
Siraj Raval

Decentralized
 Applications
HARNESSING BITCOIN'S BLOCKCHAIN TECHNOLOGY

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

Siraj Raval

Decentralized Applications
Harnessing Bitcoin’s Blockchain Technology

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

978-1-491-92454-9

[LSI]

Decentralized Applications
by Siraj Raval

Copyright © 2016 Siraj Raval. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Tim McGovern
Production Editor: Colleen Lobner
Copyeditor: Octal Publishing, Inc.
Proofreader: James Fraleigh

Indexer: Judy McConville
Interior Designer: David Futato
Cover Designer: Randy Comer
Illustrator: Rebecca Demarest

August 2016: First Edition

Revision History for the First Edition
2016-07-13: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491924549 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Decentralized Applications, the cover
image of a silver roughy, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

www.allitebooks.comwww.allitebooks.com

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491924549
http://www.allitebooks.org
http://www.allitebooks.org

Thank you, Jade. Your truth set me free.

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

Table of Contents

Preface. ix

1. What Is a Decentralized Application?. 1
Preliminaries: What Is Bitcoin? 1
What Is a Decentralized Application? 3

Feature 1: Open Source 4
Feature 2: Internal Currency 6
Feature 3: Decentralized Consensus 6
Feature 4: No Central Point of Failure 7

The History of Decentralized Applications 8
PopcornTime 9
OpenBazaar 9
FireChat 9
Lighthouse 10
Gems 10

Enabling Technologies 11
Defining the Terms 11

Getting Started 14

2. A Flourishing Dapp Ecosystem. 15
Decentralized Data 15

Option 1: Storing Data Directly in the Bitcoin Blockchain 16
Option 2: Storing Data in a Distributed Hash Table 17

Decentralized Wealth 21
Decentralized Identity 26
Decentralized Computing 29
Decentralized Bandwidth 31
Decentralized Markets for Decentralized Assets 33

v

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

Practical Decentralization 36

3. Building Your First Dapp. 39
Go 39

Centralized Architecture 40
Decentralized Architecture: Introduction to IPFS 41

What Are We Building? 43
Setup 43
Routing 48
Data Storage and Retrieval 49
Passing and Displaying Data to the Frontend 52

Dapp Economics 54
Remaining Problems 58

Private Networks 58
Human-Readable Names 59
Showing Only Peers on Mikro, Not IPFS in General 59
Tamper-Free Payments 59

4. OpenBazaar. 61
Why Make OpenBazaar? 61
What Is OpenBazaar? 62
How Does OpenBazaar Work? 63

Merchant 63
Buyer 64
Notary 65

How to Install OpenBazaar 66
Possible Errors 66
Identity 70
Reputation 71

What Could OpenBazaar Have Done Better? 74

5. Lighthouse. 77
Functionality 78
SPV Wallets 84
Identity 84

6. La’Zooz. 87
What Is La’Zooz? 87

Distribution Protocol 88
DAO Structure 89

UX 91
Architecture 92

vi | Table of Contents

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

Contracts 95
Improvements 96

Conclusion 97

Index. 99

Table of Contents | vii

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

Preface

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/oreillymedia/decentralized_applications.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐

ix

https://github.com/oreillymedia/decentralized_applications

cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Decentralized Applications by Siraj
Raval (O’Reilly). Copyright 2016 Siraj Raval, 978-1-4919-2454-9.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that deliv‐
ers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf‐
mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/decentralized-applications.

x | Preface

mailto:permissions@oreilly.com
http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com/
http://bit.ly/decentralized-applications

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Preface | xi

mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1

What Is a Decentralized Application?

A new model for building massively scalable and profitable applications is emerging.
Bitcoin paved the way with its cryptographically stored ledger, scarce-asset model,
and peer-to-peer technology. These features provide a starting point for building a
new type of software called decentralized applications, or dapps. Dapps are just now
gaining media coverage but will, I believe, someday become more widely used than
the world’s most popular web apps. They are more flexible, transparent, distributed,
resilient, and have a better incentivized structure than current software models. This
is the first book that will help you to understand them and create your own.

Preliminaries: What Is Bitcoin?
Before we get into the details of dapps, let’s talk a little about Bitcoin and the Web.
We’ve seen the Web grow considerably, by orders of magnitude, over the past decade.
Billions of people are coming online as Internet-connected device distribution
expands globally. At first glance, the standards of communication set in the Internet
Protocol Suite seem to be working well enough: the Link Layer puts some data on a
wire; the Internet Layer routes the data; the Transport Layer persists the data; and the
Application Layer delivers abstractions of the data in the form of applications. All
four protocols work together seamlessly for exchanging data, but not value. Bitcoin
acts as a fifth protocol layer for value transfer that lives up to the standards of the
other four.

We do have an existing way of sending payments on the Web. The problem is that
they all involve inefficient legacy systems like Automated Clearing House (ACH) that
were designed before the Internet. These traditional payment systems are painfully
slow because they require a centralized clearing house. Machines shouldn’t have to
wait days for a payment to clear; they are constantly communicating with one
another. They should be able to send billions of micropayments to each other to

1

meter resources like electricity and storage space and not have to worry about the
hefty transaction fees of a middleman. Bitcoin helps solve this problem.

With the advent of Bitcoin, instant, decentralized, pseudonymous value transfer is
finally possible. Bitcoin’s anonymous creator, who used the assumed name Satoshi
Nakamoto, effectively solved the Byzantine Generals Problem, a problem that had
plagued cryptographic research for decades. To quote from the original paper (Lamp‐
ort, 1982) defining the Byzantine Generals Problem: “[Imagine] a group of generals
of the Byzantine army camped with their troops around an enemy city. Communicat‐
ing only by messenger, the generals must agree upon a common battle plan. However,
one or more of them may be traitors who will try to confuse the others. The problem
is to find an algorithm to ensure that the loyal generals will reach agreement.” Achiev‐
ing decentralized consensus in Bitcoin meant that no longer did one party have to go
through a central authority or trust the other party to share information, including
information in the form of value transactions.

Bitcoin and other cryptocurrencies will help define the fifth protocol layer of the
Internet, letting machines transfer value as fast and efficiently as data. Bitcoin is a
useful tool for online value transfer, but its most valuable innovation is its underlying
technology, the blockchain, that for the first time in history made decentralized con‐
sensus possible.

The blockchain is a massively replicated database of all transactions in the Bitcoin
network. It uses a consensus mechanism called proof-of-work which prevents
double-spending in the network—a problem that had plagued cryptographic
researchers for decades. Double-spending meant a bad actor could spend the same
funds twice, denying the first transaction happened.

Proof-of-work solves this problem by having miners in the network solve crypto‐
graphic proofs using their hardware. Miners are Bitcoin nodes that verify a transac‐
tion and check it via its blockchain history, a timestamped record of all transactions
ever made in the network. Someone could theoretically alter their blockchain history,
but with proof-of-work, they would also need to have the majority of computational
power in the network to verify it. Because the Bitcoin network has much more com‐
putation power at this point than all of the world’s supercomputers combined, an
attacker would have an extremely difficult time trying to break the network.

Proof-of-work is expensive in terms of the cost of electricity and compute workload
but it’s the only known prevention mechanism against Sybil attacks, in which a bad
actor claims to be multiple people in a network and gains resources that they
shouldn’t by doing so. A successful Sybil attack on the Bitcoin network would most
likely result in a complete devaluation of the currency because people would no
longer trust its stability. As expensive as proof-of-work is, it’s the only thing that’s
proven to work so far on a massive scale.

2 | Chapter 1: What Is a Decentralized Application?

So, we have this new tool called the blockchain, a massively replicated database of
transactions that’s able to avoid Sybil attacks. For the first time, the blockchain lets us
achieve decentralized consensus without the use of a centralized server. You might be
wondering what use cases this would have, and rightly so. I’m going to be devoting a
good portion of the book to helping you think about all of the possibilities and ways
with which you could implement them. The important bit for now is to understand
that this data structure is one of many that will help you to create profitable decen‐
tralized applications.

What Is a Decentralized Application?
Most people are familiar with the term “application” as it pertains to software. A soft‐
ware application is software that defines a specific goal. There are millions of software
applications currently in use, and the vast majority of web software applications fol‐
low a centralized server-client model. Some are distributed, and a select few novel
ones are decentralized. Figure 1-1 shows a visual representation of these three models
for software.

Figure 1-1. The three different types of software applications

Centralized systems are currently the most widespread model for software applica‐
tions. Centralized systems directly control the operation of the individual units and
flow of information from a single center. All individuals are directly dependent on the
central power to send and receive information and to be commanded. Facebook,

What Is a Decentralized Application? | 3

Amazon, Google, and every other mainstream service we use on the Internet uses this
model. Let’s call these huge services “The Stacks.” The Stacks are useful because they
provide a valuable service to us, but they have immense flaws that I’ll go into in
Chapter 2.

So, what’s the difference between decentralized and distributed?

Distributed means computation is spread across multiple nodes instead of just one.
Decentralized means no node is instructing any other node as to what to do. A lot
of Stacks such as Google have adopted a distributed architecture internally to speed
up computing and data latency. This means that a system can be both centralized and
distributed.

Can a system be both distributed and decentralized?

Yes, it can. Bitcoin is distributed because its timestamped public ledger, the block‐
chain, resides on multiple computers. It’s also decentralized because if one node fails,
the network is still able to operate. That means that any app that uses a blockchain
alongside other peer-to-peer tools can be distributed and decentralized.

Then, why isn’t the title of this book Distributed and Decentralized Applications?

Centralized systems can be distributed as well. Software applications that are able to
achieve decentralized consensus are a real innovation.

So, is having decentralized consensus the only requirement to being a decentralized app?

The dapp space is currently an emerging field with a lot of smart people still experi‐
menting with new models. Different developers have different opinions on what
exactly a dapp is. Some developers think that having no central point of failure is all it
takes and some think that there are other requirements. The focus of this book is to
talk about profitable dapps; that is, dapps from which developers and users can earn
money. The reason for the profit focus is because profit is the cornerstone of a suc‐
cessful, robust, and sustainable dapp. Incentives keep developers building, users loyal,
and miners maintaining a blockchain. To that end, Figure 1-2 shows the four features
any profitable dapp should have.

Feature 1: Open Source
Decentralized, closed-source applications require users to trust that the app is as
decentralized as the core developers say it is, and that they don’t have access to their
data through a central source. Closed-source applications thus raise a red flag to users
and act as a barrier to adoption. The aversion to closed source is particularly pro‐
nounced when the application is designed to receive, hold, or transfer user funds.
Although it might not be impossible to successfully launch a closed-source decentral‐
ized application, the battle would be uphill from the start, and users would favor open

4 | Chapter 1: What Is a Decentralized Application?

source competitors. Open sourcing a dapp changes the structure of its business prac‐
tices so that the Internet is common denominator instead of a chain of closed silos.

Figure 1-2. Closed source versus open source business plans

Any app can be open source. So why aren’t they?

If we delve into the traditional business models, all of them require the product or
service for sale to be better than that of the competitor. Open sourcing your product
would mean that any competitor could take all of your work, white label it, and sell it
as their own.

So, what incentive is there for app developers to open source the work from which they
plan to profit?

Bitcoin is a good example of an open-source dapp from which the creator profited
handsomely. Satoshi kept an initial amount of Bitcoins and let others use the rest.
Because Bitcoins were limited in quantity and the network itself provided huge value
to society in the form of its novel proof-of-work mechanism, the value of Bitcoin
started to increase and so did his wealth. Having the app be open source made it
possible for the network to achieve the transparency it needed to improve itself with
developer contributions and grow trust among its users to give its coins real-world
value. Open sourcing your dapp will gain the trust of potential users. Anyone can
fork your dapp, but they can’t fork your development team. Users want to get behind
the people best suited to maintain the dapp, and often, those people tend to be the
original developers.

What Is a Decentralized Application? | 5

Feature 2: Internal Currency
A question that consistently comes up in dapp circles is how to monetize a dapp. Tra‐
ditional modes of monetization for centralized applications include transaction fees,
advertising revenues, referral commissions, access rights to user data, and subscrip‐
tion services. If you open source your dapp, how are you supposed to make money?
You might try programmatically inserting a fee for transactions in the network that
would automatically go to the app developers’ account, but that would rely on trust‐
ing users to not fork the app and take out your commission—not ideal. Neither
is embedding advertising, subscription services, or any of the other centralized busi‐
ness models.

How is any open-source dapp developer supposed to make money?

The answer is to allocate scarce resources in the network using a scarce token: an
appcoin. Users need this appcoin to use the network. Owners of scarce resources get
paid in appcoins. In the Bitcoin network, the owners (miners) of the scarce resources
(computing power) are paid with transaction fees directly from the users so that they
can use the service. Because the network grew to include more users and there were a
fixed amount of coins from the outset, the values of the coins grew, as well. We can
apply this model to any kind of dapp. Scarce resources could be storage space, trades,
images, videos, texts, ads, and so on.

Does this mean users would need to pay to use any dapp?

Yes and no. Although blockchains are pay-to-play, there are different ways to struc‐
ture incentives within dapps. Users could receive a sign-up bonus of coins or even
have the option to willingly sell their data or local storage space in exchange for coins.
Besides using appcoins, dapp creators could monetize virtual assets like real estate in
a decentralized MMORPG, domains in a special namespace, or even reputation.

Feature 3: Decentralized Consensus
Before Bitcoin, consensus on transaction validity always required some degree of
centralization. If you wanted to make a payment, your transaction had to go through
a clearing house that monitored all transactions. Bitcoin is peer to peer (P2P), which
means nodes are able to talk to each other directly. P2P networks are not a novel
thing; Distributed Hash Tables (DHTs) like BitTorrent were invented before the
blockchain. DHTs are great for storing and streaming decentralized data, but if you
want application-level constructs like usernames, status updates, high scores, and so
forth for which you need everyone to agree on in a decentralized way, you’ll also need
a blockchain. The blockchain doesn’t replace the need for DHTs, but it does serve to
complement them. What makes the blockchain unique is that it solves the major
security issue of DHTs: not forcing nodes to trust each other on the validity of data.
The blockchain is a decentralized database of transactions and it’s the first decentral‐

6 | Chapter 1: What Is a Decentralized Application?

ized database that is highly tamper-resistant. The blockchain’s security was a domi‐
nant design goal. It is the first ever organizationally decentralized and logically
centralized transaction log. Here is a map of what I mean.

 Organizationally
centralized

Organizationally
decentralized

Logically centralized Paypal Bitcoin

Logically decentralized Excel Email

The blockchain’s innovation is decentralized consensus. If your app needs some
feature that requires everyone else to agree on something, you should use a block‐
chain. A simple example is a username system for which it doesn’t really matter who
has the “@user” username; what matters is that everyone agrees who has it. There
have been lots of decentralized protocols in the past, but they all required nodes to
trust one another. The blockchain is an immutable record that every node has a copy
of, so no one can pretend that they too are @user. This can be done via the use of
smart contracts.

A smart contract is a piece of code that lives in a blockchain. When a preprogrammed
condition is triggered, the smart contract executes the corresponding contractual
clause. You might be thinking,“What makes that different from doing something like
this with Stripe’s API?”

if (user.sendsMoney(customerID))
{
runContract();
}

func runContract()
{
 println('hello world');
}

One big difference: smart contracts live on a blockchain, not a server. No third-party
trust is required, and there is no need to trust Stripe or a server owner. So, a more
formal phrase for smart contract would be a “cryptoeconomically secured execution
of code.” One thing to keep in mind is that not all dapp code is a smart contract, and
although smart contracts have their own specific use case, for the purposes of
this discussion they will generally act as one “model” in a model-view-controller dapp
architecture. We’ll talk more about that in depth when I begin walking through dapp
architecture.

Feature 4: No Central Point of Failure
Dapps can’t be shut down, because there is no server to take down. Data in a dapp is
decentralized across all of its nodes. Each node is independent; if one fails, the others

What Is a Decentralized Application? | 7

are still able to run on the network. There are a number of decentralized database sys‐
tems on which to build dapps that allow for this feature, such as Interplanetary File
System, BitTorrent, and independent DHTs.

The History of Decentralized Applications
In its early days, the Web was obviously not as useful as it is today with the array of
apps and services that do everything under the sun, but it did have a more DIY dis‐
tributed feel to it. The Web was pretty decentralized from the outset. The HTTP pro‐
tocol connected everyone on the planet with a computing device and an Internet
connection. In the HTTP protocol guidelines, there are a set of trusted servers that
translate the web address you enter into a server address. Furthermore, HTTPS adds
another layer of trusted servers and certificate authorities. People would host per‐
sonal servers for others to connect to, and everyone owned their data. But soon,
application servers began taking off and the centralized model of data ownership as
we know it today was born. Why did it happen this way?

The simple answer is because it was easy, both conceptually and programmatically. It
was the easiest thing to do and it worked. One individual or group pays for mainte‐
nance of a server and profits from the users that utilize the software on it. Apps like
MySpace and Yahoo! were among the first popular centralized apps. More recent apps
like Uber and Airbnb decentralize the “real-world” parts of a business by providing a
central and trusted data store. They are among the first to allow for participation in
one moneymaking endeavor from all sides of the economy. Their decentralized busi‐
ness model foreshadows the development of even more decentralized apps.

As the HTTP web grew larger, a new protocol was introduced by a developer named
Bram Cohen, called BitTorrent. BitTorrent was a protocol created as a solution to the
lengthy time to download huge media files via HTTP and as an improvement on
some of the P2P proposals before it, like Gnutella, Napster, and Grokster. The prob‐
lem was that downloading huge files took a very long time and as the Web grew, so
did the size of files that were available. Meanwhile, hard-drive space was increasing
and more people were connected. BitTorrent solved this by making downloaders into
uploaders, as well.

If there was a file you wanted, you would download it from not one, but multiple
sources. The more popular the file, the more users who would be downloading it and
subsequently uploading it, which meant you would be pulling from multiple sources.
The more sources, the faster the download. Seeders were rewarded with faster down‐
load speeds, whereas leechers were punished with limited speeds. This tit-for-tat sys‐
tem of transferring data proved to be very useful for large media files like movies and
TV shows.

8 | Chapter 1: What Is a Decentralized Application?

BitTorrent grew and is for many the de facto way to download any sort of large media
file like a game or movie. BitTorrent’s speed, resilience, and reward mechanism
proved to be better than HTTP for large data sets.

So, why doesn’t the Web work this way?

Most likely because of HTTP’s first mover advantage, its infrastructure, and all of the
time and money already invested in it. There are currently active projects working on
upgrading the HTTP web with BitTorrent-like technology, and they’ll most likely be
successful because of BitTorrent’s huge value proposition. As soon as BitTorrent was
introduced, developers began to use the technology to create nonprofit decentralized
applications. Let’s look through just a few examples of recent decentralized apps.

PopcornTime
PopcornTime uses the BitTorrent protocol to stream videos between users in real
time, kind of like a Netflix for torrents. It is the worst nightmare of the Motion Pic‐
ture Association of America (MPAA). No regulator can shut it down, and now every‐
one has access to free movies. PopcornTime proved to be a useful dapp acting as a
decentralized version of Netflix. The creators claim that it has been downloaded in
every single country, even the two without Internet. PopcornTime uses no internal
currency and doesn’t need decentralized consensus, so it had no use for a blockchain.
It simply streams movies and that proved to provide a lot of value.

OpenBazaar
OpenBazaar aims to be a decentralized version of Ebay. No middleman can tell sellers
what they can and can’t sell or decide on the fees for using the service. It’s built on the
BitTorrent protocol, but the problem is that the sellers must host their own stores.
They need to have their own server and leave it on in order for users to be able to see
their items. Ideally sellers could just upload their store data to the network, perhaps
paying a small fee, without having to worry about it. This requires a decentralized
system of incentivized storage miners, which we’ll cover in detail in Chapter 4. Open‐
Bazaar uses BitTorrent’s protocol for data transfer and Bitcoin as currency for trans‐
actions between sellers.

FireChat
FireChat emerged with a famous use case—the 2014 Hong Kong protests for democ‐
racy. China’s infamous “Great Firewall” is notorious for blocking IP addresses for
content that it deems prodemocracy or just not in its interest. The protesters feared
the government would try to shut down access to various social networks to stop
collaboration as is possible to do with the HTTP protocol. Instead, they used Fire‐
Chat, an app that used a new feature in iOS 7 called multipeer connectivity makes it
possible for phones to connect to each other directly without a third party. Because it

The History of Decentralized Applications | 9

had no central point of failure, the government would be forced to manually shut
down every node, and thus the protestors were able to communicate with one
another robustly.

Decentralized rebellion at its finest.

Lighthouse
We’ll discuss Lighthouse in detail in Chapter 5, but it is a Bitcoin wallet embedded
with a series of smart contracts. These smart contracts help pledge money to certain
projects just like Kickstarter. When the project goal has been reached, it becomes
possible to retrieve the funds out of the project backer’s Lighthouse wallet. Pledgers
can undo pledges at any point without the involvement of the project creator. Light‐
house is a great example of using the existing Bitcoin infrastructure to build your
dapp. It is just a UI with some Bitcoin smart contracts built in as a wallet. It works
and it builds off Bitcoin’s existing user base. It has decentralized consensus, it’s open
source, it has no central point of failure, but it doesn’t issue its own currency; rather, it
uses Bitcoins. It’s a useful dapp but it’s not profitable for the creator.

Gems
Gems is a social-messaging app that is trying to create a more fair business model
than WhatsApp. Gems is issuing its own currency and letting advertisers pay users
directly with it for their data rather than acting as the middleman who profits. Users
can also earn gems by referring others to the network. Gems are a meta-coin built on
Bitcoin that developers also receive for developing and maintaining the software. As
the Gems user base grows, so does the value of the currency. Users are incentivized to
grow the network and earn money just like the developers. You can think of Gems as
shares in the dapp. Gems hasn’t open sourced its code, so users can’t verify if they
truly have no central point of failure. It’s a profitable app, but in my opinion it isn’t
robust enough to withstand competitors who fulfill the other three criteria.

So, are there any standalone dapps that satisfy all four criteria: no central point of
failure, issue their own internal currency, have decentralized consensus, and are open
source?

There are plenty of cryptocurrencies that satisfy all four criteria, but cryptocurrencies
aren’t dapps. I’m talking about decentralized social networks, ride sharing, search
engines: taking The Stacks and decentralizing them. The answer is not yet. It’s possi‐
ble, though—the technology exists, and as soon as a few emerge, a flurry of develop‐
ers will jump on the decentralized bandwagon to make some serious money for both
themselves and their users. Let’s talk about some of these enabling technologies.

10 | Chapter 1: What Is a Decentralized Application?

Enabling Technologies
I’ve already mentioned many of the enabling technologies during our discussion on
the history of decentralized applications. Bitcoin’s blockchain is, of course, of primary
importance, so we’ll take a deeper dive into this before considering the other enabling
technologies. The blockchain helped solve the Byzantine Generals Problem. That
problem asks the question, “How do you coordinate among distributed nodes to
come up with some sort of consensus that is resistant to attackers trying to under‐
mine it?” The proof-of-work algorithm and the blockchain help solve this.

When Bitcoin was created, decentralized consensus became possible. Proof-of-work
isn’t perfect—it is both computationally and energy expensive. There are alternative
cryptocurrencies out there that solve meaningful problems, like PrimeCoin, whose
miners use their compute resources to find prime numbers. In a world where Bitcoin
is the de facto currency, we’re going to be using a lot of energy to maintain the net‐
work, energy that could be put to better use than just helping the network maintain
itself.

The problem is that proof-of-work is the only known Sybil-prevention system thus
far. Consensus research is still ongoing and has not stopped with proof-of-work, but
for now it’s the best that we have. In terms of up-and-coming competitors to proof-
of-work, there is a big one that comes to mind: proof-of-stake. Proof-of-stake isn’t per‐
fect, either, but it can complement proof-of-work.

Proof-of-stake is a consensus mechanism that relies instead on computational power
to prevent Sybil attacks on stake in the network. Usually, by stake it means amount of
cryptocurrency owned by the miner. The idea is that the more cryptocurrency you
have, the more invested you are in ensuring the stability of the network and the less
likely you are to perform a 51 percent attack to fork the blockchain. Delegated proof-
of-stake is an innovation of proof-of-stake where a set of 101 delegates can vote on
block generators. Both delegated proof-of-stake and proof-of-stake are still undergo‐
ing research, but if either proves to be secure in the long term, they could be used to
complement or maybe even completely replace proof-of-work.

