
Develop
Microsoft
HoloLens
Apps Now

—
Allen G. Taylor

www.allitebooks.com

http://www.allitebooks.org

 Develop Microsoft
HoloLens Apps Now

 Allen G. Taylor

www.allitebooks.com

http://www.allitebooks.org

Develop Microsoft HoloLens Apps Now

Allen G. Taylor
Oregon City, Oregon
USA

ISBN-13 (pbk): 978-1-4842-2201-0 ISBN-13 (electronic): 978-1-4842-2202-7
DOI 10.1007/978-1-4842-2202-7

Library of Congress Control Number: 2016957156

Copyright © 2016 by Allen G. Taylor

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction
on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Acquisitions Editor: Todd Green
Technical Reviewer: Reid Blomquist
Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black, Louise Corrigan,

Jonathan Gennick, Todd Green, Robert Hutchinson, Celestin Suresh John, Nikhil Karkal,
James Markham, Susan McDermott, Matthew Moodie, Natalie Pao, Gwenan Spearing

Coordinating Editor: Nancy Chen
Copy Editor: April Rondeau
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Image: Courtesy of Freepik

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springer.com. Apress Media, LLC is a California LLC and the sole
member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special Bulk
Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text are available to readers at
www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/. Readers can also access source code at SpringerLink in the Supplementary
Material section for each chapter.

Printed on acid-free paper

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
www.springer.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/
http://www.allitebooks.org

 This book is dedicated to the artists of the world.

 Pursue your art with passion.

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Author ..xix

About the Technical Reviewer ..xxi

Acknowledgments ..xxiii

Introduction ...xxv

 ■Part I: The Windows 10 Development Environment and HoloLens 1

 ■Chapter 1: What Is the Microsoft HoloLens? ... 3

 ■Chapter 2: The Windows 10 Platform .. 9

 ■Chapter 3: The Universal Windows Platform (UWP) .. 13

 ■Chapter 4: The Development Edition ... 17

 ■Chapter 5: Getting Started with HoloLens Development 19

 ■Part II: Building Apps .. 47

 ■Chapter 6: Choosing a Project to Tackle .. 49

 ■Chapter 7: Forming Project Teams .. 55

 ■Part III: Developing with the Unity Framework 59

 ■Chapter 8: Create a Hologram with Unity and Visual Studio 61

 ■Chapter 9: Developing with Unity and Visual Studio ... 75

 ■Chapter 10: Using C# with Visual Studio and Unity ... 91

 ■Chapter 11: Building the Origami Sample Application 101

 ■Chapter 12: Building the Holograms 240 Shared Application 125

www.allitebooks.com

http://www.allitebooks.org

■ CONTENTS AT A GLANCE

vi

 ■Part IV: Deep Dive into HoloLens .. 151

 ■Chapter 13: HoloLens Hardware .. 153

 ■Chapter 14: Creating Holographic Objects .. 161

 ■Chapter 15: Manipulating Holographic Objects ... 169

 ■Part V: Creating Mixed-Reality Apps .. 183

 ■Chapter 16: Creating a Holographic Teaching Tool .. 185

 ■Chapter 17: Creating Your App Using HoloToolkit .. 195

 ■Chapter 18: Testing Your App .. 221

 ■Part VI: Going Beyond App Development .. 183

 ■Chapter 19: Becoming a HoloLens Pro .. 229

 ■Chapter 20: Where Is This Technology Taking Us? .. 235

 ■Appendix A: Windows Dev Center Resources .. 239

 ■Appendix B: Other Resources .. 245

Index ... 247

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

About the Author ..xix

About the Technical Reviewer ..xxi

Acknowledgments ..xxiii

Introduction ...xxv

 ■Part I: The Windows 10 Development Environment and HoloLens 1

 ■Chapter 1: What Is the Microsoft HoloLens? ... 3

Virtual Reality, Augmented Reality, and Mixed Reality .. 3

The HoloLens Headset .. 4

The headband ... 5

Speakers and spatial sound ... 5

Controls .. 5

The processors ... 5

The Inertial Measurement Unit (IMU) .. 5

The cameras ... 6

The microphone .. 6

Other input devices... 6

The lenses .. 6

Sensor Fusion ... 6

How HoloLens Differs from Virtual Reality and Ordinary Augmented Reality 6

Summary .. 7

 ■Chapter 2: The Windows 10 Platform .. 9

The Windows 10 User Interface.. 9

Differences between Windows 7 and Windows 10 .. 11

www.allitebooks.com

http://www.allitebooks.org

■ CONTENTS

viii

Differences between Windows 8 and Windows 10 .. 11

New Capabilities of Windows 10 .. 11

Summary .. 11

 ■Chapter 3: The Universal Windows Platform (UWP) .. 13

Device Families .. 13

The Universal Device Family .. 14

Developing for a Specifi c Device Family .. 14

Summary .. 14

 ■Chapter 4: The Development Edition ... 17

Development System Requirements .. 17

The Development Edition ... 17

Required Tools .. 18

Summary .. 18

 ■Chapter 5: Getting Started with HoloLens Development 19

Confi guring Your Windows 10 Computer for Development ... 19

Confi rm that your computer BIOS supports HoloLens development .. 20

Install Hyper-V support ... 20

Enable Developer mode on your development machine .. 20

Install Visual Studio 2015 Community Edition, Update 3 .. 21

Install the HoloLens Emulator ... 21

Install Unity ... 22

The Holographic Academy .. 22

Holograms 100: Getting Started with Unity .. 22

Holograms 101e: Introduction with Emulator ... 22

Holograms 101: Introduction with HoloLens Device ... 23

Holograms 210: Gaze .. 23

Holograms 211: Gesture ... 24

Holograms 212: Voice ... 24

www.allitebooks.com

http://www.allitebooks.org

■ CONTENTS

ix

Holograms 220: Spatial Sound ... 24

Holograms 230: Spatial Mapping .. 25

Holograms 240: Sharing Holograms ... 25

Development with Unity ... 25

The Windows Device Portal .. 25

Setting up the HoloLens ... 26

Connecting the HoloLens to the development machine ... 27

Identifying yourself with a username and password .. 29

Creating a security certifi cate .. 29

Device Portal features .. 33

Device Portal REST APIs ... 46

Summary .. 46

 ■Part II: Building Apps .. 47

 ■Chapter 6: Choosing a Project to Tackle .. 49

It Isn’t All About Games .. 49

The First Applications: Industrial, Commercial, and Educational 49

Industrial applications .. 50

Commercial applications .. 51

Educational applications... 52

Tearing Down and Reassembling an Automatic Transmission 53

Summary .. 54

 ■Chapter 7: Forming Project Teams .. 55

The Project Leader ... 55

The Design Team .. 55

The Computer Graphics Team .. 56

The Computer Vision Team ... 56

The Audio Team .. 56

The QA Team .. 56

www.allitebooks.com

http://www.allitebooks.org

■ CONTENTS

x

Parallel Development Paths ... 56

Intergroup Communication ... 57

Summary .. 57

 ■Part III: Developing with the Unity Framework 59

 ■Chapter 8: Create a Hologram with Unity and Visual Studio 61

Development System Requirements .. 61

Develop Apps without Hardcore Programming Skills ... 61

Installing Unity and Visual Studio ... 62

Quick Tour of the Unity Framework .. 62

Your First Hologram .. 64

Make sure you have the right equipment, confi gured in the right way .. 64

Create a new project in Unity ... 64

Place the camera .. 65

Create a hologram .. 67

Export Your Project to Visual Studio ... 67

Build the Project in Visual Studio ... 72

Deploy Your Project to the HoloLens .. 74

Summary .. 74

 ■Chapter 9: Developing with Unity and Visual Studio ... 75

Combining Scripts from Visual Studio with Assets in Unity Project Explorer 75

Giving Objects Behaviors Using Scripts ... 75

Sensing User Actions with Scripts ... 76

Unity/Visual Studio Integration ... 76

Unity’s MonoBehaviour scripting wizard .. 76

The Quick MonoBehaviour scripting wizard ... 76

Debugging Holographic Projects .. 77

Debugging in Unity ... 77

Debugging in Visual Studio ... 77

www.allitebooks.com

http://www.allitebooks.org

■ CONTENTS

xi

Visual Studio’s Error List .. 79

Getting Support from the Windows Dev Center .. 80

Get the tools ... 80

Get started .. 80

Academy ... 80

Documentation ... 80

Community ... 90

Support ... 90

Summary .. 90

 ■Chapter 10: Using C# with Visual Studio and Unity ... 91

The C# Language .. 91

C# Scripts ... 91

Adding Behaviors to Unity Components with C# Scripts .. 92

Add a script component using Unity’s Inspector .. 92

Visual Studio will launch, but MonoDevelop may launch too ... 96

Skeleton of a script fi le ... 97

Controlling GameObjects using components .. 97

Event functions ... 99

Unity scripting resources .. 100

Summary .. 100

 ■Chapter 11: Building the Origami Sample Application 101

Getting Started ... 101

Install the tools you will need ... 102

Download the Origami project fi les .. 102

Setting the Stage .. 102

Opening the Origami project in Unity .. 102

Setting up the main camera ... 103

Creating a scene ... 104

Exporting the project to Visual Studio ... 106

Deploying the project to the HoloLens Emulator .. 108

■ CONTENTS

xii

Adding Gaze Functionality .. 110

Adding a script to the project ... 110

Rebuild and reload .. 113

Redeploy to the Emulator ... 113

Adding Gesture Functionality ... 114

Create a script to manage gaze and gesture .. 114

Create a script to manage the Origami spheres ... 116

Enabling Voice Input ... 117

Export, build, and redeploy ... 119

Giving Holograms Spatial Sound .. 119

Establishing Context with Spatial Mapping .. 122

Move the OrigamiCollection to a new location ... 122

Export, build, and deploy .. 124

Shifting from the Emulator to the HoloLens Device ... 124

Summary .. 124

 ■Chapter 12: Building the Holograms 240 Shared Application 125

Getting Started ... 125

Install the tools you will need ... 126

Download the Sharing Holograms project fi les .. 126

Building the App ... 126

Opening the Shared Holograms project in Unity ... 126

Populate the Hierarchy panel with assets .. 127

Export the project to Visual Studio ... 128

Deploying the project to the HoloLens Emulator .. 129

Deploying the project to the HoloLens device .. 130

Interacting with the Hologram .. 130

Adding gaze functionality ... 130

Adding gesture functionality ... 131

Establishing Shared Coordinates ... 131

■ CONTENTS

xiii

Seeing Others as Avatars ... 134

Anchoring a Hologram to a Position in Space .. 140

Turning on Physics ... 148

Unlock a New World through Collaboration .. 148

Summary .. 149

 ■Part IV: Deep Dive into HoloLens .. 151

 ■Chapter 13: HoloLens Hardware .. 153

The Processors ... 154

The CPU .. 154

The GPU .. 154

The HPU .. 154

Memory Limits ... 155

The Head Band ... 155

The Visor ... 155

Environment Sensors and Cameras ... 156

The Light Engines and Lenses .. 157

Sound Generation ... 157

The Microphones .. 159

Battery Capacity and Recharging ... 159

Bluetooth .. 159

Wi-Fi ... 159

Cortana ... 159

Summary .. 159

 ■Chapter 14: Creating Holographic Objects .. 161

The Interaction Model (Gaze, Gesture, and Voice) .. 161

Spatial Sound ... 162

Spatial Mapping and Location Awareness ... 162

■ CONTENTS

xiv

Designing a Mixed-Reality App .. 162
Design ... 163

Placement ... 163

Lighting ... 163

Size ... 164

Animation ... 164

Connecting the Holographic World with the Real ... 164
Coordinate systems .. 164

Spatial anchors ... 165

Attached frame of reference ... 165

Head-locked content .. 165

Types of Holographic Objects ... 165
Table top ... 165

Surface-locked ... 166

Floating ... 166

Companion .. 166

Immersive ... 166

Sharing and Collaboration .. 167

Importing an Object Defi nition ... 167

Creating an Object with HoloStudio ... 167

Summary .. 167

 ■Chapter 15: Manipulating Holographic Objects ... 169

Creating a Holographic Object .. 169

Establishing the Location of a Holographic Object ... 169

Programming the Behavior of a Holographic Object .. 170
Moving a holographic object around in space .. 171

Creating a cursor that follows the user’s gaze ... 179

Changing a cursor when it hits a hologram .. 181

Activating a targeted hologram with an air tap .. 181

Activating a targeted hologram with a voice command ... 181

Summary .. 182

■ CONTENTS

xv

 ■Part V: Creating Mixed-Reality Apps .. 183

 ■Chapter 16: Creating a Holographic Teaching Tool .. 185

The Limitations of Traditional Education .. 185

How Education Is Changing .. 185

Seeing the Unseen: Inside the Human Body ... 186

Mixed reality home study ... 187

Seeing the Unseen: Inside an Automotive Automatic Transmission 189

How does it all fi t together? ... 189

Hands-on experience will always be needed, but 190

Instructor-driven Animation .. 193

Making the Student an Active Participant .. 193

Creating a Compelling Educational App ... 193

Summary .. 193

 ■Chapter 17: Creating Your App Using HoloToolkit .. 195

What is HoloToolkit? ... 195

Toolkit Contents .. 196

Input Assets .. 196

Materials ... 196

Models .. 196

Prefabs ... 196

Scripts .. 197

Shaders .. 198

Tests ... 198

Sharing ... 199

Editor .. 199

Plugins .. 199

Prefabs ... 199

Scripts .. 200

Tests ... 200

■ CONTENTS

xvi

Spatial Mapping ... 200

Spatial Perception .. 201

Editor .. 201

Materials ... 201

Plugins .. 201

Prefabs ... 201

Scripts .. 202

Shaders .. 204

Tests ... 204

Spatial Sound Scripts ... 205

Editor Scripts .. 205

Other Scripts ... 205

Utilities ... 206

Editor .. 206

Prefabs ... 207

Scripts .. 207

Shaders .. 208

Tests ... 209

Designing a Simple App ... 209

Setting Up Unity for Holographic Development .. 209

Downloading and Installing the HoloToolkit ... 210

Mapping Your Environment .. 210

Build and Deploy Project .. 211

Responding to Inputs ... 212

Responding to Voice Commands .. 216

Summary .. 219

 ■Chapter 18: Testing Your App .. 221

Functionality ... 221

Performance ... 222

■ CONTENTS

xvii

Ease of Use ... 222

Reliability .. 223

Safety ... 223

Security .. 223

Unusual User Behavior ... 225

Unusual User Environments ... 225

Room size and shape ... 225

Lighting conditions ... 225

Movement conditions ... 225

Hologram Shape and the User’s Field of View ... 226

Heat Generation .. 226

Battery Depletion .. 226

Summary .. 226

 ■Part VI: Going Beyond App Development .. 183

 ■Chapter 19: Becoming a HoloLens Pro .. 229

HoloLens in the Enterprise ... 229

Startup Opportunities ... 230

Publishing HoloLens Apps to the Windows Store ... 230

Windows Store policies .. 230

The App Developer Agreement ... 232

How to pass app certifi cation ... 232

Submitting an app for publication in the Store ... 232

Uploading your app ... 233

Setting a price for your app .. 233

Monitoring sales with analytic reports ... 233

Receiving payment ... 233

Promoting Your Apps .. 233

Summary .. 234

■ CONTENTS

xviii

 ■Chapter 20: Where Is This Technology Taking Us? .. 235

Opportunities Opening Up .. 235

Education and training .. 235

Sales ... 236

Medical ... 236

Game development ... 236

Holoportation .. 236

The Internet of Things ... 237

Are There Dangers in Merging the Real with the Virtual? .. 237

Psychological issues .. 238

Can mixed reality experiences become addictive? .. 238

Summary .. 238

 ■Appendix A: Windows Dev Center Resources .. 239
The Universal Windows Dev Center .. 239

Windows Dev Center-Holographic .. 242

 ■Appendix B: Other Resources .. 245
Microsoft Resources on GitHub .. 245

Resources on GitHub from Developers ... 246

HoloLens YouTube Videos ... 246

Index ... 247

xix

 About the Author

 Allen G. Taylor is an independent software developer, educator, and early
adopter of HoloLens technology. He is the author of more than 40 books
and speaks internationally on science and technology and their impact
on society. Allen can be reached at allen.taylor@ieee.org . He blogs at
allengtaylor.com and posts items of interest at moontube.wordpress.com.
Allen’s Twitter handle is @SQLwriter.

http://mailto:allen.taylor@ieee.org/

xxi

 About the Technical Reviewer

 Reid Blomquist is a creative technologist living in Portland, OR. Attached to pretty much anything shiny,
new, and electronic, Reid spends his time exploring new and exciting ways to leverage technology. Fortunate
to have been exposed to computers and programming from a young age, he has professional experience that
spans from full-stack web development to building immersive VR and AR experiences with Unity3D.

xxiii

 Acknowledgments

 I would like to thank Andy Mingo, Thomas Wester, Reid Blomquist, Sonya Neunzert, and Philip Modin
for their help in making this book possible. Thanks also to the Apress editorial staff that helped with the
production of the book, and, as always, to my literary agent, Carole Jelen of Waterside Productions.

xxv

 Introduction

 Ever since Microsoft first announced it in January of 2015, there has been a tremendous amount of
excitement about the Microsoft HoloLens mixed-reality device. It seamlessly integrates holographic objects
into the user’s world, making it sometimes difficult to distinguish between what is real and what is virtual.
The HoloLens has ushered in a whole new realm of experience.

 The HoloLens provides a platform for the development of applications in many different fields that
would benefit from being able to place a user within an environment that is completely real, but that also has
holographic elements that seem real, even though they are not.

 Microsoft is making a major bet that augmented reality—or mixed reality, as they call it—will become
a new mass market, rivalling what happened to the smartphone after Apple’s introduction of the original
iPhone. If they are right, as was the case with the smartphone, the opportunity for independent developers
promises to be huge. Every new app increases the value of the HoloLens platform, thus drawing more
customers to it and making the pie bigger for all HoloLens developers.

 This book is a manual for how to get started as an application developer for the HoloLens. It’s a great
time to start, because you are starting on an equal footing with everyone else. The technology is brand
new, so nobody has much of an edge over you, even if you are just starting out as a developer. Most of the
resources you will need in order to get started as a developer are either free downloads or an inexpensive
investment. When you consider the potential return on investment, getting into HoloLens development now
should be an easy decision.

 In the first part of this book, I describe the HoloLens device and how it fits in with the other devices
of the Windows 10 platform. I tell you exactly what you will need as a HoloLens developer and give step-
by-step instructions on how to configure your development system. Connecting your development system
to your HoloLens device and establishing communication between the two comes next. Once you have
developed your app, you will want to upload it onto your HoloLens to test it out.

 The second part of this book talks about the kinds of applications that are particularly well suited for
mixed reality in general and the HoloLens in particular. It also covers the kind of development team that is
most likely to be successful at producing an app that meets a real need in the marketplace.

 The third part of the book takes you through the process of actually developing an application for the
HoloLens using the tool chain recommended by Microsoft.

 Part Four starts with a deep dive into the details of the HoloLens hardware to help you get a sense of
what is available to you and what some of your constraints are as a developer. It continues with a description
of the mixed-reality environment and the types of holograms that you can create within it.

 Part Five walks you through the creation of a simple application, followed by a recounting of the myriad
ways you must test it to make sure it does what it is supposed to do, under every possible condition that you
can think of.

 Part Six considers what it will take to become a professional HoloLens developer, and what
opportunities lie just over the horizon for people who enter the field today.

 PART I

 The Windows 10 Development
Environment and HoloLens

3© Allen G. Taylor 2016
A. G. Taylor, Develop Microsoft HoloLens Apps Now, DOI 10.1007/978-1-4842-2202-7_1

 CHAPTER 1

 What Is the Microsoft HoloLens?

