LoadProfileModel.class);
 private final File dataFile;

 LoadProfileRPCImpl(String dataFile) {
 this.dataFile = new File(dataFile);
 }

 private List<Double> doubleArrayToList(double[] array) {
 return DoubleStream
 .of(array)
 .mapToObj(Double::valueOf)
 .collect(Collectors.toList());
 }

 private final Random rnd = new Random(1L);
 private final Category[] consumerTypes = Category.values();

 private LoadProfileModel acquireLP() {
 double[] lpData = new double[4 * 24];
 for (int i = 0; i < lpData.length; i++) {
 lpData[i] = rnd.nextDouble() * 1000;
 }

 return LoadProfileModel
 .newBuilder()
 // Simulate LP creation for various days.
 .setCreatedAt(rnd.nextInt(Integer.MAX_VALUE))
 .setDeviceId(DEVICE_ID_PREFIX + rnd.nextInt(100))
 .setData(doubleArrayToList(lpData))
 // Simulate different category of consumers.
 .setConsumerCategory(consumerTypes[rnd.nextInt(consumerTypes.length)])
 .build();
 }

 public CharSequence lpCreate(LPCreationRequest request)
 throws AvroRemoteException, ServiceError {
 LoadProfileModel lpModel = acquireLP();
 lpModel.setLoadCondition(request.getLoadCondition());

 try (
 DataFileWriter<LoadProfileModel> dataFileWriter =
 new DataFileWriter<>(lpDatumWriter);
){
 if (dataFile.exists() && !dataFile.isDirectory()) {
 dataFileWriter.appendTo(dataFile);
 } else {
 dataFileWriter.setMeta("about", "Sample generated data file for chapter 11.");
 dataFileWriter.setCodec(CodecFactory.snappyCodec());
 dataFileWriter.create(lpModel.getSchema(), dataFile);

CHAPTER 11 ■ IMPLEMENTING MESSAGING APIS

182

 }
 dataFileWriter.append(lpModel);
 return lpModel.toString();
 } catch (Exception e) {
 throw ServiceError
 .newBuilder()
 .setCode(1)
 .setMessage$(e.getMessage())
 .build();
 }
 }

 public void shutdown() {
 }
 }

 In the main App class, we start up the Netty server, passing it an instance of our remote method handler
 LoadProfileRPCImpl . The LoadProfileRPC class is autogenerated by Avro’s Maven plug-in. We just need
to ensure that the server gets closed on exit. The service can be started up in stand-alone mode using the
following commands from the project’s home folder (the first step is only needed the first time):

 mvn clean test
 mvn -q exec:java -Dexec.mainClass=rs.exproit.load_profile_generator.App -Dexec.args=<port>

 The method handler uses Avro’s DatumWriter to serialize load profile messages (instances of
the LoadProfileModel class). The method acquireLP creates a new dummy load profile instance
via the provided builder facility (it automatically sets all default values). It uses the auxiliary method
 doubleArrayToList for converting an array of doubles (double[]) into a list of doubles (List<Double>). The
trick is to leverage Java 8 Streams API.

 The lpCreate method uses the try-with-resources statement to guarantee that the file writer is properly
closed at the exit of the method. If a data file already exists, then the next write is prepared via the appendTo
call. Otherwise, a new data file is produced. The about meta field 6 tells what this file contains, and the
codec is set to Google’s Snappy (it protects data blocks with CRC checks, something we definitely want with
sensitive data as load profiles). Finally, the new load profile is appended to a data file via the append method.
In the case of an error, we throw our custom ServiceError instance.

 It should be noted that the concurrency model of the LoadProfileWriter class implements the one
writer per file rule. If you want multiple parallel writers per file, then additional synchronization would be
needed (you should really question why would you want this here). The lpDatumWriter field is static, as it is
assumed that all data files will follow the same schema per smart meter directive.

 Notice the setMessage$ method of the ServiceError class , which extends the SpecificExceptionBase
checked exception class (it is an indirect child of Exception). ServiceError inherits the getMessage method
from its parent class (for a tool, a “getter” is enough to figure out the property’s name). However, we have
specified that our custom exception should have code and message properties. Naively, we will hope that
the latter will be mapped onto the message property of an Exception . Avro automatically attaches the $
symbol to avoid name collisions, and doesn’t try to interpret what you mean by message . Nonetheless,
this can create a problem, as anybody expecting to find a custom exception message by calling the usual
 getMessage method would be surprised (the compiler will not issue an error). You must be careful with such
name collisions. Any time you find $ in a generated method name, simply change your specification. In our
case, instead of message we should have used reason . Hours of debugging time can be spent on these silly
mistakes, so being acquainted with the nuances of the target framework is always beneficial.

 6 You can use the isReservedMeta method of the DatumFileWriter class as a sanity check, whether or not your meta
field is already reserved by Avro.

CHAPTER 11 ■ IMPLEMENTING MESSAGING APIS

183

 Integration Test
 It is quite straightforward to implement an integration test with our service running in the background (it is
automatically started and stopped by the test). The test code triggers two load profile creations, and checks
the responses. Here is the listing (Java imports are omitted, and important sections are shown in bold).

 package rs.exproit.load_profile_generator;

 public class ClientServerTest {
 private static final String TEST_DATA_FILE ="load_profiles_test.avro";
 private static final int PORT = 65111;

 private App app;
 private NettyTransceiver client;

 @Before
 public void createClient() throws IOException {
 app = new App(new LoadProfileRPCImpl(TEST_DATA_FILE));
 app.start(PORT);
 client = new NettyTransceiver(new InetSocketAddress(PORT));
 }

 @After
 public void closeClient() {
 client.close();
 app.stop();
 new File(TEST_DATA_FILE).delete();
 }

 private LPCreationRequest createRequest(String loadCondition) {
 LPCreationRequest request = LPCreationRequest.newBuilder().build();
 if (loadCondition != null) {
 request.setLoadCondition(loadCondition);
 }
 return request ;
 }

 @Test
 public void triggerLPCreationsAndValidateThatDataIsSaved() throws IOException {
 LoadProfileRPC proxy = SpecificRequestor.getClient(LoadProfileRPC.class, client);

 String response;
 for (int i = 0; i < 100; i++) {
 response = proxy
 .lpCreate(createRequest("http://example.org/api/Controller/LoadConditions/"

+ i))
 .toString();
 assertNotNull(response);
 assert(response).contains(
 "\"loadCondition\": \"http://example.org/api/Controller/LoadConditions/" + i

+ "\"");

CHAPTER 11 ■ IMPLEMENTING MESSAGING APIS

184

 }
 response = proxy.lpCreate(createRequest(null)).toString();
 assertNotNull(response);
 assert(response).contains("\"loadCondition\": null");
 }
 }

 The createClient and closeClient methods are setting up as well as tearing down the stage,
respectively. Of course, a client cannot be created before the smart meter service is up and running. The
Avro RPC provides a client with a proxy for remote methods (a classical technique in the RPC world). A
client’s programming model follows the local one. If the remote call is successful, then the response contains
the string representation of the created LP. This is validated inside the test case. This test case can serve as an
elementary tutorial on how to use the service and implement a client .

 Summary
 We have seen a new type of service API based on the RPC model together with binary formatted messages.
Apache Avro delivers a universal model to build efficient internal services with Hadoop-friendly data
representations. All schemas are specified in JSON (there are even tools to convert an Avro schema into a
JSON Schema). Avro is designed for evolution, and the rules about extending the schemas (both message
and protocol) in compatible fashion are encoded in the official specification itself (see http://avro.
apache.org/docs/current/spec.html#Schema+Resolution). Avro schemas can even contain aliases to map
terms from one schema into another.

 SCHEMA REGISTRY

 A Truly Dynamic Solution

 An Avro container file is always preserved with the schema, so any service can figure out the
structure of the contained messages by reading it out. In RPC the schemas are exchanged during the
handshaking phase. Nevertheless, there are situations when schemas should be transmitted before
message transfer can begin (e.g., when messages are encoded or decoded directly). A proper solution
would be to introduce a central place where schemas can be stored, searched, and retrieved.

 One really sophisticated Avro schema registry (a perfect choice with Kafka) is available at https://
github.com/confluentinc/schema-registry . It stores a versioned history of schemas, and even
understands compatibility directives. Try to set up this registry, and put your message and protocol
schemas there.

 IDL

 Practice the IDL Format for Protocol Schemas

 Avro also supports an alternative protocol schema format called Interface Definition Language (IDL) .
Visit the documentation at http://avro.apache.org/docs/current/idl.html , and convert our JSON
protocol schema into IDL. Don’t forget to add the idl-protocol goal into the pom.xml file.

http://avro.apache.org/docs/current/spec.html#Schema+Resolution
http://avro.apache.org/docs/current/spec.html#Schema+Resolution
https://github.com/confluentinc/schema-registry
https://github.com/confluentinc/schema-registry
http://avro.apache.org/docs/current/idl.html

CHAPTER 11 ■ IMPLEMENTING MESSAGING APIS

185

 ANALYZING THE DATA

 Embarking into the Big Data World

 The Avro file is Hadoop friendly, as it is already stored as a compressed chain of blocks with end-of-
block markers (it is very hard to achieve a perfect alignment between logical and physical blocks, so
some tolerance is required). To process your data in Avro format you can either develop a Hadoop code,
or use high-level frameworks like Pig or Hive. The latter provides you with a convenient SQL view over
your data. For an excellent introduction how to use Hive with Avro, visit https://cwiki.apache.org/
confluence/display/Hive/AvroSerDe . I recommend that you use the latest version of Hive and Avro.
For more information about Hive (it is part of the Hadoop ecosystem), you can visit https://hive.
apache.org .

 You should first generate some test data by reusing the ClientServerTest class (you might want to
avoid the deletion of a test data file, so create a new version of this class), or directly using an instance
of the LoadProfileWriter class in your code. You should then connect Hive with your data file, and
map the contained load profile data as a Hive table.

 Create a SQL SELECT statement to find the global minimum and maximum consumption values
separately for residential and industrial customers. To be able to judge the correctness of your SQL
statement, don’t produce random load profile consumption values in your bootstrap code (the code you
used to generate the Avro file).

 References
 1. Cutting, Doug . Avro Data. Sebastopol, CA: O’Reilly Media, 2011.

 2. Varga, Ervin D., Sándor F. Beretka , Christian Noce, and Gianluca Sapienza,
“Robust Real-Time Load Profile Encoding and Classification Framework for
Efficient Power Systems Operation.” IEEE Transactions on Power Systems ,
Volume 30, Issue 4 , July 2015.

 3. Helland, P. “Data on the Outside versus Data on the Inside.” Paper presented at
the 2005 CIDR Conference.

https://cwiki.apache.org/confluence/display/Hive/AvroSerDe
https://cwiki.apache.org/confluence/display/Hive/AvroSerDe
https://hive.apache.org/
https://hive.apache.org/
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin="Authors":.QT.S.AND..HSH.x00E1;ndor F. Beretka.QT.
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=59
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=7124560

187© Ervin Varga 2016
E. Varga, Creating Maintainable APIs, DOI 10.1007/978-1-4842-2196-9_12

 CHAPTER 12

 Apache Kafka as a Messaging Hub

 A message-oriented middleware (MOM) with an associated system built on top of it is targeting scenarios
where the action–reaction cycle is desirable to be separated both in space and time. This allows clients and
servers 1 to be detached from each other, and follow their intrinsic life cycle. The Java Message Service (JMS)
includes a generic API for interfacing with MOMs fulfilling its specification (a typical example is ActiveMQ
available at http://activemq.apache.org). Many MOMs don’t follow the JMS standard to offer lightweight
or specialized messaging hubs (e.g., ZeroMQ is an ultralight distributed messaging solution, available
at http://zeromq.org). Apache Kafka (see https://kafka.apache.org) trades JMS support for superb
 performance and scalability. It is worth noting that ActiveMQ, ZeroMQ, and Kafka have drastically different
designs, and are intended for different purposes. Therefore, by using Kafka in this chapter I’m not favoring
it over the others. In many use cases, Kafka would be overkill (if you don’t expect a huge load of about
100,000+ messages per second, then you should consider an alternative, lighter MOM). We cover the major
features of Kafka throughout the following case study.

 Case Study: Distributed LP Classification System
 Chapter 11 introduced an example system made up of a central controller and a smart meter. The
latter generates a daily load profile when triggered by the controller. However, it stores the data locally.
Usually, low-capacity devices send data to a place where it can be analyzed. A device might keep short-
term historical data, but definitely cannot perform any serious exploration of that data. Moreover, in an
electrical grid you are interested in collecting data from many devices to observe trends. Therefore, fast data
movement becomes an enabler for the efficient operation of a smart grid.

 Each produced load profile is essentially an event 2 in the smart grid (it is a large-scale distributed
system), and a sequence of such events make up the event log. Devices should only know about the
destination log, where to announce events. We talk here about events instead of ordinary messages, as we
do care about their structure and semantics (the foremost goal is to produce machine-processable data).
Using Avro to serialize load profiles has equipped us with events (schema + data) together with an RPC
 API for the smart meter. Apache Kafka is here to solve our problem of efficiently delivering those events
to their destinations (there can be many interested parties to watch for those events). The crucial point is
that devices shouldn’t know anything about the consumers of published data. In other words, producers

 1 A client/server model is an abstraction in distributed systems, where at a given moment in time, we can identify a pair of
collaborating components; one as a service provider (server), and the other as its user (client). In MOMs, it is better to
speak of peers, as the roles of clients and servers can change quite rapidly.
 2 By an event we assume a compact, well-structured, and machine-processable message .

http://activemq.apache.org/
http://zeromq.org/
https://kafka.apache.org/
http://dx.doi.org/10.1007/978-1-4842-2196-9_11

CHAPTER 12 ■ APACHE KAFKA AS A MESSAGING HUB

188

and consumers should be shielded from both referential and temporal couplings. 3 This is the essence of
the publish-subscribe messaging style . Kafka is its principal representative as a fault-tolerant, durable, and
distributed event log (Kafka uses the term message for a unit of data, but we stick to event).

 ■ Note To create a rich data ecosystem, where producers and consumers can evolve independently, you
need to establish a sound system to provide maintainable message schemas. This is the reason Avro and Kafka
make a superb combination. Working directly with XML/JSON documents isn’t a performant solution, especially
in the context of Big Data.

 Figure 12-1 shows the architecture of our extended example, with Kafka sitting between a smart meter
and the LP classifier. Once we standardize on an event format, then we can easily attach new consumers or
chain them together (consumers of input data might become producers of the transformed data).

 Our task here is to set up a stand-alone Kafka broker, change the LoadProfileRPCImpl class of the smart
meter, and implement the LP classifier (it will read events from Kafka, and just dump them on the console).

 Setting Up Kafka
 The easiest way to set up Kafka (at the time of this writing its version is 0.10.0.1) is to use Docker Compose
(see https://docs.docker.com/compose/overview/) with the following docker-compose.yaml file (it is
located inside the docker folder of this chapter’s source code).

 Figure 12-1. The controller triggers the LP creation by passing the load condition reference. The smart meter
generates the LP event, and publishes it inside the Kafka topic for LP. Finally, the LP classifier consumes the
event, and processes it (either stores it, or handles it immediately).

 3 Establishing direct connections with all types of data processors wouldn’t scale. The only allowable direct connection is
between a smart meter and a broker (a component that facilitates event publication). By using a MOM any temporal
coupling is eliminated by letting the producer emit a message even if nobody is listening on the other side of a channel.
Referential decoupling means that a producer doesn’t know or care who will consume the message. Of course, you might
have higher level temporal dependencies and ordering constraints in a distributed system, but we are talking here about a
single request/response cycle.

https://docs.docker.com/compose/overview/

CHAPTER 12 ■ APACHE KAFKA AS A MESSAGING HUB

189

 version: '2'
 services:
 zookeeper:
 image: wurstmeister/zookeeper
 restart: always
 ports:
 - "2181:2181"
 kafka:
 image: wurstmeister/kafka
 restart: always
 ports:
 - " 9092: 9092"
 environment:
 KAFKA_ADVERTISED_HOST_NAME: ${DOCKER_HOST_IP}
 KAFKA_AUTO_CREATE_TOPICS_ENABLE: "false"
 KAFKA_DELETE_TOPIC_ENABLE: "true"
 KAFKA_CREATE_TOPICS: "load_profile:3:1"
 KAFKA_ZOOKEEPER_CONNECT: zookeeper:2181
 volumes:
 - /var/run/docker.sock:/var/run/docker.sock

 This Docker Compose file requires the DOCKER_HOST_IP environment variable to be set to the IP address
of the host machine. On Mac OS X and Linux this can be easily retrieved using the ifconfig command (on
Windows it is ipconfig). To start up the Kafka broker, simply issue: docker-compose up -d . The output from
 docker-compose ps should be as follows:

 Name Command State Ports

 docker_kafka_1 start-kafka.sh Up 0.0.0.0:9092->9092/tcp
 docker_zookeeper_1 /bin/sh -c /usr/sbin/sshd ... Up 0.0.0.0:2181->2181/tcp, 22/tcp,
 2888/tcp, 3888/tcp

 This startup file will create the topic load_profile for our sample system (with three partitions 4 and a
replication factor of 1). To test that the broker is properly running you might want to create a test topic, put
messages into it, read them out, and finally remove the topic (notice that we have enabled topic deletion
in the startup file). Here is the dump of the command-line session, where each command is separated
with a horizontal line (the first line happens on the host, and the rest occur inside the running container).

 docker exec -it docker_kafka_1 /bin/bash

 bash-4.3# cd /opt/kafka_2.11-0.10.0.1/bin/

 bash-4.3# ./kafka-topics.sh --create --zookeeper $KAFKA_ZOOKEEPER_CONNECT --replication-
factor 1 --partitions 1 --topic test

 4 A configuration with three partitions per topic with a single broker is only good for educational purposes (we use this
setup to showcase our custom partitioner).

CHAPTER 12 ■ APACHE KAFKA AS A MESSAGING HUB

190

 Created topic "test".

 bash-4.3# ./kafka-topics.sh --zookeeper $KAFKA_ZOOKEEPER_CONNECT --describe --topic test
 Topic:test PartitionCount:1 ReplicationFactor:1 Configs:
 Topic: test Partition: 0 Leader: 1001 Replicas: 1001 Isr: 1001

 bash-4.3# ./kafka-console-producer.sh --broker-list localhost:9092 --topic test
 Event 1
 Event 2
 ̂D

 bash-4.3# ./kafka-console-consumer.sh --zookeeper $KAFKA_ZOOKEEPER_CONNECT --topic test
--from-beginning
 Event 1
 Event 2
 ̂CProcessed a total of 2 messages

 bash-4.3# ./kafka-topics.sh --zookeeper $KAFKA_ZOOKEEPER_CONNECT --delete --topic test
 Topic test is marked for deletion.
 Note: This will have no impact if delete.topic.enable is not set to true.

 bash-4.3# exit
 exit

 Overall, we see that our Kafka broker is properly functioning (we have created a new topic, sent a couple
of messages into it, read them out, and deleted the topic). To fully remove the Kafka broker issue docker-
compose kill and docker-compose rm . To stop just the “cluster,” summon docker-compose stop . At any
rate, the setup here isn’t viable for large systems (for small ones it will work 5). You would want to create a
full cluster of machines, and fine-tune the settings (see [1] for details). After all, Kafka is designed for an
enormous load, and is rarely justifiable for tiny systems.

 Refactoring the Smart Meter to Use Kafka
 Kafka comes with its own Client API for implementing custom producers and consumers. Kafka also has
its own binary wire protocol, and it is also possible to hook into this low-level network layer (there are
many clients available; see https://cwiki.apache.org/confluence/display/KAFKA/Clients). We use
the materials provided by Kafka itself for simplicity reasons (otherwise, Kafka’s Client API has a satisfactory
performance for most use cases).

 5 Our docker-compose.yaml file is set up for a single broker (the port number on the host is fixed; notice the bold part in
the listing). To create multiple brokers on a single machine (to boost performance on a multicore machine) you should
delete that bolded 9092: part (we are assuming that at this moment the cluster isn’t yet created). You would then be able
to scale the running cluster (after starting it up) with a simple command of docker-compose scale kafka=3 (for three
brokers). Don’t forget that the port numbers on the host for those brokers will be dynamically allocated (they are visible
after executing docker-compose ps). Therefore, you will need to alter the bootstrap.servers property inside the
configuration file for both a producer and a consumer.

https://cwiki.apache.org/confluence/display/KAFKA/Clients

CHAPTER 12 ■ APACHE KAFKA AS A MESSAGING HUB

191

 As there are potentially lots of smart meters in a smart grid, we envisage a high aggregate load (the
throughput should be high for the Kafka cluster as well as for the consumers). The latency for producers
of daily load profiles will not be that important. As LP classification is often used to decide on prices, it is
imperative that we don’t lose messages or duplicate them. All these decisions affect how we are going to
craft our custom producer, and what configuration options will we use. Of course, the primary setup revolves
around the Kafka cluster itself, and for production use it could be very complicated (refer to the Kafka
documentation for all possible broker, producer, and consumer parameters that you can set).

 As a first step, we need to add the following dependency to the pom.xml file, where the kafka.version is
set to 0.10.0.1:

 <dependency>
 <groupId>org.apache.kafka</groupId>
 <artifactId>kafka-clients</artifactId>
 <version>${kafka.version}</version>
 </dependency>

 This brings in the Kafka Client API artifacts . We configure our producer using the following settings (the
others are kept with their defaults) stored inside the config/kafka-producer.properties file:

 bootstrap.servers=localhost:9092
 acks=all
 retries=3
 batch.size=2048
 compression.type=snappy
 key.serializer=org.apache.kafka.common.serialization.StringSerializer
 value.serializer=org.apache.kafka.common.serialization.ByteArraySerializer

 In production, the list of candidate brokers would be greater than one (this increases the fault tolerance
of the system). The acks is set to all , which means that the producer will wait for all brokers to acknowledge
the reception of the event (see also the broker configuration parameter min.insync.replicas in the Kafka
documentation). This option increases reliability, but is acceptable only in situations when latency isn’t a
concern. The retries is set to 3, which also boosts reliability by letting Kafka automatically retry the delivery
of an event in the case of errors. 6 The batch size is reduced to 2K, as a smart meter will only send a full LP
once per day. The compression algorithm is Snappy, as it has good performance, and low CPU requirements
(perfect for embedded devices). We use the deviceId as our event key, and serialize our load profile data
into a sequence of bytes.

 ■ Caution Even if we perfectly tune everything pertaining to our Kafka producer, we might still end up
with duplicate events. If the controller doesn’t receive a response from a smart meter, then it cannot reliably
conclude that the previous RPC request has failed. Therefore, it might retry the RPC call. We are assuming that
the idempotency will be assured by the LP classifier (events are uniquely identified by a composite key made
up from the LP creation date and device identifier). This means that it must keep track of events that it has
received, and ignore duplicates.

 6 In our case we don’t bother about an ordering issue. However, if you want to keep proper ordering of records with
multiple retries, then you should also set the max.in.flight.requests.per.connection producer configuration
parameter to 1.

CHAPTER 12 ■ APACHE KAFKA AS A MESSAGING HUB

192

 The custom partitioner puts industrial customers into a separate partition (always the last one in the
cluster), while using distributed hashing over the remaining partitions for the residential customers. This
simulates the situation of having much less industrial customers than residential ones. Here is the listing of
the LoadProfilePartitioner class (the Java imports are omitted, and important parts are shown in bold).

 package rs.exproit.load_profile_generator;

 final class LoadProfilePartitioner {
 public int partition(String topic, String key, LoadProfileModel value, int
numPartitions) {
 int lastPartitionIdx = numPartitions - 1;
 try {
 if (value.getConsumerCategory() == Category.INDUSTRIAL) {
 return lastPartitionIdx;
 } else {
 if (lastPartitionIdx > 0) {
 return (Math.abs(Utils.murmur2(key.getBytes()))) % lastPartitionIdx;
 } else {
 return lastPartitionIdx;
 }
 }
 } catch (NullPointerException | ClassCastException e) {
 throw new InvalidRecordException("Key or value is missing or isn't valid.");
 }
 }
 }

 The partition method is called for each event. The interesting part is the Utils.murmur2 method, which
does the hash computation (the output from the murmur2 method is a noncryptographic hash used for lookups).
The index of the output partition is then a modulus of this uniform hash function in regard to the number of
partitions (in our case one less than the total number of partitions, as industrial customers are put into the
last one). Kafka also has a property called partitioner.class , which should point to a class implementing
the Partitioner interface. However, in that case the class has to be public, and implement other methods not
relevant in our case. In the spirit of TDD, the design of this class was driven by the following unit test:

 package rs.exproit.load_profile_generator;
 // Imports are omitted...

 public class LoadProfilePartitionerTest {
 private static final String TEST_TOPIC = "test";
 private final LoadProfilePartitioner partitioner = new LoadProfilePartitioner();
 private final LoadProfileModel lp;

 public LoadProfilePartitionerTest() {
 List<Double> data = Arrays.asList(0.1, 200.2);
 lp = LoadProfileModel
 .newBuilder()
 .setCreatedAt(0)
 .setDeviceId("SM_05")
 .setConsumerCategory(Category.RESIDENTIAL)
 .setData(data)
 .build();
 }

CHAPTER 12 ■ APACHE KAFKA AS A MESSAGING HUB

193

 @Test
 public final void getPartitionIndexForTheTopicWithASinglePartition() {
 assertEquals(0, partitioner.partition(TEST_TOPIC, lp.getDeviceId().toString(), lp,

1));
 lp.setDeviceId("SM_12");
 assertEquals(0, partitioner.partition(TEST_TOPIC, lp.getDeviceId().toString(), lp,

1));
 lp.setConsumerCategory(Category.INDUSTRIAL);
 assertEquals(0, partitioner.partition(TEST_TOPIC, lp.getDeviceId().toString(), lp,

1));
 }

 @Test
 public final void getPartitionIndexForTheTopicWithMultiplePartitions() {
 assertEquals(0, partitioner.partition(TEST_TOPIC, lp.getDeviceId().toString(), lp,

3));
 lp.setDeviceId("SM_12");
 assertEquals(1, partitioner.partition(TEST_TOPIC, lp.getDeviceId().toString(), lp,

3));
 lp.setConsumerCategory(Category.INDUSTRIAL);
 assertEquals(2, partitioner.partition(TEST_TOPIC, lp.getDeviceId().toString(), lp,

3));
 }
 }

 Figure 12-2 shows the situation with a single broker, three partitions per topic, and a single consumer.
With three brokers each partition would be assigned to one broker. With a replication factor of three, each
partition would also be replicated on each broker. Every partition will have its primary broker, and the
others will be part of the replica set. Increasing the number of partitions of a topic is the principal scaling
mechanism in Kafka. The same logic applies for consumers. If you increase the number of consumers
(assuming they all belong to the same group), then they will start consuming events only from partitions
assigned to them. Kafka will guarantee that the set of partitions, assigned to consumers belonging to the
same group, are disjunctive. In this way, you could speed up the processing of events from a topic without a
danger of picking up the same event by multiple consumers (there are edge cases when duplication might
occur, but refer to [1] for more details).

 Figure 12-2. The event is passed to a partitioner, which decides into what partition it will go. The consumer is
reading out events from a topic (in our case all partitions are assigned to a single consumer). Events are only
guaranteed to be ordered inside the same partition.

