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Preface

The purpose of this volume in the newly established series Advances in Delays and
Dynamics (ADD@S) is to provide a collection of recent results on the design and
analysis of Delays and Networked Control Systems.

Networked systems represent today a general paradigm for describing phe-
nomena in various domains such as Biology (for genes transcription networks or
models of schools of fishes), Robotics (in teleoperated manipulators for medical
applications or in coordinated unmanned vehicles), Computer Sciences (congestion
control and load balancing in the Internet management), Energy Management
(in electric grids), Traffic Control (fluid models of traffic flow), etc. The analysis and
design of networked systems represents nowadays an important challenge in the
Automatic Control community.

An enormous scientific and industrial interest has been shown in Networked
Control Systems, which are ubiquitous in most of modern control devices.
A Networked Control System (NCS) is a control system wherein its components
(plants, sensors, embedded control algorithms and actuators) are spatially dis-
tributed. The defining feature of an NCS is that control and feedback signals are
exchanged among the system’s components in the form of digital information
packages. The primary advantages of an NCS are reduced wiring, ease of diagnosis,
and maintenance and increased flexibility. Despite these advantages, the use of
communication networks also introduces several imperfections: limited information
bandwidth, communication delays, complex interactions between control algo-
rithms, real-time scheduling protocols, etc. Such imperfections may lead to poor
system performances and even instability if not appropriately taken into account.
The practical and theoretical challenges brought in the context of NCS rely on the
consideration of the imperfections induced by the use of communication networks
in control loops.

Several models have been proposed as abstractions to the complex phenomena
occurring in NCS. The use of time-delay models is unavoidable in NCS since the
transmission of information through a network is not instantaneous. The challenge
here is to deal with the infinite dimensional nature of the obtained system.
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Network links with limited capacity and bandwidth can be modeled in various
manners. The first model consists of including into the control loop a quantization
process, which basically constrains a signal evolving in a continuous set of values to a
relatively small and possibly saturated discrete set. Another model has been pro-
posed to describe the discretization in time of the exchanged information. Embedded
control algorithms use sampled versions of the system state or output. The difficulty
lies in fact that, in real time applications, sampling is often generated in an asyn-
chronous manner. This issue makes the analysis and design of NCS a complex task.
On one side, this asynchronism may represent an undesired phenomena (jitter or
packet dropout) and it may be a source of instability. From the control theory point of
view, it must be taken into account in a robust manner. On the other side, one may
deliberately introduce asynchronism in the control loop via scheduling algorithms, in
order to reduce the number of data transmissions and, therefore, optimize the com-
putational costs. This corresponds to the recent research trend of event-based control
where a data is transmitted only if a particular event has occurred.

The new challenges for control design of networked systems are particularly
evident in large-scale interconnection of multiagent systems. For example, in for-
mation and cooperation control, it is not reasonable, from the practical point of
view, to allow all-to-all communication. Each agent has only a local view of the
overall network and he may not be able to store and manipulate the complete state
of the system. Hence, an agent is able to exchange information only with its
neighbors in the space or in the communication graph.

The chapters in this volume deal with several aspects of time delays and net-
worked systems. In the literature many different techniques have been proposed for
the analysis and design of such systems. Widely used techniques include Lyapunov-
based analysis and design in the time domain, and spectral methods in the
frequency domain. The reader will find examples of these techniques in this vol-
ume. The main ideas of the individual papers included here were presented and
discussed at a workshop organized by the International Scientific Coordination
Network on Delay Systems (DelSys) in November 2013 at LAAS, Toulouse,
France. The International scientific coordination network on Delay Systems DelSys,
supported by the French Center Scientific Research (CNRS) gathers several
European research teams working in the field of time-delay systems. The main
objectives of “DelSys” are twofold: first, to better organize the European research
on such topics and second to better emphasize the research trends in the field.

The book is collected under the following parts:

Part I Delays in Large Scale and Infinite Dimensional Systems

The first part of the book is concerned with the presentation of recent tools for the
analysis of time-delay systems. In the following chapters, a particular attention will
be paid on several classical analyses and control problems of large scale or infinite
dimensional systems with delays.
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The first chapter by Islam Boussaada and Silviu-Iulian Niculescu deals with the
study of the multiplicity of imaginary crossing roots in some networks with delays.
The proposed method is based on the properties of the Vandermonde matrices,
which is proved to be an appropriate method to solve this problem. The second
chapter by Michaël di Loreto, Sérine Damak, and Sabine Mondié addresses the
problem of stability, stabilization, and control of a network of conservation laws.
The method is based on the construction of a state-space realization for networks of
linear hyperbolic conservation laws for deriving sufficient conditions for stability
and stabilization of the systems. This part ends with a chapter by Igor Pontes Duff,
Pierre Vuillemin, Charles Poussot-Vassal, Corentin Briat, and Cédric Seren. The
chapter introduces a novel method for the model reduction of large scale time-delay
systems using norm approximation. The method detailed in this work aims at
overcoming some limitations by exploiting the recent H2 model reduction results
for linear time invariant systems, which is well adapted to approximate infinite
dimensional models.

Part II Control Systems Under Asynchronous Sampling

The second part of the book focuses on the analysis and design of systems with
asynchronous sampling intervals which occur in Networked Control Systems. Both
linear and nonlinear systems are being considered.

The first chapter, by Sylvain Durand, Nicolas Marchand and José Fermi
Guerrero-Castellanos, revisits the classical “universal stabilizer formula” in an
event-triggered control configuration. The case of nonlinear systems affine in the
control with delay in the state is considered using the existence of Control
Lyapunov–Krasovskii/-Razumikhin functionals. The second chapter, by Hassan
Omran, Laurenţiu Hetel, Jean-Pierre Richard and Françoise Lamnabhi-
Lagarrigue, addresses the stability of bilinear systems with aperiodic
sampled-data state-feedback controllers. The analysis is based on a hybrid system
model and the use of linear matrix inequalities (LMI) criteria that allow to asses the
local stability of the closed-loop system. The third chapter, by Alexandre Seuret
and Corentin Briat, provides new LMI conditions for the stability of asynchronous
sampled-data linear systems with input delay. The analysis is performed by the use
of the Lyapunov–Krasovskii method and of loop functionals that allow to take into
account the variations of the sampling interval. Chapter 4, by Mahmoud
Abdelrahim, Romain Postoyan, Jamal Daafouz and Dragan Nešić, presents results
for the synthesis of output event-triggered controllers for nonlinear systems. The
key idea of the approach is to combine techniques from event- and time-triggered
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control, in order to turn the sampling mechanism on only after a fixed amount of
time has elapsed since the last transmission.

Part III Time-Delay Approaches in Networked Control Systems

The third part is dedicated to the use of time-delay models for the analysis and
design of Networked Control Systems.

In the first chapter, by Francesco Ferrante, Frédéric Gouaisbaut and Sophie
Tarbouriech, the effect of quantization is analyzed for control of linear systems with
input delays. The saturating quantizer is studied locally, using convex optimization
methods, using some modified sector conditions. The second chapter, by Kun Liu,
Emilia Fridman and Karl H. Johansson, investigates the use of the time-delay
approach for the analysis of Networked Control Systems under scheduling proto-
cols. The key idea is to tackle the stability problem using delay dependent
Lyapunov–Krasovskii methods. In the third chapter, by Xu-Guang Li, Arben Cela,
and Silviu-Iulian Niculescu, networked control systems with hypersampling periods
are analyzed. Stability regions are computed for linear systems using parameters
sweeping techniques.

Part IV Cooperative Control

The last part of the book exposes several contributions dealing with the design of
cooperative control and observation laws for networked control systems. In these
chapters, several discussions on the application of consensus algorithms are
provided.

The first chapter of this part by Alicia Arce Rubio, Alexandre Seuret, Yassine
Ariba, and Alessio Mannisi aims at presenting distributed control laws, which allow
a fleet of two drones to carry a load in a cooperative manner. Two approaches based
on the linear quadratic regulator method and on model predictive control are dis-
cussed. The second chapter by Pablo Millan, Luis Orihuela Isabel Jurado, Carlos
Vivas, and Francesco R. Rubio exposes some recent tools which aim at taking into
account delays in distributed estimation and control. Indeed, the influence delays
and packet dropouts induced by communication are analyzed and robust control
and estimation laws are provided. The third chapter by Constantin Morarescu,
Pierre Riedinger, Marcos C. Bragagnolo and Jamal Daafouz exposes a novel
method for the design and the analysis of a reset strategy for consensus in networks
with cluster pattern. The next chapter by Paresh Deshpande, Christopher Edwards,
and Prathyush P. Menon presents a synthesis of distributed control laws for
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multiagent systems. The key issue of this chapter is to design distributed control
laws which are based on delayed relative measurements among the agents. The last
chapter by Constantin Morarescu and Mirko Fiacchini concerns the implementa-
tion strategies for topology preservation in multiagent systems.

Toulouse Alexandre Seuret
Lille Laurentiu Hetel
Nancy Jamal Daafouz
Stockholm Karl H. Johansson
June 2014
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Part I
Delays in Large Scale and Infinite

Dimensional Systems



Chapter 1
On the Codimension of the Singularity
at the Origin for Networked Delay Systems

Dina-Alina Irofti, Islam Boussaada and Silviu-Iulian Niculescu

Abstract Continuous-time dynamical networks with delays have a wide range of
applicationfields frombiology, economics to physics, and engineering sciences.Usu-
ally, two types of delays can occur in the communication network: internal delays
(due to specific internal dynamics of a given node) and external delays (related to
the communication process, due to the information transmission and processing).
Besides, such delays can be totally different from one node to another. It is worth
mentioning that the problem becomesmore andmore complicatedwhen a huge num-
ber of delays has to be taken into account. In the case of constant delays, this analysis
relies much on the identification and the understanding of the spectral values behav-
ior with respect to an appropriate set of parameters when crossing the imaginary axis.
There are several approaches for identifying the imaginary crossing roots, though, to
the best of the authors’ knowledge, the bound of the multiplicity of such roots has not
been deeply investigated so far. This chapter provides an answer for this question in
the case of time-delay systems, where the corresponding quasi-polynomial function
has non-spare polynomials and no coupling delays. Furthermore, we will also show
the link between this multiplicity problem and Vandermonde matrices, and give the
upper bound for the multiplicity of an eigenvalue at the origin for such a time-delay
system modeling network dynamics in the presence of time-delay.

D.-A. Irofti (B) · I. Boussaada · S.-I. Niculescu
Laboratoire des Signaux et Systèmes, CNRS-CentraleSupélec-UPSUD,
3 rue Joliot-Curie, 91192 Gif-sur-Yvette Cedex, France
e-mail: dina.irofti@l2s.centralesupelec.fr

S.-I. Niculescu
e-mail: Silviu.Niculescu@l2s.centralesupelec.fr

I. Boussaada
IPSA, 15 rue Maurice Grandcoing, Ivry sur Seine, France
e-mail: islam.boussaada@l2s.centralesupelec.fr

© Springer International Publishing Switzerland 2016
A. Seuret et al. (eds.), Delays and Networked Control Systems,
Advances in Delays and Dynamics 6, DOI 10.1007/978-3-319-32372-5_1

3



4 D.-A. Irofti et al.

1.1 Introduction

In the case of a n-dimensional linear systemof ordinary differential equations ẋ = Ax,
where x ∈ R

n and A ∈ Mn(R), the n eigenvalues of the matrix A are at the same time
the spectral values of the system. Since the corresponding characteristic equation is
a polynomial of degree n in the Laplace variable, it has at most n complex roots—the
eigenvalues of the system. So we can say that the codimension of a given spectral
value (its multiplicity) can be at most equal to the dimension of the state-space.

On the other hand, the case of time-delay systems is slightly different as, in this
case, the associated characteristic equation has an infinite number of roots. Consider
a networked system described by the following delay-differential equations:

ẋ(t) =
N∑

i=0

Aix(t − τi), (1.1)

under appropriate initial conditions belonging to the Banach space of continuous
C ([−τN , 0], R

n). Here x = (x1, . . . , xn) denotes the state-vector, matrices {Ai ∈
Mn(R)} for i = 0 . . .N (see [1, 3]). The N constant delays τi, i = 1 . . .N with
τ1 < τ2 < · · · < τN are positive and without any loss of generality, we consider
τ0 = 0. In the associated characteristic equation (a transcendental equation in the
Laplace variable λ), some exponential terms appear due to the delays. Thus, the
system (1.1) has the characteristic function Δ : C × R

N+ → C defined as:

Δ(λ, τ) = P0(λ) +
N∑

i=1

Pi(λ) e−τiλ. (1.2)

Assume that the polynomial P0 is a monic polynomial of degree n in λ and the
polynomials Pi are such that {deg(Pi) ≤ (n − 1)}, {∀1 ≤ i ≤ N}. The study of zeros
of the quasi-polynomial (1.2) plays a crucial role in the analysis of asymptotic sta-
bility of the zero solution of system (1.1). Indeed, the zero solution is asymptotically
stable if all the zeros of (1.2) are in the open left-half complex plane [18]. According
to this definition, the parameter space which is spanned by the coefficients of the
polynomials Pi, can be split into stability and instability domains (nothing else that
the so-called D-decomposition, see [18] and references therein). These two domains
are separated by a boundary corresponding to a spectra consisting in roots with zero
real parts and roots with negative real part. Moreover, under appropriate algebraic
restrictions, a given root associated to that boundary can have high multiplicity.

Roughly speaking, continuous-time networkswith delays can imply some internal
delays on one hand (due to specific internal dynamics of the nodes), but also some
information transmission and processing delays on the other hand (delays caused by
the communication between nodes). Thus, in [2] a network dealing with information
transmission delays is studied with respect to the consensus problem, and it is proved
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that for the continuous-time system to reach consensus, the existence of a simple
eigenvalue at the origin represents some necessary condition.

Inspired by such a fact, this chapter focuses on the codimension of the zero
spectral value for linear time-delay systems. A typical example for a nonsimple
zero spectral value is the Bogdanov–Takens singularity which is characterized by
an algebraic multiplicity two and a geometric multiplicity one. Cases with higher
order multiplicities of the zero spectral value are known as generalized Bogdanov–
Takens singularities and could be involved in concrete applications. For instance,
the Bogdanov–Takens singularity is identified in [12] where the case of two coupled
scalar delay equations modeling a physiological control problem is studied. In [17],
this type of singularity is also encountered in the study of coupled axial-torsional
vibrations of an oilwell rotary drilling system. Moreover, the paper [7] is dedicated
to this type of singularities, where codimensions two and three are studied and the
associated center manifold are explicitly computed.

Commonly, the time-delay induces desynchronizing and/or destabilizing effect
on the dynamics. However, new theoretical developments in control of finite-
dimensional dynamical systems suggest the use of delays in the control laws as
controller parameters for stabilization purposes. For instance, the papers [5, 21] are
concerned with the stabilization of the inverted pendulum by delayed control laws
and provide concrete situations where the codimension of the zero spectral value
exceeds the number of the scalar equations modeling the inverted pendulum on cart.
In [21], the authors prove that some appropriate delayed proportional-derivative (PD)
controller stabilizes the inverted pendulum by identifying a codimension three sin-
gularity for a system of two coupled delayed equations. In [5], the same singularity
is characterized using a particular delay block configuration. It is shown that two
delay blocks offset a PD delayed controller. Although the algebraic structure of the
multiplicity problem makes the finite aspect of such a codimension evident, to the
best of the authors’ knowledge, the question on the upper bound of the codimension
of the zero spectral value did not receive a complete characterization.

In this chapter, which is based on some of the authors’ previous results of [6], we
investigate this type of singularity and give an answer to the question above. This
work is motivated by the fact that the knowledge of such an information is crucial
when dealing with nonlinear analysis and center manifold computations. Indeed,
when the zero spectral value is the only eigenvalue with zero real part, then the
center manifold dimension is none other than the codimension of the generalized
Bogdanov–Takens singularity [8, 11, 13, 14].

The effective method elaborated in this chapter emphasizes the connections
between the codimension problem and functional confluent Vandermonde matri-
ces. To the best of the authors’ knowledge, the use of Vandermonde matrix in control
area concerns more structural properties of control systems, for instance, in [15]
the controllability of a finite-dimensional dynamical system is guaranteed by the
invertibility of such a matrix. Next, in the context of time-delay systems, the use
of Vandermonde matrix properties was proposed by [18, 19] when controlling one
chain of integrators by delay blocks. Here we further explore the algebraic properties
of such matrices into a different context.
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The remaining chapter is organized as follows. Section1.2 includes some moti-
vating example. Next the main results are proposed in Sects. 1.3 and 1.4. Various
illustrative examples are presented in Sect. 1.5. Finally, some concluding remarks
end the chapter.

1.2 Motivating Example: Network with Information Delays

Themultiplicity of an eigenvalue at the origin could also be studied in synchronization
problemsonnetworkswith time-delays (see [2],where the approach is based ongraph
theory). For example, consider a network with n agents where the evolution of the
state (also called opinion) of the agent i at time t, xi(t), is of the form

ẋi(t) =
n∑

j=1

aij
(
xj(t − τ) − xi(t − τ)

)
. (1.3)

This means that the agent i receives some information from the agent j, the com-
munication process needs some time τ , and after receiving the information the agent
i also needs some time τ to process it. The two periods of time could be different
or not. In Eq. (1.3), aij denotes some “measures” of the influence of agent j on the
agent i and, by convention, is always positive. If the agent i receive the information
from the agent j and is immediately able to use it (without processing it), then the
Eq. (1.3) above becomes:

ẋi(t) =
n∑

j=1

aij
(
xj(t − τ) − xi(t)

)
. (1.4)

If, in addition, the agent xi has also a sort of internal dynamics, Eq. (1.4) becomes

ẋi(t) = bixi(t) + cixi(t − τi) +
n∑

j=1

aij
(
xj(t − τ) − xi(t)

)
. (1.5)

To conclude, Eq. (1.5) represents a general expression, we can use in the case of
a network where both internal and external delays are taken into account.

We consider now the simple case of a network of the form of a complete, regular
graph, including four nodes, that is to say that from every node we can reach any
other node in the network. Suppose that the opinion of each node evolves under the
law (1.3), where aij represents the corresponding element of the adjacency matrix:
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A =

⎡

⎢⎢⎣

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎤

⎥⎥⎦ .

Applying Eq. (1.3) to each agent i, we can rewrite the system as ẋ(t) = −Lx
(t − τ), where the matrix L, also called Laplacian, is of the form

L =

⎡

⎢⎢⎣

3 −1 −1 −1
−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3

⎤

⎥⎥⎦ .

It is easy to see that L = D − A, where A is the adjacency matrix and D is the
degree matrix,D := diag{d1, . . . , d4}, with di the number of incoming/outgoing arcs
to xi. Since we supposed that our network is regular, all the dis are equals.

It is proved in [2] that if τ is sufficiently small (see the so-called delay margin)
and the Laplacian has a simple eigenvalue at the origin, then the system reaches
consensus. Indeed, if we take a look at the characteristic equation of the system,
det

(
λI + Le−λτ

) = 0, we can easily see that its characteristic function becomes:

Δ(λ, τ) = λ
(
λ3 + 12λ2e−λτ + 48λe−2λτ + 64e−3λτ

)
,

and hence λ = 0 is a simple root.

1.3 Main Results

Let us first recall some useful definitions and notations:
First, a polynomial P of degree n is said to be sparse when P(x) = ∑n

k=0 ak x
k

and
∏n−1

k=0 ak = 0 (see, for instance, [10]).
Second, by regular quasi-polynomial we understand the situation when the poly-
nomials Pi in (1.2) for i = 1, . . . ,N are not sparse i.e., ∀i = 1, . . . ,N and {∀k =
0, . . . , deg(Pi)} we assume that ai,k �= 0.

The main result can be summarized as follows:

Proposition 1 The codimension of zero singularity of the regular characteristic
quasi-polynomial function Δ given by (1.2) cannot be larger than N(n0 + 1) + n,
where N is the number of the nonzero distinct delays, n is the degree of P0 and n0 is
the upper degree of the polynomial family Pi, for 1 ≤ i ≤ N.

Remark 2 Several other notions can be encountered in the literature describing spar-
sity. Among others we mention the lacunary polynomials [16].
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We needfirst to introduce some notations. Let denote byΔ(k)(λ) the k-th derivative
of Δ(λ) with respect to the variable λ. We say that zero is an eigenvalue of algebraic
multiplicity m ≥ 1 for (1.1) if Δ(0) = Δ(k)(0) = 0 for all k = 1, . . . ,m − 1 and
Δ(m)(0) �= 0.

Consider the nonzero distinct delays such that 0 < τ1 < τ2 < · · · < τN and the
polynomialsPi such thatP0 is an unitary polynomialwith deg(P0) = n and deg(Pi) ≤
n − 1 for 1 ≤ i ≤ N and let n0 = max1≤i≤N deg(Pi).We denote by ai,k the coefficient
of the monomial λk for the polynomial Pi, thus a0,n = 1.

Since we are dealing only with the values of Δk(0), we suggest to translate the
problem into the parameter space (the space of the coefficients of the Pi), this will
be more appropriate and will consider parametrization by τ .
The following lemma allows to establish an m-set of multivariate algebraic func-
tions (polynomials) vanishing at zero when the multiplicity of the zero root of the
transcendental equation Δ(λ, τ) = 0 is equal to m.

Lemma 3 Zero is a root of Δ(k)(λ) for k ≥ 0 if and only if the coefficients of Pi for
0 ≤ i ≤ N satisfy the following assertion

a0,k = −
N∑

i=1

[
ai,k −

k−1∑

l=0

(−1)l+k+1 ai,lτik−l

(k − l)!

]
. (1.6)

The proof of the above Lemma 3 can be found in [6].

Example 1 To illustrate Lemma 3, as well as the resulting Proposition 1, consider
the scalar delay-differential equation:

ẋ(t) + a0,0x(t) + a1,0x(t − τ1) + a2,0x(t − τ2) = 0,

where a0,0, a1,0, a2,0 ∈ R The corresponding characteristic quasi-polynomial func-
tion is given by

Δ(λ, τ) = λ + a0,0 + a1,0e
−τ1λ + a2,0e

−τ2λ.

For k = 0, Equality (1.6) gives the first sufficient condition guaranteeing a multi-
plicity at least one for the zero singular value. Indeed, {Δ(0, τ ) = 0 = a0,0 + a1,0 +
a2,0} which gives as a0,0 = −(a1,0 + a2,0).

A sufficient condition for a multiplicity at least two for the zero singular value is
obtained by computing the first partial derivative of Δ with respect to λ, leading to
the condition a0,1 = 1 = τ1a1,0 + τ2a2,0, which satisfy Equality (1.6) where k = 1.
Finally, one can easily show that if Eq. (1.6) is satisfied for all k = 0, 1, 2, then the
zero singularity is of multiplicity three (which is the maximal multiplicity) if and
only if

a0,0 = −τ1 + τ2

τ1τ2
, a1,0 = − τ2

(τ1 − τ2) τ1
, a2,0 = τ1

τ2 (τ1 − τ2)
.

Such a result is consistent with respect to Proposition 1.
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Introduce

∇k(λ) =
N∑

i=0

dk

dλk
Pi (λ) +

k−1∑

l=0

(
(−1)l+k

(
k

l

) N∑

i=1

τi
k−l d

l

dλl
Pi (λ)

)
,

with the notations and the remarks above, we are able to prove the main result.

Proof (Proof of Proposition 1). We shall consider the variety associated with the
vanishing of the polynomials ∇k (defined in Lemma 3), that is {∇0(0) = · · · =
∇m−1(0) = 0} and ∇m(0) �= 0 and we aim to find the maximal m (codimension of
the zero singularity).

Consider the first elements from the family ∇k

∇0(0) = 0 ⇔
N∑

i=0

ai,0 = 0,

∇1(0) = 0 ⇔
N∑

i=0

ai,1 −
N∑

i=1

ai,0 τi = 0,

∇2(0) = 0 ⇔ 2!
N∑

i=0

ai,1 − 2!
N∑

i=1

ai,0 τi +
N∑

i=1

ai,0 τ 2
i = 0,

if we consider ai,k and τl as variables, the obtained algebraic system is nonlinear
and solving it in all generality (without attributing values for n and N) becomes a
very difficult task. Indeed, even by using Gröbner basis methods [9], this task is
still complicated since the set of variables depends on N , n and n0. Since our aim
is to establish an upper bound, we assume here that all the polynomials Pi satisfy
the condition deg(Pi) = n0 for all 1 ≤ i ≤ N . We consider ai,k as variables and τl as
parameters, and we adopt the following notation a0 = (a0,0, a0,1, . . . , a0,n−1)

T and
ai = (ai,0, ai,1, . . . , ai,n0)

T for 1 ≤ i ≤ N and denote by τ = (τ1, τ2, . . . , τN ) and
a = (a1, a2, . . . , aN )T .

Consider the ideal I1 generated by the n polynomials {〈∇0(0), ∇1(0), . . . ,

∇n−1(0)〉}. As it can be seen fromLemma 3, the variety V1 associatedwith the ideal I1
has the following linear representation a0 = M1(τ ) a, whereM1 ∈ Mn,N(n0+1)(R[τ ]).
In some sense, in this variety there are no any “restriction” on the components of a
when a0 is left “free”. Since a0,k = 0 for all k > n, the remaining equations consist
in an algebraic system only in a and parametrized by τ . Consider now the ideal I2
generated by the N(n0 + 1) polynomials:

I2 = 〈∇n+1(0), ∇n+2(0), . . . , ∇n+N(n0+1)(0)〉.
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It can be observed that the variety V2 associated with I2 can be written as
M2(τ )a = 0, which is nothing else that an homogeneous linear system with {M2 ∈
MN(n0+1)(R[τ ])}. More precisely, M2 is a functional Vandermonde matrix:

M2(τ ) = (V (τ1),
d

dτ1
V (τ1), . . . ,

dn0

dτ
n0
1

V (τ1), . . . , V (τN ), . . . ,
dn0

dτ
n0
N

V (τN )), where

V (x) = ((−x)n+1, (−x)n+2, . . . , (−x)n+N(n0+1))T . (1.7)

Obviously, every subset of vectors Fk = (V (τk), . . . , dn0
dτ

n0
k
V (τk)) is a family of

vectors in R
N(n−1)([τk]), which are linearly independent since, as it can be seen in

(1.7) that for any i �= l, deg(Vi) �= deg(Vl), where Vk is the k-th component of the
vector V and deg(Vk) denotes the degree of the polynomial Vk(x) in x. Moreover, no
any element from Fl (the family of vectors in R

N(n−1)([τl])) can be written as a linear
combination of elements of Fk with l �= k, which proves that det(M) can not vanish.
Furthermore, the direct computation of the determinant of the matrix M gives

| det(M)| =
∣∣∣∣∣∣

∏

1≤k≤n−2

(n0 + 1 − k)!N
∣∣∣∣∣∣
.

∣∣∣∣∣∣

∏

1≤i<l≤N

(τi − τl)
(n0+1)2

∏

1≤h≤N

τ
(n0+1)(n+1)
h

∣∣∣∣∣∣
.

Since we are concerned only with nonzero distinct delays, this determinant cannot
vanish. Thus, the only solution for this subsystem is the zero solution, that is a = 0.

Now consider the polynomial defined by ∇n(0), by Lemma 3

∇n(0) = 0 ⇔ 1 =
N∑

i=1

n−1∑

l=0

(−1)l+n+1 ai,lτin−l

(n − l)!

substituting the unique solution of V2 into the last equality leads to an incompatibility
result. In conclusion, it follows straightforwardly that the maximal codimension of
the zero singularity is less or equal to N(n0 + 1) + n.

Remark 4 In the light of the results of proposition 1, we are able to establish the codi-
mension’s upper bound of the zero singularity of the characteristic quasi-polynomial
functionΔwhen all its parameters are left “free”. Indeed, in such a case, it is assumed
that n0 = max1≤i≤N deg(Pi) is exactly n − 1.

The codimension of zero singularity of the characteristic quasi-polynomial func-
tion Δ given by (1.2) cannot be larger than (N + 1)n, where N is the number of the
nonzero distinct delays and n is the degree of P0.

This bound is the same as the one from the Polya-Szegö result in [20] which
gives a bound for the number of quasi-polynomial roots that are contained in a given
horizontal strip. Note that the proof of Polya-Szegö result is based on Rouché’s
lemma, however, in this chapter, we proposed a different approach.
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Remark 5 It is important to emphasize that the codimension’s upper bound may
exceed the number of free parameters involved in the quasi-polynomial function
Δ. Indeed, the number of free parameters is N(n + 1) + n which is greater than
(N + 1)n.

1.4 Link with Vandermonde Matrices

In the sequel, by functional confluent Vandermonde matrix W , we associate to a
given positive integer s ≥ 0 the square matrix defined by

W = [W1 W2 . . . WM] ∈ Mδ(R), (1.8)

whereWi = [f (xi) f (1)(xi) . . . f (di−1)(xi)] (1.9)

such that
M∑
i=1

di = δ, and

f (xi) = [xsi . . . xδ+s−1
i ]T , for 1 ≤ i ≤ M. (1.10)

When s = 0, the matrix W simply defines a confluent Vandermonde matrix and
thus f (xi) = [1 xi . . . xδ−1

i ]T . If in addition, di = 1 for i = 1 . . .N then W is nothing
else than a Vandermonde matrix and, in this case, M = δ since W is assumed to be
a square matrix.

Let ξ stands for the vector composed from xi counting their repetition di through
columns of W , that is

ξ = (x1, . . . , x1︸ ︷︷ ︸
d1

, . . . , xM , . . . , xM︸ ︷︷ ︸
dM

).

For instance, one has ξ1 = x1 and ξd1+d2+1 = ξd1+d2+d3 = x3. In the light of
the above notations, and under the setting d0 = 0, without any loss of generality:
ξk = ξd0+...+dr+α = ξ∑ρ(k)−1

l=0 dl+κ(k), where 0 ≤ r ≤ M − 1 and α ≤ dr+1. Here ρ(k)
denotes the index of component of x associated with ξk , that is xρ(k) = ξk and byκ(k)
the order of ξk in the sequence of ξ composed only by xρ(k). Obviously, ρ(k) = r + 1
and κ(k) = α.

The following theorem provides the LU-factorization of the matrix W :

Theorem 6 Given the functional confluent Vandermonde matrix (1.8)–(1.10), the
unique LU-factorization with unitary diagonal elements Li,i = 1 is given by the
formulae:



12 D.-A. Irofti et al.

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Li,1 = xi−1
1 for 1 ≤ i ≤ δ,

U1,l =W1,l for 1 ≤ l ≤ δ,

Li,l =Li−1,l−1 + Li−1,l ξl for 2 ≤ l ≤ i,

Ui,l = (κ(l) − 1)Ui−1,l−1

+ Ui−1,l
(
xρ(l) − ξi−1

)
for 2 ≤ i ≤ l.

The proof of the above theorem can be found in [4].

1.5 Illustrative Examples

As mentioned before, we can find in [2] a graph theory approach for an appropriate
study of synchronization on networks. In this section, we shall use two oriented
graphs to represent a network with three agents where only one delay is involved
(corresponding to both information transport and process), but also a four agents
network with two different delays, one corresponding to the transmission, the other
to the processing of the information.

1.5.1 Three Agents Network with One Delay

This example consists in a three agents network, as depicted in Fig. 1.1. The dynamics
of this system is given by

⎧
⎪⎨

⎪⎩

ẋ1(t) = α11x1(t) + γ11x1(t − τ),

ẋ2(t) = α22x2(t) + γ21x1(t − τ) + γ23x3(t − τ),

ẋ3(t) = α33x1(t) + γ11x1(t − τ).

Fig. 1.1 Network consisting of 3 agents (left) and 4 agents (right)
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This can be read as: the evolution of the first node x1 is a function of its current state
and its past state, while the behavior of the second agent x2 depends not only on its
current state, but also on the information sent by the agents 1 and 3, transmission that
requires a time τ to take place. Finally, the third agent uses its own information and
the information sent by the first agent (information that also needs a time τ to travel).
In all cases, the influence of one agent on itself is weighted by some coefficients αii,
while the coefficients γij denote the impact of other agents. We write the state-space
representation of this system as ẋ(t) = A0x(t) + A1x(t − τ), where x = (x1 x2 x3)T

belongs to R
3, τ is a constant positive delay, and

A0 =
⎡

⎣
α11 0 0
0 α22 0
0 0 α33

⎤

⎦ , A1 =
⎡

⎣
γ11 0 0
γ21 0 γ23
γ31 0 0

⎤

⎦ .

The characteristic transcendental function is given by {Δ(λ, τ) = P0(λ) +
P1(λ)e−λτ }, with

P0(λ) = λ3 + (−α11 − α22 − α33) λ2 + (α11α22 + (α11 + α22) α33) λ − α11α22α33,

P1(λ) = −γ11λ
2 + (γ11α22 + γ11α33) λ − γ11α22α33.

We can easily prove that themultiplicity of the zero spectral value for this network
is at most two, i.e., Δ(λ = 0, τ ) = Δ′(λ = 0, τ ) = 0 and Δ′′(λ = 0, τ ) �= 0), and
this maximum multiplicity is reached when the condition α11 = −γ11 = 1

τ
holds,

with τ > 0 and other real coefficients left free.

1.5.2 Four Agents Network with Two Delays

This second example illustrates the case of a network including four agents (see
Fig. 1.1). If agents 1, 3, and 4 use their own information and the one sent by others,
weighted by some real coefficients γij (as the previous example, the communication
process needs some time τ2), the agent 2 is particular: it uses the information sent by
the third agent that has an impact denoted by γ23, its own information, but only after
receiving a feedback from the agent 1 (the feedback,weighted by γ22, also needs some
time τ2), and finally it uses all this information after processing it. The information
processing, weighted by β22, needs some time τ1 to take place. The mathematical
model of this system can be written as ẋ(t) = A0x(t) + A1x(t − τ1) + A2x(t − τ2),
with

A0 =

⎡

⎢⎢⎣

α11 0 0 0
0 0 0 0
0 0 α33 0
0 0 0 α44

⎤

⎥⎥⎦ , A1 =

⎡

⎢⎢⎣

0 0 0 0
0 β22 0 0
0 0 0 0
0 0 0 0

⎤

⎥⎥⎦ , A2 =

⎡

⎢⎢⎣

0 γ12 γ13 0
0 γ22 γ23 0
0 0 0 0

γ41 γ42 γ43 0

⎤

⎥⎥⎦ .
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where x = (
x1 x2 x3 x4

)T
, and τ1, τ2 are constant, positive, distinct delays. We write

the characteristic transcendental function

Δ(λ, τ) = P0(λ) + P1(λ)e−λτ1 + P2(λ)e−λτ2 , with

P0(λ) = λ4 − (
α1,1α3,3α4,4

)
λ3 + (

α1,1α3,3 + (
α1,1 + α3,3

)
α4,4

)
λ2 − α1,1α3,3α4,4λ,

P1(λ) = − β2,2λ
3 + (

α1,1β2,2 + β2,2α4,4 + β2,2α3,3
)
λ2

− (
α1,1β2,2α3,3 + (

α1,1β2,2 + β2,2α3,3
)
α4,4

)
λ + α1,1β2,2α3,3α4,4,

P2(λ) = − γ2,2λ
3 + (

α1,1γ2,2 + γ2,2α4,4 + γ2,2α3,3
)
λ2

+ (−α1,1γ2,2α3,3 + (−α1,1γ2,2 − γ2,2α3,3
)
α4,4

)
λ + α1,1γ2,2α3,3α4,4.

It is easy to see that the multiplicity at origin is at least 1 when the condition
β22 = −γ22 holds, asΔ(λ = 0, τ ) = 0 is equivalent with α11α33α44 (β22 + γ22) = 0.
Next we compute the first derivative of Δ(λ, τ) with respect to λ in λ = 0 and we
can see that we have a double root at the origin if the condition γ22 = 1/(τ1 − τ2) is
satisfied. Furthermore, we are not able to find any other restrictions on the parameters
for the second derivative of Δ(λ, τ) to vanish, such that the delays τ1 and τ2 are
positive and distinct, and all other coefficients are real numbers. Thus, we conclude
that the maximum multiplicity at the origin for this network is 2.

1.6 Conclusion

This chapter introduces the problem of identifying the maximal dimension of the
generalized eigenspace associated with a zero singularity for a class of quasi-
polynomials. Under the assumption that all the imaginary roots are located at the
origin, our result gives the relation between d (the maximal dimension of the pro-
jected state on the centermanifold associatedwith the generalized Bogdanov–Takens
singularities) from one side andN (the number of the delays) and n (the degree of the
polynomial P0) from the other side. When n0, the maximal degree of the polynomial
family (Pi)1≤i≤N , is less than n − 1, then a sharper upper bound for the dimension
of the state in the center manifold can be derived.

The material in this chapter was partially presented at the 13th European Control
Conference 24–27th of June 2014 in Strasbourg, France, [6]. More general systems,
involving sparse polynomials with coupled delays will be considered in future works.
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Chapter 2
Stability and Stabilization
for Continuous-Time Difference Equations
with Distributed Delay

Michael Di Loreto, Sérine Damak and Sabine Mondié

Abstract Motivated by linear hyperbolic conservation laws, we investigate in this
chapter new conditions for stability and stabilization for linear continuous-time dif-
ference equations with distributed delay. For this, we propose first a state-space
realization of networks of linear hyperbolic conservation laws via continuous-time
difference equations. Then, based on some recent works, we propose sufficient con-
ditions for exponential stability, which appear also to be necessary and sufficient
in some particular cases. Then, the stabilization problem as well as the closed-loop
performances are analyzed with constructive methods for state feedback synthesis.

2.1 Introduction

Linear 1-D conservation laws are linear one-dimensional first-order hyperbolic sys-
tems of partial differential equations (PDEs) [6]. Conservation laws appear in many
engineering applications, as for instance in electrical lines, gas flow in pipelines,
open water channel flow, road traffic or heat exchangers. See for instance [2, 3, 24,
30, 42]. When the conservation laws are linearized, they are reduced to transport or
propagation equations [5, 8, 15, 21, 43].

From this well known fact, we propose to investigate the stability and performance
properties for a set of linear coupled conservation laws with boundary control from
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their transport phenomena, using an exact state-space time-delay realization. The
time-delay model is governed by linear continuous-time difference equations, in the
form

x(t) = Ax(t − r) + Bu(t), t ≥ 0, (2.1)

where u(t) is the input control, x(t) the state, A a constant n × n matrix, B a con-
stant n × m matrix and r > 0 the transport delay. Based on this model, we investigate
exponential stability conditions, as well as boundary control for exponential stabi-
lization and closed-loop performances achievement.

Feedback control for (2.1)may involve static delayed-state feedback,which yields
a continuous-time difference equation in closed-loop. More generally, feedback con-
trol may involve integral operators in time (and in space), like distributed delay
operators. The system (2.1) may be then transformed into the more general class of
integral-difference equations in the form

x(t) = Ax(t − r) +
∫ r

0
G(θ)x(t − θ)dθ, t ≥ 0, (2.2)

where the matrix function G(θ) has piecewise continuous bounded elements defined
for θ ∈ [0, r ] [5, 9, 31].

Stability and stabilization problems for conservation laws with boundary con-
trol have received renewed attention in recent years, related to challenging applica-
tions. See for instance [4, 10, 11, 16, 18, 25, 33, 41] and the references therein for
Lyapunov-based approaches, [34] for a frequency approach, or [45] for a functional
approach. On the other side, stability and stabilization of difference equations in the
form (2.1) were studied in various works. In [1, 17, 27–29, 35], sensitivity in the
delays for stability and stabilization were analyzed, via delay-independent spectral
conditions, Lyapunov-Krasovskii approach was investigated in [7, 12, 20, 22, 40,
44, 46] with numerical tractable conditions for testing stability. Note also that the
difference equation (2.1) appears fundamental in neutral time-delay systems. See
for instance [23, 26, 32] and in references therein. Integral-difference equations in
the form (2.2) have received recently a renewed interest. With constructive meth-
ods, stability conditions using Lyapunov-Krasovskii approach were proposed in [13,
37–39].

In this chapter, we propose to analyze linear 1-D conservation laws using
continuous-time difference equations (with distributed delay). From a Lyapunov-
Krasovskii approach, we give necessary and sufficient conditions for exponential
stability in the case of purely difference equations, and sufficient conditions for
exponential stability of integral-difference equations in the form (2.2). Then, state-
feedback synthesis is studied via constructive numerical algorithms, in order to
achieve closed-loop stability or L2-gain performance.

The chapter is organized as follows:Anexact time-delay state-space realization for
linear 1-D hyperbolic conservation laws is derived in Sect. 2.2. Essential definitions
and stability results are given in Sect. 2.3. In Sect. 2.4, state-feedback synthesis is
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analyzed. Some concluding remarks and a perspective discussion for large-scale
network of conservation laws end the chapter.

Notations: The transpose of a matrix P is denoted by PT while the smallest and
the largest eigenvalues of a symmetric positive (semi)definite matrix P are denoted
by λmin(P) and λmax(P), respectively. The standard notation P � 0 and P � 0 are
used for symmetric positive definite and positive semidefinite matrices, respectively.
Similarly, P ≺ 0 and P � 0 stand for symmetric negative definite and negative semi-
definite matrices, respectively.

The space of continuous and bounded functions defined on [−r, 0) is C ([−r, 0),
R

n), while the space of piecewise right-continuous and bounded functions defined on
[−r, 0) is denoted byPC ([−r, 0),Rn). These spaces are equipped with the uniform
norm ‖ϕ‖r = sup

−r≤θ≤0
‖ϕ(θ)‖ and with the L2 norm ‖ϕ‖2L2

= ∫ 0
−r ‖ϕ(θ)‖2 dθ , where

‖ϕ(θ)‖ stands for the Euclidean norm. For a matrix G ∈ R
n×n , ‖G‖ denotes the

spectral norm, that is‖G‖2 = λmax(GTG). In stands for then × n identitymatrix, and
ρ(A) denotes the spectral radius for the matrix A. We denote by x(t, ϕ) the solution
of the system under consideration with the initial condition ϕ and by xt (ϕ) = {x(t +
θ, ϕ) | θ ∈ [−r, 0)} the partial trajectory of the system. When the initial function is
clear from the context, the argument ϕ is dropped.

2.2 Linear Hyperbolic Conservation Laws

In this section, starting from linear one-dimensional first-order hyperbolic partial
differential equations with boundary conditions, we derive an exact state-space real-
ization as a time-delay model.

In order to fix the ideas, let us consider first the simplest example of a scalar linear
conservation law, governed by

λ∂tψ(t, z) + ∂zψ(t, z) = 0, t > 0, z ∈ (0, �], (2.3)

withλ > 0, an initial conditionψ(0, z) = ψ0(z) for z ∈ (0, �] and a (time-dependent)
boundary condition ψ(t, 0) = u(t) for t > 0. For any z ∈ (0, �], the unique solution
of (2.3) is

ψ(t, z) =
{

ψ0(z − t
λ
) , for t ≤ λz

ψ(t − λz, 0) = u(t − λz) , for t > λz
. (2.4)

Indeed, the Laplace transform applied on (2.3) leads to ψ̂(s, z) = e−λzs φ̂(s), for
some function φ(·). In other words, ψ(t, z) = φ(t − λz), for any t ≥ 0. At time
t = 0, we obtain ψ0(z) = φ(−λz), so that

φ(t − λz) = ψ0(z − t

λ
), for t ≤ λz.

www.allitebooks.com
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Furthermore, at z = 0, u(t) = ψ(t, 0) = φ(t), which implies that ψ(t, z) =
ψ(t − λz, 0) for t > λz. It is then a routine to verify that ψ(t, z) is continuous
at t = λz, and is indeed the solution of (2.3).

The main interest in the formulation (2.4) is the delay-realization of the solution,
which unifies the time-space coupled effects in (2.3) into a space-dependent time-
delay. For the more general case, the 1-D linear (lossless) conservations laws are of
the form [6]

Λ∂tψ(t, z) + ∂zψ(t, z) = 0, t > 0, z ∈ (0, �), (2.5)

where ψ : R+ × [0, �] → R
n , ψ(t, z) =

[
ψ+(t,z)
ψ−(t,z)

]
with ψ+(·, ·) ∈ R

n+
, ψ−(·, ·) ∈

R
n−
, n+ + n− = n andΛ = [

Λ+ 0
0 Λ−

]
. The matrixΛ is assumed, without loss of gen-

erality, to be diagonal, that is Λ+ = diag(λ+
1 , . . . , λ+

n+), Λ− = diag(λ−
1 , . . . , λ−

n−),
where λ+

i > 0 for i = 1, . . . , n+ and λ−
i < 0 for i = 1, . . . , n−. The initial condi-

tion for (2.5) is ψ(0, z) = ψ0(z) for z ∈ (0, �), and the boundary conditions are of
the form [16]

[
ψ+(t, 0)
ψ−(t, �)

]
=

[
Γ00 Γ01

ŁΓ10 Γ11

] [
ψ+(t, �)
ψ−(t, 0)

]
+

[
B+
B−

]
u(t), (2.6)

for constantmatricesΓi j with appropriate size, B+ ∈ R
n+×m , B− ∈ R

n−×m and u(·) ∈
R

m some exogenous input signal. From (2.4), it is trivial to see that

ψ+
i (t, z) = ψ+

i (t − λ+
i z, 0), for t > λ+

i z, (2.7)

ψ−
i (t, z) = ψ−

i (t + λ−
i (� − z), �), for t > λ−

i (z − �), (2.8)

where ψ+
i and ψ−

i stand for the entries of ψ+ and ψ−, respectively. Introduce
the time-delay operators σ+

i : f (t) �→ f (t − λ+
i �) for i = 1, . . . , n+, σ−

i : f (t) �→
f (t + λ−

i �) for i = 1, . . . , n−. With σ+ = diag(σ+
1 , . . . , σ+

n+) and σ− = diag(σ−
1 ,

. . . , σ−
n−), the system (2.5) and (2.6) is transformed into the delay-operator realization

[
ψ+(t, 0)
ψ−(t, �)

]
=

[
Γ00 Γ01

ŁΓ10 Γ11

] [
σ+ψ+(t, 0)
σ−ψ−(t, �)

]
+

[
B+
B−

]
u(t). (2.9)

For the instantaneous state x(t) =
[

ψ+(t,0)
ψ−(t,�)

]
, and if the delays λ+

i � and −λ−
i � are

rationally dependent, the realization (2.9) is a state-space realization with difference
equations in the form (2.1), where the matrix A depends on the length of the delays
and on the matrices Γi j . Remark that (2.9) holds for any t ≥ maxi {λ+

i �,−λ−
i �}. For

times less than this lower bound, the solution is determined as in (2.4) from its initial
condition. We can then reduce this realization for any t ≥ 0 with a time translation.
From Eqs. (2.7) and (2.8), note also that the stability for x(t) is equivalent to the
stability of ψ(t, z) for any t ≥ 0 and z ∈ [0, �].
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2.3 Exponential Stability Analysis

2.3.1 Definitions and Main Properties

Let us consider the linear system governed by difference equations with pointwise
commensurate delays and distributed delays

x(t) = Ax(t − r) +
∫ r

0
G(θ)x(t − θ)dθ (2.10)

where A ∈ R
n×n , r > 0, and the matrix function G(θ) ∈ R

n×n has piecewise con-
tinuous bounded elements defined for θ ∈ [0, r ]. For any piecewise right-continuous
and bounded initial condition ϕ ∈ PC ([−r, 0),Rn), there exists a unique solution
x(t, ϕ) of (2.10), for all t ≥ 0. Such a solution is called the system response of (2.10).
This solution is piecewise continuous, in general, and is determined by an iterative
scheme in time, with

x(0, ϕ) = Aϕ(−r) +
∫ r

0
G(θ)ϕ(−θ)dθ.

Such equality defines the step discontinuity of the system response at time t = 0,
which will be propagated in time. In the case of linear 1-D conservation laws, the
identity x(0, ϕ) = ϕ(0−) holds, leading to the so-called initialmatching condition. In
such a case, if the initial condition ϕ ∈ C ([−r, 0),Rn), the system response x(t, ϕ)

is also continuous.
Let us remind definitions and some results concerning estimates of this solution.

Obviously, these definitions apply also in the case of difference equations (2.1) where
G(·) = 0 in (2.10).

Definition 1 System (2.10) is said to be exponentially stable if there exists γ ≥ 0
and μ > 0 such that any solution x(t, ϕ) of the system (2.10) satisfies

‖x(t, ϕ)‖ ≤ γ ‖ϕ‖r e−μt , t ≥ 0.

In such a case, the system response x(t, ϕ) is said to be exponentially stable, with
decay rate greater than μ. In the present contribution, we also use the concept of
L2-exponential stability, which is clearly weaker than exponential stability, defined
as follows.

Definition 2 System (2.10) is said to be L2-exponentially stable if there exists γ ≥ 0
and μ > 0 such that any solution x(t, ϕ) of the system (2.10) satisfies

‖xt (ϕ)‖L2
≤ γ ‖ϕ‖r e−μt , t ≥ 0.
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Considering the distributed delay in (2.10) as a perturbation term, a general result
for exponential stability was obtained in [37]. Exponential estimate for the sys-
tem response was retrieved from the analysis of some difference equations with
only pointwise delays. In this contribution, while the arguments are indeed similar,
another characterization for exponential stability is obtained. For the construction
of exponential estimates, we will use the following central result on L2-exponential
stability.

Theorem 1 [12] Let xt (ϕ) be a partial trajectory for (2.10), and assume that there
exists a continuous functional v : PC ([−r, 0),Rn) → R such that v(xt (ϕ)) is upper
right-hand side differentiable with respect to t along the trajectories of (2.10) and
satisfies the following conditions:

(i) α1 ‖ϕ‖2L2
≤ v(ϕ) ≤ α2 ‖ϕ‖2r , for some constants 0 < α1, 0 ≤ α2,

(ii) d
dt v(xt (ϕ)) + 2μ v(xt (ϕ)) ≤ 0 for some μ > 0.

Then system (2.10) is L2-exponentially stable, and the following exponential
estimate

‖xt (ϕ)‖L2
≤

√
α2

α1
‖ϕ‖r e−μt

holds for all t ≥ 0.

2.3.2 Stability for Difference Equations

For continuous-time linear difference equations of the form (2.1) with u(·) = 0, the
exponential stability analysis is trivial. Indeed, its system response is

x(t, ϕ) = Akϕ(t − kr), ∀t ∈ [(k − 1)r, kr), k ∈ N. (2.11)

It follows that the system (2.1) is exponentially stable if and only if ρ(A) < 1
(see for instance [19]), or equivalently if and only if there exists a symmetric n × n
positive definite matrix P such that

AT P A − P ≺ 0. (2.12)

These stability conditions are equivalent to those related to discrete-time linear
systems, and show the fruitful realization as a time-delay system for linear conser-
vation laws.
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2.3.3 Stability for Difference Equations with Distributed
Delay

For integral-difference equations in the form (2.10), our strategy for the exponen-
tial stability analysis is based on the following result, leading to a delay-dependent
stability condition [14]. Such a condition does not require the assumption that the
matrix A is stable.

Theorem 2 The system (2.10) is exponentially stable if there exist an n × n sym-
metric real positive definite matrix P̃, an n × n symmetric real positive semi-definite
matrix S(θ), for all θ ∈ [0, r ], and a positive constant μ > 0 such that

P = P̃ −
∫ r

0
S(θ) dθ � 0, (2.13)

and Mμ(θ) � 0, for all θ ∈ [0, r ], where Mμ(θ) is given by

− Mμ(θ) = r

[
AT P̃ A − e−2μr P AT P̃G(θ)

GT (θ)P̃ A GT (θ)P̃G(θ) − e−2μθ S(θ)

r

]
. (2.14)

Moreover, for any ε ∈ (0, μ), the following exponential estimate of the system
response holds

‖x(t, ϕ)‖ ≤ γ ‖ϕ‖r e−(μ−ε)t , (2.15)

for all t ≥ 0, where

γ =

√√√√λmax(P) + α + α

2rεe
λmin(P)

. (2.16)

The positive constant α is given by

α = α2

α1
· sup
0≤θ≤r

λmax(S(θ)),

where α1 = e−2μrλmin(P) and α2 = rλmax(P) + r2

2 · sup
0≤θ≤r

λmax(S(θ)).

Proof Assume that the conditions of the theorem are fulfilled, and consider the
Lyapunov-Krasovskii functional

vμ(xt (ϕ)) =
∫ t

t−r
e−2μ(t−θ)xT (θ)Px(θ) dθ

+
∫ r

0

∫ t

t−θ

e−2μ(t−ξ)xT (ξ)S(θ)x(ξ) dξ dθ, (2.17)
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where P , S(θ) and μ are described in (2.13) and (2.14). This functional vμ(·) is
continuous and admits the following lower and upper bounds

α1 ‖ϕ‖2L2
≤ vμ(ϕ) ≤ α2 ‖ϕ‖2r , (2.18)

where α1 and α2 are given in Theorem 2. The fact that P is symmetric positive
definite implies that α1 > 0 and α2 > 0. Furthermore, vμ(xt (ϕ)) is upper right-hand
differentiable, and its upper right-hand side time derivative along the trajectories
of (2.10) satisfies

d

dt
vμ(xt (ϕ)) = − 2μ vμ(xt (ϕ)) + xT (t)P̃x(t) − e−2μr xT (t − r)Px(t − r)

−
∫ r

0
e−2μθ xT (t − θ)S(θ)x(t − θ) dθ. (2.19)

Substituting (2.10) into (2.19) yields

d

dt
vμ(xt (ϕ)) + 2μ vμ(xt (ϕ)) = 2xT (t − r)AT P̃

∫ r

0
G(θ)x(t − θ)dθ

+ xT (t − r)[AT P̃ A − e−2μr P]x(t − r)

−
∫ r

0
e−2μθ xT (t − θ)S(θ)x(t − θ)dθ

+
(∫ r

0
G(θ)x(t − θ)dθ

)T

P̃
∫ r

0
G(θ)x(t − θ)dθ.

(2.20)

Applying Jensen’s integral inequality to the last term in (2.20),

(∫ r

0
G(θ)x(t − θ)dθ

)T

P̃
∫ r

0
G(θ)x(t − θ)dθ

≤ r
∫ r

0
xT (t − θ)GT (θ)P̃G(θ)x(t − θ)dθ,

and substituting it into (2.20), we finally obtain that

d

dt
vμ(xt (ϕ)) + 2μ vμ(xt (ϕ)) ≤ −

∫ r

0
χT (θ)Mμ(θ)χ(θ) dθ,

where χT (θ) = [
(1/r)xT (t − r) xT (t − θ)

]
and Mμ(θ) is given in (2.14). Since

Mμ(θ) � 0, we have

d

dt
vμ(xt (ϕ)) + 2μ vμ(xt (ϕ)) ≤ 0, ∀t ≥ 0. (2.21)
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From Theorem 1 and (2.18), we conclude that xt (ϕ) is L2-exponentially stable,
with

‖xt (ϕ)‖L2
≤

√
α2

α1
‖ϕ‖r e−μt . (2.22)

The inequality (2.22) implies that

∫ r

0
e−2μθ xT (t − θ)S(θ)x(t − θ)dθ ≤ α ‖ϕ‖2r e−2μt , (2.23)

where α is given in Theorem 2. From (2.19) and (2.21), we see that the system
response x(t) satisfies

xT (t)P̃x(t) ≤ e−2μr xT (t − r)Px(t − r)

+
∫ r

0
e−2μθ xT (t − θ)S(θ)x(t − θ) dθ, (2.24)

or in other words, from (2.13) and (2.23),

xT (t)Px(t) ≤ e−2μr xT (t − r)Px(t − r) + α ‖ϕ‖2r e−2μt .

This inequality is equivalent to

ψ(t) = e−2μrψ(t − r) + f (t),

forψ(t) = xT (t)Px(t) and some piecewise continuous function f (t), with | f (t)| ≤
α ‖ϕ‖2r e−2μt , for all t ≥ 0. Let n ∈ N, and take t = nr + ξ where ξ ∈ [−r, 0). From
the standard arguments in [32] (Lemma 6, p. 797), we obtain

ψ(t) = e−2μnrψ(t − nr) +
n−1∑

k=0

e−2μkr f (t − kr)

≤ e−2μnrψ(t − nr) + nα ‖ϕ‖2r e−2μt .

Substituting ψ(t) and considering that t ∈ [(n − 1)r, nr), this last inequality
leads to

λmin(P) ‖x(t, ϕ)‖2 ≤
[
λmax(P) + α + α

r
t
]
‖ϕ‖2r e−2μt .

For any ε ∈ (0, μ) (which is possible since μ > 0), we observe that

t e−2μt = t e−2εte−2(μ−ε)t ≤ 1

2εe
e−2(μ−ε)t .
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As e−2εt ≤ 1, we finally get

‖x(t, ϕ)‖2 ≤ λmax(P) + α + α
2rεe

λmin(P)
‖ϕ‖2r e−2(μ−ε)t ,

which gives the desired exponential estimate for the system response of (2.10), for
all t ≥ 0, since such a bound is independent from n ∈ N.

Remark 1 The conditions described in Theorem 2 ensure that A is a Schur stable
matrix. Indeed, it follows from (2.14) that AT P̃ A − e−2μr P � 0. From (2.13), this
in turn implies that

AT P A − P + (1 − e−2μr )P = AT P A − e−2μr P

� AT P̃ A − e−2μr P

� 0.

Since P is symmetric positive definite andμ > 0,we conclude that AT P A − P ≺
0, which is equivalent to the assertion that A is Schur stable. Clearly, the Schur
stability assumption in the Lyapunov-type Theorem 3 of [37] is fulfilled, as well
as the functional conditions 1 and 2 therein. Hence Theorem 3 in [37] allows to
conclude that system (2.10) is exponentially stable.

Remark 2 Note that the matrix S(θ), for θ ∈ [0, r ], is required to be only sym-
metric positive semi-definite. This fact should be compared to time-delay systems
with differential equations [23], where S(θ) is required, in general, to be positive
definite. This remark allows us to apply Theorem 2 in the particular case of dif-
ference equations with only pointwise delays, as in [7] or [22]. Indeed, for such
systems, G(θ) = 0 for all θ ∈ [0, r ]. Taking S(θ) = 0 on the whole interval, the
conditions given in Theorem 2 lead to the existence of P � 0 and μ > 0 such that
AT P A − e−2μr P � 0.

Remark 3 Avirtue of Theorem2 is that, unlike in [37], there is no additional assump-
tion on the stability of the difference operator A : PC ([−r, 0),Rn) �→ R

n defined
by

A (xt ) = x(t) − Ax(t − r).

It is worthy of mention that a similar feature appears in [20], in the case of neutral
type systems. Furthermore, exponential estimates for the system response described
in [37] require some knowledge about the decreasing properties of

∥∥Ak
∥∥, when

k → ∞, k ∈ N. This fact is not used a priori in the estimate of Theorem 2.
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The conditions presented in Theorem 2 are not easy to verify as they depend on the
continuous parameter θ in the bounded interval [0, r ]. Similar conditions to those
in Proposition 4 of [37] can be obtained from Theorem 2. But in order to reduce
the conservatism of these sufficient conditions, we propose the following tractable
conditions.

Lemma 1 The system (2.10) is exponentially stable if there exist an n × n symmetric
real positive definite matrix P̃, a symmetric positive semi-definite matrix S̃, and some
constants μ > 0 and β > 0 such that

β

∫ r

0
‖G(θ)‖2 dθ · In ≺ P̃, (2.25)

S̃ � β · In, (2.26)

0 � M̃μ, (2.27)

where M̃μ is given by

− M̃μ = r

[
AT P̃ A − e−2μr (P̃ − β

∫ r
0 ‖G(θ)‖2 dθ · In) AT P̃

P̃ A P̃ − e−2μr

r S̃

]
. (2.28)

Moreover, for any ε ∈ (0, μ), the following exponential estimate of the system
response holds

‖x(t, ϕ)‖ ≤ γ ‖ϕ‖r e−(μ−ε)t , (2.29)

for all t ≥ 0, where

γ =

√√√√λmax(P) + α + α

2rεe
λmin(P)

(2.30)

and P = P̃ − ∫ r
0 GT (θ)S̃G(θ)dθ . The positive constant α is obtained by

α = α2β

α1
· sup
0≤θ≤r

λmax(G
T (θ)G(θ)),

where α1 = e−2μrλmin(P) and α2 = rλmax(P) + r2

2 β · sup
0≤θ≤r

λmax(GT (θ)G(θ)).