Defining the Terms
So why the term dapp? Why decentralized app? Why not Decentralized Application
Organizations or Decentralized Autonomous Corporations or Decentralized Applica‐
tion?

The cryptocurrency space is saturated with differentiating terms for this theoretical
and partially implemented ecosystem of dapps. The best way to dive into why I’ve
chosen the term dapp is to dive into all of the existing terms for dapps and see what
they’re all about. Let’s begin with dapp itself.

Enabling Technologies | 11

Decentralized applications (DAs)
Decentralized Applications is the name of this book. I could’ve just as easily
chosen DO or DAO or DAC. Why dapp? Because the common word in all of the
phrases is “decentralized.” Decentralized apps are the superclass of all decentral‐
ized entities that involve software.

Decentralized organizations (DOs)
A DO is one that empowers all of its employees. The term doesn’t really apply to
the tools the organizations use; it’s more a description of how it’s structured.
There are varying degrees of decentralization, and complete decentralization isn’t
necessarily the best way of doing things. In a traditional organization, there is a
rigid, hierarchical structure of command.

A decentralized organization gives voice to its employees and the power is spread
more evenly among everyone. Company practices and milestones are made
auditable by everyone and can be stored in a decentralized storage network for
optimal resiliency. Humans don’t need to be the only ones making decisions:
smart contracts can take on roles like paying people by a certain date. DOs don’t
need to be based in a certain city, either; members can be spread out globally.
In some systems (for example, Bitcoin), collusion is seen as a bug. In a decentral‐
ized organization, collusion is a feature. In the political realm, we call decentral‐
ized power democracy. We’re seeing some startups recently opt for a more
decentralized structure, especially as remote collaboration tools like Slack and
GitHub progress.

Automated agents (AA)
AAs don’t need to mean SkyNet or some general artificial intelligence. We’ve had
automated agents for at least a decade. AA just means a piece of software that
runs without any human intervention; in other words, autonomously. A perfect
example would be a computer virus. The developer made it and released it to the
wild. It then decides to self-replicate or carry out any other maintenance algo‐
rithm with which it was encoded. Another example would be a daemon. A dae‐
mon is a program that runs as a background process in an operating system, like
an email program. Automated agents have their ups and downs, they don’t
require any maintenance, but having unchecked agents can lead to an uncontrol‐
lable source of possible danger for humanity—more on that in Chapter 6.

Decentralized autonomous organizations (DAOs)
This was actually what I was originally intending on calling the book before
switching over to dapps. DAOs are just like DOs except AI makes the decisions,
not humans. The protocol lives in a decentralized stack and doesn’t heed any
legal bindings. Humans aren’t in charge, they are on the edges. AI is what makes
the decisions and the DAO maintains itself. DAOs aren’t just defined by having
AI make all the decisions, they also have their own internal capital.

12 | Chapter 1: What Is a Decentralized Application?

In short, each of these is a subclass of dapps, and a DAO is a dapp with AI con‐
trolled decisions and humans on the edges. Collusion isn’t treated as a feature as
in decentralized organizations but instead as a bug. Bitcoin is an example of
a DAO.

Decentralized Autonomous Corporations
This one is controversial. Some think that this shouldn’t even be a phrase because
the word corporation is derived from the legacy system of legal contracts and
hierarchical centralized control from which we are trying to evolve. The other
side of the argument is that a DAC is a subclass of a DAO that pays dividends to
its members. I am going to side with the former argument because I don’t like the
term corporation and if a DAO wants to implement dividends to its human
and/or machine members, it can as a DAO, not a DAC.

So we’ve talked about dapps, DOs, DAOs, AAs, and DACs with an example of each.
Let’s take a look at Figure 1-3 to help make things a little clearer.

I like this chart a lot because it puts into context everything we’ve been talking about
thus far. We’re not at a stage yet where we can make AI (the holy grail, as the chart
puts it), but we are at the next stage of evolution where we can begin making DAOs.

Figure 1-3. Types of organizations (Credit: Vitalik Buterin)

For brevity’s sake, we’re going to be using the term dapp throughout the book.
Because dapps are the superclass of all decentralized software, and I’m going to be
discussing different tools you can use as well as methodologies to define your dapp,
you are best suited to decide what type of dapp you want to create.

My definitions have been pulled from my research from the cryptocurrency commu‐
nity, and my aim isn’t to put yet another label on concepts or to create new para‐
digms. In fact, my aim is to simplify the space as much as possible such that you can
fully grasp all the tools at your disposal to create a profitable decentralized app. The
centralized app space has been nearly exhausted of ideas and it’s time to iterate again

Enabling Technologies | 13

after seeing its pros and cons. Dapps are the next wave of software and hopefully this
book will prepare you to be a part of it.

Getting Started
I hope I’ve given a sufficient introduction as to what a decentralized application is.
Much is still to be explained but this should’ve given you a brief introduction to the
space and all the terms and acronyms associated with a dapp. My aim for this book is
to first give you an explanation of dapps, what they are, why to build them, and what
a thriving dapp ecosystem looks like. Then, I’ll explain ways that you can implement
your own using tools that currently exist. Finally, we’ll take a deep dive into a few
major players in the dapp space.

14 | Chapter 1: What Is a Decentralized Application?

CHAPTER 2

A Flourishing Dapp Ecosystem

The blockchain space can be pretty confusing. There is a seemingly endless array of
startups, altcoins, ideologies, and buzzwords floating around, and it can be difficult to
make sense of it all. It’s useful to subdivide the space into three categories, following
Melanie Swan’s book Blockchain (O’Reilly) and others; blockchain 1.0 is currency,
blockchain 2.0 adds in contracts (stocks, bonds, financial assets), and blockchain 3.0
encompasses applications beyond pure finance in areas like governance and health
(dapps). In this chapter we’re going to be talking about what needs to happen for all
three to progress. As a dapp developer, you just want one thing: the right tools to
make your dapp secure, robust, and profitable. This chapter will describe what a
flourishing dapp ecosystem would look like; that is, an ecosystem where making
dapps is really easy. I’ll also discuss the technical requirements to make a dapp and
what is currently possible.

There are four concepts in web applications that have traditionally been in the
domain of centralized control: identity, wealth, data, and computing. Each of these
requires trust in a provider—a trust that can be betrayed. Recent advances in
distributed-system technology can put users in control of these things, so let’s dive
into these enabling innovations step by step.

Decentralized Data
This is the most important of the concepts to me. Currently, we trust “The Stacks”
with our data. We willingly give them our data for free in return for a free service. Or,
we pay them to store our data—but we only have enough data to make that worth‐
while if our users are giving us their data for free! We trust that they won’t misuse and
sell our data to entities to which we would rather not be exposed. Since Edward
Snowden, we now know that trust can, has, and will be broken as long as we entrust
our data to a central entity. Centralized stores of data are a surveillance state’s dream;

15

http://shop.oreilly.com/product/0636920037040.do

all of your citizens’ data in one easily accessible place and the ability to monitor
it without their knowledge. Amazon Web Services, Google Drive, Dropbox, and
every other “cloud” provider, despite having a distributed computing backend, are
centrally owned.

Additionally, as the global economy rapidly evolves from a labor-based economy
to an information-based economy, with robotics and automation technology expand‐
ing at an accelerating rate, data will become the primary form of value. Although
humans can’t compete with robots for labor, they can compete with them for data, the
data they parse from their unique perception of the world, the processed output from
their five senses. We not only possess our data, we need to own our data as the world
evolves.

So how do we solve this? How do we store data in a decentralized way such that no
one but yourself owns your data? This is a problem that has been under heavy
research for at least a decade with several parties claiming a solution. The ideal solu‐
tion should provide a method of storing data in a decentralized way that is robust and
as trustless as possible.

Option 1: Storing Data Directly in the Bitcoin Blockchain
This is the naïve method. Yes, it solves the decentralization of data because everyone
who has a copy of the blockchain is storing it, but no one can alter it. The data can, of
course, be encrypted by using SHA-256 so that everyone who has a wallet will store a
copy of your data, but only you would be able to access it given that you have the
private key. But the Bitcoin blockchain was not meant to handle massive amounts of
data! Its design purpose—which it serves well—is storing simple transactional logs.
Even with only this burden, the blockchain has grown to 38 GB over the past couple
of years. Downloading the blockchain can take up to several days, and scalability and
blockchain bloat have consistently been serious concerns among the core developers.
When you upload data to the blockchain, you are forcing Bitcoin miners to store
your data for free, removing the incentives for them to maintain the network because
the cost margin to participate is higher than they are getting paid.

What about storing data in a different blockchain with increased size limits to allow
for extra data? Assuming miners were paid for storing your data with your altcoin,
even then the blockchain’s size would grow to insane limits and everyone who wanted
to actually use your altcoin would need to download an unnecessarily massive wallet.
This already looks ugly if you imagine many users storing even a few images, but
we are moving toward a new era of data distribution in which petabyte datasets will
soon become common. Storing data on the blockchain is not a short-term solution
to achieving a robust decentralized data store, and it most definitely is not a long-
term solution.

16 | Chapter 2: A Flourishing Dapp Ecosystem

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

Option 2: Storing Data in a Distributed Hash Table
Distributed Hash Tables (DHTs) have taken off in popularity in the past decade. They
distribute not only copies of the data, but also the indexing functions that enable the
data to be found, ensuring resiliency. Early peer-to-peer (P2P) filesharing programs
like KaZaA, Napster, and Gnutella used their own versions of DHTs with varying lev‐
els of decentralization. Some had centralized trackers to monitor the movement of all
data and some (like Napster) had central sources that all data had to go through, leav‐
ing them with a single point of failure (in this case, due to legal action).

The first implementation of a DHT to really take off was BitTorrent. BitTorrent is still
used by more than 300 million users. Despite having a decentralized data store (the
BitTorrent Mainline DHT), it still depends on centralized trackers (like Pirate Bay) to
monitor the network. Sites like Pirate Bay are regularly shut down by legal action, so
even with BitTorrent’s data resiliency, it still has some points of failure. If we use Bit‐
Torrent’s DHT to store our dapp’s data, that would be great, right? BitTorrent doesn’t
just offer a decentralized data store; it offers a data distribution protocol that maximi‐
zes bandwidth via a tit-for-tat strategy between seeders and leechers.

BitTorrent’s data transfer protocol is even faster than the Web’s, and as such it’s
become the de facto method of transferring large datasets like HD movies over the
Web. The problem with using BitTorrent as a data store is that there is not enough
incentive to store your data for the long term among nodes. The network is set up to
prioritize files with high demand—people have to want your data for it to be replica‐
ted and continually stored in the network. In contrast, when using a reputable central
server like Amazon Web Services, you know that your data is going to continue to
exist even if you are the only user of the data, because their reputation is at stake, they
are contractually obligated to do so, and they don’t depend on others needing the data
to store it.

First, we don’t just want the decentralized storage capabilities of a DHT and the speed
of BitTorrent’s file transfer, we also want data permanence. It’s necessary, therefore, to
incentivize nodes to store data in some way. Second, we need to ensure that the links
to the data don’t die. This is not a new idea. One of the original proposals for the
Internet had link permanence baked in. That idea was called Project Xanadu, and it
called for a Web in which every link worked two ways: one toward the destination,
and one toward its source. That means that the content creator would always be able
to get credit for their data because it would always link back to them. This Web never
came to be, and so we have the HTTP-based Web we’ve grown to know and love
today with one-way links.

But does there exist a system that implements these features? Yes, it’s called the Inter‐
planetary File System (IPFS), and it’s an open source project that is currently in alpha
phase. I’m a pretty big fan of IPFS and was one of the early contributors to the proto‐
col. Juan Benet, the creator, had been thinking about data storage for five years and

Decentralized Data | 17

http://ipfs.io
http://ipfs.io

had finally put all those thoughts into action when he published the IPFS scientific
paper. I spent many months understanding the system and his frame of thought, why
IPFS was better than other solutions being worked on, and at this point I feel it has
the best chance of bringing the most value.

IPFS aims to help us move toward a permanent, decentralized Web. That is, a Web
whose links never die and no single entity controls your data. Upon downloading an
IPFS client, a user is able to add any data to it and in return receives a hash. The user
can then access that data via its hash. IPFS is a content-addressed system, in contrast
to the Web, which is an IP-addressed system. In an IP-addressed system, if a name‐
server fails, effectively so does all of its data. Content addressing is a much more effi‐
cient form of addressing data because it doesn’t rely on a single server’s uptime to
access data. When you request data from a content address, you’ll receive it faster
than you would IP-addressed data because it will route from whoever owns a copy of
that content address closest to you.

So, what does it look like on the backend?

IPFS uses a DHT to store data. It’s based on the popular Kademlia DHT, and it bor‐
rows ideas from Chord and BitTorrent’s DHT. When users upload data to IPFS, that
data is copied among a certain number of other nodes, so even if one node fails, the
data remains. On top of that—and like BitTorrent—the more nodes that need the
data, the more resilient it becomes as they each share the copy they download.
Chord’s killer feature was its DHT circles, which created “chords” to maximize DHT
lookups among nodes across the globe that were in close proximity to one another
within larger chords. So, the globe would look like a series of increasingly larger
chords (see Figure 2-1) and lookups would benefit from this efficiency, hopping
between chords where necessary.

Currently, centralized services like Amazon and Google have datacenters across the
world that a user can choose from—in many cases they will automatically choose it
for you—through which to receive and route your data. Even with datacenters spread
across the globe, data transfer efficiency can be increased with multiple nodes in a
way only a truly decentralized system like Chord’s DHT can provide.

To give structure to the DHT and let users find the data they need when they need it,
IPFS uses what it calls a merkleDAG. A merkleDAG is a simple flexible data structure
that can be conceptualized as a series of nodes connected to each other. To be more
specific, it’s a directed, acyclic graph (DAG). A merkleDAG can look like a linked list
or a tree. When adding data to the DHT, the system generates an SHA-256 multihash
public-private key pair, and the user gets both. Developers can link hashes program‐
matically to form their own mini-merkleDAGs, and it’s important to note that all data
in IPFS forms the same generalized merkleDAG consisting of all nodes. All data on
IPFS is public, so it’s the users’ responsibility to encrypt their data accordingly. The
private keys, in addition to allowing access to the data, can prove ownership.

18 | Chapter 2: A Flourishing Dapp Ecosystem

http://bit.ly/ipfs-whitepaper
http://bit.ly/ipfs-whitepaper

Figure 2-1. Chord

IPFS (shown in Figure 2-2) was inspired by BitTorrent’s speed of transfer and tit-for-
tat mechanism of finding nearby peers to share data with, and the IPFS team believes
the Web should work that way, as well. Take the example of an entire college class
requesting a video from a centralized Facebook server. This takes up unnecessary
bandwidth and is unnecessarily redundant. If the image is nearby, they don’t need to
make a request from that far away. In a content-addressed system, if they know the
content address of the data they want, they can just retrieve it from the nearest loca‐
tion. Nodes can share data among themselves without central coordination; the
schema takes the server-client model that the HTTP web runs on and makes it dis‐
tributed, just like BitTorrent.

Figure 2-2. IPFS

Decentralized Data | 19

How Does IPFS Improve on BitTorrent?

IPFS has a sister protocol called Filecoin. Filecoin is used to pay miners (nodes that
store data) using a novel value-for-data mechanism called BitSwap. Cryptocurrency
makes sense here: its value transfer is fast and it allows for micropayments to pay for
every correlated byte of storage. Filecoin is currently in development, but IPFS is
already available to use. IPFS commands are currently free and the miners currently
storing data are doing so out of their love of the network. Eventually, all uploads and
downloads will require Filecoin. Filecoin will most likely be an asset built directly on
Bitcoin’s blockchain, so users can just use their Bitcoin to pay for storage.

To top it all off, IPFS borrows from Git’s version-control model to version all data. Git
uses a DAG to model versions of data and IPFS uses it to give structure to the entire
system. Users can see the version history of their data (or any data to which they have
decrypted access).

So, IPFS takes the best ideas from Git, DHTs, SFS, BitTorrent, and Bitcoin and com‐
bines them to create a decentralized data-storage network. IPFS hopes to one day
replace the HTTP:// protocol of the Web with IPFS://, but they can work in unison as
well in several ways that we’ll get into when we begin talking about implementation.

IPFS is the most robust, thought-through solution to decentralized storage out of all
the cryptocurrency projects, although there are other notable contenders in the space,
as well. Let’s survey the other options.

Ethereum Swarm
Ethereum is working to build a general-purpose (Turing-complete) blockchain
computing language, including decentralized storage. As of this writing (2016),
their efforts are focused on securing the DAO (in their usage, “Democratic
Autonomous Organization”) and storage has been put on the back burner.

StorJ
StorJ has garnered a lot of hype lately; it has pre-mined a lot of StorJcoins and has
made some pretty designs. The designs are neat—it won an Austin hackathon—
and the group seems to know what it’s talking about. Despite all of this, more
than a year post-hackathon it is still vaporware.

Maidsafe
Maidsafe, like Ethereum, is trying to do many things. They aren’t using proof-of-
work and aim to create a decentralized platform for computing, storage, and cur‐
rency. They’ve been working on their platform for six years and it seems like the
project hasn’t gained that much traction.

20 | Chapter 2: A Flourishing Dapp Ecosystem

http://filecoin.io/filecoin.pdf
https://ethereum.org
https://storj.io
https://github.com/maidsafe/Whitepapers/blob/master/Project-Safe.md

Decentralized Wealth
Bitcoin was the first successful decentralized store of wealth. Before Bitcoin, trust was
needed in a third-party provider (a bank) when transferring value over the Web. Bit‐
coin allowed for decentralized value transfer and fulfills the need for decentralized
payments in a dapp.

But what about all of these altcoins? And what about Litecoin, dogecoin, peercoin,
darkcoin, and kanyecoin? Altcoins are generally made by forking the Bitcoin source
code and adding in an incremental feature that for a variety of reasons the core devel‐
opers of Bitcoin have refused to adopt. For example, the Litecoin creator wanted
faster payments than Bitcoin so he forked Bitcoin, added some speedy code, and Lite‐
coin was born.

Litecoin has a pretty big market cap, having been consistently in the top five crypto‐
currencies for at least a year. Litecoin is a rare example that serves a good purpose:
faster payments. But most altcoins don’t: if they’re not jokes that become memes with
money behind them (like dogecoin), they are just made for “pump-and-dump”
schemes. The idea is that someone can just create a new coin, slap a label on it, and
pump up its value by hyping it via media exposure (kanyecoin). They claim that a
coin will be really valuable and that investors will make a lot of money by buying in
early as the coins value goes up.

As soon as the coin appears to have enough value, the creators sell it all for a currency
that is more stable and long-term like Bitcoin or fiat. This is a common scheme in the
altcoin world, and it is terrible for the cryptocurrency ecosystem for obvious reasons.
First of all, these coins tarnish the reputation of cryptocurrency in general because
they make potential investors increasingly wary of the space. Second, they compete
with the Bitcoin blockchain for market share unnecessarily while bringing no real
value to the table. This in turn harms Bitcoin’s value and all of those that rely on it as
the most-used cryptocurrency.

Bitcoin, of course, uses the proof-of-work scheme, which means that every miner in
the network must generate a computational proof of their computing power and pro‐
cess transactions; in return miners get Bitcoins as payment for their maintenance of
the network. Some people in the cryptocurrency space consider proof-of-work to be
overly energy expensive and a short-term solution to Sybil resistance, so a whole host
of cryptocurrency research is ongoing in the field of consensus mechanisms. Proof-
of-work uses a lot of computing power and the total cost of the electricity spent by
miners in maintaining the network is more than 15 million dollars. This is wasteful
when there potentially could be better ways of maintaining the network. Two popular
alternatives that have been proposed to replace proof-of-work are proof-of-stake and
delegated proof-of-stake.

Decentralized Wealth | 21

https://litecoin.com

Despite the massive amount of ongoing research into novel consensus mechanisms
post Bitcoin, like proof-of-stake, nothing has currently shown itself to be as Sybil-
resistant as the proof-of-work. As computationally expensive as it is, it’s the best we
have. The Bitcoin network has more than three billion dollars invested in it, and
countless startups, investors, media, and retailers accept the currency. It has the first-
mover advantage and has fought for five-plus years to gain recognition among the
mainstream populace. We shouldn’t need to start over again. Even if a new consensus
mechanism is found that is superior to proof-of-work, we should rely on the Bitcoin
core developers to implement it rather than an altcoin so that we can progress faster
as a community.

Some may call this idea “Bitcoin Maximalism.” The argument is that Bitcoin maxim‐
alists continually tout the first-mover advantage of Bitcoin and are staunchly against
any competitor to protect their investment in the network. The negative implication
of Bitcoin Maximalism is that any ideas outside the Bitcoin protocol, no matter how
valuable, are quickly stamped out and not given their proper recognition by the com‐
munity, and progress is put on hold.

There is a solution that gives us the best of both worlds: this is called the sidechain
proposal. The sidechain proposal is based on a paper coauthored by Adam Back, the
inventor of proof-of-work that Satoshi referenced in his Bitcoin Paper. This proposal
starts from the idea that in order to experiment with consensus mechanisms and any
novel cryptocurrency ideas currently, developers must fork the Bitcoin blockchain
and create an entire new altchain to test out their hypothesis.

This is bad for Bitcoin, and it’s difficult for developers to bootstrap a blockchain. The
solution proposed by Back’s team is code that effectively allows Bitcoins to move
freely between the main chain (the Bitcoin blockchain) and sidechains. That means
that you could create an entirely new blockchain and sidechain it to the Bitcoin
blockchain easily. You would gain the security benefit of Bitcoin’s proof-of-work, so
you wouldn’t need to bootstrap your own mining network. You would also get people
already invested in the cryptocurrency experiment (people who own Bitcoin) as a
base of potential users in your chain because they could just use the coins they
already have. Lastly, you could send coins between the two chains without any con‐
version necessary. Two-way sidechains are currently in the works and will be released
very soon.

The Bitcoin blockchain is the most secure blockchain; it has more computing power
than all the world’s supercomputers combined, so it’s the most Sybil-resistant. Boot‐
strapping a proof-of-work blockchain from scratch is difficult; because computing
resources are so small in the early stages, it’s easy for an attacker to build up 51 per‐
cent of the total computing power of the network and take it over. Besides that, devel‐
opers shouldn’t need to worry about bootstrapping a blockchain in addition to the
already challenging task of building a decentralized application that people want.

22 | Chapter 2: A Flourishing Dapp Ecosystem

http://bit.ly/back-sidechain
https://bitcoin.org/bitcoin.pdf

Sidechains offer a solution here if you want to experiment with consensus mecha‐
nisms or implement some novel cryptocurrency technique.

But what about if you don’t really want to implement a new cryptocurrency technique
and just want to issue your own internal currency for decentralized application?
A currency that grows in value with the network, allows users to access scarce resour‐
ces, and incentivizes them to grow the network? Then there is no need to create a
new (side)chain. You can simply create an asset directly on Bitcoin itself. Colored
coins is my project of choice on the matter, though as usual there are a few notable
alternatives:

Counterparty
Counterparty is a Bitcoin 2.0 protocol that lets users create and manage assets,
enact bids, and place bids, and even allows for users to create Turing-complete
contracts on top of Bitcoin. This all sounds awesome, but the problem is that
Counterparty baked all of these interesting features into the protocol instead of
modularizing them and layering them on top of each other. Issuing assets on the
Bitcoin blockchain and letting users transfer them with the ease of Bitcoin is an
awesome idea. But they’ve combined that with the dividend function. Distribut‐
ing dividends is a nice little feature to have, but they are their own internal opera‐
tion within Counterparty, instead of using native Bitcoin to track assets.
Everything has been forced into the same overwrought protocol.