CHAPTER 12 ■ APACHE KAFKA AS A MESSAGING HUB

194

 The refactored part inside the LoadProfileRPCImpl class looks like the following (notice the lines
shown in bold).

 private final LoadProfileWriter lpWriter;

 LoadProfileRPCImpl() throws IOException {
 lpWriter = new LoadProfileWriter();
 }

 LoadProfileRPCImpl(LoadProfileWriter lpWriter){
 this.lpWriter = lpWriter;
 }

 public CharSequence lpCreate(LPCreationRequest request)
 throws AvroRemoteException, ServiceError {
 LoadProfileModel lpModel = acquireLP();
 lpModel.setLoadCondition(request.getLoadCondition());

 try {
 lpWriter.sendLP(lpModel);
 return lpModel.toString();
 } catch (Exception e) {
 throw ServiceError
 .newBuilder()
 .setCode(1)
 .setMessage$(e.getMessage())
 .build();
 }
 }

 void shutdown() {
 lpWriter.shutdown();
 }

 The bulk of the work is happening inside the LoadProfileWriter class . It implements all the necessary
logic to send events over Kafka. Here is the listing (observe the sections in bold).

 package rs.exproit.load_profile_generator;

 final class LoadProfileWriter {
 static final String TOPIC_NAME = "load_profile";
 private static final String CONFIGURATION_FILE = "config/kafka-producer.properties";

 private final Producer<String, byte[]> producer;

 LoadProfileWriter() throws IOException {
 Properties config = new Properties();
 config.load(new FileReader(CONFIGURATION_FILE));
 producer = new KafkaProducer<>(config);
 }

CHAPTER 12 ■ APACHE KAFKA AS A MESSAGING HUB

195

 LoadProfileWriter(Producer<String, byte[]> producer) {
 this.producer = producer;
 }

 private final DatumWriter<LoadProfileModel> eventWriter =
 new SpecificDatumWriter<>(LoadProfileModel.class);

 private byte[] serializeLP(LoadProfileModel lp) throws IOException {
 assert lp != null : "The load profile reference cannot be null";

 ByteArrayOutputStream out = new ByteArrayOutputStream();
 BinaryEncoder encoder = EncoderFactory.get().binaryEncoder(out, null);

 eventWriter.write(lp, encoder);
 encoder.flush();
 out.close();

 return out.toByteArray();
 }

 private final LoadProfilePartitioner partitioner = new LoadProfilePartitioner() . ;

 void sendLP(LoadProfileModel lp)
 throws IOException, ExecutionException, InterruptedException {
 String deviceId = lp.getDeviceId().toString();
 int numPartitions = producer.partitionsFor(TOPIC_NAME).size();
 ProducerRecord<String, byte[]> record = new ProducerRecord<>(
 TOPIC_NAME,
 partitioner.partition(TOPIC_NAME, deviceId, lp, numPartitions),
 deviceId,
 serializeLP(lp));

 producer.send(record).get();
 }
 }

 void shutdown() {
 producer.close();
 }

 The LoadProfileWriter creates a KafkaProducer object inside its default constructor (the other
accepts a Producer instance). The producer is configured with settings specified in the previously
mentioned properties file. The serializeLP method shows the technique of directly serializing an Avro
object. This binary representation has no reference to the associated schema (see the exercises at the end of
this chapter for a solution). The method sendLP sends the event wrapped inside the ProducerRecord object.
Notice the immediate get() method call on the returned Future instance. This is a way to implement a fully
synchronous communication model in Kafka (it is the most reliable approach, but also the slowest). Kafka
will throw an exception only if it cannot resolve a problem after a specified number of retry attempts. We can
use our old ClientServerTest test case to fill in the load_profile topic with records (we devote Chapter 13
to performing integration tests with Kafka .).

http://dx.doi.org/10.1007/978-1-4842-2196-9_13

CHAPTER 12 ■ APACHE KAFKA AS A MESSAGING HUB

196

 Implementing the LP Classifier
 We configure our consumer using the following settings (the others are kept with their defaults) stored inside
the config/kafka-consumer.properties file.

 bootstrap.servers=localhost:9092
 group.id=LPClassifier
 auto.commit.offset=false
 key.deserializer=org.apache.kafka.common.serialization.StringDeserializer
 value.deserializer=org.apache.kafka.common.serialization.ByteArrayDeserializer
 partition.assignment.strategy=org.apache.kafka.clients.consumer.RoundRobinAssignor

 We have chosen a manual offset handling by turning off the autocommit feature, which gives better
control over offsets. Essentially, we realize the at least once semantics. It is hard to achieve only at this level
the exactly once delivery mechanism (one idea is presented in [1]). The controller can always trigger a
duplicate call, and idempotency has to be handled at the data store level. This nicely aligns with one of the
most fundamental principles of distributed systems called the End-to-End Principle (see [5]). You might
reduce the chance of problems in the middleware, but guarantees can only be achieved at the ends of the
system. The partition assignment strategy is chosen to be Round Robin, which spreads out partitions to
consumers much more smoothly than the Range Assignor (this is the default). All consumers belong to a
single group, whose identifier is LPClassifier . To achieve better throughout you can add more consumers
to the group, but never more than there are available partitions. That would be a waste of resources. Of
course, you could always increase the number of available partitions, although you must be careful when
deleting partitions to avoid data loss.

 The LP classifier is made up of two main parts: the event reader and the bootstrapper. The event reader
is responsible for tracking the matching Kafka topic, and is intended to be run from a single thread (Kafka
follows the one consumer per thread rule). Multithreaded setup is easily achieved by spinning up many
instances of readers in different threads. This is the task of the main application. Here is the listing of the
reader (imports are omitted, and notice the parts shown in bold).

 package rs.exproit.load_profile_classifier;

 final class LoadProfileReader extends Observable implements Runnable {
 static final String TOPIC_NAME = "load_profile";
 private static final String CONFIGURATION_FILE = "config/kafka-consumer.properties";

 private final Consumer<String, byte[]> consumer;

 LoadProfileReader() throws IOException {
 Properties config = new Properties();
 config.load(new FileReader(CONFIGURATION_FILE));
 consumer = new KafkaConsumer<>(config);
 consumer.subscribe(Collections.singletonList(TOPIC_NAME), new RebalanceHandler());
 }

 LoadProfileReader(Consumer<String, byte[]> consumer) {
 this.consumer = consumer;
 }

 private final DatumReader<LoadProfileModel> eventReader =
 new SpecificDatumReader<>(LoadProfileModel.class);

 private LoadProfileModel deserializeLP(byte[] lpData) throws IOException {

CHAPTER 12 ■ APACHE KAFKA AS A MESSAGING HUB

197

 final Decoder decoder = DecoderFactory.get().binaryDecoder(lpData, null);
 return eventReader.read(null, decoder);
 }

 private class RebalanceHandler implements ConsumerRebalanceListener {
 @Override
 public void onPartitionsRevoked(Collection<TopicPartition> partitions) {
 // Before being revoked from partitions make sure that offsets are saved.
 // This is the reason that we use a synchronous call here.
 consumer.commitSync() ;
 }

 @Override
 public void onPartitionsAssigned(Collection<TopicPartition> partitions) {
 // This method is useful to seek into the matching offset, when offsets are

saved
 // outside of Kafka (for example, inside a database).
 }
 }

 @Override
 public void run() {
 try {
 while (true) {
 ConsumerRecords<String, byte[]> records = consumer.poll(Long.MAX_VALUE);
 for (ConsumerRecord<String, byte[]> record : records) {
 setChanged();
 notifyObservers(deserializeLP(record.value()));
 }

 consumer.commitAsync();
 }
 } catch (WakeupException e) {
 // This should be ignored, as it is a normal way to signal exit.
 } catch (IOException e) {
 // In production you should properly log the error.
 e.printStackTrace();
 } finally {
 try {
 // Before exiting we want to make sure that offsets are saved.
 // This is the reason that we use a synchronous call here.
 consumer.commitSync();
 } finally {
 consumer.close();
 }
 }
 }

 public void shutdown() {
 consumer.wakeup();
 }
 }

CHAPTER 12 ■ APACHE KAFKA AS A MESSAGING HUB

198

 The LoadProfileReader is an Observable , and expects observers to register for events. The main
application class has a simplistic event processor, which just dumps events on the console.

 The Kafka consumer is set up in a very similar manner as the producer except that it needs to subscribe
to a topic. During subscription we also pass an instance of the ConsumerRebalanceListener . This is a
mechanism by which Kafka notifies a consumer that some partitions are revoked from it. This is the moment
when offsets have to be reliably saved. The same remark applies when a consumer is exiting from its main
loop. Otherwise, the consumer could use an asynchronous offset committing method, which is much faster.
It is also mandatory to close the consumer at exit. The way to signal an exit is shown in the shutdown method
(the thread executing the event loop will receive a WakeupException).

 ■ Caution The poll method is also used to piggyback heartbeats from a consumer to a group coordinator
broker. You shouldn’t spend too much time in an event processing method. You might want to store events
in a concurrent queue (like Java's ConcurrentLinkedQueue), and do further processing from other threads.
Otherwise, Kafka might think that your consumer has died, and will start a rebalance procedure.

 The polling time is set to a maximum value, as our consumer doesn’t have to do anything more
meaningful than wait for new events. The event processing is rather trivial. The byte sequence is decoded,
and the load profile is dumped onto the console. The abridged wrapper code is shown next (observe the
sections shown in bold).

 package rs.exproit.load_profile_classifier;

 public final class App {
 private static class EventProcessor implements Observer {
 @Override
 public void update(Observable o, Object arg) {
 System.out.println(arg);
 }
 }

 /**
 * The main entry point of this service.
 *
 * @param args the number of readers to start up (if it is bigger then the number
 * of available partitions, then some of them will be idle).
 * @throws IOException if any error occurs during the startup.
 */
 public static void main(String[] args) throws IOException {
 if (args.length != 1) {
 System.err.println("You need to specify the number of consumers!");
 System.exit(1);
 }

 int numReaders = Integer.parseInt(args[0]);
 ExecutorService executor = Executors.newFixedThreadPool(numReaders);
 final List<LoadProfileReader> readers = new ArrayList<>();

 for (int i = 0; i < numReaders; i++) {
 LoadProfileReader reader = new LoadProfileReader();

CHAPTER 12 ■ APACHE KAFKA AS A MESSAGING HUB

199

 reader.addObserver(new EventProcessor()) ;
 readers.add(reader);
 executor.submit(reader);
 }

 Runtime.getRuntime().addShutdownHook(new Thread() {
 @Override
 public void run() {
 readers.forEach(LoadProfileReader::shutdown);
 executor.shutdown();
 try {
 executor.awaitTermination(10, TimeUnit.SECONDS);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 });
 }
 }

 This is the recommended way to implement message consumers in Kafka. Always separate the core logic
from the boilerplate code to add multithreading. It is effortless to smoke test our whole system. Start up the Kafka
broker and open two command shell windows. In the first one, execute the following command to start the LP
classifier with three concurrent readers (we are assuming that you have already executed a full Maven build):

 mvn -q exec:java -Dexec.mainClass=rs.exproit.load_profile_classifier.App -Dexec.args=3

 In the other window, execute mvn test . You should see 101 load profiles printed on the first screen.
Notice that they are not dumped in the same order as they were sent. The reason is that they land in various
partitions, and Kafka guarantees strict ordering only inside a single partition.

 Summary
 We have seen how Kafka allows you to easily implement messaging solutions, where messages are treated as
events thanks to Avro. Combining Avro as a binary format, which inherently supports evolution of schemas
in compatible manner, with Kafka gives you a powerful data ecosystem.

 SCHEMA EXCHANGE IMPROVEMENT

 Learn How to Pass Around Schema Identifiers

 In the previous chapter you have been asked to set up the Avro schema registry. This exercise assumes
that you have accomplished that task. Our current implementation doesn’t solve the schema exchange
problem. The smart meter and the LP classifier share the same Avro schema file by having their own
copies of it. This isn’t a scalable approach. Your task here is to leverage the registry.

 The solution is to keep schemas inside the registry, and set the following properties for a producer:

CHAPTER 12 ■ APACHE KAFKA AS A MESSAGING HUB

200

 key.serializer=<The serializer for keys>
 value.serializer=io.confluent.kafka.serializers.KafkaAvroSerializer
 schema.registry.url=<The URL where your registry is running>

 For a consumer you would use the following properties:

 key.deserializer=<The deserializer for keys>
 value.deserializer=io.confluent.kafka.serializers.KafkaAvroDeserializer
 schema.registry.url=<The URL where your registry is running>

 You would then instantiate a producer with a custom Avro object (like LoadProfileModel in our case),
and leave the rest to the Avro serializer. The serializer will generate a schema identifier, and only attach
that to the message (instead of sending the full schema each time). The consumer would find the
schema from the registry based on that identifier, and use the schema while deserializing the message.
See [1] for more details.

 WORKFLOW API AND MESSAGE GATEWAYS

 Practice Creating Workflows with Apache Nifi

 Suppose that the electrical power distribution company has merged with another regional distributor,
whose customers have different smart meters. They are sending events into a JMS queue (e.g.,
ActiveMQ), using a different Avro event format, although the data section is the same (you might think
about how this schema looks). The idea is to move all messages from the JMS queue into Kafka, so that
the LP classifier can receive all data from a central place.

 It is possible to write a custom solution by coding everything manually. However, this is a very fragile
method. A better approach would be to use some kind of a workflow manager. This is where Apache Nifi
(https://nifi.apache.org) might help.

 Your task is to implement this scenario using Nifi. You might want to take a closer look at the following
Nifi processors: ConsumeJMS, ConvertAvroSchema, and PublishKafka_0_10. Examine all the other
processors (especially those related to Avro), too. This example illustrates an approach to create
JMS ➤ Kafka or Kafka ➤ JMS gateways.

https://nifi.apache.org/

CHAPTER 12 ■ APACHE KAFKA AS A MESSAGING HUB

201

 References
 1. Narkhede, Neha, Gwen Shapira, and Todd Palino. Kafka: The Definitive Guide -

Early Release. Sebastopol, CA: O’Reilly Media, 2016.

 2. Shapira, Gwen. Introduction to Apache Kafka. Sebastopol, CA: O’Reilly Media,
2015.

 3. Kreps, Jay. I Heart Logs. Sebastopol, CA: O’Reilly Media, 2014.

 4. Gustafson, Jason. “Introducing the Kafka Consumer: Getting Started with the
New Apache Kafka 0.9 Consumer Client.” http://www.confluent.io/blog/
tutorial-getting-started-with-the-new-apache-kafka-0.9-consumer-
client/

 5. Saltzer, J. H., D. P. Reed, and D. D. Clark. “End-to-End Arguments in System Design.”
 ACM Transactions in Computer Systems, Vol. 2, No. 4, 1984, 277–288. http://www.
it.uu.se/edu/course/homepage/datakom2/vt10/papers/e2e_84.pdf

http://www.confluent.io/blog/tutorial-getting-started-with-the-new-apache-kafka-0.9-consumer-client/
http://www.confluent.io/blog/tutorial-getting-started-with-the-new-apache-kafka-0.9-consumer-client/
http://www.confluent.io/blog/tutorial-getting-started-with-the-new-apache-kafka-0.9-consumer-client/
http://www.it.uu.se/edu/course/homepage/datakom2/vt10/papers/e2e_84.pdf
http://www.it.uu.se/edu/course/homepage/datakom2/vt10/papers/e2e_84.pdf

203© Ervin Varga 2016
E. Varga, Creating Maintainable APIs, DOI 10.1007/978-1-4842-2196-9_13

 CHAPTER 13

 Testing Messaging APIs

 Smoke tests are good to quickly assess whether the system functions or not (they are usually performed
before deployment as a swift sanity check). This is a kind of test that we had executed at the end of Chapter 13 .
The main problem is that running tests manually isn’t a scalable tactic (you cannot perform fast regression
tests after each change by relying on manual labor). This is the reason we need to seek a better alternative.
The main idea is to put the infrastructure under our control, and scrutinize all parts in an automated fashion.
We will see how Kafka has a built-in support for this.

 Testing messaging APIs is quite different than what you might experience with regular applications.
The former is inherently asynchronous, and the broker is outside of application boundaries (it doesn’t run
embedded inside it, like an embedded web server in a REST service). Moreover, it isn’t based on a simple
response/request cycle. You need to coordinate multiple components to see what is happening. The main
issue is controlling the clock. Many testing approaches are based on emulating a global clock, to be able
to reason about the sequence of events. Even if you manage to come up with a proper solution, it is still
more work than to clone a source repository (making it available locally), and summon mvn test from your
project folder. However, this should be the goal for rapid automated integration tests. You should strive to a
find a way to “squash” the whole setup into a single location (introduce a single point of control) and try out
all sorts of scenarios (both happy and bad). If you don’t have such a control, then you cannot successfully
exercise edge cases. Finally, by running everything locally you immediately solve the test data problem. You
should never worry whether your tests will spoil someone else’s stuff, or suffer from side effects of others
doing something on the shared asset.

 At any rate, the level of achieved automation is directly proportional to the testability of your code.
To boost your code’s quality, you must follow the principles of TDD, and start thinking about testability
from the very beginning. A poorly written code cannot benefit from the test support classes provided
by Kafka, or for that matter any testing framework. You will notice that both the LoadProfileWriter
and the LoadProfileReader classes are already prepared for automated integration tests. They don’t
have fixed external dependencies, and accept producer and consumer instances, respectively (see the
exercises at the end of this chapter for a hint about how dependency injection might help further from the
testability perspective). Moreover, the LoadProfileReader class is based on the Observer pattern, and it is
straightforward to customize its event processing logic. They were designed by applying the TDD paradigm.

 Case Study: Attaining Automated Integration Tests
 The ClientServerTest test case, together with the manual supervision of the output produced by the LP
classifier, required a running Kafka broker in the background. Although, we had managed to spin up a stand-
alone instance using Docker Compose, we were still unable to automatically check whether the events have
been properly sent and received. This study has the following goals:

• Fully automated independent testing of the smart meter and the LP classifier.

• No reliance on an external Kafka broker.

http://dx.doi.org/10.1007/978-1-4842-2196-9_13

CHAPTER 13 ■ TESTING MESSAGING APIS

204

• Tests should run fast. The word fast is an unquantifiable goal, so we need to be
more precise. Any test suite that can be completed in less than a minute will be fast
enough for us. You should decide yourself what fast means for you. The point is that
you shouldn’t leave adjectives underspecified.

 Our revised test harness is depicted in Figure 13-1 . We would like to inject a mock Kafka producer and
consumer, so that we can isolate our tests from the underlying pipe.

 Both the LoadProfileWriter and the LoadProfileReader classes accept an instance of the Producer
and the Consumer interfaces, respectively. This is the preparation for dependency injection to easily
inject mock variants. Without any further support you can create mocks of these interfaces using any
available mock framework. However, we don’t even need to perform this step. Kafka already ships with the
 MockProducer and MockConsumer classes.

 Refactoring the ClientServerTest Test Case
 We will refactor the ClientServerTest test case to use the MockProducer class instead of sending events to
an existing Kafka broker. By default, the MockProducer completes all calls synchronously. However, we can
customize its behavior, and even instruct the producer to throw an exception (this is hard to achieve with a
real Kafka cluster, especially when it is shared with other developers). Here is the listing of the refactored test
case for a smart meter including its client API (imports are omitted, and crucial sections are shown in bold).

 package rs.exproit.load_profile_generator;

 public class ClientServerTest {
 private static final int PORT = 65111;

 private static App app;
 private static NettyTransceiver client;
 private static LoadProfileRPC proxy;

 Figure 13-1. The structure of the test harness allowing an independent testing of the smart meter and the LP
classifier. Also, this setup doesn’t need a running Kafka broker in the background.

CHAPTER 13 ■ TESTING MESSAGING APIS

205

 private static MockProducer<String, byte[]> mockProducer;
 private static ExecutorService executor = Executors.newFixedThreadPool(1);

 @BeforeClass
 public static void setup() throws IOException {
 PartitionInfo partitionInfo =
 new PartitionInfo(LoadProfileWriter.TOPIC_NAME, 0, null, null, null);
 Cluster cluster = new Cluster(
 Collections.<Node>emptyList(),
 Arrays.asList(partitionInfo),
 Collections.<String>emptySet());
 mockProducer = new MockProducer<>(
 cluster,
 false,
 new DefaultPartitioner(),
 new StringSerializer(),
 new ByteArraySerializer());
 app = new App(new LoadProfileRPCImpl(new LoadProfileWriter(mockProducer)));
 app.start(PORT);
 client = new NettyTransceiver(new InetSocketAddress(PORT));
 proxy = SpecificRequestor.getClient(LoadProfileRPC.class, client);
 }

 @Before
 public void clearMockProducer() {
 mockProducer.clear();
 }

 @AfterClass
 public static void teardown() {
 client.close();
 app.stop();
 executor.shutdown();
 }

 private LPCreationRequest createRequest(String loadCondition) {
 LPCreationRequest request = LPCreationRequest.newBuilder().build();
 if (loadCondition != null) {
 request.setLoadCondition(loadCondition);
 }
 return request;
 }

 @Test
 public void triggerSuccessfulLPCreationsAndValidateThatDataIsSent() throws IOException {
 // We need to set up the notifier thread to propel the main test.
 executor.execute(new Runnable() {
 private int requestCount = 101;

 @Override
 public void run() {

CHAPTER 13 ■ TESTING MESSAGING APIS

206

 while (requestCount > 0) {
 if (mockProducer.completeNext()) {
 requestCount--;
 }
 Thread.yield() ;
 }
 }
 });

 // Sends requests and check responses.
 String response;
 for (int i = 0; i < 100; i++) {
 response = proxy
 .lpCreate(createRequest("http://example.org/api/Controller/LoadConditions/"

+ i))
 .toString();
 assertNotNull(response);
 assertTrue(response.contains(
 "\"loadCondition\": \"http://example.org/api/Controller/LoadConditions/" + i +

"\""));
 }
 response = proxy.lpCreate(createRequest(null)).toString();
 assertNotNull(response);
 assertTrue(response.contains("\"loadCondition\": null"));

 // Check history of sent events.
 mockProducer.flush();
 List<ProducerRecord<String, byte[]>> records = mockProducer.history();
 assertEquals(101, records.size());

 for (ProducerRecord<String, byte[]> record : records) {
 assertTrue(record.key().startsWith(LoadProfileRPCImpl.DEVICE_ID_PREFIX));
 assertNotNull(record.value());
 }
 }

 @Test(expected = ServiceError.class)
 public void triggerABadLPCreationAndValidateThatExceptionHasOccurred() throws

IOException {
 // We need to set up the notifier thread to announce an exception.
 executor.execute(new Runnable() {
 @Override
 public void run() {
 while (!mockProducer.errorNext(new RuntimeException())) {
 Thread.yield();
 }
 }
 });

 proxy.lpCreate(createRequest(null)) ;
 }
 }

CHAPTER 13 ■ TESTING MESSAGING APIS

207

 The fields inside the ClientServerTest class are all static for performance reasons, as they represent
a common heavy state for all test cases here. Generally, introducing shared state for tests is a bad practice,
but in our case they aren’t designed to be run in parallel anyhow. Therefore, no collisions would occur.
Moreover, the MockProducer class has a method clear , which is intended to be called at the beginning
of each test. Another issue with running our test cases in parallel would be the maintenance of all those
simultaneously running embedded Netty servers. Concurrently running the test cases here would cause
more trouble than benefits. The JUnit test runner by default runs all tests sequentially in some arbitrary
order (unless you use the FixMethodOrder annotation to request a particular ordering).

 The setup method prepares the necessary context (a dummy partition and a cluster), and creates
the MockProducer object. The MockProducer instance can work in one the following two regimes:
autocompletion mode and manual mode. The former always successfully returns from the send method
(this is a natural choice if you only use an asynchronous send without a callback). To have greater control
over your send method’s behavior, you should choose manual modus operandi. This is the regime chosen
here (observe that the second parameter of the constructor is false). Now, in manual mode things are a
bit strange. Each call to send is registered, but isn’t acknowledged. If you use a synchronous send in your
code (like we did in our LoadProfileWriter class), then your test would simply block indefinitely (it waits
indeterminately for an answer). This is why we need another thread to acknowledge pending requests in
a way we would like. There are two methods to signal a completion: completeNext and errorNext . Both
return a logical value depending on whether they had anything to acknowledge (true) or not (false). This
is important to track, because we don’t want our thread to exit prematurely. In the happy test case earlier
we produced exactly 101 true acknowledgements before exiting. The other one produces just one erroneous
proclamation. Of course, you could implement a variant that would instruct the MockProducer object to
perform N successful sends before throwing an error.

 The MockProducer object registers all sent records, and you can retrieve them by calling the history
method. Your test case is then able to see what exactly was transferred to Kafka. Now imagine how tedious
would it be to force the Kafka broker into various states as well as to trace the send method calls without
using the MockProducer facility.

 Testing the LP Classifier
 We will use the same strategy as before, this time relying on the MockConsumer class. The listing of the LP
classifier’s test suite is presented here (imports are omitted, and important parts are shown in bold).

 package rs.exproit.load_profile_classifier;

 public class LPClassifierTest {
 private final DatumWriter<LoadProfileModel> eventWriter =
 new SpecificDatumWriter<>(LoadProfileModel.class);

 private byte[] serializeLP(LoadProfileModel lp) throws IOException {
 assertNotNull("The load profile reference cannot be null", lp);

 ByteArrayOutputStream out = new ByteArrayOutputStream();
 BinaryEncoder encoder = EncoderFactory.get().binaryEncoder(out, null);

 eventWriter.write(lp, encoder);
 encoder.flush();
 out.close();

 return out.toByteArray();
 }

CHAPTER 13 ■ TESTING MESSAGING APIS

208

 private final TopicPartition partition =
 new TopicPartition(LoadProfileReader.TOPIC_NAME, 0);
 private final MockConsumer<String, byte[]> mockConsumer =
 new MockConsumer<>(OffsetResetStrategy.EARLIEST);

 @Before
 public void setup() {
 Map<TopicPartition, Long> offsets = new HashMap<>();
 offsets.put(partition, 0L);
 mockConsumer.updateBeginningOffsets(offsets);
 mockConsumer.assign(Arrays.asList(partition));
 }

 private class EventProcessor implements Observer {
 private int startIdx;

 @Override
 public void update(Observable o, Object arg) {
 assertTrue(o instanceof LoadProfileReader);
 assertNotNull(arg);
 assertTrue(arg instanceof LoadProfileModel);

 LoadProfileModel lp = (LoadProfileModel) arg;
 assertEquals(Integer.valueOf(100 + startIdx), lp.getCreatedAt());
 assertEquals("TEST_" + startIdx, lp.getDeviceId().toString());
 assertEquals(Double.valueOf(1.0), lp.getData().iterator().next());
 startIdx++;
 }
 }

 @Test
 public final void consumeEventsFromATopicAndProcessThem() {
 final LoadProfileReader reader = new LoadProfileReader(mockConsumer);
 reader.addObserver(new EventProcessor());

 final Runnable pollTask = new Runnable() {
 private final List<Double> testData = new ArrayList<>();
 {
 testData.add(1.0);
 }

 private int pollCount;

 @Override
 public void run() {
 try {
 // We need to "get out" the consumer form its infinite loop
 // once all data were consumed.
 if (pollCount == 10) {
 reader.shutdown();
 } else {

CHAPTER 13 ■ TESTING MESSAGING APIS

209

 mockConsumer.schedulePollTask(this);
 pollCount++;
 }

 LoadProfileModel.Builder builder = LoadProfileModel.newBuilder();
 LoadProfileModel lp = builder
 .setCreatedAt(100 + pollCount)
 .setDeviceId("TEST_" + pollCount)
 .setData(testData)
 .build();

 mockConsumer.addRecord(new ConsumerRecord<String, byte[]>(
 partition.topic(),
 partition.partition(),
 pollCount,
 lp.getDeviceId().toString(),
 serializeLP(lp)));
 } catch (IOException e) {
 fail("Unexpected exception occurred in the poll controller thread.");
 } finally {
 reader.shutdown();
 }
 }
 };

 mockConsumer.schedulePollTask(pollTask);
 reader.run();
 }
 }

 Inside the setup method we create the necessary map to hold offsets (in our case just one), and set the
beginning offsets for our mock consumer (we would set the ending offsets in case the offset reset strategy
was LATEST). Also, we assign our test topic to the consumer.