Proof The proof is divided into two steps. In the first step, we show that (2.25)–(2.27)
imply Mμ(θ) � 0, for all θ ∈ [0, r ], in Theorem 2. The second step will be devoted
to the exponential estimate (2.29).

Assume that conditions (2.25)–(2.27) are satisfied. For any θ ∈ [0, r ], we have
e−2μr S̃ � e−2μθ S̃. Furthermore, from (2.26),

−β

∫ r

0
‖G(θ)‖2 dθ · In � −

∫ r

0
GT (θ)S̃G(θ)dθ.
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Using these two inequalities as upper bounds in the block-diagonal terms of M̃μ

in (2.28), we see that the matrix Nμ(θ) defined by

− Nμ(θ) = r

[
AT P̃ A − e−2μr (P̃ − ∫ r

0 GT (θ)S̃G(θ)dθ) AT P̃
P̃ A P̃ − e−2μθ

r S̃

]
, (2.31)

is a symmetric real positive semi-definite matrix, for all θ in [0, r ]. For any θ in
[0, r ], we define S(θ) = GT (θ)S̃G(θ) and

P = P̃ −
∫ r

0
S(θ) dθ, (2.32)

where P̃ � 0 is the solution of (2.25)–(2.27). The matrix S(θ) is symmetric positive
semi-definite,while P in (2.32) is positive definite since (2.25) and (2.26) are fulfilled.
We see that, with the notations in Theorem 2,

−Mμ(θ) =
[
In 0
0 GT (θ)

]
(−Nμ(θ))

[
In 0
0 G(θ)

]
.

Then, we conclude that Mμ(θ) � 0, for all θ ∈ [0, r ]. The exponential stability
of (2.10) and the estimate (2.29) for the system response follow straightforwardly
from Theorem 2, since, by construction,

λmax(S(θ)) = λmax(G
T (θ)S̃G(θ))

≤ β λmax(G
T (θ)G(θ))

= β ‖G(θ)‖2 .

2.3.4 Conservatism Analysis

The conditions for exponential stability of (2.10) presented in Lemma 1 are less
conservative than those given in [37]. In order to prove this assertion, we consider
the two possible cases.

First, let us assume that
sup

0≤θ≤r
‖G(θ)‖ > 0, (2.33)

and the conditions of Proposition 1 in [37] are fulfilled. Under such assumptions, we
construct, in what follows, the solutions of (2.25)–(2.27).

Since
1

r
‖Gr‖2L2

= 1

r

∫ r

0
‖G(θ)‖2 dθ ≤ sup

0≤θ≤r
‖G(θ)‖2
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holds, Proposition 1 in [37] tells us that there exist symmetric positive definite matri-
ces W0, W1 and P1, such that

‖Gr‖2L2
(P1 + P1AW

−1
0 AT P1) ≺ λmin(W1) · In, (2.34)

and
AT P1A − P1 = −(W0 + rW1). (2.35)

By definition,G(·) has piecewise continuous and bounded elements, so that (2.33)
implies that 0 < ‖Gr‖2L2

. By Schur complement, we see from (2.34) that

[
W0 −AT P1

−P1A
λmin(W1)

‖Gr‖2L2
In − P1

]
� 0. (2.36)

Moreover, from (2.35),

W0 = −AT P1A + P1 − rW1 � −AT P1A + P1 − rλmin(W1) · In
= −AT P1A + P1 − r

λmin(W1)

‖Gr‖2L2

‖Gr‖2L2
· In.

From this, define

S̃ = r
λmin(W1)

‖Gr‖2L2

· In �=β · In. (2.37)

The matrix S̃ is symmetric positive definite, and satisfies (2.26). Defining P̃ = P1
the symmetric positive definite matrix solution of (2.35), we see that

rW1 = −W0 + P̃ − AT P̃ A ≺ P̃ .

This implies rλmin(W1) · In ≺ P̃ , or equivalently

β

∫ r

0
‖G(θ)‖2 dθ · In ≺ P̃ .

Then (2.25) holds. We next show that (2.27) holds for some μ > 0. From (2.36)
and the upper bound on W0, the matrix

M̃0 = r

[−AT P̃ A + P̃ − β ‖Gr‖2L2
· In −AT P̃

−P̃ A 1
r S̃ − P̃

]
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is symmetric positive definite, andλmax(P̃) ≤ 1
r λmax(S̃).Remarking that M̃0 satisfies

1

r
M̃0 �

[
P̃ 0
0 1

r S̃

]
−

[
AT 0
In 0

] [
P̃ 0
0 P̃

] [
A In
0 0

]

�
[
P̃ 0
0 1

r S̃

]
� 1

r
λmax(S̃) · I2n,

we conclude that λmin(M̃0) ≤ λmax(S̃). In other words, 1 − λmin(M̃0)

λmax(S̃)
∈ [0, 1). Define

μ > 0 such that

0 < μ ≤ − 1

2r
ln

(
1 − λmin(M̃0)

λmax(S̃)

)
.

It is then a routine to verify that, for such μ,

−λmin(M̃0) · I2n � r

[
(e−2μr − 1)P̃ 0

0 (e−2μr−1)
r S̃

]
,

holds, that is

−M̃μ = −M̃0 − r

[
(e−2μr − 1)P̃ 0

0 (e−2μr−1)
r S̃

]

− r

[
(1 − e−2μr )β ‖Gr‖2L2

· In 0
0 0

]

� −M̃0 − r

[
(e−2μr − 1)P̃ 0

0 (e−2μr−1)
r S̃

]
� 0.

We have then proved that the conditions of Lemma 1 are implied by Proposition 1
in [37]. The converse is false, as shown in the following counter-example.

Example 1 Let us consider the difference equation

x(t) = e−2x(t − 1) −
∫ 1

0
e−2θ x(t − θ)dθ. (2.38)

The solutions of the characteristic equation of this system,

λ = −3, λk = −2 + j2kπ, k ∈ Z,

lie in the open left-half complex plane, so this system is exponentially stable. Propo-
sition 1 requires to find p > 0, w0 > 0 and w1 > 0 such that

p(1 − e−4) = w0 + w1 and pw0 + p2e−4 < w1w0.
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These conditions lead to p2 + pw0 + w2
0e

4 < 0, which is impossible. However,
the conditions (2.25)–(2.27) admit a solution

P̃ = 10.1540, S̃ = 32.4619, β = 32.5292, μ = 0.46.

Hence, from Lemma 1, we conclude that the system response of (2.38) is expo-
nentially stable, that is, for t ≥ 0,

‖x(t, ϕ)‖ ≤
√
609.1465 + 111.6439

ε

2.1871
‖ϕ‖r e−(0.46−ε)t ,

for any ε ∈ (0, 0.46).

If we assume that
sup

0≤θ≤r
‖G(θ)‖ = 0,

Proposition 1 leads to the existence of symmetric positive definite matrices W0, W1

and P1 such that
AT P1A − P1 = −(W0 + rW1).

Take any symmetric positive definite matrix Q, and define the symmetric positive
definite matrix

S̃ = r(P1 + P1A(W0 + rW1)
−1AT P1) + Q,

and P̃ = P1. It is readily seen that (2.25) and (2.26) are fulfilled, with β = λmax(S̃) >

0. The rest of the proof follows step by step the previous case.

Example 2 Consider the linear hyperbolic system of balance laws described by

ξt (z, t) +
[
r 0
0 r

]−1

ξz(z, t) = 0, z ∈ (0, 1], t > 0, (2.39)

with r > 0. The initial condition is ξ(z, 0) = ξ0(z), for any z ∈ [0, 1], where ξ0(·)
is some continuous function. The boundary condition is ξ(0, t) = u(t) with u(t) the
boundary input control given by

u(t) = K1

∫ 1

0
K (ν)ξ(ν, t)dν − K2ξ(1, t),

where K1 and K2 are two 2 × 2 constant matrices, and K (ν) is a 2 × 2 matrix with
piecewise continuous elements in [0, 1]. The solution of (2.39) satisfies ξ(z, t) =
ξ(0, t − r z), for t ≥ r z. In closed-loop, the state variable x(t) = ξ(0, t) is then gov-
erned by
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x(t) = −K2x(t − r) + K1

∫ r

0
K (r−1θ)x(t − θ)dθ,

for t ≥ r , with some continuous initial condition on [0, r). With

K2 = −
[
0.4 0.1
0.2 0

]
, K (θ) =

[
0.07 0
0 e−θ

]
, K1 =

[
1 0
0 1√

10

]
,

and r = √
2, a solution of Lemma 1 is

P̃ =
[
58.3791 −10.9932

−10.9932 68.3308

]
, S̃ =

[
333.8131 20.7117
20.7117 266.6636

]

β = 339.7947, μ = 0.2109.

The exponential estimate of the system solution is described by

‖x(t, ϕ)‖ ≤
√
200.4865 + 17.5405

ε

42.4658
‖ϕ‖r e−(0.2109−ε)t

for any ε ∈ (0, 0.2109), t ≥ 0.

2.4 State-Feedback Synthesis

In the previous section, we were interested with stability analysis. For stabilizing
controller synthesis, the previous conditions turn to be useful.
Indeed, let us consider the system (2.1) with the state-feedback

u(t) = Fx(t − r). (2.40)

The closed-loop system (2.1)–(2.40) is

x(t) = (A + BF)x(t − r), t ≥ 0. (2.41)

The stabilizing state-feedback gain F can then be synthesized by the following
(necessary and) sufficient condition: If there exist a symmetric positive definitematrix
Q and a matrix K such that

[
Q QAT + KT BT

AQ + BK Q

]
� 0, (2.42)
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then the state-feedback gain F = K Q−1 stabilizes (2.41). Note also that the dif-
ference equation (2.1) is useful for performance analysis. To see this, consider the
disturbed system

x(t) = Ax(t − r) + Bu(t) + Ew(t), (2.43)

with the controlled output equation

y(t) = Cx(t) + Du(t). (2.44)

The inputw(t) is a disturbance, and is assumed to be in L2([0,∞),Rw), while the
matrices E , C and D are real with appropriate size. The controller synthesis consists
in determining a static state-feedback u(t) = Fx(t − r), such that the autonomous
closed-loop system

x(t) = (A + BF)x(t − r) (2.45)

is exponentially stable, and the closed-loop controlled output y(t) satisfies, for null
initial conditions in the state x(t), the L2-gain performance specification

‖y(t)‖L2
≤ γ ‖w(t)‖L2

, (2.46)

for a given γ ≥ 0. This problem admits an immediate answer.

Theorem 3 Assume that there exist a symmetric positive definite matrix P and a
matrix Y such that the matrix

M =

⎡

⎢⎢⎣

P 0 (AP + BY )T (C(AP + BY ) + DY )T

∗ γ 2 · I ET (CE)T

∗ ∗ P 0
∗ ∗ ∗ I

⎤

⎥⎥⎦

is positive definite. Then, for the static-state feedback F = Y P−1, the closed-loop
system (2.45) is exponentially stable. Furthermore, for a null state initial condition,
the closed-loop controlled output y(t) in (2.44) satisfies (2.46).

For distributed-delay synthesis in (2.10) to get exponential stability, Lemma 1 can
be used. Indeed, assume that there exist an n × n symmetric real positive definite
matrix P̃ , a symmetric positive semi-definite matrix S̃, and some constants μ > 0
and α ≥ 0 such that

α · In ≺ P̃, (2.47)

0 � M̃μ, (2.48)

where M̃μ is given by

− M̃μ = r

[
AT P̃ A − e−2μr (P̃ − α · In) AT P̃

P̃ A P̃ − e−2μr

r S̃

]
. (2.49)
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Then,wedefineβ = λmax(S̃) and α
β

= ∫ r
0 ‖G(θ)‖2 dθ .Note that if S̃ = 0,β canbe

taken as an arbitrary positive constant. With this construction, Lemma 1 is satisfied,
so that exponential stability holds. For a construction of G(·), take for instance
G(θ) = eMθ with M some symmetric matrix. It follows that ‖G(θ)‖2 = ρ(eDθ ),
where

M + MT = PDP−1, D = diag(λ1, . . . , λn),

λi ∈ R and for some invertible matrix P . If λn = ρ(D), it follows by definition that

λn
α

β
= eλnr − 1. (2.50)

It is a routine to see that (2.50) admits a positive solution λn > 0 if α
β

> r . Then,
it is possible to determine arbitrary λi ≤ λn for i = 1, . . . , n − 1 and to define G(·)
(in a non unique way) as above. Finally, note that the decay rate μ can be obtained
by an optimization procedure, or can be imposed in the feedback problem to achieve
a specified time-response performance.

2.5 Conclusion

In this chapter, linear 1-D conservation laws with boundary control are analyzed as
linear continuous-time difference equations with input control. Exponential stability
conditions are proposed, for static state-feedback or state-feedback with distributed
delay. A brief discussion on feedback synthesis for performance achievement is also
mentioned. A conservatism analysis is also made to show the improvement with
respect to conditions which already appear in the literature.

This work has not addressed the difficult question of uncertain constant delays,
where the constructive conditions for stability in the literature appear to be quite
conservative. A first tentative is proposed in [13]. This is one of the two challenging
perspectives of this chapter. The other perspective is to apply the results issued
from [36] for large-scale interconnected systems of conservation laws. The main
interest in this extension is to obtain conditions for stability which are independent
of the size of the interconnection structure. For this, the delay-realization used in this
chapter seems to be well suitable for such a generalization.

References

1. C.E. Avellar, J.K. Hale, On the zeros of exponentials polynomials. J. Math. Anal. Appl. 73(2),
434–452 (1980)

2. A. Aw, M. Rascle, Resurection of second-order models for traffic flow. SIAM J. Appl. Math.
60(3), 916–938 (2000)



2 Stability and Stabilization for Continuous-Time Difference Equations … 35

3. P.S. Barnett, The analysis of traveling waves on power system transmission lines. Ph.D. Thesis,
University of Canterbury, Christchurch, New Zealand (1974)

4. G. Bastin, B. Haut, J.M. Coron, B. d’Andrea-Novel, Lyapunov stability analysis of networks
of scalar conservation laws. Netw. Heterogen. Media 2(4), 749–757 (2007)

5. R. Bellman, K.L. Cooke, Differential-Difference Equations. (Academic Press, 1963)
6. A. Bressan, inHyperbolic Systems of Conservation Laws, The One Dimensional Cauchy Prob-

lem (Oxford University Press, 2000)
7. L.A.V. Carvalho, On quadratic Lyapunov functionals for linear difference equations. Linear

Algebra Appl. 240, 41–64 (1996)
8. K.L. Cooke, D.W. Krumme, Differential-difference equations and nonlinear initial-boundary

value problems for linear hyperbolic partial differential equations. J. Math. Anal. Appl. 24(2),
372–387 (1968)

9. C. Corduneanu, Integral Equations and Applications. (Cambridge University Press, 1991)
10. J.M. Coron, B. d’Andrea-Novel, G. Bastin, A strict Lyapunov function for boundary control

of hyperbolic systems of conservation laws. IEEE Trans. Autom. Control 52(1), 2–11 (2006)
11. J.M. Coron, G. Bastin, B. d’Andrea-Novel, Dissipative boundary conditions for one-

dimensional nonlinear hyperbolic systems. SIAM J. Control Optim. 47(3), 1460–1498 (2008)
12. S. Damak, M. Di Loreto, W. Lombardi, V. Andrieu, Exponential L2-stability for a class of

linear systems governed by continuous-time difference equations. Automatica 50(12), 3299–
3303 (2014)

13. S. Damak, M. Di Loreto, S. Mondié, Stability of linear continuous-time difference equations
with distributed delay: constructive exponential estimates. Int. J. Robust Nonlinear Control
25(17), 3195–3209 (2015)

14. S. Damak, M. Di Loreto, S. Mondié, Difference equations in continuous time with distributed
delay: exponential estimates, in IEEE American Control Conference (ACC) (2014)

15. R. Datko, Representation of solutions and stability of linear differential-difference equations
in a Banach space. J. Differ. Equ. 29(1), 105–166 (1978)

16. A. Diagne, G. Bastin, J.M. Coron, Lyapunov exponential stability of 1-D linear hyperbolic
systems of balance laws. Automatica 48(1), 109–114 (2012)

17. M.Di Loreto, J.J. Loiseau, inOn the Stability of PositiveDifference Equations, ed. by R. Sipahi,
T. Vyhlidal, S.I. Niculescu, P. Pepe. Time Delay Systems - Methods, Applications and New
Trends, Series LNCIS, vol. 423. (Springer, 2012), pp. 125–147

18. F. Di Meglio, R. Vazquez, M. Krstic, Stabilization of a system of n + 1 coupled first-order
hyperbolic linear PDEs with a single boundary input. IEEE Trans. Autom. Control 58(12),
3097–3111 (2013)

19. S. Elaydi. An Introduction to Difference Equations., 3rd edn (Springer, 2005)
20. E. Fridman, Stability of linear descriptor systems with delay: a Lyapunov-based approach. J.

Math. Anal. Appl. 273(1), 24–44 (2002)
21. P. Grabowski, F.M. Callier, Boundary control systems in factor form: transfer functions and

input-output maps. Integr. Eqn. Oper. Theory 41(1), 1–37 (2001). Birkhauser, Basel
22. K. Gu, Stability problem of systems with multiple delay channels. Automatica 46(4), 743–751

(2010)
23. K. Gu, V.L. Kharitonov, J. Chen, Stability of Time-Delay Systems. (Birkhauser, 2003)
24. M. Gugat, M. Herty, Existence of classical solutions and feedback stabilization for the flow in

gas network. ESAIM Control Optim. Calc. Var. 17(1), 28–51 (2011)
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Chapter 3
Model Reduction for Norm Approximation:
An Application to Large-Scale Time-Delay
Systems

Igor Pontes Duff, Pierre Vuillemin, Charles Poussot-Vassal,
Corentin Briat and Cédric Seren

Abstract The computation of H2 and H2,Ω norms for LTI Time-Delay Systems
(TDS) are important challenging problems for which several solutions have been
provided in the literature. Several of these approaches, however, cannot be applied to
systems of large dimension because of the inherent poor scalability of the methods,
e.g., LMIs or Lyapunov-based approaches. When it comes to the computation of
frequency-limited norms, the problem tends to be even more difficult. In this chapter,
a computationally feasible solution usingH2 model reduction for TDS, based on the
ideas provided in [3], is proposed. It is notably demonstrates on several examples
that the proposed method is suitable for performing both accurate model reduction
and norm estimation for large-scale TDS.

3.1 Introduction

Forewords:Modeling is an essential step towell understand and interact with a phys-
ical dynamical phenomena. It, among other, permits to analyze, simulate, optimize,
and control dynamical processes. The values of a model lies on its ability to describe
the reality as accurately as possible. In general, dynamical models are described by
equations and their complexity is somehow linked to its number of equations and
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variables. Although complex models have a high degree of likeness with reality, in
practice, due to numerical limitations, they are problematic to manipulate. Actually,
complex models are difficult to analyze and to control, due to limited computational
capabilities, storage constraints, and finite machine precision. Therefore, a good
model has to reach a trade-off between its accuracy and complexity.

In addition to high state-space complexity, we will be interested in how any
delay may affect the system. This kind of models fall then in the class of infinite-
dimensional systems. As a matter of consequence, classical analysis and control
methods are not applicable as it. Even if many dedicated approaches have been
derived to handle TDS problems (see [18]), most of them are limited to delay systems
with low-order state-space vector and associated methods are not scalable when the
number of state variables is increasing. Many examples can be found in the context
of network systems, where delays appear naturally as the amount of time necessary
to transmit some information between different systems (communication lag). In
other systems, they are intrinsic part of the natural phenomena as it can be seen in
chemical reactions, traffic jam, and heating systems.

This context justifies the search of simpler models in order to avoid numerical
issues and to apply the classical methods of analysis and control. This is the phi-
losophy of model approximation methods and they will be the main tool of this
chapter. These methods permit to obtain a simpler model which well approximates
the original one, even of infinite dimension.

Contribution: In this chapter, we will work in the framework of linear time-
invariant dynamical systems and the complexity will be associated with the dimen-
sion of the state space of the systems. The aim of this chapter is to investigate the
approximation of large-scale TDS and to estimate their norms. We will be partic-
ularly interested in the problem of the H2 (and L2) optimal model approximation
using interpolatory methods and norm computation applied in the scenario of large-
scale TDS.

In practice, in order to compute theH2 andH2,Ω norms for a finite dimensional
system, poles or the Gramian-based system realization is required. In the case of
TDS, those techniques are no longer applicable because of their infinite-dimensional
nature and dedicated approaches should be rather developed, see e.g., [11]. In this
work, modal truncation applied to TDS is firstly presented in order to show an
intuitive approach for approximation of the norms. Since this approach is restricted
to the case of single-delay TDS, optimal model reduction is introduced and used
in order to obtain a finite dynamical system for which the classical tools can be
efficiently applied. The obtained reduced model will be used to estimate the norm of
the original one.

Outline: This work is organized in four sections and a conclusion. Section3.2
recalls the definitions of the H2 and H2,Ω -norms and presents some recent results
associated with their computations. Section3.3 aims at presenting an intuitive
approach which allows to compute the norm of a single TDS via the modal trunca-
tion/representation and the Lambert function. Although it is a simple method, easy
to implement, it is not applicable in the case of multiple-delay systems and is not
accurate enough in the context of large-scale TDS. Thus, Sect. 3.4 is devoted to the
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introduction of the rational interpolation problem using Loewner matrices as well as
theH2-optimal approximation conditions. In the end of this section, a realization-free
algorithm will be presented (see [3]), allowing, from a time-delay system, to obtain
a simple LTI finite dimension system that well approximates the original large-scale
TDS. The norm computation of this simpler model will be used to estimate the norm
of the original TDS. Performance of the proposed method on is finally assessed on
numerical TDS study cases.

Notations: In this chapter let us denote by R
ny×nu and C

ny×nu the set of real and
complex matrices with ny rows and nu columns, respectively. The transpose matrix
of A ∈ C

ny×nu is denoted by AT ∈ C
nu×ny , where (AT )i, j = A j,i . R+ denotes the

nonnegative real number,R− denotes the nonpositive real numbers, andR∗ = R\{0}.
C

+ denotes the open right-half plane andC− denotes the open left-half plane. Notice
that H(s) ∈ C

ny×nu represents the transfer function with ny outputs and nu inputs of
a real linear dynamical system which will be denoted by H. Let us denote H ′(s) the
derivative of the transfer function with respect to s ∈ C.

3.2 Preliminaries

3.2.1 System Definition

In this chapter, we consider the following general class of linear time-invariant time-
delay systems with constant and discrete-delays [5, 15],

Hd :=
⎧
⎨

⎩
ẋ(t) = A0x(t) + Bu(t) +

d∑
k=1

Ak x(t − hk)

y(t) = Cx(t)
, (3.1)

where hk ∈ R
∗+, k = 1, . . . , d, x(t) ∈ R

n , u(t) ∈ R
nu , y(t) ∈ R

ny are the delays, the
state of the system, the input and the output, respectively. The matrices of the system
are assumed to be constant and of appropriate dimensions.

3.2.2 Norms of Linear Time-Invariant Systems

LetH = (E, A, B, C) be a descriptor finite-dimensional LTI systemwith state-space
representation

H :=
{

Eẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t),

(3.2)

where x(t) ∈ R
n , u(t) ∈ R

nu , y(t) ∈ R
ny are the state of the system, the input and

the output, respectively. The matrices of the system are assumed to be constant and
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of appropriate dimensions. The corresponding transfer function is simply given by

H(s) = C(s E − A)−1B ∈ C
ny×nu . (3.3)

The poles of H(s) are the solutions of the generalized eigenvalue problem over the
pencil (E, A). When E = In , then the poles are simply given by the eigenvalues of
the matrix A and if, moreover, A has semisimple eigenvalues, then we also have [1]

H(s) = C(s In − A)−1B =
n∑

i=1

φk

s − λk
, (3.4)

where λk ∈ C and lim
s→λk

(s − λk)H(s) = φk ∈ C
my×mu are the poles and the residues

of the transfer function, respectively. This formulation is known as the modal rep-
resentation and is the core of the method proposed in Sect. 3.3. Note that in this
representation, residues φk associated to poles λk reflect the importance and the
contribution of each modal content.

We also recall theL2 andL∞ norm definitions of a real continuous signal u(t) ∈
R

n as follows:

‖u‖2L2
=

∫ ∞

−∞
u(t)T u(t)dt and ‖u‖L∞ = ess sup

t
u(t).

3.2.2.1 The L2 and H2 Norms

Let us denote byL2(iR) the Hilbert space of matrix-valued meromorphic functions
F : C → C

ny×nu for which the integral
∫
R
trace[F(iω)F(iω)T ]dω < ∞. The space

L2(iR) is the space of matrix-valued functions H : C → C
ny×nu having no poles on

the imaginary axis.

Definition 1 (L2(iR)-inner product) The inner product for this space is defined as

〈H, G〉L2 = 1

2π

∫ ∞

−∞
trace

(
H(iω)G(iω)T

)
dω,

for H, G ∈ L2(iR) and its induced norm is defined as ‖H‖L2 = 〈H, H〉 1
2
L2

.

LetH2(C
+)be the closed subspace ofL2(iR)which contains thematrix functions

F(s), analytic in the open right-half plane and H2(C
−), the closed subspace of

L2(iR)which contains thematrix functions F(s), analytic in the open left-half plane.
The following proposition stands (note that it will be an useful result to characterize
the stability of a linear system from L2(iR)).
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Proposition 1 (L2(iR) decomposition) We have

L2(iR) = H2(C
−)

⊕
H2(C

+)

and this sum is, moreover, orthogonal.

Proof See e.g., [13]. ♦
In other words, the above proposition states that a system H ∈ L2(iR) can be

written as the sum of its purely stable part located inside H2(C
+) and its purely

unstable parts located inside L2(iR)\H2(C
+). Let us now define the H2-norm:

Definition 2 (H2-norm) TheH2-norm is defined for H ∈ H2(C
+) := H2, a stable

and strictly proper system, and is given by

‖H‖2H2
:= 1

2π

∫ +∞

−∞
trace

(
H(iω)H(iω)T

)
dω. (3.5)

We then have the following proposition:

Proposition 2 (H2-norm for systems with semisimple eigenvalues) Let us consider
the system (3.2) with E = In and assume further that A has semisimple eigenvalues.
Then we have that

‖H‖2H2
=

n∑

k=1

trace
(
φk H(−λk)

T
)
, (3.6)

where λk ∈ C and φk ∈ C
ny×nu , k = 1, . . . , n are the poles and the associated

residues of the transfer function, respectively.

It is important to stress that formula (3.6) can be readily extended to infinite-
dimensional systems (with discrete spectrum) with simple poles. In such a case, the
sum becomes infinite. However, while this method is easily applicable for finite-
dimensional systems, the case of infinite-dimensional dynamical systems, like TDS,
is more involved due to the necessity of computing first the eigenvalues. Note, on
the other hand, that a lower bound on the H2-norm can be computed by evaluating
(3.5) on a finite number of poles, only. As the truncation order increases, the lower
bound will tend to the trueH2-norm.

3.2.2.2 The H2,Ω -Norm

We generalize here the H2-norm, which is computed for ω ∈ R+, to its frequency-
limited version, denoted by the H2,Ω -norm, which is computed over the compact
support Ω .
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Definition 3 (H2,Ω -norm) TheH2,Ω -normwithΩ = [0, ω0], defined for any stable
system H ∈ H∞, is given by

‖H‖2H2,Ω
:= 1

2π

∫ +ω0

−ω0

trace
(

H(iω)H(iω)T
)

dω. (3.7)

Proof See [24]. ♦
Similarly to the H2-norm case, the following result holds:

Proposition 3 (H2,Ω -norm for systems with semisimple eigenvalues) Let us con-
sider the system (3.2) with E = In and assume further that A is diagonalizable with
simple eigenvalues. Then for Ω = [0, ω0], we have:

‖H‖2H2,Ω
= − 2

π

n∑

k=1

trace
(
φk H(−λk)

T
)
arctan

(
ω0

λk

)
, (3.8)

where arctan(z) denotes the principal value of the complex arc-tangent of z �= ±i ,
and λk ∈ C and φk ∈ C

my×mu are the poles and associated residues of the transfer
function, respectively.

3.3 Modal Truncation for Norm Approximation

A simple and intuitive approach, referred to as modal truncation, for computing
norms of a certain class of TDS is presented in the sequel. Modal truncation is indeed
simple to use, easy to implement, and can be made arbitrarily accurate. However,
it may lead to poor results if significant poles are neglected. A limitation of the
approach, which is based on Lambert’s function, is that it cannot be applied to
systems with multiple delays. This case will be treated in the next section. Following
the above discussion, let us then consider following the system:

H1 =
{

ẋ(t) = Ax(t − h) + Bu(t),
y(t) = Cx(t),

(3.9)

where we assume that A is diagonalizable, i.e., there exists X ∈ R
n×n nonsingular

such that we have

A = X−1Σ X where Σ = diag(γ1, . . . , γn),

where the γi ’s are the eigenvalues of A. The following result stands:

Proposition 4 (Modal representation of single-delay TDS) The transfer function
associated with (3.9) can be written as
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H1(s) =
n∑

i=1

cT
i bi

s − γi e−hs
, (3.10)

where ci = (C X−1ei )
T ∈ C

1×my , bi = eT
i X B ∈ C

1×mu and ei is the vector with i-th
component equal to 1 and zero otherwise.

Proof The proof follows from simple algebraic manipulations. Indeed, we have

H1(s) = C(s I − Ae−sh)−1B
= C X (s I − Σe−sh)−1X−1B

=
n∑

i=1

cT
i bi

s − γi e−hs
,

(3.11)

where ci and bi are defined as in Proposition 4. ♦
We then have the following result:

Theorem 1 (Single-delay TDS H2 and H2,Ω -norms) Let Ω = [0, ω0]. Then the
H2-norm and H2,Ω -norm of the system (3.9) are given by

‖H1‖2H2
=

n∑
i=1

∑
k∈Z

cT
i bi

1 + λ
(i)
k h

H1(−λ
(i)
k ),

‖H1‖2H2,Ω
= − 2

π

n∑
i=1

∑
k∈Z

trace

(
cT

i bi

1 + λ
(i)
k h

H1(−λ
(i)
k )T

)
arctan

(
ω0

λ
(i)
k

)
,

(3.12)

where λ
(i)
k are H1(s)’s poles, ci and bi are defined as in Proposition 4.

Proof Each canonical rational term
cT

i bi

s − γi e−hs
in (3.10) has an infinite number of

poles λ
(i)
k solutions of the equations

s − γi e
−hs = 0. (3.13)

This equation can be solved for all i = 1, . . . , n using the Lambert function
denoted by W (z) and defined as z = W (z)eW (z) for all z ∈ C. Since this function is
multivalued, we denote Wk(z) the k-th branch of W (z), for k ∈ Z. The eigenvalues
are then defined as:

λ
(i)
k = 1

h
Wk(γi )h, k ∈ Z, i = 1, . . . , n. (3.14)

For simple eigenvalues, the residue associated with λ
(i)
k is thus defined as

φ
(i)
k := lim

s→λ
(i)
k

(s − λ
(i)
k )H1(s). (3.15)
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Letting di (s) := s − γi e−sh and d ′
i (s) its derivative at s ∈ C, one can write

φ
(i)
k = cT

i bi

d ′
i (λ

(i)
k )

= cT
i bi

1 + λ
(i)
k h

. (3.16)

Substituting this in the infinite-dimensional versions of (3.6) and (3.8) given by
Proposition 2 and 3 leads to,

‖H1‖2H2
=

n∑
i=1

∑
k∈Z

φ
(i)
k H1(−λ

(i)
k ),

‖H1‖2H2,Ω
=

n∑
i=1

∑
k∈Z

− 2
π
trace

(
φ

(i)
k H1(−λ

(i)
k )T

)
arctan

(
ω

λ
(i)
k

)
.

(3.17)

which concludes the proof. ♦
Since this result involves infinite sums that cannot be computed exactly, we then

rely on a truncation scheme to evaluate them. By choosing a finite subset D of Z
with cardinal M , we get the following approximants for the norms:

‖H1‖2H2
≈

n∑

i=1

∑

k∈D

φ
(i)
k H1(−λ

(i)
k ), (3.18)

and

‖H1‖2H2,Ω
≈ − 2

π

n∑

i=1

∑

k∈D

trace
(
φ

(i)
k H(−λ

(i)
k )T

)
arctan

(
ω0

λ
(i)
k

)
, (3.19)

where n × M is the truncation order. Note that an approximate upper bound on the
H∞-norm can be obtained by differentiating (3.19) (see [25]). It is also important to
stress that truncationmay yield complex valued norms if the branches of the Lambert
function are not carefully chosen (note that the chosen truncation poles have to be

closed by conjugation, i.e., if λ
(i)
k is chosen, λk

(i)
has to be also chosen, too).

As stated in the introductory part of this section, the approximation can be quite
poor if significant poles are discarded. It is however expected that poles that are far
away from the imaginary axis contribute in a negligible way to the overall value of
the norm; see, e.g., [27]. The poles that must be privileged are therefore the dominant
ones; i.e., those that have larger real parts (see [19]). We have the following example
illustrating the points made in this section.

Example 1 We illustrate here the above results on a simple TDS of the form (3.1) of
dimension n = 10 with a single-delay h (i.e., d = 1). The performance of the modal
truncation is evaluated by the relative errors defined as :
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J =
∣∣∣100

‖H1‖H2 − ‖Ĥ‖H2

‖H1‖H2

∣∣∣ (3.20)

and

JΩ =
∣∣∣100

‖H1‖H2,Ω − ‖Ĥ‖H2,Ω

‖H1‖H2,Ω

∣∣∣. (3.21)

We then consider the following scenarios:

Scenario 1. We generate 100 random systems with random delay h ∈ [0, 0.1].
Scenario 2. We generate 100 random systems with random delay h ∈ [0, 1].

For both scenarios, the H2-norm and H2,Ω -norm are computed by numerical
integration and approximated using the results in Theorem 1 for various trunca-
tion orders, i.e., n × M = 20, 40, 60, 80 and 100. We get the results summarized in
Tables3.1 and 3.2 where we can see that, as expected, the relative error decreases as
the truncation order increases.

Note that since theLambert’s function canonlybe applied in particular (restrictive)
cases, the modal truncation approach cannot be directly generalized to the multiple-
delay case. The poles calculation step must indeed be replaced first by a nonlinear
eigenvalue problem; see e.g., [10, 21]. The generalization and the improvement of
this method are disregarded for a future research.

In what follows, an approximation approach, introduced by [3], is presented to
handle more complex TDS.

Table 3.1 Performance of the truncation method in Scenario 1 for various truncation orders

n × M (number of poles) 20 40 60 80 100

E(J )(%) 0.62 0.16 0.11 0.08 0.07

max(J )(%) 18.73 0.69 0.49 0.37 0.0029

E(JΩ )(%) 9.7815 0.0584 0.0151 0.0071 0.0064

max(JΩ )(%) 392.1953 1.4407 0.3902 0.1986 0.2405

Table 3.2 Performance of the truncation method in Scenario 2 for various truncation orders

n × M (number of poles) 20 40 60 80 100

E(J )(%) 5.39 0.80 0.60 0.50 0.45

max(J )(%) 44.55 23.86 23.99 24.07 24.10

E(JΩ )(%) 10.012 0.0458 0.0103 0.0041 0.0028

max(JΩ )(%) 190.5209 0.7071 0.1043 0.0383 0.0330
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3.4 H2/L2 Realization-Free Model Approximation

The model reduction problem is concerned with the determination of a model that
approximates a more complex one, i.e., with higher dimension. The rationale behind
model reduction is to try to reduce the computational burden of complex models for
simulation and design. Reduced-order models can be found using many different
techniques such as Lyapunov equations [8, 20, 26], Krylov spaces based projections
[1, 2, 7, 22] and Loewner framework [3, 9, 14]. A good way for selecting a “good"
reduced-order model is by optimization. That is why we seek a model that minimizes
a certain distance to the original one. To this aim, several distances can be considered
(e.g., H2, H∞ and ν-gap). The model obtained by this process has to give similar
output for the same input compared to the original model.

TheH2-norm, which induces a metric onH2 × H2, is considered here. With this
in mind, we can state the following problem:

Problem 1 (H2 Approximation problem)
Given an LTI system H ∈ H2 and a scalar r ∈ N

∗, find a solution to the optimiza-
tion problem

Ĥ := argmin
G∈H2,dim(G)≤r

‖H − G‖H2 , (3.22)

where Ĥ is the reduced-order model of dimension r .

The H2 approximation problem actually amounts to find a reduced-order model
that minimizes the L2-to-L∞ gain of the error system H − Ĥ as we have

‖y − ŷ‖L∞ := ‖(H − Ĥ)u‖L∞ ≤ ‖H − Ĥ‖H2‖u‖L2 , (3.23)

where ‖.‖L2 denotes the L2-norm and ‖.‖L∞ the L∞-norm.
Moreover, theH2 andH2,Ω -norms of a given system H can be approximated by

the norm of Ĥ since, from the triangle inequality, we have

∣∣∣‖H‖H2 − ‖Ĥ‖H2

∣∣∣ ≤ ‖H − Ĥ‖H2

and ∣∣∣‖H‖H2,Ω − ‖Ĥ‖H2,Ω

∣∣∣ ≤ ‖H − Ĥ‖H2,Ω ≤ ‖H − Ĥ‖H2 .

We can see that the value of ‖H‖H2 is contained in a ball of radius ‖H − Ĥ‖H2

centered around ‖Ĥ‖H2 . Using the fact that finite-dimensional stable LTI systems
are dense inH2 , we can conclude that ‖H − Ĥ‖H2 can be made as small as desired
by increasing the order of the reduced model.

In practice, the main issue here is that Problem 1 is nonconvex and is not
tractable when large-scale systems or infinite-dimensional systems are considered.
For the finite-dimensional case, many algorithms have been derived, e.g.,H2 model
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reduction [4, 6] and frequency-limited H2 model reduction [23]. The approaches
mentioned in these references are based on the fact that a realization of the model
to be reduced is available. The approach that we consider here, which does not
involve any system realization, is more suitable for large-scale TDS (or more gener-
ally infinite-dimensional ones) since the evaluations of the transfer function at certain
points are required.

When the system to be reduced is unstable, then we can consider the following
alternative:

Problem 2 (L2 Approximation problem)
Given an LTI system H ∈ L2 and a scalar r ∈ N

∗, find a solution to the optimiza-
tion problem

Ĥ = argmin
G∈L2,dim(G)≤r

‖H − G‖L2 , (3.24)

where Ĥ is the reduced-order model of dimension r .

3.4.1 First-Order Optimality Conditions for H2/L2 Model
Approximation

The first step for solving the optimization Problems 1 and 2 consists in deriving
the first-order optimality conditions. To this aim, let us consider that the finite-
dimensional system Ĥ of order r and define its transfer function as

Ĥ(s) =
r∑

k=1

ĉk b̂T
k

s − λ̂k

, (3.25)

where ĉk b̂T
k = res(Ĥ(s), λ̂k) ∈ C

ny×nu are the residues of Ĥ at λ̂k ∈ C, ĉk and b̂k are
called the left and the right tangential directions. One need now to find the values for
λ̂k , ĉk and b̂k for which Ĥ locally minimizes ‖H − Ĥ‖H2 . The next result provides
the first-order optimality conditions for solving Problem 1; see, e.g., [7, 22].

Theorem 2 (Necessary condition ofH2 optimality) Let H, Ĥ ∈ H2 be two systems
with semisimple poles. Assume further that the reduced-system Ĥ , given by (3.25),
locally minimizes ‖H − Ĥ‖H2 , then the conditions

H(−λ̂k)b̂k = Ĥ(−λ̂k)b̂k, ĉT
k H(−λ̂k) = ĉT

k Ĥ(−λ̂k) (3.26)

and

ĉT
k

d H

ds

∣∣∣∣−λ̂k

b̂k = ĉT
k

d Ĥ

ds

∣∣∣∣∣−λ̂k

b̂k (3.27)
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hold, where the λ̂k are the poles of Ĥ and b̂k and ĉk are its tangential directions,
respectively.

The above theorem states that a local minimum is a bitangential Hermite inter-
polant of the original model evaluated at the mirror image of the low-order model
poles with respect to its tangential directions b̂k and ĉk , given by its residues (see [7,
22]). Note also that the poles and residues are not known a priori and must be com-
puted using the iterative algorithm proposed in [3]. This procedure will be discussed
more in detail in Sect. 3.4.3.

Let us now consider the optimality conditions for the problem L2 in the SISO
case. We then have the following result initially proposed in [13]:

Theorem 3 (Condition for L2 optimality) Let H ∈ L2(iR) be a given system and
define its decomposition as H = H+ + H− where H+ ∈ H (C+)and H− ∈ H (C−).
Assume that the system Ĥ, given by (3.25), has semisimple eigenvalues and that it
locally minimizes ‖H − G‖L2 , then the conditions

H+(−λ̂i ) = Ĥ+(−λ̂i ),
d H+

ds

∣∣∣∣
s=−λ̂i

= d Ĥ+

ds

∣∣∣∣∣
s=−λ̂i

, (3.28)

H−(−λ̂ j ) = Ĥ−(λ̂ j ),
d H−

ds

∣∣∣∣
s=−λ̂ j

= d Ĥ−

ds

∣∣∣∣∣
s=−λ̂ j

, (3.29)

hold for all i = 1, . . . , k and all j = k + 1, . . . , r .

The conditions presented inTheorem3have the particularity that one should know
the decomposition of a transfer function H(s) into its stable and purely unstable parts
H+(s) and H−(s). Finding this decomposition is not a trivial problem and that why
those conditions will not be applicable in what follows.

3.4.2 Rational Interpolation

In this section, we present an algorithm introduced in [3] allowing us to find a local
minimizer to Problem 1 without requiring any realization of the original system.
This feature makes the realization-free approach very appealing in the context of
large-scale and infinite-dimensional systems. The approach is mainly based on [14]
where an interpolation framework, based on simple successive evaluations of the
transfer function of the original system, is provided. The following theorem, proved
in [14], is fundamental for our purpose :

Theorem 4 (Interpolatory Lowner framework) Let H(s) be a given transfer func-
tion associated with a system H. Let also us denote r shifts points by s1, . . . , sr ∈ C

and r tangential directions by c1, . . . cr ∈ C
ny×1, b1, . . . , br ∈ C

nu×1. Then, the
r-dimensional descriptor model Ĥ = (Ê, Â, B̂, Ĉ) given, for i, j = 1, . . . , r , by
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(Ê)i j =
{

− cT
i (H(si )−H(s j ))b j

si −s j
, i �= j,

−cT
i H ′(si )bi , i = j,

( Â)i j =
{

− cT
i (si H(si )−s j H(s j ))b j

si −s j
, i �= j,

−cT
i (s H(s))′|s=si bi , i = j,

Ĉ = [H(s1)b1 . . . H(sr )br ] and B̂ =
⎡

⎢⎣
cT
1 H(s1)

...

cT
r H(sr )

⎤

⎥⎦

interpolates H(s) in the sense of equations (3.26).

Consequently, the obtained reduced-order model given by Ĥ(s) = Ĉ(s Ê −
Â)−1 B̂ satisfies, for all k = 1, . . . r , the conditions (3.27) for the given shift points
{s1, . . . , sr }, and the given tangential directions {c1, . . . cr } and {b1, . . . , br }. To
finally compute the (sub)optimal approximation, the currently unknown triplet {λ̂i ,
b̂i , ĉi } has to be determined. This problem is addressed in the next section, thanks to
a dedicated algorithm.

3.4.3 Realization-Free Model Approximation

An algorithm, named TF-IRKA (Iterative Rational KrylovAlgorithm using Transfer
Function Evaluation), has been proposed in [3] in order to obtain a reduced-order
model that locally satisfies the optimality conditions, i.e., find suboptimal values for
{λ̂i , b̂i , ĉi }, i = 1, . . . , r . This algorithm is recalled below for completeness.

Algorithm 5 (TF-IRKA [3])

1: Initialization: Transfer function H(s), dimension r , σ 0 = {σ 0
1 , . . . , σ 0

r } ∈ C
r×1

initial interpolation points and tangential directions b1, . . . , br ∈ C
nu×1 and

c1, . . . , cr ∈ C
ny×1.

2: while not convergence do
3: Build Ê , Â, B̂ and Ĉ using Theorem 4.
4: Find the triplet (x (k)

i , y(k)
i , λ

(k)
i ) solution of the generalized eigenvalue problem

Â(k)x (k)
i = λ

(k)
i Ê (k)x (k)

i and y(k)∗
i Ê (k)x (k)

j = δi j , (3.30)

where δi j is the Kronecker delta function.
5: Setσ (k+1)

i ← −λ
(k)
i ,b(k+1)T

i ← y(k)
i B̂(k) and c(k+1)

i ← Ĉ (k)x (k)
i , for i = 1, . . . ,

r .
6: end while
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7: Check that the conditions (3.26) are satisfied.
8: Build matrices Ê , Â, B̂ and Ĉ .

This algorithm can be applied to any system for which the corresponding trans-
fer function is available, regardless its dimension. When the transfer function is
unknown, finite difference methods can be used to evaluate the derivative of the
transfer function [16]. A first advantage of the above algorithm lies in its wide
applicability, as opposed to modal truncation (see Sect. 3.3) which is only applicable
to a certain class of TDS. A second advantage is that an suboptimal model is auto-
matically found by the algorithm, whereas for modal truncation, certain parameters,
such as the truncation order, have to be chosen by hand. However, there is neither any
guarantee of convergence of the algorithm nor any certificate that the reduced-order
model is stable. Fortunately, extensive numerical applications of the algorithm tend
to suggest that most of the time, it converges toward a stable system; see, e.g., [16].
Moreover, numerical mechanism can be applied to enhance its convergence [17].

3.4.4 Numercial Examples

3.4.4.1 Single-Delay Model

We consider here the second scenario of Example 1, i.e., we generate 100 stable
systems of dimension n = 10 with a randomly chosen delay h ∈ [0, 1]. We then
compute reduced-order models for various r using TF-IRKA. We then compute
the H2-norm of both the original and the reduced-order model. The results on the
statistics of the relative error given by (3.20) are summarized in Table3.3 where we
can observe that, even for a small reduction order, the estimate of theH2-norm is quite
accurate. For comparison, when r = 6, the error is comparable to the one obtained
using a modal truncation with an order 100. This demonstrates the usefulness of the
proposed optimization-based approach.

Table 3.3 Performance of the model approximation in Exemple 1, Scenario 2 for various reduction
order r

reduction order r 2 4 6 8 10

E(J )(%) 6.4999 1.4561 0.3956 0.0347 0.0201

max(J )(%) 327.8265 32.7315 24.2551 0.9224 0.4530
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3.4.4.2 Multiple-Delay Model

Let us now consider the following time-delay system

H2 :=

⎧
⎪⎪⎨

⎪⎪⎩

ẋ(t) =
⎡

⎣
−1 1 2
1 −3 2
0 0 −1

⎤

⎦ x(t) + 1
5

⎡

⎣
−1 1 2
1 −3 2
0 0 −1

⎤

⎦ (∇x)(t) +
⎡

⎣
1
1
1

⎤

⎦ u(t),

y(t) = [
1 1 1

]
x(t),

(3.31)

where (∇x)(t) := x(t − h1) + x(t − h2), h1 = 0.3 and h2 = 0.9. We then apply
TF-IRKA in order to obtain a reduced-order model of dimension r = 10. The Bode
plots of both the original system and the reduced-order one, depicted in Fig. 3.1,
illustrates the accurate matching of the two frequency responses in amplitude.

Let us now address theH2-norm computation. The results are depicted in Fig. 3.2
where we compare the actual H2-norm of the original system computed using the
method in [11] with the one computed from the reduced-order model. We can see,
as expected, that as the reduction order increases theH2-norm of the reduced model
converges to the actual one. Note that the relative error is rather very small even for
r = 2.

The results obtained show that this approach is appropriate and relevant to esti-
mate H2-norm of a multiple TDS as well as to obtain a good finite dimension
approximation.

Fig. 3.1 Magnitude Bode
plots of the model (3.31), the
corresponding reduced-order
model with r = 10 and the
mismatch error between both
models
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Fig. 3.2 H2-error of
approximation as function of
order r of the reduced-order
model

Fig. 3.3 Bode plots of the model (3.32) and the corresponding reduced-order model with r = 24

3.4.4.3 Norm Estimation for Large-Scale Systems

Let us now consider a beam model, denoted by HB E AM , taken from the COMPleib
library [12] whose order is 348. Note that this system does not involve any delay but
has large dimension. This system is assumed to be controlled using a PID controller
HP I D with input lag τ = 0.1. The resulting closed-loop system has the following
transfer function representation
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Fig. 3.4 H2-error of
approximation as function of
order from reduced model

Hfeedback(s) = HPID(s)HBEAM(s)

1 + HPID(s)HBEAM(s)e−τ s
. (3.32)

We then apply TF-IRKA in order to obtain a reduced-order model of dimension
r = 24 and we get the Bode plots of Fig. 3.3. We can see that the bode plots match
quite well until the pulsation 100 rad/s. Let us consider now the H2-norm compu-
tation from the reduced-order model. The results are depicted in Fig. 3.4 where we
can see that a fairly good estimate is obtained for a reduction order of r = 16. As
before, the norm for the delay system has been computed using the method in [11].

3.5 Conclusion

In this chapter, two approaches for approximating norms of TDS have been described
and analyzed. The first approach, modal truncation, is a direct extension of the delay-
free case. It is an intuitive approach limited to systems with only one single delay.
Then a second approach proving to be applied in more general cases has been pre-
sented. It is the optimal model approximation approach and it has been assessed on
many different TDS (single delay, multiple delays) and on very large-scale models
as well, making this approach very powerful for complex systems subject to delays.
Therefore, the approach provides promising perspectives for estimating theH2-norm
and the frequency behavior of TDS systems, whatever the dimension of the system.
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Chapter 4
General Formula for Event-Based
Stabilization of Nonlinear Systems
with Delays in the State

Sylvain Durand, Nicolas Marchand and J. Fermi Guerrero-Castellanos

Abstract In this chapter, a universal formula is proposed for event-based stabiliza-
tion of nonlinear systems affine in the control and with delays in the state. The feed-
back is derived from the seminal law proposed by E. Sontag (1989) and then extended
to event-based control of affine nonlinear undelayed systems. Under the assumption
of the existence of a control Lyapunov–Krasovskii functional (CLKF), the proposal
enables smooth (except at the origin) asymptotic stabilization while ensuring that the
sampling intervals do not contract to zero. Global asymptotic stability is obtained
under the small control property assumption. Moreover, the control can be proved
to be smooth anywhere under certain conditions. Simulation results highlight the
ability of the proposed formula. The particular linear case is also discussed.

4.1 Introduction

The control synthesis problem is quite complex for systems with nonlinearities, par-
ticularly when the control laws have to be implemented on a real-time platform.
Different techniques exist. The most classical way to address a discrete-time feed-
back for nonlinear systems is (i) to implement a (periodic) continuous-time control
algorithm with a sufficiently small sampling period. This procedure is denoted as
emulation. However, the hardware used to sample and hold the plant measurements
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or compute the feedback control action may make impossible the reduce of the
sampling period to a level that guarantees acceptable closed-loop performance, as
demonstrated in [15]. Furthermore, although periodicity simplifies the design and
analysis, it results in a conservative usage of resources. Other methods are (ii) the
application of sampled-data control algorithms based on an approximated discrete-
time model of the process, like in [26], or (iii) the modification of a continuous-time
stabilizing control using a general formula to obtain a redesigned control suitable
for sampled-data implementation, as done in [25]. However, all these techniques are
not generic enough for engineering applications. Finally, (iv) event-triggered con-
trol approaches have also been suggested as a solution in recent decades, where the
control law is event-driven. These novel alternatives are resource-aware implemen-
tations, they overcome drawbacks of emulation, redesigned control and complexity
of the underlying nonlinear sampled-data models.

Whereas the control law is computed and updated at the same rate regardless
whether is really required or not in the classical time-triggered approaches, the
event-based paradigm relaxes the periodicity of computations and communications
in calling for resources whenever they are indeed necessary (for instance when the
dynamics of the controlled system varies). This is clearly an opportunity for embed-
ded and networked control systems. Nevertheless, although event-based control is
well-motivated, only few works report theoretical results about stability, conver-
gence, and performance. Typical event-detection mechanisms are functions on the
variation of the state (or at least the output) of the system, like in [3, 4, 6, 7, 9, 14,
23, 29, 30]. It has notably been shown in [4] that the control law can be updated less
frequently than with a periodic scheme while still ensuring the same performance.
Stabilization of linear and nonlinear systems is analyzed in [1, 8, 24, 34, 35], where
the events are related to the variation of a Lyapunov function or the time derivative
of a Lyapunov function (and consequently to the state too). On the other hand, only
few works deal with time-delay systems (which are of high concern in networked
systems and in general for cyber-physical systems). One can refer to [6, 13, 21,
22] for linear systems for instance. As evidenced by the above reviewed literature,
very little attention has been dedicated to the stabilization of nonlinear time-delayed
systems using an event-based approach. To the authors’ knowledge, this is the first
time that an event-based control strategy is proposed.

Technically, it has been shown that if a control Lyapunov function (CLF) is known
for a nonlinear system that is affine in the control, then the CLF and the system
equations can be used to redesign the feedback by means of so-called universal
formulas. These formulas are called universal because they depend only upon the
CLF and the system equations, and not on the structure of those equations. The
concept of CLF is therefore a useful tool for synthesizing robust control laws for
nonlinear systems. In particular, the present work is based on the Sontag’s universal
formula [33], which event-based versionwas recently proposed in [24] for undelayed
systems. The combination of (i) an event function (based on the time derivative of
the CLF) and (ii) a feedback function (that is only updated when the event function
vanishes) ensures the strict decrease of the CLF and consequently the asymptotic
stability of the closed-loop system. For time-delay systems, the idea of CLF has
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been extended in the form of control Lyapunov–Razumikhin functions (CLRF) and
control Lyapunov–Krasovskii functionals (CLKF), see [16–18]. The latter form is
more flexible and easier to construct than CLRFs. Moreover, if a CLKF is known for
a nonlinear time-delay system, several stabilizing control laws can be constructed
using universal formulas derived for CLFs (such as the Sontag’s one for instance)
to achieve global asymptotic stability of the closed-loop system. Accordingly, the
universal event-based formula developed in [24] for undelayed systems is extended
here for the stabilization of affine nonlinear time-delay systems using CLKF. The
present work extends the results previously presented in [8]. The class of time-delay
systems under consideration is restricted to depend on some discrete delays and a
distributed delay. Moreover, only state delays are considered (delays in the control
signal, i.e., input delays, are not concerned).

The rest of the document is organized as follows. In Sect. 4.2, preliminaries on
classical (time-triggered) stabilization of nonlinear time-delay systems are presented.
CLF and CLKF definitions are recalled as well as well-known universal formulas.
The main contribution is then detailed in Sect. 4.3. The event-based paradigm is first
introduced and then a universal event-based formula, based on the Sontag’s formula,
is proposed for the stabilization of affine nonlinear systems with delays in the state.
The smooth control particular case is also treated. Illustrative examples are given for
both nonlinear and linear cases. A discussion finally concludes the chapter. Proofs
are given in Appendix.

4.2 Preliminaries on Nonlinear Time-Delay System
Stabilization

Stability is an important issue in control theory. For nonlinear dynamical systems, this
ismainly treatedwith the theory of Lyapunov: if the derivative of aLyapunov function
candidate (a scalar positive definite function of the states) can be shown to be negative
definite along the trajectories of a given system, then the system is guaranteed to be
asymptotically stable [19]. For closed-loop systems, thismeans to propose a feedback
function and then search for an appropriate Lyapunov function or, inversely, propose
a Lyapunov function candidate and then find a feedback strategy that renders its
derivative negative [19]. Nevertheless, it can be difficult to find a Lyapunov function
candidate or even to determinewhether or not one exists. Obviously, some techniques
can help for such Lyapunov-based control synthesis.

4.2.1 Control Lyapunov Function

The (Lyapunov-based) control synthesis problem was made more formal with the
introduction of control Lyapunov function (CLF) [2, 32] for systems affine in the
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control input. A CLF is a (smooth) positive definite, radially unbounded function,
which derivative can be made negative definite at each state (except possibly at the
origin) by some feasible input. In addition, one may require that the CLF fulfills the
small control property for global stability.

To summarize, let us consider the affine nonlinear dynamical system

ẋ(t) = f
(
x(t)

) + g
(
x(t)

)
u(t), (4.1)

with x(0) := x0,

with x(t) ∈ X ⊂ R
n and u(t) ∈ U ⊂ R

m the state and input (control) space vectors.
f : X → X and g : X → R

n×m are smooth functions with f vanishing at the
origin. Also, let define X ∗ := X \{0} hereafter. Note that only null stabilization is
considered here and the dependence on t can be omitted in the sequel for the sake of
simplicity.

Definition 1 (Control Lyapunov function [33]). A smooth and positive definite func-
tional V : X → R is a control Lyapunov function (CLF) for system (4.1) if for each
x �= 0 there is some u ∈ U such that

α(x) + β(x)u < 0, (4.2)

with

∣∣∣∣∣∣∣

α(x) := L f V (x) = ∂V

∂x
f (x),

β(x) := LgV (x) = ∂V

∂x
g(x),

where L f V and LgV are the Lie derivatives of f and g functions respectively.

Property 1 (Small control property [33]). If for any μ > 0, ε > 0 and x in the ball
B(μ)\{0}, there is some u with ‖u‖ ≤ ε such that inequality (4.2) holds, then it is
possible to design a feedback control that asymptotically stabilizes the system.

Furthermore, it has been shown that if a CLF is known for a nonlinear system that
is affine in the control, then the CLF and the system equations can be used to find
some so-called universal formulas that render the system asymptotically stable. Sev-
eral known universal formulas exist, in particular Sontag’s [33] and Freeman’s [10]
formulas are presented in the sequel. Other methods, like the domination redesign
formula [31] is also discussed but it will not be treated in details here.

4.2.2 Control Lyapunov–Krasovskii Functionals

For (nonlinear) time-delay systems, there exist twomainLyapunov techniques, called
the Krasovskii method of Lyapunov functionals [20] and the Razumikhin method
of Lyapunov functions [28]. Motivated by the concept of CLF and the role it plays
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in robust stabilization of nonlinear systems, these methods have also been extended
in the form of control Lyapunov–Razumikhin functions (CLRF) [16] and control
Lyapunov–Krasovskii functionals (CLKF) [17].

Several stabilizing control laws can be constructed to achieve global asymptotic
stability of the closed-loop system using one of the universal formulas derived for
CLFs. For instance, Sontag’s [33] andFreeman’s [10] formulas apply for CLKF [17],
whereas the domination redesign formula [31] applies for CLRF [16]. Note that this
latter formula also applies for an augmented CLKF, as shown in [18]. Moreover, the
CLKF form is more flexible and easier to construct than CLRFs. For these reasons,
only Krasovskii methods are detailed in the sequel (but the proposal can be easily
extended to the Razumikhin version).

Hereafter, the state of a time-delay system is described by xd : [−r, 0] → X
defined by xd(t)(θ) = x(t + θ). This notation, used in [17] in particular, seemsmore
convenient than the more conventional xt (θ). Note that the dependence on t and θ

can be omitted in the sequel for the sake of simplicity, writing xd(θ) – or only xd

– instead of xd(t)(θ) for instance. Let consider the affine (in the control) nonlinear
dynamical time-delay system

ẋ = f (xd) + g(xd)u, (4.3)

with xd(0)(θ) := χ0(θ),

where f : X → X , g : X → R
n×m are smooth functions and χ0 : [−r, 0] → X

is a given initial condition.

Remark 1 Input delays of the form u(t − τ) are not considered in this chapter. How-
ever, the control law is computed using the state xd of the time-delay system.

Note that the class of time-delay systems under consideration in this paper is
restricted to depend on l discrete delays and a distributed delay in the form

ẋ = Φ(xτ ) + g(xτ )u, (4.4)

with Φ(xτ ) := f0(xτ ) +
∫ 0

−r
Γ (θ)F

(
xτ , x(t + θ)

)
dθ,

and xτ := [
x, x(t − τ1), x(t − τ2), . . . , x(t − τl)

]
,

where f0 : X → X , g : X → R
n×m and F : R(l+2)n → R

Γ are smooth functions
of their arguments. Without loss of generality, it is assumed that F(xτ , 0) = 0 and
the matrix Γ : [−r, 0] → R

n×Γ is piecewise continuous (hence, integrable) and
bounded.