 It’s hard to say what the HoloLens is like, because it is not like anything that you might want to compare it to.
Microsoft calls it a stand-alone, fully untethered, holographic computer, but what does that mean?

• Stand-alone and untethered mean that the HoloLens does not need to be connected,
either wired or wirelessly, to any external computer or other device.

• Holographic means that the user can see three-dimensional virtual objects and
even walk around them, viewing them from every angle. The holograms created by
a HoloLens device go beyond that by also enabling the user to interact with them.
They also interact realistically with their real-world surroundings.

• Computer means that this device contains a powerful and fully functional computing
system.

 HoloLens is usually mentioned in the press in the context of virtual reality and augmented reality, but
it is separate and distinct from both of those technologies. It is creating a new category that will alter our
perception of what is real.

 Virtual Reality, Augmented Reality, and Mixed Reality
 On the surface, virtual reality sounds like an oxymoron. If something is virtual, by definition it is not real. If it
is real, it cannot be virtual. However, there is some logic to the terminology. By immersing oneself in a virtual
world, one is, in a sense, entering a new and different reality. When you enter a virtual world, as far as your
sight and hearing are concerned, it becomes your reality. Virtual reality completely replaces what we have
come to consider normal reality.

 With virtual reality gear on your head, you can turn completely around, 360 degrees, and see a world
that bears no resemblance to the physical world that you inhabited before you donned that gear. You may
also hear sounds that don’t match the soundscape of your normal world. However, you better not start
walking around. If you do, you will probably walk into an obstacle that is part of the real world, which you
have never really left. It only seems like you have. Worst case, you might step off a cliff or into an elevator
shaft. Either way, your virtual reality experience will end rather abruptly.

Electronic supplementary material The online version of this chapter (doi: 10.1007/978-1-4842-2202-7_1)
contains supplementary material, which is available to authorized users.

http://dx.doi.org/10.1007/978-1-4842-2202-7_1

CHAPTER 1 ■ WHAT IS THE MICROSOFT HOLOLENS?

4

 Augmented reality is different in that you do not lose sight of the real world, but instead add something
to it. Augmented reality has been around for quite a while, most notably in the heads-up displays of fighter
pilots. These displays put critical information into the pilot’s field of view without obscuring the reality
around her, which could very well be a deadly combat situation. There is no need to look away from
the action to view a value on a gauge in the cockpit. That value is right there in her field of view. Thus,
augmented reality is an overlay on top of what a person normally sees. It looks like icons, symbols, or
numbers displayed on a transparent virtual screen.

 Microsoft does not like to refer to their HoloLens technology as either virtual or augmented reality, although
it does have elements of both. They prefer to call the technology mixed reality. Rather than being superimposed
on top of normal reality, as is done with augmented reality, the HoloLens experience blends the two realities
together to create a new mixed reality. This new mixed reality is an example of the combination being greater
than the sum of its parts. The real and the virtual work together to create an amped-up world that you can move
through and interact with in unprecedented ways. The virtual part of your world responds to your hand gestures
and to voice commands. The real part of your world is always there to anchor your perceptions.

 The HoloLens Headset
 The HoloLens headset consists of a band that encircles your head, with a visor in the front that you look
through. Figure 1-1 shows what it looks like.

 Figure 1-1. Microsoft HoloLens

 The band does not rest on your ears, and at about one and a quarter pounds, it feels like you are wearing
a football helmet. It doesn’t take long for you to forget that you are wearing anything, however. Your mind
becomes engaged with what is in front of you, both real and virtual.

CHAPTER 1 ■ WHAT IS THE MICROSOFT HOLOLENS?

5

 The headband
 The headband can be adjusted to fit any adult head, both in terms of circumference and the placement of the
lenses right in front of the eyes. All of the electronics, processors, memory, cameras, speakers—everything—is
contained within the headband. Miniaturization has made all these things lightweight and compact. The weight
of all “the works” is evenly distributed around the head, so that no undue pressure is applied to either the ears or
the nose. A removable nosepiece is provided, but can be left off. If you don’t use it, there is no pressure on your
nose at all. Even if you do use it, you can adjust the headband to minimize pressure on the nose.

 The bottom line of these considerations is that a person could wear a HoloLens for several hours
without feeling any discomfort. Surgeons could perform operations, assembly-line workers could perform
assembly or inspection tasks, or designers could collaborate, all while being helped by the addition of three-
dimensional virtual objects to the real environment they are working in. Oh, and gamers could battle killer
robots breaking through the walls of the room or monsters erupting out of the floor.

 Speakers and spatial sound
 There is a small, unobtrusive speaker attached to the headband above each ear. You can make it appear to
the wearer that sounds are coming from the virtual assets you create by adjusting the phase of the sound
waves going to each ear. This mimics the phase of sound waves that would be coming from a virtual asset as
if it were actually making those sounds.

 Although the wearer can only see the virtual items that are right in front of her in her field of view, she
can hear sounds made by virtual objects behind her or off to the side. Swiveling around to face them will
bring them into view.

 Controls
 There are only three controls on the HoloLens device itself: a power switch, a sound volume control, and
a contrast control for the holographic lenses. The user controls what the application does primarily with
gestures and voice commands. Some apps, particularly games, may also use a hand-held controller (the
Clicker) that communicates with the HoloLens via Bluetooth.

 The processors
 Generating realistic, rapidly changing, three-dimensional holographic images in the user’s field of view
requires a lot of processing power, and those three requirements (realistic, rapidly changing, three-
dimensional holographic) each place three different kinds of demand on the processing system. To handle
the load, the HoloLens has three different processors: a central processing unit (CPU), a graphics processing
unit (GPU), and a holographic processing unit (HPU). Processing tasks are divided up among the three, and
the result is combined to give the user an integrated, high-fidelity experience.

 The Inertial Measurement Unit (IMU)
 The IMU includes an accelerometer, a gyroscope, and a magnetometer. These sensors, along with head-
tracking cameras, track where your head is and how it is moving. This information is integrated with what
HoloLens knows about the space you are moving through to render the virtual objects in your field of view
from the right perspective, with the right sizing, and at the right apparent distance from you.

CHAPTER 1 ■ WHAT IS THE MICROSOFT HOLOLENS?

6

 The cameras
 The HoloLens includes five visible-wavelength cameras, one looking straight ahead plus two on the left and
two on the right. These cameras track your head movements with respect to your surroundings, and the one
in the center can take either videos or still images. In addition, there is an infrared camera facing straight
ahead and an infrared laser projector facing the same way. The laser is used to scan objects, which reflect the
infrared light back to the infrared camera. This provides a laser-ranging capability that enables the HoloLens
to map the distance to everything in the room. A quick 360 degree pirouette will map out a room and
everything in it. That map gets refined as the user moves around and interacts with the environment.

 The microphone
 The HoloLens includes a microphone so that the user can provide input to the running app with voice
commands. As an example, a user could start an app running with a voice command and terminate
execution with another voice command.

 Other input devices
 In addition to cameras sensing hand gestures and the microphone sensing voice commands, a cordless
game controller or a cordless mouse can also be used as an input device.

 The lenses
 The lenses of the HoloLens device are transparent so the user can see right through them. However, they
also contain an array of very fine, invisible grooves that direct the virtual images generated by the app into
the user’s eyes, making it appear that virtual objects are at various positions and distances in the room. The
illusion is very effective. The virtual objects can appear solid or semi-transparent, with background (real)
objects showing though from behind them.

 Sensor Fusion
 The HoloLens uses its IMU to track the movements of the user and the infrared laser and camera to map
out the local environment. These two streams of data are combined so that the virtual objects mesh
accurately with the real environment. Virtual objects change in appearance appropriately as the user moves
around. They get smaller as the user moves away and larger as she approaches the object. A user can walk
completely around a virtual object and see what it looks like from all sides.

 How HoloLens Differs from Virtual Reality and Ordinary
Augmented Reality
 There is a proliferation of products on the market that can be classified as either virtual-reality devices
or augmented-reality devices. Virtual-reality devices immerse the user in a virtual world. The virtual
world completely replaces the real world of sight and sound. In augmented reality, the real world
remains visible and audible. A transparent screen is overlaid upon it, which can display words, icons,
symbols, or other virtual 2-D objects. A military pilot’s heads-up display is an example of augmented
reality.

CHAPTER 1 ■ WHAT IS THE MICROSOFT HOLOLENS?

7

 Microsoft’s HoloLens is neither a virtual-reality nor an augmented-reality device. It is the first example
of a new category, which they call mixed reality. 3-D virtual objects are added to the real environment. They
are three dimensional and are located where either the running app or the user places them. They can be
hung on a wall of the room, placed on a table, or they can fly through the air. They can even appear to break
through the walls of the room and fly into the room beyond. The user remains in the real world, as is true
with augmented reality, but can also deal with three-dimensional virtual objects that seem real enough to
touch.

 Summary
 This chapter is a quick overview of the new Microsoft HoloLens mixed-reality device. We will get into much
more detail later about the device, some of the promising uses for it, and how to develop applications for it.

 The HoloLens, among other things, is a full 64-bit computer running the Universal Windows 10
operating system. As such, you can run programs on it that were originally targeted at other Windows 10
devices, such as desktops, laptops, tablets, and phones. We’ll discuss that in the next chapter.

9© Allen G. Taylor 2016
A. G. Taylor, Develop Microsoft HoloLens Apps Now, DOI 10.1007/978-1-4842-2202-7_2

 CHAPTER 2

 The Windows 10 Platform

 After widespread criticism of the user interface for Windows 8, Microsoft decided to start with a clean slate
in the next version of Windows to be released. What would have become Windows 9 was abandoned without
ever seeing the light of day. The next Windows release was given the moniker Windows 10 to put some
distance between it and the much-maligned Windows 8.

 Since Microsoft was starting from scratch anyway, and since the marketplace had changed dramatically
from the PC-centric world that the original Windows was born into, Windows 10 was designed as a universal
platform. That means that apps that you develop for one device, such as a Surface Pro or a Windows Phone,
will run on any other Windows 10 device as well. One consequence of this is that any app developed for any
Microsoft platform, from Xbox One to PC, will also run on HoloLens. That being said, if you want an app
you develop to deliver a good mixed-reality user experience, you should probably design it specifically with
HoloLens in mind.

 The Windows 10 User Interface
 One of the biggest objections to the Windows 8 user interface was the removal of the Start menu, which
had been standard in previous versions of Windows, and replacing it with Live Tiles. Live Tiles are great
for devices with touch screens but make things harder for desktops and laptops that rely on a mouse or
touchpad. In Windows 10, the Start menu returns, but in a different form, as shown in Figure 2-1 .

CHAPTER 2 ■ THE WINDOWS 10 PLATFORM

10

 Frequently used apps appear at the upper left, and the often used File Explorer, Settings, Power, and All
apps options appear at the lower left. On the right is the Action Center, a new incarnation of Live Tiles that
gives you access to notifications of various sorts and other things that you might want to access, such as your
photos or games. As Windows 10 becomes increasingly familiar with your normal operations, it will display
the tiles for the operations that you are most likely to want to use.

 Windows 10 also includes the new DirectX 12 gaming API. It provides a software layer that frees game
developers from having to know exactly what hardware they are running on. Thus, a game developed for a

 Figure 2-1. Windows 10 Start menu

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 ■ THE WINDOWS 10 PLATFORM

11

tablet, for example, could run on a HoloLens without having to be rewritten. Differences between hardware
devices are hidden from the programmer’s view by the DirectX 12 API.

 Differences between Windows 7 and Windows 10
 The design of the user interface of Windows 8 was so different from that of Windows 7 in order to
accommodate tablets and other devices with touch screens. Windows 7 did not handle touch screens well at
all. Windows 8 was a lot better for touch-screen devices, but was roundly hated by anyone with a traditional
desktop PC or a non-touch-screen laptop. The goal for Windows 10 was to run on and be appropriate for
all Microsoft devices, from phones to desktops and beyond, even to the Internet of Things (IoT). It was
not possible to revert to the well-accepted Windows 7 user interface, but it was also necessary to separate
Windows 10 from the negative vibes that surrounded Windows 8. Windows 10 ended up being a blend of
what people liked about Windows 7 with some of the aspects of Windows 8 that were supportive of the goal
of running across a wide spectrum of Microsoft devices, including those with touch screens.

 Advantages of Windows 10 that it carried over from Windows 8 include a significantly faster boot-up
time than Windows 7, better hardware acceleration, faster navigation between apps, and even a little better
battery life for mobile devices.

 Windows 7 included a search function on the Start menu. Windows 10 has a separate search box, which
in addition to searching the device’s storage, will also search Windows Store apps and the Web.

 Another significant improvement over Windows 7 is an upgraded File Explorer, with a ribbon of controls
up top and a helpful layout; frequently used folders and recent files have their own highly visible sections,
and there is a familiar quick-access strip on the left-hand side.

 Differences between Windows 8 and Windows 10
 The most visible difference between Windows 8 and Windows 10 is that Windows 10 has eliminated the
full-screen Start screen, replacing it with the Start menu mentioned previously. The Windows 8 full-screen
Start screen never made sense when used with a keyboard and mouse, slowing down operations and making
it harder to find what you wanted. The Start menu that Windows 10 uses in place of the Start screen does
include a small number of Live Tiles, but they are the ones you are most likely to use, rather than filling the
screen with a checkerboard of tiles that you rarely use, if ever. More important, the columnar Start menu is
back, with the options you are most likely to need being displayed.

 New Capabilities of Windows 10
 The most significant new capability of Windows 10 stems from the fact that you can develop universal
applications with it. This means that the code for a Windows Phone app is the same as that for a Windows PC
app or even a HoloLens app. Different hardware platforms have different displays and different capabilities,
so your app needs to be able to sense what platform it is on, but once it does, it can run in a manner
appropriate for that platform.

 Cortana has been added to Windows 10. This personal digital assistant accepts voice commands as well
as text ones. Besides answering questions for you, she also monitors your email and calendar, reminding you
of new messages and upcoming appointments.

 Summary
 The Windows 10 platform is a major upgrade from the versions of Windows that preceded it. In addition
to a more intuitive user interface, performance improvements, and the Cortana digital assistant, it gives
developers cross-platform operation for their apps.

13© Allen G. Taylor 2016
A. G. Taylor, Develop Microsoft HoloLens Apps Now, DOI 10.1007/978-1-4842-2202-7_3

 CHAPTER 3

 The Universal Windows Platform
(UWP)

 Windows 10 represents a major departure from previous versions of Windows. A number of different devices run
Windows 10 with a variety of different form factors and characteristics, ranging from phones to desktop PCs and
everything in between. For the first time since there has been such a diversity of devices, one operating system
runs on all of the different platforms. This means that an application written to run on one Windows 10 device
could potentially run on all of them. The HoloLens runs a variant of Windows 10 named Windows Holographic.
When you develop for Windows Holographic, you can access and activate all of the capabilities of the HoloLens.

 Device Families
 One of the biggest objections to the Windows 8 user interface was the removal of the Start menu, which
had been standard in previous versions of Windows, and replacing it with Live Tiles. Live Tiles are great
for devices with touch screens but make things harder for desktops and laptops that rely on a mouse or
touchpad. In Windows 10, the Start menu returns, but in a different form.

 Rather than targeting an app at an operating system (Windows 10), developers now should target their
app at a specific device family. Devices that are similar to each other are clustered together into families.
All the devices in one family share some capabilities with all the devices in the other families, but they
also share some additional capabilities with the other devices in their own family. Thus, if you write to
the common core APIs that are common to all families, your app will run anywhere. If you want to take
advantage of the special capabilities of the devices in a particular family, you can do so with the extended
APIs that are specific to that family. To run on devices in families that do not share those particular extended
APIs, you will need to make your build or app adaptive.

 This new architecture impacts how apps are written in the following ways:

• One app can be run across multiple device families, which means it must be able to
adapt to the characteristics of whichever device it is running on.

• The form that user inputs take may vary from one device family to another. The app
must be able to handle the input forms that are allowed on the devices that it runs on.

• Only one SDK and one set of tools is needed to support all the devices that run
Windows 10.

• There is only one Windows store, which is where apps for all Windows 10 devices
are sold.

• There is only one Dev Center, which is where information and tools for Windows 10
app development may be obtained.

CHAPTER 3 ■ THE UNIVERSAL WINDOWS PLATFORM (UWP)

14

 The granddaddy of device families is the desktop computer family. It features a multiplicity of screen
resolutions, some of which are larger than what you will find in other device families. Other families include
the mobile device family, the Xbox Live device family, the IoT (Internet of Things) device family, the IoT
headless device family, and of course the holographic device family. Overseeing all of these is the Universal
device family (Figure 3-1).

 Figure 3-1. The Windows 10 device families

 The Universal Device Family
 The Universal device family is the parent of all the specific device families. The set of APIs in the Universal
device family are inherited by all the child device families. This means that if you restrict your app to using
only the APIs of the Universal device family, it will run on any Windows 10 device, regardless of which device
family it belongs to. Each child device family adds its own specific APIs to those it inherits from the Universal
device family in order to enable functionality that is specific to that device family. Your app can run across
family boundaries by using adaptive code that detects the family of the device it is running on and calls the
APIs that are appropriate for that family. In this way, your app may have different capabilities, depending
on the family of the device it is running on. The set of APIs your app uses, both universal and specific, will
determine on which devices the app can be installed. If you are targeting multiple device families, you can
enclose the invocation of features specific to a device family within a conditional statement. The API in
question will only be invoked if the app is running on a device that supports it.

 Because an app designed to run on the Universal device family can run on any Windows 10 device,
the app must have a highly adaptable user interface that can conform to the form factor and characteristics
of whatever device it is running on. It must also be able to accept input from a full range of input devices,
including keyboard, mouse, pen, touch screen, voice, and more.

 Developing for a Specific Device Family
 When you choose to develop primarily for a specific device family, you can call the APIs that are specific to
that device family unconditionally. The app will run on all the devices in that family. To run on devices in
other families, the APIs specific to those other families must be enclosed in conditional statements that only
allow access to those APIs when running on devices in those other families.

 For example, when developing for the mobile device family, you must include APIs that are specific to
mobile devices, such as phones and tablets, but you need not include the APIs for input devices that are not
found on those devices.

 You should note that an app developed for the IoT device family can only be installed on IoT devices.
That being the case, it can assume all IoT APIs are present, and there is no need to include APIs for any other
device family.

CHAPTER 3 ■ THE UNIVERSAL WINDOWS PLATFORM (UWP)

15

 The Holographic Device Family
 The HoloLens device is the first representative of the holographic device family. Although the HoloLens
relies primarily on gaze, gesture, and voice for user input, it also can accept input from other input devices,
such as a mouse, and other Windows 10 devices that are not in the holographic device family can accept
input from gaze, gesture, and voice — assuming, of course, that they have a way of sensing those inputs.

 Because the experience of using the HoloLens is so different from the experience of using any of the
devices in the other device families, the HoloLens app developer’s job in many cases will be easier than
that of developers of apps for other device families. The HoloLens developer can concentrate of running on
HoloLens, since although a HoloLens app may be run on other devices, it will not give the user anything like
the same experience. At this point, no other device can track gaze, and PCs, tablets, and phones don’t track
gestures either.

• When you write an app, you target device families rather than an OS. The members
of a device family will have common APIs, system characteristics, and behaviors.
Your app can be written specifically for the devices you intend it to run on.

• All UWP apps are packaged and distributed as AppX packages. This standardized
distribution and installation mechanism ensures a smooth deployment and update
experience.

• Although there are multiple device families on the Universal Windows Platform,
a set of core APIs will run on all of them. If you stick to those core APIs with your
applications, they will run on any Windows 10 device.