 The EventProcessor class checks the events as they are added to the consumer inside the test case.
The startIdx variable holds the current position as we progress through test events. The most interesting
parts are inside the test case method. Everything revolves around the schedulePollTask method of the
 MockConsumer class. The MockConsumer isn’t thread-safe, so the technique is very similar to scheduling
a GUI update in Swing (for more details, see https://docs.oracle.com/javase/tutorial/uiswing/
concurrency/dispatch.html). The main thread (the thread executing the test case) will enter an infinite
loop after calling reader.run . Because we cannot start up a new thread (as we did in the previous situation)
the solution is to schedule a new poll task. This task will be executed by the main thread when it calls poll
(see the implementation of the LoadProfileReader class). Inside the poll task we add a new record to the
consumer (simulating an arrival of an event). It is mandatory that we keep track of the number of records
processed so far (this is kept inside the pollCount variable). If we haven’t yet added all our records, then we
just increase the pollCount , and reschedule the same poll task for the next iteration. Otherwise, we signal to
the main thread that it should exit.

 Full End-to-End Test
 There is a fundamentally different approach to test our system. Instead of trying to exercise it piece by
piece, we can use an in-process Zookeeper/Kafka ensemble (if you don’t mind pulling in lots of jars during
the build), and examine how our system functions end to end. This might boost our confidence that all

https://docs.oracle.com/javase/tutorial/uiswing/concurrency/dispatch.html
https://docs.oracle.com/javase/tutorial/uiswing/concurrency/dispatch.html

CHAPTER 13 ■ TESTING MESSAGING APIS

210

components are properly working together. Nevertheless, there are many drawbacks to this approach as
well. It is much harder to localize a problem compared to the case, when we just interrogate the smart meter
or LP classifier separately. The mock variant of a producer and consumer provides us with a greater visibility
of what happened at the boundary of our application, and an external messaging hub. When using an in-
process Zookeeper/Kafka system , there is a chance that our system will run against a different messaging
infrastructure compared to the production version of Kafka. Furthermore, it is sometimes impossible to
induce errors in a controlled manner. Overall, having these automated end-to-end tests is useful, but I would
suggest you to mock out dependencies right at the borders.

 You must add the following dependencies (all having scope set to test) to your pom.xml file (notice the
use of the classifier directive):

 <dependency>
 <groupId>org.apache.kafka</groupId>
 <artifactId>kafka_2.11</artifactId>
 <version>${kafka.version}</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>org.apache.kafka</groupId>
 <artifactId>kafka_2.11</artifactId>
 <version>${kafka.version}</version>
 <classifier>test</classifier>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>org.apache.kafka</groupId>
 <artifactId>kafka-clients</artifactId>
 <version>${kafka.version}</version>
 <classifier>test</classifier>
 <scope>test</scope>
 </dependency>

 Here is the listing of this new test suite (imports are omitted, and salient details are shown in bold).

 package rs.exproit.load_profile_system;

 public class LoadProfileSystemTest {
 private static EmbeddedZookeeper zkServer;
 private static ZkClient zkClient;
 private static KafkaServer kafkaServer;

 @BeforeClass
 public static void setupKafka() throws IOException {
 zkServer = new EmbeddedZookeeper();
 String zkConnect = "127.0.0.1:" + zkServer.port();
 zkClient = new ZkClient(zkConnect, 10000, 10000, ZKStringSerializer$.MODULE$);
 ZkUtils zkUtils = ZkUtils.apply(zkClient, false);

 Properties config = new Properties();
 config.setProperty("zookeeper.connect", zkConnect);
 config.setProperty("broker.id", "0");

CHAPTER 13 ■ TESTING MESSAGING APIS

211

 config.setProperty("listeners", "PLAINTEXT://0.0.0.0:9092");
 config.setProperty("auto.create.topics.enable", "false");
 MockTime mockTime = new MockTime();
 kafkaServer = TestUtils.createServer(new KafkaConfig(config), mockTime);

 String topicName = "load_profile";
 int numPartitions = 3;

 AdminUtils.createTopic(
 zkUtils, topicName, numPartitions, 1, new Properties(),
 RackAwareMode.Disabled$.MODULE$);
 final List<KafkaServer> servers = new ArrayList<>();
 servers.add(kafkaServer);
 TestUtils.waitUntilMetadataIsPropagated(
 scala.collection.JavaConversions.asScalaBuffer(servers), topicName, 0, 5000);
 }

 @AfterClass
 public static void stopKafka() {
 kafkaServer.shutdown();
 zkClient.close();
 zkServer.shutdown();
 }

 private NettyTransceiver controller;
 private ByteArrayOutputStream stdOutputBuffer = new ByteArrayOutputStream();
 private PrintStream standardOutput = System.out;

 @Before
 public void startLoadProfileSystem() throws IOException {
 int port = 65111;
 rs.exproit.load_profile_generator.App.main(new String[] { Integer.toString(port) });
 controller = new NettyTransceiver(new InetSocketAddress(port));

 System.setOut(new PrintStream(stdOutputBuffer));
 rs.exproit.load_profile_classifier.App.main(new String[] { "3" });
 }

 @After
 public void stopLoadProfileSystem() {
 controller.close();
 System.setOut(standardOutput);
 }

 private LPCreationRequest createRequest(String loadCondition) {
 LPCreationRequest request = LPCreationRequest.newBuilder().build();
 if (loadCondition != null) {
 request.setLoadCondition(loadCondition);
 }
 return request;
 }

CHAPTER 13 ■ TESTING MESSAGING APIS

212

 private void waitUntilAllEventsAreProcessed(int numEvents) {
 while (stdOutputBuffer.toString().split("\r?\n").length < numEvents) {
 Thread.yield();
 }
 }

 @Test(timeout = 60000)
 public final void tiggerLoadProfileCreationsAndCheckResult()
 throws InterruptedException, IOException {
 LoadProfileRPC proxy = SpecificRequestor.getClient(LoadProfileRPC.class, controller);

 for (int i = 0; i < 100; i++) {
 String response = proxy.lpCreate(createRequest("Data: " + i)).toString();
 assertNotNull(response);
 assertTrue(response.contains("\"loadCondition\": \"Data: " + i + "\""));
 }

 waitUntilAllEventsAreProcessed(100);

 String result = stdOutputBuffer.toString();
 for (int i = 0; i < 100; i++) {
 assertTrue(result.contains("\"loadCondition\": \"Data: " + i + "\""));
 }
 }
 }

 The setupKafka method does all the work to start up the Zookeeper/Kafka stack as well as to create the
necessary topic for load profiles. This code is customized to the 0.10.0.x version of Kafka. In the past, there have
been lots of changes regarding this test setup, so it might change in the future, too. When this method completes,
producers and consumers will have a fully functional Kafka broker available on a local machine on port 9092 (the
default port number). The stopKafka method shows the steps to shut down the Zookeeper/Kafka ensemble.

 The startLoadProfileSystem method starts up all components of our LP system: controller, smart
meter and LP classifier. The LP classifier is started with three concurrent consumers (notice the command-
line argument of 3). The whole system is now running as it would in a normal situation. The test case
 tiggerLoadProfileCreationsAndCheckResult uses the controller to initiate load profile creations. Each
generated load profile is put into the Kafka topic “load profile,” and is processed by the LP classifier. The test case
ensures that the smart meter has sent all load profiles to Kafka, and that the LP classifier has processed them
correctly. The first part is straightforward, but to validate the second part we must capture the standard output.

 After all load profiles are delivered to Kafka, the test case calls the waitUntilAllEventsAreProcessed
method to wait for all events to appear on the standard output. This is achieved by counting the number of
new line characters. If the counter matches the expected number of events, then we know that all of them
are captured in the output. The next task is just to check that they are really valid. There is a danger that this
test case might never end (if something goes wrong). This is the reason for that timeout value in the Test
annotation. If the test doesn’t end in one minute, then we treat it as failed.

 Summary
 We have examined the peculiarities of testing messaging APIs (our tests are oriented toward Kafka, but the
approach is generic), and how it differs from a casual situation with synchronous request/response cycles. Kafka
already provided us with the test classes for executing integration tests in an isolated fashion. Again, all this is
useful if your code is prepared for such a customization; that is, to accept mock objects instead of real ones (if
you build your code so that external dependencies are clearly declared, then they can be easily mocked).

CHAPTER 13 ■ TESTING MESSAGING APIS

213

 EXTENDING THE LP CLASSIFIER'S TEST SUITE

 Practice the MockConsumer Class

 Add a new test case to the LPClassifierTest class , which would trigger an error during event
consumption. This is similar to what we have done in our first test suite.

 The MockConsumer class has a method called setException . If this method is called from the poll task, then
the driver thread will get an exception from the poll method. To test for this error, you will need to refactor a
bit the LoadProfileReader class. One possibility is to introduce another callback, called the error callback.
This would be called inside the exception handler, which currently just dumps out a stack trace.

 REFACTOR THE CODE TO USE DEPENDENCY INJECTION

 Practice a Dependency Injection Framework

 The LoadProfileWriter and LoadProfileReader classes use a static variable to denote the topic
name. Also, they cannot be configured externally via a configuration file (you must programmatically set
them up with a custom Kafka producer and consumer instances).

 A dependency injection framework (Spring, Guice, etc.) allows you to completely describe your
components and their dependencies in a configuration file. This added flexibility increases your classes’
testability, too. Refactor the code base (including the tests, as they also hard-code configuration values)
to leverage dependency injection, and use external configuration files.

 SCHEMA COMPATIBILITY TEST

 Practice Avro Schema Handling

 One of the biggest issues during API evolution is to preserve backward compatibility. Ensuring that we
haven’t missed some detail isn’t an easy task (even if we reread the schema resolution rules in the
documentation every time). Therefore, it would be great if we could automate schema comparisons and
create automated schema compatibility tests. The test would compare two schemas (usually a reader
and a writer schema) and report all compatibility errors.

 One of the reasons that this book has chosen Avro as a good choice for implementing messaging APIs is
that it already contains such a schema compatibility checker. Take a look at the SchemaCompatibility
class . Devise an automated test to check for any compatibility problems between a smart meter and an
LP classifier schema (assume that they evolve separately).

 Reference
 1. Maddox, Philip. “Testing a Distributed System.” ACM Queue , 2015.

 https://queue.acm.org/detail.cfm?id=2800697

https://queue.acm.org/detail.cfm?id=2800697

215© Ervin Varga 2016
E. Varga, Creating Maintainable APIs, DOI 10.1007/978-1-4842-2196-9_14

 CHAPTER 14

 Schema-Based Messages

 Distributed systems built around the service-oriented architectural style contain services, which continuously
exchange messages 1 (data) with one another. It doesn’t matter whether such transfers happen over
HTTP communication channels, via some message queues, or both. What matters is the robustness and
maintainability of the corresponding message structures, which are generally different for synchronous and
asynchronous communication. If a message structure isn’t aligned to support distributed development and
deployment, 2 then we cannot qualify that system as supportable. Such a system cannot expand beyond some
level. This chapter is about important techniques and principles for crafting evolvable message structures.

 Before delving into further details, it is useful to establish a common taxonomy about different kinds of
message structures. 3 The following list is sorted by maintenance level in ascending order.

 1. Unstructured (ad-hoc) : A message structure is arbitrary, and is hidden inside
an application. Applications must share a common knowledge about the whole
structure if they want to exchange data. The structure doesn’t exist outside of an
application. This means that even if a message (document) does adhere to some
sophisticated structure, that structure is not publicly revealed. A good example
of this is the Microsoft Word document format. The format was never fully
publicized, so only Word can adequately handle its own documents (unless they
are very simple). Nevertheless, the Word document format itself is really amazing.

 2. Semi-structured : There are some public rudimentary rules about the structure.
For example, the casual text file format is one such example. Here, we expect that
the content is arranged by lines, with proper end-of-line markers. There is also
an end-of-file (EOF) marker . The content of each line is arbitrary. Nevertheless,
it is a huge step forward compared to an unstructured case. Most Unix shell
commands rely solely on the text format as their input/output. This allows you to
combine them together to perform more complex actions. For example, the sort
utility doesn’t care what is inside a line as long as it is a sequence of characters.

 1 For our discussion, these messages can be textual or binary; the same reasoning applies in both cases.
 2 For a good summary see http://wiki.apidesign.org/wiki/Distributed_development .
 3 This fulfills a role similar to the Richardson Maturity Model for REST (martinfowler.com/articles/
richardsonMaturityModel.html).

http://wiki.apidesign.org/wiki/Distributed_development

CHAPTER 14 ■ SCHEMA-BASED MESSAGES

216

 3. Fixed, structured : A typical example is the comma-separated values (CSV) file
format for storing tabular data in plain text. The format of the file is well structured,
and the structure itself is rock solid. There are many variations on this topic. For
example, if a delimiter is configurable then we might get the delimiter-separated
values format. However, it is impossible to break out from this tabular view of the
world unless you depart from the standard. 4 At any rate, all structured message
formats have a metaformat clearly specifying the conditions for well-formedness .

 4. Extensible, structured : A classic example is eXtensible Markup Language (XML) .
The structure itself is part of the message. The structure is not fixed, and a
message is self-contained. This means that the application, which created a
message, might cease to exist without impeding our ability to reason about the
custom message structure. JavaScript Object Notation (JSON) is another good
example, although not as flexible as XML. At any rate, each message is just an
instance of a template (schema) known only to an application. Although we
cannot validate a message without contacting its originator, we do have an ability
grasp the overall structure. This is possible thanks to the inherent structure
(e.g., a tree in XML) present in a message. Moreover, both XML and JSON allow
naming elements, and these names are also preserved in a message.

 5. Schema based : This type of a message structure is the topic of this chapter. Here,
the template for creating messages is fully externalized. Any application can
independently validate a message based on this template. A message conforming
to the proper template is said to be valid . This is in correlation with the type
safety of an API. An API should strive to be as formal as possible, and prevent
mismatches during runtime. Of course, this isn’t always possible to achieve;
that is, some aspects of the contract will need to be validated from code. There
are lots of schema languages to specify the rules of what constitutes a valid
document, but the principles are the same. Therefore, in the rest of this chapter
we focus our attention purely on the JSON Schema 5 draft 4, as this is the schema
language used by JSON API.

 6. Conventional interface based : This is not a pure message structure type, but a
structure combined with a set of interaction rules about handling messages.
Chapter 15 introduces JSON API as one of the best representatives of this category.

 ■ Note It is possible to augment the fifth and sixth categories with semantic technologies. We will see
examples of this in Chapters 15 and 16 , respectively.

 In the rest of this chapter we gradually evolve a base JSON schema 6 to introduce techniques and
principles for achieving a high level of maintainability regarding message structures. There is a lot of overlap
with methods to make our object-oriented software maintainable (see Part I of this book). Therefore, we will

 4 It is easy to fall into this trap; that is, to tweak a standard. Any deviation from a standard will basically drop you back
into a semistructured, or even unstructured category from the viewpoint of services expecting standard stuff. There is no
such thing as “Our format is CSV with some customizations.”
 5 To learn about the JSON Schema and see some nice examples, visit json-schema.org . This site contains a link to the
official JSON Schema specification as well as references to many JSON frameworks for several programming languages.
 6 Throughout this endeavor it is useful for you to load into your browser the JSON Schema Net (http://jsonschema.net)
or JSON Schema Lint (http://jsonschemalint.com) online schema validator. A validator can help you write and test
JSON schemas that conform to the draft 4 specification. Both tools expect as inputs a JSON schema and an instance
document.

http://dx.doi.org/10.1007/978-1-4842-2196-9_15
http://dx.doi.org/10.1007/978-1-4842-2196-9_15
http://dx.doi.org/10.1007/978-1-4842-2196-9_16
http://jsonschema.net/
http://jsonschemalint.com/

CHAPTER 14 ■ SCHEMA-BASED MESSAGES

217

now highlight only the specifics related to message structures. The maintainability of a message structure is
associated with an ability to preserve the next properties:

• Full compatibility (forward and backward) between versions.

• High degree of reuse across versions.

• Ease of change.

 Version 1.0.0 : Simple Lottery Ticket
 Let us incrementally develop a hypothetical online lottery service. Our focus is purely on a message format
containing a player’s betting data. As we progress through versions we resolve various maintenance issues.
The following sample JSON document incorporates what we would like to capture in version 1.0.0.

 {
 "version": "1.0.0",
 "name": "Wednesday Lotto",
 "selection": [1, 4, 10, 33, 45, 48],
 "price": 3,
 "number-of-draws": 1
 }

 The document has a version number (1.0.0), contains the name of the game, a player’s selection (in this
case 6 out of 49 numbers), the unit price of a ticket ($3), and how many times this ticket should participate
in future drawings (in our case only in the next one). The corresponding JSON schema, capturing these
business rules, can be specified as shown here.

 {
 "id": "http://example.com/schemas/1.0.0/simple-lotto-schema#",
 "$schema": "http://json-schema.org/draft-04/schema#",
 "title": "Simple Lotto Ticket",
 "description": "A player's betting data for our on-line lottery service",
 "type": "object",
 "properties": {
 "version": {
 "description": "The unique semantic version number (X.Y.Z) of the document",
 "type": "string",
 "pattern": "^\\d{1,2}\\.\\d{1,2}\\.\\d{1,3}$"
 },
 "name": {
 "description": "The unique name of the game",
 "type": "string"
 },
 "selection": {
 "description": "A player's selection of numbers" ,
 "type": "array",
 "items": {
 "type": "integer"
 },
 "minItems": 5,
 "uniqueItems": true

CHAPTER 14 ■ SCHEMA-BASED MESSAGES

218

 },
 "price": {
 "description": "A price of a single ticket in USD",
 "type": "integer",
 "minimum": 1
 },
 "number-of-draws": {
 "description": "The number of draws in which a ticket should participate",
 "type": "integer",
 "minimum": 1,
 "maximum": 10
 }
 },
 "required": [
 "version",
 "name",
 "selection",
 "price",
 "number-of-draws"
],
 "additionalProperties": false
 }

 This schema captures most of the rules that we have identified previously. It is important to try to
specify as much as possible through the schema, so that the number of implicit assumptions is kept at a
minimum. Of course, you should not be too aggressive with constraints. It is better to make a schema more
flexible than to be overly constraining. This is exactly the strategy chosen in the JSON API’s schema.

 We see that the schema is itself a JSON document , so it obeys the same metarules as any other JSON
document. The metaschema is referenced at the root via the $schema member.

 ■ Note It is always a good idea to reference the metaschema from your JSON schema. It clearly denotes its
version (always be exact with a version number; don’t use the latest shortcut), and declares that the given
JSON document is indeed a schema. The same reasoning applies to the instance document. Notice that the
version is explicitly stated in the version member. 7 Versioning is of the utmost importance to gain control over
changes. Finally, I also suggest you assign a unique identifier for each schema using the id property. In our
case, it points to a fictitious web site of our example lottery service from which anybody can download the
schema. Again, a value of an id property is a URL with a distinct version number. It is then easy to search for
the matching schema after receiving an instance document with a version field.

 Another important task is to document your schema. Set the title for your schema, describe its main
purpose, and describe each property (field). This makes your schema more comprehensible, and thus aids
with maintenance.

 7 The recommended practice is to apply semantic versioning. For more information, visit http://semver.org . In our
schema the regular expression for checking the validity of a version number is very simplified. The semantic version
number check is more complicated, as it might contain various suffixes (e.g., RC-1, Alpha-2, etc.).

http://semver.org/

CHAPTER 14 ■ SCHEMA-BASED MESSAGES

219

 There is one important aspect that remained unspecified in the schema. The selection member has a
lower cardinality bound of 5. This is a reasonable choice given that most lottery games require at least five
numbers. The upper bound is not that clear, though. It depends on the type of lottery game (e.g., 5 out of 35,
6 out of 49, etc.). This is very hard to describe purely in schema, as it is a more complex business rule. The
JSON schema is just a JSON document (data) with only a declarative power. More sophisticated semantic
checks need to be done from code.

 ■ Caution Any tool can automatically validate only the structure of an instance document. Certain
relationships between data elements of a document must be performed by a validation logic implemented using
some general-purpose programming language.

 Finally, our schema has two additional members that we need to explain: require and
 additionalProperties . The former specifies what the mandatory elements are in an instance document.
In our schema all of them are required. If you leave out some field from the list of required ones, then it
becomes optional. However, its structure is still governed by the schema. The additionalProperties
member (when set to true or to some JSON object 8) permits arbitrary content to be attached to the
document. These are not going to be checked in any way. In some way, they are like having a wildcard * at
the end of a schema (anything that follows is allowed). Of course, the document still has to be a well-formed
JSON document. Allowing such additional unchecked properties is okay if you expect new fields to be part of
a document without breaking validation rules.

 ■ Caution Don’t abuse the additionalProperties feature! It can easily lead to uncontrolled changes, as
new fields might appear and disappear from version to version without any formal trace. I recommend you to
set it to false unless you are absolutely sure that it must be different. 9 After all, the most flexible JSON schema
is {} , but by itself it is not very useful, as it validates everything. 10

 Version 1.0.1 : Bug Fix
 Schemas should follow the same stringent quality assurance and control procedures as any other software.
Proper testing is one of them. It is easy to fool yourself that the schema truthfully expresses all constraints.
This usually happens when testing is done by producing instance documents 11 and validating them against
the schema. Most often the test specimens don’t cover strange edge cases. There is an effective trick, though.
Why not try in an opposite direction, as well? Let us see what potential documents we can produce with our
schema as input.

 8 It is possible to restrict what can be attached freely to a document. For example, if the value of this property is set to {
"type": "string" } , then it will allow only string properties.
 9 As always, it is a good idea to see how others are using this feature. For example, the JSON API (see Chapter 15)
schema allows additional properties in two places only: inside a meta object and for links. This is an understandable
decision, as meta is reserved for nonstandard extensions, and the links section may contain custom links defined by
application developers. Additionally, the JSON API schema is a good source for learning advanced schema constructs
(e.g., look at how the relationships member is specified using the patternProperties feature of the JSON Schema).
 10 Nevertheless, it might be handy while you develop your schema in a top-down fashion. For a good illustration of this,
study the advanced example available at http://json-schema.org/example2.html .
 11 Even in our simple example the number of all possible instance documents is innumerable.

http://dx.doi.org/10.1007/978-1-4842-2196-9_15
http://json-schema.org/example2.html

CHAPTER 14 ■ SCHEMA-BASED MESSAGES

220

 We will use a JSON Schema Faker tool (http://json-schema-faker.js.org) to generate fake data that
conforms to our schema. After a couple of runs it produced the following output:

 {
 "version": "72.8.16",
 "name": "minim exercitation proident in",
 "selection": [
 44916645,
 -67649279 ,
 44228531,
 12698882,
 -1677911
],
 "price": 99544208,
 "number-of-draws": 1
 }

 Apparently, something is fishy with the lottery numbers . It makes no sense to have a negative number
there (this is a bug in the schema), and they should undeniably have an upper limit (a good choice is 100, as
there is no lottery game I’m aware of with more than 100 choices). The price is also exorbitant, but we will not
deal with that now. We need to apply the following patch (change the definition of the selection member):

 "items": {
 "type": "integer",
 "minimum": 1,
 "maximum": 100
 }

 Is this a compatible change? In theory, it breaks compatibility, because the old schema could produce
invalid input for the new version. On the other hand, the new version always produces compatible instances
with the previous one. This is a fine point to introduce the following important definitions.

• Backward compatibility : A change to a schema definition is backward compatible if
all documents that validated against previous schema still validate against the new
one. In our case, the bug fix doesn’t satisfy this provision. An old message producer
may generate a bad document from the perspective of the new version of the online
lottery service. Therefore, message producers must also switch to the new schema.

• Forward compatibility : A change in a message producer is forward compatible if it
generates documents that continue to be valid against the (previous) schema. In our
case, the bug fix does satisfy this provision. The new message producer cannot generate
a bad document from the perspective of the old version of the online lottery service.

 What about the practice , is it different than the theory ? The answer is a resounding yes! The bug fix can
be treated as a fully compatible change. The wrong selection numbers would have been rejected by the old
system anyhow. This same reasoning applies to the usability improvement to reduce the upper limit for
selections. Even before, nobody was able to provide insane choices.

 We need to make another critical amendment to our schema. Each change must be followed by a new
version number. Because this was a bug fix, the new version should be 1.0.1. Overwriting old versions with
new material is the most dangerous thing to do.

http://json-schema-faker.js.org/

CHAPTER 14 ■ SCHEMA-BASED MESSAGES

221

 ■ Note Making an implicit assumption explicit in your schema doesn’t count as an incompatible change!
After all, you are just exposing your business rules instead of burying them in code. Of course, it can only
happen when all known producers are under our control.

 Version 1.1.0 : Going International
 After great success with the first version of the system, the company has decided to go international. The
lottery game per se remained the same, but it was no longer satisfactory to have only a bare price field. The
 price member required the following additional data:

• Currency : A predefined list of supported currency symbols.

• Amount : Given in 1/1,000 of units.

• Exchange rate : Fixed at the time of purchase to convert the amount from the source
currency into US dollars.

 The company knows that there is a huge customer base using the old format and associated client
software. Therefore, the change must be backward compatible. Here is the patch (changes relative to a
previous state) of the price member.

 "price": {
 "oneOf": [{
 "description": "A price of a single ticket in USD",
 "type": "integer",
 "minimum": 1
 },
 {
 "description": "A price of a single ticket in the chosen currency",
 "type": "object",
 "properties": {
 "currency": { "enum": ["USD", "EUR", "CAD", "RSD", "HUF"] },
 "amount": {
 "description": "An amount in 1/1000 units",
 "type": "integer",
 "minimum": 1000
 },
 "exchange-rate": {
 "description": "A fixed exchange rate > 0.0 to convert the amount into USD",
 "type": "number",
 "minimum": 0.0,
 "exclusiveMinimum": true,
 "default": 1.0
 }
 },
 "required": ["currency", "amount"],
 "additionalProperties": false
 }]
 }

CHAPTER 14 ■ SCHEMA-BASED MESSAGES

222

 The corresponding instance document using a new price model is as follows.

 {
 "version": "1.1.0",
 "name": "Wednesday Lotto",
 "selection": [1, 4, 10, 33, 45, 48],
 "price": {
 "currency": "CAD",
 "amount": 3247,
 "exchange-rate": 0.77
 },
 "number-of-draws": 2
 }

 Of course, version 1.0.0 of an instance document is still valid. By using the oneOf feature of the JSON
Schema draft 4, we basically say, “A price may be an amount in US dollars, or a triple (currency, amount,
exchange rate).” The exchange rate is optional with a default value of 1.0. In our sample, we essentially
specified the price to be $2.5.

 As always, we need to increase the version number . As this was a new feature implemented in a
backward-compatible manner, the new version number is 1.1.0.