Bets are an example of adding an experimental and challenging feature with a
good one: assets. What would be better would be to build simple layers, each
really good at doing one thing. Modularity is the hallmark of good software, and
Counterparty, as ambitious as it is, is not modular at all. If we envision a market
of libraries of different protocols, those libraries will compete with one another,
and the ones that are best will win. Imagine if all those useful libraries were hope‐
lessly intertwined as one package. You would need to install all of them or none
of them at all. That would be a nightmare, and that’s exactly what Counterparty
has you do.

Counterparty introduces an unwanted and confusing element to the developer
who plans to use it: the XCP currency. If you want to build an appcoin using
Counterparty’s API, you will need to deal with XCP and all the conversions that
go along with it. If you want to create any kind of asset, according to the protocol
you must destroy 0.5 XCP—greater than a dollar at current prices. The XCP
monetary supply is fixed, and because the currency is continuously destroyed
every time someone issues a new asset, the entire monetary base is constantly
in decline.

The fact that XCP even exists and is required to use certain features of Counter‐
party is an annoyance to developers. It means that you have to continuously look
at the ticker price (XCP/BTC) to use it. There are entire platforms that exist to

Decentralized Wealth | 23

https://counterparty.io

track this price, with real-time bidding and asking for liquidity, just like in any
market. But really, what’s the point? Why should you be forced to deal with all of
that when all you want to do is create an internal currency for your app? It’s basi‐
cally a huge barrier to entry that no one really needs and, as such, it’s a bad idea.

Counterparty updates its clients all the time, and people that depend on its API,
like the Gems app, get mixed results because of this. Because there is no modular‐
ity, if there is a bug, everything will break and has broken all at once. All in all,
Counterparty is too centrally administered; there are better alternatives (colored
coins) that provide the necessary modularity and decentralization without the
additional currency to use.

Hyperledger
Hyperledger believes itself to be “token agnostic,” in that it allows an issuer to
issue coins that are based on no underlying currency: neither Bitcoin, nor fiat,
nor any other altcoin. The principle behind this is sound, but in practice it isn’t
because it relies on an unknown consensus mechanism that it touts is in the
works. We’ve seen a lot of research in this field, and again nothing has demon‐
strated itself to be as versatile as proof-of-work.

One way to easily cut through the noise of any Blockchain 2.0 projects claims is to dig
into their consensus mechanism. If it doesn’t use proof-of-work or isn’t based on Bit‐
coin, see how big their market cap is and dig into how many times there have been
security breaches. Every time I’ve done this I’ve found security breaches. Table 2-1,
from Meher Roy, summarizes the different beliefs in this field.

Table 2-1. Political cryptocurrency beliefs

Belief/bet Platform
opportunities

Incremental risk Advantages

Level I Not applicable Not applicable Not applicable
Token agnosticism Hyperledger, Eris,

Codius, Ripple/
Stellar

Lack of solutions for Identity and Private
Key management
Regulatory uncertainty resulting from end
users controlling transactions
Platform-specific flaws like weak
consensus algorithm

Applicable to all assets including
flat money, shares, and
cryptocurrencies
Can replicate all applications
pioneered by cryptocurrency
community
Relative compatibility with
existing regulations

24 | Chapter 2: A Flourishing Dapp Ecosystem

http://getgems.org
https://www.hyperledger.org

Belief/bet Platform
opportunities

Incremental risk Advantages

Cryptocurrency
maximalism

Bitcoin, Ethereum,
Tendermint, Pebble,
Ripple/Stellar
(partially), etc.

Societal inertia to new forms of value,
needs massive network effect
System that possesses sound monetary
policy and consensus method, fast
transaction speed, and is scalable appears
late
Associated political ideologies prevent
mainstream growth

Market segment dissatisfied with
conventional banking system is a
ready market
Significant public interest for the
time being

Bitcoin maximalism Sidechains New technologies that improve on
network maintenance cost, transaction
speed, and scalability outcompete Bitcoin

Significant first mover advantage
for Bitcoin

Hyperbitcoinization Not applicable Opinion proves to be a delusion None

Token agnosticism is a strong set of views, but I believe Bitcoin can cooperate with
existing financial systems. We’ve grown past the initial honeymoon phase of Bitcoin,
during which many thought it would dominate the global currency landscape, and
we’ve also realized that the banking system does have its place in the world despite
how antiquated it is.

What about Turing-complete smart contracts? This is the second part of a financial
instrument necessary for creating a decentralized payments system in a dapp. The
Ethereum team has probably made the most progress on this, but it has big ambi‐
tions. Ethereum wants to create a Turing-complete blockchain, a decentralized stor‐
age network, a decentralized communications protocol, a new consensus mechanism
and a new (bootstrapped) blockchain, a new browser in which to run Ethereum
dapps, and a new scripting language with which to code Ethereum dapps.

Let’s step back for a second. One team cannot and should not aim to accomplish all of
these company-sized ideas single-handedly. Ethereum has raised a lot of money and a
lot of hype, but despite Vitalik Buterin’s brilliance, I don’t think we should expect
them to create the next Bitcoin. As Gavin Andresen, head developer of the Bitcoin
protocol, said, they’re either going to be playing security whack-a-mole or will scale
down their blockchain massively.

The idea of a Turing-complete scripting language is useful; it allows you to do every‐
thing and anything that you want. Bitcoin’s scripting language is purposely limited to
prevent malformed (whether through malice or incompetence) scripts like infinite
loops. Gavin Andresen said most of Ethereum’s aims could be implemented in Bit‐
coin, and the core developers have already started implementing some of them.

For the sake of dapps and the scope of this book, we’re only going to concern our‐
selves with asset creation and smart contracts; bets, derivatives, and protocols that
require a separate currency are not things I will be discussing. Pragmatically, the sim‐
plest way to get people to use your dapp is to ensure that it is compatible with a cur‐

Decentralized Wealth | 25

rency they already own, and the largest one is Bitcoin. So, you should issue a colored
coin either on top of Bitcoin or on top of a sidechain, which is essentially just Bitcoin
underneath the hood with some additional features like faster transactions.

Decentralized Identity
The notion of identity has been debated for centuries, and in the Internet age, the
term takes on a whole new meaning. What is identity? Who owns identity? How
should identity look on the Internet?

Due to the recent advancements in cryptography, a lot of the solutions have been
“assume a public-key infrastructure.” Basically, assume that people would be willing
to store a private key safely and identity will be decentralized. Only those with the
keys would have access to it. BitAuth is a good current example of this. BitAuth uses
Bitcoin’s existing technology to create a public-private key pair using secp256k1. It
allows for passwordless authentication across web services. It gives you a system iden‐
tification number (SIN) that is a hash of the public key. It uses signage to prevent
man-in-the-middle (MITM) attacks, and a nonce to prevent replay attacks. Your pri‐
vate key is never revealed to the server and you can store it safely and securely. Iden‐
tity is decentralized, so instead of having to trust a third party to store your identity,
you can just store it yourself.

Other attempts to consolidate identity on the Internet have been made, with varying
degrees of success. One of the most prominent attempts has been the OpenID proto‐
col. OpenID is a decentralized identity protocol that takes advantage of existing web
protocols like HTTP, SSL, and URI. The idea is that identity is fragmented across the
web already, and by using the OpenID protocol, users can transform existing URIs
into an account which can be used at any OpenID-supported sites.

OpenID abstracts the need to store your identity with the service provider so that you
can only use a trusted source and that your identity will be carried around the multi‐
ple providers. This attempt seems to be the most successful so far in consolidating
identities: companies like Google, Yahoo!, and Twitter have been OpenID providers.
This is good in a way: now we can carry our identity across different sites without
having to reregister again and again. It’s better not only because it’s more convenient
to not need to reenter details, but also because you don’t have to trust novel services
with storing your identity data. But OpenID still creates a potential security vulnera‐
bility because you are still trusting one of these service providers with your data.

The problem is also known as Zooko’s triangle (see Figure 2-3), and Namecoin was
developed to help solve it.

26 | Chapter 2: A Flourishing Dapp Ecosystem

https://github.com/bitpay/bitauth
https://openid.net
http://www.namecoin.info

Figure 2-3. Zooko’s triangle

Zooko’s triangle is the conjecture that states that in a system that is meant to give
names in a protocol, only two of the three desirable attributes (human-meaningful,
decentralized, secure) can be achieved. OpenID solved security and human-
meaningfulness. Namecoin completed it by adding decentralization to the mix.
Namecoin was essentially a third-party identity provider, the blockchain itself, that
you could use as an intermediary between you and the service requesting your iden‐
tity. The Namecoin blockchain was one of the first forks of the Bitcoin blockchain,
and it has stood the test of time because of the value it provides.

Whereas most altcoins wither away, Namecoin remains because no other innovation
has completed Zooko’s triangle. A user can “register” her name into the Namecoin
blockchain by sending a transaction with her required name embedded in it under
the /id namespace. When the user sends the transaction, Namecoin stores it if it’s
unique—if no one has stored it before—otherwise it doesn’t. That means the name‐
space is limited to the names people can think up. Although this means that users can
create and select their own (human-legible) identities, it can create a new problem
because of the limits of human-legible phrases. Fragmentation of identity does benefit
the user because in a new service, you get a whole new namespace from which to
choose identities.

In other words, this is a tradeoff: having a universal identity provider that completes
Zooko’s triangle is an important innovation, but the namespace is limited. Be that as
it may, this is also the case with domain name registration. Currently ICANN con‐
trols name registration, a centralized organization backed by the United States
Department of Commerce. (As of this writing, this is under tentative agreement to
achieve formal independence in September 2016.) Namecoin has proved popular

Decentralized Identity | 27

for registering .bit domains as a decentralized alternative to ICANN. These .bit
domains can’t be accessed from regular browsers like Chrome or Firefox. To access
them, the user currently must use either a .bit web proxy or download an extension.
As .bit grows in popularity, it is possible that the protocol will be adapted by the
browser natively.

Most people won’t need to create a .bit domain; it adds friction between you and your
end users because they need to install extra software or go through a proxy to access
your website. But if you have some message you need to get across, something your
government or other authority figure doesn’t want you saying, .bit plays a perfect role
in freeing you from Internet censorship.

So registering a username in the Namecoin blockchain is relatively easy. You just
exchange some Bitcoin for Namecoin, download the wallet, and register the name.
But what about logging in to the Namecoin blockchain? How does authentication and
authorization work? Recently, NameID was created. It combined the best of both
worlds; a user can use his Namecoin /id to log in to all of the thousands of openID-
enabled websites. This reduces the barrier to entry for Namecoin to enter the main‐
stream app market.

So what’s the catch to decentralizing identity? Well, it’s the same catch as there is in
decentralizing data and wealth with IPFS and Bitcoin, respectively: the user must
store his private key. This is fine for hackers, who love decentralization and privacy.
They are the most ideological population when it comes to using the right tools on
the Internet. Hackers pride themselves on their innate drive for efficiency and perfec‐
tion in the tools that they use. They encrypt their communication with GPG and use
Tor clients to safeguard their browsing history from nosy ISPs and governments.

Storing some extra private keys for the sake of decentralization is undoubtedly the
right thing to do for them. What about the mainstream populace? Do they really care
about these things? I don’t think privacy and decentralization are on the top of their
minds. Combine that with the average level of computer-security literacy, and I think
it’s fair to say that most people are probably not able or willing to securely store
encryption keys. The market demand for centralized storage is evident in the success
of Coinbase, Bitcoin’s largest application so far. Coinbase is the exact opposite of
decentralized: it’s a bank for Bitcoin. It provides private-key storage as a service.

A lot of the Bitcoin community is against any form of centralization; some eschew
even the slight centralization in the forms of trackers in BitTorrent. The real question
is this: How far are you willing to go to decentralize your software? Do you want to
decentralize your domain name and make users store three separate sets of keys, as
well? The answers to questions like this depend on who your audience is and if the
benefits of decentralization are worth it. When it comes to something like “decentral‐
ized Dropbox,” a competitor to the current Dropbox, the answer may well be yes. If a
competitor could come along and promise decentralization of its data with the same

28 | Chapter 2: A Flourishing Dapp Ecosystem

https://nameid.org
https://coinbase.com

security benefits, I’d wager that there are enough people who think that’s a great rea‐
son to securely store a private key in order to make such a system work.

Even in cases for which those people don’t want to, some sort of business will come
up that offers Storage-as-a-Service. I have to admit, even as a longtime Bitcoin user
myself, I use Coinbase’s services to store my Bitcoins. I just don’t want to have to
worry about them getting hacked on my computer! I’m willing to trust Coinbase
more because it holds so many users’ assets, the CEO seems trustworthy to me (or at
least much more so than Mark Karpelès of Mt Gox), and it is backed by a pair of trus‐
ted investors (Andreessen Horowitz and Union Square Ventures).

I don’t think we should necessarily be out to create completely trustless systems, but
instead more trustful systems. I like the example of a train. Imagine a train that is
going from San Francisco to Los Angeles that suddenly crashes. If the train has
centralized its control to the conductor, the world knows whom to hold accountable
(the conductor). If control of the train was completely decentralized to every passen‐
ger, no one could be personally held accountable so it would be difficult to find the
bad actor.

Decentralization is not good for its own sake; it must have purpose and a real use
case. Dapps can range in the level of decentralization they go for, and their levels will
depend on their individual use cases. When it comes to creating a protest-forming
app in China, the dapp should be decentralized, top-down, no questions asked. If it’s
a social network for which your goal is wide acceptance, using .bit is probably not the
best idea for a domain name.

So, if you’re using a dapp that is storing data on IPFS and issues a native currency
using colored coins on the Bitcoin blockchain, you’ll probably also want to use
NameID to store user identities. There will then be three sets of keys consolidated
into some kind of either local or third-party key store that the user will employ to
access and utilize your software.

Decentralized Computing
So, we’ve covered decentralizing identity, data, and wealth, but what about comput‐
ing? Can you store your web app directly in IPFS and run it? Well, yes and no. IPFS is
just a file system, and like any file system, you can easily run and display static web‐
sites on it perfectly fine from the browser. But when it comes to what we today call
backend apps—dynamic apps, apps that require a shell and compiling environment
to run, such as Node.js and Ruby on Rails—IPFS cannot do that. Thus, even if your
app’s data is stored on IPFS, where do you store the source code?

Well, there are two options. The first is to store the data in IPFS and host your source
code on a traditional virtual machine (VM) for web apps like Heroku. A VM is an
emulation of a particular computer system. VM operation is based on the computer

Decentralized Computing | 29

functions and architecture of a hypothetical or real computer. VM implementations
might involve specialized software, hardware, or some combination of both. Heroku
is a popular Platform-as-a-Service (PaaS) offering that provides the capabilities of a
VM easily to a user. It can run dynamic backend code like Go and Node.js, and also
store your data with an internal hosting service utilizing databases like MongoDB.

If you store your source code on Heroku and your data on IPFS, users can trust that
the data belongs to them and you aren’t selling it to outside sources for profit. But
what they can’t do is trust that the source code you open-source is what’s actually run‐
ning on the server. Aside from this lack of verifiability, it also means that there is a
central point of failure (Heroku). A second way to deploy is by storing your users’
data on IPFS and deploying your source code to a decentralized VM built on top of
IPFS. Does this exist? The closest project to achieving this is astralboot. Basically, this
is a golang server that pulls its files directly from IPFS and lets you run a Debian envi‐
ronment based on IPFS. This means that if you deploy a dynamic app on top of
astralboot, it’s built on IPFS and you need only configure your particular environ‐
ment on top of astralboot’s Linux environment.

There are other ideas like Ethereum’s own EVM (Ethereum virtual machine). Ether‐
eum’s blockchain differs in many ways from the Bitcoin blockchain: different block
times, Turing-complete contracts, and it acts as a decentralized-state machine because
of it. I think it is a VM, but not a complete one and certainly not a VM that most
developers would need. Requesting data from third-party sources is almost necessary
in today’s software market; there are a multitude of competing services that specialize
in niche areas of data that offer their API to other services to you. Instead of having to
reinvent the wheel every time and create trusted data sources for your app, you want
to be able to use third-party APIs. The problem with Ethereum’s EVM is that you
can’t get data from outside the blockchain unless it’s been preconfigured to work with
Ethereum by setting up a smart contract inside of its server.

This is great for new APIs that act as “oracles” (trusted federated sources of data), but
it’s not good for existing services. Neither the Ethereum blockchain nor the Bitcoin
blockchain can request data from outside of itself. This is both an inconvenience and
a security constraint purposefully implemented. If it were possible to call APIs from
the blockchain, a hacker could outrun the blockchain with varying data requests, and
eventually it would result in bloating the network. So using the blockchain alone as a
complete VM is not a good idea.

Another project is Go-circuit, which creates small server processes that run instances
on a machine cluster. They form a churn-resilient and efficient network, which ena‐
bles distributed process orchestration and synchronization from any single machine.
It’s made for Go programs; it’s a distributed runtime, and it has Docker integration.
It’s cool if your project is coded in Go, otherwise it doesn’t work for you.

30 | Chapter 2: A Flourishing Dapp Ecosystem

https://github.com/ipfs/astralboot
http://gocircuit.github.io/circuit

All this talk of decentralized computation begs the question: What if computing were
a marketplace? Imagine a sidechain in which the proof-of-work did actual useful
computation for the network—some coins like gridcoin and primecoin already do
this. But, they aren’t utilizable (in a verifiable way) for new computations that users
decide; they’re based on existing computations that the coins’ creators need. What is
needed is P2P decentralized computing that allows for an easy-to-access interface to
which dapp developers can deploy their code.

The network we desire would have its own compute coin, and dapp developers would
pay miners, engines of computation, to compute their source code. As more users
come on board, the value of the network—and subsequently the coins—would grow.
This is an area of research for crypto, so as of now I believe something like astralboot,
which is under heavy development, is our best hope to fastest method to prototype.

Even if astralboot is too difficult to configure, Heroku works just fine; if Heroku fails
and your code is open source, anyone can just reupload it to a new server, accessing
the permanent, user-owned, and publicly verifiable data living on IPFS. If the compu‐
tation marketplace becomes possible, you’ll be able to run dynamic apps directly
from the browser as a domain on the web.

Decentralized Bandwidth
So far, we’ve talked about the four main points that can be decentralized in a dapp:
identity, wealth, data, and computing. We’ve talked about domain registration, as
well, which isn’t as necessary for most use cases. To add to that list, let’s discuss decen‐
tralized bandwidth.

For most users, ISPs act as gateways between you and the Internet (see Figure 2-4).
There are several ISPs across nations that help connect people and act as the central‐
ized hub; additionally they solve the “last mile” problem by connecting end users to
the high-speed, high-capacity “trunk lines” of the Internet. The “last mile” is just a
phrase used by telecommunication industries to refer to the last leg of the telecom‐
munication network that delivers communication connectivity to retail customers. It’s
the Internet cable that actually reaches the customer directly.

ISPs like AT&T and Comcast are beneficial in that they give us Internet access where
there is currently no other alternative. The downside is that these centralized gate‐
ways are also central points of failure. Governments can shut them down at will if
they so desire. Governements can ask the ISPs to censor certain IP addresses that they
don’t want you accessing. ISPs will be forced to comply with the laws of the land and
create a blacklist of web IPs that a user should not visit. There have been recent peri‐
ods like the Hong Kong protests and the Arab Spring during which users feared gov‐
ernment shutdown of ISPs. Some governments actually did shut down and censor
Internet access by controlling these gateways maliciously to quell an uprising.

Decentralized Bandwidth | 31

https://gridcoin.us
https://primecoin.io

Figure 2-4. The Internet

It all works because there are no alternatives, but alternatives are beginning to appear.
The latest example is the Firechat app for iOS, created by a company called Open
Garden. Firechat lets phones speak to each other directly, peer to peer, using the iOS
multipeer connectivity feature. No ISP is required. Firechat is an example of a mesh
networking application. Mesh networks are the decentralized version of the standard
centralized Internet. In a mesh network, users don’t need to go through a central gate‐
way to access a site; they can connect directly to the nearest router, which would be a
nearby computer.

There are many meshnets already in use: Spain has one of the largest with more than
50,000 users who needed Internet access that no ISP provided. That meshnet is still in
use. During a hurricane in New York, a meshnet was used to relay valuable rescue
information when the lines were down. There are tons of meshes in San Francisco
that are “dark” nets, as well, only open to visitors inside of the secret societies they
instantiate. Meshnets don’t generally have access to the regular Internet with all of its
data. Without having tunneling in the loop, there is no access to the normal meshnet.
Tunneling can only be done by switching from tunnel to mesh networking and back.
Currently, doing both simultaneously isn’t supported by any major hardware manu‐
facturer, but you can have a hybrid and that is being worked on by projects like Open
Garden and CJDNS. This one is a little harder than the rest because in addition to
software changes, it requires hardware changes. Routers should have the ability to
access both nets so that they can pull data from the regular Internet and use it on the
meshnet so that it can’t be shut down.

32 | Chapter 2: A Flourishing Dapp Ecosystem

https://opengarden.com
https://github.com/cjdelisle/cjdns

Although decentralized bandwidth is nice to have, it’s only necessary in certain coun‐
tries that censor Internet websites and block access to the Web altogether. I think that
if this happens on a larger scale, a real need for this will cause decentralized band‐
width to become mainstream. Using the blockchain, we can have other computing
devices act as gateways instead of ISPs. They could be paid for routing data using a
cryptocurrency and proof-of-bandwidth.

Just as cryptocurrency enables P2P marketplaces for computing and data storage, it
can enable it for bandwidth sharing. Cryptocurrency enables marketplaces where
centralized power structures once existed. These could be marketplaces for comput‐
ing, storage, bandwidth, and any of a wide variety of scarce resources both “real” and
“artificial” that people can think up. We’re going to see the economy shift more and
more toward one based on information, and the market for data will more than likely
be the biggest in the world as automation slowly eats away at everything labor based.

Decentralized Markets for Decentralized Assets
With marketplaces come financial instruments like derivatives, assets, currencies, and
futures. A problem arises: Where can people exchange these assets? Traditionally
we’ve used centralized stock exchanges to exchange assets, but how would this work
in a decentralized information economy? Trading assets used to be decentralized
before there was more infrastructure; for example, in barter economies. We can now
combine the open exchange of information that the Internet provides with decentral‐
ized models of ownership verification and more. Goods can be thought of as assets in
this case with no central oversight whatsoever. Governments have provided a trusted
intermediary to ensure legitimate cross-border exchanges and value stability. A lot of
trust goes into trading and securing assets; governments are the most trusted source
we could create to pull this off so far.

Assets that are created by the government (like state currencies) have always been
under the tight grip of government oversight. So, what happens when we add non-
state-run actors into the mix? Currently, there are a lot of regulatory investigations
into the Bitcoin network and how the United States government and other govern‐
ments should regulate it. Bitcoin has been outright banned in some countries like
Bangladesh. In some countries, Bitcoin is accepted by the government as legal tender
and exchanges are able to occur with government oversight through existing stock
exchanges.

For most countries, government opinion on Bitcoin is unsure at best—and suspicious
at worst. Governments are still trying to understand this invention as it is only seven
years old. They can be slow to change and the legal climate might prevent Bitcoin
from ever entering their market. What is needed for an ungated, free, international
market is a decentralized stock exchange for the new economy that doesn’t depend
on any central government or corporate entity monitoring it. In the information

Decentralized Markets for Decentralized Assets | 33

economy where dapps are mainstream, each user of a dapp is also consequently a
shareholder.

The shares that they own are the native currencies of the dapps, colored coins, or Bit‐
coin sidechains in the most likely scenario. These currencies will fluctuate in valua‐
tion with the valuation of the dapp: as more people find the app useful, its valuation
will grow, and so will its shares. Further, these shares can pay out dividends from the
dapp’s stream of revenue, making them even more valuable. Users will eventually
want to trade these assets for more durable, stable forms of assets like currencies—
maybe a USD-backed Bitcoin sidechain like bitUSD. BitUSD is a novel cryptocur‐
rency pegged to USD that can be traded for BTC seamlessly. They could also trade for
a price-stable cryptocurrency that has seignorage built in, or a currency with its own
decentralized reserve. Users will needs stability in some of their assets, in short, and
will eventually want to convert some coin to whatever will maintain their purchasing
power when they are happy with their value and don’t want to risk losing it from
investment in a dapp.