• In addition to the core APIs, there are specialized APIs for each device family. If
your app is intended for a specific device family, you can invoke a device’s full
functionality, making use of the extension SDK that gives you the tools you need in
order to use the specialized APIs.

 Summary
 The HoloLens is radically different from any other device running Windows 10, or for that matter any other
device running anything. Even so, apps written for other Windows 10 devices that stick to the core APIs will
run on HoloLens with no more than a little minor tweaking. This means that users will be able to experience
some of their favorite apps from other platforms in an entirely new way.

17© Allen G. Taylor 2016
A. G. Taylor, Develop Microsoft HoloLens Apps Now, DOI 10.1007/978-1-4842-2202-7_4

 CHAPTER 4

 The Development Edition

 The HoloLens Development Edition contains almost everything you will need in order to begin developing
applications for the HoloLens. The only other things you will need can be downloaded from the Web for free,
including instructions on how to set up your development environment and the order in which to do it.

 Development System Requirements
 The first thing that a HoloLens developer must provide is development hardware and operating software
that supports HoloLens development. Required are the following:

• A 64-bit PC with a minimum of four cores, plus SLAT and DEP, that supports
virtualization in its BIOS

• Windows 10 Pro or Enterprise Edition with Hyper-V virtualization support

• At least 8 GB of RAM in the PC

 Windows 10 Home Edition will not work, nor will a version of Visual Studio earlier than Visual Studio
2015, Update 3.

 The Development Edition
 As shown in Figure 4-1 , the Microsoft HoloLens Development Edition includes:

• HoloLens device

• Clicker

• USB cable and power supply

• Extra nosepiece

• Startup instruction booklet (not pictured)

• Carrying case

CHAPTER 4 ■ THE DEVELOPMENT EDITION

18

 It may seem like you are not getting very much for your $3,000 purchase price, but this is really all you
need. Everything else required to get you up and running as a HoloLens developer can be downloaded for
free from the Web. In addition to the things you can download, the Windows Holographic Developer Forum
is an invaluable resource. No matter what problem you run into, there is probably someone on the forum
who has encountered it and solved it already. Developers are happy to share their experiences.

 Required Tools
 Aside from the Development Edition itself, you will need to install Visual Studio 2015 Update 3. The
Community Edition of this development tool can be downloaded from Microsoft’s MSDN Web site for free.
You will also require the latest version of the special edition of the Unity platform, which includes support
for holographic development not normally found in the standard version.

 Before your Development Edition arrives, you can use the HoloLens Emulator on your development
machine. You can become familiar with the process of creating, building, and deploying applications. Even
after your HoloLens arrives, using the Emulator will enable you to iterate builds and debug your code quickly
without having to load your app onto the HoloLens headset every time you make a change.

 Microsoft’s Holographic Academy has a sequence of tutorials that introduces you to the controls that
you will need to build into your apps to give them their functionality. After completing the setup steps and
going through the tutorials, you will be in a position to start developing your own holographic applications
for the HoloLens.

 A tool that is not strictly required but can potentially be helpful to developers is Visual Studio Tools
for Unity (VSTU), which can be downloaded at https://visualstudiogallery.msdn.microsoft.
com/8d26236e-4a64-4d64-8486-7df95156aba9

 Summary
 This chapter provides an overview of what is included in the HoloLens Development Edition as well as the
software tools that you will need in order to start developing applications. Chapter 5 will go into detail on
exactly what is needed and how to get it all working. The holographic development tutorials available on
Microsoft’s online Holographic Academy take you step by step through the major features and capabilities of
the HoloLens and of holographic development.

 Figure 4-1. Microsoft HoloLens Development Edition

https://visualstudiogallery.msdn.microsoft.com/8d26236e-4a64-4d64-8486-7df95156aba9
https://visualstudiogallery.msdn.microsoft.com/8d26236e-4a64-4d64-8486-7df95156aba9
http://dx.doi.org/10.1007/978-1-4842-2202-7_5

19© Allen G. Taylor 2016
A. G. Taylor, Develop Microsoft HoloLens Apps Now, DOI 10.1007/978-1-4842-2202-7_5

 CHAPTER 5

 Getting Started with HoloLens
Development

 To create holographic applications, you will need an appropriately equipped development machine. This
means you need a Windows 10 PC, but not just any old Windows 10 PC. You will need to be able to run
the HoloLens Emulator, which will run on a virtual machine that is running under your primary operating
system. You need the Emulator so that you can test your code as soon as you make an update or change
without having to upload it to a HoloLens every time. You will also want a system with a fast enough
processor and sufficient memory. Here’s what you will need:

• 64-bit Windows 10 in the Pro, Enterprise, or Education Edition. The Home Edition
does not support virtualization with Hyper-V.

• A CPU with four or more cores, or multiple CPUs with a total of at least four cores.

• 8 GB or more of RAM

• A BIOS where the following features are supported and enabled:

• Hardware-assisted virtualization

• Second Level Address Translation (SLAT)

• Hardware-based Data Execution Prevention (DEP)

• Supported GPU with the following:

• DirectX 11.0 or later

• WDDM 1.2 driver or later

 Configuring Your Windows 10 Computer for Development
 To develop holographic applications for HoloLens, you need a sufficiently powerful PC, which must be a
64-bit (X64) model with at least 8 GB of RAM, sufficient storage to hold not only the Developers Kit and all
the associated tools, but also whatever media you will be creating as a project. In addition, make sure that
your video card is compatible with Windows 10. Not all of them are.

CHAPTER 5 ■ GETTING STARTED WITH HOLOLENS DEVELOPMENT

20

 Confirm that your computer BIOS supports HoloLens development
 Even if your computer supports virtualization, that support is probably disabled by default. This is controlled
by an option switch in the BIOS. Boot up your computer and interrupt the boot process to enter the BIOS
control panel. Terminology differs from one computer manufacturer to another, but there should be an
option somewhere for you to either enable or disable virtualization. Be sure this is set to Enable and then
save the new setting.

 Install Hyper-V support
 It is not enough to have the BIOS enable virtualization. The operating system must enable it too. Once again,
the default is for virtualization to be disabled. To enable virtualization at the Windows 10 level, enter “Windows
Features” into the Search/Cortana box. This will display the Windows Features window shown in Figure 5-1 .

 Make sure the Hyper-V box is checked, as shown in the figure, then click on OK to set the feature on.

 Enable Developer mode on your development machine
 When in Developer mode, Windows 10 turns on some capabilities that you will need. By default, Developer
mode is turned off, so you will have to turn it on. Here’s how:

• From the Start menu, select Settings .

 Figure 5-1. Windows Features window

CHAPTER 5 ■ GETTING STARTED WITH HOLOLENS DEVELOPMENT

21

• In the window that appears, select Update & Security .

• From the menu on the left edge, select For developers .

• Select Developer mode .

 Figure 5-2 shows what you want to see.

 Install Visual Studio 2015 Community Edition, Update 3
 Update 3 of Visual Studio 2015 contains support for building holographic apps. Previous versions may
not work for what we are trying to do. Make sure you have at least Visual Studio Update 2. All editions are
supported, including the Community Edition, which can be downloaded for free from Microsoft or from
 www.visualstudio.com .

 Install the HoloLens Emulator
 Within the Resources Setup folder, find the Emulator folder, and from it launch EmulatorSetup.exe.

 After the successful completion of all of the preceding operations in the order described, your
development machine will be ready to start developing holographic apps for the HoloLens. You will want
to get your apps running consistently and flawlessly on the HoloLens Emulator before uploading the app to
your HoloLens device. If there is a problem with your app, it will be a lot easier to diagnose and fix with the
Emulator than it would be with the HoloLens.

 App development is accomplished with a combination of Unity, Visual Studio 2015, and the HoloLens
Emulator. Creating an app in Unity, building it in Visual Studio, and deploying it to the Emulator is a
complex process that is easy to do incorrectly. A large number of operations must be done correctly and in
the right order in order for your efforts to be crowned with success.

 Figure 5-2. You must be in Developer mode to develop apps for HoloLens

http://www.visualstudio.com/

CHAPTER 5 ■ GETTING STARTED WITH HOLOLENS DEVELOPMENT

22

 Install Unity
 The version of Unity that you need includes special features that specifically support HoloLens
development. If you already have Unity on your development machine, you will want to replace it with the
one that is specifically for use with the HoloLens. You can have both on the same machine. Just be sure you
launch the correct one when you want to work on a holographic app. You can download the holographic
version from the Windows Dev Center or from https://unity3d.com/pages/windows/hololens#download .

 The Holographic Academy
 The Holographic Academy is a virtual learning resource accessible from Microsoft’s Windows Dev Center.
You can find it at https://dev.windows.com/en-us/holographic/academy . It contains a series of tutorials
in both video and text form that walk you through all the basic features and operations involved in creating a
holographic application. As time goes on, additional tutorials will be added.

 Holograms 100: Getting Started with Unity
 This tutorial describes how to build a super-simple hologram from scratch and place it into your world. You
are introduced to the combination of Unity and Visual Studio, which work in tandem to create a hologram
that you will be able to see with a HoloLens. Unity includes a library of simple shapes, one of which is a cube.
Unity views the world with a “camera,” which corresponds to the HoloLens wearer’s point of view. A camera
on the HoloLens takes in what the wearer sees. In this case, she sees a cube floating in air out in front of her.
As the wearer moves around her environment, the cube keeps pace, always remaining right in front of her.
Once you have completed this tutorial, you are on your way. You have created a holographic application.

 Holograms 101e: Introduction with Emulator
 This tutorial gives you a step-by-step procedure to create, build, and deploy a holographic application to
the HoloLens Emulator. The application, named Origami, is built up from pre-existing assets, including
holograms and C# scripts. The tutorial is about combining those assets into a complete and functioning
application. Using the Emulator enables a developer to create and iterate versions without having to export
repeatedly to a HoloLens device. This is particularly helpful in situations where there are more developers
working than there are available HoloLens devices.

 The process of creating, building, and deploying an application is highly detailed, so a developer new
to HoloLens development will save much time and avoid frustration by following this tutorial carefully. In
addition to creating holographic objects, this tutorial covers interacting with those objects with gaze, gesture,
and voice. It also adds an audio component to the objects with spatial sound and enables the user to place
the objects in one of several sample “rooms” with spatial mapping.

 ■ Warning Even if you follow the procedure in the tutorial very carefully, it is all too easy to misunderstand
an instruction, miss a step, or do something slightly out of the specified order. Sometimes this will not cause a
problem. However, at other times it can suck you into a frustrating spiral of incomprehensible failure modes that
differ from one attempt at progress to the next. If this happens to you, the best thing to do is abandon the project
you have been working on and download the tutorial files afresh to a new directory, then start from scratch.

https://unity3d.com/pages/windows/hololens#download
https://dev.windows.com/en-us/holographic/academy

CHAPTER 5 ■ GETTING STARTED WITH HOLOLENS DEVELOPMENT

23

 Holograms 101: Introduction with HoloLens Device
 This tutorial is exactly like the Holograms 101e tutorial, except for the fact that you deploy the Origami app to
your HoloLens device rather than to the HoloLens Emulator. The create and build portions of the procedure
are identical to what they are in Holograms 101e. After you deploy Origami to your HoloLens, you will be
able to see it in front of you, then walk around it and see it from every angle. You will also be able to interact
with it via gaze, gesture, and voice. Spatial sound and spatial mapping will now operate in the real room that
you are physically in.

 ■ Note Before you can deploy your first app to your HoloLens, you will need to identify it to your development
machine with its IP address. How to do this is described later, in the section titled “Setting Up the HoloLens.”

 Holograms 210: Gaze
 Gaze is one of the three ways in which a HoloLens user communicates with the app running on her device.
The other two are gesture and voice, which are covered in Holograms 211 and 212, respectively. This tutorial
displays an astronaut in a space suit floating out in space. You can add gaze functionality incrementally as
you alternate between adding scripts and deploying the result to your HoloLens. Observe the result of each
change to make sure you have not introduced any bugs from one deployment to the next.

 ■ Note Although the tutorials in the 200 series—none of which are designed for use with the HoloLens
Emulator—do not include the letter e as tutorial 101e does, you can deploy them to the Emulator if you do
not have ready access to a HoloLens device. The Emulator cannot tell where your gaze is directed, nor can it
see any gestures that you make. Nonetheless, deploying to the Emulator will tell you whether the app you are
building is basically working. After you have added all the pieces to the app, deploying to the HoloLens will
enable you to test full functionality.

 ■ Tip As of this writing, a deployment will sometimes abort with an error message, preventing you from
continuing. Depending on what caused the problem, you may be able to get around this. Without disconnecting
your HoloLens (or, if you are deploying to the HoloLens Emulator, without exiting the emulator), try deploying
again by selecting Debug/Start without Debugging in Visual Studio. Oftentimes, the deployment will work on
the second try, and sometimes on the third.

 You can indicate where the user is looking by adding a cursor to your app. When the cursor is located on
a hologram, your app can cause a change of some kind to the hologram. C# scripts, such as GazeManager.
cs and CursorManager.cs, provide functionality. Additional scripts, such as InteractibleManager.cs,
Interactible.cs, and InteractibleAction.cs, provide interactivity. The source code for these scripts is provided
with the tutorial, so you can modify the code as you desire to see how behavior changes.

CHAPTER 5 ■ GETTING STARTED WITH HOLOLENS DEVELOPMENT

24

 Holograms 211: Gesture
 This tutorial is a continuation of HoloGrams 210, adding gesture functionality and also exercising voice
commands a little bit. As noted previously, if you are deploying to the HoloLens Emulator, it cannot see any
hand gestures that you might make. You can, however, see whether all expected elements are present, and
you can exercise a couple of voice commands, observing how the app responds to them.

 Holograms 212: Voice
 Aside from gaze and gesture, the other way a HoloLens user can affect the holograms she sees is with voice.
The HoloLens includes a microphone so that the user can issue voice commands. This tutorial tells how to
configure an app so that the microphone is active. It also describes how to write apps so that they respond
to voice commands. As with the gaze and gesture tutorials, the app shows an astronaut floating in space.
The user can speak to the astronaut with verbal messages as well as send commands to the app to cause it to
perform various functions.

 ■ Tip To maximize the chance that the voice-recognition mechanism correctly interprets what you say, be sure
to speak clearly and distinctly. Use common rather than obscure words. Use multisyllabic commands, which are
easier to differentiate from other communications, and avoid the use of any of the reserved words, such as Select ,
which is used to perform an action on whichever hologram element currently has the focus of the user’s gaze.

 Holograms 220: Spatial Sound
 Seeing holograms as three-dimensional objects in your world can put you in the middle of the action.
Hearing sounds that appear to be coming from them makes them seem even more real. Adding to the sense
of reality is what spatial sound is all about.

 In the real world, we know where a sound is coming from because the sound waves coming from
a sound source arrive at one of our ears before arriving at the other ear. Our brains do some math and
determine where in space the sound is coming from. This is the basis for traditional stereophonic sound
systems. The sound coming out of the speaker on your left hits your left ear before it hits your right ear, and
because it is closer, it is a little louder in the left ear than in the right. Correspondingly, the sound coming out
of the speaker on your right hits your right ear sooner and is louder than what your left ear hears.

 Spatial sound one-ups stereo by making the virtual sound environment sound much more like sounds
you would hear coming from real sound sources. Unlike stereo, where to hear the best sound you must sit
midway between the left and right speakers, with spatial sound you can move around in a room and, no
matter where you are, the sound you hear appears to be coming from the locations of the holograms that
are generating those sounds. As you move toward a sound source, what you hear becomes louder. As you
move away, it becomes fainter. If the sound source is on your left, when you turn toward it, not only does the
hologram that is generating it become centered in your field of view, but also the sound it is making seems to
be coming from right in front of you.

 This tutorial demonstrates the difference between stereo sound and spatial sound and leads you to turn
toward the place where a sound seems to be coming from. Since you can’t actually touch a hologram and
feel anything, audio cues can instead inform you when you have selected a holographic object or when your
hand has come into view or made a gesture.

 One cool thing you could do is place yourself in the middle of a holographic symphony orchestra. If you
want to hear more from the violins, you could walk over toward the string section. Their part would get louder
and the percussion would get softer. Spatial sound could provide an opportunity to experience music in new and
entirely different ways. As an audience member, you could not walk into the middle of a symphony orchestra or
your favorite rock band, but if a holographic recording of a performance has been made, you could.

CHAPTER 5 ■ GETTING STARTED WITH HOLOLENS DEVELOPMENT

25

 Holograms 230: Spatial Mapping
 Spatial mapping is the technology that enables a HoloLens to place holographic objects into the context of the
real world. By making a scan of its surroundings, the HoloLens learns where the walls, floor, and ceiling are, as
well as any furniture or other objects that are in the room. This enables holographic characters to sit on your
sofa and place their drink on your coffee table. It also, for example, enables you to see holographic pointers
and highlights on the automatic transmission you are trying to reassemble in your Automotive 131 class.

 Spatial mapping is the key technology that produces the illusion that holographic objects are actually
present in the real world. You can control how detailed you want a scan to be. The more detailed the scan,
the more accurate the placement of holograms and the more convincing the illusion will be. However, there
is a tradeoff in performance. The more detailed the scan, the longer it will take to complete it. On the plus
side, once you have scanned a room in detail, you don’t have to do another full scan the next time you enter
that room. You need only update the things that have changed.

 Once you have scanned an area, you can alter its appearance with one of the shaders in Unity. Once an
area has been scanned and shaded, processing can be used to simplify the representation with no loss of
realism. This reduces the number of calculations that must be made to keep the representation of the room
up to date, reducing the processing load and thus improving performance.

 Another calculation illustrated in this tutorial determines whether a hologram will fit into a spot in the
real world without colliding with something. It’s not cool if you place a holographic character into a chair
that a real person is already sitting on.

 Occlusion is also covered in this tutorial. If a hologram is located behind a real object in the room, you
should not be able to see it. However, when it passes in front of such an object, it should remain visible. This
means that the HoloLens must know how far away things are as well as where they are so as to know how
much of a hologram to show as it moves out from behind a real-world object.

 Holograms 240: Sharing Holograms
 One of the really useful aspects of the mixed reality that HoloLens provides is the fact that you can share
a virtual landscape with someone who could be miles away from you, provided you are both hooked into
the Internet and both wearing a HoloLens. This is accomplished by establishing a reference point and then
sharing coordinates with everyone who will be sharing in the experience. The leader of the experience will
scan her environment and all action will take place in that environment. Other participants will appear as
avatars in the scanned space. Real-world physics will apply, with moving holograms bouncing off walls
and other surfaces when they encounter them. All participants will be able to interact with the holograms
using gaze, gesture, and voice. Beyond multiplayer games, this capability can also be used in educational
situations or conferences. The possibilities are virtually limitless. (No pun intended.)

 Development with Unity
 Unity, well known to developers as a game-development platform, is the primary tool for developing
HoloLens applications of all types. The standard Unity toolchain and pipeline have been updated to
incorporate support for HoloLens functions such as gaze, gesture, and voice input as well as spatial
mapping, spatial audio, and the ability to anchor holographic objects to specific locations in the real world.
Unity is the main toolset endorsed and recommended by Microsoft for the development of HoloLens
applications. Direct3D is the API used with Unity for HoloLens application development.

 The Windows Device Portal
 The Windows Device Portal is the channel through which your development PC communicates with your
HoloLens. To set up this connection, you must pair the devices. This is a fairly involved procedure, which I
will walk you through in the next several sections.

CHAPTER 5 ■ GETTING STARTED WITH HOLOLENS DEVELOPMENT

26

 Setting up the HoloLens
 Although you can do quite a bit of learning and even app development using the HoloLens Emulator on your
development PC, at some point you will want to start using your HoloLens device. In order to do that, you
will need to establish a communication link between your HoloLens and your development PC using the
Windows Device Portal.