 Version 1.2.0: Automaton-Pick Feature
 Players have started to complain that the system is not very user friendly. For multiweek coupons, which
were targeted for multiple draws, they didn’t want to have the same numbers repeated. On the other hand,
filling in multiple coupons was too cumbersome for them. They have demanded a feature by which the
system would automatically fill in the selection with random choices. 12

 You’ve probably already guessed that the change must be done in a backward-compatible manner.
Here are the patches to the schema (an addition of the new optional property called automaton-pick , and a
change in the selection member’s lower cardinality bound):

 "automaton-pick": {
 "type": "boolean",
 "default": false
 }

 "minItems": 0

 The next instance document demonstrates the new feature:

 {
 "version": "1.2.0",
 "name": "Wednesday Lotto",
 "price": 3,
 "selection": [],
 "number-of-draws": 4,
 "automaton-pick": true
 }

 12 This feature is very popular among lottery organizations, and is known under various names (e.g., Quick Pick, Fast
Pick, Smart Pick, and Lucky Dip, just to name a few). I just hope that nobody has copyrighted it under the name
Automaton-Pick (this is the reason for such a funny label).

CHAPTER 14 ■ SCHEMA-BASED MESSAGES

223

 Here, we have specified that all numbers should be chosen by a machine. We may also fix some
numbers, and let the system choose the remaining ones.

 {
 "version": "1.2.0",
 "name": "Wednesday Lotto",
 "selection": [4, 12, 22],
 "price": 3,
 "number-of-draws": 3,
 "automaton-pick": true
 }

 The idea is to let players choose their favorite numbers, as is the case in the preceding sample. More
complex rules, like checking whether all numbers are properly given if automaton-pick is false , require
general-purpose code.

 Version 2.0.0 : Multigame Lottery Ticket
 An internationally renowned company cannot afford to offer only a single-game lottery coupon.
Consequently, the sales department has decided that it is time for a major improvement of the system,
combining multiple lottery games on a single ticket. Most clients have already upgraded their software to
version 1.2.0. Moreover, they were ready for another upgrade. This time it was okay to break compatibility, so
the version number got bumped up to 2.0.0.

 Each major upgrade should be a perfect opportunity to improve the maintainability of the current
solution. This is also a chance to reassess what the expected vectors of change are; that is, what parts of the
system should be flexible enough to quickly accommodate new change requests. We can identify new games
in the future as one such possible direction of change. The new version of the schema is presented here.

 {
 "id": "http://example.com/schemas/2.0.0/multi-lotto-schema#",
 "$schema": "http://json-schema.org/draft-04/schema#",
 "title": "Multi Lotto Ticket",
 "description": "A player's betting data for our on-line lottery service",

 "definitions": {
 "price-model": {
 "title": "Price model",
 "oneOf": [{
 "description": "A price of a game or ticket in USD",
 "type": "integer",
 "minimum": 1
 },
 {
 "description": "A price of a game or ticket in the chosen currency",
 "type": "object",
 "properties": {
 "currency": { "enum": ["USD", "EUR", "CAD", "RSD", "HUF"] },
 "amount": {
 "description": "An amount in 1/1000 units",
 "type": "integer",
 "minimum": 1000

CHAPTER 14 ■ SCHEMA-BASED MESSAGES

224

 },
 "exchange-rate": {
 "description": "A fixed exchange rate > 0.0 to convert the amount into USD",
 "type": "number",
 "minimum": 0.0,
 "exclusiveMinimum": true ,
 "default": 1.0
 }
 },
 "required": ["currency", "amount"],
 "additionalProperties": false
 }]
 },

 "lotto-game": {
 "type": "object",
 "properties": {
 "name": {
 "description": "The unique name of the game",
 "type": "string"
 },
 "selection": {
 "description": "A player's selection of numbers",
 "type": "array",
 "items": {
 "type": "integer",
 "minimum": 1,
 "maximum": 100
 },
 "minItems": 0,
 "uniqueItems": true
 },
 "number-of-draws": {
 "description": "The number of draws in which a ticket should participate",
 "type": "integer",
 "minimum": 1,
 "maximum": 10
 },
 "automaton-pick": {
 "type": "boolean",
 "default": false
 }
 },
 "required": [
 "name",
 "number-of-draws"
],
 "additionalProperties": false
 }
 },

 "type": "object",

CHAPTER 14 ■ SCHEMA-BASED MESSAGES

225

 "properties": {
 "version": {
 "description": "The unique semantic version number (X.Y.Z) of the document",
 "type": "string",
 "pattern": "^\\d{1,2}\\.\\d{1,2}\\.\\d{1,3}$"
 },
 "games": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "game": { "$ref": "/definitions/lotto-game" },
 "game-price": { "$ref": "/definitions/price-model" }
 },
 "additionalProperties": false
 }
 },
 "ticket-price": { "$ref": "/definitions/price-model" }
 },
 "required": [
 "version",
 "games",
 "ticket-price"
],
 "additionalProperties": false
 }

 The resulting instance document containing two different lottery games is presented here.

 {
 "version": "2.0.0",
 "games": [
 {
 "game": {
 "name": "Wednesday Lotto",
 "selection": [4, 12, 22, 44, 45, 46],
 "number-of-draws": 1
 },
 "game-price": 2
 },
 {
 "game": {
 "name": "Saturday Lotto",
 "selection": [4, 12],
 "number-of-draws": 1,
 "automaton-pick": true
 },
 "game-price": 1
 }

],
 "ticket-price": 3
 }

CHAPTER 14 ■ SCHEMA-BASED MESSAGES

226

 The major new JSON Schema feature that we have introduced here is the definitions section. This is a
container for reusable schema chunks. Other parts of the schema reference these via JSON Pointers 13 (notice
those $ref members). This is the principal reuse mechanism in JSON Schema.

 The id member, besides versioning our schema, also defines the schema’s base URL . The value of a
relative JSON Pointer is then attached to this base URL to get a full address of the referenced entity. This is
useful if you want to point to definitions, which are located outside of your schema. The JSON Pointer can
also be an absolute URL; for example, http://json-schema.org/ geo (this points to the schema definition
specifying a geographical location).

 You should notice that we have a separate price for each game as well as a total price for a ticket.
Nevertheless, the same price-model definition was reused in both situations.

 Version 2.1.0 : Separate Game Start Times
 Players are not quite satisfied with the multigame ticket. They would like to control the draw date for each game
separately. Currently, all of them are scheduled for the next available draw event, as dictated by game rules.
Therefore, an additional property must be introduced in a backward-compatible fashion for players to select a
draw date for each game (by default game purchases will be scheduled as before). The necessary patch for the
schema is presented here (the lotto-game definition is expanded with this new optional property).

 "start-date": { "format": "date-time" }

 The resulting instance document now looks like this.

 {
 "version": "2.0.0",
 "games": [
 {
 "game": {
 "name": "Wednesday Lotto",
 "selection": [4, 12, 22, 44, 45, 46],
 "number-of-draws": 1,
 "start-date": "2016-06-03T20:00:00.00Z"
 },
 "game-price": 2
 },
 {
 "game": {
 "name": "Saturday Lotto",
 "selection": [4, 12],
 "number-of-draws": 1,
 "automaton-pick": true,
 "start-date": "2016-06-04T20:00:00.00+03:00"
 },
 "game-price": 1
 }

],
 "ticket-price": 1
 }

 13 Serves the same purpose as XPath in XML.

http://json-schema.org/geo

CHAPTER 14 ■ SCHEMA-BASED MESSAGES

227

 The main thing to notice here is that even though the schema became quite complex, it was still easy
to perform the change. We knew exactly where to put that extra property . Modularizing your schema is the
principal enabler to achieve high maintainability.

 Summary
 Through this simulated evolution of a hypothetical lottery organization’s online service, we have gained
several insights regarding JSON Schema and its features related to software maintenance. Schema-based
messages are just the first step toward putting changes under our control. There are lots of other JSON
Schema features that can help you in everyday professional practice. Nonetheless, those presented here are
of central importance to creating evolvable message structures.

 CONDENSED OUTPUT

 In version 2.0.0, the schema has introduced a quite verbose way to enroll games. Try to modify the
schema, while keeping it tidy, to support the following message structure:

 {
 "version": "2.0.0",
 "games": [{
 "name": "Wednesday Lotto",
 "selection": [4, 12, 22, 44, 45, 46],
 "number-of-draws": 1,
 "start-date": "2016-06-03T20:00:00.00Z"
 "game-price": 2
 }],
 "ticket-price": 1
 }

 In other words, get rid of those superfluous game “wrappers.” You need to know that this change is
definitely not going to be backward compatible. This is the reason why extra care should be taken
before releasing anything to the public (especially an API).

 References
 1. Bau, David. “Theory of Compatibility (Part 1).” http://davidbau.com/

archives/2003/12/01/theory_of_compatibility_part_1.html

 2. Droettboom, Michael. “Understanding JSON Schema.” http://spacetelescope.
github.io/understanding-json-schema/

http://davidbau.com/archives/2003/12/01/theory_of_compatibility_part_1.html
http://davidbau.com/archives/2003/12/01/theory_of_compatibility_part_1.html
http://spacetelescope.github.io/understanding-json-schema/
http://spacetelescope.github.io/understanding-json-schema/

229© Ervin Varga 2016
E. Varga, Creating Maintainable APIs, DOI 10.1007/978-1-4842-2196-9_15

 CHAPTER 15

 The Core JSON API

 Conventional interfaces represent one of the most powerful design principles for working with message
payloads, or data structures in general. In nearly all functional programming languages, sequences 1 play this
role. The idea is simple: Use a common facility to interconnect modules, and implement program features by
combining multiple, independent modules into a unified system. Instead of changing existing modules for
each new change request, just combine them in a different way to provide a different behavior. The modules
themselves should be self-contained, reusable entities with a single well-specified responsibility. This quote
nicely illustrates the idea behind the concept of a conventional interface:

 In Pascal the plethora of declarable data structures induces a specialization within
functions that inhibits and penalizes casual cooperation. It is better to have 100 functions
operate on one data structure than to have 10 functions operate on 10 data structures.

 —Alan Perlis, Foreword to Structure and Interpretation of Computer Programs

 The conventional interface principle has many reincarnations at various levels of scope. If used as an
architectural style, it is commonly known as Pipe and Filter (see the sidebar “Word Frequency Counter”
later in this chapter for an example of how this works in practice). Because JSON API relies on JSON, which
is rarely used as a message format for local interprocess communication, our focus will be on JSON API’s
role as a conventional interface for open distributed systems. JSON API implements the Collection pattern,
which is also embodied inside the Collection+JSON hypermedia type.

 Openness is an important goal of distributed systems. An open distributed system mandates certain rules
regarding how services should be implemented and interconnected. An open system can easily interoperate
with another open system. Likewise, services may be easily ported between different implementations of the
same open system (behind a single well-described open API, many implementations may exist). We will see
how JSON API’s rules play a crucial role in realizing the vision of an open distributed system.

 WORD FREQUENCY COUNTER

 For a good introduction about this pattern you may visit http://www.tutorialspoint.com/unix/
unix-pipes-filters.htm . The pipe is a standardized communication interface and the filter is a
processing node. Perhaps a Unix shell is the best testimony about this style’s flexibility, robustness,
and power. In this example we would like to count the number of unique occurrences of each word in
the input. The program should ignore punctuation, convert all text from lowercase to uppercase, use a

 1 Most commonly implemented as lists.

http://www.tutorialspoint.com/unix/unix-pipes-filters.htm
http://www.tutorialspoint.com/unix/unix-pipes-filters.htm

CHAPTER 15 ■ THE CORE JSON API

230

space as a word separator, and print the result sorted by words. The output for each word should be
formatted as a pair (word, frequency). Here is the chain of Unix programs connected via pipes:

 (tr -d "[:punct:]" | tr -s "[:space:]" | tr "[:space:]" '\n' | tr "[:upper:]"
"[:lower:]" |
 sort |
 uniq -c |
 awk '{print "("$2", "$1")"}')<<EOF

 For the following input:

 The solution is made up of the following Unix programs: 'tr', 'sort', 'uniq', and 'awk'!

 These Unix programs are generic, and know only about Unix-related stuff (input and output pipes,
environment variables, configuration files, etc.).

 This is the power of a conventional interface principle!

 EOF

 The program outputs the next list of pairs (the output is reformatted to save space; that is, the pairs are
put on the same line):

 (a, 1) (about, 1) (and, 3) (are, 1) (awk, 1) (comprised, 1) (configuration, 1)
(conventional, 1)
 (environment, 1) (etc, 1) (files, 1) (following, 1) (from, 1) (generic, 1) (input, 1)
(interface, 1) (is, 2) (know, 1) (of, 1) (only, 1) (output, 1) (pipes, 1) (power, 1)
(principle, 1) (programs, 2) (related, 1) (solution, 1) (sort, 1) (stuff, 1) (the, 3)
(these, 1) (this, 1) (tr, 1) (uniq, 1) (unix, 3) (variables, 1)

 Note how each Unix program in this solution is totally generic. None of them were modified here. They
were just configured and then composed in a specific way to provide the desired functionality. If you
imagine that each of them is run on a separate node of a distributed system, and the pipe is replaced
with its distributed counterpart, then you basically get interoperable microservices. Finally, if you
reshape tr into a mapper, transform uniq into a reducer, and put them inside a Hadoop ecosystem (it
will provide sorting, outputting, and management of components) then you get a MapReduce program.

 The next list briefly enrolls the most salient features and benefits of JSON API:

• It is a conventional interface: This is fundamental to remember to understand the
difference between pure message formats and JSON API. The JSON API, besides
establishing a shared convention regarding message formats, also encompasses
rules for how to interact with messages. For example, it contains instructions on how
services should fetch, create, update, and delete resources, specify pagination, pass
query parameters, and so on.

• Enables generalized tooling support.

• Actively promotes the Open/Closed principle: With JSON API, distributed services
can be realized as reusable, independent, and self-contained entities. They should
be easily composable without a need to alter them (we aren’t taking into account
bugs here, as they would entail changes in the services). Hence, the resulting system
would be open for extension and closed for modification.

CHAPTER 15 ■ THE CORE JSON API

231

• Increases the productivity of teams: Software engineers should learn a single standard
for message payloads together with a common set of development frameworks
and tools. The JSON API helps increase productivity in a similar vein as software
patterns. Instead of solving recurring problems multiple times in different ways, it
gives immediate answers to the most frequently encountered concerns pertaining to
message payloads.

• Increases performance: This occurs because services built around JSON API can
circumvent data transfer overheads by efficiently caching responses.

• After all it is JSON, which is nowadays a default data serialization format of the Web.

 At the time of this writing, the JSON API’s version number is 1.0. It is its first stable release, and the
upcoming version 1.1 should appear soon. The JSON API has a registered media type of application/vnd.
api+json issued by the Internet Assigned Numbers Authority (IANA).

 ■ Caution Never put the official JSON API media type in a request/response to or from a server without fully
obeying the specification. This would simply break all clients (including development frameworks) expecting
a proper JSON API document. The JSON API is very flexible, and there is no reason to concoct some curtailed
version of it to “simplify” matters. You will just make your life more complicated.

 ■ Note The JSON API is envisioned to always evolve in a backward-compatible manner. This is achieved by
incrementally extending the specification, and never altering existing material. This is a fine example of how the
specification itself adheres to the same principles that it advocates to the public; that is, the Open/Closed principle.

 This chapter should complement the JSON API specification, not replace it. The aim here is to put
JSON API into a proper context, and explain how it helps in creating maintainable APIs in regard to message
payloads. We start our journey with a bit of a detour by first studying an established industry standard
message format. This serves as a starting point to gradually introduce JSON API elements in a comparative
fashion. Moreover, the case study emphasizes the pragmatic traits of JSON API; that is, how it addresses real-
world problems. After all, JSON API was extracted from a library used in many production systems, so its
origin is in the software industry, as is the case with design patterns.

 Case Study of an Industry Standard Message Format
 This section presents a case study of designing message payloads , and exchanging messages using a domain
specific message format. We analyze the operation of an electrical power system, and what kind of issues
arise there from the perspective of data exchange. The beauty of this example is that it will introduce some
concepts that are extremely important from the viewpoint of JSON API. Of course, it isn’t so important to
understand all the details of a power system to grasp the content of this section. Therefore, I keep the details
to a minimum, sometimes even at the expense of accuracy (see the References at the end of this chapter for
an excellent book about this topic).

 ■ Tip The case study is by itself a useful tutorial about designing a powerful maintainable message format,
if for some reason you cannot use JSON API. The message format presented here is battle tested over years of
production use by power system organizations.

CHAPTER 15 ■ THE CORE JSON API

232

 Common Information Model of a Power System
 An electrical power system is made up of production and distribution facilities on one side and consumers
of electrical energy on the other. These sides need to be balanced (the amount of energy produced should
equal the consumption rate) to have a stable situation in an electrical power grid.

 This is a very dynamic system. Some changes are planned, but many of them are exceptional situations
caused by all sorts of malfunctions. At any rate, all kinds of changes in the system must be promptly
addressed. To achieve smooth operation, production facilities and electrical utility organizations need to
exchange system modeling information with one another. Most analysis functions cannot be performed by
relying solely on data acquired by a single organization. This is the reason data from neighboring systems
must be included, too. Hence, the principal demand for an extensive data exchange. 2

 To cope with the diversity of systems deployed by each organization EPRI in North America developed
the Common Information Model (CIM). Today it is a series of standards, collectively known as CIM for power
systems , under the International Electrotechnical Commission (IEC), IEC 61970, IEC 61968, and IEC 62325.
CIM ensures a standard way for representing resources of an electrical power system as classes, attributes, and
associations between them. In other words, CIM is a conceptual model in UML for the domain of an electrical
power system. This type of a domain model is imperative to establish a common vocabulary between various
independent parties. Figure 15-1 shows the CIM connectivity model to illustrate what sort of entities are situated
inside CIM . The connectivity model contains elements to describe physical connections inside a power network.

 Figure 15-1. CIM connectivity model (we will use the switch/node model intended for distribution networks).

 2 The amount and granularity of data is vastly bigger in distribution networks than in transmission ones (between power
generators and utility companies). This is also true for the frequency of changes in the network. I’ll not delve into another
reason to trade data between utility organizations, which is related to the regulation of an electrical power market.

CHAPTER 15 ■ THE CORE JSON API

233

 To express how equipment of a network is interconnected you can use instances of Terminal and
 ConnectivityNode classes. A piece of conducting equipment usually has two terminals (e.g., a regular
disconnector), or just one (e.g., the ground disconnector). Equipment terminals are joined via an instance of
a ConnectivityNode . Figure 15-2 shows a simplified network model (e.g., the busbar sections are omitted),
and its translation into CIM.

 Serialization of a Power Network with CIM/XML
 UML diagrams are not amenable for a direct machine processing. Therefore, it is necessary to specify the
set of rules and message structures to encode the CIM model into a form understandable by computers.
The Knowledge Representation concept proved to be a good match here. Leveraging the Resource
Description Framework (RDF) and its associated schema (contains instructions about valid statements
inside an RDF document) enables CIM models to be represented in a desired format. We will see shortly that
comprehending the basics of RDF is crucial to grasp how JSON API handles resources.

 In the RDF’s data model, a resource is any identifiable entity. RDF relies on the URI for resource
identification. A property of a resource is its characteristic, which can be designated by a value . To avoid
ambiguities in the vocabulary (naming of properties), a property is also associated with a URI. An ordered
triple 3 (resource, property, value) is the unit of information in RDF, and it is called a statement . We can also
portray this triple as (subject, predicate, object). The object may be a raw value (e.g., string, number, etc.), or a
reference to another resource.

 Figure 15-2. Simplified network diagram with the corresponding CIM classes in abbreviated form.

 3 These triples can be easily visualized as a graph.

CHAPTER 15 ■ THE CORE JSON API

234

 The serialization format of CIM is CIM/XML. 4 It is an application of RDF on CIM using XML as a
backbone message format. A valid CIM/XML document conforms to the CIM/XML schema (much like valid
XML conforms to the matching XML schema). There are three possible approaches to serializing a CIM
network model into CIM/XML:

 1. Using a flat structure.

 2. Embedding resources inside each other; that is, applying a recursive style.

 3. Using a hybrid variant.

 Here is the abridged CIM/XML document representing the network shown in Figure 15-2 (the
boilerplate XML is omitted to reduce space, the equipment’s electrical properties are left out, and almost all
connectivity data is removed). This document is produced using the third approach from the preceding list.

 <cim:Company ID="Company_01" CompanyName="Example Electrical Company, Inc.">
 <cim:CompanyDescription>
 Learner’s electrical utility organization.
 </cim:CompanyDescription>
 </cim:Company>

 <cim:Substation rdf:ID="Substation_01">
 <cim:IdentifiedObject.name>HV/MV 1</cim:IdentifiedObject.name>
 <cim:MemberOfCompany rdf:resource="#Company_01">
 <cim:Contain>
 <cim:Breaker rdf:ID="Breaker_01">
 <cim:IdentifiedObject.name>High Voltage Breaker 1</cim:IdentifiedObject.name>
 <cim:Switch.open>NO</cim:Switch.open>
 </cim:Breaker>
 </cim:Contain>
 </cim:Substation>

 <cim:EquivalentSource rdf:ID="Source_01">
 <cim:IdentifiedObject.name>High Voltage Source 1</cim:IdentifiedObject.name>
 <cim:Equipment.MemberOf_EquipmentContainer rdf:resource="#Substation_01" />
 </cim:EquivalentSource>

 <cim:Terminal rdf:ID="T_01">
 <cim:Terminal.ConnectivityNode rdf:resource="#CN_01" />
 <cim:Terminal.ConductingEquipment rdf:resource="#Source_01" />
 </cim:Terminal>

 <cim:ConnectivityNode rdf:ID="CN_01">
 <cim:ConnectivityNode.MemberOf_EquipmentContainer rdf:resource="#Bay_XXX" />
 </cim:ConnectivityNode>

 <cim:PowerTransformer rdf:ID="PowerTransformer_01">
 <cim:ConductingEquipment.phases>ABC</cim:ConductingEquipment.phases>
 <cim:Equipment.MemberOf_EquipmentContainer rdf:resource="#Substation_01" />
 <cim:Contain>
 <cim:TransformerWinding rdf:ID="TransformerWinding_01">
 <cim:TransformerWinding.windingType>PRIMARY</cim:TransformerWinding.windingType>
 <cim:TransformerWinding.connectionType>WYE (Y)</cim:TransformerWinding.connectionType>

CHAPTER 15 ■ THE CORE JSON API

235

 <cim:TransformerWinding.grounded>YES</cim:TransformerWinding.grounded>
 </cim:TransformerWinding>
 <cim:TransformerWinding rdf:ID="TransformerWinding_02">
 <cim:TransformerWinding.windingType>SECONDARY</cim:TransformerWinding.windingType>
 <cim:TransformerWinding.connectionType>Delta (D)</cim:TransformerWinding.
connectionType>
 <cim:TransformerWinding.grounded>NO</cim:TransformerWinding.grounded>
 </cim:TransformerWinding>
 </cim:Contain>
 </cim:PowerTransformer>

 <cim:Bay rdf:ID="Bay_01">
 <cim:IdentifiedObject.name>Breaker Bay</cim:IdentifiedObject.name>
 <cim:Bay.MemberOf_Substation rdf:resource="#Substation_01" />
 </cim:Bay>

 <cim:Breaker rdf:ID="Breaker_02">
 <cim:IdentifiedObject.name>High Voltage Breaker 2</cim:IdentifiedObject.name>
 <cim:Switch.open>NO</cim:Switch.open>
 <cim:ConductingEquipment.phases>ABC</cim:ConductingEquipment.phases>
 <cim:Equipment.MemberOf_EquipmentContainer rdf:resource="#Bay_01" />
 </cim:Breaker>

 The elements and attributes in this document are designated with proper namespaces (cim and rdf). 5
For example, cim:Substation represents a substation in the CIM model, and rdf:ID is an RDF resource
identifier. Namespaces are crucial here to separate different vocabularies inside the same XML document.
Moreover, a namespace is useful to specify the version number of a vocabulary. The cim namespace can be
defined as xmlns:cim=“ http://iec.ch/TC57/2006/CIM-schema-cim10 #” (often this URI is also a URL with
retrievable content describing the matching vocabulary). Versioning is an important topic in JSON API, too.

 Every CIM/XML document has a URI denoting its base “address.” It could be implicitly defined via the
server’s URL that created it, or it may contain an explicit xml:base attribute at the top. 6 An rdf:ID attribute’s
value is then attached to this base address to produce a global resource URI. To reference resources locally
(inside the same document) you can use rdf:resource with a relative reference. The same resource
identification machinery is also present in JSON API.

 Relationships between resources are specified via explicit references (e.g., cim:Equipment.MemberOf_
EquipmentContainer) or by using the cim:Contain construct. A consumer of a CIM/XML document must be
prepared for all possibilities. This complicates the document parsing process, and prevents efficient caching
of responses. For this reason, most servers generate flat CIM/XML documents to avoid these issues.

 Extending the CIM/XML Schema
 Suppose we would like to extend the CIM vocabulary by a new element to associate an oil capacity with
an oil-filled power transformer. This is straightforward to do in CIM/XML thanks to the distributed nature
of RDF, and that it is descriptive and not prescriptive. 7 We need to introduce a separate vocabulary with a

 4 CIM/JSON also starts to gain traction, and there are scientific papers published on this topic.
 5 The CIM/XML approach is in some way reminiscent of MOF (meta-object facility). See https://en.wikipedia.org/
wiki/Meta-Object_Facility .
 6 You can consult the XML Base specification at http://www.w3.org/TR/xmlbase/ for more details.
 7 A class definition in most OO languages is prohibitive regarding unknown elements. You cannot simply add an attribute
to a class without chaning the class definition. RDF tolerates such new additions. If something is not constrained, then it
is free content. Clients can deal with them in any way they want. RDF and OWL are about inference.

http://iec.ch/TC57/2006/CIM-schema-cim10
https://en.wikipedia.org/wiki/Meta-Object_Facility
https://en.wikipedia.org/wiki/Meta-Object_Facility
http://www.w3.org/TR/xmlbase/

CHAPTER 15 ■ THE CORE JSON API

236

designated URI. The vocabulary is actually a CIM/XML schema describing our extension. We also need
to publish it with a stable URI (there are lots of publicly available vocabularies on the Web for various
domains). Once this is done, we can incorporate our new element into a CIM/XML document just by
referencing our vocabulary’s URI in the corresponding namespace. 8

 If the new namespace is denoted by cim-ext , then we can describe a power transformer in the following
manner:

 <cim:PowerTransformer rdf:ID="PowerTransformer_XY">
 <cim:ConductingEquipment.phases>ABC</cim:ConductingEquipment.phases>
 <cim:Equipment.MemberOf_EquipmentContainer rdf:resource="#Substation_YYY" />
 < cim-ext:PowerTransformer.OilCapacity >100</ cim-ext:PowerTransformer.OilCapacity >
 </cim:PowerTransformer>

 By convention, clients who don’t “speak” the new language will ignore elements coming from an
unknown namespace (vocabulary). This same principle is also used in JSON API. These conditions allow the
schema to evolve through additive changes.

 Practical Guide to JSON API
 In this chapter we systematically introduce JSON API’s features starting with a simple construct, and
gradually boosting it up. We convert the CIM/XML document of a small power network into JSON API step
by step. You will notice how JSON API governs the interaction between a client and a server, and solves
recurring concerns in a systematized way. These aspects of JSON API are what differentiates it from bare
message format standards. CIM/XML doesn’t try to suggest, for example, how to request pagination, filter
results, update resources, and so on. Moreover, with JSON API a server fully controls what is exposed to
clients, and clients can learn the service graph by parsing what links are available in the response document.
A JSON API client is able to decipher the interaction patterns with a server even if it knows nothing about
the particular content provided by a server. A server might even support HEAD requests on resources, and can
return allowed actions inside the HTTP Allow response header (e.g., Allow: GET,PATCH).