So far, exchanges for cryptocurrency have relied on a centralized source to hold your
money, so for the duration of the exchange you had to trust them. This has resulted
in numerous thefts from—and, it seems, by—central entities, mostly because they are
not backed by any governing legal contracts,given that Bitcoin is still under examina‐
tion by most governments. The most infamous example is Mt Gox, an exchange
based out of Tokyo run by Mark Karpelès. Gox was huge in Bitcoin’s early days and a
lot of people had used it. In February of 2014, it shut down, and there was no explan‐
ation as to the loss of customer funds. People were furious, but there was hardly a way
to discipline Karpelès due to Bitcoin’s murky legal situation.

Since then, people have grown more and more distrustful of exchanges. Ideally, we
could list our dapp asset/stock prices on government stock exchanges, but that would
take a lot of regulatory approval and people don’t want to wait for that. On top of
that, getting on a federal stock exchange requires a company to issue an IPO. An IPO
requires a company to have a certain amount of capital in the millions, hire invest‐
ment bankers and lawyers, and file mountains of paperwork. This is a very high bar‐
rier to entry and because the stock exchanges hold nation-based monopolies on
trade, they are able to maintain that system.

Bitcoin has given us the opportunity—the choice—to opt out of the financial system
and we should have that option. Not because the government is “evil” and “endlessly
printing money,” but because people should be given the option, and the more
options the better. Let’s decentralize the IPO and let early stage startups sell shares of
their stock to people who aren’t accredited investors. The accredited investor require‐
ment limits the people who can fund a corporation to those with at least a million in
the bank. Crowdfunding sites are useful, but they don’t give funders equity in return

34 | Chapter 2: A Flourishing Dapp Ecosystem

because of this requirement. We need a decentralized stock exchange. So, how would
it work?

There are some ideas that involve Ripple-style mechanism of exchange. (Ripple-style
meaning you can choose who to reach consensus with, as opposed to proof-of-work
where you trust the majority of work). Stellar is in some ways the new Ripple; its
founder, Jed McCaleb, teamed up with some Stripe-backed teammates like David
Mazieres (a brilliant Stanford researcher of distributed systems) and decided to create
a new altchain. Stellar is quite literally the Ripple source code white-labeled with a
new consensus mechanism that is still being ironed out.

The basic idea is that you can trade your currency with anyone else by trusting a
third-party intermediary to administer the exchange. The trusted third party could be
a bank or central exchange or even a friend. The system is interesting because unlike
many altcoins, it’s not completely decentralized. It adds in an element of interpersonal
or organizational—that is, social—trust to facilitate exchange.

This isn’t ideal, but truly decentralized order matching with zero trust hasn’t been
solved and is most likely impossible prior to a major leap forward in AI. Centraliza‐
tion has its downsides, but it also offers a positive: accountability. In the Stellar
model, the intermediary nodes are held accountable for any mishaps, and if any
occur, their reputation goes down. This model in and of itself has value, but the prob‐
lem with Stellar, as with most altcoins, is that it introduces a new cryptocurrency and
its consensus mechanism has yet to be proven to work.

Proof-of-work is the only known Sybil-resistant solution that works at scale. What
does that leave us with? The most decentralized exchange I know is called Mercury by
a developer named Mappum. Mercury is a multicoin wallet that uses the cross-atomic
chain (CAC) transfer protocol of Bitcoin to exchange value between cryptocurren‐
cies. The CAC transfer protocol lets Alice and Bob, who own coins in separate cryp‐
tocurrencies, to exchange them without having to trust a third party. Both
cryptocurrencies need to have the protocol implemented for it to work. The actual
order matching is done on a server, but the wallet holds the values locally so there is
no risk of theft. Mercury is an open source project that is available on GitHub and is
actively under development but already has several users. As the wallet grows in pop‐
ularity, users will want to store all of their assets in the wallet and exchange them with
the click of a button for other forms of value. It’s the predecessor to the holy grail of
wallets, one that holds any and all cryptocurrency.

There likely won’t be one that recognizes all the different competing protocols, just as
web browsers don’t recognize the Xanadu proposal or any of HTTP’s other failed
competitors as protocols. And yet browsers are used by everyone who wants to access
the Web. Bitcoin, colored coins, and sidechains will win out in the end. BTC-
blockchain-backed assets are the most secure due to the 500-plus supercomputer
computation powered security of Bitcoin’s blockchain, its first-mover advantage for

Decentralized Markets for Decentralized Assets | 35

https://ripple.com
https://stellar.org
http://mercuryex.com

market share and mind share, and its superb community of developers working to
increase its scale. Any company can add its coin to the open-source Mercury wallet,
no IPO necessary.

Even if Mercury doesn’t win, the model is solid and it means the barrier to entry for
IPO will be diminished for those who issue assets via cryptocurrency.

Practical Decentralization
Compliance with government regulations is a must for success in the modern world.
One need only look at PayPal, and now Coinbase, to see how government compliance
builds trust among users and lets a business grow internationally. Unfortunately, issu‐
ing assets for your registered corporation in the United States to people who aren’t
accredited investors on a decentralized stock exchange doesn’t scream government
compliance. So what can dapp developers do to create their dapps and move out of
the shadows and into the mainstream alongside Facebook, Instagram, and Vine?
Here are three suggestions:

• Start your corporation as a nonprofit
• In your legal documents, label your assets as app tokens to unlock features
• Add your asset listing to a decentralized exchange like Mercury

That’s a solid beginning, and it might be all that’s necessary with effective decentrali‐
zation. You can offload the legal landmines of dealing with decentralized exchanges
to the exchanges themselves. The exchange is decentralized, so it can’t be shut down,
except for the server that order-matches. But because the app is open source, users
can either continually make new server backups or insert their addresses.

Using sidechains and colored coins eliminates the stress of having to deal with differ‐
ent chains that might or might not support CAC swap, which would require a patch‐
work of code to accommodate compatibility. If everything is just Bitcoin under the
hood, life is easier for a programmer to build apps that use several different curren‐
cies. For example, imagine a decentralized Dropbox built on IPFS. Users would pay
the underlying networks fee (Filecoin), possibly a fee to register their usernames on
the Namecoin blockchain, and possibly some internal currency fee for the service.
How does one transaction split up into three different currencies, hitting different
chains? If everything is just Bitcoin under the hood, value can transfer seamlessly
between the coins.

This is why Bitcoin seems the strongest basis to be the blockchain on which all other
financial assets are built: it works better than anything else so far, it’s simple to think
about, and it’s simple to implement. But what about having to decide between coins
and their use cases? Bitcoin’s transaction times could be faster. Litecoin as a sidechain
can speed this up by a good amount. Then there’s Darkcoin, which keeps your trans‐

36 | Chapter 2: A Flourishing Dapp Ecosystem

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

action history private by scrambling and encrypting the transaction data on the
blockchain. Primecoin and Gridcoin let you utilize the proof-of-work to solve scien‐
tific problems rather than just have it go to waste as computational power to back the
network. How can we cherry-pick the features we want out of different cryptocurren‐
cies without having to hold all of them and pick and choose between them?

The answer lies in a universal wrapper for all cryptocurrency. Picture a wallet that
stores all Bitcoin-backed cryptocurrency, similar to what Mercury aspires to be. This
is useful, but still presents the user with having to worry about which currencies to
spend and when. Instead of this, the user is presented with one currency balance and
features that she can turn on and off at will. The wrapper would turn currencies into
features that end users could easily switch between.

Installation on the backend could be as simple as Node.js’s packet manager. Want
faster transactions? bpm install lite. Private transactions? bpm install dark.
Help compute scientific data? bpm install solar. Transactions would filter through
the various blockchains necessary to ensure that they have all the features a user
requests. Users could store assets separately, just as they do today in portfolio
accounts/online wallets or in their currency wallet, as an all-in-one wealth manage‐
ment wallet.

Let’s consider the practicalities: Storing currency in your computer wallet is danger‐
ous. It’s a decentralized alternative to banks and some people think it worth the risk
because it’s an ideological decision. Some people don’t like the idea of banks—they
can be corrupted, and given that they are central institutions they can fail; lots of peo‐
ple’s eggs in one basket. But most people aren’t ideological! It’s the sad truth; most
people don’t care about centralization or data security or data ownership. They just
want something that works well at solving their problems.

A bank solves a very important problem for people: secure storage of wealth. Storage
as a service has been around for a very long time and continues to provide value to
people. Coinbase, for example, is the most popular Bitcoin-based service and there’s
nothing decentralized about it. It has essentially become a bank: it not only holds
your Bitcoins in a secure online wallet, it also has begun holding your USD, as well!
As Coinbase becomes more popular, so does Bitcoin. It’s very easy to use and takes
the worry out of storage. If Bitcoin is ever going to become mainstream, banks will
need to accept it as currency. It sounds radical, given that Satoshi created Bitcoin as a
way to avoid the chargeback problem that all online transactions tend to have. Why
would we store it in a bank? The distinction is akin to carrying dollars locally versus
carrying them in your bankcard.

Bitcoin gives us the option to have chargeback-free transactions over the Web just
like cash if we so choose. But most people will opt to use something like a bank.
When a bank works well, it’s a great service. We can spend our currency anywhere
without worrying about it being stolen due to bank’s insurance on our balance and

Practical Decentralization | 37

with its security keeping us content. Traditional banks will either have to evolve to
accept Bitcoin as a protocol for money transfer or be surpassed by new competitors
like Coinbase. Imagine if your bank stored your Bitcoin balance, as well. It would
show your balance in your native country’s currency and it would have an associated
account number, routing number, and Bitcoin public keypair.

If anyone sent you Bitcoin, it would go directly to your bank account. If anyone sent
you state currency, it would go directly to your bank account. You would be able to
turn on price stability as a feature due to the universal wrapper so your balance would
be as stable as it is currently. You could spend your Bitcoin anywhere you spend state
currency because they would become indistinguishable.

Bitcoin will find its niche. Most people don’t care about the word Bitcoin and just
want to use their own currency. The leaders in the Bitcoin space like Abra won’t even
mention the word Bitcoin. They will just use it as a protocol for fast reduced-fee
international money transfer and micropayments.

Abra is a startup that aims to tackle the huge remittances market in the developing
world by creating a series of decentralized tellers that will exchange state currency for
Bitcoin, and vice versa. They use the term “digital money” instead of Bitcoin, a smart
move that won’t scare away mainstream consumers and will most likely boost their
sales. As a very practical matter, outside of the Silicon Valley state of mind, people
don’t really care for Bitcoin.

The rise of Bitcoin ATMs is fascinating, but visit any developing country without
proper financial infrastructure and you’ll see the transition from an all-traditional
ATM network to an exclusive all-Bitcoin ATM network isn’t going to happen in our
lifetime. Instead, Bitcoin should complement the existing payment infrastructure by
making it faster and cheaper when needed (wire transfers, especially internationally),
and allow for all the features that cryptocurrency can offer a user, like micropayments
—which can in turn enable dapps like microblogging marketplaces.

No one will be forced to use a bank, an identity, data, or centralized computation, but
they can make life easier. We have the choice to decentralize when necessary, and
hopefully as users get more aware of the value of their data, the world will slowly
began to understand the importance of securely storing public keys themselves.

38 | Chapter 2: A Flourishing Dapp Ecosystem

https://goabra.com

CHAPTER 3

Building Your First Dapp

Enough with the theory, let’s get to building. I’m going to assume that you have built
at least one software application before. Building a dapp isn’t that much more difficult
than building a regular app. The added complexity comes from having to think in a
decentralized way and not having as many mature libraries at your disposal as a regu‐
lar app developer does.

This chapter will take you through the process of building a decentralized Twitter
clone from source. We’ll cover the following:

• The Go language
• Decentralized architecture and the IPFS distributed data store
• Kerala, an IPFS interface
• Coinprism, a colored coins wallet service
• Mikro, a decentralized messaging app with an internal economy.

Go
We’ll be using Go for our dapp. Go has garnered a lot of interest from backend devel‐
opers for its simple callback-hell-free syntax, fast computational time, and concur‐
rency friendly “go-routines.” Erlang and Rust are two others that claim to be superior
to Go, and perhaps they are in some ways, but unlike Go, their libraries are in a very,
very early stage of development.

JavaScript is also pretty popular these days, and with the advent of Node.js, JavaScript
developers are no longer limited to frontend roles. They can create and maintain the
entire web stack with one language (and, of course, HTML/CSS). JavaScript is the
language of the Web and JavaScript developers can use a wide variety of JavaScript

39

frameworks to build their web apps. Although JavaScript is great, it has its weak‐
nesses. Concurrency is nontrivial to implement and it has confusing value construc‐
tors. Go makes up for these and is built for more distributed-type systems.

I’ve developed web apps built by using Go and web apps built by using JavaScript.
Both languages have their pros and cons, but I have to admit that I’ve found Go to be
the most efficient for building dapps. Google created Go because it needed a language
that could handle the Google-scale concurrent computation of large datasets as fast
and efficiently as possible. Go was the answer to that problem, and its use internally
at Google has increased significantly since its first release.

Go has the power and speedy compile time of C and the elegance and brevity of Ruby.
It was built for distributed systems, and that’s why I keep coming back to it when I
think about building dapps. The fact that IPFS was built using Go is also a plus
because you can integrate distributed file storage into your app without compatibility
barriers. There are many Go-based web frameworks to choose from: Martini, Goji,
Gorilla, and even Go’s standard net/http package. I like keeping my dependency stack
as lightweight as possible so I build with net/http, my go-to, and I only reach for other
web app libraries as they become necessary.

Centralized Architecture
There are three paradigms that are commonplace when building a standard server-
client–based web app. Let’s discuss them a bit.

REST
The server-client model is relatively simple and has become the de facto way to
exchange data across the Web. REST, or Representational State Transfer, is a set of
guidelines and best practices for creating scalable web apps usually based on the
server-client model. REST is a named practice (just like AJAX), not a technology in
itself. It encourages use of capabilities that have long been inherent in the HTTP pro‐
tocol, but seldom used. The user can just point his browser to the URL (Uniform
Resource Locator) and by doing so he is sending an HTTP request. Each HTTP
request has information in the form of parameters that the server can use to decide
what kind of HTTP response to send back to the client who issued the request.

CRUD
CRUD stands for Create-Read-Update-Delete. These are the basic operations to be
done in a data repository. You directly handle records or data objects; apart from
these operations, the records are passive entities. Typically, it’s just database tables and
records. Whereas REST interacts with a working system, CRUD manipulates data in
the system. Typically developers would use a database like MongoDB or MySQL to
perform CRUD actions on their data.

40 | Chapter 3: Building Your First Dapp

MVC
MVC stands for Model-View-Controller, and it’s currently the most popular software
programming paradigm. Models manage core behaviors and data of the app. Views
render the user interface for the app. Controllers receive user input and make the
necessary calls to model objects and the view to perform certain actions.

Decentralized Architecture: Introduction to IPFS
So, what happens to CRUD and REST in a decentralized architecture? They become
one and the same. This is because data will live in a decentralized network of comput‐
ers owned by no one, as is the case with IPFS. Performing operations or handling
requests on data locally is the same as doing it remotely. You and everyone else are
the server and the client. This sounds more complicated than it actually is. IPFS is my
decentralized storage solution of choice because it has gotten farther than any of the
competitors in the space and synthesizes great ideas from years of research in the
space with proven practices.

When you build your dapp, it won’t run on a server; rather, it will run locally on all
your users’ computers. We still haven’t solved decentralized computation, and
uploading the compute to a centralized virtual machine (VM) like Heroku would
defeat the purpose of decentralization, so the right way to deploy a dapp is as a down‐
loadable binary. Users can download it to their desktops and then access the dapp
using either a web browser or directly within a client interface—for example, Spotify
or Skype.

Dapps will require data storage in some form or another and as such they will double
as IPFS-distributed file storage nodes. An alternative would be to just use a third-
party IPFS node on a server to store the data, but then that cloud provider would be a
central point of failure. Inevitably someone is going to buy some Amazon EC2 space,
host a node there, and offer IPFS-node-as-a-service to make it easier for beginners to
get started with using it. The data would be replicated from there as people request
files on a case-by-case basis. An IPFS cloud node would also be great for mobile
dapps, given that running an IPFS node takes a good chunk of processing power, and
that correlates to losing a good chunk of battery life for laptop users.

Nodes can be incentivized by uploaders to store data by being paid in dollars or a
cryptocurrency. IPFS creator Juan Benet published a paper for a currency called File‐
Coin to do just that, but work on it still hasn’t begun and thus cannot benefit us yet.
In the meantime, the floor is open for anyone to create incentive schemes for data
storage alongside IPFS so that nodes don’t need to be online to have their data avail‐
able for use. The more decentralized, the better. Even if an IPFS node server was
taken down, if the data were useful at all, there would be copies stored by everyone
who requested it. Such is the beauty of IPFS and why the creator refers to it as the
permanent web. You could potentially also pay the server to “pin” your data. Someone

Go | 41

http://filecoin.io/filecoin.pdf

might not want your data now, but eventually they will. As long as someone wants
your data, it will live on.

A mobile app would be cool to build, but for this demo tutorial I’m going to focus
on writing a desktop dapp because IPFS still doesn’t have a solid Swift/ObjC or
Android wrapper.

Let’s look at two key commands in IPFS:

ADD

Add data to IPFS

CAT

Read data from IPFS

Notice how there is no delete command. IPFS is the permanent Web! After you add
data to the network, unless you are the only one hosting the data, there is no way for
you to delete the data you’ve added. This is because other nodes will have a copy of
the data as soon as they access it. Also notice how there is no update command,
because IPFS has Git’s methodology built in. When you update a file, the file itself
isn’t deleted, it’s versioned. You can create a merkleDAG for that file such that the lat‐
est hash is the latest version of the file. All older versions still exist, and you can still
access them if you desire.

When you add data to IPFS, you are essentially just broadcasting to the network that
you have the data; you aren’t actually sending it to someone’s computer. That only
happens when someone requests the data. And because the data lives on the network,
manipulation is a result of commands to the network, as well.

IPNS (the naming layer on top of IPFS) gives the appearance that updating and delet‐
ing are possible through mutable names. With IPNS you can publish a DAG of data
under your immutable peer ID, and then whenever someone resolves your peer ID,
she can retrieve the DAG hash. IPNS can only store a single DAG entry per peerID,
so if you want to update or delete data, you can just publish a new DAG to your
peerID. We’ll get into implementation details of this later in this chapter.

What about MVC architecture?

Well, it’s still there. What? No wildly novel methodology for structuring my code?
Nope, models stay the same, controllers use IPFS for data storage and retrieval, and
views are just HTML/CSS/JavaScript.

What about smart contracts? What role do they play?

In a dapp, there are certain elements that need consensus via smart contracts that
would usually require a server. Usernames are a great example, as are financial
actions such as escrow and property ownership. Smart contracts are technically
“models,” and you can feed data into them via transactions, but they are not the de

42 | Chapter 3: Building Your First Dapp

facto “model” in MVC architecture. They can work alongside your existing models
but their utility really applies in specific scenarios. These will come up on a case-by-
case basis, and we’ll learn how to build smart contracts later on in the book. The say‐
ing goes that we need smart models, thin controllers, and dumb views.

Eris Industries has a framework for building dapps called the Decerver. It has a whole
lot of literature on its website explaining how to use it and all of the different and
revolutionary methodologies it is implementing to help make dapp creation easier. It
says that the models are the smart contracts, but the problem is that smart contracts
are pay-to-play and should be orthogonal to model creation. It’s an unnecessary com‐
plexity. MVC still applies in a decentralized app and your controller will speak to
blockchains and DHTs instead of servers.

What Are We Building?
For our first app, we’re going to build a decentralized version of Twitter. The bitswap
mechanism of IPFS would mean all the nearest nodes could just pull the data from
the node hosting it locally. Decentralized Twitter would be a useful tool to have, but
this isn’t the first time it’s been done. A Brazilian developer named Miguel Freitas cre‐
ated a Twitter dapp called Twister a few years ago. Alas, Twister was plagued by a
variety of security bugs that spammers took hold of, and Freitas was forced to imple‐
ment rough fixes using the only tools he had. The patches are rough because they
employ techniques like making the new user complete a proof-of-work to verify her
identity after signing up, which was done to prevent Sybil attacks. This creates a high
barrier to entry for new users who just want to try the system without having to dedi‐
cate computing power to prove themselves a good actor. Twister is also relatively dif‐
ficult to install and setup.

We can benefit from a new version of a Twitter dapp because we’re going to utilize
new technologies like IPFS and Bitcoin. We’ll call the dapp Mikro, and it’s a great first
dapp to work on because it’s like an MVP for dapps. The data is relatively simple and
straightforward: you are a user and you output microposts. You can discover new
users and see their microposts.

Setup
Let’s set up our Go environment. I’m all about reducing complexity where it’s not nec‐
essary. Luckily, Go has package installers for Linux and Mac OS X. (Sorry, Windows
users, we’re going to focus on Unix-based systems).

The great thing about these package installers is that they will automatically install the
Go distribution to usr/local/go and set our path variables. Path variables are one of
those “gotchas” in software configuration. They link your libraries to Terminal key‐

What Are We Building? | 43

http://bit.ly/go-pkg-linux
http://bit.ly/go-pkg-mac

words you can use to call them. If it didn’t set our path variables, we would have to set
them ourselves, like so:

export GOROOT=$HOME/go
export PATH=$PATH:$GOROOT/bin

In this example, $HOME is where we’ve installed Go (usr/local/).

After you’ve installed Go, let’s test it to ensure that everything is working. In the src/
folder, create a new folder called tests/, and inside that folder create a file called hello‐
world.go. Type in the following in Terminal to begin editing the file:

'nano helloworld.go'

Add the following code snippet to the file and save it:

package main
import "fmt"
func main()
{
fmt.Printf("hello, world\n")
}

Then, run it with the Go tool:

$ go run hello.go

If the console displays hello, world!, this means that Go has installed properly.

Great—now we want to install our dependencies. First and foremost, let’s install IPFS.
Go makes it relatively straightforward to install dependencies directly from its source
on the Web. To install IPFS, type this into your console:

go get -d github.com/ipfs/go-ipfs

After installation, Source your bash:

Source ~/.bashrc

Dependencies that are installed via the go get command are fetched and built for
you. They are stored in the src folder of your Go root folder. If you cd into your src
folder, you’ll find another folder called github.com. Go will slice the URLs that you
pull libraries from such that each component of a URL becomes its own folder. So
inside of the github.com folder, there will be a jbenet folder. Inside of that will be a go-
ipfs folder, and so on. This is useful because if you pull a lot of dependencies from a
single source, Go will automatically sort them for you in their respective folders. So
all of your GitHub dependencies go in your github folder, with the names of the Git‐
Hub users you are forking from getting their own folder name.

To begin using IPFS, you need to initialize its config files on your system, as follows:

'ipfs init'

44 | Chapter 3: Building Your First Dapp

This will take a few seconds; it’s adding bootstrapped (hardcoded) peers to your con‐
figuration and giving your node an identity key-pair to identify as a peer to the net‐
work when you add or pin a file.

When you type ipfs into your Terminal after init completes, you should get the fol‐
lowing prompt:

ipfs - global p2p merkle-dag filesystem
ipfs [<flags>] <command> [<arg>] ...

 Basic commands:

 init Initialize ipfs local configuration
 add <path>Add an object to ipfs
 cat <ref> Show ipfs object data
 ls <ref> List links from an object

Tool commands:

config Manage configuration
update Download and apply go-ipfs updates
version Show ipfs version information
commands List all available commands
id Show info about ipfs peers

Advanced Commands:
daemon Start a long-running daemon process
mount Mount an ipfs read-only mountpoint
serve Serve an interface to ipfs
diag Print diagnostics

Plumbing commands:
block Interact with raw blocks in the datastore object Interact
with raw dag nodes Use 'ipfs <command> --help' to learn more about each
command.

These are all the commands in IPFS, and it means your installation was successful.

Now try to add something to IPFS:

ipfs add hello

It should return something that looks kind of like this:

QmT78zSuBmuS4z925WZfrqQ1qHaJ56DQaTfyMUF7F8ff5o

This is the hash of the data you just added. That data still lives on your computer, but
now there is a content address associated with it, and anyone who has that address
can retrieve the file directly from your computer as long as you’re online. As soon as
he retrieves it, he will have the data as well. From there, people who want the data will
pull it in bits from both your and their computer. The more peers who store the data,

What Are We Building? | 45

the faster the download will be, just like BitTorrent. Unlike BitTorrent, IPFS has the
added benefits of versioning and a naming system built in.