Definition 2 (Control Lyapunov–Krasovskii functional [17]). Let defined a smooth
functional V : X → R of the particular form
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V (xd) = V1(x) + V2(xd) + V3(xd), (4.5)

with

∣∣∣∣∣∣∣∣∣

V2(xd) =
l∑

j=1

∫ 0

−τ j

S j (x(t − ς))dς,

V3(xd) =
∫ 0

−r

∫ t

t+θ

L(θ, x(ς))dςdθ,

where V1 is a smooth, positive definite, radially unbounded function of the current
state x (i.e., the classical control Lyapunov function for undelayed systems, as defined
inDefinition 1), V2 and V3 are nonnegative functionals respectively due to the discrete
delays and the distributed delay in (4.4), Sj : X → R and L : R+ × X → R are
nonnegative integrable functions, smooth in the x-argument. Then V in (4.5) is a
control Lyapunov–Krasovskii functional (CLKF) for system (4.4) if there exists a
function λ, with λ(s) > 0 for s > 0, and two classK∞ functions κ1 and κ2 such that

κ1(|χ0|) ≤ V (χd) ≤ κ2(‖χd‖),

and (see Remark 3 for the definition of L∗
f V )

βd(χd) = 0 ⇒ αd(χd) ≤ −λ(|χ0|), (4.6)

with

∣∣∣∣
αd(xd) := L∗

f V (xd),

βd(xd) := LgV1(xd),

for all piecewise continuous functions χd : [−r, 0] → X , where χ0 is defined
in (4.3).

Remark 2 The restriction on the class of delay systems (4.4) and the correspond-
ing particular CLKF (4.5) is needed to avoid the problems that arise due to non-
compactness of closed bounded sets in the space

(
C([−r, 0],X )

, ‖ · ‖), where
C([−r, 0],X ) denotes the space of continuous functions from [−r, 0] intoX . This
is discussed in [16, 17].

Remark 3 Whereas the classical Lie derivative notation is used in LgV1(x) =
∂V1
∂x g(x) for the CLKF part V1 which is function of the current state x , an extended
Lie derivative is required for functionals of the form (4.5). L∗

f V , initially defined
in [17], comes from the time derivative of the CLKF V in (4.5) along trajectories of
the system (4.4), that is

V̇ = L∗
f V (xd) + LgV1(xd)u = αd(xd) + βd(xd)u, (4.7)

with L∗
f V (xd) := ∂V1

∂x
Φ +

l∑

j=1

(
Sj (x) − Sj (x(t − τ j ))

)

+
∫ 0

−r

(
L(θ, x) − L(θ, x(t + θ))

)
dθ,

where Φ is defined in (4.4).
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4.2.3 Universal Formulas for the Stabilization of Affine
Nonlinear Time-Delay Systems

Universal formulas derived forCLFs have been extended for the stabilization of affine
nonlinear time-delay systems (4.4) with a CLKF of the form (4.5). In particular, the
Sontag’s [33] and Freeman’s [10] versions are detailed here.

Theorem 1 (Sontag’s universal formula with CLKF [17]). Assume that system (4.4)
admits a CLKF of the form (4.5). For any real analytic function q : R → R such
that q(0) = 0 and bq(b) > 0 for b �= 0, let φs : R2 → R be defined by

φs(a, b) :=
⎧
⎨

⎩
a + √

a2 + bq(b)

b
if b �= 0,

0 if b = 0.
(4.8)

Then, the feedback u : X → U , smooth on X ∗, defined by

u(xd) := −βd(xτ ) φs

(
αd(xd), ‖βd(xd)‖2

)
, (4.9)

with xτ and αd , βd defined in (4.4) and (4.6) respectively, is such that (4.6) is satisfied
for all nonzero piecewise continuous functions χd : [−r, 0] → X .

Theorem 2 (Freeman’s universal formula with CLKF [17]). Assume that sys-
tem (4.4) admits a CLKF of the form (4.5). For any continuous and positive definite
function η : R2 → R, let φ f : R2 → R be defined by

φ f (a, b) :=
{ a + η(a, b)

b
if a + η(a, b) > 0,

0 if a + η(a, b) ≤ 0.
(4.10)

Then, the feedback u : X → U , smooth on X ∗, defined by

u(xd) := −βd(xτ ) φ f

(
αd(xd), ‖βd(xd)‖2

)
, (4.11)

with xτ and αd , βd defined in (4.4) and (4.6) respectively, is such that (4.6) is satisfied
for all nonzero piecewise continuous functions χd : [−r, 0] → X .

Property 2 (Small control property with CLKF [17]). If the CLKF V in Theorem 1
of Theorem 2 satisfies the small control property, then the control is continuous at
the origin and so is globally asymptotically stable the closed-loop system.

Remark 4 Choosing the function η (4.10) as the particular form

η(a, b) =
√

a2 + bq(b),
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where q is a continuous, positive semidefinite function, gives the same function (4.8)
as originally proposed by Sontag.

Remark 5 As already said, the domination redisign formula [31] has also been
extended for time-delay systems usingCLRF in [16] andCLKF in [18]. The feedback
u : X → U , smooth onX ∗, takes the more general form

u(xd) := −βd(xτ ) φd
(
V (xd)

)
, (4.12)

where the scalar function φd is called the dominating function. Also, a particular
choice of this function can lead to the original Sontag’s function (4.8).

4.3 Event-Based Stabilization of Nonlinear Time-Delay
Systems

The idea behind extending the (time-triggered) universal formulas to event-driven
versions is to obtain equivalent but resource-aware strategies, because the control
signal will be computed and updated only when a certain condition is satisfied in
the event-based case. This was already done in [24] for the undelayed case and it is
extended here for time-delay systems. The event-based paradigm is first introduced.
Then, an event-based formula for the stabilization of affine nonlinear time-delay
systems admitting a CLKF is then detailed, derived from the Sontag’s formula [33].
Other universal formulas are not concerned but the extension is trivial since they
are all similarly constructed. An illustrative example highlights the ability of the
proposal. Finally, the particular case of linear systems is discussed.

4.3.1 Event-Based Formalization

The classical discrete-time framework of controlled systems consists in sampling the
system uniformly in time with a constant sampling period. Although periodicity sim-
plifies the design and analysis, it results in a conservative usage of resources (compu-
tation, communication, energy) since the control law is computed and updated at the
same rate regardless it is really required or not. Fortunately, some innovative works
addressed resource-aware implementations of the control law, where the control law
is event driven (when a certain condition is satisfied).

Definition 3 (Event-based feedback ) By event-based feedback we mean a set of
two functions, that are

(i) an event function ε : X × X → R that indicates if one needs (when ε ≤ 0)
or not (when ε > 0) to recompute the control law;

(ii) a feedback function υ : X → U .
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The solution of (4.1) with event-based feedback (ε, υ) starting in x0 at t = 0 is
then defined as the solution of the differential system

ẋ(t) = f
(
x(t)

) + g
(
x(t)

)
υ(ti ) ∀t ∈ [ti , ti+1[, (4.13)

where the time instants ti , with i ∈ N, are considered as events (they are determined
when the event function ε vanishes and denote the sampling time instants). Also let
define xi the memory of the state value at the last event, that is

xi := x(ti ). (4.14)

With such a formalization, the control value is updated each time ε becomes
negative. Usually, one tries to design an event-based feedback so that ε cannot remain
negative (and so is updated the control only punctually). In addition, one also wants
that two events are separated with a nonvanishing time interval avoiding the Zeno
phenomenon. All these properties are encompassedwith theMinimal Inter-Sampling
Interval (MSI) property introduced in [24]. In particular:

Property 3 (Semi-uniformly MSI). An event-triggered feedback is said to be semi-
uniformlyMSI if and only if the inter-execution times can be below bounded by some
nonzero minimal sampling interval τ(δ) > 0 for any δ > 0 and any initial condition
x0 in the ball B(δ) centered at the origin and of radius δ.

Remark 6 A semi-uniformly MSI event-driven control is a piecewise constant con-
trol with nonzero sampling intervals (useful for implementation purpose).

A particular event-based feedback has already been proposed in [24] for the
stabilization of affine nonlinear undelayed systems, based on the Sontag’s universal
formula [33]. The idea is to have a control law υ quite similar to the one in the
classical approach and an event function ε related to the time derivative of the CLF
in order to ensure a (global) asymptotic stability of the closed-loop system. In the
present chapter, such an event-based feedback is extended for the stabilization of
affine nonlinear systems with time delay using CLKF. In the sequel, let

xdi := xd(ti ) (4.15)

be the memory of the delayed state value at the last event, by analogy with (4.14).

4.3.2 Event-Based Stabilization of Nonlinear Time-Delay
Systems

Based on the Sontag’s universal formula with CLKF previously introduced in The-
orem 1, an event-based feedback (see Definition 3) that asymptotically stabilizes
affine nonlinear time-delay systems is proposed here.
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Theorem 3 (Event-based universal formula with CLKF). If there exists a CLKF V
of the form (4.5) for system (4.4), then the event-based feedback (ε, υ) defined by

υ(xd) = −βd(xτ )Δ(xτ )γ (xd), (4.16)

ε(xd , xdi ) = −αd(xd) − βd(xd)υ(xdi )

−σ
√

αd(xd)2 + Ω(xd)βd(xd)Δ(xd)βd(xd)T , (4.17)

with

• αd and βd as defined in (4.6);

• Δ : X ∗ → R
m×m (a tunable parameter) and Ω : X → R are smooth positive

definite functions;
• γ : X → R defined by

γ (xd) :=
{

αd (xd )+
√

αd (xd )2+Ω(xd )βd (xd )Δ(xd )βd (xd )T

βd (xd )Δ(xd )βd (xd )T if xd ∈ Sd ,

0 if xd /∈ Sd ,
(4.18)

with Sd := {xd ∈ X | ‖βd(xd)‖ �= 0};
• σ ∈ [0, 1[ a tunable parameter;

where xdi and xτ are defined in (4.15) and (4.4) respectively, is semi-uniformly MSI,
smooth on X ∗ and such that the time derivative of V satisfies (4.6) ∀x ∈ X ∗.

Remark 7 The simplification made with respect to the original result in [24] (for the
stabilization of nonlinear undelayed systems) resides in the assumptions made for
the functions Ω and Δ, that are more restrictive here whereas they are assumed to
be definite only on the set Sd in the original work.

Remark 8 The idea behind the construction of the event-based feedback (4.16)–
(4.17) is to compare the time derivative of the CLKF V (i) in the event-based case,
that is when applying the piecewise feedback υ(xdi ), and (ii) in the classical case,
that is, when applying υ(xd) instead of υ(xdi ). The event function is the weighted
difference between both, where σ is the weighted value. By construction, an event is
enforced when the event function ε vanishes to zero, that is, hence when the stability
of the event-based scheme does not behave as the one in the classical case. Also, the
convergence will be faster with higher σ but with more frequent events in return.
σ = 0 means updating the control when V̇ = 0.

Property 4 (Global asymptotic stability). If the CLKF V in Theorem 3 satisfies the
small control property, then the event-based feedback (4.16)–(4.17) is continuous at
the origin and so is globally asymptotically stable the closed-loop system.
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Property 5 (Smooth control). If there exists some smooth function ω : X → R
+

such that on S ∗
d := Sd\{0}

ω(xd)βd(xd)Δ(xd)βd(xd)
T − αd(xd) > 0, (4.19)

then the control is smooth on X as soon as Ω(xd)‖Δ(xd)‖ vanishes at the origin
with

Ω(xd) := ω(xd)
2βd(xd)Δ(xd)βd(xd)

T − 2αd(xd)ω(xd). (4.20)

Proof All proofs are given in the Appendix section.

4.3.2.1 Example

Consider the nonlinear time-delay system

ẋ1 = u,

ẋ2 = −x2 + x2d + x3
1 + u,

(4.21)

with x2d := x2(t − τ),

that admits a CLKF (proposed in [17])

V (x) = 1

2
(x2

1 + x2
2 ) + 1

2

∫ 0

−τ

x2
2d(θ)dθ, (4.22)

with

∣∣∣∣
αd = x2(−x2 + x2d + x3

1) + 1
2 (x2

2 − x2
2d),

βd = x1 + x2.

Indeed, setting λ(|x |) = 1
4 |x |4 yields

βd = 0 ⇒ x1 = −x2,

⇒ αd = −1

2
(x2 − x2d)

2 − x4
2 ≤ −x4

2 ≤ −λ(|x |),

which proves that (4.22) is a CLKF for (4.21) using Definition 2.
The time evolution of x ,υ(x) and the event function ε(x, xi ) is depicted in Fig. 4.1,

for Δ = In (the identity matrix), Ω(x) is as defined in (4.20) (for smooth control
everywhere), with ω = 0.1, σ = 0.6, x0 = [

0.5 −1
]T

and a time delay τ = 2 s. One
could remark that only 7 events occurs in the 50 s simulation time (including the first
event at t = 0) when applying the proposed event-based approach (4.16)–(4.17).
Furthermore, x1 and x2 rapidly converge to 0 with the first 4 events.
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Fig. 4.1 Simulation results of system (4.21) with CLKF as in (4.22) and event-based feed-
back (4.16)–(4.17)

4.3.3 Particular Case of Linear Systems

Consider the simple linear system with single delay τ

ẋ(t) = Ax(t) + Ad x(t − τ) + Bu(t). (4.23)

Take P and S the positive definite matrices solution of the linear matrix inequality
(LMI) given by

[
AT P + P A − 4ρ P B R−1BT P + S P Ad − 4ρ P B R−1BT P

AT
d P − 4ρ P B R−1BT P −S

]
< 0, (4.24)

where R is positive definite matrix, and ρ > 0, are tunable parameters. Then the
Lyapunov–Krasovskii functional V defined by

V (xd) = xT (t)Px(t) +
∫ 0

τ

xd(θ)T Sxd(θ)dθ (4.25)
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is a CLKF for system (4.23) since for all x , u = −2ρBT Px renders the time deriv-
ative of V strictly negative for x �= 0.

Remark 9 The particular delay-independent form (4.25) has been proposed for sys-
tem (4.23) without control input. More complex delay-dependent forms also exist
in the literature but are not concerned here, see [11, 12, 27] for instance for further
details.

Remark 10 Remember the first right-hand term in (4.25) is the classical CLF for a
linear system without delay, whereas the second term is added for a single delay. The
third term in the general CLKF form (4.5) is not needed in the present case without
distributed delay.

The (extended) Lie derivatives are then obtained from the expressions in (4.6)–
(4.7), that yields

αd(xd) =
[

x
xd

]T [
AT P + P A + S P Ad

AT
d P −S

] [
x
xd

]
,

βd(xd) = 2

[
x
xd

]T

P B.

(4.26)

Then, with Ω(xd) according to (4.20) for the tunable parameters defined by Δ =
R−1 and ω = ρ, the control given by

υ(xd) = −ωΔ

[
β(x)T

β(xd)
T

]
(4.27)

is smooth everywhere and linear. The event function given by

ε(xd , xdi ) = (σ − 1)αd(xd) + ωβd(xd)Δ

[
β(xi − σ x)T

β(xdi − σ xd)
T

]
(4.28)

is linear.

4.4 Conclusion

In this chapter, an extension of the Sontag’s universal formula was proposed for
event-based stabilization of affine nonlinear systemswith delays in the state.Whereas
the original work deals with control Lyapunov functions for the case of undelayed
systems, some control Lyapunov–Krasovskii functionals (CLKF) are now required
for a global (except at the origin) asymptotic stabilization of time-delay systems. The
sampling intervals do not contract to zero, avoiding Zeno phenomena. Moreover, the
control is continuous at the origin if the CLKF fulfills the small control property.
With additional assumption, the control can be proved to be smooth everywhere.
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Simulation results were provided, highlighting the low frequency of control updates.
The linear case was also discussed.

Next step is to test the proposal in a real-time implementation and also consider
input delays. Another way of investigation could be to develop general universal
event-based formulas for nonlinear (time-delay) systems, in the spirit of [5].

Appendix

Proofs of the present contribution were previously presented in [8]. They are recalled
here.

Proof of Theorem 3

The proof follows the one developed in [24] for event-based control of systems
without delays (4.1). First, let define hereafter

ψ(x) :=
√

αd(x)2 + Ω(x)βd(x)Δ(x)βd(x)T . (4.29)

Let begin establishing γ is smooth onX ∗. For this, consider the algebraic equa-
tion

P(xd , ζ ) := βd(xd)Δ(xd)βd(xd)
T ζ 2 − 2αd(xd)ζ − Ω(xd) = 0. (4.30)

Note first that ζ = γ (x) is a solution of (4.30) for all xd ∈ X . It is easy to prove
that the partial derivative of P with respect to ζ is always strictly positive on X ∗

∂ P

∂ζ
:= 2βd(xd)Δ(xd)βd(xd)

T ζ − 2αd(xd). (4.31)

Indeed, when ‖βd(xd)‖ = 0, (4.6) gives ∂ P
∂ζ

= −2αd(xd) ≥ 2λ(|χ0|) > 0 and

when‖βd(xd)‖ �= 0, (4.18) gives ∂ P
∂ζ

= 2
√

αd(xd)2 + Ω(xd)βd(xd)Δ(xd)βd(xd)T >

0 replacing ζ in (4.31) by the expression of γ (since ζ = γ (x) is a solution of (4.30)).
Therefore ∂ P

∂ζ
never vanishes at each point of the form {(xd , γ (xd))|xd ∈ X ∗}. Fur-

thermore, P is smooth w.r.t. xd and ζ since so are αd , βd , Ω and Δ. Hence, using
the implicit function theorem, γ is smooth on X ∗.

The decrease of the CLKF of the form (4.5) when applying the event-based feed-
back (4.16)–(4.17) is easy to prove. For this, let consider the time interval [ti , ti+1],
that is the interval separating two successive events. Recall that xdi denotes the value
of the state when the i th event occurs and ti the corresponding time instant, as defined
in (4.15). At time ti , when the event occurs, the time derivative of theCLKF, i.e., (4.7),
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after the update of the control, is

dV

dt
(xdi ) = αd(xdi ) + βd(xdi )υ(xdi ) = −ψ(xdi ) < 0

when substituting (4.18) in (4.16), where ψ is defined in (4.29). More precisely,
defining a compact set not containing the origin, that isΣ = {xd ∈ C P([−r, 0],X ) :
d ≤ ‖xd‖ ≤ D}, where C P([−r, 0],X ) denotes the space of piecewise continuous
functions from [−r, 0] into X , d and D are some constant in R

+. If V is a CLKF
for the system of the form (4.4) then for all 0 < δ < D there exists ε > 0 such that
αd(χd) ≥ − 1

2λ(|χ0|) ⇒ |βd(χd)| ≥ ε for χd ∈ Σ . This gives

V̇ ≤ −λ(|x |).

One can refer to Lemma 1 in [17], and [16], for further details. With this updated
control, the event function (4.17) hence becomes strictly positive

ε(xdi , xdi ) = (1 − σ)ψ(xdi ) > 0,

since σ ∈ [0, 1[, where ψ is defined in (4.29). Furthermore, the event function nec-
essarily remains positive before the next event by continuity, because an event will
occur when ε(xd , xdi ) = 0 (see Definition 3). Therefore, on the interval [ti , ti+1], one
has

ε(xd , xdi ) = −αd(xd) − βd(xd)υ(xdi ) − σψ(xd),

= −dV

dt
(xd) − σψ(xd) ≥ 0,

which ensures the decrease of the CLKF on the interval since σψ(xd) ≥ 0, where ψ

is defined in (4.29).Moreover, ti+1 is necessarily bounded since, if not, V should con-
verge to a constant value where dV

dt = 0, which is impossible thanks to the inequality
above. The event function precisely prevents this phenomena detecting when dV

dt is
close to vanish and updates the control if it happens, where σ is a tunable parameter
fixing how “close to vanish” has to be the time derivative of V .

To prove that the event-based control is MSI, one has to prove that for any initial
condition in an a priori given set, the sampling intervals are below bounded. First of
all, notice that events only occur when ε becomes negative (with xd �= 0). Therefore,
using the fact that when βd(xd) = 0, αd(xd) < −λ(|χ0|) (because V is a CLKF as
defined in Definition 2), it follows from (4.17), on {xd ∈ X ∗ | ‖βd(xd)‖ = 0}, that

ε(xd , xdi ) = −αd(xd) − σ |αd(xd)| = (1 − σ)λ(|χ0|) > 0,

because σ ∈ [0, 1[ and λ(s) > 0 for s > 0. Therefore, there is no event on the set
{xd ∈ X |‖βd(xd)‖ = 0} ∪ {0}. The study is then restricted to the set S ∗

d = {xd ∈
X ∗|‖βd(xd)‖ �= 0}, where Ω and Δ are strictly positive by assumption. Rewriting
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the time derivative of the CLKF along the trajectories yields

dV

dt
(xd) = αd(xd) + βd(xd)υ(xdi ),

= −ψ(xd) + βd(xd)
(
υ(xdi ) − υ(xd)

)
, (4.32)

when using the definition of υ(xd) in (4.16) and (4.18), whereψ is defined in (4.29).
Let respectively define the level and the set

ϑi := V (xdi ), ∀xdi ∈ Sd ,

Vϑi := {xd ∈ X |V (xd) ≤ ϑi }.

From the choice of the event function, it follows from (4.32) that xd belongs
to Vϑ ⊂ Vϑi . Note that if xdi belongs to Sd , this is not necessarily the case
for xd that can escape from this set. First see that, since (i) Ω(xd) is such that
αd(xd)

2 + Ω(xd)βd(xd)Δ(xd)βd(xd)
T > 0 for all xd ∈ S ∗

d , and (ii) αd(xd) is nec-
essarily nonzero on the frontier of Sd (except possibly at the origin)

dV

dt
(xdi ) = −ψ(xdi ) ≤ − inf

xdi ∈Sd
s.t.V (xdi )=ϑi

ψ(xdi ) =: −ϕ(ϑi ) < 0. (4.33)

Considering now the second time derivative of the CLKF

V̈ (xd) =
(

∂αd

∂xd
(xd) + υ(xdi )

T ∂βT
d

∂xd
(xd)

)
Θ(xd , xdi ), (4.34)

with Θ(xd , xdi ) := Φ(xτ ) + g(xτ )υ(xdi ),

where Φ is defined in (4.4). By continuity of all the involved functions (except for
Γ in Φ which is piecewise continuous but bounded by assumption), both terms can
be bounded for all xd ∈ Vϑi by the following upper bounds ρ1(ϑi ) and ρ2(ϑi ) such
that

ρ1(ϑi ) := sup
xdi ∈Sd s.t. V (xdi )=ϑi

xd∈Vϑi

∥∥∥∥
∂αd

∂xd
(xd) + υ(xdi )

T ∂βT
d

∂xd
(xd)

∥∥∥∥ ,

ρ2(ϑi ) := sup
xdi ∈Sd s.t. V (xdi )=ϑi

xd∈Vϑi

‖Θ(xd , xdi )‖ ,

where Θ is defined in (4.34). Therefore, V̇ is strictly negative at any event instant ti
and cannot vanish until a certain time τ(ϑi ) is elapsed (because its slope is positive).
This minimal sampling interval is only depending on the level ϑi . A bound on τ(ϑi )

is given by the inequality
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dV

dt
(xd) ≤ dV

dt
(xdi ) + ρ1ρ2(t − ti ), ∀xd ∈ Vϑi ,

that yields

τ(ϑi ) ≥ ϕ(ϑi )

ρ1(ϑi )ρ2(ϑi )
> 0,

where ϕ is defined in (4.33). As a consequence, the event-based feedback (4.16)–
(4.17) is semi-uniformly MSI. This ends the proof of Theorem 3.

Proof of Property 4

To prove the continuity of υ at the origin, one only needs to consider the points in
S since υ(xd) = 0 if ‖βd(xd)‖ = 0. Then (4.16) gives

‖υ(xd)‖ ≤ |αd(xd)|
βd(xd)Δ(xd)βd(xd)T

‖Δ(xd)βd(xd)
T ‖

+ ψ(xd)

βd(xd)Δ(xd)βd(xd)T
‖Δ(xd)βd(xd)

T ‖,

≤ 2|αd(xd)|
βd(xd)Δ(xd)βd(xd)T

‖Δ(xd)βd(xd)
T ‖

+ √
Ω(xd)‖Δ(xd)‖. (4.35)

With the small control property (see Property 1), for any ε > 0, there isμ > 0 such
that for any xd ∈ B(μ)\{0}, there exists some u with ‖u‖ ≤ ε such that L∗

f V (xd) +
[LgV1(xd)]T u = αd(xd) + βd(xd)u < 0 and therefore |αd(xd)| < ‖βd(xd)‖ε. It fol-
lows

‖υ(xd)‖ ≤ 2ε‖βd(xd)‖‖Δ(xd)βd(xd)
T ‖

βd(xd)Δ(xd)βd(xd)T
+ √

Ω(xd)‖Δ(xd)‖.

Since the function (v1, v2) → ‖v1‖‖v2‖
vT
1 v2

is continuous w.r.t. its two variables at the

origin where it equals 1, since Ω and Δ are also continuous, since Ω(xd)‖Δ(xd)‖
vanishes at the origin, for any ε′, there is some μ′ such that ∀xd ∈ B(μ′)\{0},
‖υ(xd)‖ ≤ ε′ which ends the proof of continuity.

Proof of Property 5

With Ω defined as in (4.20), the feedback in (4.16) becomes

υ(xd) = −βd(xd)Δ(xd)ω(xd)
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if the condition (4.19) is satisfied, which is obviously smooth on X . Note that the
expression of Ω in (4.20) comes from the solution of (4.30), where ω only has to be
smooth.
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25. D. Nešić, L. Grüne, Lyapunov-based continuous-time nonlinear controller redesign for
sampled-data implementation. Automatica 41(7), 1143–1156 (2005)
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Chapter 5
Analysis of Bilinear Systems
with Sampled-Data State Feedback

Hassan Omran, Laurentiu Hetel, Jean-Pierre Richard
and Françoise Lamnabhi-Lagarrigue

Abstract In this chapter we consider the stability analysis of bilinear systems con-
trolled via a sampled-data state feedback controller. Sampling periods may be time-
varying and subject to uncertainties. The goal of this study is to find a constructive
manner to estimate the maximum allowable sampling period (MASP) that guaran-
tees the local stability of the system. Stability criteria are proposed in terms of linear
matrix inequalities (LMI).

5.1 Introduction

This chapter is dedicated to the local stability analysis of bilinear sampled-data
systems, controlled via a linear state feedback static controller, using a hybrid systems
methodology.When a continuous-time controller is emulated, intuitively the stability
will be preserved if the sampling intervals are sufficiently small. Nevertheless, this
issue has been rarely addressed in a formal quantitative study for bilinear systems.
Our purpose is to find a constructive way to calculate the Maximum Allowable
Sampling Period (MASP).
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Sampled-data systems have been receiving a considerable attention in the past
decades [15, 23, 27, 38]. One of the most frequently used methods in the literature
is the emulation approach [39]. In this method a stabilizing controller is designed
in continuous-time, without the sampling effect. Next, the controller is implemented
digitally. However, even when the sampling period is small, it is in general a chal-
lenging problem to ensure whether the system remains stable after the sampled-data
controller implementation. Moreover, it is very important to provide a quantitative
estimation of theMASPwhich guarantees the stability, especially from the numerical
implementation point of view.

The case of linear time-invariant sampled-data systems has been studied exten-
sively in the literature (see for example [13, 15–17, 23]). For the nonlinear case, see
the works in [27, 31, 39], where explicit formulas for MASP have been provided.
The works in [7, 38, 49], consider the more general networked control systems case.
We remark in particular the work in [39] where the authors use results from the
hybrid systems theory, to provide generic local and global stability conditions. Other
results on the bilinear case have been presented in [41, 42].

Two constructive methods are considered. They are both based on the hybrid
systems framework. The first method is a specialization of the result used for the
general nonlinear case [39]. The contribution here is to find a constructive way to
apply this generic method, for the particular case of bilinear systems. The second
method is based on a direct search of a Lyapunov function using LMIs. The novelty
here is to avoid some conservative upper bounds on the derivative of a Lyapunov
function in the first method.

The chapter is organized as follows. First, bilinear systems are introduced in
Sect. 5.2. In Sect. 5.3, some results on the stabilization of bilinear systems are pre-
sented. In Sect. 5.4, we formulate the problem under study. Section5.5 is dedicated
to systemmodeling. In Sect. 5.6, we introduce the main results, where sufficient con-
ditions for the local stability of sampled-data bilinear systems are provided. Finally,
the results are illustrated by means of a numerical example in Sect. 5.7.

5.2 Bilinear Systems

Bilinear systems are considered as the “simplest” class of nonlinear systems. They
are linear separately with respect to the state and the control, but not to both of
them jointly. Since the beginning of 1970s, they have attracted the attention of many
researchers [5, 11, 32, 43]. The associated state-space model is:

ẋ(t) = A0x(t) +
m∑

i=1

[u(t)]i Ni x(t) + B0u(t), ∀t ≥ t0, (5.1)
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where the state vector is x(t) ∈ R
n , and the control input is u(t) ∈ R

m . The term

A0x is called the drift, B0u is the additive control and
m∑
i=1

[u]i Ni x is themultiplicative

control [11].
Bilinear systems have applications in various domains since many processes can

be modeled by this way. Examples of these processes are found in engineering appli-
cation such as power electronics [24, 46], a.c. transmission systems [35], controlled
hydraulic systems [21] and chemical processes [12]. Bilinear systems can also be
encountered in domains such as ecology, socioeconomics, biology and immunology
[32, 33], only to cite a few.

From the point of view of nonlinear systems theory, the study of bilinear systems is
very interesting since such models offer a more accurate approximation to nonlinear
systems than the classical linear ones. This can be seen in the added bilinear terms,
in state and control, which may come from a Taylor series truncation: [36, 43]
and the references therein give more insight to the approximation of more highly
nonlinear systems by bilinear models. As a matter of fact, bilinear systems have
also an interesting variable structure characteristic. For example, it has been shown
in [32] that bilinear models have more powerful controllability properties than the
linear ones. For information about structural properties, system characterization and
solutions, see [34].

5.3 Stabilization of Bilinear Systems

Even for such “simplest” class of nonlinear systems, the feedback stabilization of
bilinear systems is a challenging problem, and several controller structures can be
found in the literature [1, 22, 28, 30, 34, 44, 45]. We mention as follows some of
the notable approaches. Linear state feedback u = Kx has been proposed in several
works [1, 34]. Quadratic controller has been considered in [22, 34, 44], and improve-
ments have been provided in the literature (see [8, 45] for normalized quadratic con-
trol methods). In [30, 34] a discontinuous bang–bang controller has been proposed.

In the special case of dyadic bilinear systems ẋ = A0x +
m∑
i=1

bi (cTi x + 1)u, several

authors have considered stabilization using the so-called division controllers [9, 22].
In [25], necessary and sufficient conditions for the global asymptotic stabilization by
using a homogeneous feedback is provided for a class of bilinear systems (with scalar
multiplicative control and no additive control). Sliding mode control has also been
applied, see for example [47]. In [26], a polynomial static output feedback controller
has been proposed, with a guaranteed upper bound of a performance index. Global
asymptotic stabilization using a hybrid controller has been proposed in [3]. Finally,
stabilization of bilinear discrete-time systems using polyhedral Lyapunov functions
has been considered in [4].

The linear state feedback is an interesting solution because of its simplicity [1].
It is easily implemented, and several results address the problem of finding such
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controllers. Unfortunately, in nontrivial cases it has been shown that it is usually
impossible to stabilize globally the bilinear systems with linear feedback control
[34] (page. 39). As a matter of fact, in the scalar case (n = 1), it is impossible. For
planar single-input systems (n = 2,m = 1), necessary and sufficient conditions are
given in [29]. To our best knowledge, the problem is not fully analyzed yet for n > 2.

Recently in [1, 2, 48], numerically tractable conditions have allowed for the design
of a linear state feedback controller that ensures local asymptotic stabilization.

Theorem 1 ([1]) Given the system (5.1) and the polytope containing the origin:

Pc = conv{x1, x2, . . . , xp} (5.2)

= {x ∈ R
n : aT

j x ≤ 1, j = 1, 2, . . . , r}. (5.3)

Then, a controller u(t) = Kx(t), with K ∈ R
m×n, which guarantees the asymp-

totic stability of the resulting closed-loop system, can be found if there exist scalars
γ ∈ (0, 1) and c > 0, a symmetric matrix P > 0, and a matrix W ∈ R

m×n such
that

[
1 γ aT

j Pc
cPa jγ Pc

]
≥ 0, j = 1, 2, . . . , r,

[
1 xTi
xi cP

]
≥ 0, i = 1, 2, . . . , p,

γ (A0P + PAT
0 ) + γ (B0W + WT BT

0 ) +

⎡

⎢⎢⎢⎣

xTi N1

xTi N2
...

xTi Nm

⎤

⎥⎥⎥⎦W

+WT
[
NT
1 xi N

T
2 xi · · · NT

m xi
]

< 0,

i = 1, 2, . . . , p.

The controller is given by K = WP−1 andPc belongs to the domain of attraction
of the equilibrium.

The LMI conditions depend on the vertices of the convex polytopePc (5.2), and
the dual representation (5.3) where the polytope is presented by r hyperplanes. The
proposed conditions are sufficient only for the local stabilization. Note that the above
LMI conditions require the pair (A0, B0) to be asymptotically stabilizable. However,
this condition is not necessary for the stabilization of bilinear systems. This can be
seen in the following example.

Example 1 Consider the bilinear system

ẋ = A0x + B0u + uNx, u = Kx,
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with

A0 =
[−1 0
0 0

]
, B0 =

[
0
0

]
, N =

[
0 −1
1 0

]
, K = [

0 1
]
,

which is equivalent to:
{
ẋ1 = −x1 − x22 ,
ẋ2 = x1x2.

Even though the pair (A0, B0) is not stabilizable, the system is still shown to be
asymptotically stable using center manifold method.1

In spite of this academic example, this state feedback design strategy has shown
its interest in practical applications [1, 40]. The question now is how to guarantee
the stability of the closed loop with a discrete controller implementation.

5.4 Problem Formulation

Consider the bilinear system (5.1). We suppose that the following assumptions hold:

• The control is a piecewise-constant control law

u(t) = Kx(tk), ∀t ∈ [tk, tk+1),

with a set of sampling instants {tk}k∈N satisfying:

0 < ε ≤ tk+1 − tk ≤ h, ∀k ∈ N, (5.4)

where h is a given MASP.
• The pair A0, B0 is stabilizable, and the linear feedback gain K ∈ R

m×n is calculated
so that the system (5.1) with the continuous state feedback u(t) = Kx(t) has a
locally asymptotically stable equilibrium point at x = 0. The actual domain of
attraction (a connected neighborhood of x = 0, see [20]) is denoted D0.

• The state variables are subject to constraints defined by a polytopic setP ⊂ D0:

P = conv{x1, x2, . . . , xp} (5.5)

= {x ∈ R
n : aT

j x ≤ 1, j = 1, 2, . . . , r} (5.6)

corresponding to an admissible set in the state-space.2

1Jean-Pierre Richard, Lecture Notes: Systèmes Dynamiques, http://researchers.lille.inria.fr/
~jrichard/pdfs/SystDynJPR2009_part3.pdf.
2The equivalence between the representations in (5.5) and (5.6) is given in [10] (Theorem 1.29).

http://researchers.lille.inria.fr/~jrichard/pdfs/SystDynJPR2009_part3.pdf
http://researchers.lille.inria.fr/~jrichard/pdfs/SystDynJPR2009_part3.pdf
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Under these assumptions, we obtain the closed-loop sampled-data system:

ẋ(t) = (
A0 +

m∑

i=1

[Kx(tk)]i Ni
)
x(t) + B0Kx(tk), ∀t ∈ [tk, tk+1), ∀k ∈ N. (5.7)

System (5.7) may also be written as follows

ẋ(t) = Ã[x(t), e(t)]x(t) + Be(t), ∀t ∈ [tk, tk+1) (5.8)

with

e(t) = x(tk) − x(t),

Ã[x, e] := A0 + B0K +
m∑

i=1

[K (x + e)]i Ni , (5.9)

and

B = B0K . (5.10)

The goal of the chapter is twofold. First, we would like to ensure that the obtained
sampled-data system satisfies the state-space constraints (5.5) or (5.6) for any x0 ∈
P . Secondly, we would like to provide conditions that guarantee the asymptotic
convergence of the system solutions to the origin.

Problem Find a criterion for the local asymptotic stability of the equilibrium
point x = 0 of the bilinear sampled-data system (5.7), together with an estimate
E ⊂ P of the domain of attraction, such that for any initial condition x(t0) ∈ E the
system solutions satisfy x(t) ∈ P, ∀t > t0, and x(t) → 0.

5.5 Hybrid System Framework

Several works about sampled-data systems [7, 14, 39] adopt the hybrid systems
framework [18, 19]. A hybrid system H is a tuple (A ,B, F,G), where A ⊆ R

n

and B ⊆ R
n are, respectively, the flow set and the jump set, while F : Rn → R

n

and G : Rn → R
n are, respectively, the flow map and jump map. The hybrid system

is usually represented by:

H :
{

ξ̇ = F(ξ), ξ ∈ A ,

ξ+ = G(ξ), ξ ∈ B.

The dynamics given by F , determines the continuous-time evolution (flow) of the
state through A , while G determines the discrete-time evolution (jumps) inB. See
[18] for more details about hybrid dynamical systems.
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In [38], L p-stability properties have been studied for NCS with scheduling pro-
tocols. The results are based on the hybrid modeling approach and the small gain
theorem, and they can be applied to the sampled-data case to calculate the MASP. In
[6, 7], the bound on the MASP has been improved, using a Lyapunov-based method,
which result has been particularized to the sampled-data case in [39]. Consider the
plant:

ẋ p = f p(xp, u), y = gp(xp),

where xp is the plant state, u is the control input, y is the measured output. Suppose
that asymptotic stability is guaranteed by the continuous-time output feedback:

ẋc = fc(xc, y), u = gc(xc),

where xc is the controller state. The sampled-data implementation of the controller
can be written in the following form:

ẋ p = f p(xp, û), t ∈ [tk, tk+1),

y = gp(xp),
ẋc = fc(xc, ŷ), t ∈ [tk, tk+1),

u = gc(xc),˙̂y = 0, t ∈ [tk, tk+1),˙̂u = 0, t ∈ [tk, tk+1),

(5.11)

with

ŷ(t+k ) = y(tk),
û(t+k ) = u(tk),

(5.12)

where xp and xc are respectively the states of the plant and of the controller, y is the
plant output and u is the controller output; ŷ and û are the most recently transmitted
plant and controller output values. In between sampling instants, the values of ŷ and
û are held constant. Define the augmented state vector x(t) and the network-induced
error e(t):

e(t) =
[
ey(t)
eu(t)

]
:=

[
ŷ(t) − y(t)
û(t) − u(t)

]
∈ R

ne , x(t) :=
[
xp(t)
xc(t)

]
∈ R

nx . (5.13)

Note that the error vector is subject to resets at each sampling instant. The sampled-
data system (5.11) can be written as a system with jumps:

ẋ = f (x, e) t ∈ [tk, tk+1), (5.14)

ė = g(x, e) t ∈ [tk, tk+1),

e(t+k ) = 0,
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with 0 < ε ≤ tk+1 − tk ≤ h, for all k ∈ N, x ∈ R
nx , e ∈ R

ne . The functions f and
g are obtained by direct calculations from the sampled-data system (5.11) (see [39]
and [38]):

f (x, e) :=
[
f p(xp, gc(xc) + eu)
fc(xc, gp(xp) + ey)

]
; g(x, e) :=

[− ∂gp

∂xp
f p(xp, gc(xc) + eu)

− ∂gc
∂xc

fc(xc, gp(xp) + ey)

]
.

It should be noted that ẋ = f (x, 0) is the closed loop systemwithout the sampled-
data implementation. Considering a clock τ which evolves with respect to the sam-
pling instants, system (5.14) can be written as the following hybrid system:

ẋ = f (x, e)
ė = g(x, e)
τ̇ = 1

⎫
⎬

⎭ τ ∈ [0, h],
x+ = x
e+ = 0
τ+ = 0

⎫
⎬

⎭ τ ∈ [ε, h], (5.15)

with x ∈ R
nx , e ∈ R

ne , τ ∈ R+, h ≥ ε > 0. The following theorem provides a
quantitative method to estimate the MASP, using the model (5.15).

In a similar way, we fit the sampled-data system (5.7) into a hybrid model. The
system (5.7) is formulated similarly to (5.11) as follows:

ẋ = A0x +
m∑

i=1

ui Ni x + B0u, t ∈ [tk, tk+1),

y = x,
u = K ŷ,
˙̂y = 0, t ∈ [tk, tk+1),

ŷ(t+k ) = y(tk).

(5.16)

The hybrid model for this case is determined by

ẋ = f (x, e) = Ã[x, e]x + Be
ė = g(x, e) = − Ã[x, e]x − Be
τ̇ = 1

⎫
⎬

⎭ τ ∈ [0, h]

x+ = x
e+ = 0
τ+ = 0

⎫
⎬

⎭ τ ∈ [ε, h] (5.17)

with Ã[x, e] and B given in (5.9) and (5.10), ε and h given in (5.4). Note that in
contrast to the general case model, there is no û in (5.16). This is due to the fact that
the considered controller is a static one. In this case, we may consider only one ZOH
mechanism in the input side of the controller.

For the hybrid system (5.17), we are only interested in stability with respect to
the variables x and e. We consider the set {(x, e, τ ) : x = 0, e = 0, τ ∈ [0 h]}, and
the classical definition of stability from [18, 19].
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5.6 Local Stability and MASP Estimation

In this section, we provide sufficient stability conditions for the considered case of
sampled-data bilinear systems (5.7), or equivalently (5.17). The conditions are used
to estimate an upper bound on theMASP. Twomethods are to be considered. First, we
introduce a method that is based on the application of results for general nonlinear
sampled-data systems in [39] (Method 1). Next, to avoid the use of conservative
bounds in the previousmethod, we look directly for an underlying Lyapunov function
by formalizing the conditions as LMIs (Method 2). In both of these methods, we will
be dealing with local asymptotic stability. A preliminary version of these approaches
has been presented in [41]. Consider the polytope P defined in (5.5). If x(tk) is in
the polytope P , then

A[x(tk)] := Ã[x(t), e(t)] ∈ conv{A1, A2, . . . , Ap},

with

Aq = A[xq ] ∀q ∈ {1, 2, . . . , p}. (5.18)

Note that the set of barycentric coordinates that determine x(tk) with respect to
the vertex of the polytopeP , determine also A[x(tk)] with respect to the vertices in
(5.18). This is due to the linearity of A[x(tk)] in x(tk), and it can be seen as follows.
If x(tk) ∈ P , then there exist positive scalars

{λq(tk)}pq=1,

p∑

q=1

λq(tk) = 1 (5.19)

such that

x(tk) =
p∑

q=1

λq(tk)xq .

Hence

p∑

q=1

λq(tk)Aq =
p∑

q=1

λq(tk)
(
A0 + B0K +

m∑

i=1

[Kxq ]i Ni

)

= A0 + B0K +
m∑

i=1

[
K (

p∑

q=1

λq(tk)xq)
]

i
Ni

= Ã[x(t), e(t)]. (5.20)
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5.6.1 Method 1: Adaptation of a Result on General
Nonlinear Sampled-Data Systems

The following theoremproposes stability conditions using an adaptation of the results
in [39] for the case of bilinear systems.

Theorem 2 Consider the bilinear sampled-data system (5.17), the polytope P in
(5.5), and a function

T (γ, L) :=

⎧
⎪⎨

⎪⎩

1
Lr arctan(r) γ > L
1
L γ = L
1
Lr arctanh(r) γ < L

(5.21)

with

r =
√

∣∣γ
2

L2
− 1

∣∣ (5.22)

where L is given by

L = 1

2
max{−λmin(B

T + B), 0}. (5.23)

The parameter γ is given by γ = √
χ , with χ the solution to the following

optimization problem:
χ = min χ ′, (5.24)

satisfying the constraints ∃P ∈ R
n×n a symmetric positive definite matrix, ∃P2, P3 ∈

R
n×n, and ∃α > 0, such that χ ′ > 0 and

⎡

⎣
−P3 − PT

3 + I −P2 + PT
3 A j + P PT

3 B − B
∗ PT

2 A j + AT
j P2 + α I PT

2 B
∗ ∗ (α − χ ′)I + BT B

⎤

⎦ < 0,

∀ j ∈ {1, 2, ..., p}, (5.25)

where A j are the vertices given in (5.18). Assume that the MASP is strictly bounded
by T (γ, L), i.e. h < T (γ, L). Then, for the bilinear sampled-data system (5.17),
the set {(x, e, τ ) : x = 0, e = 0} is locally uniformly asymptotically stable.
Proof This proof is mainly based on an adaptation of Theorem 1 in [39] to the
bilinear case.

Let φ : [0, T̃ ] → R be the solution to

φ̇ = −2Lφ − γ (φ2 + 1) φ(0) = λ−1 (5.26)

where λ ∈ (0, 1). We recall the following result.
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Claim [7] φ(τ) ∈ [λ, λ−1] for all τ ∈ [0, T̃ ]. Moreover, we have that φ(T̃ ) = λ for
T̃ given by

T̃ (λ, γ, L) :=

⎧
⎪⎪⎨

⎪⎪⎩

1
Lr arctan

(
r(1−λ)

2 λ
1+λ

(
γ

L −1)+1+λ

)
γ > L

1
L
1−λ
1+λ

γ = L
1
Lr arctanh

(
r(1−λ)

2 λ
1+λ

(
γ

L −1)+1+λ

)
γ < L

(5.27)

with r is given in (5.22).

Consider the following notations

ξ := [xT , eT , τ ]T , (5.28)

F(ξ) := [ f (x, e)T , g(x, e)T , 1]T . (5.29)

Note that T̃ (λ, γ, L) in (5.27) and T (γ, L) in (5.21) satisfy T (γ, L) =
T̃ (0, γ, L), and for a fixed L and γ we have that T̃ (·, γ, L) is strictly decreas-
ing. Hence, since the conditions of the theorem require h to be strictly smaller than
T (γ, L), there exists λ ∈ (0, 1) such that h = T̃ (λ, γ, L). For the considered value
of λ, define the function

U (ξ) = V (x) + γφ(τ)W 2(e) (5.30)

with a quadratic function V (x) = xT Px , and W (e) = |e|. The function U (ξ) will
be used as a Lyapunov function. Note that

λmin(P)|x |2 + λγ |e|2 ≤ U (ξ) ≤ λmax (P)|x |2 + λ−1γ |e|2, ∀τ ∈ [0, h]. (5.31)

The Lyapunov function is nonincreasing at sampling instants as it can be seen
from the following

U (ξ+) = V (x+) + γφ(τ+)W 2(e+)

= V (x)

≤ V (x) + γφ(τ)W 2(e) = U (ξ), ∀τ ∈ [ε, h]. (5.32)

In order to treat the quantity 〈∇U (ξ), F(ξ)〉 we need two inequalities that corre-
spond to both 〈∇W (e), g(x, e)〉 and 〈∇V (x), f (x, e)〉. We get the first inequality as
follows:

〈
∇W (e), g(x, e)

〉
= eT

W (e)
(− Ã[x, e]x − Be)

= − 1

2W (e)
eT (BT + B)e − 1

W (e)
eT Ã[x, e]x

≤ 1

2
max{−λmin(B

T + B), 0}W (e) + | Ã[x, e]x |
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〈
∇W (e), g(x, e)

〉
≤ LW (e) + H(x, e) (5.33)

with

H(x, e) = ∣∣ Ã[x, e]x∣∣, (5.34)

and L given in (5.23). The second inequality is found as follows. Consider P , P2,
P3, γ , and α from the solution to the optimization problem in (5.24), (5.25). For all
(x + e) ∈ P , by multiplying the LMIs in (5.25) each by the appropriate coefficients
from (5.20), and then taking the sums over j ∈ {1, 2, · · · , p} we obtain

⎡

⎢⎣
−P3 − PT

3 + I −P2 + PT
3 Ã[x, e] + P PT

3 B − B

∗ PT
2 Ã[x, e] + ÃT [x, e]P2 + α I PT

2 B

∗ ∗ (α − γ 2)I + BT B

⎤

⎥⎦ < 0.

(5.35)

Define the continuous, positive definite functionρ(s) = αs2.Multiplying theLMI
in (5.35) by [ẋ T xT eT ] from the left, and by its transpose from the right implies

〈∇V (x), f (x, e)〉 + ρ(|x |) + ρ(W (e)) + H 2(x, e) − γ 2W 2(e)

+ 2(xT PT
2 + ẋ T PT

3 )(−ẋ + Ã[x, e]x + Be) ≤ 0, (5.36)

where the term

2(xT PT
2 + ẋ T PT

3 )(−ẋ + Ã[x, e]x + Be) = 0, (5.37)

has been obtained from the descriptor method [15]. Note that from (5.35) the fol-
lowing inequality will be satisfied locally inside the addressed polytopic region

〈∇V (x), f (x, e)〉 ≤ −ρ(|x |) − ρ(W (e)) − H 2(x, e) + γ 2W 2(e). (5.38)

From (5.33) and (5.38) we have

〈∇U (ξ), F(ξ)〉 ≤ −ρ(|x |) − ρ(W (e)) − H 2(x, e) + γ 2W 2(e)

+ 2γφ(τ)W (e)(LW (e) + H(x, e))

− γW 2(e)(2Lφ(τ) + γ (φ2(τ ) + 1))

≤ − ρ(|x |) − ρ(W (e)) − H 2(x, e)

+ 2γφ(τ)W (e)H(x, e) − γ 2W 2(e)φ2(τ )

yielding

〈∇U (ξ), F(ξ)〉 ≤ −ρ(|x |) − ρ(W (e)), ∀τ ∈ [0, h], ∀(x + e) ∈ P. (5.39)
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Finally, the local stability is straightforward using the results from [19]
(Theorem 3.18, page 52).

Remark 1 In this method, theMASP is calculated by the expression (5.21), based on
L and γ . L is calculated analytically, whereas γ is found by solving LMI conditions.
The optimization problem is aminimization of γ because for any constant L ,T (·, L)

is a strictly decreasing function. Note that since γ does not depend on L , and from
the continuity of T (γ, ·):

T (γ, 0) = lim
L→0

T (γ, L) = lim
L→0

arctan(
√∣∣ γ 2

L2 − 1
∣∣)

√∣∣γ 2 − L2
∣∣

= π

2γ
.

Remark 2 The stability conditions presented in this theorem are based on the generic
inequalities (5.38), (5.33) for nonlinear system presented in [39]. Our contribution is
to provide a constructive manner to apply this result to the case of bilinear systems.
We provide explicit forms of H(x, e), W (e), V (x), and we find L , γ that gives the
upper bound on MASP. We provide as well, an LMI formulation that allows us to
obtain sufficient stability condition. Note that in order to obtain LMI based stability
conditions the approach has been adapted to the bilinear case: the function H(·, ·)
used here has been modified to depend both on the error e(t) and the state x(t), while
in [39] it is only a function of x . Finally, note that the number of LMIs in (5.25) is
p (number of vertices in (5.18)), while in the preliminary version of the result [41],
the number of LMIs is p2.

5.6.2 Method 2: Direct Lyapunov Function Approach

In the previous method, the stability conditions are obtained using upper estimations
of the derivative of a Lyapunov function in (5.33) and (5.38). Such upper estimations
may be found conservative. In order to avoid them, we provide as follows a second
method which evaluates directly the derivative of a Lyapunov function.

Theorem 3 Consider the bilinear sampled-data system (5.17). Suppose that MASP
is bounded by a value T , i.e., h ≤ T . Assume that there exist symmetric positive
definite matrices P, X,Y ∈ R

n×n, such that the following LMIs are satisfied

[
AT

j P + PA j PB − aAT
j X − bAT

j Y

∗ −a( X
T + BT X + XB) − Y

T − b(BTY + Y B)

]
< 0,

∀ j ∈ {1, 2, ..., p}, ∀a ∈ {exp(1), 1}, ∀b ∈ {1, 0}, (5.40)

where A j are the vertices in given in (5.18).
Then the set {(x, e, τ ) : x = 0, e = 0} of the bilinear sampled-data system (5.17)

is locally uniformly asymptotically stable.
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Proof First, we recall the notations ξ and F(ξ) defined in (5.28), (5.29).We consider
the function

U (ξ) = V (x) + W (τ, e) (5.41)

with V (x) = xT Px , andW (τ, e) = exp(T −τ
T )eT Xe+ (T −τ

T )eT Y e. This Lyapunov
function will be used to prove the stability of the hybrid system (5.17). It is inspired
by the Lyapunov functions from [7, 37, 39].

From the fact that P > 0, X > 0 and Y > 0 we have that U (ξ) satisfies

U (ξ) ≥ λmin(P)|x |2 + λmin(X)|e|2, ∀τ ∈ [0, h], (5.42)

U (ξ) ≤ λmax (P)|x |2 + (λmax(X) exp(1) + λmax(Y ))|e|2, ∀τ ∈ [0, h]. (5.43)

At sampling instants, U (ξ) is nonincreasing

U (ξ+) = V (x+) + W (τ+, e+)

= xT Px

≤ xT Px + W (τ, e) = U (ξ), ∀τ ∈ [ε, h]. (5.44)

For all (x + e) ∈ P , by multiplying the LMIs in (5.40) by the appropriate
coefficients from (5.20), and taking the sums over the resulting inequalities, we have
that ∃ε > 0 such that

[
ÃT [x, e]P + P Ã[x, e] PB − a ÃT [x, e]X − bÃT [x, e]Y

∗ −a( X
T + BT X + XB) − Y

T − b(BTY + Y B)

]
≤ −ε I,

∀a ∈ {exp(1), 1}, ∀b ∈ {1, 0}. (5.45)

Note that for any τ ∈ [0,T ], we have that exp((T − τ)/T ) ∈ [1, exp(1)] and
(T − τ)/T ∈ [0, 1]. Thus, multiplying the LMI in (5.45) by [xT eT ] from the left,
and by its transpose from the right implies

2xT P Ã[x, e]x + 2xT
(
PB − exp(

T − τ

T
) ÃT [x, e]X − (

T − τ

T
) ÃT [x, e]Y

)
e

+ 2eT
(

− exp(
T − τ

T
)(

X

2T
+ XB) − Y

2T
− (

T − τ

T
)(Y B)

)
e

≤ −εxT x − εeT e,

which implies that

〈∇U (ξ), F(ξ)〉 ≤ −εxT x − εeT e, ∀τ ∈ [0, h], ∀(x + e) ∈ P. (5.46)

Finally, the local stability is straightforward using the results from [19]
(Theorem 3.18, page 52).
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Remark 3 In this method the MASP is found by solving a set of LMIs for the max-
imum possible value of T . The existence of a solution to the LMI conditions, guar-
antees the existence of a Lyapunov function that will yield the asymptotic stability.
Note that the proposed conditions directly study the derivative of the Lyapunov func-
tion. Numerical examples will show the conservatism reduction in comparison with
the approach in Method 1. Note that both the approach of Method 1 and Method 2
are robust not only to the sampled-data implementation but also to variations of the
sampling intervals.

Remark 4 Note that the local asymptotic stability of the hybrid system (5.17) implies
the local asymptotic stability of (5.7). As a matter of fact, the established asymptotic
stability is local in both Method 1 and Method 2, since the inequalities in (5.39) and
(5.46) are satisfied only inside the studied polytope P . Moreover, one can find an
invariant set E ∈ P , such that for x(t0) ∈ E one has |(x(t0), e(t0))| = |(x(t0), 0)| ≤
Δ for some Δ > 0, for which all solutions converge to the origin.

5.7 Numerical Example

In this section we present a numerical comparison of the two proposed methods.
Consider the following bilinear systems, described by the matrices

A0 =
⎡

⎣
−0.5 3 6.5
2.95 9.4 3.9
1.6 6.8 3.8

⎤

⎦ , B0 =
⎡

⎣
−2.8 −5.2
0.8 −10.1
1.6 −3

⎤

⎦ ,

N1 =
⎡

⎣
−1 0 0
0 0 0
0 0 0

⎤

⎦ , N2 =
⎡

⎣
0 2 −1
0 0 0
0 0 0

⎤

⎦ .

Acontinuous-time state feedback controllers has been computed in order to locally
stabilize the origin of the bilinear system. The linear state feedback controller defined
by

K =
[
0.0004 0.0018 0.0008
0.5601 1.6338 2.1431

]

was proven to establish the local stability for the bilinear system (in the continuous-
time case). We consider a local polytopic region

P = [−1,+1] × [−0.5,+0.5] × [−0.5,+0.5].

Using Method 1, we found that the system is locally stable if h < T = 7×10−3.
This was calculated from (5.21) for L = 29.09, γ = 204.79 and α = 68.55. Using
Method 2, we found that the sampled-data system is locally stable for a larger MASP
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h ≤ T = 18×10−3. The results illustrate the reduction of conservatism inMethod 2
with respect to Method 1, and with respect to the results in [41] where stability is
guaranteed for h ≤ 14.7 × 10−3.

5.8 Conclusion

In this chapter,we have provided sufficient conditions for the local stability of bilinear
sampled-data systems, controlled via a linear state feedback controller. We presented
results for estimating theMASP that guarantees the local stability of the system. Two
methods which are based on a hybrid system approach were considered. The first
method is an adaptation of results on the general nonlinear case, while the second
one is based on a direct search of a Lyapunov function for the hybrid model. The
stability conditions, in bothmethods,were given in the formofLMIs,which are easily
computationally tractable. The results were illustrated by a numerical example.
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38. D. Nešić, A. Teel, Input-output stability properties of networked control systems. IEEE Trans.

Autom. Control 49(10), 1650–1667 (2004)
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Chapter 6
On the Stability Analysis of Sampled-Data
Systems with Delays

Alexandre Seuret and Corentin Briat

Abstract Controlling a system through a network amounts to solve certain diffi-
culties such as, among others, the consideration of aperiodic sampling schemes and
(time-varying) delays. Inmost of the existing works, delays have been involved in the
input channel through which the system is controlled, thereby delaying in a contin-
uous way the control input computed by the controller. We consider here a different
setup where the delay acts in a way that the current control input depends on past
state samples, possibly including the current one, which is equivalent to consider-
ing a discrete-time delay, at the sample level, in the feedback loop. An approach
based on the combination of a discrete-time Lyapunov–Krasovskii functional and
a looped-functional is proposed and used to obtain tailored stability conditions that
explicitly consider the presence of delays and the aperiodic nature of the sampling
events. The stability conditions are expressed in terms of linear matrix inequalities
and the efficiency of the approach is illustrated on an academic example.

6.1 Introduction

Sampled-data systems are an important class of systems that have been extensively
studied in the literature [9] as they arise, for instance, in digital control [23] and
networked control systems [16, 38]. The aperiodic nature of the sampling schemes
creates additional difficulties in the analysis and the control of such systems as those
schemes aremuch less understood than their periodic counterpart. Several approaches
have beenproposed in order to characterize the behavior of such systems.Those based
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on the discretization of the sampled-data system have been discussed, for instance,
in [10, 17, 27, 35]. In these works, the sampling-period-dependent matrices of the
discrete-time system are embedded in a convex polytope and the analysis is carried
out using standard robust analysis techniques. This approach leads to efficient and
tractable conditions that can be easily used for control design. A limitation of the
approach, however, is that it only applies to unperturbed linear time-invariant systems.
A second approach is based on the so-called “input-delay approach” which consists
of reformulating the original sampled-data system into a time-delay system subject
to a sawtooth input-delay [11, 12, 20, 29]. This framework allows for the application
of well-known analysis techniques developed for time-delay systems, such as those
based on the Lyapunov-Krasovskii theorem. Its main advantage is its applicability
to uncertain, time-varying and even nonlinear systems. A limitation, however, is the
difficulty of designing controllers with such an approach. Robust analysis techniques
based, for instance, on small-gain results [24], Integral Quadratic Constraints [14, 18,
19] or well-posedness theory [1] have also been successfully applied. Approaches
based on impulsive systems using Lyapunov functionals [25] or clock-dependent
Lyapunov functions [3] also exist. Notably, the latter approach is able to characterize
the stability of periodic and aperiodic sampled-data systems subject to both time-
invariant and time-varying uncertainties. Even more interestingly, convex robust
stabilization conditions for sampled-data systems can also be easily obtained using
this approach. In this regard, this framework combines the advantages of discrete-time
and functional-based approaches. Finally, approaches based on looped-functionals
have been proposed in [7, 8, 31] in order to obtain stability conditions for sampled-
data and impulsive systems. This particular type of functional has the interesting
property of relaxing the positivity requirementwhich is necessary in Lyapunov-based
approaches. Instead of that, one demands the fulfillment of a “looping condition”, a
certain boundary condition that can be made structurally satisfied while constructing
the functional. In this regard, this class of functionals is therefore more general than
Lyapunov(-Krasovsksii) functionals as the looping condition turns out to be a weaker
condition than the positive definiteness condition; see e.g. [7, 8, 31].