 The following subsections are organized as user stories. Each one has a clear goal, and introduces a new
feature of JSON API. The assumption is that we have a server available at http://example.com .

 Fetching an Individual Resource
 The goal is to fetch a JSON API document containing only a company information. A client needs to create
the following HTTP request: 9

 GET /companies/Company_01 HTTP/1.1
 Accept: application/vnd.api+json

 The server should return the following response:

 HTTP/1.1 200 OK
 Content-Type: application/vnd.api+json

 8 Version 1.1 of JSON API will use extension registries with URIs to introduce extensions, very similar to the way in
which RDF vocabularies are entered into a picture.
 9 We could also use HTTP 2.0 in our examples, but HTTP 1.1 is still prevalent at the time of this writing.

http://example.com/

CHAPTER 15 ■ THE CORE JSON API

237

 {
 "jsonapi": {
 "version": "1.0"
 },
 "links": {
 "self": "http://example.com/companies/Company_01"
 },
 "data": {
 "type": "companies",
 "id": "Company_01",
 "attributes": {
 "CompanyName": "Example Electrical Company, Inc.",
 "CompanyDescription": "Learner’s electrical utility organization."
 }
 }
 }

 It is very important both for a client and a server to reference the JSON API’s media type application/
vnd.api+json while exchanging data. The current version of JSON API doesn’t allow any additional
parameters inside this media type. Future versions of JSON API might use these parameters for versioning.

 A JSON API document used in requests and responses must be a valid JSON document, 10 with a JSON
object at its root. This JSON object is a top-level entity. It must contain at least one of the following members:

• data : is a representation of the returned resource (or collection of resources), usually
termed the document’s primary data.

• errors : is an array of error objects.

• meta : is a meta object that contains nonstandard meta-information (this is a topic in
Chapter 16).

 In our case we only have a data member. The errors member would be present in case of some error.
However, in this scenario no primary data would be returned. Besides the mandatory data member, our
document also contains some optional members:

• jsonapi : An object describing the server’s implementation and its capabilities.

• links : A links object related to the primary data.

 Our top-level links member contains a self -pointer. This contains a URL, which generated the current
response document. The self-link provides valuable historical data about the document’s origin.

 The primary data in our response document is a single resource object . It is identified by its type and id
members. We don’t directly use the CIM class Company here for a type . A namespace designator cannot be
part of the type. 11 Moreover, to comply with JSON API’s recommended practice of URL design, we set type in
plural form using lowercase letters. This translation technique will be used for all the other CIM classes, too.

 The pair (type , id) uniquely identifies a resource inside a document served from the same URL; that
is, belonging to the same base . JSON API calls all servers associated with the same base simply API . This is
again similar to what we have seen in CIM/XML.

 10 The JSON API has an associated JSON schema available at http://jsonapi.org/schema .
 11 Chapter 16 shows how to extend JSON API to include RDF constructs. It is not possible to just use "cim:Company" ,
because the type name must adhere to the same rules as member names in general (the colon is not allowed in member
names).

http://dx.doi.org/10.1007/978-1-4842-2196-9_16
http://jsonapi.org/schema
http://dx.doi.org/10.1007/978-1-4842-2196-9_16

CHAPTER 15 ■ THE CORE JSON API

238

 The attributes member contains an attributes object representing the company’s data (the attribute
names are reused from CIM). Individual members of an attributes object are called its fields . Although in our
document the fields are simple strings, they can be any valid JSON documents. The only restriction is that those
JSON documents must not contain relationships or links members, as these are reserved for future use.

 ■ Caution If you catch fields representing foreign keys then it is a sign that the corresponding document
only looks like JSON API (e.g., if a company would reference its owner as “owner_id” rather than using the
 relationships link). Moreover, you should be very careful when embedding a huge JSON document as an
attribute’s value. JSON API cannot help you access resources inside such monoliths.

 Fetching Related Resources with Autoinclusion
 The goal is to fetch a JSON API document containing data about a power transformer. This data should
include information about the transformer’s windings. A client needs to create the following HTTP request:

 GET /power-transformers/PowerTransformer_01 HTTP/1.1
 Accept: application/vnd.api+json

 The server should return the following response: 12

 HTTP/1.1 200 OK
 Content-Type: application/vnd.api+json

 {
 "jsonapi": {
 "version": "1.0"
 },
 "links": {
 "self": "http://example.com/power-transformers/PowerTransformer_01"
 },
 "data": {
 "type": "power-transformers",
 "id": "PowerTransformer_01",
 "attributes": {
 "ConductingEquipment-phases": "ABC"
 },
 "relationships": {
 "member-of": {
 "data": { "type": "substations", "id": "Substation_01" }
 },
 "windings": {
 "links": {
 "self":
 "http://example.com/power-transformers/PowerTransformer_01/relationships/windings",

 12 We are encoding CIM attributes by using a hyphen minus instead of a period, which is not allowed in member names.
The low line is still retained to be closer to CIM names, but JSON API recommends hyphen minus as a word separator.

CHAPTER 15 ■ THE CORE JSON API

239

 "related": "http://example.com/power-transformers/PowerTransformer_01/windings"
 },
 "data": [
 { "type": "transformer-windings", "id": "TransformerWinding_01" },
 { "type": "transformer-windings", "id": "TransformerWinding_02" }
]
 }
 }
 },
 "included": [{
 "type": "transformer-windings",
 "id": "TransformerWinding_01",
 "attributes": {
 "TransformerWinding-windingType": "PRIMARY",
 "TransformerWinding-connectionType": "WYE (Y)",
 "TransformerWinding-grounded": "YES"
 },
 "relationships": {
 "member-of": {
 "data": { "type": "power-transformers", "id": "PowerTransformer_01" }
 }
 },
 "links": {
 "self": "http://example.com/transformer-windings/TransformerWinding_01"
 }
 }, {
 "type": "transformer-windings",
 "id": "TransformerWinding_02",
 "attributes": {
 "TransformerWinding-windingType": "SECONDARY",
 "TransformerWinding-connectionType": "Delta (D)",
 "TransformerWinding-grounded": "NO"
 },
 "relationships": {
 "member-of": {
 "data": { "type": "power-transformers", "id": "PowerTransformer_01" }
 }
 },
 "links": {
 "self": "http://example.com/transformer-windings/TransformerWinding_02"
 }
 }]
 }

 The first new JSON API element here is the relationships member, the value of which is a relationships
object describing relationships between the primary resource and its related resources. In our case, the power
transformer has two relationships: member-of and windings . The former is a to-one , whereas the latter is a to-
many type of a relationship (our power transformer belongs to a single substation and has two windings).

 Inside the windings relationships object we have two additional members: links and data . The self -
pointer is the relationships link . Through this URL a client can manipulate the relationship; for example,
fetch related resources (in our case windings), add new resources to the relationship (like adding a third
winding to a transformer), remove resources, and so on. The related pointer is the URL through which

CHAPTER 15 ■ THE CORE JSON API

240

related resources are retrieved, if a client decides to issue a fetch request using the given link. The member-of
relationship only has a data member with a reference to the containing substation. Referencing resources
using a data member only consisting of a pair (type , id) is called a resource linkage . The pair itself is known
as a resource identifier object .

 The data member inside the windings relationships object is an array of resource identifier objects .
Each element references a specific transformer winding. Each winding is situated inside an array associated
with the include top-level member. The idea here is to automatically return all the windings of a power
transformer inside a single document: This approach saves a client from the burden of fetching them via a
separate GET request. On the other hand, if the number of related resources is vast then it is better to let a
client decide when and how to get them.

 A JSON API document that bundles the primary data with related resources is called a compound
document . In such a document all included (related) resources must be represented as an array of resource
objects in a top-level include member. Each included resource must be referenced inside the same
document (either from primary data or indirectly through the relationship objects). In our example, the
 windings relationship object contains two resource identifiers referencing the primary and the secondary
winding of a power transformer.

 Each transformer winding has a relationship with a resource identifier object pointing back to the
containing power transformer. In CIM/XML the windings were embedded inside a power transformer, but in
JSON API the structure is flat. Also, each winding has a resource link with a self -pointer. A client may hit the
server with the provided URL to get details about the given winding only.

 Fetching Relationships
 The goal is to fetch a JSON API document containing data about the windings relationship of a power
transformer. The response should contain as its primary data an array of resource identifier objects. A client
needs to create the following HTTP request (notice that the URL is the one given in the JSON API document
listed in the previous section).

 GET /power-transformers/PowerTransformer_01/relationships/windings HTTP/1.1
 Accept: application/vnd.api+json

 The server should return the following response:

 HTTP/1.1 200 OK
 Content-Type: application/vnd.api+json

 {
 "jsonapi": {
 "version": "1.0"
 },
 "links": {
 "self": "/power-transformers/PowerTransformer_01/relationships/windings",
 "related": "/power-transformers/PowerTransformer_01/windings"
 },
 "data": [
 { "type": "transformer-windings", "id": "TransformerWinding_01" },
 { "type": "transformer-windings", "id": "TransformerWinding_02" }
]
 }

CHAPTER 15 ■ THE CORE JSON API

241

 A client may now retrieve data about each winding by issuing the following GET request:

 GET /transformer-windings/TransformerWinding_XY HTTP/1.1
 Accept: application/vnd.api+json

 Fetching a Collection of Resources
 The goal is to fetch a JSON API document containing all substations present in the system (let us presume
that a company owns more than 100 various substations). The response should contain as its primary data
an array of resource identifier objects. 13 A client needs to create the following HTTP request:

 GET /substations HTTP/1.1
 Accept: application/vnd.api+json

 The server should return the following response:

 HTTP/1.1 200 OK
 Content-Type: application/vnd.api+json

 {
 "jsonapi": {
 "version": "1.0"
 },
 "meta": {
 "count": "100"
 },
 "links": {
 "self": "http://example.com/substations",
 "next": "http://example.com/substations?page[offset]=10&page[limit]=10",
 "last": "http://example.com/substations?page[offset]=90&page[limit]=10"
 },
 "data": [
 { "type": "substations", "id": "Substation_01" },
 { "type": "substations", "id": "Substation_02" },
 { "type": "substations", "id": "Substation_03" },
 { "type": "substations", "id": "Substation_04" },
 { "type": "substations", "id": "Substation_05" },
 { "type": "substations", "id": "Substation_06" },
 { "type": "substations", "id": "Substation_07" },
 { "type": "substations", "id": "Substation_08" },
 { "type": "substations", "id": "Substation_09" }
]
 }

 Due to a large number of substations the server has decided to apply pagination. In each round it
delivers nine references with pagination links. The next link tells how to request the next batch of data. The
 last is a pointer to the last batch of data. The server might also provide two additional links: first and prev .
These are useful when a client is in the middle of a collection.

 13 The response could also contain a full-blown representation of each entity. We are just hinting here at what we expect
from our fictitious server.

CHAPTER 15 ■ THE CORE JSON API

242

 The meta member contains the count field, which is an indicator of the collection’s size. It is convenient
to introduce such implementation-specific additions (outside of JSON API’s jurisdiction).

 A client might decide to ask a server for a specific batch of data using the page query parameter. For
example, this request would ask for substations at offset 50, with a batch size of 20: 14

 GET /substations?page[offset]=50&page[limit]=20 HTTP/1.1
 Accept: application/vnd.api+json

 This pagination is offset-based. However, a server might also support page-based as well as cursor-
based methods.

 Fetching Related Resources with Explicit Inclusion
 The goal is to fetch a JSON API document containing basic data about a substation. This data should include
information about bays. 15 A substation can contain multiple bays, and usually it is impossible to predict
whether a client will always want to receive these when requesting a substation. Therefore, it is left to a client
to explicitly ask for an inclusion of bays in a response. A client needs to create the following HTTP request
(notice the usage of the include parameter):

 GET /substations/Substation_01?include=bays HTTP/1.1
 Accept: application/vnd.api+json

 The server should return the following response:

 HTTP/1.1 200 OK
 Content-Type: application/vnd.api+json

 {
 "jsonapi": {
 "version": "1.0"
 },
 "links": {
 "self": "http://example.com/substations/Substation_01?include=bays"
 },
 "data": {
 "type": "substations",
 "id": "Substation_01",
 "attributes": {
 "IdentifiedObject-name": "HV/MV 1"
 },
 "relationships": {
 "member-of": {
 "data": { "type": "companies", "id": "Company_01" }
 },

 14 The [and] characters need to be URL encoded, but it is not done here to increase readability.
 15 A bay is a container for grouping equipment connected in some predefined manner. Inside a typical substation you will
encounter many instances of bays, but most of them are of the same type. In other words, the number of topologically
different bays is not that big. Using bays could reduce the complexity of a network, hence, they are kind of an abstraction
to reason about a power grid.

CHAPTER 15 ■ THE CORE JSON API

243

 "bays": {
 "links": {
 "self": "http://example.com/substations/Substation_01/relationships/bays",
 "related": "http://example.com/substations/Substation_01/bays"
 },
 "data": [
 { "type": "bays", "id": "Bay_01" }
]
 }
 }
 },
 "included": [{
 "type": "bays",
 "id": "Bay_01",
 "attributes": {
 "IdentifiedObject-name": "Breaker Bay"
 },
 "relationships": {
 "member-of": {
 "data": { "type": "substations", "id": "Substation_01" }
 }
 },
 "links": {
 "self": "http://example.com/bays/Bay_01"
 }
 }]
 }

 Notice that the other associated equipment (power transformer, breaker, etc.) is not included here,
because a client only asked for inclusion of bays. To also include a power transformer a client would need to
issue the next request:

 GET /substations/Substation_01?include=bays,power-transformers HTTP/1.1
 Accept: application/vnd.api+json

 Fetching a Partial View of an Individual Resource
 The goal is to fetch a JSON API document containing only data about a specified breaker. However, we are
only interested in seeing the status of a breaker; that is, is it ON or OFF. A client needs to create the following
HTTP request: 16

 GET /breakers/Breaker_2300?fields[breakers]=Switch-open HTTP/1.1
 Accept: application/vnd.api+json

 The server should return the following response:

 HTTP/1.1 200 OK
 Content-Type: application/vnd.api+json

 16 The [and] characters need to be URL encoded, but it is not done here to increase readability.

CHAPTER 15 ■ THE CORE JSON API

244

 {
 "jsonapi": {
 "version": "1.0"
 },
 "links": {
 "self": "http://example.com/breakers/Breaker_2300?fields[breakers]=Switch-open"
 },
 "data": {
 "type": "breakers",
 "id": "Breaker_2300",
 "attributes": {
 "Switch-open": "NO"
 }
 }
 }

 Note that the member-of relationship is not listed here, as it is excluded (relationship names are also
treated as fields). To include it a client would need to make the following request:

 GET /breakers/Breaker_2300?fields[breakers]=Switch-open,member-of HTTP/1.1
 Accept: application/vnd.api+json

 Creating a New Resource
 The goal is to create a new substation with a reference to the owner. The request should be processed in a
synchronous manner. A client needs to create the following HTTP request:

 POST /substations HTTP/1.1
 Content-Type: application/vnd.api+json
 Accept: application/vnd.api+json

 {
 "data": {
 "type": "substations",
 "attributes": {
 "IdentifiedObject-name": "HV/MV 101"
 },
 "relationships": {
 "member-of": {
 "data": { "type": "companies", "id": "Company_01" }
 }
 }
 }
 }

 The server should return the following response:

 HTTP/1.1 201 Created
 Location: http://example.com/substations/Substation_101
 Content-Type: application/vnd.api+json

 {

CHAPTER 15 ■ THE CORE JSON API

245

 "jsonapi": {
 "version": "1.0"
 },
 "links": {
 "self": "http://example.com/ substations/Substation_101"
 },
 "data": {
 "type": "substations",
 "id": "Substation_101",
 "attributes": {
 "IdentifiedObject-name": "HV/MV 101"
 },
 "relationships": {
 "member-of": {
 "data": { "type": "companies", "id": "Company_01" }
 }
 }
 }
 }

 The request doesn’t contain an id member, because a client leaves the job of generating a resource
identifier to a server. Of course, a client can provide an identifier, but in this case it would be a client’s
responsibility to make it globally unique. In the case when a server creates an identifier (like in our case)
then it must respond with a full resource object. It would be silly to respond with 204 No Content . At any
rate, the request must be processed in an atomic fashion by a server. It cannot happen, for example, that the
new substation is created without the specified relationship (as given in the HTTP request body).

 Updating a Resource
 The goal is to update the owner for a substation. It is assumed that the server will not alter attributes except
those specified in the request. A client needs to create the following HTTP request:

 PATCH /substations/Substation_01 HTTP/1.1
 Content-Type: application/vnd.api+json
 Accept: application/vnd.api+json

 {
 "data": {
 "type": "substations",
 "id": "Substation_01",
 "relationships": {
 "member-of": {
 "data": { "type": "companies", "id": "Company_02" }
 }
 }
 }
 }

 The server should return a 204 No Content status code without a response document. All omitted fields
in the request should retain their current value; that is, the server cannot treat them as null .

CHAPTER 15 ■ THE CORE JSON API

246

 The preceding request has updated the member-of relationship by updating the resource itself.
However, relationships can be managed by directly hitting the relationships link with PATCH (update), POST
(create), and DELETE (remove) requests. A change in the relationship doesn’t affect the target resource(s);
that is removing a related resource from a relationship will not automatically delete that resource.

 When updating a to-many relationship, a client could specify multiple resources at once. The HTTP
 PATCH request must be executed in an atomic fashion, so the whole bulk update must either completely
succeed or fail. This is the reason servers may choose to disallow such bulk updates. In this case a server will
return a response with a 403 Forbidden status code .

 Deleting a Resource
 The goal is to delete a substation. The request should be processed in a synchronous manner. A client needs
to create the following HTTP request:

 DELETE /substations/Substation_01 HTTP/1.1
 Accept: application/vnd.api+json

 If the deletion is successful, then the server responds with a 204 No Content status code.

 Summary
 We have seen that JSON API = message format + interaction rules, which combined offers a unified way to
work with resources. There are many aspects of JSON API, which are not exemplified in this chapter, such as
the following:

• Sorting.

• Filtering.

• Custom query parameter handling.

• Error processing.

• Asynchronous processing.

 You can find information about these in the JSON API specification. There is also an excellent
discussion forum available at http://discuss.jsonapi.org .

 ■ Tip To practice interaction with a sample JSON API server you can visit the following open source project:
 https://github.com/endpoints/endpoints-example .

 SERVICE GRAPH CREATION

 Validating That JSON API Is Based on HATEOAS (Hypermedia as the Engine of
Application State)

 Write a JSON API client to generate a service graph (assume that it is small) for content provided by
an arbitrary JSON API server. Your graph traversal should start from the server’s root URL. You can

http://discuss.jsonapi.org/
https://github.com/endpoints/endpoints-example

CHAPTER 15 ■ THE CORE JSON API

247

serialize the output using the GraphML File Format (visit http://graphml.graphdrawing.org for more
information). You could use the sample server mentioned in the summary section to test your client.

 The graph should be made up of nodes and directed links. A node would be a resource identifier object.
Two nodes are connected if there is a link between them; that is, a resource object representation of
the first node points to the second one. A link has to be labeled with a (relationship name, URL) pair
extracted from the resource object associated with the first node. Additionally, you can attach allowed
actions on resources (nodes), in case a server supports the HTTP HEAD request.

 If your client really rocks, then don’t forget to publish it as well as make an announcement on the JSON
API’s discussion forum!

 References
 1. Uslar, M., M. Specht, S. Rohjans, J. Trefke, and J. M. González. The Common

Information Model CIM IEC 61968/61970 and 62325: A Practical Introduction to
the CIM. New York: Springer, 2012.

 2. JSON API Specification 1.0. http://jsonapi.org/format/

 3. Abelson, Harold, Gerald Jay Sussman, and Julie Sussman. Structure and
Interpretion of Computer Programs, Second Edition. Cambridge, MA: MIT Press,
1999.

 4. deVos, A., S. E. Widegren, and J. Zhu. “XML for CIM Model Exchange.” Paper
presented at the Power Ind. Comput. Applicat. Conference, Sydney, Australia,
2001. http://www.langdale.com.au/PICA/CIMXML.pdf

 5. Popović, Dragan, Ervin Varga, and Zvezdana Perlić. “Extension of the Common
Information Model with a Catalog of Topologies.” IEEE Transactions on Power
Systems, Volume 22, Number 2, May 2007.

 6. Tanenbaum, Andrew S., and Maarten Van Steen. Distributed Systems: Principles
and Paradigms, Second Edition. Upper Saddle River, NJ: Pearson, 2007.

http://graphml.graphdrawing.org/
http://jsonapi.org/format/
http://www.langdale.com.au/PICA/CIMXML.pdf

249© Ervin Varga 2016
E. Varga, Creating Maintainable APIs, DOI 10.1007/978-1-4842-2196-9_16

 CHAPTER 16

 Evolving the JSON API

 There is no one-size-fits-all solution, 1 as every specification eventually needs to evolve. There are many
reasons for this, 2 but the most prominent one is that software needs to adapt to a changing environment, and
has to support new use cases. A message format is “something others can depend on” and as such it is part
of the API of one’s system. 3 Hence, it needs to be flexible enough to address the demands for new kinds of
data. To make a message specification reusable across disparate business and technology domains, it must
be designed for extension and evolution. This is very similar to the notion of a reusable class in OOP, where
reusability doesn’t happen by chance, and requires a careful approach (the class has to be designed for
reuse). Besides the reasons related to new messages, the JSON API could also expand due to new interaction
models and features. We have seen in the previous chapter that the JSON API is a conventional interface
rather than a simple message specification.

 A Case Study of Integrating Disparate Data Sources
 This example tries to answer the question of whether you need anything more advanced than the core JSON
API. Suppose we would like to implement a blog portal that consumes blog posts from different sites (we will
assume that example1.com and example2.com are independent blog sources). Our goal is to try to coalesce
posts according to some criteria. We presume that the messages from those sites are already delivered in the
JSON API format. The following is the contrived message received from example1.com .

 {
 "links": {
 "self": "http://example1.com/posts",
 "next": "http://example1.com/posts?page[offset]=2",
 "last": "http://example1.com/posts?page[offset]=10"
 },
 "data": [{
 "type": "posts",
 "id": "1",
 "attributes": { "content": "It is easy to extend the JSON API!" },

 1 There are unisex eyeglass frame designers who think that this is feasible. This is the principal reason why I always have
a hard time finding myself a comfortable frame.
 2 For a more rigorous treatment of this topic consult the “Program Evolution Dynamics” article at http://
iansommerville.com/software-engineering-book/web/program-evolution-dynamics/ .
 3 Of course, we need to be careful to avoid including everything as an API. Protocols are definitely part of it, and in this
respect JSON API plays an important role in specifying interaction patterns between services.

http://iansommerville.com/software-engineering-book/web/program-evolution-dynamics/
http://iansommerville.com/software-engineering-book/web/program-evolution-dynamics/

CHAPTER 16 ■ EVOLVING THE JSON API

250

 "relationships": {
 "author": {
 "links": {
 "self": "http://example1.com/posts/1/relationships/author",
 "related": "http://example1.com/posts/1/author"
 },
 "data": { "type": "people", "id": "10" }
 },
 "comments": {
 "links": {
 "self": "http://example1.com/posts/1/relationships/comments",
 "related": "http://example1.com/posts/1/comments"
 },
 "data": { "type": "comments", "id": "1" }
 }
 },
 "links": { "self": "http://example1.com/posts/1" }
 }],
 "included": [{
 "type": "people",
 "id": "10",
 "attributes": {
 "first-name": "Ervin",
 "last-name": "Varga",
 "username": "ervin.varga"
 },
 "links": {
 "self": "http://example1.com/people/10"
 }
 },
 {
 "type": "comments",
 "id": "1",
 "attributes": { "body": "I like this post!" },
 "relationships": {
 "author": { "data": { "type": "people", "id": "11" }
 }
 },
 "links": {
 "self": "http://example1.com/comments/1"
 }
 }]
 }

 Next is the contrived message received from example2.com .

 {
 "links": {
 "self": "http://example2.com/articles",
 "next": "http://example2.com/articles?page[number]=2",
 "last": "http://example2.com/articles?page[number]=7"

CHAPTER 16 ■ EVOLVING THE JSON API

251

 },
 "data": [{
 "type": "articles",
 "id": "1",
 "attributes": { "text": "We use JSON API to gain flexibility!" },
 "relationships": {
 "author": {
 "links": {
 "self": "http://example2.com/articles/1/relationships/author",
 "related": "http://example2.com/articles/1/author"
 },
 "data": { "type": "persons", "id": "5" }
 },
 "comments": {
 "links": {
 "self": "http://example2.com/articles/1/relationships/comments",
 "related": "http://example2.com/articles/1/comments"
 },
 "data": { "type": "comments", "id": "1" }
 }
 },
 "links": { "self": "http://example2.com/articles/1" }
 }],
 "included": [{
 "type": "persons",
 "id": "5",
 "attributes": {
 "name": "Ervin Varga",
 "user-id": "evarga"
 },
 "links": {
 "self": "http://example2.com/persons/5"
 }
 },
 {
 "type": "comments",
 "id": "1",
 "attributes": { "text": "We also use JSON API!" },
 "relationships": {
 "author": { "data": { "type": "persons", "id": "21" }
 }
 },
 "links": {
 "self": "http://example2.com/comments/1"
 }
 }]
 }

 These messages appear to follow the same structure, and have a common subject. If humans would need
to parse them, this statement would be absolutely true. Unfortunately, what is intuitive and straightforward
for us doesn’t mean that it is understandable for machines, too. Table 16-1 contains a list of all semantic

CHAPTER 16 ■ EVOLVING THE JSON API

252

differences; that is, all variations excluding the values of fields (e.g., a concrete content of a post, comment,
identifier values of entities, etc.). In a real-world scenario, these messages would diverge even more (e.g.,
comments as a type would be probably denoted differently, the name of the relationships will differ, etc.).

 Except for the disparity in the pagination mechanism , all other variations do degrade our ability to
efficiently combine these messages. For example, we need to somehow convey the information to our
program that name is a composite field , and that the first name and the last name are separated by a space. 4
Obviously, the JSON API specification doesn’t encompass all message instances, consequently can’t support
all of them in a unified manner. Let’s analyze our options here.

 1. Coordinate the effort to unify the message formats produced by the blog sites.
This is not a realistic endeavor. Usually, those sites are external entities out of our
control. Even if we could by some magic succeed in this mission, it would be a
matter of time before we would encounter a new blog source.

 2. Incorporate the specifics of each blog site into the blog portal. This is again a
troublesome approach, as it will introduce hidden couplings between the portal
and external blog sites. Moreover, this approach cannot scale.

 3. Enrich the input messages with additional information. The idea is to attach a
kind of a dictionary to each message to translate foreign terms into a common
vocabulary. 5 It is much faster to append additional data than to perform a full
translation. The portal could be devised to expect such a dictionary irrespective
of who created it (the remote site or the site-specific interceptor).