Now that you’ve added some data to IPFS, let’s try CATing it back:

ipfs cat <that hash>

This should pull and display hello in the console. It’s pulling it directly from your
computer.

The next dependency is Kerala. Kerala is a little wrapper I wrote around IPFS and
Colored Coins to help us create decentralized Twitter, although it’s general purpose so
you can use it for other dapps as well. Kerala makes it easy for you to add data to IPFS
to form a MerkleDAG. You can install it with the following command in Terminal:

go get -u github.com/llSourcell/go-kerala/kerala

Here’s an example of how easy it is to add and retrieve data from IPFS:

//Start a node

node, err := kerala.StartNode()
if err != nil
{
panic(err)
}

//Add your text to IPFS (Creates MerkleDAG)

var userInput = r.Form["sometext"]
Key, err := kerala.AddString(node, userInput[0])

//Get all your text from IPFS (Retrieves MerkleDAG)

tweetArray, _ := kerala.GetStrings(node)

The first snippet of code starts a node, so your dapp doubles as an IPFS client. It starts
up the daemon, so you broadcast yourself as a peer to the network. The second snip‐
pet of code lets you add text to IPFS. You can add any kind of data to IPFS: video,
images, data structures. But for this example we are going to use the AddString
method to simply add a string to IPFS. What the wrapper does is every time you add
a string, it creates a new hash for that string. Then, it links that hash to the previous
hash. The link is an abstract term but essentially what it means is if you request the
hash of the latest string, it will also subsequently get the hashes of all linked strings.

The links from a data structure that IPFS labels as a MerkleDAG. It’s a directed acyclic
tree graph that you can use to relate data. This is a great use for a Twitter dapp; every
time you tweet, the wrapper will just link it up with your previous hash and store that
new hash locally in a text file on your computer called output.html. Only you know

46 | Chapter 3: Building Your First Dapp

that hash’s key and can access that data but you will be sharing it with other people on
the network.

The last snippet of text essentially performs an “ipfs cat” on the hash associated with
your peerID (using IPNS) and stores it in an array for you to use and display in your
view.

You’ll also use a lightweight dependency called httprouter that helps making web
apps easier. You can install it by using the following commands in Terminal:

go get –u github.com/julienschmidt/httprouter

Now that you have all of our dependencies installed, you can go ahead and download
the dapp we’re going to be building from source. I’ve taken the liberty of writing the
app beforehand—there is just too much code to ask you to write from scratch in one
go—so it would be best if I walk you through the dapp in a detailed way after you
download it, build it, and run it. In the console, type the following:

go get –u github.com/llSourcell/dapp

For your reference, these are all of the imports the dapp uses. All of them except for
IPFS, Kerala, and httprouter are a part of the standard Go library:

import
 (
 "net/http"
 "github.com/julienschmidt/httprouter"
 "github.com/ipfs/go-ipfs/"
 "path"
 "html/template"
 "fmt"
 "log"
 "github.com/llSourcell/kerala"
)

cd into the dapp folder in your Go workspace, and then, after running ' go
install . '. In that directory, type ' go run app.go ' to run the app. Go to local‐
host:8080 and you should see your profile page show up. It will look something like
that shown in Figure 3-1.

There won’t be any posts, because you haven’t added any. (The graphic shows my pro‐
file page after I added a series of posts.) Now, submit four or five different tweets via
the text field. After each submission, return to the home page and refresh to view
them. The app consists of a home page that doubles as your profile page. It shows all
of your posts. The app also has a discover page to help you find other users and their
profiles. Let’s call this demo app Mikro.

What Are We Building? | 47

Figure 3-1. My screen

Routing
Let’s take a look at the routes first. The app is using a generic thin lightweight routing
library (httprouter) built on top of Go’s native net/http package to make routing
simple. Recall that in standard web apps the GET and POST methods are used fre‐
quently to relate page loads to data requests or sends. The same thing is happening in
the routes, and the data actions (IPFS CAT and ADD) are happening alongside them.

In the main method of app.go, you’ll find the routes:

//[2] Define routes

router := httprouter.New()
//Route 1 Home (profile)
router.GET("/", TextInput(node))

//Route 2 Discover page

router.GET("/discover", displayUsers(node))
//Route 3 Other user profiles
router.GET("/profile/:name", TextInput(node))
//Route 4 Add text to IPFS
router.POST("/textsubmitted", addTexttoIPFS(node))
//[3] link resources
router.ServeFiles("/resources/*filepath", http.Dir("resources"))
http.Handle("/resources/", http.StripPrefix("/resources/",
 http.FileServer(http.Dir("resources"))))
http.Handle("/", router)

48 | Chapter 3: Building Your First Dapp

//[4] Start server
fmt.Println("serving at 8080")
log.Fatal(http.ListenAndServe(":8080", router))

Start off by initializing the router as a struct:

router := httprouter.New()

As an aside, Go isn’t exactly an object-oriented programming (OOP) language in the
traditional sense like most other languages. It follows a model similar to OOP, but it
is different. Structs are Go’s version of Objects. Structs have fields and methods and
they feel like objects. But in regular OOP, we use the class keyword to define objects.
This helps with inheritance, but Go is designed without inheritance. Although this
might seem like a bad feature at first, it’s actually a pretty good thing. Inheritance can
get messy when you have lots of classes and different interfaces and implementations
extending each other down a hierarchy. Instead Go uses subtyping (is-a) and object
composition (has-a) to define relationships between structs and interfaces.

Our first route defines the method we call when the user goes to the page localhost:
8080/. It’s the page you first saw when you started up the app for the first time. Route
2 is the discover page. The discover page lets you see all peers on the network that are
currently online and using the app. Route 3 is a model URL. Notice the :name key‐
word after /profile/. It’s used to load any user’s profile; when you replace name with
a user ID, the URL will load the profile model with the specified user’s ID informa‐
tion. The user ID in this case would be the IPFS NodeID that’s created when you start
the IPFS daemon. Every IPFS node gets its own Node ID, and because your Mikro
instance is an IPFS node, you will have one, too. Route 4 adds text to IPFS as a POST.
Whenever the user submits a post, it is added to IPFS via this route. [3] and [4] are
configuration lines for linking the server to its resources and starting it up at port
8080 of localhost.

Data Storage and Retrieval
Notice the “start the node” code at the very top of the main method:

node, err := kerala.StartNode()
if err != nil {
 panic(err)
}

That’s all it takes for your instance of the app to be a part of the IPFS network.

After you submitted your first five posts to the network, you saw each of them appear
in the posts table underneath the “submit text” button, one by one. You just added
your first data to the dapp! Remember, adding data to IPFS doesn’t mean it’s split into
a million pieces and now lives on a bunch of different people’s computers and no
matter what happens, government or otherwise, no one can ever take it down. What

What Are We Building? | 49

you’ve done is broadcasted to the network that you own the data you’ve submitted.
It’s local, it’s stored on your computer. If you go offline, so does the data.

This is the problem that some dapps like Twister had: You need to stay online at all
times. But the great thing about IPFS is that it aims for permanence and makes it pos‐
sible to reach a stage of data permanence. Whenever others in the Mikro dapp see
your tweet, they will store a copy of it, as well. And this happens recursively through‐
out the network. The more people that CAT your data, the more places it’s stored.

We’re going to need that IPFS node struct throughout the app. All CRUD/REST
actions are based on it. One option is to create a global var; it’s certainly an easy way
to start, but creating globals is bad practice, particularly because it makes debugging a
nightmare at scale. Instead, we’ll create a type and pass the variable into each method
call in the routes:

type IPFSHandler struct {
node *core.IpfsNode
}

We’ll wrap the required router function with another function so that we can pass the
node in as a variable. Let’s look at the code that adds the data to the network:

func addTexttoIPFS(node *core.IpfsNode) httprouter.Handle
 {
return func(w http.ResponseWriter, r *http.Request, ps httprouter.Params)
{
r.ParseForm()
fmt.Println("input text is:", r.Form["sometext"])
var userInput = r.Form["sometext"]
Key, err := kerala.AddString(node, userInput[0])
if err != nil {
panic(err)
}

}
 }

We start off by parsing the form to get the input text as a string, and then add it to the
IPFS network using the Kerala library’s AddString method, with the node as one
parameter, and the string as the other. We’re going to get a key back as a return
parameter. We then print it out. The key is the hash of the data we just submitted.
And that’s it; that’s how you add data to the network. Now, let’s see how you can read
and display data from the network onto your profile page.

When you first start the app, it goes to the home directory at “/” and the
TextInput(node) method is called. Like the previous function, we wrap it in a
proper http method so that we can also pass in the node as a variable:

func TextInput(node *core.IpfsNode) httprouter.Handle {
 return func(w http.ResponseWriter, r *http.Request, ps httprouter.Params) {

50 | Chapter 3: Building Your First Dapp

Next, let’s parse the URL to see if it has a nodeID (that is, peerID) in it. This method
is the same method for other user profiles and your profile. We want to differentiate
what we will do based on whether there is a userID in the URL:

var userID = ps.ByName("name")

This will tell us if there is a name. If there isn’t a name (that means it’s your home
profile), Kerala will pull the merkleDAG hash from our own nodeID using the IPNS
resolving strategy. If there is a name, Kerala will get the DAG associated with the
name by resolving it. The DAG is an acyclic directed graph, so every time a hash is
added to it, it points backward in time to all previous hashes. Does that mean a user’s
identity is constantly changing? No—that’s what’s great about IPNS. Kerala utilizes
both IPNS and IPFS to work seamlessly together. It will associate the HEAD node of a
particular DAG with a particular peerID, republishing to IPNS as necessary when
new data is added.

We have two possible cases here that are codified. The first case is if the URL doesn’t
contain a peerID. This means that it’s the home page, and we should be pulling your
tweets:

if userID == "" {
pointsTo, err := kerala.GetDAG(node, node.Identity.Pretty())
tweetArray, err := kerala.GetStrings(node, "")
if err != nil {
panic(err)
}

In this case, we resolve your DAG hash from your peerID. Then, we CAT all your
tweets from that hash.

If the tweet array is nil, we’ll just nil to the frontend:

if tweetArray == nil {
fmt.Println("tweetarray is nil")
demoheader := DemoPage{"Decentralized Twitter", "SR", nil, true, balance }

If we have tweets, we’ll go ahead and send those to the frontend:

else {
fmt.Println("tweetarray is not nil")
 demoheader := DemoPage{"Decentralized Twitter", "SR", tweetArray, true, balance}

The other case is if the URL does contain a peerID. This means that we’re trying to
view someone else’s profile.

We’ll go ahead and attempt to resolve that person’s peerID:

pointsTo, err := kerala.GetDAG(node, userID)

If it resolves, we do exactly what we did before, extract tweets from the DAG and
send them to the frontend. If it doesn’t resolve, that means the user hasn’t published
any tweets to Mikro, so we’ll just return nil, and a blank profile page will show up.

What Are We Building? | 51

Passing and Displaying Data to the Frontend
Let’s take a look at the template model we have for our profile at index.html.

We start out with reference calls to Twitter Bootstrap and jQuery, two popular frame‐
works for building simple web apps quickly:

<link rel="stylesheet"
href="http://maxcdn.bootstrapcdn.com/bootstrap/3.2.0/css/bootstrap.min.css">

<scriptsrc="https://ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquery.min.js">
 </script>
<script
src="http://maxcdn.bootstrapcdn.com/bootstrap/3.2.0/js/bootstrap.min.js">
</script>

After we have imported our dependencies, we add in a navbar. After adding in our
navbar, we add in our two main divs: the submit div and the post table div:

<center>
<div id="submitform">
<form action="/textsubmitted" method="post">
 <input type="text" name="sometext">
 <input type="submit" value="submittext">
 </form>
</div>
</center>

<div id="posts">
 <form name="tableForm">
 <body onload="insertTable();">
 <div id="wrapper" align="center"></div>
 </form>
</div>

Our submit div creates a standard text input and submits it by referencing the /text
submitted URL via POST method. After a user clicks the submit input button, it will
go to the URL with the string as a parameter and it will call the method we discussed
earlier, addTexttoIPFS.

We’re going to put our posts in an HTML table to keep them organized. Because
posts are dynamically added, our table must be dynamically sized and resized with
each new post. We’ll use JavaScript to achieve this:

function insertTable(
{
 var arr = [
 {{range .Tweet}}
 {{.}},
 {{end}}
];

52 | Chapter 3: Building Your First Dapp

 console.log(arr.length);
 var num_cols = 1;
 var width = 100;
 var alignright = "<td style='text-align: right'>"
 var theader = "<table id='table1' width = ' "+ width +"% '>";
 var tbody = "";
 for(var j = 0; j < num_cols; j++)
 {
 theader += "<th text-align='left'>My Posts" +
 " </th>";
 }
 var str1 = "{{ index .Tweet 1}}";
 for(var i = 0; i < arr.length; i++)
 {
 tbody += "<tr>";
 tbody += "<td>";
 tbody += "" + arr[i] + "";
 tbody += "</td>";
 tbody += "</tr>";
 }
 var tfooter = "</table>";
 var endalignright = "</td>"
 document.getElementById('wrapper').innerHTML = alignright + theader + tbody
 + tfooter + endalignright ;

}

We use the {{ }} brackets to reference the data (tweets) we passed in from the fron‐
tend via the Demoheader struct:

var arr = [
 {{range .Tweet}}
 {{.}},
 {{end}}
];

We then get the size of that array through JavaScript’s native len method. We use that
size as the upper bound of our for-loop and iterate through the array. Before the
array iteration loop, we go ahead and create HTML headers for the table that are
static. Next, for each element in the array we’re going to create a new table object.
Inside of each table row is going to be a post. Then, we end it by combing the static
elements with the dynamically created elements in the loop with the line:

document.getElementById('wrapper').innerHTML = alignright + theader + tbody
 + tfooter + endalignright ;

At the bottom of the fill inside of the style tags, you’ll find some of the styling I’ve
added. Notice how it’s completely plain because this is just a demo to get you up to
the basics of creating a dapp, not Design 101.

What Are We Building? | 53

Let’s move on to the discover page. The home page lets you see your own tweets, and
the profile/:name URL lets you see the home page of every user on the network. How
do we find these users? With the discover page, of course! Most social apps have some
sort of discover page, and Mikro is no different. When you click the discover button
on the navbar, you will see a list of peers that looks something like this:

All peers
QmW3ssBgGLANKNKXiRxcQMmxg3FPd3tSwu2Dt96DBLbjBZ
QmRzjtZsTqL1bMdoJDwsC6ZnDX1PW1vTiav1xewHYAPJNT
QmaCpDMGvV2BGHeYERUEnRQAwe3N8SzbUtfsmvsqQLuvuJ
QmepsDPxWtLDuKvEoafkpJxGij4kMax11uTH7WnKqD25Dq
QmUy5jHXui2KzZRC3ofzHKYGmJVqAJTCsRRo2EZ6Wzwee7

Peers are identified by their default peerID generated by IPFS. Let’s examine how we
got them in app.go. Notice how the method displayUsers is called when the user
routes to /discover. Our first step is to get all the peers from IPFS:

//get peers
peers := node.Peerstore.Peers()
data := make([]string, len(peers))
for i := range data {
 // assuming little endian
data[i] = peer.IDB58Encode(peers[i])
}
fmt.Println("the peers are %s", data)

We pull all the peers from the peerstore; internally, this is the IPFS swarm peers
command. Next, we create an array the length of peers and iterate through it. We use
the method IDB58Encode to encode the peers to a pretty string that we can parse and
store each one of them in the data array. Then, we pass the array back to the frontend
of the discover.html page. The discover.html page is very similar to the user home
page. It’s just a dynamically sized HTML table that fills in all the posts for the speci‐
fied peer. The only difference is that it passes in the peer list array instead of the post’s
array:

var arr = [
{{range .Allpeers}}
{{.}},
{{end}}
];

Dapp Economics
Now comes the fun part. Let’s turn this little dapp into its own micro economy. Recall
the discussion of ideal forms of money in Chapter 3. Colored coins is currently the
best solution for issuing assets within your dapp. You don’t want to have to deal with
the pain and annoyance of bootstrapping a blockchain just so you can have your own
appcoin. It’s not worth it when the Bitcoin blockchain already exists with its 500-plus

54 | Chapter 3: Building Your First Dapp

supercomputer computing power worth of Sybil resistance. Although Counterparty
offers a valuable solution, it introduces a new currency to the mold, unnecessarily
complicating things, and doesn’t offer modularity of features. With colored coins, we
can create an asset on the Bitcoin blockchain that is owned by no one and fluctuate in
value with the value of the dapp itself.

So, how do we create our own set of colored coins? I’ve found the website Coinprism
to be the easiest current solution. Coinprism is an online colored coins wallet. You
can create your own account and you’ll be taken to the main wallet page. Creating a
colored coin requires a fee of 0.0001 BTC. This is currently a necessary evil, until
some service comes along and takes on the fee, kind of like Onename did for Name‐
coin identities. I went ahead and transferred 0.0005 BTC from coinbase to my col‐
ored coin wallet.

Then, you go to Addresses and Transactions → Create a New Color Address. The
website will prompt you to create an address, as shown in Figure 3-2.

Figure 3-2. Create an address

Name your coin; most usually end with the word “coin,” but it’s not mandatory. Your
coin could even double as the name of your app. like the WhatsApp competitor
Gems. I chose a regular address because I don’t want to deal with offline storage.

Dapp Economics | 55

http://www.coinprism.com

Next, transfer coins from your main address to the new address. Now with this new
address, you can issue colored coins to yourself. Your main address will store both
Bitcoins and colored coins. The fee is 0.001 BTC, and you can choose an arbitrary
number of shares to be associated with the colored coins. I chose 100,000 (as shown
in Figure 3-3), but you can choose a million if you’d like. It’s better to err on the big‐
ger side of numbers so that you’ll have enough coins to go around if your dapp gets
really big.

Figure 3-3. Issue colored coins

When the transaction has been completed, the new address will have all X shares of
dapp coins you’ve just created, as demonstrated in Figure 3-4.

After you’ve finished that step, you should see your new currency on your wallet
home page, next to your Bitcoin amount. Congrats! You now own all of the assets
you’ve just created. Think of them as shares in your dapp startup. You can give them
away to whomever you want, and as the valuation of your startup increases, so will
the valuation of your shares. No more waiting for IPOs to become a public company.

These assets remove the barriers to entry for users to benefit and profit from using
your dapp. It will incentivize users to grow the network as necessary to continue to

56 | Chapter 3: Building Your First Dapp

gain assets to access scarce resources in the network; in this case, those scarce resour‐
ces would be posts.

Figure 3-4. Your wallet

So how do we structure our Mikro economy? Do we charge users to make a post? We
could, but to whom would the money go? Most likely, it would go to whatever nodes
offer a third-party storage solution for our (encrypted) data. But for now, because we
don’t have a system like that yet in IPFS, we will make it free to post, pay to view. That
means a user can make as many posts as he likes for free, but to view other users’
posts, he’ll need to pay the author of the post a small, preset amount of coins. That
way, users will be paid for outputting data to the network, and they can use the
money they earn to either view other tweets, or spend it on outside expenses.

Kerala isn’t just a wrapper for IPFS, it also makes sending transactions easy with just a
single function call. Recall that in the TextInput method called on all profile pages,
that if a profile page is loaded that has posts and belongs to another user, this func‐
tion is called:

hash := kerala.Pay("1000","1HihKUXo6UEjJzm4DZ9oQFPu2uVc9YK9Wh",
"akSjSW57xhGp86K6JFXXroACfRCw7SPv637", "10",
"AHthB6AQHaSS9VffkfMqTKTxVV43Dgst36",
"L1jftH241t2rhQSTrru9Vd2QumX4VuGsPhVfSPvibc4TYU4aGdaa")

Dapp Economics | 57

This function pays the user profile page that you are viewing a set amount to view all
of the user’s posts and returns the transaction hash for your records.

The parameters of the pay method are as follows:

Pay(fee string, from_address string, to_address string, amount string, asset_id
 string, private_key string) (string)

fee string

This is the required fee to send a transaction.

from_address

This is your asset address.

to_address

This is asset address of the user whose post you want to read.

amount string

This is how much you want user A to pay user B to access user B’s posts.

asset_id string

This the ID of the asset that the dapp owner has created.

Right now, all cryptocurrency-related data is dealing with the test version of the
Coinprism API. When you are ready for production, you can change this to the
production version of the API, and the docs on Coinprism make it simple. (You just
switch out the test URL to the production URL in Kerala.)

The pay method creates a transaction, takes the unsigned response, and calculates its
hex value. Then, it signs the hex value and pushes it to the network. The returned
value is the hash of the transaction that you can verify on the Bitcoin blockchain.
Sending cryptocurrency transactions is more painful than it should be to do from
scratch, so I thought abstracting it all to one method would be useful.

There is one more method called GenerateAddress. For your dapp, you can set it so
GenerateAddress is called when a user first runs the app so that he has his own asset
address from which to send and receive funds.

Remaining Problems
There are still some issues not implemented in this demo, but all of them are possible
and the dapp will likely be updated over time. I welcome any contributions.

Private Networks
You’ll notice that in this demo dapp, there are no friends. You have a profile, can dis‐
cover other users, and see their posts after paying them, but you can’t “friend” them
in the traditional sense of a social network. Friending someone requires data encryp‐

58 | Chapter 3: Building Your First Dapp

http://bit.ly/coinprism-docs

tion. The idea is that your DAG is encrypted with a public-private keypair, and only
those nodes that you trust on the network can gain access to your private keypair to
unlock and view your data. If you unfriend someone, the app can generate a new
public-private keypair and rebroadcast the private key to all of your remaining
friends. This way, the old friend won’t still have access to your data. So where is this
functionality? It’s called IPFS Keystore, and it’s still under development. By the time
you get this book, it will most likely be done, and will be a simple matter of imple‐
menting a few extra lines of code. You can find the specification at https://github.com/
ipfs/specs/tree/master/keystore.

Human-Readable Names
The peerIDs on the discover page are not very pretty. They’re unique, but they’re not
human readable. Recall earlier in the book that we mentioned Namecoin as the tech‐
nology completing Zooko’s Triangle and letting you create decentralized, human-
readable, and secure names. Because peerIDs are already unique, you can prompt
users to register a human-readable name on the Namecoin blockchain and then asso‐
ciate their peerID with their Namecoin name. Whenever you view data authored by a
user, the app can verify that user’s identity by verifying on the Namecoin blockchain
whether the user’s peerID sent the registration transaction for their Namecoin iden‐
tity. An alternative is to create a web-of-trust within the app like a reputation system.
Of course, the easiest alternative is to use a name shortening service (a centralized
namespace), but it would introduce a central point of failure. My preferred method is
Namecoin.

Showing Only Peers on Mikro, Not IPFS in General
The discover page shows all peers on the IPFS network instead of just peers who are
using Mikro. As IPNS matures, this will become easier to accomplish, but we can set
a file like app.config in our IPNS namespace and users looking for others can just iter‐
ate through the network and check whether each node has a Mikro-specific signature
in our file. If they do, the node will be listed on the discovery page.

Tamper-Free Payments
In our code, we made a payment to a user via the Pay() method in Kerala before
pulling the user’s data from IPFS. What if a bad user just removed that little Pay()
snippet from the source code before accessing the node’s data? It’s entirely possible to
do. Each user can have a listener running that waits for a payment to occur to their
asset address. If a payment occurs, then and only then does the client send the pay‐
ment sender a copy of the user’s private key to access her data. To get the asset
address of another user, your dapp could store it as the first entry in its own publicly
accessible DAG.

Remaining Problems | 59

https://github.com/ipfs/specs/tree/master/keystore
https://github.com/ipfs/specs/tree/master/keystore

Where do smart contracts play into all this? Namecoin has its own smart contracts
for name registration built in. Since Ethereum’s inception, Bitcoin’s core developers
have learned a lot of lessons and made the scripting language more complete to allow
for a wide range of applications, and this is one of them. Ethereum made some great
research contributions to blockchain technology, but the unfortunate truth for them
is that when it comes to decentralized apps, most often global consensus just isn’t
necessary and proves to be too expensive.