We propose to derive here stability conditions for (uncertain) aperiodic sampled-
data systemswith discrete-time input delay.While the delayed sampled-data systems
considered in [22, 30] are subject to a continuous-time delay (the delay is expressed
in seconds), the systems we are interested in here involve a discrete-time delay (the
delay is expressed in a number of samples). A solution to this problem, based on
state augmentation, has been proposed in [32] for the constant delay case. This
approach yields quite accurate results at the expense of a rather high computational
cost, restricting then its application to small delay values. In order to remove this
limitation, an alternative approach relying on the use of a mixture of a Lyapunov–
Krasovskii and a looped-functional has been proposed in [33] in the case of constant
time-delays. The objective of the current chapter is to extend these conditions to the
case of time-varying delays. These conditions are expressed in terms of LMIs and
illustrated on a simple example.

The chapter is organized as follows. Section6.2 states the considered prob-
lem while Sect. 6.3 presents several preliminary results on looped-functionals. The
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main results of the chapter are proved in Sect. 6.4 where the cases of constant and
time-varying discrete delays are considered. An illustrative example and a discussion
of the results are finally treated in Sect. 6.5.

Notations: Throughout the chapter, Rn denotes the n-dimensional Euclidean space
with vector norm | · | and R

n×m is the set of all n × m real matrices. The sets Sn
and S

+
n represent the set of symmetric and symmetric positive definite matrices of

dimension n, respectively. Moreover, for two matrices A, B ∈ Sn , the inequality
A ≺ B means that A − B is negative definite. In symmetric matrices, the ∗’s are
a shorthand for symmetric terms. For any square matrix A ∈ R

n×n , we also define
He(A) := A + AT . Finally, I represents the identitymatrix of appropriate dimension
while 0 stands for the zero-matrix.

6.2 Problem Formulation

Let us consider here linear continuous-time systems of the form

ẋ(t) = Ax(t) + Bu(t), t ≥ 0,
x(0) = x0,

(6.1)

where x, x0 ∈ R
n and u ∈ R

m are the state of the system, the initial condition and the
control input, respectively. Above, the matrices A and B are not necessarily perfectly
known but may be uncertain and/or time-varying. The control input u is assumed to
be given by the following equation

u(t) = Kx(tk−h), t ∈ [tk, tk+1), k ∈ N, (6.2)

where K ∈ R
m×n is a controller gain and the sequence {tk}k∈N is the sequence of

sampling instants. It is assumed that this sequence is strictly increasing and does not
admit any accumulation point, that is, we have that tk → ∞ as k → ∞. We also
make the additional assumption that the difference Tk := tk+1 − tk belongs, for all
k ∈ N, to the interval [Tmin, Tmax ]where 0 ≤ Tmin ≤ Tmax . The delay h will either be
considered to be constant or bounded and time-varying. In the latter case, the delay
will be denoted by hk to emphasize its time-varying nature.

The closed-loop system obtained from the interconnection of (6.1) and (6.2) is
given, for all k in N, by

ẋ(t) = Ax(t) + BK x(tk−h), t ∈ [tk, tk+1),

x(θ) = x0, θ ≤ 0.
(6.3)

The discretized version of the previous system is given by

x(tk+1) = Ad(Tk)x(tk) + Bd(Tk)x(tk−h), k ≥ 0, (6.4)

where Ad(Tk) = eATk and Bd(Tk) = ∫ Tk
0 eAτ BKdτ .
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When the sampling period is fixed and known, the stability of the system (6.4) can
be established by either augmenting the model with past state values and using then
a quadratic discrete-time Lyapunov function, or by using a discrete-time Lyapunov–
Krasovskii functional directly on the delayed system [13, 36]. When the sampling is
aperiodic, however, discrete-time methods can still be used by embedding the uncer-
tain matrices Ad(Tk) and Bd(Tk) into a polytope [10, 15, 17]. Unfortunately, this
approach is only applicable when the matrices (A, B) of the system are constant and
perfectly known. To overcome this limitation, several methods can be applied. The
first one is the so-called input-delay approach [11, 12] and is based on the reformu-
lation of the sampled state into a delayed state with sawtooth delay. The analysis is
then carried out using, for instance, Lyapunov–Krasovskii functionals. The second
one is based on the reformulation of a sampled-data system into an impulsive system.
The stability of the underlying impulsive system can then be established out using
Lyapunov functionals [25], looped-functionals [8, 31] or clock-dependent Lyapunov
functions [3, 4, 6]. In this chapter, we will opt for an approach based on a combi-
nation of a looped-functional and a discrete-time Lyapunov–Krasovskii functional,
and demonstrate its applicability. Note that an approach based on a looped-functional
combinedwith a Lyapunov function has been considered in [32] togetherwith a state-
augmentation approach for the system. A major drawback is that the dimension of
the augmented system is hn and, therefore, LMI-based methods will not scale very
well with the delay size. The consideration of a Lyapunov–Krasovskii functional in
the current chapter aims at overcoming such a difficulty by working directly on the
original system.

Remark 1 It is worth mentioning that the class of systems considered in this chapter
differs from the class of systems described by

ẋ(t) = Ax(t) + BK x(tk − h̄), t ∈ [tk, tk+1),

x(θ) = φ(θ), θ ∈ [−h̄, 0], (6.5)

where h̄ in a positive scalar. Such systems have been extensively studied in the
literature; see e.g. [22, 26, 30]. Note, however, that when the sampling-period T is
constant and the delay h̄ satisfies h̄ = hT , then the two classes of systems coincide
with each other. In this regard, none of these classes is included in the other meaning,
therefore, that distinct methods need to be developed for each class.

6.3 Preliminaries

6.3.1 An Appropriate Modeling Using Lifting

The looped-functional approach relies on the characterization of the trajectories of
system (6.3) in a lifted domain [8, 37]. Therefore, we view the entire state trajectory



6 On the Stability Analysis of Sampled-Data Systems with Delays 101

as a sequence of functions {x(tk + τ), τ ∈ (0, Tk]}k∈Nwith elements having a unique
continuous extension to [0, Tk] defined as

χk(τ ) := x(tk + τ) with χk(0) = lims↓tk x(s). (6.6)

Finally we define K[Tmin ,Tmax ] as the set defined by

K[Tmin ,Tmax ] :=
⋃

T∈[Tmin , Tmax ]
C ([0, T ],Rn)

where C ([0, T ],Rn) denotes the set of continuous functions mapping [0, T ] to Rn .
Using this notation, system (6.3) can be rewritten as

χ̇k(τ ) = Aχk(τ ) + BKχk−h(0), τ ∈ [0, Tk), ∀k ∈ N. (6.7)

Looped-functionals consider this state definition for assessing stability in an effi-
cient and flexible manner. Notably, the positivity requirement of the functional can
be shown to be relaxed and the resulting stability condition can be generally written
as a convex expression of the system data, see e.g. [7, 8], allowing then for an easy
application of these results to time-varying systems.

Up to now, looped-functionals have not been used to obtain stability conditions for
sampled-data systems with discrete time-delay h. We, therefore, propose to extend
the results initially proposed in [7, 8, 31] to this case. In what follows, we will denote
by χh

k the function collecting the sampled and delayed values of the state, i.e.,

∀θ = −h,−h + 1, . . . , 0, χh
k (θ) = χk+θ (0) = x(tk+θ ). (6.8)

We, finally, define the set Dh as

Dh = {
X : {−h, . . . , 0} → R

n
}

which contains all possible sequences from {−h, . . . , 0} to Rn .

6.3.2 Functional-Based Results

The following technical definition is necessary before stating the main general result
about looped-functionals result.

Definition 1 [8] Let 0 < Tmin ≤ Tmax < +∞. A functional

f : [0, Tmax ] × K[Tmin ,Tmax ] × [Tmin, Tmax ] → R
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is said to be a looped-functional if the following conditions hold

1. the equality

f (0, z, T ) = f (T, z, T ) (6.9)

holds for all functions z ∈ C([0, T ],Rn) ⊂ K[Tmin ,Tmax ] and all T ∈ [Tmin, Tmax ],
and

2. it is differentiable with respect to the first variable with the standard definition of
the derivative.

The set of all such functionals is denoted by LF([Tmin, Tmax ]).
The idea for proving stability of (6.3) is to look at a positive definite quadratic

form V (x) such that the sequence {V (χk(Tk))}k∈N is monotonically decreasing. This
is formalized below through a functional existence result:

Theorem 1 Let Tmin ≤ Tmax be two finite positive scalars and V : Rn × Dhmax →
R+ be a form verifying

X ∈ Dhmax , μ1||X ||2hmax
≤ V (X (0), X) ≤ μ2||X ||2hmax

, (6.10)

for some scalars 0 < μ1 ≤ μ2. Assume that one of the following equivalent state-
ments hold:

(i) The sequence {V (χk(Tk), χh
k )}k∈N is decreasing

(ii) There exists a looped-functional V ∈ LF([Tmin, Tmax ]) such that the functional
Wk as

Wk(τ, χk, χ
h
k ) := τ

Tk
Λk + V (χk(τ ), χh

k ) + V (τ, χk, Tk), (6.11)

where Λk = V (χk(Tk), χh
k+1) − V (χk(Tk), χh

k ), has a derivative along the tra-
jectories of system χ̇k(τ ) = Aχk(τ ) + BKχk−h(k)(0), τ ∈ [0, Tk]

d

dτ
Wk(τ, χk, χ

h
k ) := 1

Tk
Λk + d

dτ
V (χk(τ ), χh

k ) + d

dτ
V (τ, χk, Tk), (6.12)

which is negative definite for all τ ∈ (0, Tk), Tk ∈ [Tmin, Tmax ], k ∈ N.

Then, the solutions of system (6.3) are asymptotically stable for any sequence
{tk}k∈N satisfying tk+1 − tk ∈ [Tmin, Tmax ], k ∈ N.

Proof The proof is omitted but is similar to the proof provided in [8, 31].

In the remainder of the chapter, wewill propose three stability conditions address-
ing the cases of constant and time-varying delay h for both certain and uncertain
aperiodic sampled-data systems.
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6.4 Main Results

6.4.1 Stability Analysis for Constant Delay h

This section provides a stability result for aperiodic sampled-data systems with a
constant delay h. We have the following result:

Theorem 2 The sampled-data system (6.7) with the delay h and Tk := tk+1 − tk ∈
[Tmin, Tmax ], k ∈ N, is asymptotically stable if there exist matrices R, Q, Z ∈ S

n+,
P, X ∈ S

2n, S ∈ S
n, U ∈ R

n×n and a matrix Y ∈ R
4n×n such that the LMIs

Φ0 :=
[
I
I

]
P

[
I
I

]
� 0,

Φ1(θ) :=
[
F0(θ) θY

� −θ Z

]
≺ 0,

Φ2(θ) := F0(θ) + θF1 ≺ 0,

(6.13)

hold for all θ ∈ {Tmin, Tmax } where

F0(θ) = F00 + F01 + θ He

([
M1

M3

]ᵀ
P

[
M0

0

])
,

F00 = Mᵀ
ΔSMΔ + θMᵀ

T XMT + He(Mᵀ
ΔUMT + MΔY ),

F01 = Mᵀ
2 Φ0M2 − Mᵀ

T PMT + Mᵀ
3 QM3 − Mᵀ

4 QM4 + h2Mᵀ
δ RMδ − Mᵀ

h RMh,

F1 = Mᵀ
0 ZM0 + He(Mᵀ

0 (SMΔ +UMT )) − 2Mᵀ
T XMT ,

(6.14)
with

M0 = [
A 0 0 BK

]
, M1 = [

I 0 0 0
]
, M2 = [

0 I 0 0
]
,

M3 = [
0 0 I 0

]
, M4 = [

0 0 0 I
]
, MΔ = [

I −I 0 0
]
,

Mδ = [
0 I −I 0

]
, Mh = [

0 0 I −I
]
, MT = [

Mᵀ
2 Mᵀ

3

]ᵀ
.

Proof Consider a Lyapunov function for the discrete-time system (6.4) given by

V (χk(τ ), χh
k ) =

[
χk(τ )

χk(0)

]ᵀ
P

[
χk(τ )

χk(0)

]
+

k−1∑
i=k−h

χ
ᵀ
i (0)Qχi (0)

+h
−1∑

i=−h

k−1∑
j=k+i

δ
ᵀ
i (0)Rδi (0),

(6.15)

where δi (0) = χi+1(0) − χi (0). On the other hand, we define the functional V as
follows
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TkV (τ, χk, Tk) = τ(Tk − τ)

[
χk(Tk)
χk(0)

]ᵀ
X

[
χk(Tk)
χk(0)

]

+ τ(χk(τ ) − χk(Tk))ᵀS(χk(τ ) − χk(Tk))

+ 2τ(χk(τ ) − χk(Tk))ᵀU
[

χk(Tk)
χk(0)

]
− τ

Tk∫
τ

χ̇
ᵀ
k (s)Z χ̇k(s)ds,

(6.16)

where the matrices above are such that Z ∈ S
n+, S ∈ S

n , X ∈ S
2n and U ∈ R

n×2n .
This functional has been build in order to satisfy the looped condition. Indeed, one
can easily verify that

V (0, χk, Tk) = V (Tk, χk, Tk) = 0,

for all Tk ∈ [Tmin, Tmax ]. As already highlighted in [8, 31], the consideration of
looped-functionals allows to enlarge the set of acceptable functionals in comparison
to Lyapunov–Krasovskii functionals. Firstly, the matrices S, X and U are sign-
indefinite in the current setting while they would have been required to be positive
definite in usual Lyapunov approaches such as the one in [11, 25]. Second, the pro-
posed functional includes more components than it is usually proposed in the litera-
ture (see for instance [11, 25, 31]). Indeed, looped-functionals allow one to include
terms like χk(Tk) which would have been difficult to consider in the Lyapunov–
Krasovskii framework. Following Theorem 1, let us consider

Ẇk(τ, χk, χ
h
k ) = 1

Tk

(
Λk + Tk V̇ (χk(τ ), χh

k ) + TkV̇ (τ, χk, Tk)
)
, (6.17)

where Λk is defined in Theorem 1. By virtue of the same theorem, the asymptotic
stability of the system (6.7) is then proved if V (χk(0), χh

k ) is positive definite and
Ẇk is negative definite. Note that the necessity is lost by choosing specific forms for
the functionals (6.15)–(6.16). Regarding the first condition, we have that

V (χk(0), χh
k ) = χ

ᵀ
k (0)Φ0χk(0) +

k−1∑
i=k−h

χ
ᵀ
i (0)Qχi (0)

+ h
−1∑

i=−h

k−1∑
j=k+i

δ
ᵀ
i (0)Rδi (0)

which is positive definite provided that the matricesΦ0, Q and R are positive definite
as well. Let us focus now on the condition onWk for which we will provide an upper-
bound expressed in terms of the augmented vector

ξk(τ ) := col(χk(τ ), χk(Tk), χk(0), χk−h(0)).
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By virtue of the above definition, Λk can be rewritten as

Λk =
[

χk+1(0)
χk+1(0)

]ᵀ
P

[
χk+1(0)
χk+1(0)

]
−

[
χk(Tk)
χk(0)

]ᵀ
P

[
χk(Tk)
χk(0)

]

+
k∑

i=k−h+1
χ

ᵀ
i (0)Qχi (0) −

k−1∑
i=k−h

χ
ᵀ
i (0)Qχi (0)

+ h
−1∑

i=−h

(
k∑

j=k+i+1
δ

ᵀ
i (0)Rδi (0) −

k−1∑
j=k+i

δ
ᵀ
i (0)Rδi (0)

)
.

Since χk+1(0) = χk(Tk), the previous expression can be easily expressed in terms
of the augmented vector ξk(τ ). Applying then Jensen’s inequality yields

Λk ≤ ξ
ᵀ
k (τ )

(
Mᵀ

2 Φ0M2 −
[
M2

M3

]ᵀ
P

[
M2

M3

]
+ Mᵀ

3 QM3 − Mᵀ
4 QM4

+ h2Mᵀ
δ RMδ − Mᵀ

h RMh

)
ξk(τ )

= ξ
ᵀ
k (τ )F01ξk(τ ).

(6.18)

Let us focus now on the second term of Ẇ , as defined in (6.17), given by

Tk V̇ (χk(τ ), X) = 2Tk

[
χk(τ )

χk(0)

]ᵀ
P

[
χ̇k(τ )

0

]

= Tkξ
ᵀ
k (τ )He

([
M1

M3

]ᵀ
P

[
M0

0

])
ξk(τ ).

(6.19)

Finally, the last term of Ẇ , as defined in (6.17), is given by

TkV̇ (τ, χk, Tk) = (Tk − 2τ)

[
χk(Tk)
χk(0)

]ᵀ
X

[
χk(Tk)
χk(0)

]

+ (χk(τ ) − χk(Tk))ᵀS(χk(τ ) − χk(Tk)) + 2τ χ̇
ᵀ
k (τ )S(χk(τ ) − χk(Tk))

+ 2(χk(τ ) − χk(Tk))ᵀU
[

χk(Tk)
χk(0)

]
+ 2τ χ̇

ᵀ
k (τ )U

[
χk(Tk)
χk(0)

]

+ τ χ̇
ᵀ
k (τ )Z χ̇k(τ ) −

Tk∫
τ

χ̇
ᵀ
k (s)Z χ̇k(s)ds.

(6.20)

We can rewrite the above expression in terms of the matrices F00, F1, F2 defined
in Theorem 2 to get

TkV̇ (χk, τ ) = ξ
ᵀ
k (τ ) [F00 + τ F1 − He(YMΔ)] ξk(τ ) −

Tk∫

τ

χ̇
ᵀ
k (s)Z χ̇k(s)ds.

(6.21)
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In order to find a convenient upper-bound on the last integral term, we propose to
consider the affine version of Jensen’s inequality, discussed in [2], to get that

−
Tk∫

τ

χ̇
ᵀ
k (s)Z χ̇k(s)ds ≤ ξ

ᵀ
k (τ )

[
He(YMΔ) + (Tk − τ)Y Z−1Y ᵀ]

ξk(τ ),

where Y ∈ R
4n×n is a free matrix. The benefit of the affine version of Jensen’s

inequality is, in essence, only of computational nature. It has indeed been discussed
in [2] that when the interval of integration is uncertain or time-varying, it is preferable
to use the affine version to limit the increase of conservatism. The price to pay is
a moderate increase of the computational complexity through the presence of the
additional matrix Y .

Substituting then this inequality back into (6.21), leads to

TkV̇ (χk, τ ) ≤ ξ
ᵀ
k (τ )

[
F00 + τ F1 + (Tk − τ)Y Z−1Y ᵀ]

ξk(τ ), (6.22)

where F00 and F1 are given in Theorem 2. Summing then (6.18), (6.19) and (6.22)
all together, we get that Ẇk is negative definite if

F0(Tk) + τ F1 + (Tk − τ)Y Z−1Y ᵀ (6.23)

is negative definite for all (τ, Tk) ∈ S where

S := {(τ, T ) ∈ R
2
+ : τ ∈ [0, T ], T ∈ [Tmin, Tmax ]},

and where F0(Tk) is defined in Theorem 2. Exploiting the fact that the matrix (6.23)
is affine in τ and Tk , hence convex in these variables, allows us to easily conclude
that the matrix (6.23) is negative definite for all τ ∈ [0, Tk] and all Tk ∈ [Tmin, Tmax ]
if and only if it is negative definite at the vertices of the set S or, equivalently,
negative definite on the set {(Tmin, Tmin), (Tmax , Tmax ), (0, Tmin), (0, Tmax )}. Each
one of these points leads to one of the following LMI conditions:

Φ1(Tmin) = F00 + Tmin F1 ≺ 0,
Φ1(Tmax ) = F00 + Tmax F1 ≺ 0,
Φ̃2(Tmin) := F00 + TminY Z−1Y ᵀ ≺ 0,
Φ̃2(Tmax ) := F00 + TmaxY Z−1Y ᵀ ≺ 0.

Applying finally the Schur complement with respect to the last term in Φ̃2(·)
yields Φ2(·). The proof is complete.

A similar approach is considered in [33] with the difference that another looped-
functional V is used. Another notable difference is the use of the reciprocally convex
combination lemma of [28] yielding less conservative conditions without the intro-
duction of the slack variable Y .
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6.4.2 Stability Analysis for Time-Varying Delay hk

Interestingly, Theorem 2 can be easily extended to cope with time-varying delays. In
this respect, we now consider that the delay is time-varying and belongs to {0, . . . , h̄},
h̄ ∈ N. This leads to the following result:

Corollary 1 The sampled-data system (6.7)with time-varyingdelay hk ∈ {0, . . . , h̄}
and Tk := tk+1 − tk ∈ [Tmin, Tmax ], k ∈ N, is asymptotically stable if there exist
matrices R, Z ∈ S

n+, P, X ∈ S
2n, S ∈ S

n, U ∈ R
n×n and a matrix Y ∈ R

4n×n such
that the LMIs

Ψ0 :=
[
I
I

]
P

[
I
I

]
� 0,

Ψ1(θ) :=
[
G0(θ) θY

� −θ Z

]
≺ 0,

Ψ2(θ) := G0(θ) + θG1 ≺ 0,

(6.24)

hold for all θ ∈ {Tmin, Tmax } where G00 = F00, G1 = F1 and

G0(θ) = G00 + G01 + θ He

([
M1

M3

]ᵀ
P

[
M0

0

])
,

G01 = Mᵀ
2 Φ0M2 − Mᵀ

T PMT + h̄2Mᵀ
δ RMδ − Mᵀ

h RMh .

(6.25)

Proof As in the proof of Theorem 2, we consider the looped-functional V given
in (6.15). However, we shall consider here the Lyapunov–Krasovskii functional V
given by

V (χk(τ ), χ h̄
k ) =

[
χk(τ )

χk(0)

]ᵀ
P

[
χk(τ )

χk(0)

]
+ h̄

−1∑

i=−h̄

k−1∑

j=k+i

δ
ᵀ
i (0)Rδi (0), (6.26)

where δi (0) = χi+1(0) − χi (0). This functional is nothing else but the one we con-
sidered for establishing Theorem 2 in which the matrix Q has been set to zero. The
proof is now very similar to the one of Theorem 2 and, therefore, only the part
pertaining on Λk is detailed because of its dissimilarity. Simple calculations show
that

Λk =
[

χk(Tk)
χk(Tk)

]ᵀ
P

[
χk(Tk)
χk(Tk)

]
−

[
χk(Tk)
χk(0)

]ᵀ
P

[
χk(Tk)
χk(0)

]

+ h̄2(χk+1(0) − χk(0))ᵀR(χk+1(0) − χk(0)) − h̄
k−1∑

i=k−h̄

δ
ᵀ
i (0)Rδi (0).
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Since hk ≤ h̄ it holds that

Λk ≤
[

χk(Tk)
χk(Tk)

]ᵀ
P

[
χk(Tk)
χk(Tk)

]
−

[
χk(Tk)
χk(0)

]ᵀ
P

[
χk(Tk)
χk(0)

]

+ h̄2(χk+1(0) − χk(0))ᵀR(χk+1(0) − χk(0)) − hk
k−1∑

i=k−hk

δ
ᵀ
i (0)Rδi (0).

Applying Jensen’s inequality to the last summation term, and using the definition
of the matrices M2, M3, Mδ yields

Λk = ξ
ᵀ
k (τ )

(
Mᵀ

2 Φ0M2 −
[
M2

M3

]ᵀ
P

[
M2

M3

]
+ h̄2Mᵀ

δ RMδ − Mᵀ
h RMh

)
ξk(τ )

= ξ
ᵀ
k (τ )G01ξk(τ ).

(6.27)
The rest of the proof is identical to the proof of Theorem 2.

6.4.3 Robust Stability Analysis

One of the main advantages of the proposed method based lies in the possibility of
extending the stability conditions to the case of uncertain systems. Assume now that
the matrices of the system are time-varying/uncertain and can be written as

[
A(t) B(t)

] =
N∑

i=1

λi (t)
[
Ai Bi

]
, (6.28)

where N is a positive integer, Ai and Bi , i = 1, . . . , N , are some matrices of appro-
priate dimensions and the vector λ(t) evolves in the N unit simplex defined as

U :=
{

λ ∈ R
N
+ :

N∑

i=1

λi = 1

}
. (6.29)

This leads us to the following result:

Corollary 2 The sampled-data system (6.7)–(6.28) with constant delay h and
Tk := tk+1 − tk ∈ [Tmin, Tmax ], k ∈ N, is asymptotically stable if there exist matrices
R, Q, Z ∈ S

n+, P, X ∈ S
2n, S ∈ S

n, U ∈ R
n×n and some matrices Yi ∈ R

4n×n such
that the LMIs

Φ0 :=
[
I
I

]
P

[
I
I

]
� 0,

Φ i
1(θ) :=

[
Fi
0(θ) θYi
� −θ Z

]
≺ 0,

Φ i
2(θ) := Fi

0(θ) + θFi
1 ≺ 0,

(6.30)
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hold for all θ ∈ {Tmin, Tmax } where

Fi
0(θ) = Fi

00 + F01 + θ He

([
M1
M3

]ᵀ
P

[
Mi

0
0

])
,

Fi
00 = Mᵀ

ΔSMΔ + θMᵀ
T XMT + He(Mᵀ

ΔUMT + MΔYi )

Fi
01 = Mᵀ

2 Φ0M2 − Mᵀ
T PMT + Mᵀ

3 QM3 − Mᵀ
4 QM4 + h2Mᵀ

δ RMδ − Mᵀ
h RMh,

F1 = Mi
0
ᵀ
ZMi

0 + He(Mi
0
ᵀ
(SMΔ +UMT )) − 2Mᵀ

T XMT ,

(6.31)
with Mi

0 = [
Ai 0 0 Bi K

]
.

Proof The proof is straightforward by noting that the LMI conditions in Theorem 2
are convex in the matrix M0. Remarking also that

M0 = [
A(t) 0 0 B(t)K

] =
N∑

i=1

λi (t)
[
Ai 0 0 Bi K

]

implies that the LMI conditions are convex in the matrices of the system A(t) and
B(t). By virtue of standard results on systems with polytopic uncertainties (see e.g.
[5]), it is enough to check the feasibility of the LMI at the vertices of the set U and
the result directly follows.

Remark 2 The above result can be easily extended to the time-varying delay case
by setting the matrix Q to 0. This is not presented for brevity.

6.5 Example

Example 1 ([39]) Let us consider the sampled-data system (6.3) with matrices

A =
[
0 1
0 −0.1

]
, B =

[
0

−0.1

]
and K = [

3.75 11.5
]
.

Using an eigenvalue-based analysis, theoretical stability-preserving upper bounds
for the constant sampling period canbe determined for anyfixeddelay h. These values
can be understood as a theoretical limit for the upper bounds obtained in the aperi-
odic case. These theoretical upper bounds and the results computed by solving the
conditions of Theorem 2 are given in Tables6.1 and 6.2. More particularly, Table6.1
compares the maximal allowable sampling period T = Tmax = Tmin obtained using
Theorem 2 and previous results of the literature. We can immediately see that the
numerical values obtained using Theorem 2 are slightlymore conservative than those
previously obtained by the same authors. Yet, the obtained numerical values are close
to the theoretical value.

On the other hand, Table6.2 compares the obtained results with those obtained
with the methods developed in [32, 33]. It can be seen again that the results of [32]
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Table 6.1 Maximal allowable sampling period Tmax = Tmin for Example 1 with periodic sam-
plings for several values of h (the symbol -∗ means “untested because of a too high computational
complexity”)

h 0 1 2 5 10

Theoretical bounds 1.729 0.763 0.463 0.216 0.112

[26] (with τ = hT ) 1.278 0.499 0.333 0.166 0.090

[21] (with τ = hT ) 1.638 0.573 0.371 0.179 0.096

[30] (with τ = hT ) 1.721 0.701 0.431 0.197 0.103

[33] 1.728 0.761 0.448 0.199 0.103

[32] 1.729 0.763 0.463 -∗ -∗

Theorem 2 1.720 0.536 0.318 0.146 0.077

Table 6.2 Maximal allowable sampling period Tmax for Example 1 with Tmin = 10−2 and for
several values of h (the symbol -∗ means “untested because of a too high computational complexity”)

h 0 1 2 5 10

[33] 1.708 0.618 0.377 0.176 0.094

[32] 1.729 0.763 0.463 -∗ -∗

Theorem 2 1.245 0.460 0.283 0.132 0.071

Table 6.3 Maximal allowable sampling period Tmax for Example 1 with Tmin = 10−2 and for
several values of the upper bound h̄ of the time-varying delay h

h̄ 0 1 2 5 10

Corollary 1, Tmin = Tmax – 0.465 0.264 0.115 0.059

Corollary 1, Tmin < Tmax – 0.402 0.240 0.109 0.057

are less conservative for small values of the delay h. The main reason for this is
that the current chapter uses Jensen’s inequality, which is more conservative than
the integral inequality considered in [32] for large values of the delay. However, the
computational burden of the approach of [32] increases exponentially with the delay
h, making it inapplicable for systems with large delays.

Finally, Table6.3 shows the results obtained using Corollary 1, which addresses
the case of time-varying delay hk . We can observe a notable decrease of the maximal
allowable sampling period.

6.6 Conclusions

In this chapter, a way for analyzing stability of periodic and aperiodic uncertain
sampled-data systems with discrete-time delays is presented. Instead of using a
discrete-time criterion that would prevent the generalization of the approach to
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uncertain systems with time-varying uncertainties, an alternative approach based
on looped-functionals has been preferred. The main novelty of the method relies on
the stability analysis, which merges the continuous-time and discrete-time criteria
at the same time. This is combination of discrete- and continuous-time approach
has been possible by the introduction of a lifted version of the state vector. Further
extensions aims at reducing the conseratism of the stability conditions by employing
recent and more efficient inequalities such as the reciprocally convex combination
lemma [28] and Wirtinger-based integral inequality [34].
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Chapter 7
Output Feedback Event-Triggered Control

Mahmoud Abdelrahim, Romain Postoyan, Jamal Daafouz
and Dragan Nešić

Abstract Event-triggered control has been proposed as an alternative implemen-
tation to conventional time-triggered approach in order to reduce the amount of
transmissions. The idea is to adapt transmissions to the state of the plant such that
the loop is closed only when it is needed according to the stability or/and the perfor-
mance requirements. Most of the existing event-triggered control strategies assume
that the full state measurement is available. Unfortunately, this assumption is often
not satisfied in practice. There is therefore a strong need for appropriate tools in the
context of output feedback control. Most existing works on this topic focus on linear
systems. The objective of this chapter is to first summarize our recent results on the
case where the plant dynamics is nonlinear. The approach we follow is emulation as
we first design a stabilizing output feedback law in the absence of sampling; then
we consider the network and we synthesize the event-triggering condition. The latter
combines techniques from event-triggered and time-triggered control. The results
are then proved to be applicable to linear time-invariant (LTI) systems as a par-
ticular case. We then use these results as a starting point to elaborate a co-design
method, which allows us to jointly construct the feedback law and the triggering
condition for LTI systems where the problem is formulated in terms of linear matrix
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inequalities (LMI). We then exploit the flexibility of the method to maximize the
guaranteed minimum amount of time between two transmissions. The results are
illustrated on physical and numerical examples.

7.1 Introduction

In many control applications, nowadays, the plant and the controller communicate
with each other via a shared communication network. This architecture is referred
to as Networked Control Systems (NCS) and offers great benefits compared to the
conventional point-to-point connection in terms of lighter wiring, lower installation
costs, flexible reconfiguration and ease of maintenance. A major challenge in NCS
is to achieve the control objectives despite the communication constraints induced
by the network (like time-varying sampling, delay, packet dropout, etc.). Since the
network may be shared by other applications, it is desirable in practice to reduce the
usage of the network.

In conventional setups, data transmissions are time-driven and two successive
transmission instants are constrained to be less than a fixed constant, called the
maximum allowable transmission interval (MATI) (see e.g. [16, 26]). Although this
strategy is appealing from the analysis and the implementation point of views, it
is not obvious that time-triggering is always appropriate for NCS. Indeed, the same
amount of transmissions per unit of time is generated under this paradigm, evenwhen
transmissions are not necessary in view of the control objectives. To overcome this
shortcoming, event-triggered control has been proposed as an alternative [6, 7].

Event-triggered control is an implementation technique in which the transmis-
sion instants are defined based on a state-dependent criterion. The idea is to adapt
the amount of transmissions according to the system state such that the feedback
loop is closed only when it is needed in view of the stability and/or performance
requirements. This may significantly reduce the amount of transmissions compared
to the time-triggering paradigm, see e.g. [12, 20, 24] and the references therein.
A fundamental issue in the event-triggered implementation is to ensure the exis-
tence of a uniform strictly positive lower bound on the inter-transmission times. The
existence of such a lower bound on the inter-transmission times is not only useful
to prove stability but this requirement is also essential to prevent the occurrence of
Zeno phenomenon, i.e. to avoid the generation of an infinite number of transmissions
in a finite time. Moreover, the existence of this lower bound is required in practice
in order to respect the hardware constraints.

Most of the existing results on event-triggered control assume that the full state
measurement is available and can be used for feedback, see e.g. [12, 15, 21]. This is
not realistic inmany applications since in practicewe often have access to an output of
the plant and not to the full state. The design of output feedback event-triggered con-
trollers is much more challenging, in particular because it is more difficult to ensure
the existence of a minimum amount of time between two control input updates com-
pared to the state feedback case, see [8]. Few results in the literature have addressed
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this problem and mostly for linear systems. To the best of our knowledge, this
problem has been first investigated in [14] and then in e.g. [8, 9, 18, 25, 28] for
LTI systems and only in [27] for nonlinear systems.

The purpose of this chapter is to explain how to synthesize stabilizing output feed-
back event-triggered controllers for a class of nonlinear systems. We first design the
event-triggered controllers by emulation, i.e. a stabilizing feedback law is first con-
structed in the absence of network and then the triggering condition is synthesized
to preserve stability. The design objectives are to guarantee a global asymptotic
stability property and to ensure the existence of a uniform strictly positive lower
bound on the inter-transmission times. The proposed strategy combines the event-
triggering condition of [24] adapted to output measurements and the results on time-
driven sampled-data systems in [17]. Indeed, the event-triggering condition is only
(continuously) evaluated after T units of times have elapsed since the last transmis-
sion, where T corresponds to the MATI given by [17]. This two-step procedure is
justified by the fact that the adaptation of the event-triggering condition of [24] to
output feedback on its own can lead to the Zeno phenomenon. It has to be noted that
the event-triggering mechanism that we propose is different from the periodic event-
triggered control paradigm, see e.g. [11, 19],where the triggering condition is verified
only at some periodic sampling instants. In our case, the triggering mechanism is
continuously evaluated, once T units of time have elapsed since the last transmis-
sion. For LTI systems, the required conditions are reformulated as an LMI which
is shown to be always feasible for LTI systems that are stabilizable and detectable.
To further reduce transmissions, we start from the results obtained by emulation to
develop anLMI-based co-design procedure to simultaneously design the output feed-
back law and the event-triggering condition for LTI systems. We have then exploited
these LMIs to enlarge the guaranteed minimum inter-transmission time. The results
are demonstrated on illustrative examples. This chapter summarizes our results in
[1–4], where the interested reader will find the proofs as well as additional results
and examples.

7.2 Emulation Design for Nonlinear Systems

In this section, we explain how to synthesize stabilizing output feedback event-
triggered controllers for a class of nonlinear systems by emulation. After deriving
the hybrid model of the closed-loop system, we recall on an illustrative example
taken from [8] the main issue with output feedback event-triggered controllers which
does not allow for straightforward extension of the existing results on state feedback
control. Then, we present the technical assumptions we impose on the nonlinear
system and we introduce the triggering condition. We then state the main stability
result. Finally, we demonstrate the technique on a single-link robot arm model.
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7.2.1 Hybrid Model

Consider the nonlinear plant model

ẋ p = f p(xp, u), y = gp(xp), (7.1)

where xp ∈ R
np is the plant state,u ∈ R

nu is the control input, y ∈ R
ny is themeasured

output of the plant. We first ignore the communication constraints and we focus on
general dynamic controllers of the form

ẋc = fc(xc, y), u = gc(xc, y), (7.2)

where xc ∈ R
nc is the controller state. We emphasize that the xc-system is not neces-

sarily an observer. Moreover, (7.2) captures static feedback laws as a particular case
by setting u = gc(y). We follow an emulation approach in this section. Hence, we
assume that the controller (7.2) renders the origin of system (7.1) globally asymp-
totically stable in the absence of network. Afterwards, we take into account the
communication constraints in the sense that the plant output and the control input
are sent only at transmission instants ti , i ∈ Z≥0. We are interested in an event-
triggered implementation in the sense that the sequence of transmission instants is
determined by a criterion based on the output measurement, see Fig. 7.1. At each
transmission instant, the plant output is sent to the controller which computes a new
control input that is instantaneously transmitted to the plant. We assume that this
process is performed in a synchronous manner and we ignore the computation times
and the possible transmission delays. In that way, we obtain

ẋ p = f p(xp, û), ẋc = fc(xc, ŷ) t ∈ [ti , ti+1]˙̂y = 0, ˙̂u = 0 t ∈ [ti , ti+1]
ŷ(t+i ) = y(ti ), û(t+i ) = u(ti ), u = gc(xc, ŷ),

where ŷ and û, respectively, denote the last transmitted values of the plant output and
the control input. We assume that zero-order-hold devices are used to generate the
sampled values ŷ and û, which leads to ˙̂y = 0 and ˙̂u = 0. We introduce the network-
induced error e := (ey, eu) ∈ R

ne , where ey := ŷ − y and eu := û − u which are

Fig. 7.1 Event-triggered
control schematic [8]

Plant

Triggering
condition

Controller
y(t)ŷ(t)u(t)û(t)
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reset to 0 at each transmission instant. We notice that the closed-loop system is a
hybrid dynamical model since it combines continuous-time evolutions (the plant
and the controller dynamics) and discrete phenomena (transmissions). We model the
event-triggered control system using the hybrid formalism of [10] as in e.g. [8, 9,
20, 23] for which a jump corresponds to a transmission. In that way, the system is
modelled as

⎡

⎣
ẋ
ė
τ̇

⎤

⎦ =
⎡

⎣
f (x, e)
g(x, e)

1

⎤

⎦ (x, e, τ ) ∈ C,

⎡

⎣
x+
e+
τ+

⎤

⎦ =
⎡

⎣
x
0
0

⎤

⎦ (x, e, τ ) ∈ D, (7.3)

where x := (xp, xc) ∈ R
nx and τ ∈ R≥0 is a clock variable which describes the

time elapsed since the last jump, f (x, e) = [ f p(xp, gc(xc, y + ey) + eu), fc(xc, y +
ey)] and g(x, e) = [− ∂

∂xp
gp(xp) f p(xp, gc(xc, y + ey) + eu), − ∂

∂xc
gc(xc, y + ey)

fc(xc, y + ey)].
Theflowand the jump sets of (7.3) are defined according to the triggering condition

wewill define. As long as the triggering condition is not violated, the system flows on
C and a jump occurswhen the state enters in D.When (x, e, τ ) ∈ C ∩ D, the solution
may flow only if flowing keeps (x, e, τ ) in C , otherwise the system experiences a
jump. The functions f and g are assumed to be continuous and the sets C and D
will be closed (which ensure that system (7.3) is well-posed, see Chap.6 in [10]).
We briefly recall some basic notions related to the hybrid formalism of [10].

The solutions to system (7.3) are defined on so-called hybrid time domains. A
set E ⊂ R≥0 × Z≥0 is called a compact hybrid time domain if E = ∪([t j , t j+1], j)
for j ∈ {0, ..., J − 1} and for some finite sequence of times 0 = t0 ≤ t1 ≤ ... ≤ tJ ,
and it is a hybrid time domain if for all (T, J ) ∈ E, E ∩ ([0, T ] × {0, 1, ..., J })
is a compact hybrid time domain. A function φ : E → R

n is a hybrid arc if E is
a hybrid time domain and if for each j ∈ Z≥0, t 	→ φ(t, j) is locally absolutely
continuous on I j := {t : (t, j) ∈ E}. A hybrid arc φ is a solution to system (7.3)
if: (i) φ(0, 0) ∈ C ∪ D; (ii) for any j ∈ Z≥0, φ(t, j) ∈ C and φ̇(t, j) = F(φ(t, j))
for almost all t ∈ I j ; (iii) for every (t, j) ∈ domφ such that (t, j + 1) ∈ domφ,
φ(t, j) ∈ D and φ(t, j + 1) = G(φ(t, j)). A solution φ to system (7.3) is maximal
if it cannot be extended, complete if its domain, domφ, is unbounded, and it is Zeno
if it is complete and sup

t
domφ < ∞.

7.2.2 Motivational Example [8]

Before presenting our results, we first explain the issue with output-based event-
triggered controllers which prevents the direct extension of state feedback results.
To clarify the problem, we recall the numerical example in [8] where an LTI plant
model is given by
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ẋ p =
[
0 1

−2 3

]
xp +

[
0
1

]
u, y = [−1 4] xp, (7.4)

where x ∈ R
2 is the plant state, u ∈ R is the control input and y ∈ R is the output

of the plant. Let us first consider the state feedback case as in [24]. In the absence
of network, the closed-loop system can be stabilized by the state feedback controller
u = [1 − 4]xp. By taking into account the effect of the network, we define the
network-induced error as e(t) = x(ti ) − x(t) for almost all t ∈ [ti , ti+1]. It has been
shown in [24] that the triggering condition

|e| ≤ σ |x |, (7.5)

for some sufficiently small σ > 0, guarantees an asymptotic stability property for
the closed-loop while the inter-transmission times are lower bounded by a strictly
positive lower bound, under some conditions as illustrated in Figs. 7.2 and 7.3.
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Fig. 7.2 State trajectories of the plant
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Fig. 7.4 Inter-transmission times with a zoom-in of the last transmissions

We recall now the output feedback case in [8] where system (7.4) is stabilized by
the following dynamic controller

ẋc =
[
0 1
0 −5

]
xc +

[
0
1

]
y, u = [1 − 4] xc, (7.6)

where xc ∈ R
2 is the state of the dynamic controller.Define the network-induced error

as ey(t) = y(ti ) − y(t) for almost all t ∈ [ti , ti+1]. The straightforward extension of
the triggering condition (7.5) yields

|ey| ≤ σ |y|. (7.7)

Unfortunately, this triggering rule is not suitable since when y = 0, an infinite
number of jumps occurs for any value of xp �= 0. This situation is shown in Fig. 7.4
where we note that the transmission instants accumulate at t = 1.7674. In [8], this
issue was overcome by adding a constant to the triggering condition which leads to

|ey | ≤ σ |y| + ε, (7.8)

for some ε > 0, from which a practical stability property is derived, i.e. the state
trajectory converges to a neighbourhood to the origin whose ‘size’ depends on the
parameter ε.

In this chapter, we aim to design the flow and the jump sets of system (7.3), i.e. the
triggering condition, such that a global asymptotic stability property is guaranteed
and the number of transmissions is reduced, while ensuring the existence of a strictly
positive lower bound on the inter-transmission times.

7.2.3 Stability Results

We first make the following assumption on system (7.3), which is inspired by [17].

Assumption 1 There exist locally Lipschitz positive definite functions V : Rnx →
R≥0 and W : Rne → R≥0, a continuous function H : Rnx → R≥0, real numbers
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L ≥ 0, γ > 0, α, α ∈ K∞1 and continuous, positive definite functions δ : Rny →
R≥0 and α : R≥0 → R≥0 such that, for all x ∈ R

nx

α(|x |) ≤ V (x) ≤ α(|x |), (7.9)

for all e ∈ R
ne and almost all x ∈ R

nx

〈∇V (x), f (x, e)〉 ≤ −α(|x |) − H 2(x) − δ(y) + γ 2W 2(e) (7.10)

and for all x ∈ R
nx and almost all e ∈ R

ne

〈∇W (e), g(x, e)〉 ≤ LW (e) + H(x). (7.11)

�

Conditions (7.9) and (7.10) imply that the system ẋ = f (x, e) is L2-gain stable
from W to (H,

√
δ). This property can be analysed by investigating the robustness

property of the closed-loop system (7.1) and (7.2) with respect to input and/or output
measurement errors in the absence of sampling. Note that, sinceW is positive definite
and continuous (since it is locally Lipschitz), there exists χ ∈ K∞ such thatW (e) ≤
χ(|e|) (according to Lemma 4.3 in [13]) and hence (7.9), (7.10) imply that the
system ẋ = f (x, e) is input-to-state stable (ISS). We also assume an exponential
growth condition of the e-system on flows in (7.11) which is similar to the one used
in [17].

Under Assumption 1, the adaptation of the idea of [24] leads to a triggering
condition of the form

γ 2W 2(e) ≤ δ(y). (7.12)

The problem is that Zeno phenomenon may occur with this type of triggering
conditions as explained in Sect. 7.2.2. We propose instead to evaluate the event-
triggering condition only after T units have elapsed since the last transmission,
where T corresponds to the MATI given by [17]. We thus redesign the triggering
condition as follows:

γ 2W 2(e) ≤ δ(y) or τ ∈ [0, T ], (7.13)

where we recall that τ ∈ R≥0 is the clock variable introduced in (7.3). Consequently,
the flow and the jump sets of system (7.3) are

C =
{
(x, e, τ ) : γ 2W 2(e) ≤ δ(y) or τ ∈ [0, T ]

}

D =
{
(x, e, τ ) :

(
γ 2W 2(e) = δ(y) and τ ≥ T

)
or

(
γ 2W 2(e) ≥ δ(y) and τ = T

)}
.

(7.14)

1A continuous function γ : R≥0 → R≥0 is of class K if it is zero at zero, strictly increasing, and
it is of class K∞ if in addition γ (s) → ∞ as s → ∞.
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Hence, the inter-jump times are uniformly lower bounded by T . This constant is
selected such that T < T (γ, L), where

T (γ, L) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

Lr
arctan(r), γ > L ,

1

L
, γ = L ,

1

Lr
arctanh(r), γ < L ,

(7.15)

with r :=
√∣∣∣(

γ

L
)2 − 1

∣∣∣ and L , γ come from Assumption 1 as in [17]. We are ready

to state the main result.

Theorem 2 Suppose that Assumption 1 holds and consider system (7.3)with the flow
and the jump sets (7.14), where the constant T is such that T ∈ (0,T (γ, L)). There
exists2 β ∈ K L such that any solution φ = (φx , φe, φτ ) with (φx (0, 0), φe(0, 0))
∈ R

nx+ne satisfies

|φx(t, j)| ≤ β(|(φx (0, 0), φe(0, 0))|, t + j) ,∀(t, j) ∈ domφ, (7.16)

furthermore, if φ is maximal, then it is complete. �

Property (7.16) indicates that the state trajectory of the x-system asymptotically
converges to the origin while the completeness property implies that the hybrid time
domains of the maximal solutions to (7.3) are unbounded. That is equivalent to
forward completeness for continuous-time ordinary differential equations [5].

7.2.4 Illustrative Example

Consider the dynamics of a single-link robot arm

ẋ p1 = xp2, ẋ p2 = − sin(xp1) + u, y = xp1, (7.17)

where xp1 denotes the angle, xp2 the rotational velocity and u the input torque. The
system can be written as

ẋ p = Axp + Bu − φ(y), y = Cxp, (7.18)

2A continuous function γ : R≥0 × R≥0 → R≥0 is of class K L if for each t ∈ R≥0, γ (., t) is of
class K , and, for each s ∈ R≥0, γ (s, .) is decreasing to zero.
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where xp = (xp1, xp2), A =
[
0 1
0 0

]
, B =

[
0
1

]
, C =

[
1
0

]T

, φ(y) =
[

0
sin(y)

]
. In

order to stabilize system (7.18), we first construct a state feedback controller of
the form u = Kxp + BTφ(y). Hence, system (7.17) reduces to

ẋ p = (A + BK )xp, y = Cxp. (7.19)

We design the gain K such that the eigenvalues of the closed-loop system (7.19)
are (−1,−2) (which is possible since the pair (A, B) is controllable). Hence, the
gain K is selected to be K = [−2 − 3]. Next, since only the measurement of y is
available, we construct a state-observer of the following form

ẋc = Axc + Bu − φ(y) + M(y − Cxc)
= (A − MC)xc + Bu − φ(y) + My,

(7.20)

where xc ∈ R
2 is the estimated state and M is the observer gain matrix. We design

the gain matrix M such that the eigenvalues of (A − MC) are (−5,−6) (which is
possible since the pair (A,C) is observable). Thus, the observer gain is selected to
be M = [11 30]T . As a result, the closed-loop system in the absence of sampling
is given by

ẋ p = Axp + Bu − φ(y), y = Cxp
ẋc = (A − MC)xc + Bu − φ(y) + My, u = Kxc + BTφ(y).

(7.21)

We now take into account the effect of the network. We consider the scenario
where the controller receives the output measurements only at transmission instants
ti , i ∈ Z≥0 while the controller is directly connected to the plant actuators.We design
a triggering condition of the form (7.13). As a consequence, the network-induced
error is e = ey = ŷ − y and we obtain, for almost all t ∈ [ti , ti+1]

ẋ p = Axp + B
(
Kxc + BTφ(ŷ)

)
− φ(y)

ẋc = (A − MC + BK )xc + MCxp + Mey . (7.22)

Let x = (xp, xc). Then, system (7.22) can be written as follows

ẋ =
[

A BK
MC A − MC + BK

] [
xp
xc

]
+

[
0
M

]
e +

[
φ(y + e) − φ(y)

0

]

=: A x + Be + ψ(y, e).
(7.23)

Since e = ŷ − y and in view of (7.17), we have ė = −ẏ = −xp2. Hence, the
functions f, g in (7.3) are f (x, e) = A x + Be + ψ(y, e) and g(x, e) = −xp2. By
taking W (e) = |e| and V (x) = xT Px , all conditions in Assumption 1 are satis-
fied. We obtain the numerical values L = 0, γ = 26.5333, which give, in view of
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(7.15), T = 0.0592. We take T = 0.059. Figure7.5 shows that the plant and the
estimated state asymptotically converge to the origin as expected. The generated
inter-transmission times are shown in Fig. 7.6 where we can observe the interaction
between the time-triggered and the event-triggered criteria. We ran simulations for
200 randomly distributed initial conditions such that |(x(0, 0), e(0, 0))| ≤ 100 and
τ(0, 0) = 0. The obtained minimum and average inter-transmission times, respec-
tively, denoted as τmin and τavg are τmin = 0.059 and τavg = 0.0625. The constant
τavg serves as a measure of the amount of transmissions (the bigger τavg, the less
transmissions). Figure7.7 presents the inter-transmission times with the triggering
condition γ 2W 2(e) ≤ δ(y) without enforcing a constant time T between transmis-
sions, (i.e. T = 0 in (7.13), (7.14)). We note that Zeno phenomenon occurs in this
case as discussed in Sect. 7.2.2.
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Fig. 7.7 Inter-transmission times with [24]

7.2.5 Application to Linear Time-Invariant Systems

We now focus on the particular case of linear systems. We formulate the required
conditions in Assumption 1 as an LMI constraint. Consider the LTI plant model

ẋ p = Apxp + Bpu, y = Cpxp, (7.24)

where xp ∈ R
np , u ∈ R

nu , y ∈ R
ny and Ap, Bp,Cp are matrices of appropriate

dimensions. We design the following dynamic controller to stabilize (7.24) in the
absence of sampling

ẋc = Acxc + Bcy, u = Ccxc + Dcy, (7.25)

where xc ∈ R
nc and Ac, Bc,Cc, Dc are matrices of appropriate dimensions. After-

wards, we take into account the communication constraints. Then, the hybrid model
(7.3) is

⎡

⎣
ẋ
ė
τ̇

⎤

⎦ =
⎡

⎣
A1x + B1e
A2x + B2e

1

⎤

⎦ (x, e, τ ) ∈ C,

⎡

⎣
x+
e+
τ+

⎤

⎦ =
⎡

⎣
x
0
0

⎤

⎦ (x, e, τ ) ∈ D,

(7.26)

where

A1 :=
[

Ap+BpDcCp BpCc

BcCp Ac

]
, B1 :=

[
BpDc Bp

Bc 0

]
,

A2 :=
[ −Cp(Ap+BpDcCp) −Cp BpCc

−CcBcCp −Cc Ac

]
, B2 :=

[ −Cp BpDc −Cp Bp

−CcBc 0

]
.

We obtain the following result.
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Proposition 1 Consider system (7.26). Suppose that there exist ε1, ε2, μ > 0 and a
positive definite symmetric real matrix P such that

[
A T

1 P + PA1 + ε1Inx + A T
2 A2 + ε2C

T
pC p PB1

BT
1 P −μIne

]
≤ 0, (7.27)

where C p = [Cp 0] and 0 represents the matrix of zeros of size ny × nc. Then
Assumption 1 globally holds with V (x) = xT Px, α(s) = λmin(P)s2, α(s) =
λmax(P)s2, W (e) = |e|, H(x) = |A2x |, L = |B2|, γ = √

μ, α(s) = ε2s
2 and

δ(y) = ε1|y|2, for s ≥ 0. �

Note that, in view of (7.14) and Proposition 1, the flow and the jump sets become

C =
{
(x, e, τ ) : γ 2|e|2 ≤ ε1|y|2 or τ ∈ [0, T ]

}

D =
{
(x, e, τ ) :

(
γ 2|e|2 = ε1|y|2 and τ ≥ T

)
or

(
γ 2|e|2 ≥ ε1|y|2 and τ = T

)}
.

(7.28)

7.3 Co-design for LTI Systems

In Sect. 7.2, we have assumed that the feedback control lawwas known in the absence
of network, then we synthesized the triggering condition. This sequential order
of design may prevent an efficient usage of the computation and communication
resources as we are restricted by the initial choice of the feedback law. To overcome
this limitation, in this section, we use the triggering condition designed in Sect. 7.2.5
for LTI systems as a starting point to simultaneously design the event-triggering
condition and the feedback law.

Consider the LTI plant model (7.24) and the dynamic controller (7.25). For the
sake of simplicity, we design the dynamic controller (7.25) with Dc = 0 and we
obtain the hybrid model (7.26). Our objective is to design the dynamic controller
(7.25) and the flow and the jump sets (7.28) of the hybrid system (7.26) such that
the conclusions of Theorem 2 hold. The idea is to start from LMI (7.27) to establish
an LMI-based co-design procedure of both the flow and the jump sets (7.28) and
the dynamic controller (7.25). It is important to note that the derivation of LMI
for co-design from (7.27) is not trivial as the nonlinear term A T

2 A2 depends on
the controller matrices. This term does not appear in the classical output feedback
design problems and cannot be directly handled by congruence transformations like
in standard output feedback design problems [22].
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7.3.1 Analytical Result

The following theorem reduces the co-design problem of the output feedback law
(7.25) and the parameters of the flow and the jump sets (7.28) to the solution of LMI.
We use boldface symbols to emphasize the LMI decision variables.

Theorem 3 Consider system (7.26) with the flow and the jump sets (7.28). Sup-
pose that there exist symmetric positive definite real matrices X,Y ∈ R

np×np , real
matrices M ∈ R

np×np , Z ∈ R
np×ny , N ∈ R

nu×np and ε,μ > 0 such that3

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

Σ(Y Ap + ZCp) � � � � � �

Ap + MT Σ(ApX + BpN) � � � � �

ZT 0 −μIny � � � �

BT
p Y BT

p 0 −μInu � � �

Y Ap + ZCp M 0 0 −Y � �

Ap ApX + BpN 0 0 −Inp −X �

Cp CpX 0 0 0 0 −εIny

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

(7.29)⎡

⎢⎢⎣

−Iny � � �

0 −Inu � �

−CT
p 0 −Y �

−XCT
p −NT −Inp −X

⎤

⎥⎥⎦ < 0. (7.30)

Take γ = √
μ, L = |B2|, ε1 = ε−1 and

Ac = V−1(M − Y ApX − Y BpN − ZCpX)U−T

Bc = V−1Z, Cc = NU−T ,
(7.31)

where U, V ∈ R
np×np are any invertible matrices such that4 UV T = Inp − XY .

Then, there exists χ ∈ K L such that any solution φ = (φx , φe, φτ ) satisfies

|φx(t, j)| ≤ χ(|(φx(0, 0), φe(0, 0))|, t + j) ∀(t, j) ∈ domφ (7.32)

and, if φ is maximal, it is also complete. �

We note that by solving the LMI (7.29), (7.30), which are computationally
tractable, we obtain the feedback law, see (7.31), and the parameters of the trig-
gering condition γ 2|e|2 ≤ ε1|y|2 or τ ∈ [0, T ]. We note also that the nonstandard

3The symbol � denotes symmetric blocks while Σ(.) stands for (.) + (.)T .

4In view of the Schur complement of LMI (7.30), we deduce that

[
Y In p

In p X

]
> 0 which implies

that X − Y−1 > 0 and thus, In p − XY is nonsingular. Hence, the existence of nonsingular matrices
U, V is always ensured.
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term A T
2 A2 in (7.27) is the reason why the constructed LMI (7.29) differs from the

classical one andwhy the additional convex constraint (7.30) is needed in Theorem 3.

7.3.2 Optimization

Although the existence of strictly positive lower bound on the inter-transmission
times is guaranteed by different techniques in the literature, the available expres-
sions are often subject to some conservatism. It is therefore unclear whether the
event-triggered controller has a dwell-time which is compatible with the hardware
limitations. We investigate in this section how to employ the LMI conditions (7.29),
(7.30) to maximize the guaranteed minimum inter-transmission time in order to
increase the implementability of the event-triggered controller. We first state the
following lemma to motivate our approach.

Lemma 1 Let S be the set of solutions to system (7.26), (7.28). It holds that

T = inf
φ∈S

{t ′ − t : ∃ j ∈ Z>0, (t, j), (t, j + 1), (t ′, j + 1), (t ′, j + 2) ∈ domφ}.
(7.33)

�

Lemma 1 implies that the lower bound T on the inter-transmission times guaran-
teed by (7.28) corresponds to the actual minimum inter-transmission time as defined
by the right-hand side of (7.33). Hence, by maximizing T , we enlarge the minimum
inter-transmission time.

To maximize T , we will maximizeT (γ, L) in (7.15). We see thatT increases as
γ and L decrease. Hence, our objective is to minimize γ and L . Since γ corresponds
to

√
μ and μ enters linearly in the LMI (7.29), we can directly minimize γ under

the LMI (7.29), (7.30). The minimization of L , on the other hand, requires more

attention. We recall that L = |B2| =
√

λmax(B
T
2 B2), where

BT
2 B2 =

[
BT
c C

T
c CcBc 0
0 BT

p C
T
p CpBp

]
, (7.34)

hence,

L = max

(√
λmax(BT

c C
T
c CcBc),

√
λmax(BT

p C
T
p CpBp)

)
. (7.35)

Therefore, L can be minimized up to
√

λmax(BT
p C

T
p CpBp) which is fixed as it only

depends on the plant matrices. In view of (7.31), we have that

BT
c C

T
c CcBc = ZT V−TU−1NT NU−T V−1Z. (7.36)



128 M. Abdelrahim et al.

Thus, L depends nonlinearly on the LMI variables N and Z and it can a priori
not be directly minimized. To overcome this issue, we impose the following upper
bound

BT
c C

T
c CcBc < αβIny , (7.37)

for some α, β > 0. As a result, minimizing α and β may help to minimize L . We
translate inequality (7.37) into an LMI and we state the following claim.

Claim Assume that LMI (7.29), (7.30) are verified. Then, there exist α,β > 0 such
that ⎡

⎢⎢⎣

αIny � � �

0 βInu � �

0 NT X �

Z 0 Inp Y

⎤

⎥⎥⎦ > 0, (7.38)

which implies that inequality (7.37) holds. �

We note that (7.38) does not introduce additional constraints on system (7.26)
compared to (7.29), (7.30). This comes from the fact that there always exist α, β > 0
(eventually large) such that (7.38) holds, in view of Schur complement of (7.38).