 Table 16-1. The List of Semantic Differences Between Messages

 Example1.com Example2.com

 Uses the offset field for pagination Uses the number field for pagination

 The type of a blog post is posts The type of a blog post is articles

 The content of a post is denoted as content The content of a post is denoted as text

 The content of a comment is denoted as body The content of a comment is denoted as text

 The type of an entity associated with the author
relationship is people

 The type of an entity associated with the author
relationship is persons

 The first name of an author is denoted as
 first-name

 The first name of an author is bundled inside a name field

 The last name of an author is denoted as
 last-name

 The last name of an author is bundled inside a name field

 The username of an author is denoted as
 user-name

 The username of an author is denoted as user-id

 4 At this moment, we can’t even be sure whether this assumption will always hold. Can the name field contain a middle
name, as well? Is it always the case that a single space character will delimit parts of a name?
 5 This message preprocessing could be implemented using the Interceptor design pattern.

CHAPTER 16 ■ EVOLVING THE JSON API

253

 The core JSON API allows us to insert meta information into a message via the meta member, which
may contain an arbitrary number of custom fields. The final question is how to structure the dictionary
(we will keep the elaboration comprehensible, without bringing in RDFS constructs like <term 1>
rdsf:subPropertyOf <term 2>). One solution is to leverage Semantic Web technologies (it is an enabler of a
vision to interlink web data through data stores, common vocabularies, and rules to handle data). We use
here the FOAF linked data system to resolve the author’s attributes. 6

 The next listing shows how such a meta member might look. Sticking this snippet into the original message
from example1.com 7 would adorn it with a linked data vocabulary. Because our portal presumably understands
the referenced FOAF vocabulary, it will be able to properly parse the matching JSON API message.

 "meta": {
 "dictionary": [{
 "name": "FOAF",
 "context": "http://xmlns.com/foaf/spec/",
 "people": "#term_Person",
 "first-name": "#term_givenName",
 "last-name": "#term_familyName",
 "user-name": "#term_accountName"
 }]
 }

 Based on this dictionary, for example, the member first-name maps onto a URL http://xmlns.
com/foaf/spec/#term_givenName . There is no chance now to misunderstand what first-name refers
to. The FOAF vocabulary precisely defines the term given name . Note that for people we are mapping the
term defined in a plural form onto the definition in a singular form. This is an aspect that needs additional
consideration, but that is outside of scope of this book. 8

 So far, so good. We have just managed to extend the JSON API with a new construct called linked data
vocabulary by introducing a member dictionary 9 inside a meta section. Meta information is the most
rudimentary facility built into the JSON API specification to expand its capabilities (see the sidebar “What Is
Meta?” later in this chapter for more information).

 Nevertheless, there are some drawbacks of leveraging only the meta feature, as listed here.

• It is not clear where to put the meta member. Should it be a top-level element, or only
associated with a specific type (in our case people)?

• How to interpret the dictionary element? How to publish this proprietary solution?

• How to maintain and evolve the proposal? How to version it?

 Luckily, JSON API also defines more advanced constructs to enrich its capabilities. Figure 16-1 gives
a broad overview of JSON API’s built-in mechanisms governing its evolution. We have just seen the meta
information in action (this is part of the core specification).

 6 Essentially, we refer to a public vocabulary defining terms related to persons. The idea is to associate a URI for each
term. In this manner, the first name will not be a bare field anymore, but a URI. The uniqueness of URIs guarantees the
exactness of terms. For more information about the FOAF project, visit www.foaf-project.org . There is also a JSON
linked data project called JSON-LD (json-ld.org).
 7 Similar content could be attached to example2.com .
 8 You can find more information about linked data at linkeddata.org .
 9 It is a dictionary because it maps one term onto another (using FOAF as the target vocabulary).

http://xmlns.com/foaf/spec/#term_givenName
http://xmlns.com/foaf/spec/#term_givenName
http://www.foaf-project.org/

CHAPTER 16 ■ EVOLVING THE JSON API

254

 ■ Note The rest of the chapter describes some extension mechanisms that were available with the 1.0
version of JSON API. These were experimental features, and will not be accessible in the future version of JSON
API (at the time of this writing they are marked as deprecated 10). Nonetheless, there are systems using the
currently offered facilities, and it is instructional to describe them anyhow (you might find them useful as ideas
in other contexts). Moreover, some features, like the Bulk extension, will probably reappear in a similar form.

 WHAT IS META?

 The JSON API specification only mentions that a meta information is any nonstandard element.
However, this is a pretty vague definition. Consider the case of a composite identifier, which is made up
of an entity’s relative key and a foreign key. Should the foreign key be a meta element or an attribute?
To answer such questions, you always need to consider the business viewpoint. If the foreign key is an
important part of an entity’s description, then it should be put into an attributes section.

 Another example is arbitrary content attached to an entity, which only needs to be stored without being
interpreted in any other way. This extra content could serve as a generic data placeholder for ad-hoc
extensions. Should this extra payload 11 be an attribute, or should it be treated as a nonstandard thing
(kind of an extension)? If it doesn’t possess a business value for the matching entity, then it is better
handled as a meta element.

 Whatever you choose as your guiding principle to declare something as a nonstandard and nonmeta
element, you need to be consistent. The worst situation is being inconsistent.

 Figure 16-1. The JSON API’S mechanisms governing its evolution.

 10 Deprecated doesn’t mean something is worthless to know about!
 11 You might even want to have a meta element called payload to play this role.

CHAPTER 16 ■ EVOLVING THE JSON API

255

 Finally, there is no point of entering a dreadful analysis paralysis state regarding some feature of the JSON
API. If you don’t contradict the specification in some rude fashion, then just make a decree, and move on!

 Main Directions to Evolve the JSON API
 The JSON API is made up of separate independent parts as depicted in Figure 16-1 . The core represents the
stable 1.0 specification of JSON API. The Extensions facility is similar in concept to a software module, and
the Profiles feature is based on RFC 12 6906. The main difference between an extension and a profile is that
the former could alter the semantics of the base specification. 13

 At this point, it is worthwhile to cite again the JSON API specification regarding its future versions: “New
versions of JSON API will always be backward-compatible using a never remove, only add strategy.”

 This is an extremely sound principle to follow in general. It tells us that we can rest assured, that any
addition to the JSON API will not break our current system. As a consequence, it will be always wise to
switch to the latest version, as it might deliver some useful novelty. Who knows? Maybe the next version will
support linked data out of the box.

 Extensions
 An extension can be imagined as a plug-in module (abbreviated as plug-in), which once “installed,” extends
JSON API’s capabilities in some particular way. This could be a pure incremental change (only adding new
stuff), or a combination of additions and updates with respect to the base specification. There are two types
of extensions : official and custom. Official extensions are publicly announced on the JSON API’s web site,
whereas custom ones are kept private, or simply not recognized by the JSON API’s maintainers.

 Anyone willing to effectively introduce a JSON API extension should do the following.

• Assign a unique identifier to the new extension.

• Offer a server, which implements the new extension.

• Offer a client library capable of consuming a JSON API message with the new
extension.

 For custom extensions it is important to avoid name collisions. To achieve this, you might want to prefix
your extension’s name with your organization’s unique identifier (e.g., my-organization-name.dictionary).
This is the same approach you would use to name packages in Java. Only official extensions are expected to
be without a prefix; that is, to belong to the “default” namespace.

 ■ Caution Here is the warning from the JSON API’s web site regarding considerations about supported
extensions by servers: “Since extensions can contradict one another or have interactions that can be resolved
in many equally plausible ways, it is the responsibility of the server to decide which extensions are compatible,
and it is the responsibility of the designer of each implementation of this specification to describe extension
interoperability rules which are applicable to that implementation.” 14

 12 The Request for Comments (RFC) is a set of publicly available documents related to Internet-connected systems
describing communication protocols, message formats, best practices, and so on.
 13 This is the major design concern that motivated the authors of JSON API to change the extension mechanism in the
next version.
 14 You definitely don’t want to come up with a “bright” idea of creating a custom extension for content negotiation (the
topic discussed in the next section). This setting would be reminiscent of the scenario of putting a can opener inside a can.

CHAPTER 16 ■ EVOLVING THE JSON API

256

 The best strategy is always to create extensions without altering the semantics of the base specification.
Also, you should never create an extension having another extension as a required dependency; that is, each
extension should be self-contained.

 Content Negotiation for HTTP-Based Services 15
 When two parties want to communicate, they need to understand each other. In this discussion, we would
like to see how a client and a server could successfully exchange JSON API messages possibly containing
extension(s). The sole preconditions are that both of them adhere to the JSON API specification , and that
they know how to negotiate JSON API extensions. Usually, the capabilities of the clients and servers will be
different, especially if they are developed by independent organizations.

 Figure 16-2 shows why is it important to know how to negotiate what is going to be delivered over the
wire in both directions. The server can’t offer to the client content containing a custom extension 3. Similarly,
the client can’t send bulk requests to the server using the official Bulk extension. Both of them need to
establish a common agreement about what content is acceptable. In our case, the common denominator is
the following set of extensions: JSON Patch and custom extension 1. We are assuming here that the parties
will always refer to the latest version of such extensions. The version handling is outside the scope of this book
and the JSON API specification. Versioning should be implemented as part of the extension itself.

 A possible way to support content negotiation is by using the supported-ext and the ext media type
parameters. The supported-ext is used by a server to advertise what it can offer, and the ext is an indicator
that what is inside the delivered message can be used by both parties, or what is mandated to be included in
a response (used by a client to tell the server what kind of message it expects). In our case, the server must
always return in the Content-Type HTTP response header the following content:

 application/vnd.api+json; supported-ext="jsonpatch,myOrg.ext1,myOrg.ext3"

 Figure 16-2. The importance of a content negotiation

 15 HTTP is the most prevalent protocol on the Web, but essentially any protocol could apply here, where a client and a server
can establish a bidirectional communication path (in this case the HTTP request/response headers would be emulated by
another means). In other cases, the mutual expectations will have to be arranged in advance, or over a separate channel.
Even though extensions in the next version will not use content negotiation, it is interesting to see how such negotiation
might work. After all, a much simplified content negotiation does constitute part of the core JSON API specification.

CHAPTER 16 ■ EVOLVING THE JSON API

257

 In this way, the client will receive information about what the server supports. A well-behaved client
will not try to push over content with an unknown extension (from the server’s perspective).

 If a request or a response message is formatted according to some set of extensions, then these must
be specified in the matching Content-Type HTTP header. For example, if a client sends a message using the
custom extension 1 then the Content-Type HTTP request header must contain the following:

 application/vnd.api+json; ext=myOrg.ext1

 Correspondingly, if a server sends a message using the custom extension 1 then the Content-Type
HTTP response header must contain the following:

 application/vnd.api+json; ext=myOrg.ext1;
 supported-ext="jsonpatch,myOrg.ext1,myOrg.ext3"

 A client might inform a server that it wants the response to be formatted according to some set of
extensions. A client specifies this inside the Accept HTTP header using the ext media type parameter. For
example, a client can ask a server to use the custom extension 1 by putting the following content into the
previously mentioned header:

 application/vnd.api+json; ext=myOrg.ext1

 Error Handling

 If a server doesn’t recognize at least one extension inside the Accept HTTP header, then it must return a
message with a 406 Not Acceptable status code.

 If a server doesn’t recognize at least one extension inside the Content-Type HTTP header (although
it is happy with the list given inside the Accept HTTP header), then it must return a message with a 415
Unsupported Media Type status code.

 A server must be conservative toward clients. This means that a server is not allowed to format a
message with an extension not specifically requested by a client.

 Example Content Negotiation Scenario

 Figure 16-3 shows a sample session 16 between a client and a server including the erroneous attempts. To reduce
visual clutter, the JSON API media type application/vnd.api+json was removed from all HTTP headers. The
same remark applies to the concrete JSON API messages exchanged between a client and a server.

 16 The sequence diagram shouldn’t be treated as a reference client/server dialog; that is, your session will surely differ.

CHAPTER 16 ■ EVOLVING THE JSON API

258

 Bulk Extension
 The name of this extension is bulk . It is introduced as a convenience for a client to be able to send multiple
requests at once for creating, updating, and deleting resources. Making a single call toward the server is
better than making many small calls. Each call over the network introduces an additional latency, and a
server might also perform better if it receives many requests in one batch.

 One of the crucial traits of a bulk request is atomicity. This means that all requests bundled together
have to be carried out as one atomic unit (either all succeed or all fail). The state of the server must reflect this
decision; that is, it can’t, for example, partially change the specified set of resources inside its own data store.

 Creating Multiple Resources at Once

 The client needs to send an HTTP POST request toward the server referencing the URL path for an endpoint,
which denotes a collection of resources. The request must include an array of resource objects as primary
data. Each resource should have at least a type member. The identifier (id member) is usually not needed,
as it is assumed that it is the server’s responsibility to create one automatically. However, this scheme might
be altered if the external entity wants to provide and control resource identifiers. Here is the sample request
to a pretend blog site for entering two new bloggers.

 Figure 16-3. A scenario where the client tries to get a resource from the server using both myorg.ext1 and
 myorg.ext2 extensions. After the server’s reply, the client only requires content with known extensions from the
server.

CHAPTER 16 ■ EVOLVING THE JSON API

259

 POST /persons HTTP/1.1
 Content-Type: application/vnd.api+json; ext=bulk 17

 {
 "data": [{
 "type": "persons",
 "attributes": {
 "name": "Ervin Varga",
 "user-id": "evarga"
 }
 }, {
 "type": "persons",
 "attributes": {
 "name": "Zorica Varga",
 "user-id": "zvarga"
 }
 }]
 }

 The batch request must contain homogenous resource types. In our case all resources have the same
 persons type.

 Updating Multiple Resources at Once

 The only difference compared to the previous case (resource creation) is that the client needs to make an
HTTP PATCH request. Also, each resource should at least contain a type and id members. Here is the sample
request to a pretend blog site for updating the usernames of the previously created bloggers.

 PATCH /persons HTTP/1.1
 Content-Type: application/vnd.api+json; ext=bulk

 {
 "data": [{
 "type": "persons",
 "id": "1",
 "attributes": {
 "user-id": "ervin.varga"
 }
 }, {
 "type": "persons",
 "id": "2",
 "attributes": {
 "user-id": "zorica.varga"
 }
 }]
 }

 17 There is a shortcut in handling extensions. If a client sends a message formatted with some extension(s) (as specified in
the Content-Type header), the server assumes that the client will also accept a response formatted with the referenced
extension(s).

CHAPTER 16 ■ EVOLVING THE JSON API

260

 Deleting Multiple Resources at Once

 The client needs to make an HTTP DELETE request. Each resource must only contain a type and id members.
Here is the sample request to a pretend blog site for deleting the previously created bloggers.

 DELETE /persons HTTP/1.1
 Content-Type: application/vnd.api+json; ext=bulk

 {
 "data": [
 { "type": "persons", "id": "1" },
 { "type": "persons", "id": "2" }
]
 }

 JSON Patch Extension
 The name of this extension is jsonpatch . It is intended to implement two related RFCs: HTTP PATCH
method (RFC 5789) and JSON Patch format 18 (RFC 6902). Both of these are associated with modification
(create, update, and delete) of entities (collections, resource, attributes, and relationships). The JSON Patch
extension also incorporates bulk operations. Because the HTTP PATCH method is atomic, this means that all
operations must succeed or fail without causing any state change on the server. Figure 16-4 demonstrates
the basic idea behind this extension (a variant of the Interpreter design pattern).

 Figure 16-4. Processing JSON PATCH operations

 18 The move , copy , and test operations are not yet supported.

CHAPTER 16 ■ EVOLVING THE JSON API

261

 ■ Note It is advisable to cite the Abstract section of RFC 6902: “JSON Patch defines a JSON document
structure for expressing a sequence of operations to apply to a JavaScript Object Notation (JSON) document;
it is suitable for use with the HTTP PATCH method. The "application/json-patch+json" media type is used to
identify such patch documents.”

 A JSON Patch request is made up of an array of heterogeneous operations. A server is free to impose
limits on the type, order, and count of operations. Each operation is a triple (op-code, relative path, value).
The relative path is combined with the base URL (the endpoint on the server hit by the HTTP PATCH request)
to form a target URL. This target URL must point to a valid server endpoint for handling collections,
resources, attributes, or relationships.

 It is also vital to note that the JSON Patch extension uses the JSON API’s media type instead of the one
referred to in RFC 6902. This highlights the nonscalability of media types and the importance of profiles . 19

 In the subsections that follow, we exhibit the same create, update, and delete actions as for the Bulk
extension, but this time using the JSON Patch extension.

 Creating Multiple Resources at Once

 The operation is add , the target path 20 must point to the end of a resource’s corresponding collection, and the
value is the resource itself.

 PATCH /persons HTTP/1.1
 Content-Type: application/vnd.api+json; ext=jsonpatch

 [
 {
 "op": "add",
 "path": "/-",
 "value": {
 "type": "persons",
 "attributes": {
 "name": "Ervin Varga",
 "user-id": "evarga"
 }
 }
 },
 {
 "op": "add",
 "path": "/-",
 "value": {
 "type": "persons",
 "attributes": {
 "name": "Zorica Varga",
 "user-id": "zvarga"
 }
 }
 }
]

 19 See the References at the end of this chapter for more information about profiles and why media types cannot scale.
 20 In this example, the base URL is /persons and the relative path is /- , so the target URL is /persons/- .

CHAPTER 16 ■ EVOLVING THE JSON API

262

 Updating Multiple Attributes at Once

 The operation is replace , the target path must point to the matching resource’s attribute, and the value is
the attribute itself.

 PATCH /persons HTTP/1.1
 Content-Type: application/vnd.api+json; ext=jsonpatch

 [
 {
 "op": "replace",
 "path": "/1/user-id",
 "value": "ervin.varga"
 },
 {
 "op": "replace",
 "path": "/2/user-id",
 "value": "zorica.varga"
 }
]

 Deleting Multiple Resources at Once

 The operation is remove , the target path must point to the matching resource, and the value must be omitted.

 PATCH /persons HTTP/1.1
 Content-Type: application/vnd.api+json; ext=jsonpatch

 [
 {
 "op": "remove",
 "path": "/1"
 },
 {
 "op": "remove",
 "path": "/2"
 }
]

 Updating To-One Relationships

 The operation is replace , the target path must point to the matching relationship, and the value is a resource
identifier object for an update, or null for a reference deletion. Here, we refer back to the content received
from the example1.com blog site. The author relationship for the post with id=1 references the person with
 id=10 . We first change it to 11, and afterward remove it from the relationship.

CHAPTER 16 ■ EVOLVING THE JSON API

263

 PATCH /posts/1/relationships/author HTTP/1.1
 Content-Type: application/vnd.api+json; ext=jsonpatch

 [
 {
 "op": "replace",
 "path": "",
 "value": { "type": "persons", "id": "11" }
 },
 {
 "op": "replace",
 "path": "",
 "value": null
 }
]

 Updating To-Many Relationships

 The operation can be add , replace , 21 or remove , the target path must point to the matching relationship,
and the value is an array of resource identifier objects, or an empty array to remove all references at once.
Here, we refer back to the content received from the example1.com blog site. The comments relationship
for the post with id=1 has a single comment with id=1 . We first change it to 5, then add two new comment
references, and finally remove one comment from the relationship.

 PATCH /posts/1/relationships/comments HTTP/1.1
 Content-Type: application/vnd.api+json; ext=jsonpatch

 [
 {
 "op": "replace",
 "path": "",
 "value": [{ "type": "comments", "id": "5" }]
 },
 {
 "op": "add",
 "path": "/-",
 "value": [
 { "type": "comments", "id": "8" },
 { "type": "comments", "id": "9" }
]
 },
 {
 "op": "remove",
 "path": "",
 "value": [{ "type": "comments", "id": "9" }]
 }
]

 21 In case of a replace operation the server could refuse to carry it out with an error response 403 Forbidden . Otherwise,
all replacements must succeed, or the server will return an error to the client.

CHAPTER 16 ■ EVOLVING THE JSON API

264

 Responses from the Server

 If the result of an operation doesn’t change anything on the client side, then the server must return a 204 No
Content status code. Otherwise, it must return a 200 OK status code, and pass in the HTTP response body
the representation of the altered resources. The ordering of resources must be the same as the ordering
of the operations in a client’s request. This case is especially important when creating resources without
explicitly providing identifiers; that is, when the server creates them.

 Suppose that the server has successfully executed the request from the earlier section “Creating
Multiple Resources at Once.” Apparently, the client will not know what the IDs of these newly created
resources are. This is the reason the server responds with the following content.

 HTTP/1.1 200 OK
 Content-Type: application/vnd.api+json; ext=jsonpatch

 [
 {
 "data": [{
 "type": "persons",
 "id": 100,
 "attributes": {
 "name": "Ervin Varga",
 "user-id": "evarga"
 }
 }]
 }, {
 "data": [{
 "type": "persons",
 "id": 101,
 "attributes": {
 "name": "Zorica Varga",
 "user-id": "zvarga"
 }
 }]
 }
]

 If the server experiences an error while executing the operations, then it might return error objects that
correspond to each operation. The ordering of these objects must match those of the operations. Inside the status
member of each error object, the server can put the corresponding status code. Of course, if the server returns
an error then it is the only content passed back to a client (this is according to the core JSON API specification).

 Profiles
 There is support for the ‘profile’ link relation type , as described in RFC 6906. The main motivation behind the
profile is to prevent the proliferation of custom media types, as the media type has a limited flat structure.

CHAPTER 16 ■ EVOLVING THE JSON API

265

 ■ Note Here is the full Abstract section from this RFC explaining the purpose of profiles: “This specification
defines the ‘profile’ link relation type that allows resource representations to indicate that they are following one
or more profiles. A profile is defined not to alter the semantics of the resource representation itself, but to allow
clients to learn about additional semantics (constraints, conventions, extensions) that are associated with the
resource representation, in addition to those defined by the media type and possibly other mechanisms.”

 A profile link should be put inside the links object of the dictionary resource. The main advantage
of a profile over ad-hoc meta information is that its link can be dereferenced for additional information.
Moreover, profiles are composable, because each profile is identified by a URL, and it is easy to create a new
profile based on a parent one. It is also straightforward to create mix-ins by including multiple profiles inside
the same JSON API message.

 Our dictionary meta information is a perfect candidate to be transformed into a profile. Here are the
steps needed to make it a reality:

 1. Create a public profile page on the Web documenting its purpose.

 2. Include the profile link in every message based on it.

 Assuming that we have published our profile on the Web, the links object of a blog resource’s
relationship called dictionary should look like what follows (we omit the self-link for brevity).

 "links": {
 "related": "http://my-organization/dictionaries/blog"
 }

 Now, the dictionary member is precisely defined, and the extension can be freely shared with the
JSON API community.

 Summary
 This chapter has introduced various ways to extend the JSON API’s capabilities and also explained the
necessity of doing that. You should be very careful not to abuse any of the presented mechanisms. Meta
information is the most susceptible part for such a misapplication. After all, everything can be put inside a
meta object, but then you will mimic those all-purpose procedures from the old days of C programming. 22

 In deciding whether to extend the JSON API or not, and how to do that once you decide to extend it, I
would suggest the following procedure:

 1. Check the latest JSON API specification, as it might already contain what you are
looking for. You should never reinvent the wheel. For example, JSON API already
has a solution for pagination, filtering, passing back errors, and so on.

 22 Many early C database libraries had a single procedure as their entry point. The signature was something like STATUS
process(void* rec, RECORD_TYPE rec_type) . You invoked different parts of the library by passing records of
different types. At least, nobody can question the achieved abstraction level here. Yeah, before you wonder, the STATUS
(and similarly the RECORD_TYPE) was just #define STATUS int .

CHAPTER 16 ■ EVOLVING THE JSON API

266

 2. Start with the simplest approach; that is, using meta information. If the extension
proves to be useful in a broader context, then you can create more advanced
constructs, like a profile or a custom extension.

 3. If your idea is rather complex, then it might deserve a full-blown JSON API
custom extension. Try to avoid changing the semantics of the base specification,
as your extension will not be reusable, nor easily composable with other
extensions. At least, properly document all compatibility aspects, and which
publicly known extensions might be affected by yours.

 JSON API-BASED LOG MESSAGES

 In a complex distributed system based on the service-oriented architectural style you will have a
mixture of services of different kinds: HTTP REST, RPC, and message queue based. To trace what is
happening across all these services you will definitely need to produce log messages (more precisely
machine-processable structured log events). The first step to have control is to collect all these logs in a
central place. 23 However, having all logs lumped together will not be of much use if you can’t correlate
them. In other words, you would like to have the ability to see for a particular business use case what
log events were generated in the system. For this you will need a log correlation identifier.

 One possible solution is to create a unique correlation ID at the use case entry service; that is, the service
initiating the matching use case. When this service calls another one, it will pass this correlation ID
further along the call chain. The principle is that each service will put this correlation ID inside every log
message. Now the conundrum is how to pass this data between services using disparate technologies. 24
If we assume that all services use the JSON API message format, then this identifier can be put inside
JSON API messages. Your task is to figure out what the options would be here: meta information, profile,
or custom extension. Discuss what the benefits and drawbacks of each approach would be.

 DOMAIN-SPECIFIC JSON API

 Extend JSON API’s capabilities by integrating a Jsonnet (jsonnet.org) templating engine. It would give
you the possibility to define dynamic constructs inside your JSON API document. The Jsonnet web site
contains lots of good examples of how the framework works. This extension of JSON API would likely
require a custom extension.

 23 There are multiple tools for this, like Elasticsearch/Logstash/Kibana stack, Loggly, Splunk, and so on.
 24 If all services are HTTP based, you might choose to use a custom HTTP request header; for example,
 X-log-correlation-id .

CHAPTER 16 ■ EVOLVING THE JSON API

267

 References
 1. Heath, Tom, and Christian Bizer, Linked Data: Evolving the Web into a Global

Data Space. http://linkeddatabook.com/book

 2. “JSON API Extensions.” http://jsonapi.org/extensions/

 3. Nottingham, Mark. “Profiles.” www.mnot.net/blog/2012/04/17/profiles

http://linkeddatabook.com/book
http://jsonapi.org/extensions/
http://www.mnot.net/blog/2012/04/17/profiles

269© Ervin Varga 2016
E. Varga, Creating Maintainable APIs, DOI 10.1007/978-1-4842-2196-9_17

 CHAPTER 17

 Katharsis

 This chapter is a real catharsis: By backing the ideas of previous chapters with a real framework and a sample
application, one gets a much clearer vision of what the JSON API can do. Moreover, by leaving the REST API to
be implicitly driven by JSON API , you can appreciate the level of consistency achieved in our tutorial service.
The best thing to note here is how much all this happens in the background, enabling true cluelessness
regarding aspects not directly associated with our problem domain. This chapter also demonstrates how
JSON API reuses concepts from the resource-oriented architecture style (see [1] for more details).

 There are three key enablers for achieving uniform REST APIs .

 1. HATEOAS as a characteristic of a Level 3 REST API, which allows a client to learn 1
dynamically the capabilities of the server. A client can create a complete service
graph offered by the server, using hypermedia links provided in responses. A
client doesn’t need to know in advance all the resource URLs, nor what actions
are permitted on those resources. Similarly, the server might choose to provide
customized offerings of resources based on the identity of the requester or state
of the resources. The interaction usually begins when a client hits the entry point
of a server to receive the first batch of links. In some sense, the server can impose
flow control over clients, as changes in links would dynamically alter the actions
and routes taken by clients.

 2. Demand-driven programming as a principle by which clients demand
computation according to their need (an example for this paradigm is the Java
8 Stream API, or for that matter, the streams computational model in functional
programming languages). In the case of a REST API this is tightly associated with
HATEOAS. JSON API’s support for caching relies on the fact that clients can build
up data about resources, and issue requests only for unknown ones.

 3. Elegant and powerful framework as a means to make this a reality; that is, to
efficiently support creating Level 3 REST APIs in Java using JSON API. The focus
of this chapter is the Katharsis framework 2 and how to leverage it to create
services providing homogeneous REST APIs.