Blockchains are really good at dealing with financial assets, but computation and
storage are out of the question. An example of when you would use a smart contract
is as a third-party escrow service. Funds would live on the blockchain until the deal
was complete and would receive notice to be released to the specified address. This
dapp didn’t require use of one, but we’ll see use cases later on.

And that’s it! You have just built and run your first dapp from source. Feel free to use
it as a starting point to build your own profitable, open source startup.

60 | Chapter 3: Building Your First Dapp

CHAPTER 4

OpenBazaar

This chapter will take a deep dive into the decentralized market, OpenBazaar. We’ll
discuss the rationale and overall structure of the transactions it supports and then
talk through implementing an OpenBazaar instance as well as its potential next steps
and flaws.

Why Make OpenBazaar?
Bitcoin really got people excited about developing next-generation ecommerce with
speedy micropayments and better security. The first institutions to utilize Bitcoin at a
large scale were centralized providers like Overstock and Dish Network. Bitcoin pro‐
vided these mainstream companies with an opportunity to showcase their tech savvy,
but its pseudonymity and immediate value transfer were much more suited to a mar‐
ketplace for illegal goods: Silk Road.

Silk Road was like the underground version of eBay. It was a centralized website, but
to gain access to it you had to use onion routing via Tor. The creator made it very dif‐
ficult for casual users to access it, and it was considered the pinnacle of the “dark
web.” People primarily bought and sold illegal drugs on Silk Road, particularly in
jurisdictions with strict antidrug laws. Although part of Silk Road’s business might
have been universally repugnant, other sales involved cross-jurisdictional sales of
“light” drugs like marijuana (and even tobacco) or nondrug items like erotic art and
books, jewelry, and the like.

It all worked out for quite a while, but eventually the United States government
caught up with Silk Road because it had a central point of failure: all of its data was
stored on a single server. So, when the government seized the server, Silk Road was
taken down and all of the users lost their data associated with the website. Another

61

https://openbazaar.org

user tried restarting the site as Silk Road 2.0; eventually the feds caught up with him
as well, and the site was shut down for a second time.

Pirate Bay is in a similar position; however, given the relatively less serious level of
illegality it enables, the government response has been commensurately less perma‐
nent. The site has been taken down multiple times by multiple government organiza‐
tions, and yet it just keeps popping up. The site owners simply plan on the fly where
they next want their server to be after it’s been taken down. Clearly this isn’t a long-
term solution, but there is a very high-value need for people to get things that are
otherwise impossible for them because of the law.

Aside from the technical vulnerability, the other point of failure for marketplace apps
has been the leader in charge with access to all the data. The arrest of Ross Ulbricht,
aka the Dread Pirate Roberts, the founder of Silk Road, made headlines around the
world. He is now serving life in prison for narcotics trafficking and computer crimes.
The need for a decentralized marketplace became more and more apparent after the
government’s dealings with Silk Road—a marketplace where no single person had
administrative access control over the data and that could run locally on anyone’s
computer. It was out of this need that OpenBazaar was born.

What Is OpenBazaar?
With OpenBazaar, there is no central server involved at all. It’s a peer-to-peer client to
which no government entity can restrict access. OpenBazaar doesn’t operate under
the approval of any law; it’s the evolution of unrestricted global marketplace. As its
creators put it,“It’s like eBay and BitTorrent had a baby.”

OpenBazaar is a platform that lets buyers and sellers connect directly to sell their
goods without involving a third party to host the data and charge a transaction fee.
The creators wanted to build on the idea of creating a truly free trade platform for
people to send and receive goods without having to go through a central authority.
The Internet has never really hosted anything like the bazaars of the past: peer-to-
peer marketplaces where buyers and sellers could interact directly with one another
without anyone between observing the transaction. OpenBazaar hopes to bring that
concept to the Internet.

The developers won a hackathon in Toronto for their project called DarkMarket. It
has since been renamed OpenBazaar and they have many developers on the team
now. They mostly receive funds in the form of donations from people. They don’t
really profit from this, and that’s one major flaw in this dapp: without incentivizing
network members, this business plan doesn’t scale. The flaw could be mitigated by
introducing a metacoin that would increase in value instead of using Bitcoin directly.

62 | Chapter 4: OpenBazaar

How Does OpenBazaar Work?
Everyone in the OpenBazaar network is a node in the P2P network. Everyone is
assigned three roles that they can build on: merchant, buyer, and/or arbiter. You can
choose what role you mainly want to build your reputation for, and you are not limi‐
ted to one role. The currency presently in use is Bitcoin, removing the barrier to entry
of having to deal with a novel currency—but this also doesn’t let the developers auto‐
matically be paid for their work. Let’s talk about what the process looks like for each
of these three types of actors in the network.

Merchant
OpenBazaar’s interface is still under development, but all of the basic elements neces‐
sary for the site to function in alpha are in place. Merchants only need to go to the
setting tab and type a nickname for their store. They also input their profile image,
Bitcoin address, and Namecoin ID (optional). After they’ve filled out their credentials
(see Figure 4-1), they can save it, with the data being saved locally to their computers.

Figure 4-1. OpenBazaar credentials interface example

Merchants also have the ability to communicate with their buyers, either directly on
OpenBazaar using a messaging protocol built on ZeroMQ or by using a third-party
communication protocol like email, bitmessage, or their own website. Because Open‐
Bazaar is currently in alpha phase, updates to the protocol can delete a merchant’s
store data. As a result, the developers created a backup option that lets merchants cre‐
ate a backup of their store data that they can easily reintegrate in case of data loss.

The interesting part comes when merchants list their goods on OpenBazaar. It uses
the concept of Ricardian contracts to facilitate trade on the network. This is different
from smart contracts because they don’t live on a blockchain; instead, they live on the
merchant’s computer. A Ricardian contract is basically a way to track the liability of
Party A when selling goods to Party B. It represents a single unit of a good. These

How Does OpenBazaar Work? | 63

http://bit.ly/ricardian

contracts are used in the dapp to track legitimately signed agreements between both
parties, and these agreements can’t be forged after the contract has been signed
(Figure 4-2).

Figure 4-2. Adding a contract to OpenBazaar via the user interface

So the contract on the frontend looks like a simple input where you enter details
about your product and price. Additionally, it links your product to your Bitcoin
address and GUID, the buyer’s Bitcoin address and GUID, and a third-party notary
that you both deem trustworthy.

When a buyer actually makes a purchase, the seller will receive a notification that her
product has an order pending. The buyer will receive details about the notary that the
seller has trusted to hold the funds. The buyer can choose to trust the notary. If he
declines, the notary will send the funds back to him. If the seller does choose to trust
the notary, she can send the buyer the product. If the buyer receives the item, he
instructs the notary to send the funds to the seller. If the buyer doesn’t do this, the
notary will act as a dispute resolution party, and after compiling information from
both sides, will decide as to which party is most likely telling the truth.

Buyer
Buyers type in their credentials in the same fashion as the merchant, but they have
the duty of selecting a notary. Buyers select the notary, but it’s the sellers who can
accept or decline the validity and reputation of said notary. As of this writing, this
dapp is in its early days, and building trust and reputation requires time, so it’s best
for people to only make small transactions in case notaries are bad actors. Eventually
quality notaries will rise to the top—perhaps people will create notary services as
businesses and they will become the most-trusted and dominant players.

64 | Chapter 4: OpenBazaar

Notary
Anyone can be a notary by simply turning on a checkbox in their profile. Whenever a
buyer adds a party as a notary for their purchase contract, the notary can receive
funds, mitigate disputes, and send funds to the rightful party. Notaries can charge a
percentage fee for providing dispute resolution. If both selling and buying parties
complete their transaction without needing the assistance of the notary, there is no
payment necessary. If the notary is needed to refund the buyer or engage in dispute
resolution, the notary will receive a percentage from the multisig. Notaries publicly
display their fee under the services tab in their “storefront.”

Currently, notaries automatically accept all transactions that assign them as a notary,
but eventually they’ll be able to screen transactions and have the ability to accept or
decline them. We can see in Figure 4-3 that the basic functionality is there. Figure 4-4
shows a completed order.

Figure 4-3. The notary interface for OpenBazaar

Figure 4-4. Order example of a handmade pipe

How Does OpenBazaar Work? | 65

How to Install OpenBazaar
Now that I’ve talked about what OpenBazaar is and how it works, let’s download it
and give it a whirl ourselves. We’ll talk about it from a technical standpoint, look at
the pros and cons of the technologies the developers decided to use in the stack, and
discuss the way they’ve decided to design this dapp.

As of this writing, there is no binary here, so you need to build from source.

First you’re going to need to install Python. If you’re running the latest version of OS
X, it comes with Python 2.7 installed out of the box. Otherwise, you’ll need to install
it manually via Homebrew. Homebrew is like the missing “apt-get” feature from
Linux for OS X. I’ve found it supremely useful when compiling dapps from source,
because there is almost always at least one missing-dependency error.

To install Homebrew, in the Terminal, type the following:

ruby -e "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install/master/install
Homebrew/install/master/in

From then on, you can easily install thousands of packages by using this format:

brew install ________

OpenBazaar was built using Python. It’s a solid object-oriented language that has
amassed a huge number of useful libraries over the years, with many distributed
projects like RPyc being built with it, so using it is not a bad choice at all.

You’re also going to need to install Pip, Python’s module installer:

Brew install pip

Now, you can build OpenBazaar from source:

git clone https://github.com/OpenBazaar/OpenBazaar.git

cd OpenBazaar

./configure.sh

./OpenBazaar start

Possible Errors
The following is a collection of errors you might encounter as you build this code
locally on your own machine. Keep in mind that this is still actively in development,
so things might break.

66 | Chapter 4: OpenBazaar

Dependencies
You might get some dependency errors, given that this project is under development.
Don’t be surprised to receive messages similar to “X wasn’t found.” You can just sys‐
tematically install each dependency manually using Homebrew as they come up. So if
you get an error, locate the dependency, Brew-install it, and then retry ./OpenBazaar
start. A new dependency error might come up. Just keep repeating until all the nec‐
essary dependencies are installed and then it will run.

Ports
You might see the following error:

1. If you are using VPN, configure port forwarding or
disable your VPN temporarily
2. Configure your router to forward traffic from port 62112 for both TCP and UDP
to your local port 62112

This means that one of the ports that OpenBazaar is trying to use is blocked by either
a firewall or your router. Ensure that those ports can be accessed in your system and
router settings.

Data Storage and Retrieval
Data isn’t stored on a DHT in OpenBazaar; it’s stored locally in a SQLite datastore at
each node. In datastore.py, we can see the set_item method that takes a key-value
pair as input with some timestamps and credentials. It inserts the pair into the data‐
base as its own entry locally on the user’s computer. Here’s the code in OpenBazaar
that does that:

def set_item(self, key, value, last_published, originally_published,
 original_publisher_id, market_id=1):

 rows = self.db_connection.select_entries(
 "datastore",
 {"key": key,
 "market_id": market_id}
)
 if len(rows) == 0:
 self.db_connection.insert_entry(
 "datastore",
 {
 'key': key,
 'value': value,
 'lastPublished': last_published,
 'originallyPublished': originally_published,
 'originalPublisherID': original_publisher_id,
 'market_id': market_id
 }
)

How to Install OpenBazaar | 67

 else:
 self.db_connection.update_entries(
 "datastore",
 {
 'key': key,
 'value': value,
 'lastPublished': last_published,
 'originallyPublished': originally_published,
 'originalPublisherID': original_publisher_id,
 'market_id': market_id
 },
 {
 'key': key,
 'market_id': market_id
 }
)

You can then query these values by using the db_query method:

def _db_query(self, key, column_name):

 row = self.db_connection.select_entries("datastore", {"key": key})

 if len(row) != 0:
 value = row[0][column_name]
 try:
 value = ast.literal_eval(value)
 except Exception:
 pass
 return value

This only needs a key to retrieve the necessary value as well as the column name—
which doubles as the publisher_id.

OpenBazaar does use a DHT, but not for data storage. The DHT in OpenBazaar
was inspired by Kademlia (like BitTorrent and IPFS) and is used as a sort of “yellow
pages” for peers. It’s a decentralized index of peers that instructs every node how
to contact every other node for the sake of selling and sharing Ricardian contracts.
When two nodes connect via the DHT each node can pull data from the other
directly:

def __init__(self, market_id, key, call="findNode", callback=None):
 self.key = key
 # Key to search for
 self.call = call
 # Either findNode or findValue depending on search
 self.callback = callback
 # Callback for when search finishes
 self.shortlist = []
 # List of nodes that are being searched against
 self.active_probes = []
 #

68 | Chapter 4: OpenBazaar

 self.already_contacted = []
 # Nodes are added to this list when they've been sent a findXXX action
 self.previous_closest_node = None
 # This is updated to be the closest node found during search
 self.find_value_result = {}
 # If a find_value search is found this is the value
 self.slow_node_count = [0]
 #
 self.contacted_now = 0
 # Counter for how many nodes have been contacted
 self.prev_shortlist_length = 0

 self.log = logging.getLogger(
 '[%s] %s' % (market_id, self.__class__.__name__)
)

 # Create a unique ID (SHA1) for this iterative_find request to support
 parallel searches
 self.find_id = hashlib.sha1(os.urandom(128)).hexdigest()

In the file node/DHT.py, under the class DHTSearch, the init method helps search
through the DHT for other nodes about which you want to get more data. It assumes
that you know the key of the node so that lookup time is faster, but in OpenBazaar’s
DHT, it acts like a broadcasts for every node so brute-force discovery is also possible.

OpenBazaar’s designers have structured all relevant user data to be sent as a JSON
object called data in proto_page under protocol.py:

def proto_page(uri, pubkey, guid, text, signature, nickname, PGPPubKey, email,
 bitmessage, arbiter, notary, notary_description, notary_fee,
 arbiter_description, sin, homepage, avatar_url):
 data = {
 'type': 'page',
 'uri': uri,
 'pubkey': pubkey,
 'senderGUID': guid,
 'text': text,
 'nickname': nickname,
 'PGPPubKey': PGPPubKey,
 'email': email,
 'bitmessage': bitmessage,
 'arbiter': arbiter,
 'notary': notary,
 'notary_description': notary_description,
 'notary_fee': notary_fee,
 'arbiter_description': arbiter_description,
 'sin': sin,
 'homepage': homepage,
 'avatar_url': avatar_url,
 'v': constants.VERSION
 }
 return data

How to Install OpenBazaar | 69

This data is sent and retrieved between users identifying one another after they have
been found in the DHT.

Another great thing about the DHT is that we can also search by keyword. Because
keywords are user-defined in their storefronts, they can be product related or cate‐
gory related, making search easier and more user-friendly:

def find_listings_by_keyword(self, keyword, listing_filter=None, callback=None):

 hashvalue = hashlib.new('ripemd160')
 keyword_key = 'keyword-%s' % keyword
 hashvalue.update(keyword_key.encode('utf-8'))
 listing_index_key = hashvalue.hexdigest()

 self.log.info('Finding contracts for keyword: %s', keyword)

 self.iterative_find_value(listing_index_key, callback)

Like IPFS, OpenBazaar uses a DHT. Unlike IPFS, OpenBazaar doesn’t accommodate
data replication via content-addressed data; no matter how many people want it, the
data will only live locally on the originating computer. As is logical for a system that
doesn’t rely on distributing copies of the data, there also is no versioning of the data
built in.

Identity
Nodes in OpenBazaar have their own unique GUID. This is similar to IPFS nodes
with their peerIDs:

Under node/transport.py

 def _generate_new_keypair(self):

 seed = str(random.randrange(2 ** 256))

 # Move to BIP32 keys m/0/0/0
 wallet = bitcoin.bip32_ckd(bitcoin.bip32_master_key(seed), 0)
 wallet_chain = bitcoin.bip32_ckd(wallet, 0)
 bip32_identity_priv = bitcoin.bip32_ckd(wallet_chain, 0)
 identity_priv = bitcoin.bip32_extract_key(bip32_identity_priv)
 bip32_identity_pub = bitcoin.bip32_privtopub(bip32_identity_priv)
 identity_pub =
bitcoin.encode_pubkey(bitcoin.bip32_extract_key(bip32_identity_pub), 'hex')

 self.pubkey = identity_pub
 self.secret = identity_priv

 # Generate SIN
 sha_hash = hashlib.sha256()
 sha_hash.update(self.pubkey)
 ripe_hash = hashlib.new('ripemd160')

70 | Chapter 4: OpenBazaar

 ripe_hash.update(sha_hash.digest())

 self.guid = ripe_hash.hexdigest()

These identities are generated via Bitcoin’s BIP32 (hierarchical deterministic wallets)
protocol by generating a new SIN using SHA-256 to create your GUID. The GUID is
as unique as each Bitcoin address is unique so we don’t have to worry about dupli‐
cates.

So, we’re able to give unique identities to people, just like in IPFS, by using the
elliptic-curve technology behind Bitcoin, but how do we make them human-
readable? OpenBazaar also has an input credential for your Namecoin ID as an addi‐
tional identity field besides your self-assigned nickname. Thus, people basically can
have duplicate nicknames and the GUID can be used to validate which one is which.
This is suboptimal: perhaps you can memorize the last five digits of someone’s GUID
as well as their username. But Namecoin makes up for this flaw by making it possible
for users to also have a Namecoin ID:

def is_valid_Namecoin(Namecoin, guid):
 if not Namecoin or not guid:
 return False

 server = DNSChainServer.Server(constants.DNSCHAIN_SERVER_IP, "")
 _log.info("Looking up Namecoin id: %s", Namecoin)
 try:
 data = server.lookup("id/" + Namecoin)
 except (DNSChainServer.DataNotFound, DNSChainServer.MalformedJSON):
 _log.info('Claimed remote Namecoin id not found: %s', Namecoin)
 return False

 return data.get('OpenBazaar') == guid

The code checks against DNSChain to see if the Namecoin ID is valid every time by
checking whether that GUID is stored in the Namecoin address of the person claim‐
ing the identity. DNSChain is a hybrid DNS server for easy access to Namecoin data
via an API.

So OpenBazaar’s identity problem is solved through a combination of uniquely gen‐
erated GUID’s and Namecoin, similar to IPFS.

Reputation
But what about reputation? Reputation is a big part of any marketplace environment;
buyers want to be able to trust sellers, and vice versa. In a centralized model, server-
owners can hand out reputation to individuals and, with appropriate security, they
don’t need to deal with individuals tampering with their own reputation to defraud
the system. In a decentralized system, reputation is much more difficult to verify.

How to Install OpenBazaar | 71

Trust is dealt with in OpenBazaar through two different types of synergistic systems:
global trust and projected trust. When all members of the network trust a particular
user of the network in the same way, this is called global trust. This trust is established
through proof-of-burn and proof-of-timelock. Projected trust is trust directed toward a
certain node, which might be different for each user of the network. So the trust is
projected from each user to the node. This trust is established through a pseudony‐
mous partial knowledge web of trust.

Let’s look at each of these methods in more detail.

Method 1: proof-of-burn
When a seller creates a store, he must spend Bitcoin that is lost and never returns.
This makes it expensive for a user to create multiple identities and is the fundamental
Sybil-attack prevention mechanism in OpenBazaar. Though not perfect, it is a deter‐
rent. The larger the proof-of-burn, the more expensive it is to make an account, but
the higher the barrier to entry for potential players is to use the service. Publicly and
verifiably burning some coins in a set-limit currency is remurrage on the remainder.
Remurrage is the opposite of demurrage (the cost of holding currency over a given
period). Suppose that you are sitting at home on your laptop and create a currency
with 10 million coins that people begin trading instantly. When you go out for a walk
and come back, there are now only 5 million issued coins that aren’t burned. If you’re
holding any of that currency, it’s the equivalent of receiving a dividend on top of the
general economy-tracking price that we’ve grown to expect from a set-quantity cur‐
rency like Bitcoin.

The dapp first generates a burn address directly from a node’s GUID:

def burnaddr_from_guid(guid_hex):
 _log.debug("burnaddr_from_guid: %s", guid_hex)

 prefix = '6f' if TESTNET else '00'
 guid_full_hex = prefix + guid_hex
 _log.debug("GUID address on bitcoin net: %s", guid_full_hex)

 # Perturbate GUID to ensure unspendability through
 # near-collision resistance of SHA256 by flipping
 # the last non-checksum bit of the address.
 guid_full = guid_full_hex.decode('hex')
 guid_prt = guid_full[:-1] + chr(ord(guid_full[-1]) ^ 1)
 addr_prt = obelisk.bitcoin.EncodeBase58Check(guid_prt)
 _log.debug("Perturbated bitcoin proof-of-burn address: %s", addr_prt)

 return addr_prt

From there it’s just a simple transaction on the GUID. All nodes can verify that
a certain GUID has burned coins (proof-of-burn) by performing the same

72 | Chapter 4: OpenBazaar

burnadd_from_guid function on the guid hex and verifying its burn amount on the
blockchain.

Method 2: proof-of-timelock
Proof-of-burn lets the network create identities such that it is costly to recreate.
Proof-of-timelock, by rendering a particular amount of coin unspendable for a time
(and tying a user identity to that unspent coin as a “deposit”), ensures that it’s impos‐
sible that a huge number of real-world identities associated with one real-world entity
can simultaneously exist at any specific moment in time. Proof-of-timelock is not as
strong an insurance as proof-of-burn: proof-of-burn is, effectively, permanent proof-
of-timelock.

In proof-of-timelock, the node that wants to establish trust toward a pseudonymous
identity must provably lock a specified amount of currency inside a transaction that
gives the currency back to them eventually. The transaction has the feature that it isn’t
executed for a specified amount of time. The network knows that the transaction will
take place eventually, the amount of it, and the amount of time it will remain locked.
All of these things are publicly verifiable.

One of the main appeals of proof-of-timelock is psychological: it just feels less guilty
than proof-of-burn. There is a certain psychological burden associated with money
destruction and it might not be an easy one to overcome. People will most likely use
it more often than proof-of-burn.

The Bitcoin blockchain currently doesn’t allow for a proof-of-timelock mechanism
directly. Although the Bitcoin protocol supports the nLockTime value, the mechanism
is not currently honored by running nodes. This means that the transaction won’t be
broadcast in a publicly verifiable way.

This would be a perfect use case for the Ethereum blockchain because it allows for
Turing-complete smart contracts. OpenBazaar decided to avoid using it though
because it hasn’t proven feasible in practice and has a lot of problems in terms of scal‐
ability and performance. This was a smart decision and the sidechain proposal will
mitigate some of this risk eventually.

Method 3: trust-as-risk (most viable)
The developers are still working out the details of the web-of-trust model and how to
actually implement it programmatically, but it seems like they are heading in the
direction of using trust-as-risk. They’ve been toying with the idea of letting people
extend others a line of credit if the creditor trusts the party to whom it is extending it.
So the idea would be that if you really trust someone, you can give them 0.1 Bitcoin in
a line of credit via a multisignature transaction; if you stop trusting them, you can
withdraw your line of credit.

How to Install OpenBazaar | 73

The indicators for trust need to be hosted persistently in a decentralized way. Because
the OpenBazaar developers don’t want to add to blockchain bloat on Bitcoin (always
a good train of thought), they are leaning toward using Namecoin as a good alterna‐
tive. I find this to be a really reasonable approach.

They could end up not even implementing a web-of-trust because it might not even
matter that much. In real life, when someone tries to scam us and we lose money, we
can just call our banks to cancel a trade and recover the funds. In the OpenBazaar
network, a notary is the key intermediary in transactions and has the potential to pre‐
vent a scam from occurring the first place. Nodes could just place all of their trust
with them rather than other peers. It will be interesting to see how trust plays out in
the network, but a web-of-trust to me seems like a necessary addition to secure
the network.

What Could OpenBazaar Have Done Better?
To begin with, the most important flaw here is the lack of an internal currency. Bit‐
coin provides immediate liquidity, and that is good for sellers, but having an internal
currency is a win-win situation for early adopters and the developers themselves.
First of all, using OpenBazaar is a risk for early adopters anyway, given that their Bit‐
coin can be stolen because of the lack of reputable notaries and reputation takes time
to build. It would be better if OpenBazaar issued its own currency that would be used
to make purchases inside the dapp. OpenBazaar would have a crowd sale and set an
initial price of the currency and set a limited number of tokens.