In conclusion, we formulate the problem as amultiobjective optimization problem
as wewant tominimizeμ, α, β under the constraint (7.29), (7.30) and (7.38). Several
approaches have been proposed in the literature to handle such problems. We choose
the weighted sum strategy among others and we formulate the LMI optimization
problem as follows

min λ1μ + λ2α + λ3β
subject to (7.29), (7.30), (7.38)

(7.39)

for some weights λ1, λ2, λ3 ≥ 0.

7.3.3 Illustrative Example

Consider the LTI plant model

ẋ p =
⎡

⎣
0 1 0
0 0 1
10 −5 −6

⎤

⎦ xp +
⎡

⎣
0
10

−50

⎤

⎦ u, y = [
1 0 0

]
xp. (7.40)

First, we solve the optimization problem (7.39) to seek for the largest possible
lower bound on the inter-transmission times.We set λ1 = λ2 = λ3 = 1 andwe obtain
T = 0.005. Table7.1 gives the minimum and the average inter-sampling times for
100 randomly distributed initial conditions such that |(x(0, 0), e(0, 0))| ≤ 100 and
τ(0, 0) = 0. We observe from the corresponding entries in Table7.1 that τmin =
τavg which implies that generated transmission instants are periodic. This may be
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Table 7.1 Minimum and average inter-transmission times for 100 randomly distributed initial
conditions such that |(x(0, 0), e(0, 0))| ≤ 100 and τ(0, 0) = 0 for a simulation time of 10s

Guaranteed dwell-time τmin τavg

Optimization problem
(7.39) λ1 = λ2 =
λ3 = 1

0.0049 0.0049 0.0049

Optimization problem
(7.41) λ1 = 1, λ2 =
0, λ3 = 0, λ4 = 104

0.0047 0.0047 0.0052

Emulation (7.27) 7.3389 ×10−6 7.3389 ×10−6 8.5396 ×10−4

explained by the fact that the output-dependent part in (7.28), i.e.μ|e|2 ≤ ε−1|y|2, is
‘quickly’ violated. To avoid that phenomenon, we optimize the parametersμ, ε such
that the rule is violated after the longest possible time since the last transmission
instant, see [4] for more detailed explanations. Thus, the problem can be formulated
as follows

min λ1μ + λ2α + λ3β + λ4ε
subject to (7.29), (7.30), (7.38)

(7.41)

for some weights λ1, λ2, λ3, λ4 ≥ 0.
By playing with the weights λ1, λ2, λ3, λ4, we found that the best tradeoff

between τmin and τavg is obtained with λ1 = 1, λ2 = 0, λ3 = 0, λ4 = 104, as shown
in Table7.1. Note that when we consider the same dynamic controller as in the case
(7.41) and we design the triggering condition by emulation according to (7.27), we
obtain the results shown in the last row of Table7.1. We note that the co-design
procedure yields larger lower bound on the inter-transmission times as well as larger
average inter-transmission time, i.e. less amount of transmissions. Figures7.8, 7.9,
respectively, shows the state trajectory and a close up of the inter-transmission times
generated by the event-triggered controller obtained by (7.41).
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Fig. 7.8 State trajectories of the plant and of the dynamic controller



130 M. Abdelrahim et al.

5.8 6 6.2 6.4 6.6 6.8 7

0,001

0,003

0,007

0,009

0,011

Transmission instants

In
te

r−
tr

an
sm

is
si

on
 ti

m
es

T

Fig. 7.9 Inter-transmission times

7.4 Conclusion

In this chapter, we have first developed output feedback event-triggered controllers to
stabilize a class of nonlinear systems by following the emulation design approach. In
emulation, the sequential order of the synthesis of event-triggered controllers restricts
us with the initial choice of the stabilizing feedback law. One solution to increase
the design flexibility is to simultaneously establish the feedback law and the event-
triggering condition so that the stabilization and the communication constraints are
handled at the same time. For this purpose,wehave proposed anLMI-based co-design
algorithm for LTI systems and we have then discussed how the resulted LMI can be
exploited to optimize the parameters of the event-triggering condition. Future work
will focus on the robustness of the triggeringmechanismwith respect tomeasurement
noise and to consider some performance requirements.
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Chapter 8
Stabilization by Quantized Delayed State
Feedback

Francesco Ferrante, Frédéric Gouaisbaut and Sophie Tarbouriech

Abstract This chapter is devoted to the design of a static-state feedback controller
for a linear system subject to saturated quantization and delay in the input. Due
to quantization and saturation, we consider, for the closed-loop system, a weaker
notion of stability, namely local ultimate boundedness. The closed-loop system is
then modeled as a stable linear system subject to discontinuous perturbations. Then
by coupling a certain Lyapunov–Krasovskii functional via S-procedure to adequate
sector conditions, we derive sufficient conditions to ensure for the trajectories of
the closed-loop system finite time convergence into a compact Su surrounding the
origin, from every initial condition belonging to a compact set S0. Moreover, the size
of the initial condition set S0 and the ultimate set Su are then optimized by solving a
convex optimization problemover linearmatrix inequality (LMI) constraints. Finally,
an example extracted from the literature shows the effectiveness of the proposed
methodology.
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8.1 Introduction

Networked control systems have been extensively studied due to their practical inter-
est (see for instance [12]) and also because the introduction of communication net-
works in control loops poses new theoretical challenges. Indeed, the constraints
induced by networks can seriously degrade the closed-loop system performances.
Among all these constraints, two of them are particularly important: quantization and
delay. For a complete overview of the issues arising in networked control systems
see; [10, 12, 15].

Quantization is a phenomenon occurring in all data networks, where a real-valued
signal is transformed into a piecewise constant signal. Whenever quantization is
uniform, global asymptotic stability of the closed-loop cannot be established; see
[6]. In particular, for large signals, the quantizer saturates and as a consequence,
global stabilization cannot be obtained except for open-loop stable systems; see
[17]. Furthermore, as uniform quantizers manifest a dead-zone around the zero, in
general, local asymptotic stability for the origin cannot be guaranteed; see [2, 3].
Several methods have been proposed in the literature to deal with quantized systems.
One first method to cope with quantized closed-loop systems consists of adopting a
robust control point of view. Namely, the closed-loop system ismodeled as a nominal
system perturbed by a perturbation, i.e., the quantization error. Then, by using sector
conditions and classical tools like small gain theorem or Lyapunov functions coupled
with Input-to-State stability (ISS) properties [2, 3, 14] or S-procedure [1, 8], closed-
loop stability can be assessed [10, 18].

Time delays naturally occur in networked control systems due to finite-time prop-
agation of signals in communication media. Clearly, the presence of time delays
can induce an additional degradation of the closed-loop performances; see [11]. In
that case, the idea generally proposed is to extend classical results (without delay)
to account time delay by considering either a Lyapunov–Razumikhin function [14]
or a Lyapunov–Krasovskii functional [5, 9]. Using Lyapunov–Razumikhin function
leads to very conservative results [11] but may deal with time-varying delays. Con-
cerning Lyapunov–Krasovskii-based approach, the applicability of thismethodology
requires to properly define a Lyapunov–Krasovskii functional. Such a choice may
entail some conservatism and some technical problems; see [16].

In this chapter, we focus on the stabilization problem for linear systems subject
to constant time delay and saturated quantization in the input channel. The result-
ing closed-loop system is modeled as a linear time-delay system perturbed by two
different nonlinearities allowing to describe more precisely the saturation and the
quantization phenomena separately. Following the work of [19], the saturation func-
tion is embedded into a local sector condition, while the nonlinearity associated
to the quantization error is encapsulated into a sector via the use of certain sector
conditions. At this point, due to the presence of the uniform quantizer, (at least for
unstable open-loop plants), it is impossible to prove asymptotic stability of the origin;
see [18]. To overcome this problem, we focus on local ultimate boundedness for the
closed-loop system. In particular, we design the controller gain K in a way such that
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there exists a set (inner set) which is a finite time attractor for every initial condition
belonging to a compact set (outer set) containing the previous one. Then, by relying
on a Lyapunov–Krasovskii functional, we turn the solution to the considered control
design problem into the solution to a quasi-LMI optimization problem. Finally, a
procedure based on convex optimization is proposed to optimize the size of the outer
and the inner sets.
Notation: The notation P > 0, for P ∈ R

n×n , means that P is symmetric and pos-
itive definite. The sets Sn and S

+
n represent, the set of symmetric and symmet-

ric positive definite matrices of R
n×n , respectively. Given a vector x (a matrix

A), x ′(A′) denotes the transpose of x(A). The symmetric matrix
[

A B
∗ C

]
stands

for
[
A B
B′ C

]
. The matrix diag(A, B) stands for the diagonal matrix

[
A 0
0 B

]
. More-

over, for any square matrix A ∈ R
n×n , we define He(A) = A + A′. The matrix 1

represents the identity matrix of appropriate dimension. The notation 0n,m stands
for the matrix in R

n×m whose entries are zero and, when no confusion is possi-
ble, the subscript will be omitted. For any function x : [−h, +∞) → R

n , the
notation xt (θ) stands for x(t + θ), for all t ≥ 0 and all θ ∈ [−h, 0]. |x | refers
to the classical Euclidean norm and ‖xt‖ refers to the induced norm defined
by ‖xt‖ = sup

θ∈[−h,0]
|x(t + θ)|. For P > 0, |x |P refers to the modified Euclidean

norm |x |P = √
x ′Px . Its induced norm is then denoted ‖xt‖P . For a generic

positive ρ, we define the functional sets LV (ρ) = {
x ∈ C 1 : V (xt , ẋt ) ≤ ρ

}
and

int LV (ρ) = {
x ∈ C 1 : V (xt , ẋt ) < ρ

}
. For a generic positive ρ, we define the sets

S(ρ) = {x ∈ R
n : η(|x |, 0) ≤ ρ} and int S(ρ) = {x ∈ R

n : η(|x |, 0) < ρ}, where η

is a class K function.

8.2 Problem Statement

Consider the following continuous-time system with delayed saturated quantized
input:

ẋ(t) = Ax(t) + B sat(q(u(t − h)))

x(0) ∈ R
n (8.1)

where x ∈ R
n is the state of the system, x(0) the initial state, u the control input

and h ≥ 0 the constant input delay. A, B are real constant matrices of appropriate
dimensions. The saturation map, sat(u) : Rm → R

m is classically defined from the
symmetric saturation function having as level the positive vector ū : sign(ū(i))min
{ū(i), |ū(i)|}. The quantization function, depicted in Fig. 8.1, is defined as

q :
{
R

p → R
p

u �→ Δsign(u)� |u|
Δ

. (8.2)
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Fig. 8.1 Quantization
function
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Assuming to fully measure the state x , we want to stabilize system (8.1) (in a
sense to be specified) by a static-state feedback controller, that is

u = Kx .

Plugging the above controller yields the following dynamics for the closed-loop
system

ẋ(t) = Ax(t) + B sat(q(Kx(t − h))). (8.3)

Now, due to the delayed input, the closed-loop system turns into a time-delay
system, thus a suitable initial condition needs to be selected for the controller. Notice
that, actually the infinite dimensionality is introduced in the closed-loop system by
the controller. Thus, to make (8.3) an effective description of the closed-loop system,
the initial condition of the delayed-system (8.3) needs to be chosen as

x(t) = x0 = x(0) ∀t ∈ [−h, 0].

In particular this choice avoids jumps in the plant state at time t = h. Furthermore,
note that x0 is assumed to be a constant given vector of Rn . Then, the closed-loop
system can be described by the following functional differential equation

ẋ(t) = Ax(t) + B sat(q(Kx(t − h)))

x(t) = x0 ∀t ∈ [−h, 0]. (8.4)
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By defining

Ψ (y) = q(y) − y

φ(y) = sat(y) − y,

system (8.3) can be rewritten equivalently as

ẋ(t) = Ax(t) + BK x(t − h) + BΨ (Kx(t − h)) + Bφ (Ψ (Kx(t − h)) + Kx(t − h))

x(t) = x0 ∀t ∈ [−h, 0] (8.5)

Due to quantization, whenever the open-loop system (8.1) is unstable, asymptotic
stabilization of the origin cannot be achieved via any gain K ; see [15]. To over-
come this drawback, we rest on ultimate boundedness for the closed-loop system
trajectories, whose definition is recalled below (see [13] for more details):

Definition 1 Let S0 and Su be two compact sets containing the origin, the solutions
to (8.4) with x0 starting from S0 are ultimately bounded in the set Su if there exists
a time T = T (|x0|) ≥ 0 such that for every t ≥ T

x0 ∈ S0 ⇒ xt ∈ Su .

Hence, the problem we solve can be then summarized as follows:

Problem 1 Let A, B real matrices of adequate dimension, determine K ∈ R
m×n ,

and two compact sets S0 and Su , with 0 ∈ Su ⊂ S0, such that for every x0 ∈ S0, the
resulting trajectory to (8.5) is ultimately bounded in Su .

8.3 Main Results

To solveProblem1,wepropose aLyapunov-based result,which establishes local ulti-
mate boundedness of a time-delay system, provided that certain inequalities involving
a Lyapunov–Krasovskii functional hold.

Theorem 1 Given a functional V : C × C → R
+, assume that there exist κ , η and

ω three classK functions such that for every positive t

κ(|x(t)|) ≤ V (xt , ẋt ) ≤ η(‖xt‖, ‖ẋt‖) (8.6)

and there exist two positive scalars γ and β, with β < γ such that for every positive
t and for every xt ∈ LV (γ ) \ int LV (β) one gets:

V̇ (xt , ẋt ) ≤ −ω(|xt (0)|). (8.7)
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Then,

• for every initial condition x(0) ∈ S(γ ) the solutions to system (8.3) are bounded,
• for every x(0) ∈ S(γ ) there exists a positive time T such that for every t ≥ T ,

x(t) ∈ S(κ−1(β)).

Proof First, notice that

V (ϕ0(t), ϕ̇0(t)) = V (x0, 0) ≤ η(|x0|, 0) ≤ γ.

Thus, thanks to (8.7), for every positive t one has

V (xt , ẋt ) < V (x0, ẋ0).

Furthermore due to (8.6) one has

κ(|x(t)|) ≤ V (xt , ẋt ) < V (x0, 0) ≤ η(|x0|, 0) ≤ γ

which implies that
|x(t)| ≤ κ−1(γ ), ∀t ≥ 0

and then boundedness is proven.
To prove finite time convergence, denote T = inf{t > 0 : xt ∈ LV (β)}, for every

t ∈ [0, T ] we have xt ∈ LV (γ ), then by integration of (8.7) along the trajectories of
(8.5) yields

V (xT , ẋT ) ≤ −
∫ T

0
ω(|xτ (0)|)dτ + V (x0, 0).

Now, observe that whenever x(τ ) ∈ LV (γ ) due to (8.6) we have

κ(|x(τ )|) ≤ γ.

Thus, one gets
ω(|x(τ )|) ≤ ω(κ−1(γ )),∀τ ∈ [0, T ]

and then
V (xT , ẋT ) ≤ −Tω(κ−1(γ )) + γ.

From (8.6), to require that κ(|x(T )|) ≤ β if suffices to impose that

−Tω(κ−1(γ )) + γ ≤ β

which leads to

T ≥ γ − β

ω(κ−1(γ ))
.



8 Stabilization by Quantized Delayed State Feedback 141

Moreover since (8.7) holds also on the boundary of LV (β), trajectories cannot
leave such a set and for all t ≥ T

κ(|x(t)|) ≤ V (ϕt , ϕ̇t ) ≤ β

and this concludes the proof. �

Remark 1 In the previous result, any assumption on the considered norm was given.
In particular, the norms involved in the above result may be chosen differently from
each other. For example, one can assume relation (8.6) and (8.7) hold as follows

κ(|x(t)|a) ≤ V (xt , ẋt ) ≤ η(‖xt‖b, ‖ẋt‖c) (8.8)

V̇ (xt , ẋt ) ≤ −ω(|xt (0)|d) (8.9)

where | · |a , | · |b, | · |c and | · |d are any vector norms and ‖ · ‖b and ‖ · ‖c the corre-
sponding induced function norms. The proof of Theorem 1 is almost the same, except
that combining the left-hand side of (8.8) and (8.9) one should deal with different
norms, i.e. | · |a and | · |d . However, since | · |a and | · |d are equivalent, there exists
a positive scalar δ such that

|xt (0)|d ≤ δ|xt (0)|a,

allowing to obtain a similar result to Theorem 1.

Now, we present two lemmas that will be useful in the sequel:

Lemma 1 ([7]) For every u ∈ R
m the following conditions hold:

Ψ (u)′T1Ψ (u) − Δ2 trace(T1) ≤ 0, (8.10)

Ψ (u)′ T2 (Ψ (u) + u) ≤ 0, (8.11)

for any diagonal positive definite matrices T1, T2 ∈ R
m×m.

Lemma 2 ([19]) Consider amatrix G ∈ R
m×m, the nonlinearityφ(u) = sat(u) − u

satisfies
φ(u)′T3(sat(u) + Gx) ≤ 0, (8.12)

for every diagonal positive definite matrix T3 ∈ R
m×m, if x ∈ S (ū) defined by

S (ū) = {
x ∈ R

n : |G(i)x | ≤ ū,∀i ∈ {1, . . . ,m}} .

Based on the use of a Lyapunov–Krasovskii functional, the following theorem
provides sufficient conditions to solve Problem 1.

Theorem 2 If there exist a matrix W ∈ R
n×n, three symmetric positive define matri-

ces J, L ,U ∈ R
n×n, two matrices Y, Z ∈ R

m×n, three positive definite diagonal
matrices T1, T2, T3 ∈ R

m×m, and two positive scalars σ, σ2 such that σ2 < σ and
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⎡

⎢⎢⎢⎢⎢⎢⎣

h2 J − He(W ) L + AW ′ − W BY − W 0 B B
� σ L+U−e−σh J+He(W A′) e−σh J + BY + W A′ 0 B B − Z ′T3
� � −e−σh (J +U ) + He(BW ) 0 B − Y ′T2 B − Y ′T3
� � � (Δ2 trace(T1) − σ2)1 0 0
� � � � −T1 − 2T2 −T3
� � � � � −2T3

⎤

⎥⎥⎥⎥⎥⎥⎦
< 0

(8.13)
[
L Z(i)

� ū2(i)

]
≥ 0 i ∈ {1, . . . ,m} (8.14)

then the gain K = YW ′−1, the sets S0 = Lv(1) and Su = Lv(β) with σ2
σ

< β < 1
are a solution to Problem 1, where P = W−1LW ′−1 and Q = W−1UW ′−1.

Proof Consider the following Krasovskii–Lyapunov functional

V (xt , ẋt ) = x(t)′Px(t) +
∫ t

t−h
eσ(s−t)x(s)′Qx(s)ds + h

∫ 0

−h

∫ t

t+θ

eσ(s−t) ẋ(s)′Rẋ(s)dsdθ

(8.15)

where P, Q, R are symmetric positive definite matrices. Notice that for t > 0 the
functional satisfies

x(t)′Px(t) ≤ V (xt , ẋt ) ≤ x(t)′Px(t) + h sup
τ∈[t−h,t]

x(τ )′Qx(τ ) + h3

2
sup

ϑ∈[t−h,t]
ẋ(ϑ)′Rẋ(ϑ).

(8.16)

and then

|x(t)|2P ≤ V (xt , ẋt ) ≤ ‖xt‖2P + ‖xt‖2hQ + h3

2
‖ẋt‖2R . (8.17)

Now, by computing the time-derivative along the solutions to system (8.5) of the
above functional, one gets

V̇ (xt , ẋt ) = 2ẋ(t)′Px(t) + x(t)′Qx(t) − e−σhx(t − h)′Qx(t − h)

− σ

∫ t

t−h
eσ(s−t)x(s)′Qx(s)ds − hσ

∫ 0

−h

∫ t

t+θ

eσ(s−t) ẋ(s)′Rẋ(s)dsdθ

+ h2 ẋ(t)′Rẋ(t) − h
∫ 0

−h
eσθ ẋ(t + θ)′Rẋ(t + θ)dθ,

(8.18)
and

V̇ (xt , ẋt ) = 2ẋ(t)′Px(t) + x(t)′Qx(t) − e−σhx(t − h)′Qx(t − h)

− σ

∫ t

t−h
eσ(s−t)x(s)′Qx(s)ds − hσ

∫ 0

−h

∫ t

t+θ

eσ(s−t) ẋ(s)′Rẋ(s)dsdθ

+ h2 ẋ(t)′Rẋ(t) − heσh
∫ 0

−h
ẋ(t + θ)′Rẋ(t + θ)dθ.

(8.19)
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Moreover, by Jensen’s inequality, it follows

V̇ (xt , ẋt ) ≤ 2ẋ(t)′Px(t) + x(t)′Qx(t) − e−σhx(t − h)′Qx(t − h)

− σ

∫ t

t−h
eσ(s−t)x(s)′Qx(s)ds + h

(
−σ

∫ 0

−h

∫ t

t+θ
eσ(s−t) ẋ(s)′Rẋ(s)dsdθ

)

+ h2 ẋ(t)′Rẋ(t) − e−σh (
x(t)′ − x(t − h)′

)
R ((x(t) − x(t − h)) .

(8.20)

We want to show that if (8.13) and (8.14) hold, then there exists a positive small
enough constant ε such that, along the solutions to system (8.5),

V̇ (xt , ẋt ) ≤ −εx(t)′x(t), (8.21)

whenever xt ∈ LV (1) \ int LV (β). To prove (8.21), by following S-procedure argu-
ments, it suffices to prove that there exists a positive scalar θ , such that

L1 = V̇ (xt , ẋt ) − θ(β − V (xt , ẋt )) ≤ −εx(t)′x(t).

From (8.20), one can write

L1 ≤ L0 − θ(β − V (xt , ẋt )), (8.22)

where L0 denotes the right-hand side of (8.20). Define

ζ = [
ẋ(t)′ x(t)′ x(t − h)′ 1′

m

]′
. (8.23)

Then, inequality (8.22) reads:

L1 ≤ ζ ′Mζ + (−σ + θ)V (xt , ẋt ) + σ2 − θβ. (8.24)

where

M =

⎡

⎢⎢⎣

h2R P 0 0
� σ P + Q − e−σh R e−σh R 0
� � −e−σh(R + Q) 0
� � � − σ2

m 1

⎤

⎥⎥⎦ . (8.25)

Moreover, by selecting θ = σ and β = σ2
σ
, from the above expression we obtain

L1 ≤ ζ ′Mζ. (8.26)
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Now define

Ω = ζ ′Mζ − Ψ (Kx(t − h))′T1Ψ (Kx(t − h)) + Δ2 trace(T1)

− 2Ψ (Kx(t − h))′T2Ψ (Kx(t − h)) − 2Ψ (Kx(t − h))′T2Kx(t − h)

− 2φ (Ψ (Kx(t − h)) + Kx(t − h))′ T3
(
φ (Ψ (Kx(t − h)) + Kx(t − h))

+ Ψ (Kx(t − h)) + Kx(t − h) + Gx
)
. (8.27)

The satisfaction of (8.14), with the change of variables P = W−1LW ′−1 and
Z = YW ′−1 guarantees that the set E (P, 1) = {x ∈ R

n : x ′Px ≤ 1} is contained in
the polyhedral setS (ū) defined in Lemma 2. Moreover, due to (8.16), it follows that
if xt ∈ Lv(1) then x(t) ∈ E (P, 1) and therefore also x(t) ∈ S (ū), that guarantees
the satisfaction of relation (8.12) in Lemma 2. Furthermore, note that from (8.15),
one can write:

V (x0, ẋ0) = x ′
0Px0 +

∫ 0

−h
eσ s x ′

0Qx0ds ≤ x ′
0(P + hQ)x0,

since x0 is supposed to be constant on [−h, 0]. Then, from (8.16), for any x0 ∈
E (P + hQ, 1) then it follows that x0 ∈ Lv(1). Thus, by using Lemmas 1 and 2, for
every xt ∈ Lv(1), one has

ζ ′Mζ ≤ Ω = ξ ′N ξ (8.28)

where

N =

⎡

⎢⎢⎢⎢⎢⎢⎣

h2R P 0 0 0 0
� σ P + Q − e−σh R e−σh R 0 0 −G ′T3
� � −e−σh(R + Q) 0 −K ′T2 −K ′T3
� � � N4 0 0
� � � � −T1 − 2T2 −T3
� � � � � −2T3

⎤

⎥⎥⎥⎥⎥⎥⎦
,

withN4 = 1
m (−σ + Δ2 trace(T1))1 and

ξ ′ = [
ζ ′ Ψ (Kx(t − h))′ φ (Ψ (Kx(t − h)) + Kx(t − h))′

]
.

To prove our claim, we show that having (8.13) satisfied implies that (8.21) holds.
To this end, in light of (8.24), (8.26), and (8.28), it suffices to show that along the
trajectories of (8.5) one has

ξ ′N ξ < −εx ′x .

By Finsler lemma [18], the above inequality is equivalent to find a matrix X of
appropriate dimensions, such that

Q = N + X B̄ + B̄ ′X ′ < 0,
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where B̄ = [−1 A BK 0 B B
]
. Now, select X as follows

X = [
H ′ H ′ H ′ 0 0 0

]′
.

Then, by pre- and post-multiplying Q, respectively, by diag{H−1, H−1, H−1,√
m1, 1, 1} and diag{H ′−1, H ′−1, H ′−1,

√
m1, 1, 1} with

H−1 = W, WRW ′ = J, WQW ′ = U,

WPW ′ = V, KW ′ = Y, GW ′ = Z ,

we obtain the left-hand side of (8.13). Then the satisfaction of (8.13) implies that
the inequality

ξ ′N ξ < −εx ′x

holds along the trajectories of system (8.5). Thus, by invoking Theorem 1, thanks to
Remark 1, setting

| · |a = | · |P , | · |b =
√

| · |2P + | · |2hQ, | · |c = | · |R, | · |d = | · |2,

and

κ(s) = s2, η(s, y) = s2 + h3

2
y2, γ = 1, β = σ2

σ
,

establishes the result. �

Remark 2 The above result is based on the use of a classical Lyapunov functional.
As pointed by [9], this result can be extended to the more realistic case of time-
varying delay by considering a more complex functional and by following analogous
arguments as the ones shown in the proof of Theorem 2.

8.4 Optimization Issues

In solving Problem 1, the implicit objective is to obtain a set S0 as large as possible
and a set Su as small as possible. The problem of maximizing the size of S0 and
minimizing the size of Su relies on the choice of a good measure of such sets. At
this stage, it is interesting to remark that as mentioned in the proof of Theorem 2,
if x(0) ∈ E (P + hQ, 1), then x0 ∈ S0 = Lv(1). This implies that we can use the
ellipsoid E (P + hQ, 1) to implicitly maximize S0. Hence, when considering ellip-
soidal sets, several measures and therefore associated criteria can be considered.
Volume, minor axis, directions of interest, inclusion of a given shape set defined
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through the extreme points vr , r = 1, . . . , nr (see for example [1]) are some of the
tools usually adopted to indirectly optimize the size of such sets. The natural choice
to maximize the size of S0 in an homogeneous way, consists in minimizing the trace
of the matrix P + hQ.

By the same way, if xt ∈ Lv(β) then from (8.16), x(t) ∈ E (P, β). Then, to min-
imize the size of Su , one can simultaneously minimize β and maximize the trace
of P . Therefore the minimization of trace(P + hQ) clashes with the minimization
of the set Su . Thus a trade-off between the two objectives needs to be considered.
Moreover, the matrices P and Q do not directly appear in (8.13) and (8.14), thus
the trace minimization problem needs to be rewritten in the decision variables. To
this end, it is worthwhile to notice that the minimization of trace(P + hQ), due to
positive definiteness of P + hQ, can be implicitly performed by maximizing the
trace(P + hQ)−1. In particular, since

Q = W−1UW ′−1, P = W−1LW ′−1,

it turns out that (P + hQ)−1 = W ′(hU + L)−1W. Then, thanks to [4], we get

W ′(hU + L)−1W ≥ W + W ′ − (hU + L).

Thus, let δ1 and δ2 be two tuning parameters, we can consider the following
criterion

minimize δ1σ2 − δ2 trace(2W − hU − L).

At this point, it is important to note that conditions provided by Theorem 2 are
nonlinear in the decision variables, which prevents from solving directly a convex
optimization problem. This is more specifically a problem in case of products of
decision matrices. On the other hand, products of a decision matrix with a scalar are
numerically tractable if the scalar is considered either as a tuning parameter (but there
is no guarantee that the problem remains feasible) or fixed via an iterative search.
Next, we consider the following additional constraints in the decision variables:

• T2 = τ21,
• T3 = τ31.

Considering σ, τ2, τ3 as tuning parameters. Problem 1 can be solved by solving
the following LMI optimization problem:

minimize
L ,J,U,W,σ2,T1

δ1σ2 − δ2 trace(2W − hU − L)

subject to

(8.13), (8.14), σ2 < σ, L > 0, J > 0,U > 0, T1 > 0.
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8.5 Example

Consider the system described by [9]:

ẋ(t) =
[
0 1
0.5 0.5

]
x(t) +

[
1
1

]
sat(u(t − h)).

The time delay is fixed to h = 0.2 and the level of saturation is ū = 5. We choose
the quantization error bound as Δ = 1. Notice that, since the open-loop system is
unstable (spec(A) = {−0.5, 1}), the closed-loop trajectories cannot converge to the
origin due to the quantizer. Using iterative research for scalars σ, τ2, τ3, we obtain
the gain

K = [−1.2773 −2.5541
]
.

For different initial conditions, several trajectories are depicted in Fig. 8.2. The
ellipsoid E (P + hQ, 1) and E (P, β) are depicted in blue and dashed blue, respec-
tively. The two red crosses are the two unstable equilibrium points due to the
saturation. Furthermore, notice that a trajectory starting from an initial point out-
side the ellipsoid E (P, 1) and necessary such that x0 is outside Lv(1) still con-
verges into E (P, β) which indicates clearly the conservatism of our technique. For
x0 = [−7.7074 6.5731]′, Fig. 8.3 shows the evolution of the control u. Its value sat-
urates for less than half a second and does not converge to zero.

Fig. 8.2 Trajectories of the
closed-loop system
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Fig. 8.3 Evolution of u for
x0 = [−7.7074, 6.5731]′
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8.6 Conclusion

In this chapter, we tackled the stabilization problem of linear systems with satu-
rated, quantized, and delayed input. Specifically, the proposed methodology allows
to design the controller to achieve local ultimate boundedness for the closed-loop
system.Moreover, the control design problem is turned into an optimization problem
aiming at the optimization of the size of the outer set S0 and of the inner set Su . The
solution to such an optimization problem can be performed in a convex optimization
setup, providing a computer-oriented solution. The effectiveness of the proposed
strategy is supported by a numerical example. Future works should be devoted to
the use of more complex Lyapunov functionals depending on extra states and slack
variables, as well as the extension to these results to the case of time-varying time
delay.

References

1. S. Boyd, L.E. Ghaoui, E. Feron, V. Balakrishnan, Linear Matrix Inequalities in System and
Control Theory. (Society for Industrial and Applied Mathematics, 1997)

2. R.W. Brockett, D. Liberzon, Quantized feedback stabilization of linear systems. IEEE Trans.
Autom. Control 45(7), 1279–1289 (2000)

3. F. Ceragioli, C. De Persis, P. Frasca, Discontinuities and hysteresis in quantized average con-
sensus. Automatica 47(9), 1919–1928 (2011)

4. J. Daafouz, J. Bernussou, Parameter dependent Lyapunov functions for discrete time systems
with time varying parametric uncertainties. Syst. Control Lett. 43(5), 355–359 (2001)

5. C. De Persis, F. Mazenc, Stability of quantized time-delay nonlinear systems: a Lyapunov-
Krasowskii-functional approach. Math. Control Signals Syst. 21(4), 337–370 (2010)

6. D.F. Delchamps, Stabilizing a linear systemwith quantized state feedback. IEEETrans. Autom.
Control 35(8), 916–924 (1990)



8 Stabilization by Quantized Delayed State Feedback 149

7. F. Ferrante, F. Gouaisbaut, S. Tarbouriech, Observer-based control for linear systems with
quantized output, in European Control Conference. (2014)

8. F. Ferrante, F. Gouaisbaut, S. Tarbouriech, Stabilization of continuous-time linear systems
subject to input quantization. Automatica 58, 167–172 (2015)

9. E. Fridman, M. Dambrine, Control under quantization, saturation and delay: an LMI approach.
Automatica 45(10), 2258–2264 (2009)

10. M. Fu, L. Xie, The sector bound approach to quantized feedback control. IEEE Trans. Autom.
Control 50(11), 1698–1711 (2005)

11. K. Gu, V.L. Kharitonov, and J. Chen, Stability of Time-Delay Systems. Control Engineering
(Birkhäuser Boston, 2003)

12. I.L. Hurtado, C.T. Abdallah, C. Canudas-de Wit, Control under limited information: special
issue (part I). Int. J. Robust Nonlinear Control 19(16), 1767–1769 (2009)

13. H.K. Khalil, Nonlinear Systems, 3rd edn. (Prentice-Hall, 2002)
14. D. Liberzon, Quantization, time delays, and nonlinear stabilization. IEEE Trans. Autom. Con-

trol 51(7), 1190–1195 (2006)
15. D. Liberzon, Nonlinear control with limited information. Commun. Inf. Syst. 9(1), 41–58

(2009)
16. A. Seuret, F. Gouaisbaut, Wirtinger-based integral inequality: application to time-delay sys-

tems. Automatica 49(9), 2860–2866 (2013)
17. S. Tarbouriech, G. Garcia, J.M. Gomes da Silva Jr., I. Queinnec, Stability and Stabilization of

Linear Systems with Saturating Actuators (Springer, 2011)
18. S. Tarbouriech, F. Gouaisbaut, Control design for quantized linear systems with saturations.

IEEE Trans. Autom. Control 57(7), 1883–1889 (2012)
19. S. Tarbouriech, C. Prieur, J.M.Gomes da Silva Jr., Stability analysis and stabilization of systems

presenting nested saturations. IEEE Transactions on Automatic Control 51(8), 1364–1371
(2006)



Chapter 9
Discrete-Time Networked Control Under
Scheduling Protocols

Kun Liu, Emilia Fridman and Karl Henrik Johansson

Abstract This chapter analyzes the exponential stability of discrete-time networked
control systems viadelay-dependent Lyapunov-Krasovskii methods. The time-delay
approach has been developed recently for the stabilization of continuous-time net-
worked control systems under a Round-Robin protocol and a weighted Try-Once-
Discard protocol, respectively. In the present chapter, the time-delay approach is
extended to the stability analysis of discrete-time networked control systems under
both these scheduling protocols. First, the closed-loop system is modeled as a
discrete-time switched system with multiple and ordered time-varying delays under
the Round-Robin protocol. Then, a discrete-time hybrid systemmodel for the closed-
loop system is presented under these protocols. It contains time-varying delays in
the continuous dynamics and in the reset conditions. The communication delays are
allowed to be larger than the sampling intervals. Polytopic uncertainties in the sys-
tem model can be easily included in our analysis. The efficiency of the time-delay
approach is illustrated in an example of a cart-pendulum system.

9.1 Introduction

Network control systems (NCSs) are spatially distributed systems in which the
communication between sensors, actuators, and controllers occurs through a com-
munication network [1, 22]. In many such systems, only one node is allowed to use
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the communication channel at each time instant. In the present chapter, we focus
on the stability analysis of discrete-time NCSs with communication constraints. The
scheduling of sensor information towards the controller is defined by a Round-Robin
(RR) protocol or by a weighted Try-Once-Discard (TOD) protocol. A linear system
with distributed sensors is considered. Three recent approaches for NCSs are based
on discrete-time systems [2, 3, 7], impulsive/hybrid systems [10, 18, 19] and time-
delay systems [4, 6, 8, 12, 21].

The time-delay approach was developed for the stabilization of continuous-time
NCSs under a RR protocol in [15] and under a weighted TOD protocol in [16]. The
closed-loop system was modeled as a switched system with multiple and ordered
time-varying delays under RR protocol or as a hybrid system with time-varying
delays in the dynamics and in the reset equations under TOD protocol. Differently
from the existing hybrid and discrete-time approaches on the stabilization of NCS
with scheduling protocols, the time-delay approach allows treating the case of large
communication delays.

In the present chapter, the time-delay approach is extended to the stability analysis
of discrete-time NCSs under RR and weighted TOD scheduling protocols. First, the
closed-loop system is modeled as a discrete-time switched system with multiple
and ordered time-varying delays under RR protocol. Then, a discrete-time hybrid
system model for the closed-loop system is presented that contains time-varying
delays in the continuous dynamics and in the reset conditions under TOD and RR
protocols. Differently from [14], the same conditions are derived for the exponential
stability of the resulting hybrid systemmodel under both these scheduling protocols.
The communication delays are allowed to be larger than the sampling intervals.
The conditions are given in terms of Linear Matrix Inequalities (LMIs). Polytopic
uncertainties in the systemmodel canbe easily included in the analysis. The efficiency
of the presented approach is illustrated by a cart-pendulum system.

Notation: Throughout the chapter, the superscript ‘T ’ stands for matrix transpo-
sition, Rn denotes the n dimensional Euclidean space with vector norm | · |, Rn×m

is the set of all n × m real matrices, and the notation P>0, for P ∈ R
n×n means

that P is symmetric and positive definite. The symmetric elements of a symmetric
matrix will be denoted by ∗. Z+,N and R

+ denote the set of non-negative integers,
positive integers integers and non-negative real numbers, respectively.

9.2 Discrete-Time Networked Control Systems Under
Round-Robin Scheduling: A Switched System Model

9.2.1 Problem Formulation

Consider the system architecture in Fig. 9.1 with plant

x(t + 1) = Ax(t) + Bu(t), t ∈ Z
+, (9.1)
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Fig. 9.1 Discrete-time
NCSs under RR scheduling

where x(t) ∈ R
n is the state vector,u(t) ∈ R

nu is the control input, A and B are system
matrices with appropriate dimensions. The initial condition is given by x(0) = x0.

The NCS has several nodes connected via networks. For the sake of simplicity, we
consider two sensor nodes yi (t) = Ci x(t), i = 1, 2 and we denote C = [

CT
1 CT

2

]T
,

y(t) = [
yT1 (t) yT2 (t)

]T ∈ R
ny , t ∈ Z

+.We let sk denote the unbounded andmonoto-
nously increasing sequence of sampling instants, i.e.,

0 = s0 < s1 < · · · < sk < · · · , lim
k→∞ sk = ∞, sk+1 − sk ≤ MATI, k ∈ Z

+,

(9.2)
where {s0, s1, s2, . . . } is a subsequence of {0, 1, 2, . . . } andMATI denotes the Maxi-
mumAllowableTransmission Interval.At each sampling instant sk , one of the outputs
yi (t) ∈ R

ni (n1 + n2 = ny) is sampled and transmitted via the network. First, we con-
sider the RR scheduling protocol for the choice of the active output node: the outputs
are transmitted one after another, i.e., yi (t) = Ci x(t), t ∈ Z

+ is transmitted only at
the sampling instant t = s2p+i−1, p ∈ Z

+, i = 1, 2. After each transmission and
reception, the values in yi (t) are updated with the newly received values, while the
values of y j (t) for j �= i remain the same, as no additional information is received.
This leads to the constrained data exchange expressed as

yik =
{
yi (sk) = Ci x(sk), k = 2p + i − 1,

yik−1, k �= 2p + i − 1,
p ∈ Z

+.

It is assumed that no packet dropouts and no packet disorders will happen during
the data transmission over the network. The transmission of the information over the
network is subject to a variable delay ηk ∈ Z

+, which is allowed to be larger than
the sampling intervals. Then tk = sk + ηk is the updating time instant of the ZOH
device.

Assume that the network-induced delay ηk and the time span between the updating
and the current sampling instants are bounded:

tk+1 − 1 − tk +ηk ≤ τM , 0 ≤ ηm ≤ ηk ≤ ηM , k ∈ Z
+, (9.3)
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where τM , ηm and ηM are known non-negative integers. Then

(tk+1 − 1) − sk = sk+1 − sk + ηk+1 − 1 ≤ MATI+ηM − 1 = τM ,

(tk+1 − 1) − sk−1 = sk+1 − sk−1 + ηk+1 − 1 ≤ 2MATI+ηM − 1

= 2τM − ηM + 1
Δ= τ̄M ,

tk+1 − tk ≤ τM − ηm + 1.

(9.4)

Note that the first updating time t0 corresponds to the first data received by the
actuator, which means that u(t) = 0, t ∈ [0, t0 − 1]. Then for t ∈ [0, t0 − 1], (9.1)
is given by

x(t + 1) = Ax(t), t = 0, 1, . . ., t0 − 1, t ∈ Z
+. (9.5)

In [15], a time-delay approach was developed for the stability and L2-gain analy-
sis of continuous-time NCSs with RR scheduling. In this section, we consider the
stability analysis of discrete-time NCSs under RR scheduling protocol.

It is assumed that the controller and the actuator are event-driven. Suppose
that there exists a matrix K = [

K1 K2
]
, K1 ∈ Rnu×n1 , K2 ∈ Rnu×n2 such that

A + BKC is Schur. Consider the static output feedback of the form:

u(t) = K1y
1
k + K2y

2
k , t ∈ [

tk, tk+1 − 1
]
, t ∈ N, k ∈ N,

Following [15], the closed-loop system with RR scheduling is modeled as a
switched system:

x(t + 1) = Ax(t) + A1x(tk−1 − ηk−1) + A2x(tk − ηk), t ∈ [tk, tk+1 − 1],
x(t + 1) = Ax(t) + A1x(tk+1 − ηk+1) + A2x(tk − ηk), t ∈ [tk+1, tk+2 − 1],

(9.6)
where k = 2p − 1, p ∈ N, Ai = BKiCi , i = 1, 2. For t ∈ [tk, tk+1 − 1], we can
represent

tk − ηk = t − τ1(t), tk−1 − ηk−1 = t − τ2(t),

where
τ1(t) = t − tk + ηk < τ2(t) = t − tk−1 + ηk−1,

τ1(t) ∈ [ηm, τM ], τ2(t) ∈ [ηm, τ̄M ], t ∈ [tk, tk+1 − 1]. (9.7)

Therefore, (9.6) for t ∈ [tk, tk+1 − 1] can be considered as a system with two
time-varying interval delays, where τ1(t) < τ2(t). Similarly, for t ∈ [tk+1, tk+2 − 1],
(9.6) is a system with two time-varying delays, one of which is less than another.

For t ∈ [t0, t1 − 1], the closed-loop system is reduced to the following form

x(t + 1) = Ax(t) + A1x(t0 − η0), t ∈ [t0, t1 − 1].
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9.2.2 Stability Analysis of the Switched System Model

Applying the following discrete-time Lyapunov-Krasovskii functional (LKF) to
system (9.6) with time-varying delay from the maximum delay interval [ηm, τ̄M ] [5]:

VRR(t) = xT (t)Px(t) +
t−1∑

s=t−ηm

λt−s−1xT (s)S0x(s)

+ηm

−1∑

j=−ηm

t−1∑

s=t+ j

λt−s−1ηT (s)R0η(s) +
t−ηm−1∑

s=t−τ̄M

λt−s−1xT (s)S1x(s)

+(τ̄M − ηm)

−ηm−1∑

j=−τ̄M

t−1∑

s=t+ j

λt−s−1ηT (s)R1η(s),

η(t) = x(t + 1) − x(t), P > 0, Si > 0, Ri > 0, i = 0, 1, 0 < λ < 1, t ≥ 0,

where following [13], we define (for simplicity) x(t) = x0, t ≤ 0.
Similar to [15], by taking advantage of the ordered delays and using convex

analysis of [20], we arrive to the following sufficient conditions for the stability of
the switched system:

Theorem 1 Given scalars 0 < λ ≤ 1, positive integers 0 ≤ ηm ≤ ηM < τM, and
K1, K2, let there exist scalars n × n matrices P > 0, Sϑ > 0, Rϑ > 0 (ϑ = 0, 1),
Gi

1,G
i
2,G

i
3 (i = 1, 2) such that the following matrix inequalities are feasible:

Ωi =
⎡

⎣
R1 Gi

1 Gi
2

∗ R1 Gi
3

∗ ∗ R1

⎤

⎦ ≥ 0, (9.8)

(Fi
0)

T PFi
0 + Σ + (Fi

01)
T H Fi

01 − ληm FT
12R0F12 − λτ̄M FTΩi F < 0, (9.9)

where
Fi
0 = [A 0 Ai A3−i 0],

Fi
01 = [A − I 0 Ai A3−i 0], i = 1, 2,

F12 = [I − I 0 0 0],

F =
⎡

⎣
0 I −I 0 0
0 0 I −I 0
0 0 0 I −I

⎤

⎦ ,

Σ = diag{S0 − λP,−ληm (S0 − S1), 0, 0,−λτ̄M S1},
H = η2

m R0 + (τ̄M − ηm)2R1.

Then, the closed-loop system (9.6) is exponentially stable with the decay rate λ.

Proof Consider t ∈ [tk, tk+1 − 1] and define ξ(t) = col{x(t), x(t − ηm), x(tk−1 −
ηk−1), x(tk − ηk), x(t − τ̄M)}. Along (9.6), we have
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VRR(t + 1) − λVRR(t) ≤ ξ T (t)[(Fi
0)

T PFi
0 + Σ + (Fi

01)
T H Fi

01]ξ(t)

−ληmηm

t−1∑

s=t−ηm

ηT (s)R0η(s)

−λτ̄M (τ̄M − ηm)

t−ηm−1∑

s=t−τ̄M

ηT (s)R1η(s).

By Jensen’s inequality [9], we have

ηm

t−1∑

s=t−ηm

ηT (s)R0η(s) ≥
t−1∑

s=t−ηm

ηT (s)R0

t−1∑

s=t−ηm

η(s)

= ξ T (t)FT
12R0F12ξ(t).

Taking into account that tk−1 − ηk−1 < tk − ηk (i.e. that the delays satisfy the
relation (9.7)) and applying further Jensen’s inequality, we obtain

−(τ̄M − ηm)

t−ηm−1∑

s=t−τ̄M

ηT (s)R1η(s)

= −(τ̄M − ηm)
[ t−ηm−1∑

s=tk−ηk

ηT (s)R1η(s) +
tk−ηk−1∑

s=tk−1−ηk−1

ηT (s)R1η(s)

+
tk−1−ηk−1−1∑

s=t−τ̄M

ηT (s)R1η(s)
]

≤ − 1

α1
f1(t) − 1

α2
f2(t) − 1

α3
f3(t),

where

α1 = t − ηm − tk + ηk

τ̄M − ηm
, α2 = tk − ηk − tk−1 + ηk−1

τ̄M − ηm
, α3= τ̄M − t + tk−1 − ηk−1

τ̄M − ηm
,

f1(t) = [x(t − ηm) − x(tk − ηk)]T R1[x(t − ηm) − x(tk − ηk)],
f2(t) = [x(tk − ηk) − x(tk−1 − ηk−1)]T R1[x(tk − ηk) − x(tk−1 − ηk−1)],
f3(t) = [x(tk−1 − ηk−1) − x(t − τ̄M)]T R1[x(tk−1 − ηk−1) − x(t − τ̄M)].

Denote

g1,2(t) = [x(t − ηm) − x(tk − ηk)]T G1
1[x(tk − ηk) − x(tk−1 − ηk−1)],

g1,3(t) = [x(t − ηm) − x(tk − ηk)]T G1
2[x(tk−1 − ηk−1) − x(t − τ̄M)],

g2,3(t) = [x(tk − ηk) − x(tk−1 − ηk−1)]T G1
3[x(tk−1 − ηk−1) − x(t − τ̄M)].
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Note that (9.8) with i = 1 guarantees
[
R1 G1

j
∗ R1

]
≥ 0 ( j = 1, 2, 3), and, thus,

[
fi (t) gi, j (t)
gi, j (t) f j (t)

]
≥ 0, i �= j, i = 1, 2, j = 2, 3.

Then, we arrive to

−(τ̄M − ηm)

t−ηm−1∑

s=t−τ̄M

ηT (s)R1η(s) ≤ − 1

α1
f1(t) − 1

α2
f2(t) − 1

α3
f3(t)

≤ − f1(t) − f2(t) − f3(t) − 2g1,2(t) − 2g1,3(t) − 2g2,3(t) = −ξ T (t)FTΩ1Fξ(t),

where Ω1 is given by (9.8) with i = 1. The latter inequality holds if (9.8) is feasible
[20]. Hence, (9.9) with i = 1 guarantees that VRR(t + 1) − λVRR(t) ≤ 0 for t ∈
[tk, tk+1 − 1].

Similarly, for t ∈ [tk+1, tk+2 − 1], (9.8) and (9.9) with i = 2 guarantee VRR(t +
1) − λVRR(t) ≤ 0. Thus, (9.6) is exponentially stable with the decay rate λ.

9.3 Discrete-Time Networked Systems Under the
Try-Once-Discard and Round-Robin Scheduling:
A Hybrid Time-Delay Model

9.3.1 Problem Formulation

In [16], a weighted TOD protocol was analyzed for the stabilization of continuous-
time NCSs. In this section, we consider discrete-time NCSs under TOD and RR
scheduling via a hybrid delayed model.

Consider (9.1) with two sensor nodes yi (t) = Ci x(t), i = 1, 2 and a sequence
of sampling instants (9.2). At each sampling instant sk , one of the outputs yi (t) ∈
R

ni (n1 + n2 = ny) is sampled and transmitted via the network. Denote by ŷ(sk) =[
ŷT1 (sk) ŷT2 (sk)

]T ∈ R
ny the output information submitted to the scheduling pro-

tocol. At each sampling instant sk , one of ŷi (sk) values is updated with the recent
output yi (sk).

It is assumed that no packet dropouts and no packet disorders will happen during
the data transmission over the network. The transmission of the information over
the network is subject to a variable delay ηk . Then tk = sk + ηk is the updating time
instant. As in the previous section, we allow the delays to be large provided that the
old sample cannot get to the destination (to the controller or to the actuator) after the
current one. Assume that the network-induced delay ηk and the time span between
the updating and the current sampling instants satisfy (9.3).
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Following [16], consider the error between the system output y(sk) and the last
available information ŷ(sk−1):

e(t) = col{e1(t), e2(t)} ≡ ŷ(sk−1) − y(sk), t ∈ [tk, tk+1 − 1],
t ∈ Z

+, k ∈ Z
+, ŷ(s−1)

Δ= 0, e(t) ∈ R
ny .

The control signal to be applied to the system (9.1) is given by

u(t) = Ki∗k yi∗k (tk − ηk) + Ki ŷi (tk−1 − ηk−1)|i �=i∗k , t ∈ [tk, tk+1 − 1],

where K = [K1 K2], K1 ∈ R
nu×n1 , K2 ∈ R

nu×n2 such that A + BKC is Schur. The
closed-loop system can be presented as

x(t + 1) = Ax(t) + A1x(tk − ηk) + Biei (t)|i �=i∗k ,

e(t + 1) = e(t), t ∈ [tk, tk+1 − 2], t ∈ Z
+,

(9.10)

with the delayed reset system for t = tk+1 − 1

x(tk+1) = Ax(tk+1 − 1) + A1x(tk − ηk) + Biei (tk)|i �=i∗k ,

ei (tk+1) = Ci [x(tk − ηk) − x(tk+1 − ηk+1)], i = i∗k ,
ei (tk+1) = ei (tk) + Ci [x(tk − ηk) − x(tk+1 − ηk+1)], i �= i∗k ,

(9.11)

where A1 = BKC, Bi = BKi , K = [K1 K2], i = 1, 2. The initial condition for
(9.10), (9.11) has the form of e(t0) = −Cx(t0 − η0) = −Cx0 and (9.5). We will
consider stability analysis of the discrete-time hybrid system (9.10), (9.11) under
TOD and RR protocols described next.

9.3.2 Scheduling Protocols

9.3.2.1 TOD Protocol

Let Q1 > 0, Q2 > 0 be some weighting matrices. At the sampling instant sk , the
weighted TOD protocol is a protocol for which the active output node is defined as
any index i∗k that satisfies

|√Qi∗k
ei∗k (t)|2 ≥ |√Qiei (t)|2, t ∈ [tk, tk+1), k ∈ Z

+, i = 1, 2. (9.12)

A possible choice of i∗k is given by

i∗k = min{arg max
i∈{1,2}

|√Qi

(
ŷi (sk−1) − yi (sk)

) |2}.
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9.3.2.2 RR Protocol

The active output node is chosen periodically:

i∗k = i∗k+2, for all k ∈ Z
+, i∗0 �= i∗1 . (9.13)

9.3.3 Stability Analysis of Discrete-Time Hybrid Delayed
System Under TOD and RR Protocols

Consider the LKF of the form:

Ve(t) = V (t) + tk+1 − t

τM − ηm + 1
eTi (tk)Qiei (tk)|i �=i∗k ,

where

V (t) = Ṽ (t) + VQ(t),

VQ(t) = (τM − ηm)

t−1∑

s=tk−ηk

λt−s−1ζ T (s)Qζ(s),

Ṽ (t) = xT (t)Px(t) +
t−1∑

s=t−ηm

λt−s−1xT (s)S0x(s) +
t−ηm−1∑

s=t−τM

λt−s−1xT (s)S1x(s)

+ ηm

−1∑

j=−ηm

t−1∑

s=t+ j

λt−s−1ζ T (s)R0ζ(s)

+ (τM − ηm)

−ηm−1∑

j=−τM

t−1∑

s=t+ j

λt−s−1ζ T (s)R1ζ(s),

and

ζ(t + 1) = x(t + 1) − x(t), P > 0, Si > 0, Ri > 0, Q > 0, Q j > 0,
0 < λ < 1, i = 0, 1, j = 1, 2, t ∈ [tk, tk+1 − 1], t ∈ Z

+, k ∈ Z
+,

where we define x(t) = x0, t ≤ 0. Our objective is to guarantee that

Ve(t + 1) − λVe(t) ≤ 0, t ∈ [tk, tk+1 − 1], t ∈ Z
+ (9.14)

holds along (9.10), (9.11). The inequality (9.14) implies the following bound

V (t) ≤ Ve(t) ≤ λt−t0Ve(t0), t ≥ t0, t ∈ Z
+,

Ve(t0) ≤ V (t0) + min
i=1,2

{|√Qiei (t0)|2}, (9.15)



160 K. Liu et al.

for the solution of (9.10), (9.11) with the initial condition (9.5) and e(t0) ∈ R
ny . Here

we took into account that for the case of two sensor nodes

|√Qiei (t0)|2|i �=i∗k
= min

i=1,2
{|√Qiei (t0)|2}.

From (9.15), it follows that the system (9.10), (9.11) is exponentially stable with
respect to x . The novel term VQ(t) of the LKF is inserted to cope with the delays in
the reset conditions

VQ(tk+1) − λVQ(tk+1 − 1)

= (τM − ηm)[
tk+1−1∑

s=tk+1−ηk+1

λtk+1−s−1ζ T (s)Qζ(s)−
tk+1−2∑

s=tk−ηk

λtk+1−s−1ζ T (s)Qζ(s)]

≤ (τM − ηm)[ζ T (tk+1 − 1)Qζ(tk+1 − 1) − λτM

tk+1−ηk+1−1∑

s=tk−ηk

ζ T (s)Qζ(s)]

≤(τM − ηm)ζ T (tk+1 − 1)Qζ(tk+1 − 1)− λτM |√Q[x(tk+1 − ηk+1) − x(tk − ηk)]|2,

where we applied Jensen’s inequality (see e.g., [9]). The term
tk+1 − t

τM − ηm + 1
eTi (tk)

Qiei (tk) is inspired by the similar construction of the LKF for the sampled-data
systems [4]. We have

Ve(tk+1) − λVe(tk+1 − 1)

= Ṽ (tk+1) − λṼ (tk+1 − 1) + tk+2 − tk+1

τM − ηm + 1
eTi (tk+1)Qiei (tk+1)|i �=i∗k+1

− λ

τM − ηm + 1
eTi (tk)Qiei (tk)|i �=i∗k + (τM − ηm)ζ T (tk+1 − 1)Qζ(tk+1 − 1)

− λτM |√Q[x(tk+1 − ηk+1) − x(tk − ηk)]|2.

Note that under TOD protocol for i∗k+1 = i∗k

eTi (tk+1)Qiei (tk+1)|i �=i∗k+1
≤ eTi∗k (tk+1)Qi∗k ei∗k (tk+1), (9.16)

whereas for i∗k+1 �= i∗k the latter relation holds with equality. Under RR protocol we
have i∗k+1 �= i∗k . Hence

tk+2 − tk+1

τM − ηm + 1
eTi (tk+1)Qiei (tk+1)|i �=i∗k+1

≤ eTi∗k (tk+1)Qiei∗k (tk+1)

= |
√
Qi∗k Ci∗k [x(tk+1 −ηk+1) −x(tk − ηk)]|2.

Assume that
λτM Q > CT

i QiCi , i = 1, 2. (9.17)
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Then for t = tk+1 − 1, we obtain

Ve(t + 1) − λVe(t) ≤ Ṽ (t + 1) − λṼ (t) + (τM − ηm)ζ T (t)Qζ(t)

− λ

τM − ηm + 1
eTi (tk)Qiei (tk)|i �=i∗k .

Furthermore, due to

− λ

τM − ηm + 1
= − 1

τM − ηm + 1
+ 1 − λ

τM − ηm + 1
≤ − 1

τM − ηm + 1
+ 1 − λ,

for t = tk+1 − 1, we arrive at

Ve(t + 1) − λVe(t) ≤ Ṽ (t + 1) − λṼ (t) + (τM − ηm)ζ T (t)Qζ(t)

−[ 1

τM − ηm + 1
− (1 − λ)]eTi (tk)Qiei (tk)|i �=i∗k

Δ= Ψ (t).
(9.18)

For t ∈ [tk, tk+1 − 2], we have

Ve(t + 1) − λVe(t) ≤ Ṽ (t + 1) − λṼ (t) + (τM − ηm)ζ T (t)Qζ(t)

+
[
tk+1 − t − 1

τM − ηm + 1
− λ

tk+1 − t

τM − ηm + 1

]
eTi (tk)Qiei (tk)|i �=i∗k .

Since

tk+1 − t − 1

τM − ηm + 1
− λ

tk+1 − t

τM − ηm + 1
= − 1

τM − ηm + 1
+ (1 − λ)

tk+1 − t

τM − ηm + 1

≤ − 1

τM − ηm + 1
+ 1 − λ,

we conclude that (9.18) is valid also for t ∈ [tk, tk+1 − 2]. Therefore, (9.14) holds if

Ψ (t) ≤ 0, t ∈ [tk, tk+1 − 1]. (9.19)

Note that i �= i∗k for i = 1, 2 is the same as i = 3 − i∗k . By using the standard
arguments for the delay-dependent analysis [20], we derive the following conditions
for (9.19) (and, thus for (9.15)):

Theorem 2 Given scalar 0 < λ < 1, positive integers 0 ≤ ηm ≤ ηM < τM , and
K1, K2, if there exist n × n matrices P > 0, Q > 0, S j > 0, R j > 0 ( j = 0, 1),
S12, ni × ni matrices Qi > 0 (i = 1, 2) such that (9.17) and

Ω =
[
R1 S12
∗ R1

]
≥ 0,

F̂ T
0 P F̂0 + Σ̂ + F̂ T

01W F̂01 − ληm FT
12R0F12 − λτM F̂TΩ F̂ < 0,
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are feasible, where

F̂0 = [A 0 A1 0 B3−i ],
F̂01 = [A − I 0 A1 0 B3−i ],
F̂ =

[
0 I −I 0 0
0 0 I −I 0

]
,

Σ̂ = diag{S0 − λP,−ληm (S0 − S1), 0,−λτM S1, ϕ},
ϕ = −[ 1

τM − ηm + 1
− (1 − λ)]Q3−i ,

W = η2
m R0 + (τM − ηm)2R1 + (τM − ηm)Q, i = 1, 2.

Then the solutions of the hybrid system (9.10), (9.11) satisfy the bound (9.15),
implying exponential stability of (9.10), (9.11) with respect to x. Moreover, if the
aforementioned inequalities are feasible with λ = 1, then the bound (9.15) holds
with λ = 1 − ε, where ε > 0 is small enough.

Remark 1 The inequality Ve(t) ≤ λt−t0Ve(t0), t ≥ t0, t ∈ Z
+ in (9.15) guarantees

that
tk+1 − tk

τM − ηm + 1
eTi (tk)Qiei (tk)|i �=i∗k

is bounded, and it does not guarantee that e(tk) is bounded. That is why (9.15) implies
only partial stability with respect to x .