 To start the setup procedure, power up your HoloLens device and put it on. Then follow these steps:

 1. With you hand clearly in your field of view, perform the bloom gesture, which is
a hand with fingers pinched together that then opens like the petals of a flower,
with the fingers splayed apart. This should start the operating system and display
the Start Pins menu shown in Figure 5-3 .

 Figure 5-3. Start Pins menu

 2. Gaze at the Settings tile in the upper-right corner and perform the air tap gesture
to select it. You perform the air tap gesture by holding your thumb and your
index finger apart and then bringing them together. This launches the Settings
app. When the cursor is over a tile that can be selected, it will be shaped like a
torus or doughnut. Otherwise, it will just be a dot of light.

 3. Select the Update menu item.

 4. Select For developers . This will display the screen shown in Figure 5-4 .

CHAPTER 5 ■ GETTING STARTED WITH HOLOLENS DEVELOPMENT

27

 5. Make sure that the Developer mode switch is set to the On position.

 6. Scroll down below the Paired devices section (below what is shown in Figure 5-4)
and make sure the Device Portal switch is set to the On position.

 Connecting the HoloLens to the development machine
 There are two ways to connect your HoloLens to your development PC: over Wi-Fi or via a USB cable. At least
one of these is necessary, of course, so that you can upload the app that you have developed to your HoloLens.

 Connecting via Wi-Fi
 Before you can upload your app to a HoloLens using Wi-Fi, you must connect your HoloLens to the Wi-Fi
network. Here’s the procedure for doing that:

 1. Perform the bloom gesture to display the Start Pins main menu.

 2. Select the Settings app in the upper-right-hand corner.

 3. When the Settings menu appears, gaze at the Network & Internet symbol and
select it with an air tap.

 4. Make sure Wi-Fi is turned on, as shown in Figure 5-5 .

 Figure 5-4. HoloLens setup

CHAPTER 5 ■ GETTING STARTED WITH HOLOLENS DEVELOPMENT

28

 5. Select the network you want to connect to.

 6. If needed, enter the network password.

 7. Find the HoloLens’s IPv4 IP address. You can do this by finding it under Settings
➤ Network & Internet ➤ Wi-Fi ➤ Advanced Options.

 ■ Warning Some Microsoft documentation says that you can also get this IP address by asking Cortana to
give it to you by saying “Hey Cortana, what is my IP address?” As of this writing, this is incorrect. The IP address
that Cortana gives you is not the one you need. Use the one given by the Settings menu.

 8. From your PC’s web browser, go to https://<YOUR_HOLOLENS_IP_ADDRESS>

 The browser will probably display a message similar to “There is a problem with this Website’s security
certificate.” You can ignore this warning, since the security certificates for HoloLens are not set up during the
current development phase of the product. If you continue on in spite of the warning, you will be taken to
the Home screen of the Device Portal.

 Figure 5-5. Turn on Wi-Fi discovery and connection

CHAPTER 5 ■ GETTING STARTED WITH HOLOLENS DEVELOPMENT

29

 Connecting via USB
 Connecting your HoloLens to your development PC with a micro-USB cable is simpler than connecting
over Wi-Fi. All you need to do is send your PC’s Web browser to http://<YOUR_HOLOLENS_IP_ADDRESS>, as
determined in the previous section .

 Identifying yourself with a username and password
 The HoloLens is like any other Windows 10 PC in that it tailors what it presents to you based on who you are.
That means that it must identify you based on credentials that you present to it. The credentials it looks for
are a username and a password. There is a little back and forth involved in doing this:

 1. Enter the IP address of your HoloLens into a Web browser on your PC. This will
bring up the Set Up Access page.

 2. Click or tap the Request Pin button. Your HoloLens will display the PIN that has
been generated.

 3. Enter the PIN into the “Pin displayed on your device” textbox.

 4. Enter the username you have chosen for connecting to the Device Portal into the
“New user name” textbox.

 5. Enter a password into the “New password” textbox. It must be at least seven
characters long.

 6. Enter the same password into the “Confirm password” textbox.

 7. Click on the Pair button to connect the HoloLens to the Windows Device Portal.

 You can always add new users or change the credentials of an existing user by following this procedure
after clicking on the “Security” link in the top-right corner of the Start Pins menu and then navigating to
 https://<YOUR_HOLOLENS_IP_ADDRESS>/devicesecurity.htm .

 Creating a security certificate
 When a PC connects to an external device such as a HoloLens, it wants to know that it can trust that device.
This trust is established with a security certificate. Each HoloLens generates a unique self-signed certificate
for its SSL connection. By default, your PC will not recognize or trust this certificate and will issue a certificate
error message. This situation can be remedied by uploading the certificate from the HoloLens to the PC, using
either a USB cable or a Wi-Fi link. Once the PC trusts the certificate, you can securely connect the two devices.

 ■ Warning If you make this trusted connection over Wi-Fi, be sure that it is a connection you trust. Among
other things, that means don’t establish the trust relationship over a Starbucks Wi-Fi network or any other
unsecured network.

 Here’s the procedure:

 1. Download your HoloLens’s security certificate from the Security page, which
is accessed by clicking on the Security tab on the Device Portal’s Home ribbon,
shown in Figure 5-6 .

CHAPTER 5 ■ GETTING STARTED WITH HOLOLENS DEVELOPMENT

30

 You can also reach this page by navigating to

 https://<YOUR_HOLOLENS_IP_ADDRESS?/devicesecurity.htm

 2. Follow the directions on the Security page shown in Figure 5-7 to retrieve the
security certificate you need and install it in the Trusted Root Certification
Authorities store.

 Figure 5-6. Select Security from the Home ribbon

CHAPTER 5 ■ GETTING STARTED WITH HOLOLENS DEVELOPMENT

31

 When you download the certificate, it will appear in a window, tell you it is not
yet trusted, and encourage you to install it in the Trusted Root Certification
Authorities store, as shown in Figure 5-8 .

 Figure 5-7. Security page

CHAPTER 5 ■ GETTING STARTED WITH HOLOLENS DEVELOPMENT

32

 3. Import the certificate using the Certificate Import Wizard, shown in Figure 5-9 .

 Figure 5-8. Trust certificate

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 5 ■ GETTING STARTED WITH HOLOLENS DEVELOPMENT

33

 4. Restart your browser.

 Device Portal features
 The Device Portal is the connecting link between your HoloLens and your development PC. It enables you to
set parameters on your HoloLens and gives you a wealth of performance data as well as other information.
The Device Portal consists of multiple pages, beginning with the Home page.

 Home page
 The Home page, the top portion of which is shown in Figure 5-10 , contains a lot of information and has text
boxes into which you can enter more information.

 Figure 5-9. Certificate Import Wizard

CHAPTER 5 ■ GETTING STARTED WITH HOLOLENS DEVELOPMENT

34

 The toolbar across the top of the page, shown in Figure 5-11 , contains important indicators and controls.

 ONLINE tells you whether your HoloLens is connected to your PC via Wi-Fi. If it indicates you are not,
and you are not connected by USB cable either, then the Device Portal is not talking to your HoloLens.

 SHUTDOWN turns off your HoloLens (assuming it is connected to the Device Portal by either Wi-Fi or
USB cable.

 Figure 5-10. Device Portal Home page

 Figure 5-11. Device Portal toolbar

CHAPTER 5 ■ GETTING STARTED WITH HOLOLENS DEVELOPMENT

35

 RESTART reboots the HoloLens.
 SECURITY opens the Device Security page, shown in Figure 5-12 .

 On this page, you can set up a trust relationship between a user and the HoloLens and between the
HoloLens and the development PC.

 COOL gives you a temperature reading on the HoloLens. If it gets too hot, it will shut down, so this gives
you a heads-up that perhaps you should suspend a compute-intensive activity until things cool off.

 A/C tells you whether the device is plugged in and charging via its USB cable. You should be able to
do that just by looking at the device, the PC, and the cable between them, but I guess this would tell you
whether you have a defective cable that is not charging the device.

 HELP opens the REST interface documentation page.
 In addition to the toolbar, the Home page does a number of other things:

• It gives you a device status.

• It tells you the name of your HoloLens and the version of Windows it is running.

• It asks you to enter your inter-pupillary distance (IPD) in millimeters.

• It gives you the option of changing the default device name.

 Figure 5-12. Device Security page

CHAPTER 5 ■ GETTING STARTED WITH HOLOLENS DEVELOPMENT

36

• It enables you to set the interval before the HoloLens enters Sleep mode after a
period of inaction.

• It enables you to set the interval before the HoloLens enters Sleep mode after being
plugged in.

 The menu on the left side of the Home page enables you to switch to other pages. The first of these is the
3D View page.

 3D view
 This view gives you details on what the paired HoloLens is seeing and how it interprets what it sees. You can
change your view of the device’s surroundings with your mouse. Figure 5-13 shows the viewing options that
are available to you.

 Click on the Force visual tracking box to turn on continuous visual tracking. Click on the Pause box
to turn visual tracking off. The View options determine what is displayed in the view area when tracking is
active, as follows:

• Show floor: When this option is checked, the checkerboard floor is displayed.

• Show frustum: The green rectangular box shows the view frustum, which is the area
within which holograms are visible to the user.

• Show stabilization plane: This shows the plane, perpendicular to the checkerboard
floor, that the HoloLens uses to stabilize motion.

 Figure 5-13. 3D View page

CHAPTER 5 ■ GETTING STARTED WITH HOLOLENS DEVELOPMENT

37

• Show mesh: Displays the surface mapping mesh that represents the user’s
surroundings.

• Show details: This option displays hand positions, head rotation quaternions, and
the device origin vector as they change when the user moves her hands and head.

• Full Screen button: Expands the view of the space around the user to fill the PC’s
screen

 Click the Update button to update the spatial mapping mesh of the area around the user. You must click
the Update button to get the latest mesh from the HoloLens device. Click the Save button to save the new
mesh as an obj file on the PC.

 Mixed reality capture
 With HoloLens, you can not only experience a holographically augmented world in real time, you can also
record the experience and replay it later. You can specify whether you want to capture holographic, video,
photo, or audio information, or any combination of them. Figure 5-14 shows the media-capture options and
displays any previously captured media that you can play, save, or upload to your paired PC.

 Available options include the following:

• The Holograms option enables you to capture just the holographic content of the
video stream. This content is rendered in mono rather than stereo, so it will not
appear doubled when viewed on the PC.

• The PV Camera option captures the full video stream from the photo/video camera.

 Figure 5-14. Mixed Reality Capture page

CHAPTER 5 ■ GETTING STARTED WITH HOLOLENS DEVELOPMENT

38

• The Mic Audio option captures the audio signal picked up by the HoloLens
microphone array.

• The App Audio option captures any audio signal generated by the app that is
running.

• The “Live preview quality” dropdown menu enables you to select the screen
resolution, frame rate, and streaming rate of the live preview.

 If you click the Live Preview button, the capture stream will be displayed. While the live preview is
running, the Live Preview button becomes the Stop Live Preview button. Clicking the Record button starts
recording the mixed-reality stream. Clicking it again stops the recording. Clicking the Take Photo button
captures a still image from the capture stream. Finally, the Videos and photos section at the bottom of the
page lists the media that have already been captured.

 Performance tracing
 To optimize the user’s experience while running your HoloLens app, you want to make sure that a bottleneck
in either computation, memory, storage, or I/O does not impact the performance of the app. During
development, if there is a bottleneck in your code, it is important to know where it is so that you can find
some way to get around it. This is where the Device Portal’s performance tracing capability comes in.
Figure 5-15 shows the Performance tracing page.

 Initially, you can run a First Level Triage trace to isolate the problem to either system activity,
computation, storage, or memory. Based on what you see there, you can drill down with a more
targeted trace of the part of the system that seems to be causing the problem. In addition to the standard
computation, memory, and I/O profiles, you can upload a custom profile to examine the exact parameters
that concern you the most.

 Figure 5-15. Performance tracing page

CHAPTER 5 ■ GETTING STARTED WITH HOLOLENS DEVELOPMENT

39

 Processes
 The Processes page, shown in Figure 5-16 , lists all the processes that are currently running on the HoloLens
device and what percentage of system resources each process is consuming. This can be an important clue
to what might be slowing down the performance of your application.

 System performance
 The System Performance page gives you a graphical snapshot, on an instant-to-instant basis, of the
performance of the major components of the HoloLens device, including power usage, frame rate, CPU
usage, GPU usage, I/O reads and writes, network traffic, and memory usage. Figure 5-17 shows several of
these graphical traces.

 Figure 5-16. Processes page

CHAPTER 5 ■ GETTING STARTED WITH HOLOLENS DEVELOPMENT

40

 Graphical traces include the following:

• The SoC Power trace shows the instantaneous system-on-chip power usage,
averaged over one minute.

• The System Power trace shows the instantaneous system power usage, averaged over
one minute.

• The Frame Rate trace shows the number of frames per second being served, the
missed VBlanks per second, and the consecutive missed VBlanks.

• The CPU trace shows the percentage of the CPU’s capacity that is being used.

• The GPU trace shows the percentage of the GPU’s capacity that is being used.

• The I/O trace shows the number of reads and writes being executed.

• The Network trace shows the number of bytes being received and sent over the
network connection.

• The Memory trace shows the amount of memory installed and how much of it is
currently in use.

 Apps
 The App Manager tells you which apps are installed and which are currently running. It also is the tool you
use to install a new app and to install any files that the app may depend upon. Once you have specified the
new app and its dependencies, clicking the Go button will deploy it to the HoloLens. Figure 5-18 shows the
App Manager page.

 Figure 5-17. System Performance page

CHAPTER 5 ■ GETTING STARTED WITH HOLOLENS DEVELOPMENT

41

 App crash dumps

 Sometimes you can tell what is wrong with an application by looking at a crash dump. It will at least show
you the point at which the application failed, if not quite what caused the failure. Figure 5-19 shows the
Crash Data page. It shows the currently running app and gives you the opportunity to specify that you want
to enable the crash dump facility for that application. It also lists dumps that it has saved in the past, along
with their size and when they were executed.

 Figure 5-18. App Manager page

CHAPTER 5 ■ GETTING STARTED WITH HOLOLENS DEVELOPMENT

42

 Kiosk mode
 Kiosk mode is similar to what you get at a computer kiosk at the mall. It is there to run one application
and one application only. The user cannot launch new apps or change the one that is running. The bloom
gesture does not do anything, and Cortana will not respond. Figure 5-20 shows the Kiosk Mode page.

 Figure 5-19. Crash Data page

 Figure 5-20. Kiosk Mode page

CHAPTER 5 ■ GETTING STARTED WITH HOLOLENS DEVELOPMENT

43

 Checking the Enable Kiosk Mode box will put the HoloLens into kiosk mode. Select an app to run at
startup from the “Startup app” dropdown menu and click on the Save button. The next time the HoloLens
is started, it will start in Kiosk mode. It will stay in that mode until you come back to this page, uncheck the
 Enable Kiosk Mode checkbox, and then click the Save button.

 ■ Note Kiosk mode was removed at one point during the beta program and may not be a part of the
released product. Don’t count on it being available.

 Logging
 The Realtime ETW Tracing page manages realtime Event Tracing for Windows (ETW) on the HoloLens. A
wide variety of variables can be traced, chosen from a list of registered providers. Figure 5-21 shows the places
where you specify which provider of data you want to use and the level of detail you want to trace to show.

 Figure 5-21. Realtime ETW Tracing page

CHAPTER 5 ■ GETTING STARTED WITH HOLOLENS DEVELOPMENT

44

 From the list of registered providers, select one, along with the tracing level you want. Levels are as follows:

 1. Abnormal exit or termination

 2. Severe errors

 3. Warnings

 4. Non-error warnings

 5. Detailed trace

 Click or tap the Enable button to start the trace. When you do this, the registered provider you have
specified is added to the “Enabled Providers” dropdown list.

 Instead of a registered provider, you can specify a custom ETW provider and tracing level. Identify the
provider by its GUID (Globally Unique Identifier). Don’t include brackets in the GUID. Click the Enable
button to add your custom provider to the list of enabled providers.

 Enabled providers are providers that are actively performing a trace. To stop a trace, click or tap the
Disable button, with the selected provider showing in the field to the left of the Disable button. To stop all
traces, click or tap the Stop All button.

 The providers history shows the providers that were enabled during the current session. Click or tap the
Enable button to enable a provider that is currently disabled, and click or tap the Clear button to clear the
history of enabled providers.

 Below the provider specifications is the Events list, which records the events encountered by a trace.
You can apply filters to events to home in on the specific events that you want to see. You can set either single
or multiple criteria to sift out the events of interest.

 Simulation
 The simulation page provides the tools for recording and then playing back a scene taking place in a room.
Figure 5-22 shows the controls that perform these operations.

CHAPTER 5 ■ GETTING STARTED WITH HOLOLENS DEVELOPMENT

45

 The HoloLens device can capture multiple streams of information with its array of sensors. It can capture the
user’s head movement, hand gestures, spatial-mapping information, and the visible and audible environment.

 To capture a room, tick the Capture room box, fill in a room name, and then click on the Capture
button. Specify which streams of information you want to record: Head, Hands, Spatial Mapping, or
Environment. Then give the recording a name and click the Record button.

 Once you have made and saved a recording, you can play it back either on the HoloLens Emulator or on
the HoloLens device itself. To play it back on the HoloLens, click the Upload Recording button.

 The Control mode can be in one of two possible modes: Simulation or Default. In the Simulation mode,
the HoloLens sensors are disabled and the Emulator or device is playing back a recording. In the default
state, sensors are enabled and functioning and no recording is being played.

 Networking
 The Networking page shows the Wi-Fi network adapters available on the development PC and gives you the
opportunity to select one with which to connect your HoloLens to the PC. You can also connect the two via
the USB cable supplied with the HoloLens Development Kit, but that would remove the advantages of being
untethered.

 Figure 5-22. Simulation page

CHAPTER 5 ■ GETTING STARTED WITH HOLOLENS DEVELOPMENT

46

 Virtual input
 You can communicate via text from the development machine to the HoloLens. Click or tap in the box under
the Virtual Keyboard title and then type into the “Input text” textbox. Click the Send button to complete the
transmission. What you have written will appear, floating in space, in front of the person wearing the paired
HoloLens. Figure 5-23 shows what this one-way communication channel looks like.

 Device Portal REST APIs
 In addition to all the things you can do with the standard Device Portal functions, a very comprehensive set
of APIs gives you fine-grained control over just about every aspect of HoloLens operation that you might
want to affect.

 Summary
 This chapter gives you detailed instructions on what hardware and software you need in order to create
holographic applications and describes how to install and configure them. It introduces you to the tutorials
available on Microsoft’s online Holographic Academy and describes the intricacies of connecting your
HoloLens to your development PC. The Device Portal is a source of a wealth of information about the
performance of your HoloLens as well as a means of passing applications back and forth between the
HoloLens and the development PC.

 Once you have set up the hardware, gone through all the tutorials, and explored the nooks and crannies
of the HoloLens that are described here, you are ready to move forward and tackle a real project. That is what
Part II of this book is all about — creating and building applications. The first step in that journey is to select a
project to tackle.

 Figure 5-23. Virtual Input screen

 PART II

 Building Apps

49© Allen G. Taylor 2016
A. G. Taylor, Develop Microsoft HoloLens Apps Now, DOI 10.1007/978-1-4842-2202-7_6

 CHAPTER 6

 Choosing a Project to Tackle

 Since you are reading this book, it’s a pretty good bet that you would like to develop applications that will run
on the Microsoft HoloLens. The HoloLens is an exciting platform with potential applications that nobody
has thought of yet. This is a ground-floor opportunity for software developers. The $3,000 price tag for a
Developer’s Kit means that a mass-market consumer version of the HoloLens is probably several years away.
In the meantime, there are plenty of enterprise-level use cases for a device that can embed realistic three-
dimensional holograms into the user’s surroundings. Retailers can use the technology to help customers
visualize how a product would look in their home, changing colors or features at will. The educational
and training applications are many. Holographic images of complex objects, such as jet engines, can be
examined in detail and even disassembled to enable scrutiny of individual parts. Step-by-step maintenance
and repair operations can be practiced with a holographic representation superimposed on top of a device,
requiring minimal intervention from a human instructor.