 Besides directly supporting the goal of producing Level 3 REST APIs with JSON API, the designated
framework, in this case Katharsis (another good choice for Java is Elide), should also possess the following traits :

• Has to easily interplay with other established Java frameworks: Katharsis integrates
smoothly with Spring, and Dropwizard, with other frameworks leveraging the Java
Servlet API, JAX-RS, and so on.

 1 This is related to the conundrum teach vs. learn . Instead of teaching clients how to interact with a system, through
extensive documentation, we simply let them learn themselves what is doable via hypermedia links.
 2 Katharsis requires at least Java 7.

CHAPTER 17 ■ KATHARSIS

270

• Needs to be performant in handling JSON: Katharsis internally uses Jackson for JSON
manipulation and resource definition.

• Should support integration with both SQL and NoSQL data stores: This is especially
important for implementing resource repositories.

• Must have a vibrant supportive community : The best testimony for this is my
own bug report (https://github.com/katharsis-project/katharsis-core/
issues/345) on setting a relationship of a resource. In about an hour, one
community member responded with the patch, and sent back a pull request toward
the maintainers of Katharsis. There is nothing more frustrating than working with
an abandoned open source system, so having a community like the one gathered
around Katharsis is crucial.

 By relying on JSON API, services developed with Katharsis can effortlessly interoperate with other JSON
API-capable clients. It doesn’t even matter in what programming languages those clients are developed. To
showcase the various features of Katharsis, we use a pragmatic approach, and build a full-fledged HATEOAS
REST service using JSON API.

 ■ Tip You might want to go through the “Getting Started” guide of Katharsis (available at http://
katharsis.io/start) before proceeding with the rest of this chapter. It will introduce you to the very basics of
this framework, and show how to set up a project using the Maven build tool.

 Community Game Service
 We develop here a very simplified Community Game service supporting games like Warcraft. The aim is
to give a demonstration of how Katharsis handles resources and their relationships through the usage of
JSON API. The resource manipulation use cases revolve around CRUD operations with master, details, and
subdetails views. This is exactly where JSON API shines the most. Moreover, we will see how a generic JSON
API-aware client could figure out which resources and relationships are offered by our service, and what
actions are permitted on those resources.

 Figure 17-1 shows the conceptual model of our service using a UML class diagram. We are only
concerned for now with structural descriptions; that is, we are not modeling methods. Each entity
(stereotyped as resource) is inherited from the NamedEntity class, which contains the mandatory fields id
and name . The id is a globally unique identifier of a resource. At this level we don’t care how we are going
to produce such identifiers. The name of a resource is any arbitrary string, and it doesn’t need to be unique
(although usually it is). Using names is more user friendly than referencing identifiers.

https://github.com/katharsis-project/katharsis-core/issues/345)
https://github.com/katharsis-project/katharsis-core/issues/345)
http://katharsis.io/start)
http://katharsis.io/start)

CHAPTER 17 ■ KATHARSIS

271

 The Game is the central entity, and serves as a domain (namespace) for artifacts (Artifact) and heroes
(Hero). These contained elements are not shared among games; that is, they are existentially bound to one
specific game. A game could contain multiple artifacts and heroes , and have some number of registered
players (denoted by an interval [minPlayers, maxPlayers]).

 An Artifact is something heroes can collect in a game. A hero will boost its strength or health each time
it picks up an artifact. If an artifact is a treasure, then the player (Player) who controls the corresponding hero
will accrue wealth. This wealth could be used, for example, to buy artifacts from other players.

 A Hero possesses artifacts and participates in battles. The next three parameters dictate the overall power
of a hero: the number and types of artifacts, experience, and style. The attack, defense, and magic power of
a hero is equal to the sum of the attack, defense, and magic value of artifacts it owns. These three types of
 powers constitute the base power of a hero, which is limited. A hero cannot pick up weapons, which would
theoretically increase its power beyond limits. A hero accumulates experience by participating in battles.
Experience denotes the hero’s level of efficiency in using weapons. Finally, the style alters the base power
of a hero. For example, a warrior’s defense and attack power will prevail over the same defense and attack
power of a wizard (assuming they both have the same base power and experience). If a hero dies, then it is
resurrected with all artifacts lost. Both the artifacts and the hero again become freely available to all players.

 Finally, a Player is someone playing a game by controlling her or his heroes (a player may procure only
free heroes). The player must first register in a game to be able to play. If a player chooses to leave the game,
all of her or his heroes will “drop” their artifacts and become free.

 The model nicely segregates duties. Players accumulate wealth and control heroes, who further possess
weapons and health packs. The game provides the terrain where actions take place. A game is also a kind
of a container for artifacts and heroes. Apparently, the model allows having wealthy players who don’t
currently control a single hero. However, such wealthy players could become formidable by buying potent
artifacts for their heroes (once they find some in a game).

 There is another powerful trait of the model. It provides the backbone (core functionality) of a
community game. Concrete games can be instantiated by applying different configurations . Even the
algorithm to calculate the total power of a hero is outside the scope of the presented model.

 Figure 17-1. The conceptual model of our Community Game service 3

 3 See the sidebar “How to Maintain an API Documentation with Diagrams?” later in this chapter for more information
about how this and the other UML diagrams in this book were produced.

CHAPTER 17 ■ KATHARSIS

272

This minimalistic approach is the cornerstone in achieving a high level of reusability. Instead of trying to
squeeze every game-specific detail into the core service, we just let other services build on this one. A custom
game would delegate the basic resource (game, player, hero, or artifact) requests to the core Community
Game service; it would therefore just need to handle its own game-specific rules. This is very similar to the
principle of using composition over inheritance in the object-oriented world. Effective composition and
collaboration of services is what microservices architectural style tries to advocate and bring to the fore.

 HOW TO MAINTAIN AN API DOCUMENTATION WITH DIAGRAMS?

 The class diagram in Figure 17-1 as well as the introductory text about our service is usually part of
documentation. As a high-level overview, it is related to the API documentation. After all, our service’s
API exposes resourceswith definitions and relationships that are best conveyed by the previously
mentioned diagram. Maintaining such diagrams directly, or manually drawing them in some graphical
tool, is simply out of question. The only scalable solution is to specify them in a textual format. This
approach also nicely interplays with version control, because it is far easier to trace changes over
a textual file than a graphical one. At any rate, the goal is to always maintain a single truth without
duplication. The UML diagrams would usually represent high-level stable conceptual and behavioral
models on top of which the implementation is based. This layered documentation approach is beneficial,
as there are no overlaps, and so no need to worry about the issues with round-trip engineering (the
biggest problem in model-driven approaches backed by case tools). Having UML material in textual
format is especially handy in early phases of development, when there is a need to rapidly change
models until they stabilize (until the initial architecture is created).

 Here is the source code 4 to produce Figure 17-1 .

 @startuml
 class NamedEntity {
 id: Long
 name: String
 }
 class Game << resource >> {
 description: String
 minPlayers: Integer
 maxPlayers: Integer
 }

 class Artifact << resource >> {
 description: String
 value: [1..100]
 purpose: ["Defense", "Attack", "Magic", "Health", "Treasure"]
 }

 class Hero << resource >> {
 defensePower: [1..1000]
 attackPower: [1..1000]
 magicPower: [1..1000]

 4 I’ve used the PlantUML open-source tool (plantuml.com) capable of producing all sorts of UML diagrams (Figure 16-3
is an example of a sequence diagram).

CHAPTER 17 ■ KATHARSIS

273

 health: [1..100]
 style: ["Warrior", "Wizard"]
 experience: [1..100]
 }

 class Player << resource >> {
 wealth: Integer
 rank: ["Rookie", "Normal", "Master"]
 }

 NamedEntity <|-- Game
 NamedEntity <|-- Artifact
 NamedEntity <|-- Hero
 NamedEntity <|-- Player

 Game "1" *-- "many" Hero : introduces >
 Game "1" *- "many" Artifact : offers >
 Hero "0..1" o-- "many" Artifact : holds >
 Player "0..1" .. "many" Hero : controls >
 Player "many" . "many" Game : participate >

 hide methods
 @enduml

 Maintaining this source code is much easier than poking around in some GUI editor.

 The Architecture of the Community Game Service
 The starting point for the Community Game service was the Dropwizard + MongoDB example project of
Katharsis (see https://github.com/katharsis-project/katharsis-examples for all examples). 5 It is an
HTTP JAX-RS (Java API for RESTful Web Services) service using MongoDB as a data store. The service relies
on the following major frameworks.

• Katharsis : Implements the JSON API convention. Katharsis has many modules, and
allows integration with a JAX-RS provider, a servlet container, Spring, and Vert.x. We
are using it here integrated with a JAX-RS provider through Dropwizard.

• Morphia : Handles the MongoDB database operations. It uses the MongoDB client
and driver to communicate with the back-end data store.

• Dropwizard : Provides the backbone for our service (eeb server, JAX-RS support,
JSON parser, etc.). It is an umbrella, which integrates all major components into a
cohesive unit.

 Figure 17-2 shows the main architectural layers and components of the Community Game service. The
Dropwizard framework also includes many additional things not depicted here, like the logging facility,
metrics collector, and so on. You can consult its documentation for more details.

 5 Important refactoring happened on top of this (especially to eschew duplication of code), together with additions not
found in the examples shipped with Katharsis. Moreover, the service uses newer versions of libraries than the Katharsis
example code base.

https://github.com/katharsis-project/katharsis-examples for
https://github.com/katharsis-project/katharsis-examples for

CHAPTER 17 ■ KATHARSIS

274

 Figure 17-3 shows the service’s source folder structure, which is a Java 8 Maven project. You can take a
look into the pom.xml file, located inside the root folder, to see the list of dependencies.

 The following list briefly describes what each folder contains:

• entry* : Contains the main Dropwizard service class together with the custom
configuration class.

• model : Holds resource definition classes as depicted in Figure 17-1 .

• repository : Contains resource as well as relationship repository classes . These classes
are data access objects (DAO) for performing database CRUD operations over
resources and their relationships.

• mapper : Contains special exception mapper classes to produce proper error
responses, as specified by the JSON API standard.

• managed : Holds Dropwizard managed components. Currently, it wraps the
MongoDB client and driver, and sets up the Morphia instance.

 To build the Community Game service, issue the following command from the project’s root folder. 6

 Figure 17-2. The layered architectural model of the Community Game service, which “sits” on top of
Katharsis. MongoDB is assumed to be running in the background as a separate process, or on a different node.

 Figure 17-3. The project’s source folder structure. The output of a build is created in the target folder beneath
the root. The resources directory stores some JSON files for testing purposes.

 6 You must have Maven (mvn) and Java 8 JDK installed on your machine. You can also import the project into your
favorite IDE, and build and run it from there. IDEs are usually bundled with Maven support.

CHAPTER 17 ■ KATHARSIS

275

 mvn clean package

 To start the service, you need access to a running MongoDB database process (local or remote).
Assuming that you are running it on your local machine using the standard 27017 port number, you can start
the Community Game service by executing

 mvn package exec:exec

 To test whether the service is properly running (besides looking at the logs printed out at a console) you
can execute 7

 curl -v localhost:8080/community-game/games

 You should get the following response:

 * Trying ::1...
 * Connected to localhost (::1) port 8080 (#0)
 > GET /community-game/games HTTP/1.1
 > Host: localhost:8080
 > User-Agent: curl/7.43.0
 > Accept: */*
 >
 < HTTP/1.1 200 OK
 < Date: Sun, 26 Jun 2016 18:18:07 GMT
 < Content-Type: application/vnd.api+json
 < Content-Length: 44
 <
 * Connection #0 to host localhost left intact
 {"data":[],"included":[],"meta":{"count":0}}

 Because the database is empty 8 we don’t have any game yet. Another neat way to check what is going on
with the service is to check the Administrator web page provided out of the box by Dropwizard. Just navigate
to http://localhost:8080/admin in your browser, and follow the links. It is especially interesting to watch
the metrics.

 Configuring the Service
 The mechanism to configure the service is prescribed by the Dropwizard framework. The root folder
contains the configuration.yml YAML file, which has configuration sections for different parts of the
system. Some of those are related to the components of Dropwizard , and some to the service itself. Here is
the content of this file.

 katharsis :
 host: http://localhost:8080
 searchPackage: rs.exproit.community_game.domain
 webPrefix: /community-game

 7 You can use any other tool to make HTTP requests, but curl is my favorite. Don’t try to hit the given URL from a
browser, as it would probably download the response document instead of presenting it inside a window. This is due to
the fact that browsers still don’t recognize the JSON API media type.
 8 If you want to clean the database used by the Community Game service, then execute mongo community_game --eval
"db.dropDatabase();" .

http://localhost:8080/admin

CHAPTER 17 ■ KATHARSIS

276

 mongo :
 host: localhost
 port: 27017
 db: community_game
 user:
 password:

 server :
 type: simple
 applicationContextPath: /community-game
 adminContextPath: /admin
 connector:
 type: http
 port: 8080

 logging :
 level: ALL
 appenders:
 - type: console

 The sections katharsis and mongo are defined by the custom Dropwizard configuration class, whereas
the other two are processed automatically by the Dropwizard framework . It is instructive to see how this
custom configuration class looks.

 package rs.exproit.community_game;

 import io.dropwizard.Configuration;

 import javax.validation.Valid;
 import javax.validation.constraints.Max;
 import javax.validation.constraints.Min;
 import javax.validation.constraints.NotNull;

 public class DropwizardConfiguration extends Configuration {
 @Valid
 @NotNull
 public MongoConfiguration mongo = new MongoConfiguration();

 @Valid
 @NotNull
 public KatharsisConfiguration katharsis = new KatharsisConfiguration();

 public static final class MongoConfiguration {
 @NotNull
 public String host;

 @Min(1)
 @Max(65535)
 public int port;

 @NotNull
 public String db;

CHAPTER 17 ■ KATHARSIS

277

 @NotNull
 public String user;

 @NotNull
 public String password;
 }

 public static final class KatharsisConfiguration {
 @NotNull
 public String host;

 @NotNull
 public String searchPackage;

 public String webPrefix;
 }
 }

 The content of the YAML configuration file is mapped to class fields based on their name. Each field is
associated with a set of annotations 9 to validate its content. If any constraint is violated, then the system will
report an error. The @NotNull constraint is especially useful to prevent omitting a mandatory configuration
parameter. Such a deed usually causes strange NullPointerException s to appear during runtime .
Dropwizard will instantiate this configuration class and pass it as a parameter to the service’s run method
(see the DropwizardService class for more details, which essentially contains the service’s bootstrap code).

 Specifying Resources
 Each resource from Figure 17-1 is represented as a separate class. Here is the snippet (imports, Javadoc, and
the getters and setters are omitted) showing the base NamedEntity class .

 public abstract class NamedEntity {
 @Id
 @JsonApiId
 private ObjectId id;

 private String name;

 @JsonIgnore
 @Version
 private Long version;

 @JsonIgnore
 private Date createdAt = new Date();
 @JsonIgnore
 private Date updatedAt;

 @PrePersist
 void alterUpdatedAt() { updatedAt = new Date(); ...}

 9 These are part of the so-called Bean Validation API (http://beanvalidation.org).

http://beanvalidation.org/

CHAPTER 17 ■ KATHARSIS

278

 Our conceptual model in Figure 17-1 shows only the id and name properties. At that level of abstraction
it was the most prudent thing to do from the usefulness point of view. 10 Here, we see that the implementation
requires more fields. Moreover, the id field’s type is ObjectId , which serves globally unique identifiers.
Nevertheless, the most interesting phenomenon to notice is the use of various annotations. Figure 17-4
shows the three categories of these annotations, and how they nicely interoperate to boost the matching
class (see also the sidebar “Annotations vs. Interfaces” later in this chapter about how annotations can help
you in creating flexible APIs).

 Most annotations are intuitive and well documented by their implementing framework. The @
Version annotation deserves an extra explanation. This is a way to signal what field should be used
automatically by Morphia to implement optimistic locking. This is important when multiple clients
are trying to simultaneously update the same resource. The principle is that each client needs to
possess the latest version number to perform an update. Otherwise, the system will generate a
 ConcurrentModificationException exception. Optimistic locking is more sensible here than using coarse-
grained mutual exclusion. The assumption is that most clients will work with different resources at any
given moment in time. At any rate, this concurrency control is required when adding or removing multiple
resources to or from a relationship. This could map to atomicity, consistency, isolation, and durability
(ACID) properties of database transactions. Atomicity of updates is ensured via HTTP PATCH requests.
Durability is bounded by the time it takes to handle an HTTP request. Consistency of updates is guarded by
the optimistic locking. Isolation isn’t fully supported, as a client could load one resource after another, cache
them, and the view might not be consistent.

 The @PrePersist annotation is handy to alter the date and time of the last update to a resource. The
annotated method is automatically called by Morphia each time the corresponding resource is changed.

 Here is the snippet that shows how the Hero resource is implemented.

 @Entity("heroes")
 @JsonApiResource(type = "heroes")

 10 Don’t try to replace your programming language with UML, and start creating overly complicated “accurate” models
(unless you want to publish a scientific paper or impress your boss). They rarely achieve the desired effect, and present a
maintenance nightmare. Once upon a time, there was even a vision to only work through models, and leave the rest to a
fully integrated computer-aided software engineering (CASE) tool.

 Figure 17-4. Different categories of annotations interplay to produce a final feature-rich class. The @JsonApiId
is provided by Katharsis, the @JsonIgnore is defined by Jackson, and the rest is coming from Morphia.

CHAPTER 17 ■ KATHARSIS

279

 public final class Hero extends NamedEntity {
 @Min(value = 1, message = "Attack power cannot be lower than {value}.")
 @Max(value = 1000, message = "Attack power cannot be higher than {value}.")
 private short attackPower;

 @Min(value = 1, message = "Defense power cannot be lower than {value}.")
 @Max(value = 1000, message = "Defense power cannot be higher than {value}.")
 private short defensePower;

 @Min(value = 1, message = "Magic power cannot be lower than {value}.")
 @Max(value = 1000, message = "Magic power cannot be higher than {value}.")
 private short magicPower;

 @Min(value = 1, message = "Health cannot be lower than {value}.")
 @Max(value = 100, message = "Health cannot be higher than {value}.")
 private short health;

 @NotNull(message = "A hero must have a style.")
 @Pattern(regexp = "Warrior|Wizard", message = "A hero may be either a Warrior or a

Wizard")
 private String style;

 @Min(value = 1, message = "Experience cannot be lower than {value}.")
 @Max(value = 100, message = "Experience cannot be higher than {value}.")
 private short experience;

 @Reference
 @JsonApiToOne
 private Game game;

 @Reference
 @JsonApiToMany(lazy = false)
 @JsonApiIncludeByDefault
 private List<Artifact> artifacts = new ArrayList<>();

 @JsonIgnore
 private boolean available = true ; …}

 This class has four categories of annotations (the Bean Validation API constraints are also attached
to the fields). The artifacts field represents a one-to-many relationship type toward artifacts, which are
always included in the definition of a hero (see the @JsonApiIncludeByDefault Katharsis annotation). This
saves extra round trips between a client and a server, under an assumption that most clients will want to
know the details of the artifacts owned by a hero. A hero also has a reference toward the matching game.
Finally, the available field is a marker whether the hero is controlled by a player or is free.

 The Bean validation constraints are checked by Morphia each time a resource is saved into the database.
The MongoManagedImpl class’s constructor activates this feature by executing the following line of code:

 new ValidationExtension(morphia);

 In the case of a constraint violation, the system throws the ConstraintViolationException exception.
All exceptions are catched by the Katharsis exception handler, and are passed to the matching exception
mapper (in this case the ConstraintViolationExceptionMapper class). This mapper produces the JSON API
error response, as defined in the JSON API specification.

CHAPTER 17 ■ KATHARSIS

280

 Specifying Resource and Relationship Repositories
 Every resource and each of its relationships with other resources must be implemented by the matching
resource and relationship repository class, respectively. For example, the previously mentioned Hero
resource would require three classes: one resource repository class, and two relationship repository classes
(one is for the Hero -> Game relation, and the other one for the Hero -> Artifact relation). The resource
repositories are extended from the BaseResourceRepository abstract class, and the relationship repositories
from the BaseRelationshipRepository abstract class. Both of these are so-called annotated repositories .
Here is the abridged listing of the former.

 public abstract class BaseResourceRepository<Resource extends NamedEntity> {
 private static final Logger log = Logger.getLogger(BaseResourceRepository.class);

 private final Datastore datastore;
 private final Class<Resource> targetClass;

 public BaseResourceRepository(MongoManaged mongoManaged, Class<Resource> targetClass) {
 datastore = mongoManaged.getDatastore();
 this .targetClass = targetClass;
 }

 @JsonApiSave
 public Resource save(Resource entity) {
 Key<Resource> saveKey = datastore.save(entity);
 log.debug("Resource is successfully saved: " + entity);
 return datastore.getByKey(targetClass, saveKey);
 }

 @JsonApiFindOne
 public Resource findOne(ObjectId id, QueryParams requestParams) {
 Resource namedEntity = datastore.get(targetClass, id);
 if (namedEntity == null) {
 throw new ResourceNotFoundException("Cannot find a resource with id: " + id);
 }
 return namedEntity;
 }

 @JsonApiFindAll
 public Iterable<Resource> findAll(QueryParams requestParams) {
 return datastore.find(targetClass);
 }

 @JsonApiFindAllWithIds
 public Iterable<Resource> findAll(Iterable<ObjectId> ids, QueryParams requestParams) {
 return datastore.get(targetClass, ids);
 }

 @JsonApiDelete
 public void delete(ObjectId id) {
 datastore.delete(targetClass, id);
 log.debug("Resource with id=" + id + " is successfully deleted.");
 }

CHAPTER 17 ■ KATHARSIS

281

 @JsonApiMeta
 public MetaInformation getMetaInformation(Iterable<Resource> resources) {
 final List<Resource> resourceList = Lists.newArrayList(resources);

 if (resourceList.size() == 1) {
 final Resource primaryResource = resourceList.get(0);
 return new MetaInformation() {
 @SuppressWarnings("unused")
 public final Date createdAt = primaryResource.getCreatedAt();
 @SuppressWarnings("unused")
 public final Date updatedAt = primaryResource.getUpdatedAt();
 };
 } else {
 return new MetaInformation() {
 @SuppressWarnings("unused")
 public final int count = resourceList.size();
 };
 }
 }
 }

 The HeroRepository is a just a small type wrapper around the BaseResourceRepository class:

 @JsonApiResourceRepository(Hero.class)
 public final class HeroRepository extends BaseResourceRepository<Hero> {
 @Inject
 public HeroRepository(MongoManaged mongoManaged) {
 super(mongoManaged, Hero.class);
 }
 }

 An interesting detail in the implementation of the BaseResourceRepository class is the
 getMetaInformation method. This will attach inside a top-level meta section the date and time when the
primary resource is created and last updated, or it will embed the total number of resources (see the count
field) encompassed by the request (in the case of a collection of resources).

 The BaseRelationshipRepository class is a bit more complex, and has more template (Java generics)
parameters. However, it is also wrapped by concrete relationship classes. All type wrappers (as evident from
the HeroRepository class) contain an additional annotation @Inject . This is used by the Guice framework,
and dependency injection is set up inside the DropwizardService entry class.

 The save method is annotated with @SuppressWarnings("unchecked") . Often this should be a warning
sign, but it is okay to apply it here. First, this method is part of an abstract class, so all accesses are done from
the child classes, which definitely need to provide an extra protection. Second, none of these methods are
called directly by client programmers. They are all invoked by the framework itself. At any rate, if it is safe to
ignore a particular warning, then it should be silenced.

 ANNOTATIONS VS. INTERFACES

 Annotations are usually better when it comes to generating code based on their presence, or using
reflection to work with them. Generating code requires annotation processors. Reflection is (initially)
slow. Besides using annotations, it is also possible to define resource and relationship repositories

CHAPTER 17 ■ KATHARSIS

282

with interfaces (examine the ResourceRepository and the RelationshipRepository interfaces,
respectively). If you don’t want to write an annotation processor, and need (startup) speed, then it
is better to use an interface. However, a method signature declared inside an interface is rigid. It
cannot accept additional parameters (e.g., JAX-RS might deliver extra parameters, like an instance of
 ContainerRequestContext , an instance of SecurityContext , a cookie, or an HTTP header), unless
you apply the Request/Response pattern (see http://wiki.apidesign.org/wiki/RequestResponse).
Likewise, methods listed inside an interface have to be implemented. If a class doesn’t need them
all, then one option is to “implement” them by dummy methods, or another possibility is to throw the
 UnsupportedOperationException exception. You don’t have these limitations with annotations.

 You can easily combine annotations, as we have just seen. This is very cumbersome to achieve with
interfaces. This becomes obvious when you take a look at those Java marker interfaces (they don’t
enclose any method signature). An interface has to denote a viable abstraction in the system. If an
interface is used to modify the behavior of the class (e.g., the Cloneable interface with the broken
 clone method), then it is a clear code smell .

 Annotations can be applied at different granularities (class, method, or field). This is not possible with
interfaces. The JUnit framework switched to annotations (@Test) because of TestNg. The idea is to
entitle test methods with annotations instead of forcing you to extend the TestCase class. Therefore,
annotations might even help you to overcome the limitations of the programming language (e.g., single
inheritance in Java).

 Finally, it is straightforward to implement new annotations, and you could even use them to
autogenerate source code.

 A Sample Session with the Community Game Service
 This section presents a short session with the Community Game service (assuming it is already started up as
described earlier). The session includes the following tasks .

 1. Create a new game.

 2. Try to create another game using the wrong data.

 3. Increase the maximum number of players for the previously created game.

 4. Delete the game.

 The content of the data file game-1.json (situated inside the src/test/resources folder) for Step 1 is
given here.

 {
 "data": {
 "type": "games",
 "attributes": {
 "name": "Sample Community Game 1",
 "description": "This is the first game for testing purposes.",
 "minPlayers": 2,
 "maxPlayers": 4
 }
 }
 }

http://wiki.apidesign.org/wiki/RequestResponse

CHAPTER 17 ■ KATHARSIS

283

 The matching HTTP request is as follows (some extra newline characters are inserted here to make the
formatting nicer, but they should not appear on the command line).

 curl -v -X POST
 -H "Content-Type: application/vnd.api+json"
 -H "Accept: application/vnd.api+json"
 --data "@src/test/resources/game-1.json" localhost:8080/community-game/games

 We should get the next response from the server with the status code of 201 Created (only the JSON API
document is presented here in a pretty printed form).