Remark 2 Note that for the stability analysis of discrete-time systems with time-
varying delay in the state, a switched system transformation approach can be used
in addition to a Lyapunov-Krasovskii method. See more details in [11].

Remark 3 Application of Schur complement leads the matrix inequalities of Theo-
rems 1 and 2 to LMIs that are affine in the system matrices. Therefore, for the case
of system matrices from the uncertain time-varying polytope

Θ̃ =
N∑

j=1

g̃ j (t)Θ̃ j , 0 ≤ g̃ j (t) ≤ 1,

N∑

j=1

g̃ j (t) = 1, Θ̃ j = [
A( j) B( j)

]
,

the LMIs need to be solved simultaneously for all N vertices Θ̃ j , using the same
decision matrices.

9.4 Example: Discrete-Time Cart-Pendulum

Consider the following linearized model of the inverted pendulum on a cart [15]:
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⎡

⎢⎢⎣

ẋ(t)
ẍ(t)
θ̇(t)
θ̈(t)

⎤

⎥⎥⎦ =

⎡

⎢⎢⎢⎢⎢⎣

0 1 0 0

0 0
−mg

M
0

0 0 0 1

0 0
(M + m)g

Ml
0

⎤

⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎣

x(t)
ẋ(t)
θ(t)
θ̇(t)

⎤

⎥⎥⎦ +

⎡

⎢⎢⎢⎢⎣

0
a

M
0

−a

Ml

⎤

⎥⎥⎥⎥⎦
u(t), t ∈ R

+

withM = 3.9249 kg,m = 0.2047 kg, l = 0.2302m, g = 9.81N/kg, a = 25.3N/V.
In the model, x and θ represent cart position coordinate and pendulum angle from
vertical, respectively. Such a model discretized with a sampling time Ts = 0.001 s:

⎡

⎢⎣
x(t + 1)

Δx(t + 1)
θ(t + 1)

Δθ(t + 1)

⎤

⎥⎦ =
⎡

⎢⎣
1 0.001 0 0
0 1 −0.0005 0
0 0 1.00 0.001
0 0 0.0448 1

⎤

⎥⎦

⎡

⎢⎣
x(t)

Δx(t)
θ(t)

Δθ(t)

⎤

⎥⎦ +
⎡

⎢⎣
0

0.0064
0

−0.0280

⎤

⎥⎦ u(t), t ∈ Z
+.

The pendulum can be stabilized by a state feedback u(t) = K
[
x Δx θ Δθ

]T

with the gain K = [K1 K2]

K1 = [
5.825 5.883

]
, K2 = [

24.941 5.140
]
,

which leads to the closed-loop system eigenvalues {0.8997, 0.9980 + 0.0020i,
0.9980 − 0.0020i, 0.9980}. Suppose the variables θ,Δθ and x ,Δx are not accessible
simultaneously. We consider measurements yi (t) = Ci x(t), t ∈ Z

+, where

C1 =
[
1 0 0 0
0 1 0 0

]
, C2 =

[
0 0 1 0
0 0 0 1

]
.

For the values ofηm given inTable9.1,we applyTheorem2withλ = 1 andfind the
maximum values of MATI that preserve the stability of hybrid system (9.10), (9.11)
with respect to x (seeTable9.1). FromTable9.1, it is observed that the presentedTOD
protocol, which possesses less decision variables in the LMI conditions, stabilizes
the system for larger MATI than the RR protocol in Theorem 1. Moreover, when
ηm > MATI (ηm ≥ 4), our method is still feasible (communication delays are larger
than the sampling intervals).

Table 9.1 Example: maximum values of MATI for different ηm = ηM

MATI \ηm = ηM 0 2 4 5 8 11 Decision
variables

Theorem 1 (RR) 4 3 3 2 1 Infeasible 146

Theorem 2
(TOD/RR)

4 4 3 3 2 1 82
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9.5 Conclusions

In this chapter, a time-delay approach has been developed for the stability analysis
of discrete-time NCSs under the RR or under a weighted TOD scheduling. Polytopic
uncertainties in the systemmodel can be easily included in the analysis. A numerical
example illustrated the efficiency of our method. It was assumed that no packet
dropouts will happen during the data transmission over the network. Note that the
time-delay approach has been developed for NCSs under stochastic protocols in [17],
where the network-induced delays are allowed to be larger than the sampling intervals
in the presence of collisions. For application of the presented approach in this chapter
to discrete-time NCSs under scheduling protocols and actuator constraints, see [14].
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Chapter 10
Stabilization of Networked Control Systems
with Hyper-Sampling Periods

Xu-Guang Li, Arben Çela and Silviu-Iulian Niculescu

Abstract This chapter considers the stabilization of Networked Control Systems
(NCSs) under the hyper-samplingmode. Such a samplingmode, recently proposed in
the literature, appears naturally in the scheduling policies of real-time systems under
constrained (calculation and communication) resources. Meanwhile, as expected,
the stabilization problem under the hyper-sampling mode is much more complicated
than in the case of single-sampling mode. In this chapter, we propose a procedure to
design the feedback gain matrix such that we can obtain a stabilizable region as large
as possible. In the first step, we determine the stabilizable region under the single-
sampling period. This step can be easily obtained by solving some linear matrix
inequalities (LMIs) and from the result we may obtain a stabilizable region for the
hyper-sampling period. Then, in the second step, we further detect the stabilizable
region, based on the one found in the first step, by adjusting the feedback gain
matrices based on the asymptotic behavior analysis. By this step, a larger stabilizable
region may be found and this step can be used in an iterative manner. The proposed
procedure will be illustrated by a numerical example. We can see from the example
that the stabilizable region under the hyper-sampling period may lead to a smaller
average sampling frequency (ASF) guaranteeing the stability of the NCS than the
single-sampling period, i.e., less system resources are required by the hyper-sampling
period.
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10.1 Introduction

The stability of Networked Control Systems (NCSs) is an important research topic
in the area of control, see e.g., [1, 11, 21]. Calculation and communication resources
limitation, the distribution of calculation, actuation, and sensing devices, and the
related scheduling render the analysis and design complex and challenging.

A simplemodel of anNCS is givenby a sampled-data onewith the single-sampling
period (that is, anNCS essentially has one constant or time-varying sampling period).
For such NCSs with single-sampling periods, there exists an abundant literature
devoted to the stability and related problems.

In particular, a lot of recent studies focus on the robust stability and stabilization
problems when NCSs are subject to uncertain sampling periods and/or network-
induced delays (see, for instance, the delayed-input method used in [9], the small
gain approach adopted in [17], and the convex-embedding approach used in [7, 10]).

For nominal NCS models (i.e., when the sampling periods, network-induced
delays, and the system matrices are all fixed), an eigenvalue-based approach was
introduced in [16] for characterizing the stability domain for the sampling period
or network-induced delay. Such an approach represents a novelty in the domain.
Recently, a hyper-sampling period, from a perspective of real-time systems, was
proposed in [2, 5] (see also [4] for a more detailed introduction). Compared with
the single-sampling counterpart, a hyper-sampling period consists of multiple sub-
sampling periods and hence provides with a more flexible and realistic sampling
mechanism for NCSs.

In the hyper-sampling context, stability conditions were studied in [13], where
a discrete-time model and some robust analysis techniques similar to the ones used
in [8, 18, 19] were adopted. It was shown in [13] that an NCS can be asymptot-
ically stable with less system resources consumption. In [13] the feedback gain
matrix is supposed to be designed a priori and the stability region with respect to the
sub-sampling periods are explicitly studied. One may naturally predict that system
resources may be further saved if both the hyper-sampling period and the feedback
gain matrix are considered as free design parameters. This motivates us to consider
in this chapter the following co-design problem:

For an NCS under the hyper-sampling period, design the feedback gain matrices
such that the obtained stabilizable region in the space of sub-sampling parameters
is as large as possible.

For simplicity, we assume in this chapter that the hyper-sampling period has
two sub-sampling periods T1 and T2 which practically means that a control task is
executed twice in each hyper-sampling period. We believe that the method proposed
and the results obtained here may be extended to the case involving more sub-
sampling periods. When the hyper-sampling period is assumed to have two sub-
sampling periods T1 and T2, the value of 1/(T1 + T2) corresponds to an index average
sampling frequency (ASF). It is not hard to see that if an NCS can be stabilized by a
hyper-sampling period with a smaller ASF, then less calculation and communication
resources are consumed (the consumption of resources is in general proportional
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to the ASF). Therefore, in this chapter, we will consider how to find a stabilizable
region for an NCS in the T1 − T2 plane with the values T1 + T2 as large as possible.

Due to the complexity of the problem, we start with the specific case where
T1 = T2 (instead of direct studying the general case) and calculate the maximal
stabilizable bound T , i.e., the NCS can be stabilized by some (not necessary one)
feedback gain matrices if 0 < T1 = T2 < T . We will show that for this specific case
(corresponding to the single-sampling case), themaximal stabilizable bound T can be
easily obtained through a necessary and sufficient condition in terms of linear matrix
inequalities (LMIs) .We next seek the stabilizable region in the hyper-sampling case.
It should be emphasized that, unlike for the single-sampling case, for a given hyper-
sampling period (T1, T2) there does not exist a direct way so far to find a stabilizing
feedback gain matrix K (the corresponding conditions are in terms of nonlinear
matrix inequalities).

In this chapter, wewill propose an eigenvalue-based procedure to iteratively adjust
the feedback gain matrix K . First, from the results for the single-sampling case, we
may obtain a stabilizable region for the hyper-sampling period in the T1 − T2 plane.
This stabilizable region is dented by S(0), whose boundary is denoted by B(0) and
can be detected by parameter sweeping. Each point on B(0) must correspond to a
feedback gain matrix with which the NCS has characteristic roots located on the
unit circle, called critical characteristic roots or eigenvalues.1 Then, we study the
asymptotic behavior of these critical characteristic roots with respect to the elements
of K such that we know the way to adjust K in order to have a larger stabilizable
region. In this way, we will have some new feedback gain matrices leading to a new
stabilizable region S(1), whose boundary is B(1). Next, the above step may be applied
to the points on B(1) and then obtain one more stabilizable region S(2). By repeating
this method in an iterative manner, we may obtain new stabilizable regions S(3),
S(4), . . . Finally, the combination S(0) ∪ S(1) ∪ · · · is the overall stabilizable region
we detect.

The asymptotic behavior analysis is a relatively new approach for the analysis
and design of NCSs (see e.g., [16]), and, to the best of the authors’ knowledge,
was not sufficiently exploited in the community of NCSs. In this chapter, we will
only study the case with only simple critical characteristic roots (i.e., we suppose
that no multiple critical characteristic roots appear). One may refer to [14] for a
general method for asymptotic behavior analysis. The proposed procedure will be
illustrated by a numerical example. In addition, we can see from the example that,
compared with the single-sampling period, a smaller ASF guaranteeing the NCS
stability can be obtained by the hyper-sampling period. That is to say, calculation
and communication resources may be saved by adopting the hyper-sampling period.

This chapter is organized as follows. In Sect. 10.2, some preliminaries are given. In
Sect. 10.3, the stabilization for NCSs under the single-sampling mode is considered.
Aprocedure for designing the feedbackgainmatrices under the hyper-samplingmode

1In this chapter, the words “eigenvalue” and “characteristic root” may be used alternatively.
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is proposed in Sect. 10.4. An illustrative example is given in Sect. 10.5. Finally, some
concluding remarks end this chapter in Sect. 10.6.

Notations: In this chapter, the following standard notations will be used:R (R+) is
the set of (positive) real numbers; N is the set of non-negative integers and N+ is the
set of positive integers. Next, I is the identity matrix with appropriate dimensions.
For a matrix A, A′ denotes its transpose. We denote by ρ(A) the spectral radius of
matrix A. Finally, A > 0 implies that A is positive definite.

10.2 Preliminaries

The controlled plant of a networked control system (NCS) is given by

ẋ(t) = Ax(t) + Bu(t), (10.1)

where x(t) and u(t) denote, respectively, the system state and control input at time t ,
and A and B are constant matrices with appropriate dimensions. It is a trivial assump-
tion that A is not Hurwitz, otherwise the system is open-loop stable and less inter-
esting for study. At a sampling instant tk (k ∈ N), the control input to the plant (1) is
updated to u(tk). Implemented with the Zero-Order-Hold (ZOH) devices, the control
signal is

u(t) = u(tk), tk ≤ t < tk+1. (10.2)

We employ the commonly used state feedback control:

u(tk) = Kx(tk), (10.3)

where K is the feedback gain matrix, to be designed in this chapter. The closed-loop
of the NCS can be expressed by the following discrete-time model

x(tk+1) = Φ(T (k), K )x(tk), k ∈ N, (10.4)

where T (k)
Δ= tk+1 − tk denote the sampling periods andΦ(T (k), K ) is the transition

matrix function defined by

Φ(α, β) = eAα +
∫ α

0
eAθdθBβ. (10.5)

Introducing Ã(T (k)) = eAT (k) and B̃(T (k)) = ∫ T (k)
0 eAθdθB, we may rewrite

Φ(T (k), K ) as

Φ(T (k), K ) = Ã(T (k)) + B̃(T (k))K . (10.6)
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Fig. 10.1 A hyper-sampling period

Fig. 10.2 Sampling instants under the hyper-sampling mode

In the control area, themost used samplingmode is the standard2 single-sampling
mode. In particular, throughout this chapter we focus on the nominal cases and the

sampling periods T (k)
Δ= tk − tk−1 are a constant value, denoted by T , for all k ∈ N+

under the single-sampling mode.
A well-known necessary and sufficient stability condition for the NCS under the

standard single-sampling mode is as follows (see e.g., [1, 6]).

Lemma 1 The networked control system described by (10.1)–(10.3) with a con-
stant sampling period T is asymptotically stable if and only if the transition matrix
Φ(T, K ) is Schur.

The stabilization problem in the single-sampling case is relatively simple to solve
(details will be given in Sect. 10.3). As earlier mentioned, the main objective of this
chapter is to study the stabilization under the hyper-sampling mode. In general, a
hyper-sampling period is composed of n ∈ N+ sub-sampling periods Ti ∈ R+, i =
1, . . . , n, as depicted in Fig. 10.1. The n sub-sampling periods are allowed to be
different from each other.

Under the hyper-sampling mode, the sampling instants tk (k ∈ N) are as depicted
in Fig. 10.2. It follows that t1 − t0 = T1 (t0 = 0), t2 − t1 = T2, . . ., tn − tn−1 = Tn ,
tn+1 − tn = T1, tn+2 − tn+1 = T2, . . .. That is, the sampling periods T (k) are gen-
erated periodically according to hyper-sampling period. More precisely, they are
generated by the following rule:

T (k) = tk+1 − tk =
{
Tk+1 mod n, k + 1 mod n �= 0, k ∈ N,

Tn, k + 1 mod n = 0, k ∈ N,
(10.7)

where the notation ofmodulo operation “a mod b” denotes the remainder of division
of a by b.

2We use the term “standard” simply to differwith the hyper-samplingmode discussed in this chapter.
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Remark 1 It is easy to see that the hype-sampling mode reduces to the single-
sampling mode when n = 1. Thus, we may treat the single-sampling mode as a
special case of the hyper-sampling mode. In general, a larger n offers more design
flexibility of the hyper-sampling period. Meanwhile, the price to be paid for a larger
n is the increased solution complexity of the stabilization problem.

For a hyper-sampling period with n sub-sampling periods T1, . . ., Tn , we define
the Average Sampling Frequency (ASF) as follows:

fA = n
n∑

i=1
Ti

. (10.8)

Remark 2 The concept of ASF is easy to understand: On average, in a unit of time
the system state is sampled fA times (or, equivalently, the system state is sampled
once in 1/ fA units of time). The value of fA corresponds to the calculation and
communication resources consumed by a control task, since a sample instant is
associated with a series of actions including state sampling by sensor, data transition
over network, calculation of control input by controller, and updating of control input
by actuator. The higher the ASF is, more resources are consumed.

For the sake of simplicity, in this chapter we study the case n = 2. That is, the
hype-sampling period is assumed to contain two sub-sampling periods T1 and T2.
In this context, a hyper-sampling period can be denoted by a pair (T1, T2). In our
opinion, the results of this chapter can be extended to the case with more sub-
sampling periods. Following the analysis in [13], we have the following necessary
and sufficient stability condition:

Lemma 2 The networked control system described by (10.1)–(10.3) with two sub-
sampling periods T1 and T2 is asymptotically stable if and only ifΦ(T1, K )Φ(T2, K )

(or, equivalently Φ(T2, K )Φ(T1, K )) is Schur.

Lemma 2 is based on the discrete-time expression of the NCS:

x(tk+2) = Φ(T2, K )Φ(T1, K )x(tk),

if k is evenwhile x(tk+2) = Φ(T1, K )Φ(T2, K )x(tk) if k is odd.Next, the equivalence
(from the stability point of view)betweenΦ(T1, K )Φ(T2, K ) andΦ(T2, K )Φ(T1, K )

is due to the following immediate yet important property:

Propertry 1 For two square matrices Q1 and Q2, the matrices Q1Q2 and Q2Q1

have the same eigenvalues.

In view of Lemma 2, we define

ΦH (T1, T2, K ) = Φ(T1, K )Φ(T2, K ),



10 Stabilization of Networked Control Systems with Hyper-Sampling Periods 173

and we know that the NCS is asymptotically stable if and only if ΦH (T1, T2, K ) is
Schur (it is equivalent if we define ΦH (T1, T2, K ) as Φ(T2, K )Φ(T1, K )). Next, we
clarify the notions “stabilizable hyper-sampling period”, “stabilizable point”, and
“stabilizable region”, to be frequently used in this chapter.

A hyper-sampling period (T1, T2) is called a stabilizable one, if there exists a
feedback gain matrix K stabilizing the closed-loop NCS (i.e., there exists a K such
that ΦH (T1, T2, K ) is Schur). The corresponding point, with coordinate (T1, T2) in
the T1 − T2 parameter plane, is called a stabilizable point. A stabilizable region refers
to the set of stabilizable points in the T1 − T2 parameter plane.

Note that a stabilizable regiongenerally corresponds tomultiple different feedback
gain matrices. For instance, if for a feedback gain matrix Kα (Kβ), the NCS is
asymptotically stable when (T1, T2) lies in a region SKα

(SKβ
), then SKα

(SKβ
) is

a stabilizable region. Furthermore, SKα
∪ SKβ

is a larger stabilizable region and a
stabilizing K for all (T1, T2) ∈ SKα

∪ SKβ
does not necessarily exist.

Remark 3 According to Property 1, if (T ∗
1 , T ∗

2 ) is a stabilizable point if and only if
(T ∗

2 , T ∗
1 ) is a stabilizable point. Therefore, it suffices to consider only the domain

with T1 ≤ T2 (T1 > 0, T2 > 0). For an obtained stabilizable region S∗ therein, there
must be a stabilizable region S� in the domain with T2 ≤ T1 (T1 > 0, T2 > 0), such
that S∗ and S� are symmetric with respect to the line T1 = T2.

In the sequel, we will first study the stabilization problem in the case of single-
sampling period. Next, we will study the stabilization problem in the case of hyper-
sampling period based on the obtained results for the single-sampling period case.

10.3 Stabilization of NCS Under Single-Sampling Mode

Although the result given below is not new, it will represent the staring point of our
study in handling the case of hyper-sampling period.

Lemma 3 Consider a networked control system described by (10.1)–(10.3) under
the single-sampling mode. For a given sampling period T , the networked control
system is stabilizable if and only if there exist a positive-definite matrix P and a
matrix Y such that the following linear matrix inequality (LMI) is feasible

( −P Ã(T )P + B̃(T )Y
( Ã(T )P + B̃(T )Y )′ −P

)
< 0. (10.9)

If the LMI (10.9) is feasible, we have a feedback gain matrix K = Y P−1 with
which the networked control system is asymptotically stable.

Proof The condition of Lemma 3 can be easily developed from a standpoint of
discrete-time system. For a given T , the NCS is stabilizable if and only if there exists
a feedback gain matrix K and a positive-definite matrix P such that:
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( Ã(T ) + B̃(T )K )P( Ã(T ) + B̃(T )K )′ − P < 0,

which is equivalent to the condition:

( Ã(T ) + B̃(T )Y )P−1( Ã(T ) + B̃(T )Y )′ − P < 0, (10.10)

where Y = K P . The condition (10.10) can be equivalently transformed into the LMI
form (10.9) by using the Schur complement properties (see [3]). �

Lemma 3 can be easily implemented by using the LMI toolbox in MATLAB.
Thus, for any single-sampling period T , we may precisely determine if the NCS is
stabilizable and obtain a corresponding feedback gain matrix K if stabilizable.

Furthermore, by sweeping T and using Lemma 3, we may accurately find the
stabilizable interval T ∈ (0, T ) under the single-sampling mode (note that this result
is without conservatism). Then, we choose some T0,i such that 0 < T0,1 < T0,2
< · · · < T and for each T0,i we have a stabilizing feedback gain matrix, denoted
by K (0)

i . Each K (0)
i provides with a stabilizable region in the T1 − T2 plane near

(T1 = T0,i , T2 = T0,i ), denoted by S(0)
i . Note that S(0)

i can be obtained by parameter
sweeping.

The combination of all S(0)
i , S(0)

1 ∪ S(0)
2 ∪ · · · , constitute a (larger) stabilizable

region S(0) in the T1 − T2 plane. The boundary of S(0) is denoted by B(0). Note that
S(0) is a stabilizable region for the hyper-sampling mode, though it is obtained from
the results for the stabilization of the single-sampling case.

In the next section, we will further enlarge the stabilizable region for the hyper-
sampling mode based on S(0).

10.4 Stabilization of NCS Under Hyper-sampling Mode

First of all, it should be noticed that, unlike for the single-sampling case, it is difficult
to determine if an NCS is stabilizable for a given hyper-sampling period (T1, T2) and
to find the corresponding stabilizing feedback gain matrix K (if stabilizable). If we
straightforwardly follow the idea in Sect. 10.3, we need to find a positive-definite
matrix P and a feedback gain matrix K such that the following matrix inequality
holds:

ΦH (T1, T2, K )PΦ
′
H (T1, T2, K ) − P < 0. (10.11)

However, the condition (10.11) is a nonlinear matrix inequality and it is not easy
to equivalently transform it into a linear one. To the best of the authors’ knowledge, it
is difficult to directly find a K satisfying condition (10.11). The problemwill become
more involved when n > 2.

Instead of trying to give a direct procedure, in the sequel, wewill take advantage of
the results obtained for the single-sampling case to design the feedback gain matrix
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K for the case of hyper-sampling period. From the results proposed in Sect. 10.3, we
have a stabilizable region S(0) with its boundary B(0) in the T1 − T2 plane. For every
point (T1, T2) on B(0), there is a K with which ΦH (T1, T2, K ) has an eigenvalue
located on the unit circle (such an eigenvalue is called a “critical” one).

To simplify the analysis of this chapter, we adopt the following assumption.

Assumption 1 All the critical eigenvalues of the closed-loop system are simple.

Remark 4 If multiple critical eigenvalues appear, the problemwill generally become
more complicated and we may invoke the Puiseux series to treat such a case (see
e.g., [14] for the analysis of multiple critical roots for time-delay systems).

Remark 5 If λ∗ is a critical eigenvalue, its conjugate λ∗ is also a critical eigenvalue
and the variations of λ∗ and λ∗ as K varies are symmetric with respect to the real
axis. Thus, it is sufficient to analyze either of them.

In the sequel, we will design K through analyzing the asymptotic behavior of the
critical eigenvalues with respect to the elements of K . Without any loss of generality,
suppose K hasm ∈ N+ elements. For instances, a 1 × 3 K has 3 elements and it can
be expressed by ( k1 k2 k3 ); a 2 × 2 K has 4 elements and it can be expressed by(
k1 k2
k3 k4

)
. The elements of K are expressed by kγ , γ = 1, . . . ,m. The characteristic

function for the transition matrix of an NCS under the hyper-sampling mode can be
denoted by:

f (λ, T1, T2, k1, . . . , km) = det(λI − ΦH (T1, T2, K )). (10.12)

By the implicit function theorem (see e.g., [12, 20]), we have the following the-
orem:

Theorem 2 Suppose when λ = λ∗, T1 = T ∗
1 , T2 = T ∗

2 , k1 = k∗
1 , . . . , km = k∗

m,

f (λ, T1, T2, k1, · · · km) = 0

and fλ �= 0. As kγ vary near k∗
γ (γ = 1, . . . ,m), f (λ, T1, T2, k1, . . . , km) = 0

uniquely determines a characteristic root λ(k1, . . . , km) with λ(k∗
1 , . . . , k

∗
m) = λ∗

and λ(k1, . . . , km) has continuous partial derivatives

∂λ

∂k1
= − fk1

fλ
, . . . ,

∂λ

∂km
= − fkm

fλ
.

According to Theorem 2, we may express the asymptotic behavior of λ with
respect to the elements of the feedback gain matrix K by the following (first-order)
Taylor series

Δλ = C1Δ(k1) + · · · + CmΔ(km) + o(Δ(k1), . . . , Δ(km)), (10.13)



176 X.-G. Li et al.

where

Cγ = ∂λ

∂kγ

, γ = 1, . . . ,m.

Remark 6 In this chapter, we only invoke the first-order terms of the Taylor series. If
needed, we may further invoke higher-order terms. One may refer to [15] concerning
the degenerate case for time-delay systems, where invoking the first-order terms is
not sufficient for the stability analysis.

For a critical characteristic root λ (i.e., |λ| = 1), from the stability point of view,
we are interest in the direction of Δλ with respect to the unit circle. If the direction
points inside the unit circle, the variation makes the system asymptotically stable.
Equivalently, we may consider the variation of the norm of the critical characteristic
root λ, i.e., Δ(|λ|). Such an analysis can be fulfilled by computing the projection of
Δλ on the normal line of the unit circle at λ. We have the following theorem.

Theorem 3 Supposewhenλ = λ∗, T1 = T ∗
1 , T2 = T ∗

2 , k1 = k∗
1 , . . . , km = k∗

m, f (λ,

T1, T2, k1, · · · km) = 0 and fλ �= 0. As kγ vary near k∗
γ (γ = 1, . . . ,m), it follows that

Δ(|λ|) = (
Re(λ∗) Im(λ∗)

) · (
Re(Δλ) Im(Δλ)

)
.

We now apply Theorem 3 to adjust K in order to have a larger stabilizable region.
We choose some points on B(0), denoted by (T (0)

1,i , T (0)
2,i ) (i = 1, 2, . . .). Each

(T (0)
1,i , T (0)

2,i ) corresponds to a K (0)
i (whose elements are denoted by k(0)

i,1 , . . . , k(0)
i,m)

and λ
(0)
i with

∣∣∣λ(0)
i

∣∣∣ = 1 such that f (λ(0)
i , T (0)

1,i , T (0)
2,i , k(0)

i,1 , . . . , k(0)
i,m) = 0 . Then, we

may adjust K (0)
i according to Theorem 3 to find a new feedback gain matrix, denote

by K (1)
i such that the NCS with K (1)

i is asymptotically stable near (T (0)
1,i , T (0)

2,i ).
More precisely, for each element kγ wemay know from Theorem 3 the following.

Suppose other elements of K are fixed, a sufficient small increase (decrease) of kγ

at k(0)
i,γ makes λ

(0)
i move inside the unit circle if

(
Re(λ∗) Im(λ∗)

) · (
Re(Cγ ) Im(Cγ )

)
> 0 (< 0).

With this property, we may adjust all elements k(0)
i,γ , γ = 1, . . . ,m, appropriately

to find a new stabilizing feedback gain matrix.
From each K (1)

i we have a new stabilizable region near (T (0)
1,i , T (0)

2,i ), denoted by

S(1)
i . The combination of all S(1)

i , S(1)
1 ∪ S(1)

2 ∪ · · · , constitute a larger stabilizable
region S(1) in the T1 − T2 plane. The boundary of S(1) is denoted by B(1).

The above step can be used iteratively such that a sequence of new stabilizable
regions S(2), S(3), . . . can be obtained. This is the procedure, proposed in this chapter,
for solving the stabilization problem in the hyper-sampling case and can be summa-
rized as below.
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Procedure for stabilization of NCSs with hyper-sampling period:

• Step 1: Using the method proposed in Sect. 10.3, we find the stabilizable region
S(0), and the boundary of S(0), B(0), in the T1 − T2 plane. Let l = 0.

• Step 2: Choose some points on B(l), (T (l)
1,i , T

(l)
2,i ), i = 1, 2, . . . Each (T (l)

1,i , T
(l)
2,i )

corresponds to a K (l)
i such that ρ(ΦH (T (l)

1,i , T
(l)
2,i , K

(l)
i )) = 1. Then, we adjust the

elements of K (l)
i according to Theorem 3 to find a new feedback gain matrix K (l+1)

i

associated with a new stabilizable region S(l+1)
i . The combination of all S(l+1)

i form
a new stabilizable region S(l+1), whose boundary is B(l+1).

• Step 3: If we want to further detect the stabilizable region in the T1 − T2 plane,
let l = l + 1 and return to Step 2. Otherwise or when it is hard to find a larger
stabilizable region by Step 2, the procedure stops. The combination S(0) ∪ · · · ∪
S(l) is the overall stabilizable region we find.

Remark 7 The above procedure is not very simple to use and the computational
effort may further increase if we choose more points ont the boundaries. However,
as the procedure can be implemented off-line, the computational complexity is not
an important issue here.

10.5 Illustrative Example

In the sequel, the procedure proposed in Sect. 10.4 will be illustrated by a numerical
example.

Example 1 Consider an NCS with the controlled plant (10.1) with

A =
[
12 1
1 −9

]
, B =

[
0.1
0

]
.

Wefirst employ Step 1 to find the stabilizable region S(0). The stabilizable interval
under the single-sampling mode is T ∈ (0, 1.26). That is, the minimal stabilizable
ASF under the single-sampling mode is fA = 1

1.26 = 0.79. The stabilizable region
S(0) is shown in Fig. 10.3.

Next, on the boundary of S(0), B(0), we choose some (T (0)
1,i , T (0)

2,i ) and apply Step 2

to adjust the corresponding K (0)
i . As a consequence, wemay find some new feedback

gain matrices K (1)
i and a new stabilizable region S(1) with the boundary B(1).

We may repeat the above step (Step 2), and, as a consequence, we find a sequence
of new stabilizable regions S(2), S(3), S(4), as shown in Fig. 10.3, with the boundaries
B(2), B(3), B(4). If needed, we may obtain more stabilizable regions by repeating step
2 for more times.

We see from Fig. 10.3 that each time a new stabilizable region (with larger
values of T1 + T2) is found, a smaller ASF can be obtained. For instance, we
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Fig. 10.3 Stabilizable
region found for Example 1
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find a hyper-sampling period (T1 = 1.40, T2 = 1.54) with the corresponding K =
(−120.475116 − 5.723971), in the obtained stabilizable region. That is, the ASF
corresponding to this hyper-sampling period is fA = 2

1.40+1.54 = 0.68, smaller than
the minimal ASF under the single-sampling mode, 0.79. To illustrate the asymptotic
stability of the NCS under this hyper-sampling period, we give the state response
with an initial state x(0) = (1.1 − 1.1)′ in Fig. 10.4.

10.6 Concluding Remarks

In this chapter, we proposed a procedure for the stabilization of networked control
systems (NCSs) under the hyper-sampling mode. The procedure consists of two
steps.
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Step 1 is to solve the stabilization problem in the case of single-sampling period
and we can obtain a stabilizable region for the hyper-sampling period from this step.
Step 2 is to find a larger stabilizable region based on the results of Step 1 by using a
method for asymptotic behavior analysis. Step 2 can be used in an iterative manner
such that the stabilizable region can be further detected in the parameter plane.

An example illustrates the proposed procedure and shows that the hyper-sampling
period may lead to a smaller average sampling frequency (ASF) guaranteeing the
asymptotic stability of the NCS than the single-sampling period, which means that
calculation and communication resources of an NCS can be saved by using the
hyper-sampling mode.
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Chapter 11
Optimal Control Strategies for Load
Carrying Drones

Alicia Arce Rubio, Alexandre Seuret, Yassine Ariba
and Alessio Mannisi

Abstract This chapter studies control strategies for load carrying drones. Load
carrying drones not only have to fly in a cooperative way, but also are mechanically
interconnected. Due to these characteristics, the control problem is an interesting and
challenging issue to deal with. Throughout this chapter, a dynamic model based on
first principle is developed. To that end, it is proposed to model this system as a ball
and beam system lifted by two drones. Afterwards, different control techniques are
implemented and compared by simulations. Specifically, linear-quadratic regulator
(LQR) and model predictive control (MPC) are studied. Both control techniques
belong to the optimal control methodology. This comparison is interesting since
LQR permits to perform an optimal control law with short execution times, while
MPC deals with physical constraints and predictions, being the execution time and
the physical constraints important issues to handle in this kind of systems. Finally,
simulation results and open issues are discussed.
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11.1 Introduction

Interest in using drones (that is, unmanned aerial vehicles—UAVs—with the capac-
ity to fly semi- or fully autonomously thanks to an on-board computer and sensors
[1]) for scientific investigations dates back to the 1970s. Since then, billions of dol-
lars have been poured into research and development of military and experimental
drones. Indeed, during the last years, an increased use of flying drones has been
noticed. The invention of light materials, low energy consumption machines, and
high performance processing units led to the construction of flexible flying robots.
They can be used in a variety of applications such as vehicle tracking, trafficmanage-
ment and fire detection [2, 3]. Within the family of the vertical take-off and landing
(VTOL) drones, unmanned quadrotor helicopters [4] that base their operation in the
appropriate control of four rotors have received a growing attention, mainly due to
their capability to outperform most of other types of helicopters on the issues of
maneuver ability, survivability, simplicity of mechanics, and increased payloads [5].
In fact, there are several advantages to quadcopters over comparably-scaled heli-
copters: the simplicity of their mechanical structure, the use of four small propellers
resulting in a more fault-tolerant mechanical design capable of aggressive maneu-
vers at low altitude, good maneuver ability, and increased payload [6]. Untapping
the potential of quadrotors requires, however, advanced control designs so as to
achieve precise trajectory tracking combined with effective disturbance attenuation,
particularly since quadrotor’s model is highly nonlinear and their flight performance
can be influenced by sudden wind gusts especially during flights in low altitudes.
Moreover, the application studied in this chapter, which is the control of multiple
quadrotor robots that cooperatively grasp and transport a payload in two dimensions,
adds difficulty to the problem. Although the problem associated to quadrotor control
has been addressed by many publications (such as those focused in PID control [7],
sliding mode control [8], H∞ control [9] and bounded control [10]), the novelty of
the work presented herein is the application and subsequent comparison of model
predictive control (MPC) [11] and linear-quadratic regulator (LQR) control tech-
niques. To the best knowledge of the authors of this article this has not been realized
before, a fact which further supports the interest of this work. Such a comparison is
valuable since LQR permits to perform an optimal control law with short execution
times while MPC deals with physical constraints and predictions. Execution time
and physical constraints being important issues to take into account, while facing
the control problem discussed in this chapter, the proposed application and compar-
ison of MPC and LQR techniques therefore represents a useful framework aimed to
provide researchers in the area with additional control possibilities.

To reach these ends, the chapter is organized as follows: Sect. 11.2 describes the
system under study, while Sect. 11.3 presents the dynamic model. In Sect. 11.4, the
control problem is motivated and control methodologies are developed. Section11.5
shows and discusses the simulation results. Finally, the conclusions are exposed in
Sect. 11.6.
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11.2 System Under Study

The system under study is composed of two drones which aim to carry a load. The
main feature of this system is that load carrying drones present mechanic links. These
mechanic links depend on the way the drones carry the load. Therefore, it is proposed
to describe this kind of system as a ball and beam system lifted by the drones. The
mass center of the ball and beam models the load mass center. Figure11.1 shows a
scheme of the proposed system.

As observed in Fig. 11.1, drones are assumed to be quadrotors. The quadrotors
comprises four propellers each one. The quadrotor trajectory is regulated by the
angular speeds of the propellers resulting in a lift force which is referred to as f1 for
drone 1 and f2 for drone 2 in Fig. 11.1. The ball and beam systems are lifted by the
couple of drones by means of rigid cables with a fixed length equal to h. The beam
length is equal to 2L . In addition, it is supposed that the beam is nondeformable.

For sake of simplicity, in this work it is assumed that the drones only move in
the XZ plane. Specifically, the x position of the drones is fixed, while the degree
of freedom is the altitude z1 for drone 1 and z2 for drone 2. Thus, the longitudinal
distance between the drones is fixed to the value of the beam length (2L). The angles
formed by the vertical axis and the rigid cables are denoted as φ1 for drone 1 and φ2

for drone 2 and the angle formed by the beam and the horizontal axis is denoted θ .
It is defined two different coordinate reference systems x0Oz0 and xBOBzB . The

global coordinate reference system x0Oz0 is located in the ground fixed in the x
position corresponding to the middle distance between the drones. The local frame
xBOBzB is located in the beam mass center.

1 1

1

2

2 2

B

B
B

0

0

Fig. 11.1 Drone ball and beam system
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Table 11.1 System
parameters

Parameter Value

Ball mass 0.1kg

Beam mass 4kg

Beam length 2 m

Drone 1 10kg

Drone 2 10kg

Rigid cable length 1m

Damping factor 0.5

Variables related to the gyroscopic effects are not included in this study, since the
control is divided in two levels. The control structure based on two control levels has
been previously proposed for tracking positioning of quadrotors [9]. In our case, the
high-level control calculates the references for the lift forces f1 and f2, while the low-
level control is dedicated to the drone stabilization. Herein, the drone stabilization is
assumed to be perfectly controlled to be focused on the high-level control.

The main parameters of the system are listed in Table11.1.

11.3 Dynamic Model

The systemunder study presgvented in the previous section ismodeledwith first prin-
ciples equations. To that end, the kinematics equations are developed and afterwards
the Lagrange–Euler equations are obtained.

11.3.1 Kinematics Equations

As previously mentioned, two different coordinate reference systems are defined.
The local frame position, OB , at the global frame is

OB =
[
L − hsinφ2 − Lcosθ
z2 − hcosφ2 − Lsinθ

]
. (11.1)

This matrix represents the transformation from local frame to global frame. The local
frame speed, ȮB , at the global frame is obtained by deriving the position with respect
to the time:

ȮB =
[ −h φ̇2 cosφ2 + L θ̇ sinθ

ż2 + h φ̇2 sinφ2 − L θ̇ cosθ

]
. (11.2)

The ball position and speed at local frame are denoted x and ẋ and using the trans-
formation matrices Eqs. (11.1) and (11.2), the position and speed at global frame, x0
and z0, are:
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[
x0
z0

]
=

[
L − hsinφ2 − Lcosθ − xcosθ
z2 − hcosφ2 − Lsinθ − xsinθ

]
,

[
ẋ0
ż0

]
=

[ −h φ̇2cosφ2 + (L + x)θ̇sinθ − ẋcosθ
ż2 + hφ̇2sinφ2 − (L + x)θ̇cosθ − ẋsinθ

]
.

(11.3)

Given that the longitudinal distance between the drones is fixed, the angle θ can be
expressed as a function of angles φ1 and φ2:

[
sinθ

cosθ

]
= 1

2L

[
z2 − z1 + hcosφ1 − hcosφ2

2L − hsinφ1 − hsinφ2

]
. (11.4)

Replacing θ in Eq. (11.3), the ball position and speed at global frame result in:

[
x0
z0

]
=

⎡

⎢⎣
x + hsφ1 − hsφ2

2
− x(hsφ1 + hsφ2)

2L
z2 + z1 − hcφ1 − hcφ2

2
+ x(z2 − z1 + hcφ1 − hcφ2)

2L

⎤

⎥⎦ ,

[
ẋ0
ż0

]
=

⎡

⎢⎢⎢⎢⎢⎣

(x − L)hφ̇1cφ1 − (x + L)hφ̇2cφ2

2L
− ẋ(2L + hsφ1 + hsφ2)

2L⎛

⎜⎝
(L + x)(ż2 + hφ̇2sφ2) + (L − x)(ż1 + hφ̇1sφ1)

2L
+

+ ẋ(z2 − z1 + hcφ1 − hcφ2)

2L

⎞

⎟⎠

⎤

⎥⎥⎥⎥⎥⎦
,

(11.5)

where cθ and sθ correspond to cosθ and sinθ , respectively.

11.3.2 Lagrange–Euler Equations

The motion equations can be expressed by the Lagrange-Euler formulation based on
the kinetic and potential energy concepts:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d

dt

∂L

∂ ẋ
− ∂L

∂x
d

dt

∂L

∂ ż1
− ∂L

∂z1
d

dt

∂L

∂ ż2
− ∂L

∂z2
d

dt

∂L

∂φ̇1
− ∂L

∂φ1

d

dt

∂L

∂φ̇2
− ∂L

∂φ2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎣

0
f1
f2
0
0

⎤

⎥⎥⎥⎥⎦
, (11.6)
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whereL is the Lagragian of the system. The Lagragian is calculated as the difference
between kinetic and potential energies. The equations are obtained by the software
MAXIMA.

The system kinetic and potential energies are the addition of the ball, beam, and
drone kinetic and potential energies. The ball kinetic energy, Tb, beam kinetic energy,
TB , and drone kinetic energies, Td1 and Td2 are:

Tb = 1

2
mb

[
x0y0

] [
x0
y0

]
TB = 1

2
ρ

∫ l

−l
‖Ṡ0(s)‖2 ds,

Td1 = 1

2
md1 ż

2
1, Td2 = 1

2
md2 ż

2
2,

(11.7)

being mb the ball mass, l the beam volume, md1 the drone 1 mass, md2 the drone 2
mass and ρ the beam density. The beam density ρ is equal to the ratio between the
beam mass, mB , and the beam volume l. The variable ṠO corresponds to the speed
of a generic point of the beam at the global coordinate reference system. The ball
potential energy,Ub, the beam potential energy,UB , and the drone potential energies,
Ud1 and Ud2, are expressed as

Ub = mb g yo, UB = mB g OB,z,

Ud1 = md1 g z1, Ud2 = md2 g z2,
(11.8)

where g is the acceleration of gravity and OB,z is the z position of the local frame
which is placed at the beam mass center.

11.3.3 State-Space Model

The previous model is linearized at an operating point for control purposes. The
operating point corresponds to a ball position equal to (0, 0), drone altitudes z1, z2
equal to 0 and null system speeds (ball, beam, and drones). Moreover, it is considered
as new variables F1 and F2 to represent the lift forces. These variables are equal to
zero at equilibrium, and are calculated as

F1 = f1 − md1 g − mb + mB

2
g,

F2 = f2 − md2 g − mb + mB

2
g.

(11.9)

As a result, the linear model in matrix form is
⎡

⎢⎢⎢⎢⎣

ẍ(t)
z̈1(t)
z̈2(t)
φ̈1(t)
φ̈2(t)

⎤

⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Γ̇

= A

⎡

⎢⎢⎢⎢⎣

x(t)
z1(t)
z2(t)
φ1(t)
φ2(t)

⎤

⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Γ

+B
[
F1(t)
F2(t)

]

︸ ︷︷ ︸
U

,
(11.10)
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where matrices A and B are given by

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
g(2mB + mb)

4LmB
−g(2mB + mb)

4LmB

g(mB + mb)

4mB
−g(mB + mb)

4mB
a1 0 0 0 0

−a2 0 0 0 0

0 − gmb

4LhmB

gmb

4LhmB
−g(mB + mb)

hmB
−g(mB + mb)

2hmB

0
gmb

4LhmB
− gmb

4LhmB
−g(mB + mb)

2hmB
−g(mB + mb)

hmB

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0 0
8mB + 3mb + 12md2

p
−4mB + 3mb

p

−4mB + 3mb

p

8mB + 3mb + 12md1

p
0 0
0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

,

and where

a1 = 3gmb(2mB + mb + 2md2)

p
, a2 = 3gmb(2mB + mb + 2md1)

p
,

p = L(2mBmb + (8mB + 3mb)(md1 + md2) + 12md1md2 + 4m2
B),

From Eq. (11.10), the following state-space model is obtained:
[

Γ̈

Γ̇

]

︸ ︷︷ ︸
Ẋ

=
[
M AT

I 0

]

︸ ︷︷ ︸
Asys

[
Γ̇

Γ

]

︸ ︷︷ ︸
X

+
[
BT

0

]

︸ ︷︷ ︸
Bsys

[
F1

F2

]

︸ ︷︷ ︸
U

.
(11.11)

Vector X is the state vector which contains the speeds and positions of the ball and
drones and the system is represented by matrices Asys and Bsys. Matrix M includes
damping factors which affects the angular movement of the rigid cables modeled
by variables φ1 and φ2. The damping factors avoid infinitive bouncing associated to
ideal pendulum problem. Thus, this matrix is

M =
⎡

⎣
0 0

0

[−μ 0
0 −μ

]
⎤

⎦ . (11.12)
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11.4 Control Problem

The control objective of this system is to maintain the ball in the equilibrium point
on the beam by means of regulating the drone altitudes. As previously mentioned,
the system control is divided in two levels. The high-level control calculates the lift
force to track an altitude reference that depends on the ball position and the altitude
of the other drone, while the low-level control is dedicated to the drone stabilization.
The low-level control is integrated in each drone and calculates the angular speeds
of the four rotors to obtain a total lift force equal to the reference provided by the
high-level control. The control problem is schemed in Fig. 11.2.

As observed in Fig. 11.2, it is considered that the stabilization controllers are feed-
back control strategies. The angular speeds, ωi , of the four rotors are measured and
the lift force, f1 or f2, is estimated. Then the control loop is closed by obtaining
the error between the reference of the lift force and the estimated lift force. This
work focuses on the high-level control and it is assumed that the drone stabilization
is perfectly controlled. In addition, the closed-loop scheme of the high-level control
receives a reference vector, Yref , to be tracked. The system output vector, Y, com-
prises all the states that are measured. We assumed that all the states included in
vector X are measured, that is, the ball position, x , and speed, ẋ , the drone altitudes,
z1 and z2, and speeds, ż1 and ż2, and the angles φ1 and φ2 and its angular speeds φ̇1

and φ̇2.
It is proposed herein to compare different optimal control techniques to evalu-

ate the difficulties associated to this system. In particular, linear-quadratic regulator
(LQR) and model predictive control (MPC) are developed. LQR allows to solve
online optimization control problems with fast execution time and low computa-
tional effort, while MPC deals with physical constraints and predictions. Both con-
trol methodologies present interesting features for this control problem. For aerial
application, short execution times with low computation effort are demanding but
at the same time, handling physical constraints is required to avoid collisions and
instable scenarios caused by disturbances. These controllers are detailed in the next
subsections.

Moreover, controllers are implemented in CPUs on-board, and therefore discrete
control laws are studied. The sampling time is a design parameter which has to be
appropriately chosen. It is important to remark that in this control scenario composed

High-level
control

Drone 1

Drone 2

+
-

y yU

f

f

Stabilization 
control

Stabilization 
control

ω

ω

Ball and beam

ref

1

2

i

i

Fig. 11.2 Control scheme
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by two control levels, each control level may present different sampling time. Specif-
ically, the low-level control is performed faster than the high-level control for this
application. Accounting for possible hardware limitations, a sampling time of 200
ms is set for this study. Note that the optimal controllers require the system model
for design. The dynamic model presented in Eq. (11.11) is in continuous time and it
has to be discretized for a 200-ms sampling time resulting in

X(k + 1) = Ad X(k) + Bd U(k), (11.13)

Y(k) = Cd X(k) + Dd U(k), (11.14)

11.4.1 Linear-Quadratic Regulator

LQR is an optimal and feedback control law which minimizes every sampling time
the following objective function J :

J =
∞∑

k=0

(
X(k)TQX(k) + U(k)TRU(k)

)
, (11.15)

where X(k) and U(k) are the state and input vectors at instant k and matrices Q and
R are weighting matrices. Given that the system is modeled by the discrete-time
state-space model presented in Eqs. (11.13), (11.14), the analytical optimal control
sequence results in

U(k) = −F (X(k) − Xref(k)) , (11.16)

where

F = (
R + Bd

T P Bd
)−1

Bd
T P Ad, (11.17)

being P the unique positive definite solution to the discrete-time algebraic Riccati
equation (DARE):

P = Q + Ad
T

(
P − PBd

(
R + Bd

TPBd
)−1

BdP
)
Ad. (11.18)

11.4.2 Model Predictive Control

Model predictive control has been successfully applied to many industrial processes
[11] and drone applications such as [9]. The controller calculates the optimal control
action taking future predictions and constraints into account. The optimization is
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repeated each sampling time with a moving horizon. MPC is generally formulated
with state-space models as

min
ε(k+m+1),U(k+m)

N−1∑

m=1

ε(k + m + 1)T Q ε(k + m + 1) + U(k + m)T R U(k + m),

(11.19)
where

ε(k + m + 1) = X(k + m + 1) − Xref(k + m + 1), (11.20)

being N the prediction horizon, Q and R the weighting matrices. The error ε is
defined as the difference between the state vector X and the reference Xref since
the output vector Y is equal to the state vector. The optimization problem is subject
to the system dynamic model presented in Eq. (11.14) and the following system
constraints:

X ≤ X(k) ≤ X, U ≤ U(k) ≤ U, Y ≤ Y(k) ≤ Y. (11.21)

The variable vectors denoted with an over line contain the upper limits, while
the variable vectors with an under line contains the lower limits. Particularly, the
constraints included in this problem are the beam length that limits the ball position,
x , and maximum and minimum values for the lift forces, f1 and f2, imposed by rotor
physical constraints. Values of 30 and −35 N are chosen for the upper and lower lift
force bounds, respectively.

11.5 Simulation Results

This section is dedicated to compare and discuss the simulation results for LQR and
MPC. First, preliminary simulations are performed in order to tune the weighting
matrices,Q and R, for the controllers with the objective to achieve fast performance
with nonaggressive control actions. The best values for both matrices and both con-
trollers correspond to

Q = Inx×nx ,

R = 0.004 Inu×nu .
(11.22)

Furthermore, for the MPC the prediction horizon, N , is another design parameter.
The prediction horizon directly influences on the computational demand, that is, the
higher the prediction horizon the higher the computational demand is. Otherwise,
MPC and LQR have the same performance for a sufficiently higher N . Then it is
achieved a tradeoff with a prediction horizon set at 12 samplings.

Figure11.3 compares LQR and constrained MPC simulated for initial drones
altitudes equal to 4.5 and 3.5 m for drone 1 and drone 2.

Figure11.3a shows the performance of the ball position for LQR in red, for MPC
in blue, and bounds in magenta dash lines. Note that both controllers are able to
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Fig. 11.3 Comparison of LQR and MPC controllers on simulations

regulated the ball position and stabilized the ball in the equilibrium point set at
x = 0. However, LQR violates the constraints imposed by the beam length and at
time 1.75 s the ball falls from the beam. Figure11.3b, c show the drone altitudes,
z1 and z2. The altitude references for both altitudes are maintained constant at 2 m
during all the simulation. LQR andMPC appropriately regulate the altitudes. As seen
in the figures, MPC is slightly slower due to the constraints. Figure11.3d, e present
the simulation results for the drone lift forces. MPC performs inside the bounded
region for all the simulation, while LQR violates the constraints at the beginning of
the simulation imposed to the drone 1 lift force.

In order to test in more detail the LQR, several simulations are performed and
presented in Fig. 11.4. The weighting matrices are modified and the lift forces are
saturated to the maximum and minimum values only for the case of the LQR. In
Fig. 11.4a, the ball position performances are presented where red, magenta, and
green dash lines correspond to the LQRperformancewith aweightingmatrixR equal
to 0.008 Inu×nu , 0.004 Inu×nu , and 0.001 Inu×nu , respectively.MatrixQ is kept constant
and equal to the identity matrix. Moreover, red, magenta, and green solid lines are
the LQR performances for the previous weighting matrices including saturations on
the maximum and minimum values of the lift forces. As observed in the figure, only
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Fig. 11.4 Saturated and nonsaturated LQR with different weighting matrices

the LQR performance for a weighting matrix R of 0.004 Inu×nu without saturation
avoids the ball to fall. However, after studying Fig. 11.4d, e, LQR with a weighting
matrix R of 0.004 Inu×nu requires to implement lift forces for drone 1 out of bounds.
Therefore, it is demonstrated that even though LQR is a good candidate to regulate
this system due to its fast execution time, the system performance under the bounds
is not guaranteed.

11.5.1 Disturbances

LQR andMPC are tested under disturbances. To that end, simulations are performed
with disturbances in the ball position and drone altitudes. In addition, changes in the
references are also included in the simulation. The results are compared in Fig. 11.5.
The initial conditions are the same as presented in the previous simulations. The ball
position is modified to a value of x equal to 0.5 m at time 15s as seen in Fig. 11.5a.
The altitude of drone 1 is modified to values of z1 equal to 1.2 and 2.7 at time 20
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Fig. 11.5 LQR and MPC with disturbances

and 28s as shown in Fig. 11.5b. The altitude references are at the beginning of the
simulation equal to 2m and simultaneously change to a value of 3.5m at time 30 s and
again to 2 m at time 40s. The references are shown in Fig. 11.5b, c as cyan dash lines.
In Fig. 11.5, blue solid lines correspond to the MPC, while red solid lines correspond
to the LQR with lift forces saturated. As mentioned in the previous subsection, LQR
is not able to perform under the bounded region and the ball falls from the beam at
times 1.75, 21, and 29 s. MPC performs under bounds during all the simulation and
faster than the saturated LQR as seen in Fig. 11.5a at time 21 s. For both cases, the
altitude references are perfectly tracked with a similar rise time.

11.5.2 Execution Times

Finally, executions times are obtained during simulation to test the suitability of
the real-time implementation of MPC for this application. Note that the controllers
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Table 11.2 Execution times

Controller Average (ms) Maximum (ms) Minimum (ms)

LQR 0.01225 0.0338 0.00798

MPC 5.8 6.8 4.9

are simulated using MATLAB in PC with i7-260M CPU under 64 bits Windows
platform. Table11.2 lists the average, maximum and minimum execution times for
LQR and MPC. The average time for LQR is 0.01225 ms, while MPC is 5.8 ms.
Both average times are far from 200 ms which is the sampling time, and thus a robust
online implementation is feasible. Note that the hardware on-board with a real-time
software may execute the control laws faster. Due to the fast execution times, the
sampling time could be reduced in order to obtain better performance in terms of
response speed. Then the prediction horizon for MPC needs to be recalculated for
the new sampling time. The prediction horizon depends on the system rise time.
Therefore, if the sampling time is reduced, the prediction horizon increases. Also,
the MPC execute time increases with the prediction horizon. The reduction of the
sampling time needs to be carefully studied.

11.6 Conclusion

In the present chapter we have presented, modeled, and analyzed a novel application
of multiagent drone system dealing with load carrying. The main problem related to
this application comes from the mechanical links between the load and the drones
which carry it. This system was proposed to be modeled as a ball and beam lifted
by to drones and a mathematical model based on first principles was developed.
Under the assumption that all the states are measured, LQR and MPC controllers
have been analyzed by simulations. LQR presented very fast execution times but it is
not guaranteed a performance in the bounded area, that is, that the ball does not fall
from the beam as seen in different simulations. On the other hand, MPC deals with
constraints and regulates the ball position without violating the constraints imposed
in the problem. Moreover, execution times are short enough for this application to
guarantee the online implementation.

This work has presented only a preliminary study with centralized controllers
which have the knowledge of all the states variables. In future work, we aim at con-
sidering a more general setup with a higher number of drones and where only part of
the states are locallymeasured on each drone. In order to reduce the execution time of
theMPC and tomake the problem scalable in an easyway, distributedMPC strategies
should be studied. In addition, a uncertainties and aerodynamic disturbances need to
be included in future studies.
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Chapter 12
Delays in Distributed Estimation
and Control over Communication Networks

Pablo Millán, Luis Orihuela and Isabel Jurado

Abstract This chapter introduces a distributed estimation and control technique
with application to networked systems. The problem consists of monitoring and
controlling a large-scale plant using a network of agents which collaborate exchang-
ing information over an unreliable network. We propose an agent-based scheme
based on an estimation structure that combines local measurements of the plant with
remote information received from neighboring agents. We discuss the design of sta-
bilizing distributed controllers and observers when the interagent communication is
affected by delays and packet dropouts. Some simulations will be shown to illustrate
the performance of this approach.

12.1 Introduction

Wireless communication network is a technology that has been attracting interest
in the past decade due to its large variety of applications and utilities. One of the
most important characteristic of this kind of systems is that allows the integration of
different devices, providing flexibility, robustness, and ease of configuration of the
system.

The devices interconnected in the wireless network (WN) are agents that may
have sensing and actuation interfaces, as well as computation and communication
capabilities. These particular systems are very useful in applications as process con-
trol systems [31, 41], mobile vehicles [4, 6, 10], tracking and surveillance [35, 38],
or water delivery control [3, 17].

Among many advantages of this kind of systems [30], the capability of each
agent to cooperate makes WNs a powerful network for facing complex problems.
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Due to the complexity of these problems and to the fact that WNs are usually
large-scale systems, it is not feasible or advisable to control these systems in a cen-
tralized manner. Very often, decentralized techniques are not recommendable either
since they do not include communication between agents. On the contrary, distributed
schemes can provide suitable solutions to be implemented over WNs [26].

The goal of distributed control techniques is to make all the agents in the network
seek for the same system-wide objective [22]. A fundamental aspect of this scheme is
that the agents have to act according to partial measurements of the state and ignoring
the actual control signal that is being applied to the plant. As the performance of the
closed-loop system depends on the decisions of all the agents, communication is a
very important issue in this approach [19].

One of the major difficulties of distributed solutions over WNs is the fact that
transmission channels are not completely reliable due to noises, limited bandwidth,
and large number of concurrent transmitters over the same channel. The most com-
mon consequences of network congestion are packet dropouts and time delays that
can degrade the performance or even destabilize the systems.

On the one hand, many research has been developed to study these effects and
propose centralized solutions, see [14, 15, 23, 34, 39, 40] and references therein.
On the other hand, there exists a vast literature in the field of distributed control
considering ideal networks including MPC-based approaches [2, 5, 8, 18, 25, 32,
33, 37], techniques for large-scale plants [11, 21, 24], and distributed versions of
the Kalman filter [1, 16, 20, 27, 28].

In this chapter, the problem of distributed control and estimation is addressed
together with network-induced delays and dropouts. This work is an extension of the
papers [24, 30], dealing this time with the problem of network-induced delays and
dropouts within this distributed paradigm.

The objective is to control a discrete linear time-invariant (LTI) system using a set
of agents connected through a communication network. These agents must be able to
estimate the state of the system, as well as to control it. However, each one has access
only to some outputs of the plant, which makes the interconnection between agents
(with its associated delays and dropouts) an essential issue to achieve the system-wide
objective. The specific estimation structure implemented in the agents merges a local
Luenberger-like observer with consensus strategies. Since the Separation Principle
does not hold, it is necessary to design the controllers and the observers in a unique
centralized offline step. The stability of the system and estimation errors is ensured
by using a Lyapunov–Krasovskii framework. The synthesis problem is posed as a
matrix inequality which can be solved using the well known cone complementary
algorithm [9].

The chapter is organized as follows. Section 12.2 describes the different elements
involved in the problem, namely: plant, agents, and the communication network.
The dynamics of the state and estimation errors is studied in Sect. 12.3. Section 12.4
presents the design method based on the Lyapunov–Krasovskii theorem. Section 12.5
illustrates the effectiveness of the approach with some simulations. Finally, Sect. 12.6
outlines the main conclusions and future work.
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Fig. 12.1 Distributed scheme for the control of a large-scale plant

12.2 System Description and Problem Formulation

This chapter considers an estimation and control scheme composed by a large-scale
plant, a communication network, and a set of distributed agents, as depicted in
Fig. 12.1. In the following, the different elements composing the distributed system
are described in detail.

12.2.1 Plant

We consider a discrete LTI system described in state-space representation. As
Fig. 12.1 illustrates, the plant is controlled and/or observed by a set of p agents,
each one possibly managing a different control signal. The dynamics of the system
can be described as

x(k + 1) = Ax(k) +
p∑

i=1

Biui(k), (12.1)

where x ∈ R
n is the state of the plant and ui ∈ R

di (i = 1, . . . , p) is the control signal
that agent i applies to the system, and A ∈ R

n×n and Bi ∈ R
n×di are known matrices.