 The application you choose to develop for your first project will probably depend to some extent on
the kinds of applications that you have developed in the past. Microsoft initially envisioned the HoloLens
as a game platform and entertainment device. They worked with the Unity development environment,
popular with game developers, to create the tools for developing holographic applications for the HoloLens.
As a result, the first people to get excited about the possibilities opened up by the HoloLens were game
developers. With the HoloLens, game action, rather than being restricted to the flat panel of a video screen,
can take place in a full three dimensions in a room, a series of rooms, or even outdoors. HoloLens is a good
platform not only for any of the traditional types of games that people are accustomed to, but also for entirely
new types of games that have yet to be conceived.

 It Isn’t All About Games
 Although game developers were among the first to get excited about the potential of the HoloLens, use cases
in business, government, research, and education may have a greater impact than games do. Two HoloLens
devices are already in use on the International Space Station. Currently, walking an astronaut through a
complex maintenance procedure via an audio uplink from Mission Control is time consuming and subject to
error. An astronaut wearing a HoloLens would be able to see right in front of her what needs to be done, and
see how the holograms she sees mesh with the physical device she is working on.

 The First Applications: Industrial, Commercial, and
Educational
 The first release of the HoloLens is the $3,000 Developer Edition. As we are still at the beginning, there
are only a handful of apps available, so it is doubtful that many end users would buy one. However, there
is quite a bit of diversity among developers. Some developers will be game developers who work for

CHAPTER 6 ■ CHOOSING A PROJECT TO TACKLE

50

large game-development companies. Others will be independent game developers who sense a ground-
floor opportunity. Some will be non-game-application developers who envision business or educational
applications that would benefit from the ability to interact with both virtual and physical objects.

 Industrial applications
 A new product design, such as an automobile drive train, can be walked around and viewed from all
angles before any metal is actually bent. This can save time and money by reducing the number of times a
prototype must be rebuilt. Figure 6-1 shows such a design at the Volvo design center.

 In many different work situations, an employee must perform a complex procedure of some kind. If
she hasn’t performed this particular procedure in a while, she may have to refer to written work instructions
or a procedure manual. This entails looking back and forth between the instructions and the item she is
working on. Sometimes it is not crystal clear how the text in the manual relates to what must be done. If it
were possible to show exactly what needs to be done, step by step, with both a virtual representation and the
physical object right in front of the worker, there would be much less possibility of error and the job could
be completed more quickly, perhaps much more quickly. Figure 6-2 shows both virtual information and a
physical car door directly in front of an automotive assembly worker.

 Figure 6-1. Examining a prototype drive train

CHAPTER 6 ■ CHOOSING A PROJECT TO TACKLE

51

 An even bigger advantage occurs if a technical expert at a remote location can Skype in to the on-site
employee and see exactly what the on-site employee is looking at. It is almost like having the expert looking
over the employee’s shoulder and giving step-by-step instructions on what to do to complete the operation
at hand. Since the HoloLens is a fully functional Windows 10 computer with a built-in video camera, it can
easily support this kind of cooperative operation.

 Commercial applications
 In a sales situation, “try before you buy” gives a potential customer a much better idea of what a product
would actually be like than would be possible from seeing the product on a store shelf, a catalog page,
or a Web site screen. In an early commercial application, Microsoft is partnering with the Lowe’s home
improvement chain to help sell kitchen remodeling. The HoloLens-wearing customer enters a relatively bare
showroom, and holograms show various configurations and textures of countertops, tables, and cabinets,
all at actual size. People can see, rather than having to imagine, how appliances and room elements might
look within a room. Figure 6-3 shows a customer designing her new kitchen at her local Lowe's home
improvement center.

 Figure 6-2. HoloLens on the assembly line

CHAPTER 6 ■ CHOOSING A PROJECT TO TACKLE

52

 Educational applications
 Probably the biggest early application of HoloLens technology will be in educational and training
applications. HoloLens is unique in its ability to enable an instructor to direct the attention of students
to holographic details and animations overlaid upon physical items such as jet engines or automatic
transmissions. Archaeology professors can show students what the insides of a Mayan pyramid or
Pompeiian villa were like at their height hundreds or thousands of years ago, overlaid on top of the ruins
that remain today. New employees can be brought up to speed on how to do their jobs in a way that seems
real but without the need for individualized instruction from a human expert. Human anatomy can be
experienced in a way that goes beyond what you get from illustrations in books or on life-size posters, as
shown in Figure 6-4 .

 Figure 6-3. HoloLens helps you visualize and then design a room

CHAPTER 6 ■ CHOOSING A PROJECT TO TACKLE

53

 Educational institutions such as Carnegie Mellon University, Dartmouth College, Virginia Tech,
Clackamas Community College, and the University of California – Berkeley are using HoloLenses in a diverse
array of fields, including interactive art, augmented reality for the visually impaired, data analysis, trade-
based education, and control of airborne drones.

 Tearing Down and Reassembling an Automatic
Transmission
 There are around 260 million passenger cars on the road in the United States, not counting trucks of any
kind. Nearly all of those cars contain an automatic transmission, as manual transmissions have become an
endangered species restricted to the vehicles of automotive purists and those who want to save a couple of
hundred bucks. Most young adults today have never learned how to operate a manual transmission car.

 An automobile transmission, like an automobile engine, is an expensive part of a car, and thus is often
repaired rather than replaced and scrapped when it ceases to work. With 260 million cars on the road, a
significant number at any given time will be having transmission problems, making transmission repair a
much needed subspecialty of the trade of automobile mechanic.

 Figure 6-4. The systems of the human body

CHAPTER 6 ■ CHOOSING A PROJECT TO TACKLE

54

 Community colleges and other educational institutions that teach job skills in the trades favor a hands-
on approach. In the case of automobile maintenance, physical contact with the systems and subassemblies
being taught is critical. It is difficult to switch back and forth between an engine or a transmission being
disassembled and a thick service manual on the bench nearby, particularly if the mechanic has greasy
hands. With relevant information being holographically displayed right above the piece being worked on,
the student can move through a disassembly or reassembly procedure without having to pause to consult
the manual and without putting oily fingerprints on manual pages or computer keyboard.

 An automatic transmission is a complex assembly of gears, clutches, gaskets, shafts, and other parts that
fit together like a puzzle. Planetary gears operate in different modes depending on which gear (first, second,
third, etc.) is selected.

 The HoloLens can enable the student to see an exploded view of all of these parts and then control
an animation of the parts all coming together to form a complete transmission. Callouts and labels can be
added at appropriate places and times, and a verbal commentary from an instructor can help the student to
understand the purpose of each part and how it contributes to the function of the complete assembly.

 Summary
 Originally conceived as a new gaming device, the HoloLens has evolved into a device aimed squarely at
commercial, industrial, and educational institutions. Use cases in these areas can justify a higher cost than
gamers are accustomed to paying. Anyone can buy a HoloLens, but Microsoft sees their best customers
as being enterprises that can improve their businesses by providing their employees or customers with
holographic mixed reality.

 Once you have chosen a project to tackle, the next step is to assemble a team of people to bring that
project into existence. This requires people with talents in a variety of disciplines who can work together to
create a holographic application that fills a need.

55© Allen G. Taylor 2016
A. G. Taylor, Develop Microsoft HoloLens Apps Now, DOI 10.1007/978-1-4842-2202-7_7

 CHAPTER 7

 Forming Project Teams

 The days of the lone programmer, much like those of the lone scientist, are receding into the past. There are
too many specialties, and they are too complex for one person to master to the extent necessary to produce
a commercial-quality application. Application development today is a team endeavor. Tasks are broken up
by specialty, with a major division between those who create the application’s graphical and audible assets
and those who write the code that puts those assets into a functional context. Graphics and sound designers
create the assets that make up the substance of the application. Programmers generate the code that gives
those assets the behaviors that bring the application alive.

 The Project Leader
 It goes without saying that project success hinges on having a clear idea of what the final product will be.
Anyone on the team can contribute to this idea, but there should be one person charged with making sure
that all objectives are met. That person is the project leader.

 It is the responsibility of the project leader to be aware of the status and progress of the various
components of the project and to provide any needed support to team members working on the various
aspects of the project. This person should be a generalist who is reasonably familiar with all the specialties
involved in producing a holographic application without being a world-class expert in any one of them. She
should also be a good planner and organizer.

 The project leader must ensure that every aspect of the project is properly documented, including all
the false starts and ideas that were considered but ultimately not pursued. Ongoing maintenance of the app
will depend on this knowledge after responsibility for the app is turned over by the development team to the
ongoing maintenance team.

 The Design Team
 The first team to swing into action on a new development project is the design team. These are the people
who hammer out exactly what the application will look like, what it will do, and how it will do it. It has
members representing both the creative and the technical sides of the project. This ensures that the design
that is produced not only meets project objectives, but is also feasible given the staffing, budget, and
schedule that the team must work within. Once the design is frozen, the members of this team can migrate
to the teams that perform the actual implementation.

CHAPTER 7 ■ FORMING PROJECT TEAMS

56

 The Computer Graphics Team
 A holographic application must, by definition, include holograms. These holograms are the assets created
by the computer graphics team. The mixed reality produced by a HoloLens device includes holograms
that have locations and behaviors. The graphics specialists on this team create the holograms using a tool
such as Maya. Anyone familiar with 3D design, consisting of 3D meshes, vertices, triangles, and normals,
already knows how to do this. They bake in most of the animations too. The programming specialists put the
holograms into the desired context. The two types of professionals work together to produce a compelling
experience for the person running the app.

 The Computer Vision Team
 The computer vision team works with the HoloLens spatial-mapping capability to match the holograms
created by the computer graphics team to the contours of the space where the user will experience the
application. The application must be able to adapt itself to whatever space it finds itself in when it is
launched. This team will be primarily made up of programming specialists.

 The Audio Team
 A hologram can have spatial sound associated with it. Spatial sound is sound that appears to be coming
from the hologram that is “generating” the sound. This is achieved by modifying the phase of the sound fed
into each ear by the HoloLens speakers. Sound can be music, sound effects of various sorts, speech, or any
combination of the three. Sound can be very important in making holograms seem more like real, physical
objects. They can also help to propel a narrative. Games, for example, depend heavily on music to help set
the mood of the action taking place at any given moment.

 The QA Team
 Before releasing a new application to customers, or even to beta testers, it must be thoroughly thrashed
by the internal quality assurance (QA) team. Users are bound to do things with a new application that the
developers never conceived would be possible. Users will find a way to put it into an obscure operating
mode or stress it in innumerable ways. It is important to put the app through the wringer before customers
can get their hands on it.

 It helps if the QA team can mimic the mind of the naïve or even clueless user and make every mistake
possible. They should purposely violate every recommendation in the user’s manual. Speaking of the user’s
manual, they should also check that it explains everything in the simplest possible way, in addition to being
accurate and grammatically correct.

 Parallel Development Paths
 At least some of the work of most of the project teams can be done in parallel, as long as that work does not
depend on work that has already been completed by another team. Even before the design team completes its
work, everyone should have a general sense of what the final app will be expected to do and how it will do it.
With that as a basis, people can start investigating the kinds of things they will need once the design has been
finalized and they are given the go-ahead to start producing the pieces that will make up the final product.

CHAPTER 7 ■ FORMING PROJECT TEAMS

57

 The design team is the one that will move into serious production mode first. All the other teams
depend on what the design team comes up with. From a staffing viewpoint it may make sense to wait until
the design team has substantially completed their work before staffing up the other teams. As their work
is completed, they can join the newly forming computer graphics team, computer vision team, and audio
team. The QA team can form later yet, after an early prototype has been developed by the other teams.

 Intergroup Communication
 Some of the best applications have been the product of relatively small project teams. Communication
among all the members of the team, regardless of the subteam they belong to, is critical to success, and if
communication breaks down because the team is too large or its members are remote from each other,
success is very difficult to achieve. Team members should be comfortable with each other, and it is also
good if they can socialize outside of the work context. A relaxed, friendly atmosphere encourages creativity,
communication, and productivity.

 Summary
 In this chapter, we explored the different aspects of a holographic development project and the people
who would perform the various jobs that such an effort requires. Also emphasized was the importance of
communication among group members.

 Once your team is in place, it’s time to actually start developing your first holographic application. That
is what the next chapter is all about.

 PART III

 Developing with the Unity
Framework

61© Allen G. Taylor 2016
A. G. Taylor, Develop Microsoft HoloLens Apps Now, DOI 10.1007/978-1-4842-2202-7_8

 CHAPTER 8

 Create a Hologram with Unity
and Visual Studio

 Mixed-reality devices such as the Microsoft HoloLens represent an entirely new medium. As a result, there
are no pre-existing software tools that are specifically designed to create holographic applications. However,
there are tools that have been developed for other media that can be adapted to develop holographic apps.

 Holograms are three-dimensional images that can be viewed from any angle, giving the impression
of being actually present in space. Three-dimensional designs have been around for a number of years in
animated motion pictures, video games, and models for fabrication with 3-D printers. The tools used to
create these 3-D models can be used to create holograms too.

 Video games give us not just three-dimensional objects, but also three-dimensional characters that
move and have a variety of behaviors. These characters and other objects are similar to holograms except for
the fact that they exist on a two-dimensional screen rather than in three-dimensional space.

 We can use the tools that have been developed for creating 3-D models to develop holographic assets
and then apply the tools used for developing action-oriented video games to give those assets behaviors that
bring them alive.

 Development System Requirements
 The first thing that a HoloLens developer must provide is development hardware and operating software
that support HoloLens development. Required are the following:

• A 64-bit PC that supports virtualization in its BIOS

• Windows 10 Pro, Education, or Enterprise Edition with Hyper-V virtualization
support; Windows 10 Home Edition will not work, nor will a version of Visual Studio
earlier than Visual Studio 2015, Update 1.

• At least 8 GB of RAM in the PC

• Support for DirectX 11 or above

 Develop Apps without Hardcore Programming Skills
 In the early days of computers, programmers had to explicitly set every bit of every instruction to the
appropriate one or zero value. Assemblers and compilers raised things to a higher level of abstraction,
making the programmer’s job much easier. Game-development environments such as the Unity framework
raise the abstraction level even higher. Although those who program the behavior of game objects still must

CHAPTER 8 ■ CREATE A HOLOGRAM WITH UNITY AND VISUAL STUDIO

62

know the basics of the computer language used by Unity or other similar platforms, it is no longer necessary
to dive down to the nuts-and-bolts level. Much of the code you would need in order to give your characters
and environments the behaviors you want has already been written. You just need to place it piece by piece
into the context of your application.

 The development tools available today have had the effect of democratizing the application-
development profession. Unity is an example of an application-development platform that enables
you to create rich and dynamic worlds. Visual Studio is a full-featured programming environment that
interfaces smoothly with Unity to provide an integrated tool chain for moving from concept to fully featured
application. The latest versions of Unity and Visual Studio support the development of holographic
applications in addition to the desktop and mobile apps that they have been supporting for many years now.

 Installing Unity and Visual Studio
 Unity Technologies, at unity3D.com , is in business to make a profit. They earn revenue by licensing their
development software for a fee. However, they also realize that aspiring developers need to be able to learn
to use the Unity framework before they start earning enough to pay for a license. As a result, there are two
versions of Unity: the Personal Edition and the Professional Edition. The Personal Edition is full featured and
includes everything you need in order to learn how to develop holographic applications. It is a free download.

 The Professional Edition includes everything that the Personal Edition does, along with additional
features that you will need if you want to sell commercial applications that you build on top of the Unity
framework. Once you go Pro, Unity will collect a monthly fee from you for the use of their platform.

 Installing Unity Personal Edition is as simple as clicking on the FREE DOWNLOAD button on the Unity
Web site. From there, just follow the instructions. For HoloLens use, you will want to download the beta
version that includes holographic support.

 Microsoft’s Visual Studio is an integrated development environment that you can use to build
applications for Windows, Android, and iOS, as well as Web- and cloud-service applications. Oh, and you
can also use it to build holographic applications in combination with Unity.

 Like Unity, Microsoft is also in business to make money, and, like Unity, they realize that to sell software
services they must have customers who know how to use those services. Visual Studio 2015 Community is
a free download that you can use as long as you are learning. When you start needing the tools and services
that will enable you to develop commercial applications, Visual Studio Professional will give you what you
need for a monthly fee. For large development teams working on complex projects, Visual Studio Enterprise
is the product for you, at a larger fee. This book is about learning how to create holographic apps with a
combination of Unity and Visual Studio. For that job, the free Visual Studio Community is all you need. You
can download it from www.visualstudio.com .

 Quick Tour of the Unity Framework
 When you launch Unity to start the development of a new application, it presents you with the screen shown
in Figure 8-1 .

http://www.visualstudio.com/

CHAPTER 8 ■ CREATE A HOLOGRAM WITH UNITY AND VISUAL STUDIO

63

 Give your new project a name, a location in storage, and the name of your organization. In addition,
specify 3D from the 3D/2D toggle and enable Unity analytics. When all that is done, click the Create Project
button. This creates your project and displays the development environment shown in Figure 8-2 .

 Figure 8-1. Unity Getting Started screen

 Figure 8-2. Unity Framework development environment

CHAPTER 8 ■ CREATE A HOLOGRAM WITH UNITY AND VISUAL STUDIO

64

 The Framework is divided into functional areas, including the Hierarchy panel, the Scene panel, the
Inspector panel, the Project panel, and the Console panel. The Services panel, which alternates with the
Inspector panel, controls access to various services offered by Unity Technologies. We will discuss each of
these later in the context of an actual development. We will also discuss the options that are available from
the submenus that drop down from the menu across the top of the Framework.

 Your First Hologram
 Let’s start our exploration of the Unity/Visual Studio development environment by creating a very simple
hologram. Although that may seem like a simple task with the powerful tools we have at our disposal, it is
fairly complicated. A sequence of steps must be executed in a precise order. If you miss one or mix up the
order, you will be left staring at a cryptic error message, scratching your head.

 Make sure you have the right equipment, configured in the right way
 An old saying goes, “The right tools for the right job.” This is especially true if you are in the early days of
developing holographic applications for the Microsoft HoloLens. If you don’t have the right tools, your apps
will never get to first base. If you have the right tools, but don’t apply them in the right way, you’ll never get to
second. If you want to round third and cross the plate ahead of the throw from the outfield, you will need to
have the right tools, apply them in the right way, and do it in the right order.

 The right tools include the following:

• A PC with at least 8 GB of RAM

• DirectX 11 or above video card support

• Windows 10 Pro or Enterprise

• Hyper-V support in your PC

• Unity 5.4 or above with holographic support

• Visual Studio Community 2015, Update 2 or above

 Applying the right tools in the right way is sometimes not all that obvious a task. That is why carefully
following the steps in this book or in online tutorials is critical to success. Since many of the steps depend on
the steps that have gone before, applying them in the right order is also important.

 Considering all the places where a slight misstep could lead to failure, when you make it through the
entire process, don your HoloLens, and actually view a hologram that you have created, sitting there in all its
3-D glory, it is an occasion for major rejoicing.

 Create a new project in Unity
 Here’s the step-by-step procedure to follow:

• Launch Unity.

• From the window shown in Figure 8-1 , select New .

• Enter a project name, such as FirstHologram.

• Enter a location in which to save your project.

• Ensure that the 3D toggle switch position is selected, rather than the 2D position.