These coins would be colored coins, so they could set up a Bitcoin contract address
(aka send-coins-here) which would calculate how many OBcoins you get in return to
send to the OpenBazaar address you specify. As OpenBazaar grows in valuation, the
values of the coins would rise. OpenBazaaar early adopters would be rewarded for
their efforts in bootstrapping the network despite the risk, liquidity would increase
for buyers and sellers, and, most important, the developers of the open source soft‐
ware would be paid for their work. Funding is one of the major competitive advan‐
tages of centralized closed-source software over open source. The former simply is
able to pay top developers to maintain and upgrade the app, but with an internal cur‐
rency, we can bring that model to open source software.

One other questionable choice is OpenBazaar’s data storage model: just storing it in a
local SQLite datastore with no redundancy or replication. If they used IPFS for data
storage, it would be more resilient. The more people that visited a store, the more
copies of that store’s data there would be. Store owners could get a notice of how
many other people were replicating their encrypted store data for peace of mind.

74 | Chapter 4: OpenBazaar

The knowledge of how OpenBazaar was built (and the constraints it was built under)
with its flaws and successes can play into the design of many types of apps. We’ll see
some of the same themes pop up in our next case study: Lighthouse.

What Could OpenBazaar Have Done Better? | 75

CHAPTER 5

Lighthouse

Mike Hearn was a Bitcoin core developer for over five years and has gained a lot of
respect in the community for the work he’s done with BitcoinJ (a Java-based Bitcoin
SDK) and his Bitcoin talks worldwide. His latest project is called Lighthouse; it aims
to decentralize crowdfunding. Hearn felt that crowdfunding sites like Kickstarter and
Indiegogo take too large a cut of project funding for their work in server mainte‐
nance, advertising, hosting, and moderation of crowdfunding projects submitted to
them. Add on additional payment processing fees like Stripe or Amazon Payments,
and up to 10 percent of whatever money you’ve raised is gone. Lighthouse is an
attempt to cut out the middleman so that fundraisers can get all of the money their
supporters intend to give them.

Furthermore, there are geographic limitations on Kickstarter. On that site, project
creation is currently only available to people in North America, New Zealand, and
Europe. This means project creation on Kickstarter is impossible for the vast majority
of the planet. As a practical matter, jurisdictions that don’t allow crowdfunding can
ban sites like Kickstarter because they are IP addressed.

On top of that, there are certain projects that are impossible to create on Kickstarter
because of the rules that the site imposes as a central authority in the name of com‐
munity standards. This is not limited to centralized funding sites: though controver‐
sial, decentralized moderation is possible by embedding blacklists into the blockchain
via majority or delegated votes by nodes that all nodes must accept.

Allowing for crowdfunding without taking deposits was another motivation because
deposits taken in a decentralized app are a very risky proposition. A lot of security
issues can arise but theoretically the Bitcoin protocol allows for a middle ground of
revocability, and Lighthouse was perhaps the first app to implement a little-known
feature in the protocol that allowed for just that.

77

https://www.vinumeris.com/lighthouse

Lighthouse is a good case study in smart contracts, as well. It probably isn’t consid‐
ered a killer app, but it is approaching that vicinity of actual utility because you get
more money in your pocket as a fundraiser. It also features speedier payments
because of how lightweight Bitcoin is compared to other payment processors. The
barrier to entry for any fundraiser goes to zero and payments move at the speed of the
protocol without requiring the approval of banks in the middle.

Functionality
The easiest way to test out Lighthouse is to just go to the website, and download the
binary correlating with your specific operating system. Next, double-click the light‐
house icon to open the introduction page, as shown in Figure 5-1.

Figure 5-1. Lighthouse main page

On the the introduction page, you can choose between creating a project or import‐
ing one. There is no app discovery page (we’ll explain why later). You can drag an
existing project onto the page and it will show up in its full layout format so that you
can add funds to it (Figure 5-2).

Or, you can go ahead and pledge your own amount of money to the project, as depic‐
ted in Figure 5-3.

You can add your Bitcoin balance to Lighthouse and fund projects with it. You can
get your deposit refunded at any time without risk of losing your money if the project
hasn’t reached its goals and the creator hasn’t collected the funds. You can also start

78 | Chapter 5: Lighthouse

https://www.vinumeris.com/lighthouse

your own project and advertise it yourself on social media. Other people will down‐
load your project file and fund it themselves.

Figure 5-2. An example of a lighthouse crowdsource fund

Figure 5-3. Create new project

The first thought you might have is how inefficient it is to be forced to import and
export project files instead of having a discovery page in the app, kind of like the

Functionality | 79

Mikro app from Chapter 3. Lighthouse’s creator decided to avoid it, simply because
it’s too difficult to do. It adds complexity and bugs and he didn’t have enough money
or time to do that. Decentralized system development is difficult, and bugs arise that
would never come up in centralized systems. Bugs related to UI synchronization
and state management are very difficult to debug; for example, “I clicked a button
and now I see all pledges twice, and then I restarted the app and now it’s fixed.” UI
synchronization bugs happen in Lighthouse despite not even sharing data in a P2P
network.

IPFS would’ve been great here, had Hearn known about it. It could’ve been used as a
module to share files between nodes. It isn’t as expensive as Bitcoin and it has the
speed of BitTorrent, the versioning of Git, and the reliability that comes with having a
content-addressed system where data is replicated by everyone who requests it. Even
if IPFS wasn’t used, any Kademlia-based DHT would’ve been great, but again we
come up against the problem that has historically plagued decentralized software
development: lack of funds. An internal currency would help solve this problem, but
we can talk about that at the end of the chapter.

Instead, users have the option to utilize a server to transfer files. They can host files
on a network of federated servers that run Lighthouse nodes and can store the files.
They can use their own personal storage solution like Dropbox or Google Drive and
give people links to those files over social media. Most recently, a service called Light‐
list has popped up; it acts as a server to host all Lighthouse projects. There will likely
be a lot of competition in the space, and this is good because there won’t be one
server to rule them all; rather, there will be several options, and that means more
decentralization.

An interesting part of Lighthouse is that it uses a Bitcoin feature that has been avail‐
able since Bitcoin 0.1 but seems to have been entirely overlooked: SIGHASH_ANYONE
CANPAY. Lighthouse was perhaps the first project to ever implement this feature,
which allows users to tag their signatures with an annotation that says it’s OK for
other people to take part in this payment. SIGHASH_ANYONECANPAY lets you merge
transactions together into one big transaction.

When you sign your Bitcoin transaction with your private key, nothing can be edited.
And that’s why it’s safe to broadcast that transaction to everyone on the network,
because no one can edit your transaction in any way. A Lighthouse pledge is thus an
incomplete Bitcoin transaction that takes money from your wallet and puts it into the
fundraiser’s wallet. Because a transaction that creates money out of thin air breaks the
rules of Bitcoin (only miners can create money out of thin air), it won’t be complete
until everyone pays. With SIGHASH_ANYONECANPAY, if you get enough of these pledges,
it will merge them all together and you’ll end up with a valid payment that will be
merged into the blockchain.

80 | Chapter 5: Lighthouse

Let’s take a look at how Lighthouse is doing this programmatically. We’re going to use
the Lighthouse repo on GitHub as a programmatic guide; we don’t need to clone it
and build it from source. We know what it does, so we should dive into how it does it.

Let’s first look under the file PledgingWallet.java:

public PendingPledge createPledge(Project project, Coin value, @Nullable
KeyParameter aesKey, LHProtos.PledgeDetails
details) throws InsufficientMoneyException {

This is the function for making a pledge: it encompasses using the SIGHASH_ANYONE
CANPAY OP code as well as the first smart contract that we are going to deal with:

TransactionOutput stub = findAvailableStub(value);

The method takes as a parameter the project in question, its credentials, and the
amount that you want to pledge to the project. The code attempts to find a single out‐
put that can satisfy the pledge given as a parameter.

Submitting multiple inputs is unfriendly because it increases the fees paid by the
pledge claimer. The pledged output is called the stub and the tx that spends it using
the SIGHASH_ANYONECANPAY is the pledge. The template tx outputs are the contract:

Coin totalFees = Coin.ZERO;
Transaction dependency = null;
if (stub == null) {
final Address stubAddr = currentReceiveKey().toAddress(getParams());
SendRequest req;
if (value.equals(getBalance(BalanceType.AVAILABLE_SPENDABLE))) req
= SendRequest.emptyWallet(stubAddr);
else
req = SendRequest.to(stubAddr, value);
if (params == UnitTestParams.get())
req.shuffleOutputs = false;
req.aesKey = aesKey;
completeTx(req);
dependency = req.tx;
totalFees = req.fee;
log.info("Created dependency tx {}", dependency.getHash());
 // The change is in a random output position so we have to search for it. It's
possible that there are // two outputs of the same size, in that case
it doesn't matter which we use.
stub = findOutputOfValue(value, dependency.getOutputs()); if (stub ==
null) {
// We created a dependency tx to make a stub, and now we can't find it. This can
// only happen if we are sending the entire balance and thus had to subtract the
// miner fee from the value.
checkState(req.emptyWallet);
checkState(dependency.getOutputs().size() == 1);
stub = dependency.getOutput(0);
}
}

Functionality | 81

https://github.com/vinumeris/lighthouse

If there is no output like that, then the app tries to create an output of the right size
and try again.

It then creates the assurance contract pledge by adding the SIGHASH_ANYONECANPAY
OP code to the transaction:

Transaction pledge = new Transaction(getParams());
// TODO: Support submitting multiple inputs in a single pledge tx here.
TransactionInput input = pledge.addInput(stub);
project.getOutputs().forEach(pledge::addOutput);
ECKey key = input.getOutpoint().getConnectedKey(this); checkNotNull(key);
Script script = stub.getScriptPubKey();
if (aesKey != null)
key = key.maybeDecrypt(aesKey);
TransactionSignature signature = pledge.calculateSignature(0, key, script,
Transaction.SigHash.ALL, true /* anyone can pay! */);
if (script.isSentToAddress()) {
input.setScriptSig(ScriptBuilder.createInputScript(signature, key)); }
else if (script.isSentToRawPubKey()) {
// This branch will never be taken with the current design of the app because the
// only way to get money in is via an address, but in future we might support
// direct-to-key payments via the payment protocol.
input.setScriptSig(ScriptBuilder.createInputScript(signature)); }
input.setScriptSig(ScriptBuilder.createInputScript(signature, key));
pledge.setPurpose(Transaction.Purpose.ASSURANCE_CONTRACT_PLEDGE);
log.info("Paid {} satoshis in fees to create pledge tx {}", totalFees, pledge);

And that’s how the creator implemented his smart contract using the raw Bitcoin pro‐
tocol. Ugly way of doing things, isn’t it? The raw Bitcoin protocol just isn’t developer
friendly. If you’ve ever tried using it, you know what I mean. That’s why services like
chain.com and SDKs that wrap its ugliness will lead the way in terms of developer
engagement.

Thus, the money doesn’t actually leave your wallet when you make a pledge. It’s just
part of a signed transaction that hasn’t become a valid transaction on the network.

When a user decides to create a project, a BIP70 payment request message is format‐
ted. The outputs are specified normally, and there are only a few things different from
the regular payment flow:

• A field labeled title is added. This field sums up the project in a few concise,
descriptive words.

• A field labeled image is added. This image contains serialized image bytes that
add individuality to the project in the user interface. Hearn had the images be the
same aspect ratio as Facebook cover photos so that they are easy to reuse.

• In the case that a payment_url is specified, it should speak an extended protocol
that permits querying the project status (the current pledges).

82 | Chapter 5: Lighthouse

• The payment message itself must contain an invalid transaction that only has
SIGHASH_ANYONECANPAYcode> signatures. Only public, known UTXOs can be
spent by the pledge to be considered valid for the project. The memo field can
also contain a message from the user (commending the project). Additional
fields for contact details are permissible.

After being formatted, the payment message can either be POSTed to the payment_URL
for collection and eventual merging with other pledges, or it can be transferred to the
project owner in another way (for example, email). When the owner has it, he can
load it into his Lighthouse client. The client provides a GUI for merging pledges and
sending the final transaction off to the P2P network.

Bitcoin’s scripting language has become more powerful over the years, thanks in large
part to the innovations in blockchain technology and Turing-complete smart contract
technology coming out of the Ethereum project. It’s well suited for most smart con‐
tracts, but Turing-complete contracts on the Bitcoin blockchain are an area that is
still emerging. Counterparty allows for it, but Counterparty is quite bloated with
other unnecessary features. There is, of course, Ethereum itself, but the sidechain
code still hasn’t been implemented to let you use the Ethereum blockchain with the
security of Bitcoin.

Lighthouse is a great case study into the politics that have begun to sink into the Bit‐
coin protocol. Bitcoin is seven years old and Mike Hearn has been a core developer
for almost as long. He submitted about 44 lines of code as a pull request to the Bit‐
coin core and it was rejected. It was then accepted. Then, later on, it was unmerged
after much serious debate. Even with his credentials, he wasn’t able to get a simple fix
that would build on OP_SIGHASH_ANYONECANPAY.

The core developers are very protective of the codebase, and with right purpose—Bit‐
coin is important fiduciary code and billions of dollars depends on its stability. In that
sense, it’s the most valuable standalone open source project in existence. There were a
total of 167 comments by developers on Hearn’s 44-line merge request. He decided
instead to create a patch list to implement his “getuxtxo message queries UTXO set,
used to check pledges.” Hearn even went on to say that Simplified Payment Verifica‐
tion (SPV) wouldn’t be possible at this stage in the game because of how much poli‐
ticking is necessary to make any changes to the core protocol.

This is a good and bad thing: it’s good because too many changes could break every‐
thing if not carefully analyzed and debated; it’s bad because it prevents great changes
from becoming part of the core. Sidechains will hopefully solve this problem by
allowing for new blockchains for experimentation while still scaffolding the Bitcoin
blockchain’s security.

Hearn went on to create a protocol called Bitcoin TX for Lighthouse with the patch
set that currently has about 16 active nodes.

Functionality | 83

SPV Wallets
Recall that in the Mikro dapp, we used a third-party API to create and send coins
between addresses. Kerala wrapped all the signing and pushing necessary. This is only
partially decentralized but a good start. A more decentralized solution is obviously to
run the node locally, but the problem with running a Bitcoin node locally is that the
blockchain has grown too much. After seven years, downloading and synchronizing
the blockchain takes at least four hours and many gigabytes of space. The alternative
to this that keeps things decentralized and light is SPV wallets, which is what Hearn
implemented using BitcoinJ.

It’s possible to build a Bitcoin implementation that does not verify everything, but
instead relies on either connecting to a trusted node, or puts its faith in high difficulty
as a proxy for proof of validity. BitcoinJ is an implementation of this mode.

In SPV mode, clients can connect to full nodes and download only the block headers.
Satoshi described this in his original Bitcoin white paper. Clients can verify that the
chain headers connect together properly and that the difficulty is sufficiently high.
After that, they request transactions that match certain patterns from a remote node
like transactions to your address. This provides copies of those transactions via a
Merkle branch linking them to the block in which they appeared. The protocol lets us
use the Merkle tree structure to allow for proof of inclusion without needing the
entire contents of the block.

SPV allows for even further optimization by discarding block headers that are buried
very deep (that is, storage can exclude blocks lower than X headers). If a node is
known to be trustworthy, the difficulty no longer matters. If you just want to pick a
node at random, the cost to mine a block sequence that has a bogus transaction by an
attacker should be higher than the value gained by defrauding you. By changing how
low the block has to be, we can exchange confirmation time versus cost of an attack.

Identity
public String signAsOwner(PledgingWallet wallet, String message, @Nullable
KeyParameter aesKey)
{
DeterministicKey realKey =
 wallet.getAuthKeyFromIndexOrPubKey(authKey, authKeyIndex);
 if (realKey == null || (aesKey == null && realKey.isEncrypted()))
return null;
return realKey.signMessage(message, aesKey);
}

Each project gets its own auth key. The auth key is just a regular Bitcoin secp256k1
key. It’s stored in the user’s wallet and derived from their HD key hierarchy. Currently,
the project uses it solely to prove to the server that the user is the original project cre‐

84 | Chapter 5: Lighthouse

ator. The key could also be used to provide messages signed by the creator and prove
that a newer version of the project file is legitimate in the future.

The author also has a BitcoinJ template that he’s created that’s pretty easy to use. You
can find it on GitHub.

Figure 5-4 is a great example of a well-designed wallet interface. Basically, it’s an SPV
wallet written by using BitcoinJ with a default HTML/CSS template scheme setup
that you can build on to create your own decentralized application. It’s not ideal,
because it’s not using a metacoin, so it will be difficult if not impossible for you to
make money off of whatever you create, but it’s a start. There also exists an SPV col‐
ored coins wallet called ChromaWallet, but it doesn’t have the pretty starter template
that this BitcoinJ template has. Combining the template element of BitcoinJ with it
would be a really useful tool to have, and I predict someone is going to create it
sooner or later.

Figure 5-4. Your wallet balance

Identity | 85

https://github.com/bitcoinj/wallet-template

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

CHAPTER 6

La’Zooz

What Is La’Zooz?
Ride sharing applications have taken the world by storm over the past few years. Uber
and Lyft are two of the biggest, and Uber seems to be intent on world domination.
Uber raked in 2 billion dollars in 2014 alone and is one of the fastest growing startups
in the world. The premise is simple: take advantage of the ubiquity of smart phones
to let users hail a ride from anywhere, to anywhere. Uber decentralizes the power of
the taxi industry by making it possible for anyone to become a driver. Further, it lets
anyone call a ride from anywhere with the push of a button using the phone’s GPS
technology. With the advent of Uber, people are no longer forced to wait for a taxi to
drive by, and drivers don’t need to wander until a rider is available. Uber provides a
matching service and apparently decentralizes it. P2P technology at its finest.

Or is it? Several scandals have emerged out of Uber’s corporate culture as of late.
Uber has become notorious both for its business practices, and for what it incentivi‐
zes and allows its drivers to do. Uber executive Emil Michael told the company to dig
up dirt on a particular critical female reporter as well as other opponents. The power
the company exerts over its drivers has grown from surveillance into possibly preda‐
tory lending practices. Uber’s “God Mode,” the ability to see all rides happening in
any location in real time with all social data attached to each rider, has been the sub‐
ject of controversy on multiple occasions. Drivers, meanwhile, have been known to
hail Lyft cabs only to cancel them, so that riders would instead choose Uber.

Despite these concerns, Uber has grown at an exponential rate over the past few years
and is showing revenue numbers in the billions. It provides a useful service: people
prefer using a location-aware app to hail a ride over calling a taxi, and it’s safe to
say the demand for real-time ride-sharing isn’t going away anytime soon. But privacy
invasion and the vast imbalance of power between a billion-dollar corporation and its

87

contractors are the negatives of Uber that riders must accept when they use its ser‐
vice.

Riders will be able to spend Zooz tokens to get rides from La’Zooz drivers. Drivers
have a different app that lets them “mine” Zooz just for driving around. La’Zooz
implements what they call a proof-of-movement algorithm. It uses GPS triangulation
data to track whether the driver is driving. If they are driving, they’ll be able to mine
Zooz currency.

Distribution Protocol
So how are the Zooz tokens going to be distributed? We know that drivers are rewar‐
ded with Zooz tokens that will be mined as they drive. The amount that they are
rewarded for mining decreases with time, similar to the Bitcoin network. This curve,
shown in Figure 6-1, has proven to work as an incentive for miners.

Figure 6-1. La’Zooz tokens

The team has created a community roadmap. The roadmap is a timeline of all future
milestones in the La’Zooz project to hit in terms of development, marketing, and
overall growth. They believe that early adopters should be rewarded more than late
adopters and that people should be rewarded for referring others to the network.

The team decided to have two rounds of a presale to raise funds for the development
of the project. This is the equivalent to raising a seed round to develop a prototype
before going public via social media and blogs with the launch of your product.
They’ve set up a multisignature coinbase vault that requires two out of three signa‐
tures to release the funds. The vault is just a multisig Bitcoin address to which anyone
can send funds. If two of the three signers agree to release the funds, the funds are
released to whomever sent the money.

88 | Chapter 6: La’Zooz

The multisig is used as a smart contract that crowd sale buyers can send Bitcoin to
and receive Zooz tokens in proportion to the amount they paid. Here are the three
possible signers:

• A trusted member of the Bitcoin community
• An independent professional auditor
• A La’Zooz development community representative

As to how these people will be selected and by whom, this is still in the decision pro‐
cess. Eight percent of all the tokens sold during the crowd sale will be issued to all the
presale buyers as a bonus. Why this number and why reissue funds at the crowd sale
instead of just giving them a bonus for participating early on? It doesn’t make sense
and it’s confusing.

A problem arises if there are many drivers in a region, but no riders; the same prob‐
lem arises in the opposite situation. This is referred to classically as “the chicken and
the egg” problem. La’Zooz aims to counteract it by using an algorithm to detect when
there are a certain number of drivers in a particular region. If the number of drivers
in the region reaches a certain threshold, the rider app will be activated and riders
will only then be able to start requesting rides. This means that the app will be intro‐
duced region by region, just like Uber, and full deployment is decided programmati‐
cally rather than manually.

DAO Structure
La’Zooz aims to be a community-run network, meaning that there is no difference
between creators and the users. Everyone who uses La’Zooz belongs to the same
DAO. There is an end of the month vote during which members decide the weight of
each member’s vote and the reward for each member in the community. Each mem‐
ber can only vote on voting weights for other members who they know (web of trust)
as well as the amount of dividend that they receive.

The new weights are calculated on a mixed basis; 75 percent of the input comes from
the new vote and 25 percent from the previous month’s vote. These are arbitrary
numbers and can be tweaked, but it would be better, in my opinion, if it were alloca‐
ted entirely to the new vote. Creating a DAO is a relatively new experience, and the
easier you can make it for members to understand how to participate and exactly how
your organizational processes work, the more likely your DAO will be successful.
Each member must write down the work that they have done for the benefit of the
network at the end of each month before the voting day. The members who vote on
others can see their self-described track record and judge the significance on it.

There is never an obligation to vote, which is a good thing. Keep voting opt-in and
members won’t feel pressured to act a certain way; if they do, they might leave for a

What Is La’Zooz? | 89

freer DAO. Creating community guidelines is a practice in balancing rigidity and
freedom and doing so at first in a centralized way to get an initial document out there
as fast as possible (creating a team), and then collaboratively as the community adds
to it.

La’Zooz went ahead and put out a collaborative white paper that describes their dis‐
tribution mechanism, some of the math behind their distribution algorithm, their
roadmap, and their vision. Ever since Satoshi released Bitcoin with an accompanying
white paper, people who make a dapp tend to publish one as well. To add to the
white-paper craze, several high-profile venture capitalists like David Johnson actually
promote the use of publishing a white paper as the “right” way to release a dapp. I
disagree. The right way to launch a dapp is to provide a real value proposition—
something that no centralized competitor could accomplish—and explain it in the
simplest way possible, using methods with which most people are familiar.

If that means a landing page for the information, a forum for your community with
voting capabilities integrated, and an explainer video for your dapp, so be it. White
papers are not necessary and can actually cause unnecessary confusion if all of your
dapp’s related information is centralized into it, as is the case with La’Zooz. A white
paper doesn’t have to double as a business plan, member roles, and everything else
associated with your organization.

Be that as it may, the La’Zooz team went ahead and created a nonprofit legal organi‐
zation in Israel to make sure they were cleared with the state. Every member in the
community is rewarded and has a weighted vote on how the app moves forward, but
the team itself forms the legal organization. A certain percentage of dividends will go
to them during the reward phase at the end of the month, just like everyone else.
Interestingly, they’ve stipulated in their by-laws to be legally contractually obliged to
follow the orders of the community vote with the funds that they receive.