For those agents with no direct access to plant inputs, matrices Bi are set to zero.
Defining an augmented control matrix as

B �
[
B1 B2 . . . Bp

]
(12.2)
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and an augmented control vector

U (k) �
[
uT1 (k) uT2 (k) . . . uTp (k)

]T
, (12.3)

Equation (12.1) can be compactly rewritten as

x(k + 1) = Ax(k) + BU (k), (12.4)

where U (k) ∈ R
d , with d =

p∑
i=1

di. The pair (A,B) in (12.4) is required to be stabi-

lizable.

12.2.2 Network

In the proposed scheme, the agents are linked using a communication network to
make possible the information exchange in real time. Each agent is restricted to
receive information only from neighboring agents.

The resulting communication topology can be represented using a directed graph
G = (V ,E ), with V = 1, 2, . . . , p being the set of nodes (agents) of the graph
(network), and E ⊂ V × V , being the set of links. Assuming that the cardinality of
E is equal to l, and defining L = 1, 2, . . . , l, it is obvious that a bijective function
g : E → L can be built so that a given link can be either referenced by the pair
of nodes it connects (i, j) ∈ E or the link index r ∈ L , so that r = g(i, j). The
set of nodes connected to node i is named the neighborhood of i, and denoted as
Ni � {j ∈ V |(i, j) ∈ E }. Directed communications are considered so that link (i, j)
implies that node i receives information from node j.

Network links are not assumed to be completely reliable. This way, the packets
that the agents exchange may be dropped or delayed. Figure 12.2 illustrates a possible
time scheduling in which both effects appear.

observer j

observer i

kk−1

dropouts

delay
current

instant

k− τi j(k)

τi j(k)

Fig. 12.2 Time scheduling
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The input delay approach [12] makes possible to define artificial delays τij ∈ N

that include the effect of sampling, communication delays, and packet dropouts.
Concretely, τij is the difference between the current time instant k and the last instant
in which a packet from node j was received by node i. It is assumed that the number
of consecutive data dropouts is bounded by np, and the maximum network-induced
delay is bounded by d̄. Under these assumptions, the artificial delay can be bounded
as τij(k) ≤ d̄ + np � τM, ∀k.

Note that each delay τij is directly associated to a link, in such a way that the
following equivalent notation for the delays can be used:

τr(k) = τij(k), r = 1, . . . , l, (12.5)

where r = g(i, j). That is, we can either refer the delays to a pair of nodes (τij) or to
a link (τr).

12.2.3 Agents

As said before, the large-scale plant (12.1) is collectively monitored and controlled
by a network of agents. Each of these agents can be endowed with all or part of the
following capabilities:

• sensing plant outputs,
• computing estimations of the plant state,
• applying control actions,
• communicating with neighboring agents.

The approach adopted in this chapter is a distributed scheme in which every
agent builds its own estimations of the plant’s states based on the information locally
collected by the agent (plant outputs) and that received from neighboring agents.
Based on these estimations, those agents with access to a control channel compute
the control actions to be applied.

Let us define yi as the plant output measured by agent i:

yi(k) = Cix(k) ∈ R
ri , (12.6)

where matrices Ci ∈ R
ri×n are known. If an agent j has no sensing capabilities, then

its corresponding matrix Cj is set to zero. Let C denote an augmented output matrix
defined as

C �
[
CT

1 CT
2 . . .CT

p

]T
.

It is assumed that the pair and (A,C) is detectable.
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On the other hand, the control counterpart of each agent generates an estimation-
based control input to the plant, ui(k), in the form

ui(k) = Kix̂i(k) ∈ R
di , (12.7)

where x̂i ∈ R
n denotes the estimation of the plant state computed by agent i, and

Ki ∈ R
di×n (i ∈ V ) are local controllers to be designed. Let K denote the augmented

control matrix, defined by

K = [
KT

1 KT
2 . . . KT

p

]T
.

Every agent i ∈ V implements an estimator of the plant’s state based on the
following structure:

x̂i(k + 1) = Ax̂i(k) + BUi(k) (12.8)

+ Mi(yi(k) − Cix̂i(k)) local information

+
∑

j∈Ni

Nij[x̂j(k − τij(k)) − x̂i(k − τij(k))], remote information

where Ui(k) = Kx̂i(k) ∈ R
d is the estimation of the whole control action applied to

the plant.
Looking at Eq. (12.8), each agent has two different sources of information to

correct its estimates. The first one is the output measured from the plant, yi(k),
which is used similarly to a classical Luenberger observer, Mi(yi(k) − ŷi(k)), being
Mi, i ∈ V , the observers matrices to be designed. The second source of information
comes from the estimates received from neighboring nodes, which are also used to
correct estimations through the terms Nij(x̂j(k − τij(k)) − x̂i(k − τij(k))), ∀j ∈ Ni,
where Nij, (i, j) ∈ E , are consensus gains to be synthesized. Please notice that the
estimations are sent through the communication network, and thus they are affected
by delays and dropouts modeled through the extended delays τij(k).

It is worth recalling that the individual agents cannot access to all the control
actions being applied to the plant, as each agent implements different control actions
based on its particular state estimation (12.7), that is, BUi(k) �= BU (k).

Ideally, Eq. (12.8) should be implemented using the augmented control vector
U (k) that the network, as a whole, applies to the plant. However, this information
is not available to the agents. To circumvent this difficulty and make Eq. (12.8)
realizable, the proposed solution consists, roughly speaking, in letting each agent
to run its observer with the augmented control vector obtained from its particular
estimate. In general, estimated and actual control inputs are different, but if the
observers are properly designed and the nodes estimations converge to the plant
states, these differences progressively vanish.
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12.2.4 Problem Formulation

Once all the elements of the control scheme have been introduced, this section ends
with the formal definition of the problem to be solved in this chapter. First, let us
define the following sets:

M � {Mi, i ∈ V }, (12.9)

N � {Nij, (i, j) ∈ E }, (12.10)

K � {Ki, i ∈ V }. (12.11)

The goal is to design the set of distributed observers M , consensus matrices
N , and controllers K , in such a way that all the estimation errors of each agent
ei(k) � x(k) − x̂i(k) and the plant x(k) are stabilized in spite of the delays and packet
dropouts affecting the communication.

12.3 Dynamics of the State and Estimation Errors

In order to provide a solution for the previous problem, the dynamics of the state and
of the estimation errors are studied in detail.

Proposition 1 The dynamics of the plant state x(k) is given by

x(k + 1) = (A + BK) x(k) + Υ (K )e(k), (12.12)

where
Υ (K ) = [−B1K1 −B2K2 · · · −BpKp

]
.

The proof is immediate from Eq. (12.4) and the definition of the estimation errors.
The following proposition studies the evolution of the error vector defined as

e(k) � [eT1 (k), . . . , eTp (k)]T ∈ R
np.

Proposition 2 The dynamics of the error vector e(k) is given by

e(k + 1) = (Φ(M ) + Ψ (K )) e(k) + Λ(N )d(k), (12.13)

where d(k) �
[
eT (k − τ1(k)), . . . , eT (k − τr(k))

]T
is a vector stacking l delayed

versions of the error vector and

Φ(M ) = diag{(A − M1C1), . . . , (A − MpCp)},

Ψ (K ) = diag{BK, . . . ,BK} +
⎡

⎢⎣
−B1K1 . . . −BpKp

...
. . .

...

−B1K1 . . . −BpKp

⎤

⎥⎦ ,
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Λ(N ) = [
Θ1(Nij) . . . Θr(Nij . . . Θl(Nij)

]
,

being Θr(Nij) (r = 1, . . . , l) a matrix associated with link r and a couple of agents
(i, j) = g−1(r) with the following structure:

Θ(Nij) =

column i j⎡

⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 · · · 0 · · · 0
...

...
...

...

0 · · · −NijCij · · · NijCij · · · 0
...

...
...

...

0 · · · 0 · · · 0 · · · 0

⎤

⎥⎥⎥⎥⎥⎥⎦
row i.

Proof The observation error at instant k + 1 can be obtained using Eq. (12.8) and
Proposition 1:

ei(k + 1) = x(k + 1) − x̂i(k + 1)

= (A + BK)x(k) + Υ (K )e(k) − Ax̂i(k)

− BUi(k) − MiCi(x(k) − x̂i(k))

−
∑

j∈Ni

NijCij(x̂j(k − τij(k)) − x̂i(k − τij(k))). (12.14)

After some mathematical manipulations, Eq. (12.14) can be rewritten as

ei(k + 1) = (A − MiCi)ei(k) + BKei(k) + Υ (K )e(k)

−
∑

j∈Ni

NijCij(ei(k − τij(k)) − ej(k − τij(k))).

Finally, since the error vector has been defined as eT (k) = [
eT1 (k) . . . eTp (k)

]
, it

is easy to see that the dynamics of e(k) is (12.13). �

Remark 1 The structure of (2) reveals that, even in the absence of time delays, the
Separation Principle does not hold, for matrix Ψ (K ) depends on the controllers
to be designed. This can be easily justified if we recall that the agents ignore the
actual control signal being applied to the plant, and resort to estimations based on
the knowledge of the distributed controllers. However, despite this drawback, it will
be shown that it is possible to propose an unified design in which all the elements,
namely controllers and observers, can be designed to guarantee the overall stability
of the system.
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12.4 Controller and Observer Design

This sections introduces a result to solve the design problem introduced in Sect. 12.2.
The design method resorts to a Lyapunov–Krasovskii approach to prove asymptotic
stability of the plant state and the estimation errors when network-induced delays
and dropouts exist.

The following theorem proposes a centralized design method through an opti-
mization problem subject to a nonlinear matrix inequality.

Theorem 1 The problem formulated in Sect.12.2 can be solved by finding positive
definite matrices Px, Pe, Z1, Z2, and setsM ,N ,K in (12.9)–(12.11) of observers,
consensusmatrices, and controllers in such away that the followingmatrix inequality
is satisfied: [

W ST

∗ −H−1

]
< 0, (12.15)

where:

W =

⎡

⎢⎢⎣

−Px 0 0 0
∗ −Pe + Z1 − lZ2 1̄ ⊗ Z2 0
∗ ∗ −2I ⊗ Z2 1̄T ⊗ Z2

∗ ∗ ∗ −Z1 − lZ2

⎤

⎥⎥⎦ , (12.16)

S =
⎡

⎣
A + BK Υ (K ) 0 0

0 Φ(M ) + Ψ (K ) Λ(N ) 0
0 Φ(M ) + Ψ (K ) − I Λ(N ) 0

⎤

⎦ , (12.17)

H−1 =
⎡

⎣
P−1
x 0 0
∗ P−1

e 0
∗ ∗ 1

lτ 2
M
Z−1

2

⎤

⎦ . (12.18)

Proof Consider the following quadratic Lyapunov–Krasovskii functional:

V (x(k), e(k)) = xT (k)Pxx(k) + eT (k)Pee(k) +
k−1∑

i=k−τM

eT (i)Z1e(i) (12.19)

+ l × τM

0∑

j=−τM+1

k−1∑

i=k+j−1

ΔeT (i)Z2Δe(i), (12.20)

where Px and Pe are positive definite matrices and Δe(k) � e(k + 1) − e(k).
The forward difference of the functional (12.19) can be expressed in the following

way:
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ΔV (x(k), e(k)) = xT (k + 1)Pxx(k + 1) − xT (k)Pxx(k) + eT (k + 1)Pee(k + 1)

− eT (k)Pee(k) + eT (k)Z1e(k) − eT (k − τM)Z1e(k − τM)

+ l × τ 2
MΔeT (k)Z2Δe(k) − l × τM

k−1∑

j=k−τM

ΔeT (j)Z2Δe(j).

Using Propositions 1 and 2 to substitute the evolution of the plant state and the
estimation error in last equation, it yields

ΔV (x(k), e(k)) = xT
[
(A + BK)TPx(A + BK)

]
x(k)

+ eT (k)
[
Υ T (K )PxΥ (K )

]
e(k)

+ 2xT (k)
[
(A + BK)TPxΥ (K )

]
e(k) − xT (k)Pxx(k)

+ eT (k)
[
(Φ(M ) + Ψ (K ))TPe(Φ(M ) + Ψ (K ))

]
e(k)

+ dT (k)Γ T (N )PeΓ (N )d(k)

+ 2eT (k)(Φ(M ) + Ψ (K ))TPeΓ (N )d(k) − eT (k)Pee(k)

+ eT (k)Z1e(k) − eT (k − τM)Z1e(k − τM)

+ l × τ 2
MΔeT (k)Z2Δe(k) − l × τM

k−1∑

j=k−τM

ΔeT (j)Z2Δe(j).

Note that the last term is included l times, one for each link. To take into account
the delay of each different communication link (τr(k),∀r = 1, . . . , l), we split it in
l terms, each one considering the delay in each specific link:

−τM

k−1∑

j=k−τM

ΔeT (j)Z2Δe(j) = −τM

k−τr(k)−1∑

j=k−τM

ΔeT (j)Z2Δe(j)

− τM

k−1∑

j=k−τr(k)

ΔeT (j)Z2Δe(j),

The resulting terms can be bounded using the Jensen inequality:

−τM

k−τr(k)−1∑

j=k−τM

ΔeT (j)Z2Δe(j) ≤ −
⎡

⎣
k−τr(k)−1∑

j=k−τM

Δe(j)

⎤

⎦
T

Z2

⎡

⎣
k−τr(k)−1∑

j=k−τM

Δe(j)

⎤

⎦ ,

−τM

k−1∑

j=k−τr(k)

ΔeT (j)Z2Δe(j) ≤ −
⎡

⎣
k−1∑

j=k−τr(k)

Δe(j)

⎤

⎦
T

Z2

⎡

⎣
k−1∑

j=k−τr(k)

Δe(j)

⎤

⎦ .
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Consider now the term l × τ 2
MΔeT (k)Z2Δe(k) in (12.21). Using Proposition 2,

this term can be rewritten as

l × τ 2
MΔeT (k)Z2Δe(k) = eT (k)(ΦT (M ) + Ψ (K ) − I)T

[
l × τ 2

MZ2
]

× (Φ(M ) + Ψ (K ) − I)e(k)

+ 2eT (k)(ΦT (M )+ Ψ (K ) − I)T l× τ 2
MZ2Λ(N )d(k).

Thus, it is possible to bound the forward difference of the Lyapunov–Krasovkii
functional as follows:

ΔV (x(k), e(k)) ≤ xT
[
(A + BK)TPx(A + BK)

]
x(k)

+ eT (k)
[
Υ T (K )PxΥ (K )

]
e(k)

+ 2xT (k)
[
(A + BK)TPxΥ (K )

]
e(k) − xT (k)Pxx(k)

+ eT (k)
[
(Φ(M ) + Ψ (K ))TPe(Φ(M ) + Ψ (K ))

]
e(k)

+ dT (k)Γ T (N )PeΓ (N )d(k)

+ 2eT (k)(Φ(M ) + Ψ (K ))TPeΓ (N )d(k) − eT (k)Pee(k)

+ eT (k)Z1e(k) − eT (k − τM)Z1e(k − τM)

+ eT (k)(ΦT (M ) + Ψ (K ) − I)T
[
l × τ 2

MZ2
]

× (Φ(M ) + Ψ (K ) − I)e(k)

+ 2eT (k)(ΦT (M ) + Ψ (K ) − I)T l × τ 2
MZ2Λ(N )d(k)

−
l∑

r=1

⎛

⎝

⎡

⎣
k−τr(k)−1∑

j=k−τM

Δe(j)

⎤

⎦
T

Z2

⎡

⎣
k−τr(k)−1∑

j=k−τM

Δe(j)

⎤

⎦

⎞

⎠

−
l∑

r=1

⎛

⎝

⎡

⎣
k−1∑

j=k−τr(k)

Δe(j)

⎤

⎦
T

Z2

⎡

⎣
k−1∑

j=k−τr(k)

Δe(j)

⎤

⎦

⎞

⎠ .

Defining an augmented state vector as

ξ(k) = [
xT (k) eT (k) dT (k) eT (k − τM)

]T
,

the bound of ΔV (x(k), e(k)) can be rewritten in a compact way using the matrices
W , S, and T defined in Theorem 1:

ΔV (x(k), e(k)) ≤ ξT (k)Wξ(k) − ξT (k)STHSξ(k).

Therefore, if matrix ξT (k)Wξ(k) − ξT (k)STHSξ(k) is negative definite, the state
of the system and the estimation errors are asymptotically stable. Using Schur
complement, this matrix inequality if equivalent to (12.15), and thus the proof is
completed. �
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The main hindrance of the design method proposed in Theorem 1 is the nonlin-
earity of the the matrix inequality (12.15) because of the presence of the matrix H−1.
Nonetheless, it is possible to adapt the cone complementary algorithm in (see [9]),
which let us address the nonlinearitiesH−1 by introducing some new matrix variables
and constraints.

First, define a new matrix variable T . Then replace the matrix H−1 in (12.15) by
the term T and add the additional LMI H−1 ≥ T , which is equivalent to:

[
H−1 I
I T−1

]
≥ 0.

Then introducing variables T̂ , Ĥ , the original matrix inequality (12.15) can be
substituted by

[
W ST

∗ T

]
< 0,

[
Ĥ I
I T̂

]
≥ 0, T̂ = T−1, Ĥ = H−1.

Using a cone complementarity algorithm, it is possible to obtain feasible solutions
for the optimization problem in Theorem 1 by solving the following problem:

Minimize Tr
(
ĤH + T̂T

)

subject to

⎧
⎪⎪⎨

⎪⎪⎩

[
W ST

∗ T

]
< 0,

[
Ĥ I
I T̂

]
≥ 0,

[
T I
I T̂

]
≥ 0,

[
H I
I Ĥ

]
≥ 0.

(12.21)

In order to find a solution for this problem, the iterative algorithm introduced in
[9] can be applied. See [23] for further details.

Remark 2 Once the observers and controllers are designed, the implementation is
fully distributed, and each agent requires only available local information to operate.
Nonetheless, the design method that stems from Theorem 1 needs to be performed
offline prior to the implementation, which requires that some information is known a
priori, namely: network topology, outputs that every agent can measure, and control
channels they has access to.

As regards the computational complexity in the design phase, the relevant figure
here is the number of variables to be computed, which is N# = n2(6p2 + l + 1

2 ) +
n
(
6p + ∑p

i=1(ri + di) + 1
2

)
. Thus, the number of variables grows rapidly with the

number of agents and the number of states of the plant, which makes it hard to solve
for large systems.
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As an illustrative example, the application example introduced in the next section
has 8 states and outputs, 4 agents, 4 control inputs, and a cycle graph. The number
of variables is N# = 6980 and the computation time to solve the design problem is
approximately 150 min, using Matlab LMI Toolbox on a PC with a 2.5 GHz Intel
Core i5 processor and 8GB RAM.

12.5 Application Example

In this section, the proposed design method is tested on a simulated plant consisting
of a set of coupled oscillators. First, the plant will be described, giving the necessary
considerations with respect to the agents, their observability and control capacities,
and communication delays. Finally, a set of different simulations will be shown.

12.5.1 System Description

We consider a set of N inverted pendulums coupled by springs, as Fig. 12.3 shows.
The pendulums have all the same characteristics, that is, mass m, length l. The
springs are characterized by the same elastic constant k. This mechanical system
has been used as a testbed in engineering and control, see [13]. However, what is
more interesting of this plant is the fact that it represents the dynamics of a set of
coupled oscillators, which has numerous applications in fields as physics, medicine,
or communications, see [7, 36]. The objective is to maintain all the pendulums or
oscillators in their upright unstable equilibrium points.

In the following, we will consider that the pendulums are being controlled around
the upright unstable equilibrium point. Each pendulum is described by two state
variables: angular position θi and angular velocity ωi � θ̇i. It is assumed that the
control signal is a torque applied to the base of the pendulum. With the hypothesis
of small angles, the dynamics of a single pendulum is given by

Fig. 12.3 Set of pendulums
coupled by springs. Agents
and communication graph

θi
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[
θ̇i
θ̈i

]
=

[
0 1

g
l − ai

ml2 0

] [
θi
θ̇i

]
+

[
0
1
ml2

]
ui +

∑

j

[
0 0
hij
ml2 0

] [
θj
θ̇j

]
, (12.22)

where ai is the number of springs connected to pendulum i and hij = 1 if pendulum i
is connected to pendulum j with a spring, and 0 otherwise. Therefore, the third term
represents the influence of the neighborhood in the dynamics of the pendulum i.

The state of the complete system will be the vector stacking all the angular position
and velocities of all the agents, that is, x = [θ1, θ̇1, θ2, θ̇2, . . . , θN , θ̇N ]T . Finally, the
system dynamics are discretized with sampling period Ts to obtain an equivalent
equation to the one in (12.1).

12.5.1.1 Network of Agents

For this system, we will consider a simple network of N agents. Each agent measures
the angular position and velocity of a pendulum and applies a torque to its base. The
communication graph is a cycle, as Fig. 12.3 shows. In order to stabilize the whole
set of pendulums, the agents must apply coordinated control actions. To do so, it
becomes essential for an agent to know the rest of the states.1

The communication between agents is affected by delays. Not only do these
delays come for communication drawbacks (congestion, dropouts, etc.), but also
due to the sampling period. The inverted pendulum is, in general, a system with fast
dynamics that needs very short sampling periods. It is fairly possible that the agents
are not equipped with powerful communication devices to achieve the required rates.
Anyway, even in the case they are, the sampling rate could be artificially enlarged
pursuing a reduction of the energy consumption.

12.5.2 Simulation Results

For the simulations, we have chosen the set of parameters given in Table 12.1.
In the first experiment, it is shown that the distributed controllers achieve the

stabilization of the system for an arbitrary initial condition close to the unstable
equilibrium point (Fig. 12.4).

The figure below presents the estimation performance of agent 1. Concretely, it
shows the angular velocity of pendulums 2, 3, and 4, together with the estimation of
these states from agent 1. As we can see, the agent achieves nice estimations in spite
of the communication delays and the distance in the network (Fig. 12.5).

1The reader may think that, for this particular system, it is only necessary to know the state of the
pendulums in the neighborhood. If the agents do not need the estimations of the whole augmented
state, we could implement here a sort of reduced-order distributed observer, as the one proposed in
[29] for non-delayed systems.
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Table 12.1 List of parameters

Parameter Value Unit Description

N 4 Number of pendulums

p 4 Number of agents

m 1 kg Mass of the pendulum

l 2 m Length of the pendulum bar

k 5 N/m Elastic constant of the string

g 9.8 m/s2 Gravity

Ts 0.05 s Sampling period

τM 2 Maximum delay
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Fig. 12.4 Left Evolution of the angular positions. Right Evolution of the angular velocities
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Fig. 12.5 Estimation from agent 1 and actual evolution of the angular velocities of pendulums 2,
3 and 4

The second experiment illustrates the response of the system to external distur-
bances. Consider that, starting from the equilibrium point, the third pendulum is
affected by a disturbance that abruptly changes its position between seconds 5 and 6.
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Fig. 12.6 Left Evolution of angular positions. Right Estimation of angular velocities from agent1

Because of the couplings, both pendulums 2 and 4 are affected as well. Figure 12.6
shows that the response of the controllers and observers are fairly good, despite they
have not been designed to reject any disturbances. As expected, the state of pendulum
2 is estimated faster than the others.

12.6 Conclusions

This chapter has studied the problem of stabilizing a large-scale plant with an agent-
based distributed paradigm. Unreliable networks affected by time-varying delays and
dropouts have been considered. The observers’ structure merges a Luenberger-like
structure with consensus matrices.

The solution presented ensures the stabilization of both the system state and the
observation errors using a Lyapunov–Krasovskii functional. As it has been shown,
the design of the controllers and observers must be done in a unique centralized
step, which constitutes the weak point of the solution. However, once the controllers
and observers are designed, they work in a completely distributed fashion, requiring
minimum computation and memory resources. The authors are currently working
toward the development of a distributed design method.

Some simulations have been presented to show the performance of the obtained
solution.
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Chapter 13
Design and Analysis of Reset Strategy
for Consensus in Networks with Cluster
Pattern

Marcos Cesar Bragagnolo, Irinel-Constantin Morărescu,
Jamal Daafouz and Pierre Riedinger

Abstract This chapter addresses the problem of consensus in networks partitioned
in several disconnected clusters. Each cluster is represented by a fixed, directed, and
strongly connected graphs. In order to enforce the consensus, we assume that each
cluster poses a leader that can reset its state by taking into account other leaders
state. First, we characterize the consensus value of this model. Second, we provide
sufficient condition inLMI form for the stability of the consensus. Finally,weperform
a decay rate analysis and design the interaction network of the leaders which allows
to reach a prescribed consensus value.

13.1 Introduction

The dynamical systems appearing in diverse areas of science and engineering are
obtained by interconnecting many simpler systems. Doing so we are getting dynam-
ical networks whose links are fixed, time-dependent or event-dependent. Different
models coming from sociology [1], biology [2], or physics [3] have been widely
analyzed. As in many works in the literature, we call agents the constitutive ele-
ments of the network and their number will define the network dimension. During
the last decades, an increasing interest has been given to large dimension networks
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[4–6] which are obtained interconnecting several networks of smaller dimension. In
other words, inside large networks we can detect groups of agents called clusters or
communities. The agents belonging to a community are better connected [7–9] and
they agree/synchronize faster on some quantity of interest called state.

The coordination behavior in networks has been studied under diverse hypothesis
such as: directed or undirected interactions, fixed or time-varying interaction graph,
delayed or un-delayed, synchronized or desynchronized interactions, linear or non-
linear, and continuous or discrete agent dynamics [10–15]. The agreement speed in
various frameworks has also been quantified (see for instance [16, 17]). Some works
have been oriented toward networks inwhich the global agreement cannot be reached
and only local ones are obtained [7, 18]. Some others, designed controllers that are
able to maintain the network connectivity in order to ensure the global coordina-
tion is achieved [19, 20]. Finally, the agreement in networks of agents with discrete
dynamics in which any agent is linked with not more than one neighbor at each time
[21–24] has also been considered.

In [25], we considered networks that are partitioned in several clusters. The agents
are able to continuously interact only with neighbors belonging to the same cluster.
Moreover, each cluster contains an agent with powerful communication capacity
called leader. Each leader can interact with some other leaders via a network with
communication constraints. Thus, the leaders will interact only at specific isolated
instants that will be defined in the next section as a nearly periodic sequence. In other
words, we address the problem of consensus for agents subject to both continuous
and discrete dynamics. Precisely, we are focusing on agreement in networks of reset
systems, which are a particular class of hybrid systems (see [26–29]). The existing
literature on reset systems treats mostly linear dynamics. Two types of reset rules
may be encountered, those defined by a time condition and those defined by a state
one. The former type is usually defined by a periodic or quasi-periodic reset rule [29].
The later type assumes the stability of the system inside a given set and controls the
evolution of the system to remain inside this set [28]. In other words, the reset occurs
when the trajectory is about to get out of the stability set.

Resetting control structure in consensus protocol has been studiedbefore, although
not in the samemanner as treated in [25]. In [30], the authors revisited the Clegg inte-
grator in order to propose a quasi-reset control law for multiagent systems . Mainly,
they reinterpret the example in [27] in the framework of interconnected systems.
This leads to a lesser magnitude of the control effort, while maintaining a settling
time equivalent to the standard consensus protocol. This approach differs from the
approach in [25] because in [30] the interconnection graph is still connected so
the system can still achieve consensus, while in [25] a general consensus cannot be
reached without the reset protocol.

The first result of this work evaluates and study the stability of the possible con-
sensus value when the leaders interact and reset their state in a near-periodic manner.
The second objective is to design the network of leaders in order to reach a priori
specified consensus value. In order to reach this goal, we consider that each cluster
has a fixed and known interconnection topology. Therefore, wemodify the consensus
value of the whole network by changing the weights in the network of leaders. The
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set of consensus values that can be reached is contained in the convex hull of the
initial local agreement values, which, for scalar states, is just the interval defined by
the minimum and maximum initial local agreements.

Notation. The following standard notation will be used throughout the paper. The
sets of nonnegative integers, real and nonnegative real numbers are denoted byN, R

and R+, respectively. For a vector x , we denote by ‖x‖ its Euclidian norm. The
transpose of a matrix A is denoted by A�. Given a symmetric matrix A ∈ R

n×n ,
notation A > 0 (A ≥ 0) means that A is positive (semi-)definite. By Ik we denote
the k × k identity matrix. 1k and 0k are the column vectors of size k having all the
components equal 1 and 0, respectively. We also use x(t−k ) = lim

t→tk ,t≤tk
x(t).

13.2 Problem Formulation

We consider a network of n agents described by the digraph (i.e., directed graph)
G = (V ,E ) where the vertex set V represents the set of agents and the edge set
E ⊂ V × V represents the interactions.

Definition 1 In this chapter, we will use the following terms:

• A path in a given digraph G = (V ,E ) is a union of directed edges
p⋃

k=1

(ik, jk) such

that ik+1 = jk, ∀k ∈ {1, . . . , p − 1}.
• Two nodes i, j are connected in a digraph G = (V ,E ) if there exists at least a
path in G joining i and j (i.e., i1 = i and jp = j).

• A strongly connected digraph is such that any two distinct nodes are connected.
A strongly connected component of a digraph is a maximal subset such that any
of its two distinct nodes are connected.

In the sequel, we consider that the agent set V is partitioned in m strongly con-
nected clusters/communities C1, . . . ,Cm and no link between agents belonging to
different communities exists. Each community possesses one particular agent called
leader and denoted in the following by li ∈ Ci , ∀i ∈ {1, . . . ,m}. The set of leaders
will be referred to as L = {l1, . . . , lm}. At specific time instants tk, k ≥ 1, called
reset times, the leaders interact between them following a predefined interaction map
El ⊂ L × L . We also suppose that Gl = (L ,El) is strongly connected. The rest of
the agents will be called as followers and denoted by f j . For the sake of clarity, we
consider that the leader is the first element of its community:

Ci = {li , fmi−1+2, . . . , fmi }, ∀i ∈ {1, . . . ,m} (13.1)

where m0 = 0, mm = n and the cardinality of Ci is given by |Ci | � ni = mi −
mi−1,∀i ≥ 1. In order to keep the presentation simple, each agent will have a
scalar state also denoted by li for the leader li and f j for the follower f j . We
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also introduce the vectors x = (l1, f2, . . . , fm1 , . . . , lm, . . . , fmm )� ∈ R
n and xl =

(l1, l2, . . . , lm)� ∈ R
m collecting all the states of the agents and all the leaders’ states,

respectively.

We are ready now to introduce the linear reset system describing the overall
network dynamics:

⎧
⎨

⎩

ẋ(t) = −Lx(t), ∀t ∈ R+ \ T ,

xl(tk) = Plxl(t
−
k ), ∀tk ∈ T ,

x(0) = x0
(13.2)

where T = {tk ∈ R+ | tk < tk+1, ∀k ∈ N, tk reset time}, L ∈ R
n×n is a generalized

Laplacian matrix associated to the graph G and Pl ∈ R
m×m is a Perron matrix asso-

ciated to the graph Gl = (L ,El). Precisely, the entries of L and Pl satisfies the
following relations:

⎧
⎪⎪⎨

⎪⎪⎩

L(i, j) = 0, if (i, j) /∈ E ,

L(i, j) < 0, if (i, j) ∈ E , i 
= j,

L(i,i) = −
∑

j 
=i

Li, j , ∀i = 1, . . . , n,
(13.3)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Pl(i, j) = 0, if (i, j) /∈ El,
Pl(i, j) > 0, if (i, j) ∈ El, i 
= j,

m∑

j=1

Pl(i, j) = 1, ∀i = 1, . . . ,m.
(13.4)

The values L(i, j) and Pl(i, j) represent the weight of the state of the agent j in
the updating process of the state of agent i when using the continuous and dis-
crete dynamics, respectively. These values describe the level of democracy inside
each community and in the leaders’ network. In particular, L has the following
block diagonal structure L = diag(L1, L2, ..., Lm), Li ∈ R

ni with Li1ni = 0ni and
Pl1m = 1m . Due to the strong connectivity of Ci , i = 1,m and Gl , 0 is simple
eigenvalue of each Li and 1 is simple eigenvalue of Pl .

13.3 Agreement Behavior

In this section, we assume that system (13.2) achieves consensus and we characterize
the possible values for it. First, we show that each agent tracks a local agreement
function which is piecewise constant. In the second subsection, we prove that the
vector of local agreements lies in a subspace defined by the system’s dynamics
and initial condition. Therefore, if the consensus is achieved and the corresponding
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consensus value is x∗ then x∗1m belongs to the same subspace. Moreover, this value
is determined only by the initial condition of the network and by the interconnection
structure.

Aswe have noticed,1ni is the right eigenvector of Li associatedwith the the eigen-
value 0 and 1m is the right eigenvector of Pl associated with the eigenvalue 1. In the
sequel, we denote by wi the left eigenvector of Li associated with the the eigenvalue
0 such that w�

i 1ni = 1. Similarly, let v = (v1, . . . , vm)� be the left eigenvector of Pl
associated with the eigenvalue 1 such that v�1m = 1. Due to the structure (13.1) of
the communities, we emphasize that each vector wi can be decomposed in its first
component wi,l and the rest of its components grouped in the vector wi, f . Let us
introduce the matrix of the left eigenvectors of the communities:

W =

⎡

⎢⎢⎢⎣

w�
1 0 · · · 0
0 w�

2 · · · 0
...

...
. . .

...

0 0 · · · w�
m

⎤

⎥⎥⎥⎦ ∈ R
m×n . (13.5)

13.3.1 Local Agreements

Let us first recall a well-known result concerning the consensus in networks of agents
with continuous time dynamics (see [14] for instance).

Lemma 1 Let G be a strongly connected digraph and L the corresponding Lapla-
cian matrix. Consider a network of agents whose collective dynamics is described
by ẋ(t) = −Lx(t). Let us also consider L1 = 0, u�L = 0 and u�1 = 1. Then
the agents asymptotically reach a consensus and the consensus value is given by
x∗ = u�x(0). Moreover, the vector u defines an invariant subspace for the collective
dynamics: u�x(t) = u�x(0),∀t ≥ 0.

Remark 1 When dynamics (13.2) is considered, Lemma 1 implies that between two
reset instants tk and tk+1, the agents belonging to the same community converge to a
local agreement defined by x∗

i (k) = w�
i xCi (tk) where xCi (·) is the vector collecting

the states of the agents belonging to the cluster Ci . Nevertheless, at the reset times
the value of the local agreement can change. Thus,

w�
i x(t) = w�

i xCi (tk), ∀t ∈ (tk, tk+1) and possibly

w�
i xCi (t) 
= w�

i xCi (tk), for t /∈ (tk, tk+1).

Therefore, the agents whose collective dynamics is described by the hybrid sys-
tem, (13.2), may reach a consensus only if the local agreements converge one to each
other.
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13.3.2 Consensus Value

Before presenting our next result, let us introduce the following vectors:

x∗(t) = (x∗
1 (t), x

∗
2 (t), ..., x

∗
m(t))� ∈ R

m

u = (v1/w1,l , v2/w2,l , ..., vm/wm,l)
� ∈ R

m
(13.6)

represents the local agreement of the cluster Ci and v ∈ R
m and wi ∈ R

ni are defined
at the beginning of the section as left eigenvectors associated with the matrices
describing the reset dynamics of the leaders and the continuous dynamics of each
cluster, respectively. It is noteworthy that x∗(t) is time-varying but piecewise con-
stant: x∗(t) = x∗(k) ∀t ∈ (tk, tk+1).

Proposition 1 Consider the system (13.2)with L and Pl defined by (13.3) and (13.4),
respectively. Then

u�x∗(t) = u�x∗(0), ∀t ∈ R+. (13.7)

Corollary 1 Consider the system (13.2) with L and Pl defined by (13.3) and (13.4),
respectively. Assuming the agents of this system reach a consensus, the consensus
value is

x∗ = u�Wx(0)∑m
i=1 ui

. (13.8)

In order to simplify the presentation andwithout loss of generality, inwhat follows,

we consider that
m∑

i=1

ui = 1. A trivial result which may be seen as a consequence of

Corollary 1 is the following.

Corollary 2 If the matrices L , Pl are symmetric (i.e., i th agent takes into account
the state of j th agent as far as j th takes into account the i th one and they give the
same importance one to another) the consensus value is the average of the initial
states.

13.4 Stability Analysis

13.4.1 Prerequisites

The stability analysis of the equilibrium point x∗ will be given by means of some
LMI conditions. Precisely, we recall and adapt some results presented in [29]. Since
the consensus value is computed in the previous section, we can first define the
disagreement vector y = x − x∗1n . We also introduce an extended stochastic matrix
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Pex = T�
[
Pl 0
0 In−m

]
T where T is a permutation matrix allowing to recover the

cluster structure of L . It is noteworthy that L1n = 0n and Pex1n = 1n . Thus, the
disagreement dynamics is exactly the same as the system one:

⎧
⎨

⎩

ẏ(t) = −Ly(t), ∀t ∈ R+ \ T
y(tk) = Pex y(t

−
k ) ∀tk ∈ T

y(0) = y0
. (13.9)

Now we have to analyze the stability of the equilibrium point y∗ = 0n for the
system (13.9). We note that Theorem 2 in [29] cannot be directly applied due to the
marginal stability of the matrices L and Pex .

The reset sequence is defined such that tk+1 − tk = δ + δ′ where δ ∈ R+ is fixed
and δ′ ∈ Δ with Δ ⊂ R+ a compact set. Thus the set of reset times T belongs

to the set Φ(Δ) �
{
{tk}k∈N, tk+1 − tk = δ + δ′

k, δ
′
k ∈ Δ,∀k ∈ N

}
of all admissible

reset sequences.

Definition 2 We say that the equilibrium y∗ = 0n of the system (13.9) is Globally
Uniformly Exponentially Stable (GUES) with respect to the set of reset sequences
Φ(Δ) if there exist positive scalars c, λ such that for any T ∈ Φ(Δ), any y0 ∈ R

n ,
and any t ≥ 0

‖ϕ(t, y0)‖ ≤ ce−λt‖y0‖. (13.10)

The following theorem is instrumental:

Theorem 1 (Theorem 1 in [29]) Consider the system (13.9) with the set of reset
times T ∈ Φ(Δ). The equilibrium y∗ = 0n is GUES if and only if there exists a
positive function V : Rn → R+ strictly convex,

V (y) = y�S[y]y,

homogeneous (of second order), S[·] : Rn → R
n×n, S[y] = S�

[y] = S[ay] > 0, ∀x 
=
0, a ∈ R, a 
= 0, V (0) = 0, such that V (y(tk)) > V (y(tk+1)) for all y(tk) 
= 0, k ∈
N and any of the possible reset sequences T ∈ Φ(Δ).

13.4.2 Parametric LMI Condition

In the sequel, we define a quasi-quadratic Lyapunov function satisfying Theorem 1
by means of some LMI. Therefore, the following result gives sufficient conditions
for the stability of the equilibrium point y∗ = 0n for the system (13.9) or equivalently
of x∗1n for the system (13.2).
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Theorem 2 Consider the system (13.2) with T in the admissible reset sequences
Φ(Δ). If there exist matrices S(δ′), S(·) : Δ → R

n×n continuous with respect to δ′,
S(δ′) = S�(δ′) > 0, δ′ ∈ Δ such that the LMI

(
In−1nu

�W
)�

S(δa)
(
In−1nu

�W
)
−

(
Y (δa)−1nu

�W
)�

S(δb)
(
Y (δa)−1nu

�W
)

> 0,

Y (δa) � Pexe
−L(δ+δa)

(13.11)

is satisfied on span{1n}⊥ for all δa, δb ∈ Δ, then x∗ is GUES for (13.2). More-
over, the stability is characterized by the quasi-quadratic Lyapunov function V (t) =
V (x(t)) � max

δ′∈Δ
(x(t) − x∗1n)

�S(δ′)(x(t) − x∗1n) satisfying V (tk) > V (tk+1).

Due to the space limitations, we do not provide the proofs of the results above.
However, we point out that Theorem 1 requires to solve a parametric LMI which can
be approximated by a finite number of LMIs using polytopic embeddings. The set
{X ∈ R

n×n | X = e−Lδa , δa ∈ Δ} can be embedded into the polytopic set defined by
the vertices Z1, . . . , Zh+1 where

Z1 = In

Zi =
i−1∑

l=0

(−L)l

l! δlmax , ∀i ∈ {2, . . . , h + 1}

with δmax = max
δ′∈Δ

δ′, (−L)0 = In and 0! = 1. Then, Theorem 2 can be replaced by

the following result.

Theorem 3 Consider the system (13.2) with T in the admissible reset sequences
Φ(Δ). If there exist symmetric positive definite matrices Si , 1 ≤ i ≤ h + 1 such that
the LMI

(
In − 1nu

�W
)�

Si
(
In − 1nu

�W
)

−
(
Y (δ)Zi − 1nu

�W
)�

Sj

(
Y (δ)Zi − 1nu

�W
)
> 0,

Y (δ) � Pexe
−L(δ)

(13.12)

is satisfied on span{1n}⊥ for all i, j ∈ {1, . . . , h + 1}, then x∗ is GUES for (13.2).

13.5 Complementary Results

13.5.1 Decay Rate Analysis

Once the global uniform exponential stability of x∗ ensured by Theorem 2, we
can compute the convergence speed of the state of system (13.2). In other words,
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we are searching to evaluate λ in (13.10). From the proof of Theorem 1, one has

λ = ln λd

δ + δmax
where δmax = max

δ′∈Δ
δ′ and λd defined as the decay rate of the linear

difference inclusion (LDI)

x(tk+1) ∈ F (x(tk)), k ∈ N, (13.13)

where

F (x) =
{
Pexe

−L(δ+δ′), δ′ ∈ Δ
}

.

Precisely, for the LDI (13.13) there exist M > 0 and ξ ∈ [0, 1] such that

‖x(tk) − x∗1n‖ ≤ Mξ k‖x(0) − x∗1n‖, ∀k ∈ N, (13.14)

and λd is defined as the smaller ξ satisfying (13.14).

Thus in order to quantify the convergence speed of system (13.2), we only have
to evaluate λd . Let us denote again y = x − x∗1n and note that V (y) defined by
Theorem 2 is a norm. That implies there exist α, β > 0 such that

α‖y‖2 ≤ V (y) ≤ β‖y‖2.

Consequently, one obtains that the decay rate λd coincides with the decay rate
of V . Thus, the following result can be derived directly from Theorem 2.

Proposition 2 Assume there exist α > 0, β > 0, ξ ∈ (0, 1] and the matrices S(δ′),
S·) : Δ → R

n×n continuous with respect to δ′, S(δ′) = S�(δ′) > 0, δ′ ∈ Δ fulfilling
the following constraints

α In ≤ S(δ′) ≤ β In, ∀δ′ ∈ Δ

ξ 2
(
In−1nu

�W
)�
S(δa)

(
In−1nu

�W
)
−

(
Y (δa)−1nu

�W
)�
S(δb)

(
Y (δa)−1nu

�W
)
> 0,

Y (δa) � Pexe
−L(δ+δa)

(13.15)

on span{1n}⊥ for all δa, δb ∈ Δ. Then the decay rate is defined as

λd = min
ξ satisfies (13.15)

ξ

and

‖x(tk) − x∗1n‖ ≤ β

α
(λd)

k‖x(0) − x∗1n‖, ∀k ∈ N.
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Remark 2 It is noteworthy that 0 < λd ≤ 1 and for a priori fixed values of α, β, we
can use the bisection algorithm to approach as close as we want the value of λd .

Remark 3 To complete the decay rate analysis, we can consider that Pex , L and λd

are fixed and perform a line search to find the nominal reset period δ that ensures
the convergence speed constraint. In other words, we check if (13.15) has solutions
for ξ = λd and δ heuristically sweeping the positive real axis. Moreover, we can
progressively decrease λd and re-iterate the line search in order to find the smaller
reachable decay rate.

13.5.2 Convergence Toward a Prescribed Value

In what follows, we assume that the value x∗ is a priori fixed and at least a vector
u satisfying (13.8) exists. Under this assumption, we are wondering if there exists
a matrix Pl that allows system (13.2) to reach the consensus value x∗. It is worth
noting that the network topology is considered fixed and known for each cluster.
Under these assumptions, a consensus value is imposed by a certain choice of v such
that v�1m = 1 and v left eigenvector of Pl associated with the eigenvalue 1. In other
words, we arrive to a joint design of Pl and the Lyapunov function V guaranteeing
the trajectory of (13.2) ends up on x∗.

Theorem 4 Let us consider the system (13.2) with T in the admissible reset
sequences Φ(Δ) and let x∗ be a priori fixed by a certain choice of v. If there exist
matrices R(δ′), R(·) : Δ → R

n×n continuous with respect to δ′, R(δ′) = R�(δ′) >

0, δ′ ∈ Δ and Pl stochastic such that the LMI

⎡

⎣ Z(δa)
(
Y (δa) − 1nu

�W
)�

(
Y (δa) − 1nu

�W
)

R(δb)

⎤

⎦ > 0,

Y (δa) � Pexe
−L(δ+δa)

Z(δa) �
(
In − 1nu

�W
)� +

(
In − 1nu

�W
)

− R(δa)

(13.16)

with the constraint

v�Pl = v�

is satisfied on span{1n}⊥ for all δa, δb ∈ Δ, then x∗ is GUES for (13.2). More-
over, the stability is characterized by the quasi-quadratic Lyapunov function V (t) =
max
δ′∈Δ

(x(t) − x∗1n)
�R(δ′)−1(x(t) − x∗1n) satisfying V (tk) > V (tk+1).
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13.5.3 Convergence Toward a Prescribed Value
with a Prescribed Decay Rate

Combining the results of Proposition 2 and Theorem 4, we can design the matrix Pl
that allows to reach an a priori given consensus value x∗ with a decay rate inferior
to an a priori fixed value. Precisely, the following result holds.

Theorem 5 Let us consider the system (13.2) with T in the admissible reset
sequences Φ(Δ) and let x∗ be a priori fixed by a certain choice of v. Let us also
consider λ̄ ∈ (0, 1) a priori fixed. If there exist matrices R(δ′), R(·) : Δ → R

n×n

continuous with respect to δ′, R(δ′) = R�(δ′) > 0, δ′ ∈ Δ and Pl stochastic such
that the LMI

⎡

⎣ Z(δa)
(
Y (δa) − 1nu

�W
)�

(
Y (δa) − 1nu

�W
)

λ̄2R(δb)

⎤

⎦ > 0,

Y (δa) � Pexe
−L(δ+δa)

Z(δa) �
(
In − 1nu

�W
)� +

(
In − 1nu

�W
)

− R(δa)

(13.17)

with the constraint

v�Pl = v�

is satisfied on span{1n}⊥ for all δa, δb ∈ Δ, then x∗ is GUES for (13.2) and (13.14) is
satisfied for ξ = λ̄ and M = β/α where β and α are the minimum and the maximum
eigenvalue of R(δ′), δ′ ∈ Δ, respectively.

Remark 4 It is noteworthy that LMI (13.17) implies LMI (13.15) but they are not
equivalent. Therefore, the decay rate λd is often strictly smaller than λ̄.

13.6 Illustrative Example

An academic example consisting in a network of 5 agents partitioned in 2 clusters
(n1 = 3, n2 = 2) is used in the sequel to illustrate the theoretical results.We consider
the dynamics (13.2) with

L =

⎡

⎢⎢⎢⎢⎣

4 −2 −2 0 0
−1 1 0 0 0
0 −2 2 0 0
0 0 0 3 −3
0 0 0 −1 1

⎤

⎥⎥⎥⎥⎦
, Pl =

[
0.45 0.55
0.25 0.75

]
, (13.18)
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Fig. 13.1 The
state-trajectories of the
agents converging to the
calculated consensus value

and the reset sequence given by δ = 0.5 and δ′
k randomly chosen in Δ = [0, 0.2].

The initial condition of the system is x(0) = (8, 7, 9, 2, 3) and the corresponding
consensus value computed by (13.8) is x∗ = 4.6757. The convergence of the 5 agents
toward x∗ is illustrated in Fig. 13.1 emphasizing that the leaders trajectories are non-
smooth while the followers trajectories are.

To find the decay rate λd , we make use the bisection algorithm as stated in
Remark 2. The value of λd obtained was λd = 0.855. Number of iterations of the
bisection algorithm is k = 30 on all three cases.

We understand that the consensus value is always a convex combination of the
initial agreement values of the clusters. In our case, any consensus value can be
imposed between the two initial agreements 2.75 and 7.5. In Fig. 13.2 the consensus
value was fixed at x∗ = 6.5.

Fig. 13.2 The states of a
system (x∗ = 6.5)
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Fig. 13.3 The states of a
system (x∗ = 3.5)

The obtained Pl matrix was

Pl =
[
0.6870 0.3130
0.7825 0.2175

]
.

The decay rate associated with this Pl is λd = 0.782 and can be ameliorated by using
Theorem 5. Imposing λ̄ = 0.82 in (13.17) one gets

Pl =
[
0.6425 0.3575
0.8937 0.1063

]
. (13.19)

and for this Pl , the corresponding decay rate is λd = 0.756 < λ̄ as noticed in
Remark 4. Similar analysis has been done for x∗ = 6. When Pl is designed without
decay rate constraint one gets λd = 0.799 and is improved to λd = 0.747 designing
Pl based on Theorem 5.

In Fig. 13.3 the consensus value was fixed as x∗ = 3.5. The obtained Pl matrix
was

Pl =
[
0.3010 0.6990
0.0874 0.9126

]
. (13.20)

13.7 Conclusions and Perspectives

In this work, we have considered networks of linear agents partitioned in several
clusters disconnected one of each other. Each cluster has a linear impulsive leader
that resets its state nearly periodically by taking into account the state of some neigh-
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boring leaders. On one hand we have characterized the consensus value for this type
of networks and we have performed its stability analysis. On the other hand, we have
provided the convergence speed toward consensus and we have designed the inter-
connection network between the leaders allowing to reach a prescribed consensus
value. Our results are computationally oriented since they are given in LMI form.
Two academic examples illustrate the entire theoretical developments. Future inves-
tigations may consider the influence of the leaders centrality on the convergence
speed. Other interesting issue would be related to the influence of the nominal reset
period δ on the decay rate λd . Finally, we consider that networks with impulsive
leaders having event-based reset rules may be of particular interest.
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Chapter 14
Synthesis of Distributed Control Laws
for Multi-agent Systems Using Delayed
Relative Information with LQR Performance

Paresh Deshpande, Prathyush P. Menon and Christopher Edwards

Abstract In this chapter, a multiagent system composed of linear identical dynam-
ical agents is considered. The agents are assumed to share relative state information
over a communication network. This exchange of relative information is assumed to
be subject to delays. New methods to synthesize distributed state feedback control
laws for the multiagent system, using delayed relative information along with local
state information with guaranteed LQR performance, are presented in this chapter.
Two types of delays are considered in the relative information exchange: fixed and
time-varying. Existing delay-dependent stability criteria are modified to incorpo-
rate LQR performance guarantees while retaining convex LMI representations to
facilitate the synthesis of the control gains.

14.1 Introduction

Research in consensus and coordination of multiagent systems has received a great
deal of attention over the past decade. One problem which is addressed in many of
these papers involves ensuring a collection of multiple agents, interconnected over
an information network, and operate in agreement or in a synchronized manner.
Often the topology of the interconnections is captured as a graph, and in recent years
many researchers have obtained novel results by combining graph theory along with
systems and control ideas. See [1, 6, 16, 20, 21, 25, 26, 32, 37] and the references
therein for further details and examples.
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Recently, progress has been made in terms of stabilization and consensus in a
network of dynamical systems subject to performance guarantees such as the rate of
convergence and LQR/H2 performance. The rate of convergence can be enhanced
by optimizing the weights associated with the consensus algorithm which essentially
improves the algebraic connectivity associated with the Laplacian matrix of the graph
formed according to the underlying communication topology. In [41], the weights
of the Laplacian matrix of the graph are optimized to attain faster convergence to a
consensus value: this is posed as a convex optimization problem and solved using
LMI tools. The algebraic connectivity, characterized by the second smallest eigen-
value of the Laplacian matrix, is maximized in [18] to improve the convergence
performance. An optimal communication topology for multiagent systems is sought
in [5] to achieve a faster rate of convergence. A distributed control methodology
ensuring LQR performance in the case of a network of linear homogenous systems
is presented in [2]. The robust stability of the collective dynamics with respect to
the robustness of the local node level controllers and the underlying topology of the
interconnections is also established in [2]. A decentralized receding horizon con-
troller with guaranteed LQR performance for coordinated problems is proposed in
[17] and the efficacy is demonstrated by an application to attain coordination among
a flock of unmanned air vehicles. In [19], the relationship between the interconnec-
tion graph and closed-loop performance in the design of distributed control laws is
studied using an LQR cost function. In [24], decentralized static output feedback con-
trollers are used to stabilize a homogeneous network comprising a class of dynamical
systems with guaranteed H2 performance, where an upper bound on the collective
performance is given, depending only on the node level quadratic performance. LQ
optimal control laws for a wide class of systems, known as spatially distributed large
scale systems, are developed in [28] by making use of an approximation method.
In [4], LQR optimal algorithms for continuous as well as discrete time consensus are
developed, where the agent dynamics are restricted to be single integrators. However,
interesting relations between the optimality in LQR performance and the Laplacian
matrix of the underlying graph are developed. In [23], procedures to design distrib-
uted controllers withH2 andH∞ performance have been proposed for a certain class
of decomposable systems. Although delays are an ubiquitous factor associated with
network interconnections as a result of information exchange over a communication
medium, in all the above research work [2, 4, 17, 19, 23, 24, 28] no attempt is made
to explicitly address or exploit the effects of the measurement delay.

Significant research efforts analyzing the stability and performance of collec-
tive dynamics (at network level) in the face of different types of delays have taken
place in the recent past: Refs. [3, 22, 29–31, 33, 35, 38, 42] are few examples,
although this list is not exhaustive.1 Necessary and sufficient conditions for average
consensus problems in networks of linear agents in the presence of communication
delays have been derived in [31]. Stability criteria associated with the consensus
dynamics in networks of agents in the presence of communication delays was subse-

1Another research area involving the stabilization of time-delay systems is networked control sys-
tems [15, 40]. This is not the class of problems considered in this chapter.
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quently developed in [38] using Lyapunov–Krasovskii-based techniques. Moreover,
the strong dependency of the magnitude of delay and the initial conditions on the
consensus value was also established in [38]. In [29], a network of second-order
dynamical systems with heterogeneously delayed exchange of information between
agents is considered, where flocking or rendezvous is obtained using decentralized
control. This can also be tuned locally, based only on the delays to the local neigh-
bors. Both frequency and time domain approaches are utilized in [29] to establish
delay-dependent and delay-independent collective stabilities. Subsequently, the the-
ory was extended in [33] to the case of a network formed from a certain class of
nonlinear systems. The robustness of linear consensus algorithms and conditions
for convergence subject to node level self delays and relative measurement delays
are developed and reported in [30] building on the research described in [29, 33].
‘Scalable’ delay-dependent synthesis of consensus controllers for linear multiagent
networks making use of delay-dependent conditions is proposed in [30]. Reference
[42] reports an independent attempt to achieve second-order consensus using delayed
position and velocity information. Recently another methodology, based on a clus-
ter treatment of characteristic roots, has been proposed in [3] to study the effect
of large and uniform delays in second-order consensus problems with undirected
graphs. In [35], the performance of consensus algorithms in terms of providing a
fast convergence rate involving communication delays, was studied for second-order
multiagent systems. In [22], using methods based on Lyapunov–Krasovskii theory
and an integral inequality approach, sufficient conditions for robust H∞ consensus
are developed for the case of directed graphs consisting of linear dynamical systems
to account for node level disturbances, uncertainties and time-varying delays.

The main contributions of the present chapter are as follows: While exchanging
information among agents over a network, delays are common. Previous efforts
to investigate stability and robustness in the face of delays clearly emphasizes the
need to account for these delays explicitly. However research in this direction is
limited when compared to the available voluminous research in the case of ‘delay
free’ consensus algorithms. Motivated by this fact, the idea of designing delay-
dependent distributed optimal LQR control laws for homogeneous linear multi agent
networks is put forward in this chapter. At a collective network level, a certain
level of guaranteed cost is attained, which takes into account the control effort.
Fixed, as well as time-varying delays are accounted for in the synthesis process. A
Lyapunov–Krasovskii functional approach is used for synthesizing control laws in
the presence of fixed delays, whereas a method from [7] is exploited to synthesize
distributed control laws in the presence of time-varying delays employing a descriptor
system representation. The efficacy of the proposed approaches are demonstrated by
considering a homogeneous linear multi agent network (cyclic) where the node level
dynamics are represented as double integrators as in [29, 35, 42].
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14.2 Preliminaries

In this chapter, the set of real numbers is denoted by IR. Real-valued vectors of length
m are denoted as IRm . Real-valued matrices of dimensionm×n are denoted as IRm×n .
A column vector is denoted by C ol(.) and a diagonal matrix is denoted by D iag(.).
The notation P = PT > 0 is used to describe a symmetric positive definite(s.p.d)
matrix. An identity matrix of dimension n×n is denoted by In . Finally, the Kronecker
product is denoted by the symbol ⊗.

Basic concepts from graph theory are described in this section. Standard texts
such as [11] can be referred to for further reading on graph theory. An undirected
graph G is described by a set of vertices V and a set of edges E ⊂ V 2, where
an edge is denoted by e = (α, β) ∈ V 2, i.e., an unordered pair. A finite graph
which consists of N vertices along with k edges for a network is represented as
G = (V ,E ). In this chapter, bidirectional communication is assumed and hence the
graphs for the network considered are undirected. The graph is assumed to contain
no loops and no multiple edges between two nodes. The adjacency matrix, for the
graph A (G ) = [ai j ], is defined by ai j = 1 if i and j are adjacent nodes of the graph,
and ai j = 0 otherwise. The adjacency matrix thus defined is symmetric. The degree
matrix is represented by the symbol Δ(G ) = [δi j ]. Δ(G ) is a diagonal matrix, and
each element δi i is the degree of the i th vertex. The difference Δ(G )−A (G ) defines
the Laplacian of G , written as L . For an undirected graph, L is symmetric positive
semidefinite. L has a smallest eigenvalue of zero and the corresponding eigenvector
is given by 1 = C ol(1, . . . 1). L is always rank deficient and the rank of L is n− 1
if and only if G is connected.

14.3 Problem Formulation

Consider a network of N identical linear systems given by

ẋi (t) = Axi (t) + Bui (t) (14.1)

for i = 1, . . . , N , where xi (t) ∈ IRn and ui (t) ∈ IRm represent the states and the
control inputs. The constant matrices A ∈ IRn×n and B ∈ IRn×m and it is assumed
that the pair (A, B) is controllable. Each agent is assumed to have knowledge of its
local state information along with delayed relative state information. The relative
information communicated to each agent (node) is given by

zi (t) =
∑

j∈Ji

(xi (t − τ) − x j (t − τ)),
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where τ is a delay in communication of relative information. The dynamical
systems for which the i th dynamical system has information is denoted by Ji ⊂
{1, 2, . . . N }/{i}. Two cases for the delay τ are considered in this chapter:

• a known fixed delay;
• a bounded time-varying delay with a known maximum bound.

The intention is to design control laws of the form

ui (t) = −Kxi (t) − Hzi (t − τ),

where K ∈ IRm×n is designed to achieve consensus and H ∈ IRm×n , the relative
information scaling matrix, is fixed a priori. The closed-loop system at a node level
is given by

ẋi (t) = (A − BK )xi (t) − BHzi (t − τ), (14.2)

and using Kronecker products, the system in (14.1) at a network level is given by

Ẋ(t) = (IN ⊗ A)X (t) + (IN ⊗ B)U (t), (14.3)

where the augmented states and control inputs are X (t) = C ol(x1(t), . . . , xN (t))
and U (t) = C ol(u1(t), . . . , uN (t)), respectively. The relative information in (14.3)
at a network level can be written as

Z(t) = (L ⊗ In)X (t − τ), (14.4)

whereL is the Laplacian matrix associated with the setsJi . Using (14.4) the control
law is given by

U (t) = −(IN ⊗ K )X (t) − (L ⊗ BH)X (t − τ).

Substituting the previous expression into (14.3), the closed-loop system at a net-
work level is given by

Ẋ(t) = (IN ⊗ (A − BK ))X (t) − (L ⊗ BH)X (t − τ). (14.5)

Since L is symmetric positive semidefinite, by spectral decomposition L =
VΛV T where V ∈ IRN×N is an orthogonal matrix formed from the eigenvectors of
L and Λ = diag(λ1, . . . λN ) is the matrix of the eigenvalues of L . Consider an
orthogonal state transformation

X �→ (V T ⊗ In)X = X̃ .