• Click on the Create Project button.

CHAPTER 8 ■ CREATE A HOLOGRAM WITH UNITY AND VISUAL STUDIO

65

 Place the camera
 All holograms that you create will be located at a position relative to the main camera. The main camera is at
the position of the person wearing the HoloLens. Figure 8-2 shows the main camera at its default location of
X = 0, Y = 1, and Z = -10 in the Scene pane.

• Select Main Camera in the Hierarchy panel and then look at the Inspector panel,
shown in Figure 8-3 .

• Note in the Transform section of the Inspector that the position of the main camera
shows it to be at x = 0, Y = 1, and Z = -10.

• Note that the values for Rotation are X = 0, Y = 0, and Z = 0, and the values for Scale
are 1, 1, and 1.

 Figure 8-3. Inspector panel for main camera at start of a new project

CHAPTER 8 ■ CREATE A HOLOGRAM WITH UNITY AND VISUAL STUDIO

66

 We now need to change some of these values, as follows:

• In the Transform section of the Inspector, change the Position coordinates from
0, 1, -10, to 0, 0, 0.

• In the Camera section of the Inspector, change the “Clear Flags” dropdown from
 Skybox to Solid Color .

• Click in the Background area to display the Color window, and then change the
RGBA values to 0, 0, 0, 0. Having all zeros means that no light will be painted in the
background area. The background will be the real world of whatever room you are in.

• Change the Clipping Planes Near value from 0.3 to 0.85. This will prevent holograms
from rendering too close to the user’s eyes.

 Figure 8-4 shows the Inspector panel at this point.

 Figure 8-4. Inspector panel after environment has been set up

CHAPTER 8 ■ CREATE A HOLOGRAM WITH UNITY AND VISUAL STUDIO

67

 Create a hologram
 Now that the Unity environment is set up, we can create a hologram.

• In the top-left corner of the Hierarchy panel, click on the Create button, and from the
menu that drops down, choose 3D Object and then Cylinder .

• Select the newly created cylinder in the Hierarchy panel.

• In the Inspector, change Position to x = 0, Y = 0, Z = 2. This will position the hologram
two meters in front of the user’s starting position.

• Change Rotation to X = 30, Y = 30, Z = 30 and scale to X =.25, Y = .25, and Z = .25. This
gives the cylinder a dimension of .25 meters along each axis.

• Click the Play button (a right-pointing triangle) above the Scene panel to change
to Scene mode and view the cylinder you have created. Figure 8-5 shows what this
looks like in the Scene panel.

• Click the Play button again to exit Scene mode.

• Save the scene by selecting File > Save Scene, naming the scene, and then clicking
Save again.

 Export Your Project to Visual Studio
 The next step in the process of creating a holographic application is to export the project to Visual Studio. To
do that, follow these steps:

• From the main menu at the upper left, select Edit ➤ Project Settings ➤ Quality. This
displays the Quality Settings panel of the Inspector, shown in Figure 8-6 .

 Figure 8-5. Cylinder asset in Scene panel

CHAPTER 8 ■ CREATE A HOLOGRAM WITH UNITY AND VISUAL STUDIO

68

 Various quality levels are shown, from Fastest all the way to Fantastic. Above the
second column of checkboxes is the green logo of the Windows Store. At the bottom,
in the Default row, is a downward-pointing triangle.

• Click on the triangle to display the Quality menu, then select Fastest . Our hologram
is not very complex, so the Fastest setting will work just fine. As a bonus, it will be fast.
This will cause the Fastest checkbox under the Windows Store logo to turn green.

 We now want to make sure that what we send to Visual Studio is correct for creating a holographic
application.

• Click on File ➤ Build Settings. This will display the Build Settings window, shown in
Figure 8-7 .

 Figure 8-6. Quality Settings panel of the Inspector

CHAPTER 8 ■ CREATE A HOLOGRAM WITH UNITY AND VISUAL STUDIO

69

• In the Platform menu, select Windows Store .

• Click the Switch Platform button.

• Set SDK to Windows 10.

• Set UWP Build Type to D3D.

• Click on the Player Settings button. This will display the Player Settings panel in the
Inspector.

• In the Settings for Windows Store area of the Player Settings panel, in the Other
Settings group, locate the Rendering section.

• Check the Virtual Reality Supported box.

 Figure 8-7. Build Settings window

CHAPTER 8 ■ CREATE A HOLOGRAM WITH UNITY AND VISUAL STUDIO

70

• Confirm that the “Virtual Reality SDKs” dropdown lists Windows Holographic.

• Return to the Build Settings window and click the Add Open Scenes button. This will
specify the scene you have just created as the one to build.

• Check the Unity C# Projects checkbox to tell Visual Studio that this is a C# project.

• Click the Build button. A Build Windows Store window will appear, as shown in
Figure 8-8 .

• Right-click in the folders area to display a pop-up menu and then select
New ➤ Folder.

• Name the new folder App.

• With the App folder selected, click on the Select Folder button. This will start the
build operation. Progress is shown in the Building Player progress bar. When the
build process completes, the project’s directory will reappear, as shown in Figure 8-9 .

 Figure 8-8. Build Windows Store directory window

CHAPTER 8 ■ CREATE A HOLOGRAM WITH UNITY AND VISUAL STUDIO

71

• Double-click on the App folder to select it. This shows what is now in the App folder
(Figure 8-10).

• Double-click on the .sln file. I named my project Unity Tour, so my file is UnityTour.
sln. Yours will be whatever you named your project. This launches Visual Studio.

• Visual Studio’s error list may show some warnings. You can usually ignore these.

• In the Solution Explorer, right-click on Package.appxmanifest and select View Code
from the menu that pops up.

 Figure 8-9. Project directory with folders

 Figure 8-10. App folder contents

CHAPTER 8 ■ CREATE A HOLOGRAM WITH UNITY AND VISUAL STUDIO

72

• Find the line starting with TargetDeviceFamily and change Windows.Universal
to Windows.Holographic . (If it already says Windows.Holographic , all is good.
An update has been made.)

• In that same line, change MaxVersionTested="10.0.10240.0" to
 MaxVersionTested="10.0.10586.0".

 The screen will now look much like that in Figure 8-11 .

• Click on File ➤ Save All to save Package.appxmanifest.

 Build the Project in Visual Studio
 Now everything is almost ready for you to build the project in Visual Studio. The ribbon at the top of the
Visual Studio screen is shown in Figure 8-12 .

 Figure 8-12. Visual Studio menu and function ribbon

 Figure 8-11. Package.appxmanifest code after modifications

CHAPTER 8 ■ CREATE A HOLOGRAM WITH UNITY AND VISUAL STUDIO

73

 Note that the dropdown menus in the ribbon show Debug, ARM, and Device.

• Change these entries to Release , X86 , and Remote Machine .

 A Remote Connections dialog box will appear, as shown in Figure 8-13 .

• Under Manual Configuration, enter the DHCP network address of your
HoloLens device. This assumes that you have already paired your HoloLens to
your development PC as discussed in Chapter 5 , and that you know its DHCP
network address. The Authentication Mode dropdown should be left as Universal
(Unencrypted Protocol) .

• Click the Select button.

 Figure 8-13. Remote Connections dialog box

http://dx.doi.org/10.1007/978-1-4842-2202-7_5

CHAPTER 8 ■ CREATE A HOLOGRAM WITH UNITY AND VISUAL STUDIO

74

 Deploy Your Project to the HoloLens
 At last, you can send your project via Wi-Fi to your HoloLens.

• Don your HoloLens and make sure it is on and active.

• From the main menu, click Debug ➤ Start without Debugging. The build operation
will commence. This will take some time. A green progress bar at the bottom right
will inform you of progress.

• If things have gone well, a Unity splash screen will appear.

• Aim your gaze into an open area. In due time, your cylinder should appear in front of
you. If you don’t see it after the deploy operation completes, look up and down and
all around. Sometimes holograms appear in unexpected places. Once you do find it,
though, you will notice it will stay in the same place as you move around and view it
from various angles.

 Congratulations! You are now a holographic application developer. As an exercise, try creating
holograms of other geometric objects, such as spheres or cubes.

 Summary
 In this chapter, we have gone through all the steps involved in creating a simple hologram. When you reach
this point, congratulate yourself. You are a genuine holographer.

 In the next chapter, we will take a close look at the tool chain that Microsoft recommends for developing
holographic applications.

75© Allen G. Taylor 2016
A. G. Taylor, Develop Microsoft HoloLens Apps Now, DOI 10.1007/978-1-4842-2202-7_9

 CHAPTER 9

 Developing with Unity and
Visual Studio

 Building holographic applications is a new endeavor, as it was pioneered by Microsoft HoloLens developers.
As such, there are no software tools that have been specifically designed to build and deploy such
applications. However, 3D holographic applications are similar in many ways to 3D computer games.

 The major difference is that holograms really are 3D objects located in 3D space, while 3D computer
games look like they are three dimensional, but in reality are confined to a 2D screen. Because of their
similarity, tools that have been developed for creating computer games and video games have been
modified to create holographic applications for the HoloLens. These applications could be holographic
games, such as Microsoft's Robo Raid, Fragments, or Young Conker, or they could be industrial, commercial,
or educational applications.

 Combining Scripts from Visual Studio with Assets in Unity
Project Explorer
 Unity, being primarily a game engine, gives you the tools you need to create rich and complex game
environments as well as characters and artifacts to place in those environments. It depends on small
computer programs called scripts to imbue assets, such as characters and artifacts, with behaviors. Those
scripts could be written in either C#, which is a Microsoft language, or JavaScript. Not surprisingly, Microsoft
recommends the use of C# in developing holographic applications for the HoloLens.

 Visual Studio is Microsoft’s major tool for developing applications of all kinds, using a wide array of
languages, one of which is C#. There is tight integration between the latest versions of Unity and Visual Studio
such that a new script created in Visual Studio can be ported directly into a Unity project in an intuitive and
seamless manner. The application we built in Chapter 8 to create a holographic cylinder did not use any
scripts to give the cylinder any behaviors. It just hangs there suspended in space. However, C# scripts were
running “under the covers and out of sight” to bring the hologram to life. More elaborate projects, such as
those we will cover later in this book, will use scripts to give behaviors to the holograms we create.

 Giving Objects Behaviors Using Scripts
 A static hologram floating in front of you in three-dimensional space in and of itself is a pretty amazing thing
that people have dreamed about for decades. However, much cooler and a great deal more useful would be a
hologram that had behaviors, such as obeying the laws of physics, moving, changing shape, emitting sounds,
or responding to the actions of people.

http://dx.doi.org/10.1007/978-1-4842-2202-7_8

CHAPTER 9 ■ DEVELOPING WITH UNITY AND VISUAL STUDIO

76

 Game platforms such as Unity have been giving behaviors to characters in their video games for quite
a while now. This is achieved by attaching scripts written in a programming language to those characters or
other game objects. The same basic technology that works for game objects confined to a screen will work
for holograms in space. Multiple scripts can endow a hologram with multiple behaviors.

 In Unity, game objects are controlled by the components that are attached to them. Unity includes a
library of components that you can attach to game objects, but you can also create your own components
with scripts. These scripts could conceivably be written in a Unity-specific version of either JavaScript or C#,
but Microsoft has chosen to focus on C# for HoloLens development.

 For HoloLens development, Visual Studio is used as the development environment (IDE) in which
to create the scripts that are then added as components to game objects in Unity. Scripts could be written
completely with the MonoDevelop IDE in Unity, but the tools available in Visual Studio make creation there
more convenient, and it is currently the only solution endorsed by Microsoft.

 Sensing User Actions with Scripts
 The HoloLens device can sense various things about the user who is wearing it. It can sense where that
person is looking by sensing head orientation. It can detect select gestures the person makes with her hands.
And it can detect voice commands that she makes. The HoloLens can respond to all of these actions if scripts
have been written to determine what those responses should be. MonoBehaviour is the default base class
from which every script is derived. To help you learn the Unity API, the MonoBehaviour wizard and the
Quick MonoBehaviour wizard are provided, and Unity’s Help system is also a good resource.

 Unity/Visual Studio Integration
 There is tight integration of Visual Studio with Unity, especially with the advent of Visual Studio 2015. Visual
Studio Tools for Unity (VSTU) makes a direct connection with the Unity Editor. Common scripting tasks are
automated, transferring information from Unity into Visual Studio and sending finished scripts from Visual
Studio back to Unity.

 Even Unity’s scripting documentation is available right in Visual Studio. If VSTU does not find the
desired API documentation locally, it will try to find it online. To access Unity documentation from Visual
Studio, highlight or place the cursor over the Unity API you want to learn about and press Ctrl+Alt+M
followed by Ctrl + H .

 Unity’s MonoBehaviour scripting wizard
 In Unity, most scripts are derived from the MonoBehaviour class by overriding some of its methods. With
the MonoBehaviour wizard, you can quickly create empty definitions of the MonoBehaviour methods that
you want to overload. With this wizard, you can choose one or more methods to overload from the list of
available methods. You can also choose where you want to insert those methods in your code and whether
to include comments that describe the methods and how they are used.

 The Quick MonoBehaviour scripting wizard
 Whereas the MonoBehaviour scripting wizard gives you a lot of information about the methods you may
want to override, the Quick MonoBehaviour scripting wizard assumes you already know what you are doing
and cuts right to the chase. You start typing the name of the method you want to overload and it displays a
list of all methods that start with those same characters. You can pick the one you want from the list and be
on your way quickly.

CHAPTER 9 ■ DEVELOPING WITH UNITY AND VISUAL STUDIO

77

 Debugging Holographic Projects
 Creating a holographic application is a fairly involved activity. You must first create a project in Unity,
including all its assets, the properties of those assets, user interactions, and the look and feel of the
application. Then you must give those assets behaviors using C# coding in Visual Studio. After creating an
application and attaching behaviors to the assets of that application, you must deploy the application to a
HoloLens device that is paired with your development PC.

 Every step along the way is a place where errors can be introduced. Most of these errors will be caused
by missteps made by you, the developer. Some may be caused by overreaching the limits of the resources
in your development machine, or connection problems between your PC and your HoloLens. Expect the
amount of time you spend debugging to exceed the amount of time you spend coding, perhaps by quite a lot,
at least until you have climbed up rather high on the learning curve.

 Debugging in Unity
 Normally, when we think about debugging, we think about debugging code. However, in HoloLens
development, after a pre-build process in Unity, code is not developed in Unity, but rather in Visual Studio.
This does not mean that we don’t have to worry about the Unity part of the process. It is still possible, quite
easy in fact, to mess up a project in the Unity part of the process.

 In Unity, you must have all the assets in the proper places in the hierarchy, listed in the Hierarchy panel.
Each one of those assets much have the correct attributes in the Inspector panel.

 For the Build operation, in the Build Settings dialog box, you must remember to click the Add Open
Scenes button to make sure they appear in the Scenes In Build pane. You must also select the proper
platform for your app, which in the case of Windows holographic apps is the Windows Store platform. The
Player Settings button takes you to the Player Settings panel in the Inspector. You will want to make sure that
 Virtual Reality Supported is checked and that the other settings are what you want.

 ■ Note Sometimes Unity will issue an error message that can be safely ignored, so don't freak out when
you get one. Try proceeding to see if the message indicates a real problem. See Figure 9-1 for an example of an
ignorable message:

 Debugging in Visual Studio
 Visual Studio is a modern application-development environment that features state of the art tools to
help you perfect the applications you write. Error messages for syntax errors are specific and appropriate,
enabling you to fix and recompile in rapid order.

 When Visual Studio builds an application that incorporates multiple C# scripts, each one doing a
specific job, it will display error messages, warnings, and other messages in the Error List panel in the
bottom-left corner of the window. In general, warnings (yellow icon) will not cause a build to fail. Error
messages (red icon) will usually, but not always, cause a build to fail. Sometimes, as a build progresses, a red
icon error message will appear, only to disappear later in the build process.

 You can incorporate breakpoints into your scripts and use them to step through an application when
running a build with debugging enabled. You can examine the value of expressions in a window on your
development machine while the app is running on the HoloLens device.

 Figure 9-1. An error meseage that did not prevent a successful build

CHAPTER 9 ■ DEVELOPING WITH UNITY AND VISUAL STUDIO

78

 Using Intellisense while debugging
 Intellisense in C# is a tool that anticipates what you have in mind when you start writing a line of code and
suggests an automatic completion of the line. More often than not, its guess of what you intend is correct, so
you can save considerable time and typing by accepting its suggestions. This process of saving you time and
keystrokes is probably most valuable when you are writing a script for the first time. However, it is also useful
when you are debugging existing code.

 Refactoring
 Visual Studio enables you to clean up code that may be functional, but not necessarily optimal or easily
readable, through refactoring. There are six types of refactoring that you can do:

• Extract Method Refactoring

• Rename Refactoring

• Encapsulate Field Refactoring

• Extract Interface Refactoring

• Remove Parameters Refactoring

• Reorder Parameters Refactoring

 These refactoring operations do not change the function of the code being refactored, but they may make
it easier to understand. This can be useful if the code is not working properly, making it easier to debug.

 Code Browsing
 Code browsing is an analysis technique that you can employ with Visual Studio’s Object Browser. The Object
Browser is an editor that displays the objects in a project in a hierarchical way. It enables you to select and
examine namespaces, classes, methods, and other symbols that you might use in your project. Open the
Object Browser by dropping down the View menu and then selecting Object Browser.

 Figure 9-2 shows the three panes of the Object Browser as they appear within Visual Studio.

CHAPTER 9 ■ DEVELOPING WITH UNITY AND VISUAL STUDIO

79

 The Objects pane is on the left, the Members pane is on the upper right, and the Description pane is
on the lower right. All the top-level objects are shown in the Objects pane, with the Gaze Manager object
expanded to show the levels of hierarchy beneath it. The Members pane shows the members of the selected
Gaze Manager object, and the Description pane describes the member selected in the Members pane. In the
figure, the Hit member of the Gaze Manager object is described.

 With the Object Browser, you can see descriptions of all the members of all the objects, regardless of
what level they occupy in the hierarchy. You can limit the scope of the browse to only those objects that are
currently of interest. Examining the cascading levels can often bring to mind something that doesn’t look
right, such as a missing level or a member whose description is not what you thought or intended it to be.

 Visual Studio’s Error List
 If in a build or deploy operation things don’t go exactly as Visual Studio thinks they should, errors or
warnings will be posted under the Error List tab in the lower left pane of the Visual Studio development
environment. An error, denoted by a red X icon, generally means that the operation you are trying to perform
has failed. Be sure that the operation has completed, however. Sometimes errors will appear while a build or
deploy is in progress that then disappear later in the process. Warnings, denoted by a yellow triangular icon,
on the other hand, may or may not signal a failure. If you see one or more warning indications but no error
indications, try to complete the operation. Sometimes you will be able to with no problem.

 Figure 9-2. Visual Studio’s Object Browser

CHAPTER 9 ■ DEVELOPING WITH UNITY AND VISUAL STUDIO

80

 Getting Support from the Windows Dev Center
 As a new developer for HoloLens, your best friend and number one resource is the Windows Dev Center.
If you are in the United States, the place to find it is https://developer.microsoft.com/en-us/windows/
holographic . This is the central point from which you can branch off in a variety of directions to find the
resources you need. In addition to links to tutorials, documentation, and other resources, there is also a link
to an application to join the HoloLens developer program.

 Get the tools
 Aside from the menu bar across the top of the Windows Dev Center Holographic page, the first link you will
see, which is also the first link you will need, is the “Get the tools” link. It takes you to a page that tells you
exactly what software tools you will need to download, including links to the exact locations at which you
will find them. It also tells you precisely what features your hardware must have to support holographic
development. There are also some troubleshooting tips if you happen to have a problem installing the
HoloLens Emulator.