In this way, the DAO establishes itself as a liquid democracy. Everyone has a vote,
voting is opt-in and delegated by weight, yet the creators are still represented. The
representatives take care of most of the organizational complexity, but if at any point
the community feels that they are corrupt or lack the necessary leadership to main‐
tain and grow the network, they can propose and vote in a new set of representatives.

The reward mechanism described in the paper is murky and still in development.
Giving people rewards for their work should come in the form of dividends. Internal
currencies don’t offer liquidity at the outset; they only gain it as the network grows.
We can think of internal tokens as shares in the network. A smart contract could be
written to give a dividend out to every public-private keypair that holds Zooz tokens.

90 | Chapter 6: La’Zooz

http://www.lazooz.org/whitepaper.html

The dividend would be proportional to the amount of tokens that the address held.
An altcoin called bitshares created by Dan Larimer uses a consensus algorithm called
Delegated Proof of Stake that functions similarly. Whereas Zooz tokens could be
thought of as shares in the La’Zooz DAO as well as an internal currency, the dividends
could be in Bitcoin or just more Zooz. Bitcoins are more liquid, but Zooz have more
potential for value. This is for the creator to decide, but I think Bitcoin would be nice
to have as a dividend.

UX
Let’s take a look at some of the designs that La’Zooz has created. Decentralized apps
thus far haven’t exactly had award-winning frontend interfaces, but La’Zooz seems to
understand the importance of great design.

Upon starting the mining app, the user sees a greeting and is taken to a page of their
metrics. Figures 6-2 and 6-3 show some of the dummy metrics included in the test
version of the app. The app is meant to be run as a background process with all the
mining happening while the user is driving; they can even have other apps up in the
foreground while they are mining.

Figure 6-2. La’Zooz Stats

UX | 91

Figure 6-3. Graph of Mined Coins

The driver is able to view her current Zooz balance (Figure 6-4) by clicking the icon
in the sidebar. The Zooz app doubles as a wallet for her currency. She can use the QR
code and export functionality to send and receive currency in real life to other people
or businesses. The potential Zooz balance is an interesting marker. The app calculates
how much a driver could run if she continues mining for whatever the time to next
block is. What is the Sybil-prevention mechanism here? How does La’Zooz prevent a
user from spinning up multiple instances of the mining process to earn more coins
than they should by posing to be multiple users simultaneously? We’ll need to dive
into the codebase to see this functionality.

Architecture

Data storage and retrieval
We saw in our Mikro dapp that a DHT was used to store data and a BitTorrent trans‐
fer protocol was used to retrieve data. This was made possible by using IPFS, a culmi‐
nation of both technologies. In OpenBazaar, a DHT was used as well but didn’t have
replication built in, so it wasn’t as robust. If a node goes offline and no one views their
data beforehand, that data goes offline, as well.

92 | Chapter 6: La’Zooz

https://github.com/laZooz/lbm-client

Figure 6-4. Zooz balance

In Lighthouse, the developer didn’t even attempt to use a decentralized data store
because it was too difficult to implement. Instead, projects were broadcast over the
Web and project files were shared and downloaded by participants to load into their
instance of Lighthouse. So, how does La’Zooz deal with data? Well, we can see that
there is a file named ServerComs in the source code. Server communication? That
doesn’t sound very decentralized. Let’s take a look at three methods in that class:

public void registerToServer(String cellphone)
 {
 String url = StaticParms.BASE_SERVER_URL + "api_register";

 List<NameValuePair> params = new ArrayList<NameValuePair>();
 params.add(new BasicNameValuePair("cellphone", cellphone));

 this.postRequestToServer(-1, -1, url, params);

 }

 public void
 setLocation1dddsfsdfs(String UserId, String UserSecret, String data)
 {
 String url = StaticParms.BASE_SERVER_URL + "api_set_location";

 List<NameValuePair> params = new ArrayList<NameValuePair>();
 params.add(new BasicNameValuePair("user_id", UserId));
 params.add(new BasicNameValuePair("user_secret", UserSecret));

UX | 93

 params.add(new BasicNameValuePair("location_list", data));
 this.postRequestToServer(-1, -1, url, params);
 }

 public void getUserKeyData(String UserId, String UserSecret)
 {
 String url = StaticParms.BASE_SERVER_URL + "api_get_user_key_data";
 List<NameValuePair> params = new ArrayList<NameValuePair>();
 params.add(new BasicNameValuePair("user_id", UserId));
 params.add(new BasicNameValuePair("user_secret", UserSecret));
 this.postRequestToServer(-1, -1, url, params);
 }

So, it seems like these three methods are getting user data, setting user location, and
registering a user account with a server, respectively. And what is that
BASE_SERVER_URL variable? Well in the class StaticParams, we find it defined:

public static final String BASE_SERVER_URL = "https://client.laZooz.org/";

It turns out that it’s storing and retrieving data from a central server. As someone who
has been studying dapps for a while, I’m not surprised that much. There is so much
noise in this space; projects can be really loud and have a lot of hype, followers, and
promise, and it ends up that they cut corners on issues as critical as data storage. It
could be for lack of finding great decentralized storage tools like IPFS, or just a lack of
knowledge of how things should be done in a dapp to keep it sufficiently decentral‐
ized. The fact that user data is stored on a server makes the app similar to Uber, other
than the fact that it’s using an internal currency and has a co-op-like structure, rather
than a corporate one. There is an Android wrapper for IPFS that La’Zooz could have
implemented. You can find it at https://github.com/dylanPowers/ipfs-android.

Coins
So, what blockchain is La’Zooz using to issue its internal currency called Zooz?

protected String doInBackground(String... params) {

 ServerCom bServerCom = new ServerCom(MainActivity.this);
 JSONObject jsonReturnObj=null;
 try {
 MySharedPreferences msp = MySharedPreferences.getInstance();
 bServerCom.getUserKeyData(msp.getUserId(MainActivity.this),
msp.getUserSecret(MainActivity.this));
 jsonReturnObj = bServerCom.getReturnObject();
 } catch (Exception e1) {
 e1.printStackTrace();
 }
 String serverMessage = "";
 try {
 if (jsonReturnObj == null)
 serverMessage = "ConnectionError";
 else {

94 | Chapter 6: La’Zooz

https://github.com/dylanPowers/ipfs-android

 serverMessage = jsonReturnObj.getString("message");
 if (serverMessage.equals("success")){
 String ZoozBalance =
jsonReturnObj.getString("Zooz_balance");

The method is asking the server for the wallet balance. That means that the wallet is
hosted on their server instead of being hosted locally. Strike two for the centraliza‐
tion! It’s not a third-party wallet host, it’s La’Zooz’s own server. As for the type of
blockchain it is using, because it’s on their server there is no client-side code we can
dive into, but I do know that they are using the Mastercoin blockchain from what
they’ve stated on various social media outlets.

Mastercoin is a layer on top of the Bitcoin blockchain. It inserts data into the block‐
chain via transactions and, from the standpoint of the Bitcoin miners, this data is
meaningless. Unlike Bitcoin or any altcoin that relies on its own blockchain, Master‐
coin is incapable of acting like a smart contract engine. Anyone could double-spend
Mastercoins from a given address. Nothing will stop someone from publishing con‐
flicting Mastercoin transactions on the blockchain, and the only thing the Mastercoin
protocol does is define a rule by which a single transaction is ignored.

That’s not all. Some of La’Zooz’s features require its users to participate actively, but
there is nothing in the protocol that asks them to behave correctly. A good example is
that the Mastercoin protocol has a feature called “register a data stream,” in which the
owner of a Bitcoin address can declare that they’ll be publishing data hidden in trans‐
actions from it. The owner could pledge to post the price of gasoline every week to
that stream. However, there isn’t really anything required by him to post data on a
regular schedule. More important, there is nothing preventing him from lying. This
flaw makes the entire datastream valueless as an input for smart contracts.

Unlike Mastercoin, colored coins insert very minimal data on the blockchain, so
they’re much lighter for miners. Smart contracts can be created using Bitcoin’s inter‐
nal scripting system or by using a sidechain that utilizes Turing-complete contract
creation.

Contracts
At this point we’ve found that data is centralized on their server as well as the wallet
node that connects to the Mastercoin network. Smart contracts would allow for an
automated crowd sale, and they said they are using a coinbase multisig vault to
release funds. But what about paying dividends? Automated escrow payments are the
hallmark of smart contracts. The contract would live in the blockchain and, seeing
how they are using the Bitcoin blockchain with the Mastercoin protocol, surely they
must be using the Bitcoin scripting language to make their smart contracts. A quick
look on the Ethereum home page leads us to find that La’Zooz is one of the projects
using Ethereum for smart contracts.

UX | 95

Ethereum is great and their tools for building smart contracts are more mature than
Bitcoin’s, but the fact of the matter is that their blockchain is unproven to work and
they are going to have to massively reduce in size or spend forever playing “security
whack-a-mole,” as Gavin Andresen (lead developer of Bitcoin) puts it. At its best,
when the sidechain protocol is released, Ethereum will become a sidechain to Bitcoin,
and if someone really needs to write Turing-complete contracts, they can, without
being exposed to the risk of relying on the Ethereum blockchain to be secure with
their internal currency. Using the Ethereum blockchain in the meantime is just not
smart development if you want your dapp to be profitable.

Improvements
La’Zooz is an ambitious startup. It is trying to create the first DAO that involves a dis‐
tributed workforce that receives dividends, has votes, and ties in with the existing
legal infrastructure. It could just be using centralized data, wealth, and identity as a
placeholder in its development stage. As for right now, although its intentions seem
good enough, it seems to be placing itself at risk for the possibility of not one but sev‐
eral points of failure.

La’Zooz should use the colored-coins protocol to issue assets. Zooz tokens should be
used as both shares in the network and as a currency. Dividends would be received by
creating a smart contract to give all people in the network the dividends proportional
to their stake in the network. The actual Zooz app could be an SPV wallet for colored
coins for total decentralization, but if it wanted to use a web wallet for ease of devel‐
opment, it could use Coinprism.

The way La’Zooz structured its DAO is commendable. If it has legal contracts requir‐
ing those who are listed under the by-laws of its company in Israel to obey the will of
the community vote, it has avoided the legal limbo associated with a DAO by comply‐
ing with local regulation and sticking to the principles of decentralization via liquid
democracy. Voting should happen in app as a feature that is just a tab on the sidebar.

Users should opt in to vote; anyone can submit a proposal for a feature request, new
regions to focus marketing on, or leadership change. Anyone should be allowed to
vote on those proposals. The voting forum would work Reddit-style, with the best
votes being moved up to the top. The leadership or representatives of the DAO listed
under the by-laws would enact these proposals, as they would legally be required.

The data should not be centralized, but that’s a given. A data storage and retrieval ser‐
vice that utilizes a DHT should be used like IPFS. Having a server on which the team
can own all the data defeats the purpose of decentralization, although in the case of
La’Zooz it might be a little different because it is legally bound to do only what the
community wants. The community will most likely demand complete transparency.
That transparency means none of its data can be sold to any third-party source
without the community’s permission. Doing so would be illegal.

96 | Chapter 6: La’Zooz

Jobs in the La’Zooz DAO should be either role-specific or full stack. Full stack profes‐
sions are already emerging in the startup sector, but in the case of a DAO, full stack
must mean not just in terms of engineering, but in terms of playing different roles
throughout the company. That includes marketing, engineering, and customer rela‐
tions. Hiring, reviewing, and firing employees in a decentralized way can be difficult.
There should be no barrier to enter the DAO, and the review process is something
La’Zooz has spoken about (voting on member rewards and voting weights). Firing
could come up as a proposal by a disgruntled member.

Firing should essentially be the equivalent of banning someone in a distributed man‐
ner. A bad actor could be trying to DDoS the network or attempting to upload child
porn. People should vote on firing the member (those who knew the member) and
then the representatives in the DAO would ban that person’s address by implement‐
ing a blacklist in the blockchain stored locally on all nodes. That means if an address
was on a blacklist, they would not be able to transact with any of the other nodes on
the network. The blacklist would be stored in the blockchain so that all nodes could
agree on it.

La’Zooz shouldn’t use Ethereum for smart contracts until the sidechain proposal is
ready. The Bitcoin scripting language, though not fully Turing-complete, can handle
most use cases that involve escrowing automatic payments.

Finally, La’Zooz shouldn’t concatenate all the instructions for its DAO into one white
paper. Instead, it should modularize the data into many different easy-to-read parts
for the layperson. It should be easy to find as well because web pages are more
Google-friendly than PDFs.

Conclusion
This tour of a few dapps-in-progress should give you a few thoughts to springboard
from as you develop your own. Be guided by the twin watchwords of openness and
decentralization, and you will not go wrong.

Conclusion | 97

Index

A
Abra, 38
ADD command (IPFS), 42
altcoins, 21, 27
appcoins

benefits of, 6
Counterparty's API for, 23
drawbacks of, 54

assets, decentralized, 33-36
astralboot, 30
Automated Clearing House (ACH), 1

B
Back, Adam, 22
bandwidth, decentralized, 31-33
Benet, Juan, 17, 41
BIP32 (hierarchical deterministic wallets), 71
.bit domains, 27
BitAuth , 26
Bitcoin

benefits of, 2
BIP32 protocol, 71
"Bitcoin Maximalism", 22
blockchain technology in, 2
distributed nature of, 4
practical decentralization with, 36
purpose of, 1
secp256k1 key, 84
sidechain proposal, 22

BitcoinJ, 77, 84
BitTorrent

benefits of, 8
data transfer speed, 17
versus IPFS, 20

peer-to-peer (P2P) filesharing, 6, 17
BitUSD, 34
blockchain technology

benefits of, 2, 11
computation and storage using, 60
data storage and, 16
mechanism of, 2
security offered by, 6

buyers (OpenBazaar), 64
Byzantine Generals Problem, 2

C
CAT command (IPFS), 42
central point of failure, 7
centralized server-client models, 3, 15, 40
Chord, 18
ChromaWallet, 85
CJDNS, 32
closed- versus open-source applications, 4
Cohen, Bram, 8
Coinbase, 28
Coinprism

address generation, 55
cost, 55
issuing coins, 56
naming coins, 55
wallet home page, 56

colored coins
alternatives to, 23
benefits of, 35
CAC swaps and, 36
ChromaWallet, 85
creating, 54

(see also Coinprism)

99

Kerala wrapper for, 46
NameID and, 29
valuation of, 34

community-run networks, 89
computing, decentralized, 29-31
consensus mechanisms

proof-of-stake, 11
proof-of-work, 2, 11
Stellar, 35

Counterparty, 23
cross-atomic chain (CAC), 35
CRUD (Create-Read-Update-Delete), 40
cryptocurrencies

versus dapps, 10
exchanges for, 34
fifth protocol layer, 2
universal wrapper for, 37-38

D
DAG (directed, acyclic graphs), 18
dapp creation

centralized architecture, 40
decentralized architecture, 41-43
Go language, 39
human-readable names, 59
issuing assets, 54-58
Mikro

data retrieving, 49-51
overview of, 43
passing/displaying data, 52-54
routing, 48
setup, 43-47

peer display, 59
private networks, 58
tamper-free payments, 59
tools presented, 39
white papers and, 90

dapp ecosystems
decentralized bandwidth

current ISP system, 31
FireChat, 32
need for, 33

decentralized computing
EVM (Ethereum virtual machine), 30
Go-Circuit project, 30
goals for, 31
options for, 29

decentralized data storage
benefits of, 15

blockchain storage, 16
data permanence, 17
distributed hash tables, 17
Interplanetary File System (IPFS), 17-20
Maidsafe, 20
StorJ, 20

decentralized identity
challenges of, 28
goals for, 29
Namecoin, 27
OpenID protocol, 26
private key storage, 28
public-key infrastructure, 26

decentralized markets
BitUSD, 34
cryptocurrency exchanges, 34
goals for, 33, 34
government reaction to, 33
history of, 61

(see also OpenBazaar)
Mercury, 35

decentralized wealth
altcoin approach, 21
Bitcoin approach, 21-23
Counterparty, 23
Hyperledger, 24
token agnosticism, 25
Turing-complete blockchains, 25

goals for, 15
practical decentralization

benefits of Bitcoin for, 36
government compliance, 36
initial steps, 36
universal cryptocurrency wrappers,

37-38
dark web, 61
Darkcoin, 36
DarkMarket, 62
data

central, trusted stores, 8
data permanence, 17
passing/displaying, 52-54
retrieving, 49-51
storage in La'Zooz, 92
storage in OpenBazaar, 67
storing, 15-20

decentralization methods
benefits of Bitcoin for, 36
government compliance, 36

100 | Index

initial steps, 36
universal cryptocurrency wrappers, 37

decentralized application (DA), 12
decentralized applications (dapps)

alternate terms for, 11-14
examples of, 9-10
features of, 3-8
growth of, 1
history of, 8-10
profitability of, 4
technologies enabling, 11

decentralized autonomous corporations
(DACs), 13

decentralized consensus, 2-7
decentralized data storage, 15-20
decentralized organizations (DOs), 12
digital money, 38
Dish network, 61
distributed computation, 4
Distributed Hash Tables (DHTs), 6, 17, 68
dogecoin, 21
domain name registration, 27
double-spending problem, 2

E
Ethereum Swarm, 20
EVM (Ethereum virtual machine), 30

F
FileCoin, 20, 41
FireChat, 9, 32

G
Gems, 10
global trust, 72
Go environment

benefits of, 39
installing, 43
installing dependencies, 44
versus OOP languages, 49

go get command (Go), 44
Go-Circuit project, 30
Gox, 34
Gridcoin, 36

H
Hearn, Mike, 77
Heroku, 29

Homebrew, 66
HTTP protocol guidelines, 8
httprouter

installing, 47
routing with, 48

Hyperledger, 24

I
ICANN, 27
identity, decentralized, 26-29
Indiegogo, 77
internal currency, 6
Internet censorship, 28, 33
Internet Protocol Suite

drawbacks of, 1
early model of, 8
fifth layer of, 2

Interplanetary File System (IPFS)
ADD command, 42
CAT command, 42
data storage/retrieval in, 29, 49-51
functionality, 41-43
initializing config files, 44
installing, 44
overview of, 17-20

IPFS Keystore, 58
ISPs (Internet Service Providers), 31

K
Kademlia DHT, 18, 68
kanyecoin, 21
Karpelès, Mark, 34
Kerala

data storage/retrieval with, 49-51
installing, 46
tamper-free payments, 59
transactions with, 57

Kickstarter, 77

L
La'Zooz

architecture, 92-95
contracts, 95
DAO structure, 89-91
distribution protocol, 88
shortcomings of, 96
user interfaces, 91-92
Zooz currency, 94

Index | 101

Lighthouse
authorization/identities, 84
functionality, 78-83
history of, 77
overview of, 10
SPV wallets, 84

Litecoin, 21, 36
Lyft, 87

M
Maidsafe, 20
man-in-the-middle (MITM) attacks, 26
markets, decentralized, 33
Mazieres, David, 35
McCaleb, Jeb, 35
merchants (OpenBazaar), 63
Mercury, 35
merkleDAG, 18, 46, 51
mesh networking, 32
metacoins, 62
Michael, Emil, 87
Mikro (decentralized Twitter)

data storage/retrieval, 49-51
overview of, 43
passing/displaying data, 52-54
peer display, 59
routing, 48
setup, 43-47

miners, defined, 2
monetization, 6
Mt Gox, 34
multipeer connectivity, 9, 32
MVC (Model-View-Controller), 41

N
Nakamoto, Satoshi, 2
Namecoin, 27, 60
NameID, 28
notaries (OpenBazaar), 65

O
onion routing, 61
Open Garden, 32
open-source applications, 4
OpenBazaar

actors in, 63-65
installing, 66-74
overview of, 9, 62

shortcomings of, 74
OpenID protocol, 26
Overstock, 61

P
payment systems (see value transfer systems)
peer-to-peer (P2P) filesharing, 17, 63
peercoin, 21
Pirate Bay, 62
PopcornTime, 9
Primecoin, 36
private key storage, 28
Project Xanadu, 17
projected trust, 72
proof-of-burn, 72
proof-of-movement algorithm, 88
proof-of-stake consensus mechanism, 11
proof-of-timelock, 73
proof-of-work consensus mechanism, 2, 11
public-key infrastructure, 26

R
replay attacks, 26
reputation (OpenBazaar), 71
REST (Representational State Transfer), 40
revocability, 77
Ricardian contracts, 63, 68
ride sharing applications, 87
Ripple-style exchange mechanisms, 35

S
scarce tokens, 6
server-client models

centralized, 3, 40
decentralized, 41

sidechain proposal, 22, 36
Silk Road, 61
smart contracts, 7, 60, 82, 95
SPV wallets, 84
Stellar, 35
stock exchanges, 33
StorJ, 20
Sybil attacks, 2
system identification numbers (SIN), 26

T
third-party escrow services, 60
token agnosticism, 25

102 | Index

Tor, 61
trust (OpenBazaar), 71
trust-as-risk, 73
Turing-complete blockchains, 25
Twitter, 43

(see also Mikro)

U
Uber, 87
Ulbricht, Ross, 62

V
value transfer systems (see also Bitcoin)

altcoins, 21, 27

central clearing houses, 1
cross-atomic chain (CAC) protocol, 35
decentralized, 2
in third-world countries, 38

virtual machines (VM), 29

W
wealth, decentralized, 21-26
white papers, 90

Z
Zooko’s triangle, 26
Zooz curency, 94

Index | 103

About the Author
Siraj Raval is a dapp developer, entrepreneur, and a technical storyteller at heart. He’s
a full-time YouTube star on his show, Sirajology. He is founder of a crowdfunding
platform for developers called Havi, has developed several iOS apps including
Meetup, and has worked on a host of open source work. Besides being a programmer,
Siraj is also a traveler, musician, postmodernist, and scuba diver.

Colophon
The animal on the cover of Decentralized Applications is the silver roughy (Hoploste‐
thus mediterraneus), also known as the Mediterranean slimehead.

This deep-sea fish is widespread throughout the Atlantic and Western Indian Oceans
at depths ranging from 100 to 1,175 meters. The silver roughy is small, reaching just
42 centimeters, with an oblong shape, large eyes, and a forked tail.

Silver roughy fish have been known to live up to 11 years. Their diet consists mainly
of crustaceans.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from the Dover Pictorial Archive. The cover fonts are URW Type‐
writer and Guardian Sans. The text font is Adobe Minion Pro; the heading font is
Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Copyright
	Table of Contents
	Preface
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us

	Chapter 1. What Is a Decentralized Application?
	Preliminaries: What Is Bitcoin?
	What Is a Decentralized Application?
	Feature 1: Open Source
	Feature 2: Internal Currency
	Feature 3: Decentralized Consensus
	Feature 4: No Central Point of Failure

	The History of Decentralized Applications
	PopcornTime
	OpenBazaar
	FireChat
	Lighthouse
	Gems

	Enabling Technologies
	Defining the Terms

	Getting Started

	Chapter 2. A Flourishing Dapp Ecosystem
	Decentralized Data
	Option 1: Storing Data Directly in the Bitcoin Blockchain
	Option 2: Storing Data in a Distributed Hash Table

	Decentralized Wealth
	Decentralized Identity
	Decentralized Computing
	Decentralized Bandwidth
	Decentralized Markets for Decentralized Assets
	Practical Decentralization

	Chapter 3. Building Your First Dapp
	Go
	Centralized Architecture
	Decentralized Architecture: Introduction to IPFS

	What Are We Building?
	Setup
	Routing
	Data Storage and Retrieval
	Passing and Displaying Data to the Frontend

	Dapp Economics
	Remaining Problems
	Private Networks
	Human-Readable Names
	Showing Only Peers on Mikro, Not IPFS in General
	Tamper-Free Payments

	Chapter 4. OpenBazaar
	Why Make OpenBazaar?
	What Is OpenBazaar?
	How Does OpenBazaar Work?
	Merchant
	Buyer
	Notary

	How to Install OpenBazaar
	Possible Errors
	Identity
	Reputation

	What Could OpenBazaar Have Done Better?

	Chapter 5. Lighthouse
	Functionality
	SPV Wallets
	Identity

	Chapter 6. La’Zooz
	What Is La’Zooz?
	Distribution Protocol
	DAO Structure

	UX
	Architecture
	Contracts
	Improvements

	Conclusion

	Index
	About the Author
	Colophon