The closed-loop system (14.5) in the new coordinates is given by

˙̃X (t) = (IN ⊗ (A − BK ))X̃(t) − (Λ ⊗ BH)X̃(t − τ). (14.6)
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Because Λ is a diagonal matrix, system (14.6) is equivalent to

˙̃xi (t) = A0 x̃i (t) + Ai x̃i (t − τ), (14.7)

for i = 1, . . . , N where A0 := A − BK and Ai := −λi BH .
In this chapter, it is assumed the initial condition x̃(θ) = x̃(0) for −τ ≤ θ ≤ 0.

The transformed system in (14.7) can be equivalently thought of as

˙̃xi (t) = Ax̃i (t) − λi BH x̃i (t − τ) + Bui (t), (14.8)

where ui (t) = −K x̃i (t).

Remark 1 The decomposition in (14.8) can be implemented when the delay τ is
identical across all communication links. In reality, the time-delays across the com-
munication links will be unequal. One possible way to overcome this problem is to
introduce delay buffers to equalize the delays.

Remark 2 Though the implementation of the controllers is decentralized the com-
putation of the control gains K is obtained from the decomposition of (14.6). This
requires the full information of the LaplacianL and hence the method is not applica-
ble to scale free networks.

The objective is to design the gain matrix K under the following scenarios

• a delay-dependent design for a known fixed delay τ ;
• a delay-dependent design for bounded time-varying delays τ(t).

In both cases, a suboptimal level of LQR performance must be enforced on the
overall system.

The stabilization of linear systems with delays, with the structure given in (14.8),
has been studied extensively in the control literature. Various stability analysis and
control design methods have been proposed. In [7, 8], a descriptor representation
along with Lyapunov–Krasovskii functionals are used to obtain stability criteria for
linear time-delay systems. In [12] a Lyapunov–Krasovskii functional approach based
on the partitioning of the delay is proposed for linear time-delay systems. In [9],
bounds on the derivative of delays are considered to derive delay-dependent stability
criteria. Most recent methods involve establishing LMI feasibility problems (with
varying levels of complexity in terms of the number of decision variables). The reader
is referred to [14, 27, 34, 36, 39] for further reading in this area. In this chapter, the
systems in (14.8) are to be stabilized simultaneously in the presence of delays while
guaranteeing an LQR performance. This is achieved by building on the existing
analysis techniques [7, 13]. The techniques in [7, 13], while not necessarily the
most recent in the literature, have been found to yield tractable LMI representations
under certain mild simplifications. This is important because of the large number
of decision variables involved resulting from the multiple agents. The results in
[7, 13] are shown to provide a good trade-off between unnecessary conservatism and
tractability of LMI formulations.
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14.4 Delay-Dependent Control Design for a Fixed Delay

Prior to stating the objective of delay-dependent control design, anexplicit model
transformation from [13] for the system in (14.7) is first performed. For the system
given in (14.7), the following observation holds

x̃i (t − τ) = x̃i (t) −
t∫

t−τ

˙̃xi (θ)dθ = x̃i (t) −
t∫

t−τ

(A0 x̃i (θ) + Ai x̃i (θ − τ)) dθ,

for t ≥ τ . Using the previous expression, the system in (14.7) can be represented as

˙̃xi (t) = (A0 + Ai )x̃i (t) +
t∫

t−τ

(−Ai A0 x̃i (θ) − Ai Ai x̃i (θ − τ))dθ, (14.9)

for all i = 1, . . . , N . As argued in [13], system (14.9) can be transformed, by shifting
the time axis and lifting the initial conditions, into the system

ẏi (t) = Ā0i yi (t) +
t∫

t−2τ

Āi (θ)yi (θ)dθ, (14.10)

where

Ā0i := A0 + Ai ,

Āi (θ) :=
{−Ai A0 θ ∈ [t − τ, t],

−Ai Ai θ ∈ [t − 2τ, t − τ),

with the new initial condition y(θ) = φ(θ) for −2τ ≤ θ ≤ 0. According to [13],
stability of (14.10) implies stability of (14.7) but not vice-versa. The control design
objective for delay-dependent control design can now be stated as the design of gain
matrix K for the systems in (14.10) such that the cost functions

Ji =
∞∫

0

(yTi (t)Qyi (t) + uT
i (t)Rui (t))dt (14.11)

are minimized for all i = 1, . . . , N , where

ui (t) = −Kyi (t) (14.12)

and Q ∈ IRn×n and R ∈ IRm×m are symmetric positive definite matrices.
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Remark 3 In [13] it is shown that the transformed system in (14.10) has all the
poles of the original system in (14.8) plus additional poles due to the transformation.
Consequently stability of the transformed system implies stability of the original
system but not vice-versa, due to the lifting of the initial conditions of the original
system. In this chapter, LQR control design has been employed on the transformed
system. This will also guarantee a level of performance for the original system
in (14.8).

Theorem 1 For a known fixed delay τ , a given scaling matrix H ∈ IRm×n, selected
weighting matrices Q and R and scalars α0 and α1, the control laws in (14.12)
simultaneously stabilize the transformed systems in (14.10) if there exist matrices
Z > 0, W in IRn×n and Y ∈ IRm×n such the following LMI conditions are satisfied

[−Z In
∗ −W

]
< 0, (14.13)

⎡

⎢⎢⎢⎢⎣

Φ̄i −Ai AW + Ai BY −A2
i W

WQ1/2

τ
Y T

τ∗ −α0W 0 0 0
∗ ∗ −α1W 0 0
∗ ∗ ∗ − I

τ
0

∗ ∗ ∗ ∗ − R−1

τ

⎤

⎥⎥⎥⎥⎦
< 0, (14.14)

where

Φ̄i = 1

τ
(((A + Ai )W − BY ) + ((A + Ai )W − BY )T ) + (α0 + α1)W

for all i = 1, . . . , N. The state feedback gain matrix is then given by K = YW−1.
Furthermore since the Ji from (14.11) satisfy, for i = 1, . . . , n

Ji < yTi (0)Py(0)(1 + 1

2
α0τ

2 + 3

2
α1τ

2),

minimizing Trace(Z) subject to (14.13)–(14.14) minimizes a bound on the LQR
cost.

Proof This proof uses a restricted Lyapunov–Krasovskii functional as suggested
in Proposition 5.16 from [13]. For the system in (14.10) consider a Lyapunov–
Krasovskii functional of the form

Vi (y(t)) = yTi (t)Pyi (t) +
t∫

t−2τ

t∫

θ

α(θ)yTi (s)Pyi (s)dsdθ, (14.15)

where P > 0 and P ∈ IRn×n for all i = 1, . . . , N . In (14.15) α(θ) > 0 is a positive
scalar function defined over the interval t − 2τ ≤ θ ≤ t . Consider the inequality
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yTi (t)

⎛

⎝P Ā0i + ĀT
0i P +

t∫

t−2τ

α(θ)Pdθ

⎞

⎠ yi (t) +
t∫

t−2τ

2yTi (t)P Āi (θ)yi (θ)dθ

−
t∫

t−2τ

α(θ)yTi (θ)Pyi (θ)dθ < −yTi (t)Qyi (t) − uT
i (t)Rui (t). (14.16)

By adding and subtracting terms involving a symmetric matrix function M(θ)

∈ IRn×n , the inequality in (14.16) is equivalent to

yTi (t)

⎛

⎝P Ā0i + AT
0i P + Q + KT RK +

t∫

t−2τ

M(θ)dθ

⎞

⎠ yi (t)

+
t∫

t−2τ

ȳTi (t, θ)

(
α(θ)P − M(θ) P Āi (θ)

∗ −α(θ)P

)
ȳi (t, θ)dθ < 0. (14.17)

where
ȳTi (t, θ) = (

yTi (t) yTi (θ)
)
.

Define the symmetric matrix function M(θ) as

M(θ) =
{
M0, t − τ ≤ θ ≤ t
M1, t − 2τ ≤ θ < t − τ,

where M0 and M1 are symmetric matrices ∈ IRn×n and the scalar function α(θ) as

α(θ) =
{

α0, t − τ ≤ θ ≤ 0
α1, t − 2τ ≤ θ < t − τ,

where α0 > 0 and α1 > 0. Then as argued in [13] inequality in (14.17) is satisfied
for P > 0 and

P(A0 + Ai ) + (A0 + Ai )
T P + Q + KT RK + τ(M0 + M1) < 0,[

ccα0P − M0 − PAi A0

∗ − α0P

]
< 0,

[
ccα1P − M1 − PAi Ai

∗ − α1P

]
< 0.

(14.18)

Using the Schur complement and eliminating M0 and M1 the inequalities in
(14.18) are satisfied if
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⎡

⎣
Φi −PAi A0 −PAi Ai

∗ −α0P 0
∗ ∗ −α1P

⎤

⎦ < 0, (14.19)

where

Φi = 1

τ
(P(A0 + Ai ) + (A0 + Ai )

T P + Q + KT RK ) + (α0 + α1)P,(14.20)

and A0 = A − BK for all i = 1, . . . , N . To develop a convex representation define
W = P−1. Pre- and postmultiplying (14.19) by diag(W,W,W ) means (14.19) is
equivalent to ⎡

⎣
Φ̂i −Ai A0W −Ai AiW
∗ −α0W 0
∗ ∗ −α1W

⎤

⎦ < 0, (14.21)

where
Φ̂i = 1

τ

(
(A0 + Ai )W + W (A0 + Ai )

T + WQW
)

+ 1
τ
(WKT RKW ) + (α0 + α1)W,

for all i = 1, . . . , N . Define an auxiliary symmetric matrix Z ∈ IRn×n and employ
the change of decision variables KW = Y where Y ∈ IRm×n . From applying the
Schur complement to (14.21), the inequalities in (14.18) become the LMI stated in
the theorem statement in (14.14). Inequality (14.16) is equivalent to

V̇i (yi (t)) < −yTi (t)Qyi (t) − uT
i (t)Rui (t).

Integrating both sides the previous equation from 0 to ∞ yields

− yTi (0)Pyi (0) −
0∫

−2τ

0∫

θ

α(θ)yTi (s)Pyi (s)dsdθ < −Ji . (14.22)

Assuming new initial conditions yi (s) = yi (0) for s < 0, an upper bound for Ji
is given by

Ji < yTi (0)Py(0)(1 + 1

2
α0τ

2 + 3

2
α1τ

2), (14.23)

by explicitly evaluating the integration on the L.H.S of (14.22). Minimization of
Trace(P) ensures minimizations of the cost Ji for all i = 1, . . . , N . From (14.13),
it can be shown by Schur complement that Z > W−1 = P and hence minimizing
Trace(Z) ensures cost minimization from (14.23). �
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Remark 4 Note that the matrix H and the scalars α0 and α1 are fixed in (14.14)
which renders the matrix Ai fixed for all i = 1, . . . , N and hence (14.14) is an LMI
which can be easily solved using modern convex optimization techniques.

14.5 Delay-Dependent Control Design for Time-Varying
Delays

In the previous section, state feedback control laws were designed based on the
assumption of relative information having a fixed delay. Assuming fixed delays in a
network is somewhat idealistic and hence a need arises for control design involving
time-varying delays. In [7], a control design methodology has been presented for
time-varying delay where the delay τ(t) is a bounded continuous function satisfying
0 ≤ τ(t) ≤ τm for t ≥ 0 where τm is known. The equivalent systems to (14.8) with
time-varying delays τ(t) are given by

˙̃xi (t) = Ax̃i (t) − λi BH x̃i (t − τ(t)) + Bui (t), (14.24)

for i = 1, . . . , N . Again the objective is to minimize a cost function of the form

Ji =
∞∫

0

(x̃ Ti (t)Qx̃i (t) + uT
i (t)Rui (t))dt,

where
ui (t) = −K x̃i (t), (14.25)

for all i = 1, . . . , N .

Theorem 2 Assume the bound on the delay τm is known, then for a given scaling
matrix H from (14.24) and given weighting matrices Q and R, the control laws in
(14.25) simultaneously stabilize the systems in (14.8) if there exist matrices W1 > 0,
W2, W3, Z > 0, F̄1, F̄2, F̄3, S̄ > 0 ∈ IRn×n such that the following LMI conditions
are satisfied:

[ −Z In×n

In×n −W1

]
< 0, (14.26)

⎡

⎣
S̄ 0 S̄ AT

i
∗ F̄1 F̄2

∗ ∗ F̄3

⎤

⎦ > 0, (14.27)



244 P. Deshpande et al.

⎡

⎢⎢⎢⎢⎣

W̃2F Φi τmWT
2 W1Q1/2 Y T

∗ W̃3F τmWT
3 0 0

∗ ∗ −τm S̄ 0 0
∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ R−1

⎤

⎥⎥⎥⎥⎦
< 0, (14.28)

where

Φi = W3 − WT
2 + W1(A + Ai ) + τm F̄2 − Y T BT ,

W̃2F = W2 + WT
2 + τm F̄1,

W̃3F = −W3 − WT
3 + τm F̄3,

for all i = 1, . . . , N. The state feedback gain matrix is then given by

K = YW−1
1 .

Furthermore Ji < x̃ Ti (0)P1 x̃i (0) and sominimizing Trace(Z) subject to (14.26)–
(14.28) minimize a bound on the LQR cost.

Proof This proof uses concepts from Corollary 3 from [7] to design control laws
for the system in (14.8) with a certain level of performance. As in [7] represent the
system in (14.7) as a descriptor system given by

˙̃xi (t) = ỹi (t), 0 = −ỹi (t) + (A0 + Ai )x̃(t) − Ai

t∫

t−τ(t)

ỹi (s)ds,

for i = 1, . . . , N . The previous system can be written as

E ˙̄xi (t) =
( ˙̃xi (t)

0

)
=

(
0 I

(A0 + Ai ) −I

)

︸ ︷︷ ︸
Ã0i

x̄i (t) −
(

0
Ai

) t∫

t−τ(t)

ỹi (s)ds,

for all i = 1, . . . , N . In the previous equation, x̄ Ti (t) = (
x̃ Ti ỹTi

)
and E = diag(I, 0).

Consider a Lyapunov–Krasovskii functional of the form

Vi (t) = V1i (t) + V2i (t),

where

V1i (t) = x̄ Ti E Px̄i , V2i (t) =
0∫

−τm

t∫

t+θ

ỹTi (s)S ỹi (s)dsdθ.



14 Synthesis of Distributed Control Laws for Multi-agent Systems … 245

For this functional, we assume that the matrix S ∈ IRn×n is symmetric positive
definite and the matrix P is such that P = [ P1 0

P2 P3

]
with P1 > 0. The cost functions

Ji , for i = 1, . . . N , can be represented as

Ji =
∞∫

0

x̄ Ti (t)

[
Q + KT RK 0

0 0

]
x̄i (t)dt. (14.29)

Then, the objective is to ensure the inequality

V̇i (t) = V̇1i (t) + V̇2i (t) < −x̄ Ti (t)

[
Q + KT RK 0

0 0

]
x̄i (t) (14.30)

hold. In the left-hand side of (14.30), we have

V̇1i (t) = PT Ã0i + ÃT
0i P − 2

t∫

t−τ(t)

G(x̄i (t), ỹi (s))ds, (14.31)

where

G(x̄i (t), ỹi (s)) = x̄ Ti (t)PT

(
0
Ai

)
ỹi (s),

and

V̇2i (t) = τm ỹ
T
i (t)S ỹi (t) −

t∫

t−τm

ỹTi (s)S ỹi (s)ds. (14.32)

Select a matrix F ∈ IR2n×2n such that

S̃F =
⎡

⎣
S

[
0 AT

i

]
P

PT

[
0
AT
i

]
F

⎤

⎦ > 0 (14.33)

for all i = 1 . . . , N . It follows that

t∫

t−τ

[
ỹi (s)
x̄i (t)

]T

S̃F

[
ỹi (s)
x̄i (t)

]
ds > 0. (14.34)
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By rearranging (14.34), the integral term in (14.31) is

− 2

t∫

t−τ(t)

G(x̄i (t), ỹi (s))ds <

t∫

t−τ

(
ỹTi (s)S ỹi (s) + x̄ Ti (t)Fx̄i (t)

)
ds

=
t∫

t−τ

(ỹTi (s)S ỹi (s))ds + (x̄ Ti (t)Fx̄i (t))

t∫

t−τ

ds

≤
t∫

t−τm

ỹTi (s)S ỹi (s)ds + τm x̄
T
i (t)Fx̄i (t). (14.35)

Substituting (14.35) in (14.31) and using (14.32), inequality (14.30) is satisfied if

[
S [0 AT

i ]P
∗ F

]
> 0 (14.36)

and

PT Ã0i + ÃT
0i P + τmF +

[
Q + KT RK 0

0 τmS

]
< 0 (14.37)

hold for all 1 = 1, . . . , N . Define

P−1 = W =
[
W1 0
W2 W3

]
. (14.38)

To create convex LMI representations from the matrix inequalities (14.36) and
(14.37) define Z > 0 ∈ IRn×n . Pre and post multiply (14.36) by diag(S−1,WT )

and diag(S−1,W ) respectively. Also pre and post multiply (14.37) by WT and W
respectively. Using the linearizations

WT FW = F̄ =
[
F̄1 F̄2

∗ F̄3

]

and S̄ = S−1, and KW1 = Y , the inequalities in (14.36) and (14.37) can be repre-
sented by the LMIs in (14.27) and (14.28). An expression for the maximum bound
on the cost Ji can be obtained by integrating (14.30) as

Ji < x̃ Ti (0)P1 x̃i (0) +
0∫

−τm

0∫

θ

ỹTi (s)S ỹi (s)dsdθ,
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for all i = 1, . . . , N . Assuming the initial condition x̃(θ) = x̃(0) for −τm ≤ θ ≤ 0,
ỹi (θ) = ˙̃x(θ) = 0 for −τm ≤ θ ≤ 0. Hence the maximum bound on the cost Ji is
given by

Ji < x̃ Ti (0)P1 x̃i (0). (14.39)

From (14.26) it can be shown that Z > W−1
1 = P1 and hence minimizing

Trace(Z) minimizes the Trace(P1) ensuring cost minimization from (14.39). �

Remark 5 Note that τ and the matrix H are fixed which renders the matrix Ai

fixed for all i = 1, . . . , N and hence (14.27) and (14.28) are LMI representations.
Consequently the conditions of Theorem 2 can be easily tested via modern convex
optimization solvers

14.6 Numerical Example

To illustrate the design methodologies, a cyclic nearest neighbor configuration of
5 vehicles moving in a x–y plane, with each vehicle described by two decoupled
double integrators is considered. The linear system model is given by

ζ̇i = Aζi + Bui

where ζi represents the x and y plane positions and velocities which constitute the
states of the i th vehicle. The matrices A and B are given by

A =

⎡

⎢⎢⎣

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

⎤

⎥⎥⎦ , B =

⎡

⎢⎢⎣

0 0
0 0
1 0
0 1

⎤

⎥⎥⎦ .

The matrix H associated with the relative information exchange in (14.2) is
given by

H =
[

1 0 1 0
0 1 0 1

]
.

For the method proposed in Sect. 14.4, it is assumed that a fixed communication
delay of τ = 0.1 s is present in the exchange of relative information. The matrices
Q and R for the cost functions given in (14.11) and (14.29) have been chosen as

Q =

⎡

⎢⎢⎣

10 0 0 0
0 10 0 0
0 0 10 0
0 0 0 10

⎤

⎥⎥⎦ , R =
[

1 0
0 1

]
.
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For the delay-dependent LMIs in (14.13) and (14.14), the scalars α0 and α1 have
been chosen as α0 = 3 and α1 = 3. For τ = 0.1 s, the gain matrix K obtained from
this approach is

K =
[

2.3931 0 2.8428 0
0 2.3931 0 2.8428

]
. (14.40)

Figure 14.1 shows that a rendezvous occurs at around t = 5 s with the gain matrix
K obtained in (14.40).

In [13], it is stated that the stability criteria of Proposition 5.16 is conservative.
Hence the gain matrix K in (14.40) should be able to cope with larger delays. Sim-
ulations show that the agents do not attain a rendezvous and diverge once τ exceeds
0.6s. This is shown in Fig. 14.2.

If there is no communication of relative information, i.e., the control law in (14.2)
is replaced by ui (t) = −Kxi (t), for the system in (14.1), a standard LQR problem

Fig. 14.1 Delay-dependent
control with delay of
τ = 0.1 s
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Fig. 14.2 No Rendezvous
after τ = 0.6 s
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Fig. 14.3 Rendezvous of
individual agents
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results for each agent. With the same set of matrices (A, B, Q, R)using the MATLAB
command ’lqr’, the local state feedback gain matrix K obtained is

K =
[

3.1623 0 4.0404 0
0 3.1623 0 4.0404

]
. (14.41)

Figure 14.3 shows 5 disconnected agents attaining a rendezvous at t = 4.8 s.
Comparing the plots in Figs. 14.1 and 14.3, it can be seen that the performance

achieved both with and without the relative information is similar. One distinct advan-
tage that can be observed is the reduction of the magnitude of the gains for velocity
and position feedback in (14.40) as compared to (14.41).

For the method proposed in Sect. 14.6, the bounded time-varying delay is given
by 0 ≤ τ(t) ≤ 0.1 s. The gain matrix obtained from this approach is

K =
[

2.9779 0 4.4182 0
0 2.9779 0 4.4182

]
. (14.42)

Fig. 14.4 Rendezvous with
time-varying delay
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Figure 14.4 shows 5 agents attaining a rendezvous at around t = 6 s for time-
varying delay at τ(t) = 0.07 s.

14.7 Conclusions and Future Work

In this chapter a multiagent system composed of linear identical dynamical agents
was considered. The agents are assumed to share relative state information over
a communication network. This exchange of relative information was assumed to
be subject to delays. New methods to synthesize distributed state feedback control
laws for the multiagent system, using delayed relative information along with local
state information with guaranteed LQR performance, were developed. Two types of
delays were considered in the relative information exchange: fixed and time-varying.
For the double integrator system considered, the gains with fixed delay in relative
information are lower in magnitude as compared to the gains obtained by solving an
individual LQR problem for a single agent with no delays with similar performance.
Thus the use of relative information maybe advantageous in terms of distributing
the control effort. In the case of a time-varying delay, the method which has been
proposed guarantees a bound on the LQR performance for delays with a known
maximum bound.

The stabilization techniques which were used to incorporate LQR performance,
while not necessarily the most recent in terms of the time-delay literature, were shown
to yield tractable LMI representations under certain mild simplifications. This is
important because of the large number of decision variables involved resulting from
the multiple agents. These techniques provided a good trade-off between unnecessary
conservatism and tractability of LMI formulations. Ongoing research efforts are
attempting to use methods based on discretized Lyapunov–Krasovskii functionals
and some of the new delay-dependent stabilization techniques which have been
developed to reduce the conservatism.

References

1. B. Bamieh, F. Paganini, M.A. Dahleh, Distributed control of spatially invariant systems. IEEE
Trans. Autom. Control 47(7), 1091–1107 (2002)

2. F. Borrelli, T. Keviczky, Distributed LQR design for identical dynamically decoupled systems.
IEEE Trans. Autom. Control 53(8), 1901–1912 (2008)

3. R. Cepeda-Gomez, N. Olgac, Consensus analysis with large and multiple communication
delays using spectral delay space concept. Int. J. Control 84(12), 1996–2007 (2011)

4. Y. Cao, W. Ren, LQR-based optimal linear consensus algorithms, in IEEE American Control
Conference (ACC) (2009)

5. J.C. Delvenne, R. Carli, S. Zampieri, Optimal strategies in the average consensus problem, in
IEEE Conference on Decision and Control (CDC) (2007)

6. J.A. Fax, R.M. Murray, Information flow and cooperative control of vehicle formations. IEEE
Trans. Autom. Control 49(9), 1465–1476 (2004)



14 Synthesis of Distributed Control Laws for Multi-agent Systems … 251

7. E. Fridman, U. Shaked, An improved stabilization method for linear time-delay systems. IEEE
Trans. Autom. Control 47(11), 1931–1937 (2002)

8. E. Fridman, U. Shaked, Delay-dependent stability and H inf control: constant and time-varying
delays. Int. J. Control 76(1), 48–60 (2003)

9. E. Fridman, U. Shaked, K. Liu, New conditions for delay-derivative-dependent stability. Auto-
matica 45(11), 2723–2727 (2009)

10. P. Gahinet, A. Nemirovski, A.J. Laub, M. Chilali, LMI Control ToolBox (The MathWorks Inc.,
1995)

11. C. Godsil, G. Royle, Algebraic Graph Theory (Springer, 2001)
12. F. Gouaisbaut, D. Peaucelle, Delay-dependent stability analysis of linear time delay systems,

in IFAC Workshop on Time Delay Systems (TDS) (2006)
13. K. Gu, V.L. Kharitonov, J. Chen, Stability of Time-Delay Systems (Birkhauser, 2003)
14. Y. He, Q. Wang, C. Lin, M. Wu, Delay-range-dependent stability for systems with time-varying

delay. Automatica 43(2), 371–376 (2007)
15. S. Hirche, T. Matiakis, M. Buss, A distributed controller approach for delay-independent sta-

bility of networked control systems. Automatica 45(8), 828–1836 (2009)
16. A. Jadbabaie, J. Lin, A.S. Morse, Coordination of groups of mobile autonomous agents using

nearest neighbour rules, in IEEE Conference on Decision and Control (CDC) (2002)
17. T. Keviczky, F. Borrelli, K. Fregene, D. Godbole, G. Balas, Decentralized receding horizon

control and coordination of autonomous vehicle formations. IEEE Trans. Autom. Control 16(1),
19–33 (2008)

18. Y.S. Kim, M. Mesbahi, On maximizing the second smallest eigenvalue of a state-dependent
graph Laplacian. IEEE Trans. Autom. Control 51(1), 116–120 (2006)

19. C. Langbort, V. Gupta, Minimal interconnection topology in distributed control design. SIAM
J. Control Optim. 48(1), 397–413 (2009)

20. C. Langbort, R.S. Chandra, R. D’Andrea, Distributed control design for systems interconnected
over an arbitrary graph. IEEE Trans. Autom. Control 49(9),1502–1519 (2004)

21. Z. Lin, B. Francis, M. Maggiore, State agreement for continuous time coupled nonlinear sys-
tems. SIAM J. Control Optim. 46(1), 288–307 (2007)

22. Y. Liu, Y. Jia, RobustH∞ consensus control of uncertain multi-agent systems with time-delays.
Int. J. Control Autom. Syst. 9(6), 1086–1094 (2011)

23. P. Massioni, M. Verhagen, Distributed control for identical dynamically coupled systems: A
decomposition approach. IEEE Trans. Autom. Control 54(1), 124–135 (2009)

24. P.P. Menon, C. Edwards, Static output feedback stabilisation and synchronisation of complex
networks with H2 performance. Int. J. Robust Nonlinear Control 20(6), 703–718 (2010)

25. M. Mesbahi, State-dependent graphs, in IEEE Conference on Decision and Control (CDC)
(2003)

26. L. Moreau, Stability of multiagent systems with time dependent communication links. IEEE
Trans. Autom. Control 50(2), 169–182 (2005)

27. Y.S. Moon, P. Park, W.H. Kwon, Y.S. Lee, Delay-dependent robust stabilization of uncertain
state-delayed systems. Int. J. Control 74(14), 1447–1455 (2001)

28. N. Motee, A. Jadbabaie, Approximation method and spatial interpolation in distributed control
systems, in IEEE American Control Conference (ACC) (2009)
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Chapter 15
Topology Preservation for Multi-agent
Networks: Design and Implementation

Irinel-Constantin Morărescu and Mirko Fiacchini

Abstract We consider a network of interconnected systems with discrete-time
dynamics. Each system is called agent and we assume that two agents can interact as
far as their states are close in a sense defined by an algebraic relation. In this work,
we present several implementation strategies answering to different classical prob-
lems in multiagent systems. The primary goal of our methodology is to characterize
the controllers that preserve a given interconnection subgraph that makes possible
the global coordination. The second goal is to choose among these controllers those
that ensure an agreement. This is done by solving a convex optimization problem
associated to the minimization of a well-chosen cost function. Examples concern-
ing full or partial consensus of agents with double-integrator dynamics illustrate the
implementation of the proposed methodology.

15.1 Introduction

The consensus problemhas been extensively studied in the last decade.Depending on
the application, the framework can assume directed or undirected interaction graph,
connections affected or not by delays, discrete or continuous, linear or nonlinear agent
dynamics, fixed or dynamical interaction graph, synchronized or desynchronized

The work of I.-C. Morărescu was partially funded by the ANR project “Computation Aware
Control Systems”, ANR-13-BS03-004-02.

I.-C. Morărescu (B)
Université de Lorraine, CRAN, UMR 7039 and CNRS, CRAN, UMR 7039,
54500 Vandoeuvre-lès-Nancy, France
e-mail: constantin.morarescu@univ-lorraine.fr

M. Fiacchini
Université Grenoble Alpes, GIPSA-lab, F-38000 Grenoble, France
e-mail: mirko.fiacchini@gipsa-lab.fr

M. Fiacchini
CNRS, GIPSA-lab, F-38000 Grenoble, France

© Springer International Publishing Switzerland 2016
A. Seuret et al. (eds.), Delays and Networked Control Systems,
Advances in Delays and Dynamics 6, DOI 10.1007/978-3-319-32372-5_15

253
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interactions [12, 14, 16, 17, 19]. Controlling the network in a decentralized way,
by modeling it as a multiagent system, results in computation and communication
cost reduction [15, 18, 20]. On the other hand, the coordination and performances
of interconnected systems are related to the network topology. Most of existing
works assume the connectivity of the interaction graph in order to guarantee the
coordination behavior. However, some works have been oriented toward networks
in which the global agreement cannot be reached and only local ones are obtained
[15, 21].Others propose controllers that are able tomaintain the network connectivity
in order to ensure the global coordination [6, 8, 9, 22].

Here we briefly recall themain results provided in our previous work [8, 9] andwe
show how they can be implemented. Precisely, we consider a multiagent systemwith
discrete-time dynamics and state-dependent interconnection topology. Two agents
are able to communicate if an algebraic relation between their states is satisfied. The
connected agents are called neighbors. The agents update their state in a decentral-
ized manner by taking into account their neighbors state. A connection is preserved
as far as the algebraic relation is verified. The design of the decentralized controllers
satisfying the algebraic constraint can be done either by minimizing a cost func-
tion [8], or by negotiations through the network at each step [7]. Our approach use
invariance-based techniques (see [1–3] for the use of invariance in control theory) to
characterize the conditions assuring that the algebraic constraint holds. The resulting
topology preservation conditions rewrites as a convex constraint that may be posed
in LMI form [4, 5]. Thus, we not only propose a new tool for decentralized con-
trol but also an easy implementable one. The practical implementation of this set
theory-based control strategy [10, 11] requires a minimal number of interconnec-
tions ensuring the network connectivity. It should be noted that our procedure is quite
flexible and, as we shall see, additional global objectives can be addressed. Precisely,
we focus on the implementation of the topology preservation, presented in [8], to
tackle specific problems concerning multiagent systems. The subsystems compos-
ing the network are mobile agents moving on the plane and whose communication
capability is subject to constraints on their distances. Different coordination tasks, as
flocking, consensus, and predictive control, are considered and solved employing the
LMI conditions for avoiding the connections loss. Numerical illustrative examples
allow us to analyze the results and to compare the different control strategies.

The chapter is organized as follows. Section15.2 contains the main theoretical
results. First, we formulate the decentralized control problemunder analysis. Second,
we derive the LMI conditions for network topology preservation in general settings
as well as in the case of common feedback gains. Control design strategies for full
or partial state consensus of identical systems with double-integrator dynamics are
discussed in Sect. 15.3. In Sect. 15.4, we present some numerical examples illustrat-
ing the control strategies proposed in Sect. 15.3. Some conclusions and remarks on
further works are provided at the end of the chapter.
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15.1.1 Notation

The set of positive integers smaller than or equal to the integer n ∈ N is denoted as
Nn , i.e., Nn = {x ∈ N : 1 ≤ x ≤ n}. Given the finite set A ⊆ Nn , |A | is its cardi-
nality. Given a symmetric matrix P ∈ R

n×n , notation P > 0 (P ≥ 0) means that P
is positive (semi-)definite. By A† we denote the left pseudoinverse of the matrix A.
Given the matrix T ∈ R

n×m and N ∈ N, DN (T ) ∈ R
nN×mN is the block-diagonal

matrix whose N block-diagonal elements are given by T , while D(A, B, . . . , Z) is
the block-diagonal matrix, of adequate dimension, whose block-diagonal elements
are the matrices A, B, . . . , Z . Given a set of N matrices Ak with k ∈ NN , denote by
{Ak}k∈NN the matrix obtained concatenating Ak in column.

15.2 Set Theory Results for Topology Preservation

15.2.1 Problem Formulation

Throughout the chapter, we consider a multiagent systemwith V ≥ 2 interconnected
agents assumed identical:

x+
i = Axi + Bui , (15.1)

where xi ∈ R
n is the state,ui ∈ R

m is the control input of the i-th agent and A ∈ R
n×n ,

B ∈ R
n×m .

In order to pursue collaborative tasks in a decentralized way, the agents exchange
some information. The information available to every agent is supposed to be partial,
as only a portion of the overall system is assumed accessible to every agent. We
suppose that any agent has access to the state of a neighbor only if a constraint on the
distance between them is satisfied. If communication network looses its connectivity
the system may not be able to reach the global objective. Thus, the primary problem
underlying any cooperative task in the multiagent context is the connection topology
preservation. Theoretical results on this topic, presented in [8], are recalled hereafter
and applied in the following sections.

15.2.2 Feedback Design for Topology Preservation

Let us suppose that the initial interconnection topology is given by the graph G =
(V ,E ) where the vertex set is V = NV and the connecting edge set E ⊆ V × V
represents the set of pairs of agents that satisfy a distance-like condition. Precisely,
given the real scalar r > 0, d ∈ N with d ≤ n and T ∈ R

d×n such that T T� is
invertible, the initial edge set is given by
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E = {(i, j) ∈ NV × NV | ‖T (xi (0) − x j (0))‖2 ≤ r}.

The set of edges that must be preserved is denoted by N ⊆ E . We suppose that
every agent i knows the state of the j-th one if and only if (i, j) ∈ N .

Definition 1 For all i ∈ V , we define the set of connected neighbors of the i-th
agent as

Ni = { j ∈ NV : (i, j) ∈ N }.

Given the set of connectionsN , the objective is to design a decentralized control
law ensuring that none of these connections are lost. In other words, the aim is to
design the state-dependent control actions ui (k) independently from u j (k), for all
i, j ∈ NV and k ∈ N, such that every connection in N is maintained.

As usual in multiagent systems, we consider the i-th input to be the sum of terms
proportional to the distances between agent i and its neighbors. That is, denoting
el,m = xl − xm for all l,m ∈ NV , we define

ui =
∑

j∈Ni

Ki, j (xi − x j ) =
∑

j∈Ni

Ki, j ei, j . (15.2)

The design of each ui is reduced to the design of the controller gains Ki, j chosen
such that the link (i, j) is preserved where the dynamics of the i j system results in

e+
i, j = (A + BKi, j + BK j,i )ei, j +

k �= j∑

k∈Ni

BKi,kei,k −
k �=i∑

k∈N j

BK j,ke j,k, (15.3)

for all i, j ∈ NV . It is not difficult to see that, in the centralized case the dynamics
of the error can be imposed by an adequate choice ui , for all i ∈ NV , provided that
the agents dynamics is stabilizable.

The dynamics of the i j system is given by the matrix A + BKi, j + BK j,i if no
perturbations due to the presence of other agents are present. Such perturbations,
which complicate the decentralized control design, can be bounded within a set
depending on the radius r and on the information on the neighbors common to the
i-th and j-th agents.

Consider the sets
Ni, j = Ni ∩ N j ,¯Ni, j = Ni \ (Ni, j ∪ { j}),

¯N j,i = N j \ (Ni, j ∪ {i}),
(15.4)

thenNi, j denotes the common neighbors of the i-th and the j-th agents and ¯Ni, j the
neighbors of the i-th one which are neither j nor one of its neighbors, analogously
for ¯N j,i . We define the cardinalities

N = 2|Ni, j | + 1, N̄ = | ¯Ni, j | + | ¯Ni, j |,
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where the indices are avoided here and in the following definitions to improve the
readability. The dynamics of the i j system, perturbed by the noncommon neigh-
bors, is

e+
i, j =(A + BKi, j + BK j,i )ei, j +

∑

k∈Ni, j

(BKi,kei,k− BK j,ke j,k) + wi, j , (15.5)

with the bounded perturbation described by

wi, j =
∑

k∈ ¯Ni, j

(BKi,kei,k) −
∑

l∈ ¯N j,i

(BK j,l e j,l). (15.6)

The problem addressed in this work can be state as follows:

Problem 1 Design a procedure to find at each step a condition on the decentralized
control gains Ki, j ,with i, j ∈ NV such that the following algebraic relation is satisfied

‖T e+
i, j‖2 < r, ∀(i, j) ∈ N , (15.7)

if the constraints
‖T ei,k‖2 ≤ r, ∀k ∈ ¯Ni, j ,

‖T e j,k‖2 ≤ r, ∀k ∈ ¯N j,i ,
(15.8)

hold.

In order to ease the presentation, we introduce different notations for the controller
gains.

Definition 2 Denote with e∈ R
nN the vector obtained concatenating ei, j with all

ei,k and e j,k where k ∈ Ni, j . Denote with Ǩi, j ∈ R
m×n(N−1) the matrix obtained

concatenating Ki,k and −K j,k where k ∈ Ni, j and with K̂i, j ∈ R
m×nN̄ the vector

obtained concatenating all Ki,k where k ∈ ¯Ni, j and −K j,k where k ∈ ¯N j,i . We also
define

Δ = T [A + BǨi, j , BǨi, j ] DN (T )† ∈ R
d×dN ,

Γ = T B K̂i, j DN̄ (T )† ∈ R
d×d N̄ ,

Z = DN (T ) e ∈ R
dN ,

(15.9)

where Ǩi, j = Ki, j + K j,i .

We recall here an important contribution presented in [8], namely the sufficient
condition for the constraint (15.7) to hold.
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Theorem 1 Problem 1 admits solutions if there exists Λ = D(λ1 Id , ..., λN̄ Id) with
λk ≥ 0, for all k ∈ NN̄ such that

⎡

⎢⎣
r2 − r2

∑
k∈NN̄

λk 0 Z�Δ�

0 Λ Γ �
Δ Z Γ Id

⎤

⎥⎦ > 0. (15.10)

Furthermore, any solution (Δ, Γ ) of the previous LMI defines admissible con-
troller gains for the Problem 1.

Proof First notice that every solution of (15.10) satisfies also

∑

k∈NN̄

λk < 1, Γ �Γ − Λ < 0, (15.11)

as the principalminors of a positive definitematrix are positive definite. Since (15.11)
is a necessary condition for Problem1 to admit a solution, there is no loss of generality
in assuming it satisfied. Condition (15.7) is equivalent to

[Z� Z̄�]
[

Δ�Δ Δ�Γ

Γ �Δ Γ �Γ

] [
Z
Z̄

]
< r2. (15.12)

This condition must be satisfied for every Z̄ such that

Z̄�Dk Z̄ ≤ r2, ∀k ∈ NN̄ , (15.13)

with
Dk = diag(0d , . . . , 0d , Id , 0d , . . . , 0d) ∈ R

d N̄×d N̄ ,

holds. Applying the S-procedure, a sufficient condition for (15.7) to hold for every
Z̄ ∈ R

d N̄ satisfying (15.13) is the existence of λk ≥ 0, for all k ∈ NN̄ , such that

Z�Δ�Δ Z + 2Z̄�Γ �Δ Z + Z̄�[Γ �Γ − Λ]Z̄ < r2 − r2δ, (15.14)

for every Z̄ ∈ R
d N̄ , with δ = ∑

k∈NN̄
λk . From (15.11) and Z being known, the left-

hand side of (15.14) is a concave function in Z̄ whose maximum is attained at

Z̄ = −(Γ �Γ − Λ)−1Γ �Δ Z . (15.15)

Hence condition (15.14) holds for every Z̄ ∈ R
d N̄ if and only if it is satisfied for the

maximum of the function at left-hand side, that is if and only if

Z�Δ�Δ Z − Z�Δ�Γ (Γ �Γ − Λ)−1Γ �Δ Z < r2 − r2δ, (15.16)
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which is given by (15.14) at (15.15). Hence every Λ, Δ and Γ satisfying conditions
(15.11) and (15.16) ensure the satisfaction of ‖T e+

i, j‖2 < r for all Z̄ such that (15.13)
holds. The condition (15.16) is equivalent to

[
Z�Δ�Δ Z − r2 + r2δ Z�Δ�Γ

Γ �Δ Z Γ �Γ − Λ

]
< 0

⇔
[
Z�Δ�Δ Z Z�Δ�Γ

Γ �Δ Z Γ �Γ

]
<

[
r2 − r2δ 0

0 Λ

]

⇔
[
Z�Δ�
Γ �

] [
Δ Z Γ

]
<

[
r2 − r2δ 0

0 Λ

]

⇔
⎡

⎣
r2 − r2δ 0 Z�Δ�

0 Λ Γ �
Δ Z Γ Id

⎤

⎦ > 0.

Thus (15.10) is equivalent to (15.14), sufficient condition for (15.7) to hold.

The quantity δ = ∑
k∈NN̄

λk can be geometrically interpreted as a bound on the
perturbation generated in the i j dynamics by the noncommon neighbors. Precisely,
the effect of the noncommon neighbors can be modeled as a perturbation on the
i j system bounded by an ellipsoid determined by T�T and of radius

√
δr . There-

fore, the condition δ < 1, implicitly imposed by (15.10), is necessary to ensure the
preservation of the connection (i, j).

15.2.3 Network Preservation with Common Feedback Gains

The condition presented in the previous subsection ensures that the algebraic con-
straint related to the i j system is satisfied at the successive time instant. No insurance
on its satisfaction along the evolution of the overall system can be guaranteed, unless
proper choices of Ki, j are done. In case the feedback gains are assumed to be the
same for every agent and every i j system, a sufficient condition for guaranteeing the
network topology preservation at every future time instant can be posed.

Assumption 2 Given the system (15.1)with control input (15.2), assume that Ki, j =
K̄ for all (i, j) ∈ N .

The objective is to characterize the set of common feedback gains such that,
if applied to control the multiagent system, they ensure that the value of ‖T ei, j‖2
does not increase for all (i, j) ∈ N . In fact, this would clearly implies that if the
connection condition is satisfied by the initial condition, i.e., ‖T ei, j (0)‖2 ≤ r for all
(i, j) ∈ N , it holds also at every successive instant, then the network topology is
preserved. Given the sets as in (15.4), define

NM = max
(i, j)∈N

{|Ni | + |N j | − 2}.
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Then, roughly speaking, NM ∈ N is the maximum over (i, j) ∈ N of the sum of
neighbors of the agents i-th and j-th, apart from the agents themselves.

Proposition 1 Let Assumption 2 hold. If there exists λ ∈ [0, 1] such that

[
λT�T (A + 2BK̄ )�T�

T (A + 2BK̄ ) λId

]
≥ 0,

[
(1 − λ)T�T NM K̄�B�T�
NMT BK̄ (1 − λ)Id

]
≥ 0,

(15.17)

then the systems given by (15.5) and (15.6) are such that ‖T e+
i, j‖2 ≤ r for all (i, j) ∈

N if el,k ∈ R
n satisfies ‖T el,k‖2 ≤ r for all (l, k) ∈ N .

Proof Define the set BT = {e ∈ R
n : ‖T e‖2 ≤ r}, then e ∈ BT if and only if

e�T�T e ≤ r2. The first condition in (15.17) is equivalent to (A + 2BK̄ )�T�T (A +
2BK̄ ) ≤ λ2T�T , which implies that (A + 2BK̄ )BT ⊆ λBT . From Assumption 2
one have that Ki, j = K j,i = K̄ , which means that A + 2BK̄ is the dynamics of
any i, j system in the absence of the perturbation of the neighbors. Then the
set BT is mapped in λBT if no perturbation is present, that is (A + BKi, j +
BK j,i )ei, j ∈ λBT , for all ei, j ∈ BT . Analogously, the second condition in (15.17) is
equivalent to N 2

M K̄�B�T�T BK̄ ≤ (1 − λ)2T�T , which leads to
∑

k∈NNM
B K̄BT =

NM BK̄BT ⊆ (1 − λ)BT . This means that if ei,k ∈ BT for all k ∈ Ni \ { j} and
ek, j ∈ BT for all k ∈ N j \ {i}, as implicitly assumed, then

∑

k∈Ni, j

(BK̄ei,k − BK̄e j,k) +
∑

k∈ ¯Ni, j

(BK̄ei,k) −
∑

l∈ ¯N j,i

(BK̄e j,l)∈(1 − λ)BT ,

for all (i, j) ∈ N . From properties of the Minkowski set addition, we have e+
i, j ∈

λBT + (1 − λ)BT = BT , if el,k ∈ BT for all (l, k) ∈ N , which ends the proof.

Corollary 1 Let Assumption 2 hold. If there exist λ ∈ [0, 1] and λ̄ > 0 such that

[
(λ − λ̄)T�T (A + 2BK̄ )�T�
T (A + 2BK̄ ) (λ − λ̄)Id

]
≥ 0,

[
(1 − λ)T�T NM K̄�B�T�
NMT BK̄ (1 − λ)Id

]
≥ 0,

then the systems given by (15.5) and (15.6) are such that

‖T e+
i, j‖2 ≤ (1 − λ̄)‖T ei, j‖2,

for all (i, j) ∈ N if el,k ∈ R
n satisfies ‖T el,k‖2 ≤ r for all (l, k) ∈ N .
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15.3 Applications to Decentralized Control of Multiagent
Systems

In this section we illustrate the application of our results, published in [8, 9] and
recalled above, for controlling the multiagent system presented in the first part of
Sect. 15.2. Different strategies (based on optimal and predictive control) to achieve
the collaborative objectives are presented hereafter and numerically implemented.

Let us consider the double-integrator dynamics on the plane, that is, (15.1) with
xi =[pxi (k), vxi (k), py

i (k), v
y
i (k)]�, the input ui = [ux

i , u
y
i ]� and

A =
[
Ā 0
0 Ā

]
, B =

[
B̄ 0
0 B̄

]
, where Ā =

[
1 t
0 1

]
, B̄ =

[
0
1

]
.

We denote py
i, j = pxi − pxj , v

y
i, j = vxi − vxj , p

y
i, j = py

i − py
j , v

y
i, j = vxi − vxj and

ei, j = [py
i, j , vyi, j , py

i, j , vyi, j ]� = x�
i − x�

j , (15.18)

and ui, j = [ux
i − ux

j , u
y
i − uy

j ]�. The control inputs are given by (15.2) and Defini-
tion 2 with feedback gains

Ǩi, j =
[
k px

i, j k
vx
i, j 0 0

0 0 k py

i, j k
vy
i, j

]
, (15.19)

for all (i, j) ∈ N . Once obtained a value for Ǩi, j , we define the nominal selection
Ki, j = K j,i = 0.5Ǩi, j for all (i, j) ∈ N .

Moreover, the following constraint on the norm of Ǩi, j is imposed

Ǩ�
i, j Ǩi, j ≤ In, (15.20)

to limit the effect of the control of the i j nominal system on the neighbors. Recall,
in fact, that the perturbation on the neighbors of the agents i and j depends on their
states and on the gains Ki, j and K j,i .

15.3.1 Topology Preservation Constraint

We suppose that the distance between two agents must be smaller than or equal to r
to allow them to communicate. Thus the topology preservation problem consists of
upper-bounding by r the euclidean distance between the connected neighbors. The
constraint on the state of the i j system to preserve is

py
i, j (k)

2 + py
i, j (k)

2 ≤ r2. (15.21)
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Notice that the effect of the inputs ux
i and u

y
i at time k has no influence on pxi and

py
i at time k + 1. Thus, any algebraic condition involving the positions pxi , py

i of the
systems at k + 1 would not depend on the control action ux

i , u
y
i at time k. From the

computational point of view, every constraint concerning only the agents positions,
would lead to LMI conditions independent on the variable Ǩi, j . Then the results
provided in Theorem 1 are not applicable directly in this case for the state at time k +
1. On the other hand, the controls ux

i (k), u
y
i (k) affect the position (and the velocity)

at time k + 2 and a condition on the feedback gain Ǩi, j to ensure the preservation
of the (i, j) connection at time k + 2 can be posed. The distance constraint can
be imposed on the states at k + 2, as nothing can be done at time k in order to
prevent its violation at time k + 1. Then a constraint on ei, j (k) can be determined
characterizing the region of the state space such that py

i, j (k)
2 + py

i, j (k)
2 ≤ r2 and

py
i, j (k + 1)2 + py

i, j (k + 1)2 ≤ r2 in terms of matrix T . Since the former constraint
does not involve the input, only py

i, j (k + 1)2 + py
i, j (k + 1)2 ≤ r2 might be taken into

account for the control design.

Proposition 2 The condition (15.21) holds at time k + 2 if and only if we have that
‖T ei, j (k + 1)‖2 ≤ r with

T =
[
1 t 0 0
0 0 1 t

]
. (15.22)

Proof The region of the space of ei j (k) such that the topology constraint (15.21)
is satisfied at k + 1 is given by pxi j (k + 1)2 + py

i j (k + 1)2 ≤ r2, which is equivalent
to ‖T ei j (k)‖2 ≤ r for T as in (15.22). Hence imposing that the system error state
belongs to such a region at k + 1 implies assuring that the distance between the
agents i-th and j-th is smaller than or equal to r at k + 2, preserving the topology at
k + 2. Then pxi j (k + 2)2 + py

i j (k + 2)2 ≤ r2 if and only if

‖T ei j (k + 1)‖2 = ‖T (Aei j (k) + Bui j (k))‖2 ≤ r,

with T as in (15.22).

Proposition 2, then, implies that the topology preservation constraint for time k + 2
can be expressed in terms of ei, j (k) and the input ui, j (k). The results presented in
Theorem 1, with T as in (15.22), allow to characterize the sets of feedback gains
ensuring the satisfaction of the distance constraint at k + 2, for every pair of con-
nected neighbors i and j . Such set would depend on the current state ei, j (k) and on
the gains designed to compensate the errors and enforce the topology preservation.

15.3.2 Relevant Multiagents Applications

Among the local feedback gains which guarantee the connection preservation, dif-
ferent selection criteria can be applied, depending on the collaborative task to be
achieved. Hereafter three popular criteria are illustrated and analyzed.
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15.3.2.1 Full State Consensus

The first criterion is to select the feedback gain, among those satisfying (15.10), to
achieve the full state agreement. In other words, the objective in this case is to both
steer all the agents at the same point and align all the velocities without loosing any
connection. One possibility is to compute at any sampling instant the matrix Ǩi, j

minimizing a sum of nominal values of the position distance at k + 2 and of the
speed difference at k + 1. By nominal values, we mean the values of positions and
speeds in absence of the perturbation on the i j system due to the other agents. Then,
given the positive weighting parameters qp, qv ∈ R, the cost to minimize is

Qc(ei, j (k), Ǩi, j ) = qp(p
y
i, j (k + 2)2 + py

i, j (k + 2)2)
+ qv(v

y
i, j (k + 1)2 + vyi, j (k + 1)2).

(15.23)

Proposition 3 Any optimal solution of the convex optimization problem

min
Δ, Γ,Λ, Ǩi, j ,M

ei, j (k)�M�Mei, j (k)

s.t. (15.9), (15.10), (15.19),[
In Ǩ�

i, j

Ǩi, j Im

]
≥ 0,

(15.24)

with

M =

⎡

⎢⎢⎣

qp qpt 0 0
0 qv 0 0
0 0 qp qpt
0 0 0 qv

⎤

⎥⎥⎦ (A + BǨi, j ), (15.25)

and T as in (15.22), minimizes the cost (15.23) subject to the norm gain constraint
(15.20) and the distance constraints (15.21) at k + 2.

15.3.2.2 Partial State Consensus: Flocking

An alternative objective, often considered in the framework of decentralized control,
is partial state consensus. That is, to steer a part of the state ei, j to zero, for all (i, j) ∈
N . To preserve the connectivity of G = (V ,N ) while speed differences converge
to zero, the cost tominimize is ameasure of the difference between neighbors speeds,
for instance

Q f (ei, j (k), Ǩi, j ) = vyi, j (k + 1)2 + vyi, j (k + 1)2. (15.26)

This is achieved by solving a convex optimization problem analogous to (15.24),
as stated in the proposition below. The proof is avoided since similar to the one of
Proposition 3.
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Proposition 4 Any optimal solution of the convex optimization problem (15.24) with

M =
[
0 1 0 0
0 0 0 1

]
(A + BǨi, j ), (15.27)

and T as in (15.22), minimizes the cost (15.26) subject to the norm gain constraint
(15.20) and the distance constraints (15.21) at k + 2.

Clearly, changing opportunely the matrix M would permit to regulate different
part of the state of the i j system and also any linear combination of the state.

15.3.2.3 Predictive Control

Finally, we present another interesting optimization criterion. One of the most popu-
lar control technique suitable for dealing with control in presence of hard constraints
is the predictive control. These control strategies exploit the prediction of the system
evolution and the receding horizon strategy to react in advance in order to prevent
the constraint violations and to avoid the potentially dangerous regions of the state
space. Moreover, the control input that would generate the optimal trajectory, among
the admissible ones, is usually computed and applied. In general, the longer is the pre-
diction horizon, the higher is the capability of prevent unsafe regions and constraint
violations. Based on this idea, we propose to optimize a measure of the future state
position, in order to react in advance and prevent the states to approach the limits of
the distance constraints. In particular, weminimize ameasure of the nominal distance
between the positions of the i-th and j-th agents at time k + 3 in function of the input
gain at time k, that is, (py

i, j (k + 2) + tvyi, j (k + 1))2 + (py
i, j (k + 2) + tvyi, j (k + 1))2.

The control horizon can be extended to values higher than 3, but the predicted state
ei, j (k + N )would depend on the future inputs and the cost would result in a noncon-
vex function of Ǩi, j . A simplifying hypothesis can be posed to obtain a suboptimal
control strategy but with greater prediction capability. Let us denote the horizon
Np ∈ N and suppose that only the nominal control action ui, j (k) = Ǩi, j ei, j (k) is
applied, i.e., ui, j (k + p) = 0 for p ∈ NNp . The minimization of the nominal posi-
tion at k + Np, i.e.,

Qp(ei, j (k), Ǩi, j ) = py
i, j (k + Np)

2 + py
i, j (k + Np)

2, (15.28)

leads to a suboptimal control with high predictive power.

Proposition 5 Any optimal solution of the convex optimization problem (15.24) with

M = T + (Np − 1)t

([
0 1 0 0
0 0 0 1

]
+ Ǩi, j

)
, (15.29)

and T as in (15.22), minimizes the cost (15.28) subject to the norm gain constraint
(15.20) and the distance constraints (15.21) at k + 2.
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The benefits of the prediction-based strategy will be highlighted in the numerical
examples section.

15.4 Numerical Examples

Consider the six interconnected agents with the initial conditions given in [13] and
connected by the minimal robust graph computed in the same work. That is, N =
{(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)}, r = 3.2 and initial conditions:

x1(0) = [−4 − v0 3 0]� , x6(0) = [4 v0 3 0]� ,

x2(0) = [−2 − v0 2 0]� , x5(0) = [2 v0 2 0]� ,

x3(0) = [−1 − v0 0 0]� , x4(0) = [1 v0 0 0]� ,

where v0 is used as a parameter to analyze the maximal initial speed that may
be dealt with by different control strategy. It is noteworthy that, as shown in [13],
for the classical consensus algorithm the preservation of the minimal robust graph
is guaranteed for a critical speed value vc � 0.23. Nevertheless, it is numerically
shown that the sufficient condition is conservative since for v0 = 1.5vc (generating
approximately a 4 times higher global velocity disagreement) the robust graph is not
broken.We also note that the classical consensus algorithm is not able to preserve the
connectivitywhen the global disagreement is 5 times superior to the one guaranteeing
the consensus (i.e., v0 > 2.1vc).

In the sequel, we show that our design allows to increase considerably the initial
speed value (and consequently the initial global disagreement) avoiding the loss
of connections. Let us first give the initial error vectors between the states of the
neighbors:

e1,2(0) = [−2 0 1 0]�, e5,6(0) = [−2 0 − 1 0]�,
e2,3(0) = [−1 0 2 0]�, e4,5(0) = [−1 0 − 2 0]�,

e3,4(0) = [−2 − 2v0 0 0]�.

15.4.1 Flocking

The control problem formulated in Sect. 15.3 has admissible solutions for v0 = 19vc
and the connection between the third and the fourth agent is lost for v0 = 20vc
as shown in Fig. 15.2. It is worth noting that the control acts like springs between
agents’ velocities (compare the bottom of Figs. 15.1, 15.2 and 15.3). First, the control
cancels the speed difference between neighbors with opposite velocities creating a
speed disagreement in both symmetric branches of the graph. Next, it cancels the
disagreement between 2-nd and the 3-rd agent and between the 4-th and 5-th one,
mimicking a gossiping procedure where the choice of active communication link
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Fig. 15.2 Flocking: errors of the 23 and the 34 systems
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Fig. 15.3 Flocking: errors of the 45 and the 56 systems

is given by the error between neighbors speeds. Doing so, either the flocking is
reached before the connectivity is lost, or the graph splits into two groups that will
independently agree to two different velocity values.
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15.4.2 Full State Consensus

The control problem formulated in Sect. 15.3 with qx = 10, qv = 1 has admissible
solutions for v0 = 23vc as shown in Fig. 15.4.

15.4.3 Predictive Control Strategies

The control problem formulated in Sect. 15.3 with Np = 3 works for v0 = 21vc, but
the trajectories are far from ideal. The behaviour is largely improved with Np = 21,
see Fig. 15.5 representing the trajectories and the time evolution of the 34 dynamics
for v0 = 28vc. Notice how the position error of the critical system, the 34, approaches
the bound avoiding the constraint violation, also for an initial speedmuch higher than
those used for the other approaches, i.e., v0 = 28vc. Furthermore, the evolutions
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Fig. 15.4 Consensus: trajectories and errors of the 34 system
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Fig. 15.5 Predictive control: trajectories and errors of the 34 system
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and trajectories present a much smoother and regular behavior. All these desirable
properties are due to the predictive capability of the approach which permits the
control to react to possible violations and to prevent undesired situations in advance.

15.5 Conclusion and Further Works

This chapter provides an LMI-based methodology to design the controllers that
preserve a given network topology in multiagent applications. Precisely, we suppose
that the agents have limited communication capability and they have to stay in a given
range in order to preserve their neighbors.We show that each agent can preserve all its
neighbors by applying a controller obtained by solving a specific LMI. On the other
hand, different convex optimization problems have been posed in order to pursue
several classical objectives in the multiagent context, as consensus, flocking, and
predictive control. The numerical simulations show the effectiveness of the method
with respect to other existing techniques.

We note that the main applications provided in the chapter concern fleets of
autonomous vehicles. Thus, the size of this associated network does not represent
and obstacle for the numerical treatments by LMIs. Moreover, we can choose the
network to be preserved as a very sparse one. Consequently, the number of low order
LMIs to be solved is of the same order as the network size.

References

1. G. Basile, G. Marro, Controlled and Conditioned Invariants in Linear system Theory (Prentice
Hall, 1992)

2. D.P. Bertsekas, Infinite-time reachability of state-space regions by using feedback control.
IEEE Trans. Autom. Control 17(5), 604–613 (1972)

3. F. Blanchini, S. Miani, Set-Theoretic Methods in Control (Birkhäuser, 2008)
4. S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan, Linear Matrix Inequalities in System and

Control Theory (SIAM, 1994)
5. S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press, 2004)
6. F. Bullo, J. Cortés, S. Martinez, Distributed Control of Robotic Networks, A Mathematical

Approach to Motion Coordination Algorithms (Princeton University Press, 2009)
7. G. Ferrari-Trecate, L.Galbusera,M.Marciandi, R. Scattolini,Model predictive control schemes

for consensus inmulti-agent systemswith single- and double-integrator dynamics. IEEETrans.
Autom. Control 54(11), 2560–2572 (2009)
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