 Get started
 The “Get started” link takes you to some content that introduces the HoloLens product. There is a short video
that shows what exactly comes in the HoloLens Developer’s Kit, followed by some steps you can follow to
prepare your new HoloLens for its first use. You can then try out some of the applications provided, from
games such as Robo Raid and Fragments to virtual experiences such as the HoloTour of Rome. Once you have
these familiarization activities under your belt, you are ready to start developing. Install the tools you will
need and then head to the Holographic Academy to build the applications in the tutorials you will find there.

 Academy
 In Chapter 5 , I gave a brief description of the tutorials found at the Holographic Academy. In Chapter 11 , I
will walk you through the building and deployment of one of these, Holograms 101. In Chapter 12 , I will take
you through another, Holograms 240, which allows multiple people to share the same holograms.

 Another opportunity is Academy Live. As the name implies, this is a live learning experience that takes
place on Microsoft’s home turf in Redmond, Washington. It is a six-month program that takes place two days
at a time over that six-month period. Over the course of the program, development teams consisting of a
developer, a designer, and a technical artist will develop a complete holographic project.

 Documentation
 Microsoft, along with Unity, provides you with online documentation, giving you all the information you
need to start building holographic applications. At the Windows Dev Center Web site, the Documentation
tab leads to an array of topics that covers all the main aspects of holograms, the HoloLens device, and the
fundamentals of building holographic applications. This section gives a brief summary of all the major
things that are documented.

 Understanding HoloLens
 The first thing the Dev Center does in helping you to understand HoloLens is to explain what a hologram
is — at least the thing that Microsoft is calling a hologram.

https://developer.microsoft.com/en-us/windows/holographic
https://developer.microsoft.com/en-us/windows/holographic
http://dx.doi.org/10.1007/978-1-4842-2202-7_5
http://dx.doi.org/10.1007/978-1-4842-2202-7_11
http://dx.doi.org/10.1007/978-1-4842-2202-7_12

CHAPTER 9 ■ DEVELOPING WITH UNITY AND VISUAL STUDIO

81

 Holograms

 Whereas traditionally a hologram has been considered to be a three-dimensional image in space, when
you are wearing a HoloLens, you not only see a three-dimensional image in space, but you hear it too, if it is
capable of making sounds. Other people in the room cannot see the hologram unless they are also wearing
HoloLens devices. Furthermore, you can affect what the hologram does with gestures and voice commands.
It is possible to interact with the holograms in powerful ways. As a developer, you can create holograms that
will look, sound, and act the way you want them to.

 Hardware details

 Detailed specifications of the physical components of the HoloLens tell you what you need to know in order
to understand what tools and capabilities you will have at your disposal as you develop applications. In
addition to major components, controls, interfaces, and limitations are explained.

 HoloLens shell overview

 The Start menu is the visible component of the shell. It is the main portal through which the user interacts
with the mixed-reality world created by the HoloLens. Not only can a person launch apps from the Start
menu, but they can also invoke Cortana as well as capture mixed-reality video.

 App views on HoloLens

 Although the primary role of a HoloLens is to generate 3D holograms that the user can walk around and
view from every angle, it can also generate a 2D image on a virtual slate that mimics what a user would see
on a PC, tablet, or smartphone. This means that Universal Windows PC or mobile apps can be ported to
HoloLens relatively easily. In 2D mode, up to three apps can be run simultaneously, but in 3D holographic
mode, only one app can be run at a time.

 Using mixed-reality capture

 You can take both mixed-reality photos and mixed-reality videos with a HoloLens. The photo or video will
show what the user is seeing, and in the case of video what she is hearing as well. Photos will be in JPEG
format with a resolution of 1408 x 792 pixels. Videos will be in MPEG-4 format with the same resolution,
taken at a 30 fps rate.

 Working with accessories

 A HoloLens device connects to accessory devices via Bluetooth. Compatible Bluetooth devices that are
paired with the HoloLens will provide additional functionality. One Bluetooth device, the HoloLens Clicker,
comes with the Development Edition. With it, a user can click and scroll with a minimum of hand motion,
replacing the air-tap gesture.

 You can use a Bluetooth keyboard with the HoloLens and also a Bluetooth mouse. Other devices may
also work as long as they support either the Bluetooth HD or Bluetooth GATT profiles.

 Developing for HoloLens
 Holographic apps run on the Universal Windows Platform (UWP). This means that all holographic apps are
UWP apps and that all UWP apps can be made to run on HoloLens.

CHAPTER 9 ■ DEVELOPING WITH UNITY AND VISUAL STUDIO

82

 Basics of holographic development

 Holograms are located in space relative to a set of real-world coordinates. The user interacts with them
via gaze, gesture, and voice inputs. Spatial sound makes it appear that sounds generated by a hologram
are coming from the direction of that hologram. Spatial mapping scans the environment surrounding the
user and builds a mesh that tells holograms where things are in their surroundings. This means that if a
holographic ball rolls to the edge of a table, it will fall off and hit the floor of the room.

 Tools for developing on HoloLens

 Developing 2D apps for HoloLens is essentially the same thing as developing apps for Windows Phone, PC,
and tablets. In all cases, it is a Universal Windows app. The difference is that instead of the display being on a
screen, it is on a virtual slate floating in the air.

 Holographic apps, however, require Windows Holographic APIs. This is easy if you use Unity, which has
those APIs “baked in.” Rather than using Unity, you can build your own middleware engine if you wish, using
DirectX and other Windows APIs. Epic’s Unreal Engine could perform in much the same way that Unity
does, but Epic has not yet developed a kit to support HoloLens development the way Unity has.

 Regardless of what type of application you are building, you will need Visual Studio and the Windows
SDK, the Windows Device Portal, and the HoloLens Emulator. All of these, as well as Unity, come in the form
of free downloads.

 Getting started

 Once you have all your tools lined up, the best way to ease into HoloLens development is to work through
the tutorials available at Microsoft’s online Holographic Academy. With that experience under your belt, you
can develop your first app and then make it available to the world by uploading it to the Windows Store.

 App model

 Since Windows Holographic is based on the Universal Windows Platform (UWP), the app model that the
HoloLens uses is the same one used by modern Windows apps written for Windows and Windows Mobile.
The app model governs how an app is launched, run, suspended, and terminated. Developers building UWP
apps for other platforms will find the transition to developing holographic apps to be straightforward.

 Install the tools

 This section of the documentation tells you what characteristics your development machine must have as
well as the software tools you will have to download and install before you can start developing holographic
apps. Follow these guidelines and you will be able to start developing. There is also a brief troubleshooting
section to help you when you run into trouble. In these early days, with what is essentially beta software,
you can pretty much count on having some obstacles rear up in your path. Patience and persistence will be
needed for you to win through to success.

 Using Visual Studio

 Visual Studio is the tool you will use to debug and deploy your apps. Assuming you have installed all the
needed tools, this section describes how to enable Developer Mode and how to deploy your app to a HoloLens
device, both over Wi-Fi and also wired through a USB port. Your HoloLens will need to be paired with your
development machine in order for deployment to work. This can be tricky, and you may encounter error

CHAPTER 9 ■ DEVELOPING WITH UNITY AND VISUAL STUDIO

83

messages that don’t seem to relate to what you are doing. Once paired, Visual Studio may point out problems
caused by errors in the deployment process. You may also encounter error messages even when nothing is
wrong. Sometimes just repeating the deployment operation without changing anything will lead to success.

 Deploying to the HoloLens Emulator goes through all the same steps as deploying to a HoloLens. Just
specify the Emulator as the destination rather than the HoloLens, which is referred to as the Device when
deploying via USB and as the Remote Machine when deploying via Wi-Fi.

 The Visual Studio Graphics Diagnostics tools include a graphics debugger that you can use to debug
an app that deploys but does not function correctly. This is a powerful tool that is described in detail on
MSDN under the title “Visual Studio Graphics Diagnostics.” There are also profiling tools that you can use to
optimize your application. Information on them can be found on MSDN under the title “Profiling Tools.”

 Using the HoloLens Emulator

 If you are like me, you have probably found yourself wanting to develop apps for the HoloLens before
you actually have one. You can productively use the time that passes while you wait for your HoloLens
Development Edition to arrive by coming up to speed on Unity and Visual Studio and building and
deploying apps to the HoloLens Emulator. You will be able to create holograms that you can then interact
with using your computer’s keyboard in place of gestures and voice commands. There are some things you
can’t do with the Emulator. For example, you can’t walk around the emulated hologram and view it from
multiple angles. It is confined to your computer’s screen. However, you can get a very good idea of your app’s
function. When you finally do receive your HoloLens, your app will be ready to deploy to it.

 Using the Windows Device Portal

 In Chapter 5 , I described the Device Portal in detail. There is no point in repeating that here. However, this is
the place in the online documentation where you should go if you want to go deeper into the capabilities of
the portal than what I covered in Chapter 5 .

 Performance recommendations

 Developing for the HoloLens is more challenging than many other kinds of software development. A full
Windows 10 battery-powered computer with passive cooling, worn lightly on the head, that serves up
two dynamic HD images, one for each eye, at a rate of 60 frames per second, represents a major high-
dimensional optimization problem. You can only pack so much computer power, memory, and storage in
an untethered wearable device. That means that decisions must be made about tradeoffs to give the user the
best possible experience.

 For different applications, different performance metrics will be more or less important. You must
understand what is important for the app you are working on now, and how best to compromise a less
important performance metric in order to enhance one that is more important. The documentation in this
section gives a large number of possible things you can do that will enhance one metric or another. You have
to decide which, if any, of these will improve the overall user experience.

 Testing

 Testing is a crucial, but often underestimated, part of the application-development process. Of course, a
holographic application must be tested in all the same ways that a PC or mobile app is tested, including for

• functionality,

• interoperability,

• performance,

http://dx.doi.org/10.1007/978-1-4842-2202-7_5
http://dx.doi.org/10.1007/978-1-4842-2202-7_5

CHAPTER 9 ■ DEVELOPING WITH UNITY AND VISUAL STUDIO

84

• security, and

• reliability.

 Holographic apps require a great deal of additional testing beyond these traditional areas of concern.
One area requiring consideration is user comfort. The user is wearing the HoloLens device on her head.
Will your app require unnatural head movements to see the full content? The field of view is a horizontal
rectangle. Must the user look up and down too frequently for comfort? Will your app require such a
computational load that the HoloLens becomes uncomfortably hot, forcing it to shut down?

 Since you can’t guarantee the environment that the user will be in when running your app, you will
have to test the app in a wide variety of them. Test in all kinds of rooms of all sizes. Even test outside. How
does the app react to a user walking down a hallway or ascending a flight of stairs? What about curved walls
and domed ceilings?

 You need to test in all kinds of lighting conditions. Learn how a wall mirror will affect your app, and
what about a glass coffee table? Think of all the weird types of environments that a user might be in while
running your app.

 There are many other environmental conditions that you will need to consider. The guiding principle is
that you have no control over what the environment will be like while your app is running. It needs to be able
to adapt to its surroundings, whether cluttered or spare, noisy or quiet. You also don’t know whether the user
is tall or short, seated or standing. You need to deliver a satisfying experience in all these cases.

 Submitting an app to the Windows Store

 For a Windows Holographic app, as with any Windows app for PC or mobile devices, the natural place
to make the app available is in the online Windows Store. The procedure for doing this for a holographic
app is the same as it is for any Windows Universal app. If you follow the instructions in this section of the
documentation, you will be able to make sure your app meets all the requirements for inclusion in the
Windows Store and is successfully uploaded to it.

 FAQ

 There is a list of several frequently asked questions. Possibly as more HoloLens devices are deployed, more
people will ask more questions and this list will be expanded.

 Release notes

 This section describes the new features and bug fixes provided by the latest update to the HoloLens software.
It also describes any capabilities that have been removed by the latest update.

 Known issues

 As is the case with release notes, this section is updated frequently to alert you to known issues that have not
been fixed, offering suggestions of workarounds in some cases. It’s a good idea to examine this list of known
issues carefully before putting a lot of effort into an app-development project. Being aware of an issue may
enable you to take a path that avoids it.

 Building blocks of holographic apps
 The mixed-reality experience provided by HoloLens is based on six of its features, which are used to add
holograms to the real world the user is in and enable her to interact with them.

CHAPTER 9 ■ DEVELOPING WITH UNITY AND VISUAL STUDIO

85

 World coordinates

 Fundamental to mixed-reality apps is the ability to place holograms at specific locations in 3D space and for
those holograms to maintain a constant spatial relationship with other holograms and with real, physical
objects that share the space with the holograms. This is a more complex problem than the one faced by virtual
reality, where there is no need to anchor the virtual world to any point in the real, physical world that the user
is inhabiting. This section discusses the different possible ways of treating reference frames and of tracking the
location of holographic objects as the user moves around. As a developer, you have some choices to make as
to how you locate your holograms in the real world and in relation to the location and movement of the user.

 Gaze input

 There are three ways of interacting with holograms: with gaze, gesture, and voice. Of these, gaze is the most
fundamental, because it’s hard to interact with a hologram that you cannot see. When you look directly at
a hologram, a raycast is computed from the direction your head is pointing. If it intersects with a hologram,
you can then interact with that hologram with gesture or voice.

 A cursor shows where your gaze is pointing at any moment. As developer of an app, you control what
that cursor looks like when it is not pointing at a hologram, and you can indicate to the user that they are
now targeting a hologram by changing the shape of the cursor. This usually is done by changing the cursor
from a dot of light to an open circle. Once the cursor has targeted a holographic object, the user can interact
with the object.

 Gesture input

 Thanks to tools in the HoloToolkit, when gaze is locked onto a holographic object, that object can be affected
by a user’s hand gesture. The air-tap gesture is the one most commonly used. It performs a select operation,
which causes the holographic object to perform whatever action it has been programmed to perform. Other
gestures enable the user to lock onto and hold a holographic object, manipulate the object, or move it.

 Voice input

 With voice input, the user can duplicate many of the actions performed by gestures, such as selecting and
then activating a hologram or manipulating it in space. The user can also summon Cortana by saying, “Hey,
Cortana” followed by some request or question.

 Spatial sound

 Spatial sound adds greatly to the immersive quality of HoloLens mixed reality. Sounds emitted by a
hologram sound like they are coming from the direction of the hologram, and the sound is louder when the
hologram is nearer and fainter when the hologram is farther away.

 Spatial mapping

 Spatial mapping is what binds the real world and the virtual world together. The real environment is scanned
and mapped so that a mesh representing the real-world objects is stored in memory. You must create your
holograms to realistically navigate the space they are in. Characters can walk on the floor. Flower vases
can sit on a table. Rubber balls can bounce off the wall. Holograms can occlude real-world objects that
are behind them and be occluded by real-world objects that are in front of them. Holograms can respond
appropriately to gravity and bounce back when they collide with real-world surfaces.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 9 ■ DEVELOPING WITH UNITY AND VISUAL STUDIO

86

 Spatial mapping can require a high computational load and consume significant amounts of memory.
One of your main considerations as a developer is to optimize the way that spatial mapping is done so as
to not overload the processor or fill up the memory with meshes of locations that the user has previously
scanned but will no longer need.

 Building 2D apps
 Since the HoloLens runs on Windows 10, apps that were originally written for desktop, mobile, or Xbox
devices can also be run as 2D apps on HoloLens. Just about any app running under Windows Universal can be
deployed to the HoloLens after just a few minor tweaks. If your app doesn’t run successfully right out of the box,
debugging tips in this section of the documentation can help you to zero in on what is causing the problem.

 Building holographic apps with Unity
 Unity, built originally as a platform for the development of computer games, works well, after significant
modifications, as a platform for developing holographic applications for the HoloLens.

 Unity development overview

 Standard Unity game objects, such as the camera, work in exactly the same way for holographic apps. The
camera orientation and position are updated automatically as the user turns her head and moves through the
world. Aside from the camera, other key building blocks, including gaze, gesture, voice input, world anchor,
persistence, spatial sound, and spatial mapping, are implemented in ways consistent with other Unity APIs.

 This section of the documentation describes how to configure Unity for holographic development. All
the tools are already present in Unity; it is just a matter of selecting the correct configuration for a scene as
well as for an entire project. When you install Unity, its scripting reference and manual come along with it,
providing any Unity-specific information that you may need.

 Recommended settings for Unity

 The default splash screen that will be displayed when your app launches shows the Unity logo for five
seconds. If you are selling your app commercially, you probably want to replace that with your own logo.
There is a setting that enables you to do that, but only if you are using the Plus version of Unity or greater.

 It’s possible for the HoloLens to lose track of where it is in the course of running your application. This is
called tracking loss , and when it happens, Unity will stop rendering holograms. There are several things you
can do about this to handle tracking-loss events. There are settings for this eventuality. Use them to give the
best user experience when this happens.

 Performance recommendations for Unity

 Two opposing forces are in play with the HoloLens. First, melding virtual a 3D hologram with the real world
accurately at 60 frames per second is computationally intense. Second, a self-contained device that you wear
on your head and that runs on battery power is intrinsically limited in what it can do. These two facts mean
that developers of moderately complex applications will need to apply every trick in the book to deliver
the performance that is required for a satisfying user experience. This section of the documentation lists a
number of suggestions of things you can do to maintain a high frame rate and to minimize glitchiness in the
display of holograms due to garbage collection happening at inopportune times.

CHAPTER 9 ■ DEVELOPING WITH UNITY AND VISUAL STUDIO

87

 Suggestion 1: If there are multiple ways to implement a particular function, choose the one that
executes the fastest rather than, for example, the one that is easiest to code.

 Suggestion 2: Structure your data in a way that minimizes cache misses. Cache misses are far more
costly in terms of time than is inefficient code.

 Exporting and building a Unity Visual Studio solution

 This section of the documentation describes the steps required in both Unity and Visual Studio to build and
deploy an application. It also explains the rationale behind some of those actions. In Chapter 11 , I will cover
these steps in detail as we work through the building and deployment of the Origami example application.

 Best practices for working with Unity and Visual Studio

 In an iterative debugging process, you don’t want to be going back and forth between Unity and Visual
Studio any more than you have to be. This time waster can be minimized when exporting from Unity by
making sure the Unity C# Projects checkbox is checked. This causes the same instance of Visual Studio to
be used both for writing scripts and for building and deploying your project.

 Other things you can do are to download and use Visual Studio Tools for Unity and to use public C#
class variables. These actions can make debugging easier and enable you to easily tweak variables in Unity
3D’s Inspector pane to tune performance.

 If you move to a newer version of either the Windows SDK or Unity, it is a good practice to build a new
UWP solution from Unity, rather than expecting the old solution to continue working.

 Adding holographic capabilities to middleware
 In all the discussion of holographic application development we have had so far, Unity has served as middleware.
It is in the middle between your application and the Windows operating system. Microsoft has worked closely
with Unity to provide a platform that is easy for developers to use to create their holographic applications.
However, you don’t have to use Unity. If you wish, you can build your own middleware using DirectX APIs. This
will require more work, but could potentially give you more flexibility in what you can produce.

 DirectX development overview

 Windows holographic applications use holographic rendering, gaze, gesture, and voice APIs. Unity does a lot of
the heavy lifting for you, but if you want to have the maximal level of control, you can use Windows Holographic
APIs with DirectX 11. These APIs support apps written in both C++ and C#. If you already have a Windows 10
UWP app that you want to convert to a 2D holographic app for HoloLens, then DirectX 11 is the route you need
to take. DirectX 12 does not currently support holographic development at the time of this writing.

 Creating a holographic DirectX project

 This section of the documentation describes how to create a simple project using DirectX. It renders a
simple cube hologram that spins on an axis. Even this simple application illustrates the higher level of skill
required of the developer when using DirectX than what is needed by a developer using Unity.