 {
 "data": {
 "type":"games",
 "id":"577057ea5cdc7d272403e199",
 "attributes":{
 "maxPlayers":4,
 "minPlayers":2,
 "name":"Sample Community Game 1",
 "description":"This is the first game for testing purposes."
 },
 "relationships": {
 "artifacts":{
 "links":{
 "self": "http://localhost:8080/community-game/
 games/577057ea5cdc7d272403e199/relationships/artifacts",
 "related": "http://localhost:8080/community-game/
 games/577057ea5cdc7d272403e199/artifacts"
 },
 "data":[]
 },
 "heroes": {
 "links": {
 "self": "http://localhost:8080/community-game/
 games/577057ea5cdc7d272403e199/relationships/heroes",
 "related": "http://localhost:8080/community-game/
 games/577057ea5cdc7d272403e199/heroes"
 },
 "data":[]
 },
 "players": {
 "links": {
 "self": "http://localhost:8080/community-game/
 games/577057ea5cdc7d272403e199/relationships/players",
 "related": "http://localhost:8080/community-game/
 games/577057ea5cdc7d272403e199/players"
 }
 }
 },
 "links": {
 "self":"http://localhost:8080/community-game/games/577057ea5cdc7d272403e199"
 }

CHAPTER 17 ■ KATHARSIS

284

 },
 "included":[],
 "meta": { "createdAt":1466980330160, "updatedAt":1466980330182 }
 }

 The top-level self link points to this game instance (note that in your session the generated id value will be
different, and you will need to remember this). The relationship links provide information to a client about what
the other associated resources are. This is the HATEOAS in action. Of course, at this point they would return
an empty set, but they are clearly symbolized. The artifacts and heroes relationships do have an associated
 data section because these relationships are not lazy (unlike the players relationship). Issue the next command
(again, change the identifier 577057ea5cdc7d272403e199 to the value appropriate for your session):

 curl -v http://localhost:8080/community-game/games/577057ea5cdc7d272403e199

 You should receive the same JSON API document with the HTTP status code of 200 OK . Let’s now try to
create another game with the following wrong data (see the file game-wrong.json).

 {
 "data": {
 "type": "games",
 "attributes": {
 "name": "Sample Community Game - Wrong",
 "description": "This is the game for testing constraint violation.",
 "minPlayers": 1 ,
 "maxPlayers": 4
 }
 }
 }

 Because our service is handling community games, it is meaningless to allow single-player games.
After executing :

 curl -v -X POST
 -H "Content-Type: application/vnd.api+json"
 -H "Accept: application/vnd.api+json"
 --data "@src/test/resources/game-wrong.json" localhost:8080/community-game/games

 the service will respond with the HTTP status code of 409 Conflict , and pass back the following error
report :

 {
 "errors": [
 {
 "status":"409",
 "title":"Min. number of players cannot be lower than 2.",
 "source": {
 "pointer":"/data/attributes/minPlayers"
 }
 }
]
 }

CHAPTER 17 ■ KATHARSIS

285

 If you look into the @Min constraint , as defined in the Game resource class, you will notice there the exact
same message as inside the title field. Moreover, the source field contains the JSON pointer to the culprit.
If you want to make a partial change to a resource, then you should issue an HTTP PATCH request. Here is the
 command :

 curl -v -X PATCH
 -H "Content-Type: application/vnd.api+json"
 -H "Accept: application/vnd.api+json"
 --data '{"data": {"type": "games","attributes": {"maxPlayers": 20}}}'
 localhost:8080/community-game/games/577057ea5cdc7d272403e199

 The server will respond with the updated game representation and the HTTP status code of 200 OK .
To verify that the update was really successful you can issue the following command 11 (it just retrieves the
 maxPlayers field):

 curl -v --globoff
 http://localhost:8080/community-game/games/577057ea5cdc7d272403e199?fields[games]=maxPlayers

 The server will respond with the following document.

 {
 "data": {
 "type":"games",
 "id":"577057ea5cdc7d272403e199",
 "attributes": { "maxPlayers":20 },
 "relationships":{},
 "links":{ "self":http://localhost:8080/community-game/games/577057ea5cdc7d272403e199 }
 },
 "included":[],
 "meta": { "createdAt":1466980330160,"updatedAt":1466982657174 }
 }

 The prior request was an example of a sparse fieldsets usage . It is handled automatically for you by
the Katharsis framework. Other features, like sorting, grouping, and paging, need to be implemented in the
code. However, even in this case, you will get all input data (parsed from the URL) inside an instance of the
 QueryParams class .

 Finally, to delete our game you should issue the following command.

 curl -v -X DELETE http://localhost:8080/community-game/games/577057ea5cdc7d272403e199

 The server will respond with the HTTP status code of 204 No Content . If you now try to read back this
resource, then the service will respond with the HTTP status code of 404 Not Found , and pass back the
following error report.

 {"code":404,"message":"HTTP 404 Not Found"}

 11 Notice the --globoff option in the curl command.

CHAPTER 17 ■ KATHARSIS

286

 Summary
 The biggest part in our job of implementing the Community Game service revolved around the Java
packages containing model resources and repositories. The rest was all handled by the underlying
frameworks, like Katharsis, Dropwizard, and Morphia. This is the main goal that we aim to achieve by using
frameworks. We strive to reuse as much infrastructure code as possible, and just add our domain-specific
logic on top. In our case, Katharsis handles all the thorny aspects of the JSON API specification, and leaves to
us only the details that are application specific. Just imagine how much time we would need to implement
the Community Game service from scratch.

 This chapter’s text with the Community Game service source code doesn’t cover everything related to
the Katharsis framework. The investigation of the following features is left as an additional exercise:

• The @JsonApiLookupIncludeAutomatically annotation on relationship fields.

• Provisioning of links information in resource repositories (see the @JsonApiLinks
annotation).

• Filtering, grouping, sorting, and pagination through the usage of the QueryParams
object.

 EXTENDING THE TEST COVERAGE

 Unit and Integration Testing of Our Service

 The Community Game service is shipped with some unit and integration tests implemented with
the JUnit framework (visit the src/tests folder). The pom.xml file already contains the required
dependencies for this exercise. All tests based on the JUnit framework should run fast in a fully isolated
manner (this is especially true for short unit tests). For this reason, the Community Game service uses
 Fongo , which is a faked-out in-memory MongoDB in Java (see https://github.com/fakemongo/
fongo). You can see examples of its usage inside the service’s code base. Your task here is to extend the
number of unit and integration tests to cover most of the code base.

 The hardest part of writing integration tests revolves around controlling the database. You cannot just
demand to have a test database running somewhere ahead of executing the tests. All tests must be run
by the build tool without any user intervention. Moreover, the tests should be performant, so hitting a
remote database is out of the question.

 Another issue regarding database access is the ordering of tests. Your tests should be independent of
each other. It is very bad practice to execute tests in some predefined order. Therefore, before running
each test the preconditions related to data inside a database must be satisfied (irrespective of what
tests were run before the current one). Again, this is very hard to achieve having a real database running
in the background (let alone to think about using the production database, and messing it up).

 You might want to boost the build job with a test coverage reporting tool (e.g., Cobertura is very nice
and available at cobertura.sourceforge.net). Tracking test coverage is very important to pinpoint
weakly tested areas of the code base. As a quality assurance metric it shouldn’t be taken out of context;
that is, you might end up with 100% coverage, while still having bad tests. The goal is not to chase
percentage per se, but to boost your understanding about how well the system is covered with tests.
Totally untested parts of your program probably hide bugs, so by increasing the code coverage with
tests you’re actually lowering the risk of a production failure (risk mitigation technique in action).

https://github.com/fakemongo/fongo
https://github.com/fakemongo/fongo

CHAPTER 17 ■ KATHARSIS

287

 AUTOGENERATE TYPE WRAPPERS

 There are lots of manually written resource and relationship repository type wrappers in the code
base. There is a better way to implement them. Write a build plug-in (or an executable command-line
program) to automatically generate these wrappers. One approach is to use a separate input wrappers.
yml file. This file could have the following structure:

 resource:
 - Player
 - Game
 - Artifact
 - Hero
 relationship:
 Player: [Game, Hero]
 Game: [Player, Artifact, Hero]
 Artifact: [Game]
 Hero: [Game, Artifact]

 The tool would first create all the specified resource repositories, and afterward the resource
relationship repositories. The generated code should look the same as the handcrafted one. Don’t forget
to add an option for a user to specify the target package or folder for the generated code.

 Another approach is to use annotations. In this case, a resource class or a relationship field marked with
 @GenerateRepository would trigger the proper autogeneration process. Annotation processors give
you the element structure for free, which is usually enough. Embedded DSL (via annotations and their
processors) is a very powerful way to go.

 Finally, you might even have an option to analyze the Java source code, and recognize resource and
relationship definitions. However, this requires some knowledge from the domain of writing compilers,
and I don’t recommend it here. Of course, you might want to read about lexical and syntax analysis and
examine JFlex (http://jflex.de) and CUP (http://www2.cs.tum.edu/projects/cup/index.php).

 ADD LOGIC TO CHECK ARTIFACT AND HERO AVAILABILITY

 The current code base only contains a reserved field available for artifacts and heroes. However, it
is not currently used when artifacts and heroes are picked up (when setting the matching relationship;
e.g., artifacts for the Hero). Implement the necessary logic to consult the available field, and return
the HTTP status code of 403 Forbidden if the artifact or hero is occupied.

http://jflex.de/
http://www2.cs.tum.edu/projects/cup/index.php

CHAPTER 17 ■ KATHARSIS

288

 PERFORM END-TO-END TESTS

 The current code base contains some additional test resources, which are not used as part of the “curl”
session. Repeating the whole “curl” exercise in an automated integration test might be very valuable
for testing the system from end to end. Using the techniques from Chapter, 10 implement such an
automated test suite.

 Reference
 1. Richardson, Leonard, and Sam Ruby. RESTful Web Services. Sebastopol, CA:

O’Reilly Media, 2007.

289© Ervin Varga 2016
E. Varga, Creating Maintainable APIs, DOI 10.1007/978-1-4842-2196-9

 A
 AJAX . See Asynchronous JavaScript

and XML (AJAX)
 Amoeba eff ect , 6
 Annotated repositories , 280
 Annotations vs . Interfaces , 278, 281
 Apache Avro properties , 171–172
 Apache Felix framework , 40–41
 Apache Kafka

 JMS support , 187
 performance , 187
 set up , 188–190

 API documentation
 class diagram , 272
 high-level stable conceptual and

behavioral models , 272
 round-trip engineering , 272
 source code , 272

 application/hal+json , 148
 application/json , 153
 Application programming interfaces (APIs)

 abstraction , 20
 data , 20, 22
 encapsulation , 22
 meta-process , 18
 quality attributes , 135
 TDD . See Test-driven development (TDD)
 type coercion module

 abstractions and encapsulation , 26
 coercing arguments , 24–25
 function-composition.rkt , 23–24
 symbolic algebraic manipulation system , 22
 target-level variable , 26
 type-coercion.rkt , 25–26
 type-tagging.rkt , 23

 use case , 19
 Artifact and hero availability , 288
 Asynchronous JavaScript and XML (AJAX) , 135, 137
 Atomicity, consistency, isolation, and durability

(ACID) , 278

 Autogenerate type wrappers , 287
 Automated integration tests , 203
 Automaton-pick feature , 222–223
 Avro’s DatumWriter , 182

 B
 Bean validation API , 277
 Behavior-driven development (BDD) , 81–87
 Billboard URL , 162
 Black holes , 173
 Broken windows theory , 5
 Bulk extension , 258

 C
 Client-controlled asynchrony , 135, 137
 Client/server model , 187
 ClientServerTest class , 185
 ClientServerTest Test Case , 204, 206
 closeClient methods , 184
 collectionReference , 167
 Comma-separated values (CSV) , 171, 216
 Common information model (CIM) , 232
 Community Game service

 aim , 270
 architecture , 273–275
 artifacts and heroes relationships , 284
 command , 285
 conceptual model , 270–271
 confi guration , 275–277
 confi gurations , 271
 CRUD operations , 270
 error report , 284
 execution , 284
 game-wrong.json , 284
 HTTP request , 283
 microservices architectural style , 272
 @Min constraint , 285
 multiple artifacts and heroes , 271
 parameters , 271

 Index

■ INDEX

290

 player , 271
 powers types , 271
 QueryParams class , 285
 resources specifi cation and relationship

repositories , 277–281
 sparse fi eldsets usage , 285
 status code , 283
 tasks , 282
 warrior’s defense and attack power , 271

 Compound document , 240
 Computer-aided software engineering (CASE) , 278
 ConsumerRebalanceListener , 198
 Conventional interfaces

 accept HTTP header , 257
 CIM , 232
 CIM/XML document , 234–235
 content negotiation , 256
 designing message payloads , 231
 electrical power system , 232
 extensions , 255
 fetching, individual resource , 236
 Forbidden status code , 246
 JSON API’s features , 236
 JSON API specifi cation , 256
 member-of relationship , 244
 openness , 229
 payload , 254
 power network , 233
 principle , 229
 ‘profi le’ link relation type , 264
 relationships link , 239
 responses, server , 264

 createClient methods , 184
 Cross-site request forgery (CSRF) , 155
 Cucumber tests , 82

 D
 Designing message payloads , 231
 Dictionary meta information , 265
 Directed acyclic graph (DAG) , 173
 Disparate data sources , 249
 Distributed LP classifi cation system , 187–188
 docker-compose rm , 190
 docker-compose.yaml fi le , 190
 DOCKER_HOST_IP environment variable , 189
 Dropwizard , 275
 Dynamic HTML autogenerated client , 156

 E
 Electrical power system , 232
 Encoding actions, resources

 communication , 119
 hypermedia controls , 121–122

 Java framework Spring , 119
 ontology , 132
 practice Spring HATEOAS , 133
 representations and controllers , 125–128
 resource controller , 123–124
 ResourceSupport class , 122, 123
 REST service , 120
 smoke testing, service , 129–131
 Spring Boot Maven plug-in , 124
 Spring HATEOAS Maven project , 121
 URL (identifi er) and URLConnection (handle)

classes , 120
 web protocol, HTTP , 119

 End-of-fi le (EOF) marker , 215
 End-to-end test , 209–212
 ErrorAttributes attribute , 155
 ErrorController interface , 155
 E type Systems , 4
 eXtensible Markup Language (XML) , 216
 externalDocs , 149

 F
 Favorite problem report , 139–141
 Fields , 238
 followTh eSearchLink method , 167

 G
 getMessage method , 182
 GUI tools , 150

 H
 Half-Sync Half-Async architectural pattern , 135
 HAL hypermedia format , 166
 HATEOAS’s Traverson API , 165
 HTTP Basic authentication scheme , 155
 HTTP DELETE method , 164

 I
 Immutability , 174
 Information hiding and APIs

 electrical power systems , 1
 entropy and impact, assumptions , 4–7
 forces , 2
 integral of function

 client programmers and framework
providers , 8

 Riemann sum , 8
 Romberg’s method , 13–14
 Simpson’s rule , 9–12

 life of client , 15, 16
 maintainability , 2
 Monte Carlo integration , 15

Community Game service (cont.)

■ INDEX

291

 rationalism vs . empiricism , 1
 software’s life cycle , 2–3
 Sun Certifi ed Java 2 Developer certifi cation

process , 4
 types, software systems , 2–4

 Integration test , 183–184
 Interface Defi nition Language (IDL) , 184

 J
 Java Message Service (JMS) , 187
 JSON API’S mechanisms , 254
 JSON

 document (data) , 219
 Patch extension , 261
 Patch request , 261
 Schema , 216
 Schema Faker tool , 220

 K
 Katharsis

 features , 270
 JSON API , 269
 REST APIs , 269
 traits , 269

 L
 Level 3 tool , 165, 167
 Levelized build , 31
 Links representation , 149
 load_profi le , 189
 Load profi le (LP)

 classifi er , 196–199, 207–209
 generator , 172–173
 processor , 173

 LoadProfi leReader classes , 203
 LoadProfi leRPCImpl class , 188, 194
 LoadProfi leWriter , 203
 Load testing , 165
 LPClassifi erTest class , 213
 lpCreate method , 182

 M
 Machine-processable data , 187
 Mac OS X , 189
 Maven project , 177
 Message design , 174–176
 Message-oriented middleware (MOM) , 187
 Meta member , 253
 min.insync.replicas , 191
 MockConsumer class , 213
 Modular design

 API-drivendevelopment (see Application
programming interfaces (APIs))

 description , 17
 encapsulation , 17
 modularity maturity model level , 17
 OSGi (see Open service gateway initiative

(OSGi))
 standard Java’s limitations , 27

 Monte Carlo integration , 15
 murmur2 method , 192
 mvn test , 199, 203

 N
 NamedEntity class , 277
 Netty client server framework , 179
 Neural-network based software , 172

 O
 Openness , 229
 Open service gateway initiative (OSGi)

 Apache Felix , 40–41
 church encoding module , 41–42
 client API , 37–39
 demo , 39
 direct summation provider , 34–36
 disruptive technology , 28–29
 environmental awareness , 30
 logical and physical design , 29
 modular integral calculation , 30
 provider API , 32–33
 system architecture , 31–32

 Optional query parameter , 153

 P, Q
 Pagination mechanism , 252
 Pandora’s box , 173
 Partition method , 192
 HTTP PATCH method , 260
 Problem-Reports-Service-soapui-project.xml , 160
 Project setup , 177
 P type systems , 4
 Publish-subscribe messaging style , 188

 R
 RAML 0.8 , 145
 Rapid application development (RAD) , 102, 104
 Refactoring, Apache Kafka

 brokers , 193
 client API , 190, 191
 CPU requirements , 191
 LoadProfi leWriter class , 194–195

■ INDEX

292

 partition method , 192
 smart meters , 191

 Relationships object , 239
 Remote procedure call (RPC) , 97–98
 REpresentational State Transfer (REST)

 abstraction , 98
 decentralization , 99
 migrating code , 98
 problem domain resources , 100
 RAD , 102, 104
 uniquely identifi ed , 98

 Resource identifi er objects , 240
 Resource-oriented architectures

(ROAs) , 97, 269
 Resources

 custom profi le , 107
 defi nition , 97
 host , 107
 mechanism , 97
 micro-service

 concept , 99
 static resource model , 100–101
 transitions , 102
 UML use case diagram , 99–100
 XML and JSON media types , 99

 name reconciliation , 104–106
 RAD , 102, 104
 REST (see REpresentational State Transfer

(REST))
 RPC , 97–98

 REST APIs
 demand-driven programming , 269
 elegant and powerful framework , 269
 HATEOAS , 269

 REST APIs documentation
 client/server code based , 144
 Home Page , 145
 HTTP basic authentication

 mechanism , 145
 scheme , 145

 human-targeted documentation , 143
 linear sequence , 144
 programming into vs . programming , 144
 Restlet Studio , 147
 Service , 154
 Swagger “2.0” , 145
 Swagger 2.0 YAML fi le , 148–149
 Swagger defi nition , 145–147
 Swagger Editor , 148
 XML and JSON schema , 143

 REST APIs testing
 about link , 161
 deletion, problem report , 164
 GET request , 161

 home page , 159
 hypermedia controls , 160
 individual assertions , 161
 JSON response document , 163
 Level 2 REST APIs , 159
 name property , 160
 noncompatible way , 162
 ontology , 159
 piecewise manner , 159
 property-transfer test step , 162
 self link , 161
 SoapUI’s TestRunner , 161
 Source and Target sections , 163
 Swagger API documentation , 160
 XML format , 162
 XPath expression , 163

 REST API versioning
 advantage , 110
 code generators , 109
 concrete strategy , 110
 hypermedia controls , 109
 jar fi le , 110
 media types , 116
 message payloads , 110
 profi les , 116
 resource URLs

 APIkKeys , 112
 hypermedia links , 111
 stable UR[IL]s , 112–115
 URI template , 111
 variations , 111

 state transitions , 110
 switching , 116–117
 URLs , 110
 Web content processing , 109

 REST services , 171, 203
 Riemann sum , 8
 Romberg’s method , 13–14
 RPC . See Remote procedure call (RPC)
 RPC protocol design , 178–179

 S
 Schema-based messages

 crafting , 215
 list, maintenance level , 215–216
 service-oriented architectural style , 215
 taxonomy , 215

 SchemaCompatibility class , 213
 Security clause , 152
 SQL SELECT statement , 185
 Self link , 160
 Server-controlled asynchrony , 137–139
 ServiceError class , 182
 Service implementation , 179–182

Refactoring, Apache Kafka (cont.)

■ INDEX

293

 Service level agreement (SLA) , 167
 setupKafka method , 212
 setupTraversionClient method , 167
 Simpson’s rule , 9–12
 Smoke testing , 156
 SoapUI , 159
 SoapUI’s TestRunner , 161
 Software reuse

 API provide , 47
 client

 DefaultComboBoxModel class , 52–53
 encapsulation and information hiding , 55
 JComboBox class , 47–49
 life cycle, chess game , 58
 methods addItem and insertItemAt , 51
 quality attributes , 55
 Swing , 47, 51
 Swing’s combo box model class

diagram , 55–57
 test class , 53–55
 unit test , 49–51

 description , 45
 Law of Demeter , 46
 Liskov substitution principle , 46
 production and test code , 45
 programming into/in a language , 46
 provider

 AbstractCollection class , 59
 Java Collections framework , 59
 Open/Closed principle , 64
 RandomizedBag class , 59–64

 sorted combo box model , 66
 Specifi cExceptionBase , 182
 Spring HATEOAS framework , 162
 startLoadProfi leSystem method , 212
 S type systems , 3
 Sun Certifi ed Java 2 Developer certifi cation

process , 4
 Swagger 2.0 , 145
 Swagger API specifi cation , 150–153
 Switching API versions , 116–117
 Synchronous communication model , 135

 T
 TDD . See Test-driven development (TDD)
 Test coverage, unit and integration testing , 286
 Test-driven development (TDD)

 APIs
 bugs , 89
 incompatibilities , 88
 performance guarantees , 89
 RandomizedBag class , 87
 reworked RandomizedBag class , 89–93
 serialization , 89
 Spliterator interface , 88

 benefi ts , 70
 client application , 93–94
 closed-form test , 69
 description , 69
 open-form test , 69
 RandomizedBagRubbish class , 75–76
 RandomizedBagTest test class , 77–80
 RandomizedQueue class , 71–75
 software engineering processes , 69
 writeObject/readObject methods , 95

 Testing messaging, APIs
 built-in support , 203
 side eff ects , 203

 Transactions per second (TPS) , 165
 Transversal grouping , 173

 U
 URL /swagger.json , 144

 V
 Version 1.0.0 , 217–219
 Version 1.0.1 , 219–220
 Version 1.1.0 , 221–222
 Version 1.2.0 , 222–223
 Version 2.0.0 , 223–226
 Version 2.1.0 , 226–227

 W
 waitUntilAllEventsAreProcessed method , 212
 Wrapper code , 198

 X, Y
 XML/JSON documents , 188

 Z
 Zookeeper/Kafka system , 210

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Introduction
	Chapter 1: Information Hiding and APIs
	Entropy and Its Impact on Assumptions
	Case Study: API for Calculating an Integral of a Function
	Version I: Direct Summation (Riemann Sum)
	Version II: Simpson’s Rule
	Version III: Romberg’s Method

	Summary
	References

	Chapter 2: Modular Design
	API-Driven Development
	Use Case
	Abstraction
	Data
	Encapsulation
	Type Coercion Case Study
	Use Case: Coercing Arguments
	Type Coercion Module

	Standard Java’s Limitations
	OSGi as a Disruptive Technology
	OSGi in Action
	Modular Integral Calculation
	The Architecture of the System
	The Provider API
	Direct Summation Provider
	The Client API
	Demo

	Summary
	References

	Chapter 3: Designing Classes for Reuse
	Case Study: Client of Reuse
	Version I
	Version II
	Version III
	Conclusion

	Case Study: Provider of Reuse
	Summary
	References

	Chapter 4: TDD as an API Design Technique
	Case Study: TDD Doesn’t Replace OOD Principles
	Conclusion

	Case Study: Tests Are Rubbish Without TDD
	Case Study: Retrofitting Tests to Follow TDD
	Case Study: Introduction to BDD
	Case Study: TDD for APIs Is a Complex Topic
	The Subtleties of the Spliterator API
	Checking for API Incompatibilities Between Different Versions
	Postprocessor as a Rescue for Bugs
	Better Serialization Support
	Performance Guarantees Are Mandatory
	The Reworked Version Ready for Publication

	Summary
	References

	Chapter 5: Identifying Resources
	Case Study: Problem Reports Microservice
	Discovering and Describing Resources
	Rapid Application Development (RAD) Tactic
	Name Reconciliation

	Summary
	References

	Chapter 6: Versioning REST APIs
	The Main Traits of REST API Versioning
	Altering the Resource URLs
	API Keys as a Way to Control Versioning
	The Importance of Stable UR[IL]s
	Versioning of Media Types
	Versioning of Profiles

	Switching API Versions
	Upgrading the HTTP Version

	Summary
	Reference

	Chapter 7: Encoding Actions on Resources
	Implementing the Core Features
	Interaction of Resources via Hypermedia Controls
	Skeleton of the Service
	The Remaining Representations and Controllers
	Smoke Testing the Service
	Adding an Ontology

	Summary
	References

	Chapter 8: Implementing Synchronous and Asynchronous REST APIs
	Client-Controlled Asynchrony
	Server-Controlled Asynchrony
	Case Study: Favorite Problem Report
	Summary
	Reference

	Chapter 9: Documenting REST APIs
	Case Study: Attempting the Universal Method
	Case Study: Producing a Swagger API Specification
	Extending the Service to Implement This New Specification
	Smoke Testing the Service
	Generating the Dynamic HTML Client

	Summary
	Reference

	Chapter 10: Testing REST APIs
	Case Study: Testing with a Level 2 Tool
	Examine the Service Use Case
	Find General Information Use Case
	Delete a Problem Report Use Case
	Load Testing the Examine the Service Use Case

	Case Study: Testing with a Level 3 Tool
	Summary
	Reference

	Chapter 11: Implementing Messaging APIs
	Case Study: Load Profile Generator
	Message Design
	Project Setup
	RPC Protocol Design
	Service Implementation
	Integration Test

	Summary
	References

	Chapter 12: Apache Kafka as a Messaging Hub
	Case Study: Distributed LP Classification System
	Setting Up Kafka
	Refactoring the Smart Meter to Use Kafka
	Implementing the LP Classifier

	Summary
	References

	Chapter 13: Testing Messaging APIs
	Case Study: Attaining Automated Integration Tests
	Refactoring the ClientServerTest Test Case
	Testing the LP Classifier
	Full End-to-End Test

	Summary
	Reference

	Chapter 14: Schema-Based Messages
	Version 1.0.0: Simple Lottery Ticket
	Version 1.0.1: Bug Fix
	Version 1.1.0: Going International
	Version 1.2.0: Automaton-Pick Feature
	Version 2.0.0: Multigame Lottery Ticket
	Version 2.1.0: Separate Game Start Times
	Summary
	References

	Chapter 15: The Core JSON API
	Case Study of an Industry Standard Message Format
	Common Information Model of a Power System
	Serialization of a Power Network with CIM/XML
	Extending the CIM/XML Schema

	Practical Guide to JSON API
	Fetching an Individual Resource
	Fetching Related Resources with Autoinclusion
	Fetching Relationships
	Fetching a Collection of Resources
	Fetching Related Resources with Explicit Inclusion
	Fetching a Partial View of an Individual Resource
	Creating a New Resource
	Updating a Resource
	Deleting a Resource
	Summary

	References

	Chapter 16: Evolving the JSON API
	A Case Study of Integrating Disparate Data Sources
	Main Directions to Evolve the JSON API
	Extensions
	Content Negotiation for HTTP-Based Services15
	Error Handling
	Example Content Negotiation Scenario

	Bulk Extension
	Creating Multiple Resources at Once
	Updating Multiple Resources at Once
	Deleting Multiple Resources at Once

	JSON Patch Extension
	Creating Multiple Resources at Once
	Updating Multiple Attributes at Once
	Deleting Multiple Resources at Once
	Updating To-One Relationships
	Updating To-Many Relationships
	Responses from the Server

	Profiles

	Summary
	References

	Chapter 17: Katharsis
	Community Game Service
	The Architecture of the Community Game Service
	Configuring the Service

	Specifying Resources
	Specifying Resource and Relationship Repositories
	A Sample Session with the Community Game Service

	Summary
	Reference

	Index