 Rendering in DirectX

 This section goes into detail on the many steps involved with rendering a scene. There are many things that
must be updated in each frame, followed by the rendering of that frame. In addition, if the HoloLens loses
track of where it is, that situation must be handled gracefully.

http://dx.doi.org/10.1007/978-1-4842-2202-7_11

CHAPTER 9 ■ DEVELOPING WITH UNITY AND VISUAL STUDIO

88

 Designing holograms
 A major part of designing holograms falls into the domain of 3D computer graphics. This is often
accomplished with tools such as Maya and 3ds Max. Just as important, however, is the way you integrate
those holograms into the real world. One challenge with this is that black is not a usable color in a hologram.
HoloLens interprets black as transparent.

 Designing for mixed reality

 Designing holographic apps for HoloLens is similar to developing 3D games for PC or Xbox in many
ways, but there are differences that can have a large effect on the user experience. This section of the
documentation gives a list of best practices that have been found to work well on the HoloLens. As people
gain more experience and send feedback to Microsoft, this list will expand.

 Types of holographic apps

 This section of the documentation describes three different types of apps based on the kind of environment
they create:

• An enhanced-environment app leaves the real world as it is, but adds holographic
content to it. This might be a holographic TV screen placed on a wall or a set
of cooking instructions placed above the stove in your kitchen. It might put a
holographic chess set on the table in your study.

• A blended-environment app integrates holographic elements into your real-world
environment. It might give your walls a different color or change the color and style
of your kitchen cabinets in an interior design app.

• A virtual-environment app could cover your real world completely with a virtual
world that is entirely different. You would always be able to see the real world with
your peripheral vision, but as soon as you turn to face a different direction, the real
world would be replaced by the virtual. With this kind of app, you could take a tour
through a museum or a famous archeological site.

 Cursors

 Just as is true for a 2D screen – based application, the cursor is critical for receiving input from the user. In
the HoloLens’ case, the cursor is located at the center of the user’s gaze when the user is looking straight
ahead. Because the cursor is impinging on real and virtual objects in a 3D space, you may want it to change
shape and orientation depending on where it is and on what object it might be hitting. This section of the
documentation gives tips on how best to use the cursor so as to give the user needed information without
being confusing or distracting.

 Gaze targeting

 Users select targets by gazing at them. This section gives tips on anticipating what the user intends for a
holographic object when their gaze falls upon it or even when it “almost” falls upon it. Sometimes it is a good
idea to be forgiving of a close miss. Gaze stabilization can also be helpful for a user whose head shakes or
moves around in other ways.

CHAPTER 9 ■ DEVELOPING WITH UNITY AND VISUAL STUDIO

89

 Gesture design

 Gestures are one of the two main ways of providing input to an application. The other is voice. The HoloLens
gesture vocabulary is rather limited, so you will have to be mindful of how you use them. The air tap is
probably the one you will use most often, but there are also continuous gestures that can scroll through a 2D
holographic page or rotate a 3D hologram, or even cause a line to be drawn in space.

 Voice design

 Like gesture, voice is a way of sending user input to an application. Many operations can be accomplished
by using either gesture or voice, but each method has its own strengths and weaknesses. In some contexts,
gesture is preferred over voice, and in others the reverse is true. This section gives you tips on how to select
the best voice commands to register so that misunderstandings are minimized and the user can most
efficiently elicit the desired behavior from you app.

 Spatial-sound design

 If the holograms in your app are generating sounds, you want to use spatial sound so that those sounds
appear to be coming from the object that is supposedly generating them. For example, if your application is
showing a railroad train moving across the user’s field of view from right to left, you want the sound of the
engine’s horn to appear to be coming from the left, where the engine is, rather than from the midpoint of the
train hologram.

 Spatial-mapping design

 When a user scans an environment to provide a spatial map to an application, there are a number of
things that could cause the resulting map to be less than perfect. Inadequate light levels; differing surface
reflectance qualities; things, such as people, that are there one minute and gone the next; and even mirrors
on the wall are all things that could interfere with getting a good scan. This section points out these problems
and many more and gives you tips on how you can write your app in a way that minimizes the impact of
such things on the quality of the user experience while running your app.

 Color design

 Holograms are created by adding light to the light coming into the user’s eyes from the real world. To have
the hologram blend in with the world, attention must be paid to colors. White for example, tends to pop
and should be reduced in intensity. Black cannot be rendered at all, since the HoloLens cannot take light
away from what is entering the eyes; it can only add light. Any black area of a hologram appears transparent
instead, letting the light from the real world come through. The edges of moving holograms may show some
color separation, as well as aliasing effects. These are all things to consider when you are designing your app.

 Updating existing universal apps for HoloLens

 All apps that run on the Universal Windows Platform (UWP) will run on the HoloLens with minimal
adjustment. Thus, migrating a UWP app to HoloLens will be easy, provided you followed the Windows 10
Human Interface Guidelines when you first developed those apps.

CHAPTER 9 ■ DEVELOPING WITH UNITY AND VISUAL STUDIO

90

 Community
 The HoloLens community is growing rapidly as more developers come on board, joining the Micro-softies
who are already involved. There are several ways you can interact with the community.

 The Microsoft HoloLens team
 On the Dev Center Community page you can find photos and mini-biographies of the members of the
HoloLens developer engagement crew. It is their job to help you.

 Follow HoloLens on Twitter for the latest news
 The HoloLens Twitter page is where you will find all the latest breaking news about all things HoloLens. The
page has over 100,000 followers and continues to grow.

 Interact with other developers on the forums
 The HoloLens App Development forum is the place to go when you have a question or when you want to
discuss some aspect of holographic development with other developers. Generally, any problem that you are
likely to have has already been encountered by either another developer or a Microsoft staffer who monitors
this forum. Drop by and join the discussion.

 See what’s possible on the HoloLens YouTube channel
 The HoloLens YouTube channel is the place where you will find many of the videos that have been produced
about the HoloLens. It’s a great place to catch a glimpse of the wide variety of experiences that the HoloLens
makes possible.

 Support
 Two types of support are available on the Windows Dev Center site: developer support and hardware
support. You will probably need support in one or the other of these areas sooner or later, if not both.

 Developer support
 Developer support helps you with issues you might have in becoming a registered developer, developing a
HoloLens app, publishing your app, marketing your app, or getting paid for sales of your app.

 Hardware support
 Hardware support helps you with questions or issues you may be having with the HoloLens hardware itself.

 Summary
 This has been a long chapter because there is a lot to think about when it comes to developing with Unity
and Visual Studio. The combination of the Unity and Visual Studio development tools is described, and the
resources available at the Windows Dev Center are summarized. If you run into a problem in the course of
developing a holographic app, a clue as to where to turn for answers or help can be found here.

91© Allen G. Taylor 2016
A. G. Taylor, Develop Microsoft HoloLens Apps Now, DOI 10.1007/978-1-4842-2202-7_10

 CHAPTER 10

 Using C# with Visual Studio
and Unity

 If you are going to develop applications with any complexity at all, you will need to do some programming.
Holograms are given behaviors via scripts written with either C# or JavaScript if you are using Unity, or with
C++ if you are using the DirectX APIs. All of the tools and information on the Windows Dev Center Web site
assume you are using C# with Visual Studio. This is also the easiest path to take if you are new to application
development. C# is easier to learn than many other development languages and is heavily supported both by
Microsoft and by a vast user base.

 The C# Language
 C# is a major topic in itself about which many books have been written and many courses are being taught.
It is not the purpose of this book to teach C#. Use one of the available books or courses for that. You will
be able to create some simple applications with only a cursory knowledge of C#. Start by building some of
those using the resources available in Unity. For anything more involved, expect to put in the time and effort
needed to gain proficiency in C# programming before you produce the killer app that makes HoloLens a
“must have” device for millions of people.

 C# Scripts
 Because Unity was originally used as a development platform for computer games, a lot of the names
of things in the Unity documentation are game oriented. For example, the components that appear in a
scene are called GameObjects. The actions that GameObjects take are called gameplay. Events that occur
in the course of the execution of the application are called game events. Unity provides a collection of
basic components, and, in addition, you can create your own components and give them behaviors with
C# scripts. Rather than your writing a huge program that controls every aspect of your application, each
component of the application is controlled by its own C# script. This modularization of the code makes both
coding and debugging much easier, as you write and test out the code for each GameObject individually
before you have to start thinking about how one GameObject might interact with another. Modular code is
also easier to maintain as a software product evolves.

CHAPTER 10 ■ USING C# WITH VISUAL STUDIO AND UNITY

92

 Adding Behaviors to Unity Components with C# Scripts
 When developers use Unity to create games, they follow the documentation and tutorials provided by
Unity to learn how to create and add scripts to the components of their GameObjects. They are instructed
to use MonoDevelop as their editor, which is launched from within Unity. This is not the way to develop
holographic apps for use with the HoloLens, however.

 ■ Warning Don’t believe the Unity documentation on creating scripts. The version of Unity that has been
modified for holographic development, using Visual Studio as its editor rather than MonoDevelop, requires a
different procedure, which I outline next.

 Add a script component using Unity’s Inspector
 Rather than following Unity’s documentation for adding a script to a GameObject, select the GameObject
in the Hierarchy panel and then click on the Add Component button in the Inspector. This will drop down a
dialog box, as shown in Figure 10-1 .

CHAPTER 10 ■ USING C# WITH VISUAL STUDIO AND UNITY

93

 Figure 10-1. Choose New Script as the type of component to add

CHAPTER 10 ■ USING C# WITH VISUAL STUDIO AND UNITY

94

 Figure 10-2. Adding a script to a GameObject

 Click on New Script . A dialog box will appear, as shown in Figure 10-2 .

CHAPTER 10 ■ USING C# WITH VISUAL STUDIO AND UNITY

95

 In the Name field, type in the name of the script. One idea is to give the script the same name as the
GameObject it is attached to. If the script is usable in more than one context, a name that relates to its
function may be better. Make sure that Language is set to C Sharp , and then click the Create and Add button.
This will add the new script to the Inspector, as shown at the bottom of Figure 10-3 .

 Figure 10-3. A new script skeleton has been added

 To add functionality to the new script, click on the small, gear-shaped icon at the right edge of the script
component of your GameObject. This will display a menu like the one shown in Figure 10-4 .

CHAPTER 10 ■ USING C# WITH VISUAL STUDIO AND UNITY

96

 Click on Edit Script .

 Visual Studio will launch, but MonoDevelop may launch too
 Developers are accustomed to working with beta software and with tool chains that have not had a lot of
time to become refined. This crops up in HoloLens development too. The default editor for Unity scripts is
MonoDevelop. It is a cross-platform editor that works with Linux and Mac OS X as well as with Windows. For
that reason, Unity can attract developers with a variety of backgrounds. However, for HoloLens development
we are concentrating on the Windows platform, specifically Windows Holographic. We will be using Visual
Studio as our editor rather than MonoDevelop.

 When you click on the Edit Script option, as shown in Figure 10-3 , Visual Studio will launch, but
sometimes MonoDevelop will launch too. If this happens, just ignore any messages you may receive in
MonoDevelop and exit out of it. Visual Studio will display the code skeleton shown in Figure 10-5 .

 Figure 10-4. Component settings menu

CHAPTER 10 ■ USING C# WITH VISUAL STUDIO AND UNITY

97

 Skeleton of a script file
 The bare-bones code skeleton shown in Figure 10-5 is very similar to what MonoDevelop would generate,
but the Visual Studio version is compatible with holographic development. MonoDevelop does not take into
account the differences between screen-based game development and holographic development.

 The Start function is run once at the launch of an application. It is a good place to put initialization
code. The Update function is run once every frame. It is where all the frame-by-frame actions of the
application take place. There is more information on this available at https://docs.unity3d.com/Manual/
ExecutioinOrder.html .

 Controlling GameObjects using components
 In Unity, you can make limited changes to a GameObject’s component properties using the Inspector.
You can change its position by changing values in the Transform component. You can change its color in
the Render component, you can change the way it reacts to gravity by changing the mass of the Rigidbody
component, and so on. That is all well and good, but you are probably going to want more control over
GameObjects than what is offered by the Inspector.

 With a script, you can alter the value of a GameObject’s properties gradually over time or in response
to some action by the user, known to Unity as the Player. The user in a holographic app is very much like the
player in a first-person-shooter video game. A holographic app doesn’t have to involve shooting, but it can if
you want it to.

 Figure 10-5. Script code skeleton

https://docs.unity3d.com/Manual/ExecutioinOrder.html
https://docs.unity3d.com/Manual/ExecutioinOrder.html

CHAPTER 10 ■ USING C# WITH VISUAL STUDIO AND UNITY

98

 Accessing components
 It is often the case that a script will need to access some other component of the same GameObject.
A component is an instance of a class. To get a reference to the component instance you want, use the
 GetComponent function. For example, in the case of the Rigidbody component, use something like the
following code:

 Void Start () {
 Rigidbody rb = GetComponent<Rigidbody>();
 }

 Once you have made a reference to a component instance, you can set its value much as you would in
the Inspector:

 Void Start () {
 Rigidbody rb = GetComponent<Rigidbody> ();
 // Add a force to the Rigidbody.
 Rb.AddForce(Vector3.up * 10f);
 }

 This code adds a force of value 10 units in the upward direction. It’s possible to have more than one
script attached to the same GameObject. You can access one script or the other by using GetComponent as
usual. Just use the name of the script class to specify the component type you want. For example, characters
in a scene may want to direct their attention toward, or even move toward, another character or the Player.

 Accessing other objects
 In many applications, you are going to want a script to be able to track what another GameObject is doing.
One way to do that is to add a public GameObject variable to the script:

 Public class EnemyDrone : Monobehaviour {
 Public GameObject player;

 // Other variables and functions . . .
 }

 Such variables are visible in the Inspector. You can assign this variable to a GameObject by dragging
the object onto the variable in the Inspector. The GetComponent function will now work for this object, and
component-access variables are also available.

 You can now use code like the following:

 public class EnemyDrone : Monobehaviour {
 public GameObject player;

 void Start() {
 // Start the drone ten units behind and ten units above the player
 Transform.position = player.transform.position - Vector3.forward * 10f -

Vector3.up * 10f;
 }
 }

CHAPTER 10 ■ USING C# WITH VISUAL STUDIO AND UNITY

99

 Linking objects together with variables is useful when individual objects have permanent connections.
With array variables, you can link several objects of the same type. Those links must be established in Visual
Studio rather than a runtime.

 Event functions
 Unity applications are event driven rather than executing sequentially, one instruction after another. This
means that Unity passes control to a script by calling functions that are contained within it. Once a function
has finished executing, control is passed back to the Unity engine. Such functions are called event functions
since they are called by Unity in response to events that occur during the course of the running of the
application.

 We have already seen the Start and Update event functions, shown in Figure 10-5 . There are many
more, which are all members of the MonoBehaviour class.

 Update events
 A Unity holographic application is much like an animation, where animation frames are generated on the
fly. Changes in position, state, and behavior of GameObjects occur just before a frame is rendered.

 The physics engine also updates at discrete time intervals, but not necessarily in sync with the frame
updates. Physics code should be placed in the FixedUpdate function rather than in the Update function.
This is because fixed updates are guaranteed to occur at fixed time intervals. Frame updates have no such
guarantee, and may vary depending on the load on the processor.

 There is also a LateUpdate function, which becomes active after all objects in the scene and all
animations have been calculated.

 Initialization events
 Initializations can take place during both the Awake and the Start functions. The Awake function is called for
each object in a scene when the scene loads. All Awakes have finished before the first Start is called. Start is
called before the first frame or physics update of an object.

 GUI events
 When the user performs a Select or some other operation on a hologram, she is performing a GUI event.
Code to handle such operations should be placed in an OnGUI function. This function will be called
frequently enough so that there is no noticeable delay between the triggering event and the response to that
event. Similar functions are OnMouseOver and OnMouseDown , which will trigger actions when a Bluetooth
mouse pointer either hovers over or the left mouse button is depressed when the pointer is over a hologram.

 Physics events
 The physics engine calls event functions in an object’s script when a collision event occurs. When a
GameObject contacts another GameObject, assuming a collider has been attached to the GameObject, the
 OnCollisionEnter function will handle what should be done. If contact is maintained, the OnCollisionStay
function comes into play. When contact is finally broken, the OnCollisionExit function is executed.

CHAPTER 10 ■ USING C# WITH VISUAL STUDIO AND UNITY

100

 Unity scripting resources
 Unity’s online documentation that deals with scripting is extensive. However, remember that it is written
from the point of view of a gaming platform rather than a platform for building holographic apps. It is good
to keep that in mind until it is updated to address the unique concerns of HoloLens developers.

 Summary
 The combination of the Unity game-development platform and the Visual Studio editor is the recommended
tool chain for the development of holographic applications for HoloLens. Unity in particular was not
designed for holographic development, but a special beta version of it has been modified to work closely
with Visual Studio for the production of holographic apps. As of this writing, the Unity documentation has
not caught up with this new use of the Unity Framework. Notwithstanding that, game developers familiar
with Unity should be able to transition easily to becoming holographic developers for HoloLens.

101© Allen G. Taylor 2016
A. G. Taylor, Develop Microsoft HoloLens Apps Now, DOI 10.1007/978-1-4842-2202-7_11

 CHAPTER 11

 Building the Origami Sample
Application

 The best way to learn how to create a holographic application is to create a holographic application.
Microsoft’s Holographic Academy eases you into application creation with a series of tutorials that introduce
you to the major features of the tools you will use to develop applications. The tutorials also show you some
of the ways to use these tools to create holograms that do interesting things. The first of these is named
Origami, which creates a holographic assemblage of paper sculptures that the user can interact with using
gaze, gesture, and voice.

 Most of the work of creating the application is done for you, but you must make some additions and
modifications to the C# code to complete each stage of the project. New functionality is added to the project
bit by bit until you have an example of not only gaze, gesture, and voice, but also of spatial sound and spatial
mapping.

 If you do not yet have a HoloLens device, you can deploy any applications that you build to the
HoloLens Emulator. Even if you do have a HoloLens, deploying to the Emulator makes a lot of sense. You can
cycle through multiple iterations of your code while debugging without having to download to your device
every time.

 Getting Started
 To create holographic applications, you must have the correct tools, configured the right way. Requirements
for the development PC are quite specific:

• 64-bit Windows 10 Pro, Enterprise, or Education Edition (the Home Edition will not work)

• 64-bit CPU (this is a no-brainer if you are running 64-bit Windows)

• A CPU with at least four cores, or multiple CPUs that add up to at least four cores

• 8 GB of RAM or more

• The PC’s BIOS must support:

• Hardware-assisted virtualization

• Second Level Address Translation (SLAT)

• Hardware-based Data Execution Prevention (DEP)

• A GPU that supports DirectX 11.0 or later and WDDM 1.2 driver or later

CHAPTER 11 ■ BUILDING THE ORIGAMI SAMPLE APPLICATION

102

 In addition to the preceding requirements, make sure that Hyper-V is enabled on your system. You can
reach this from Control Panel ➤ Programs ➤ Programs and Features ➤ Turn Windows Features on or off.
The Emulator will not install successfully without Hyper-V support.

 Install the tools you will need
 There are three software tools that you will need. All three may be downloaded for free. The needed tools are:

• Visual Studio 2015 Update 2 or later. The Community Edition is a free download from
Microsoft and supports holographic development.

• HoloLens Emulator. This also is a free download from Microsoft.

• Unity 5.4.0f3-HTP or later. This is a free download from Microsoft or Unity. Until Unity
comes out with a major release that supports it, be sure you use a version with the
HTP suffix, which is specifically for HoloLens.

 Download the Origami project files
 The files for the Origami project can be downloaded from a link under the Origami project within Microsoft’s
Holographic Academy, or directly from Github.com . The files are archived in a zip file. Unarchive them to a
convenient location, leaving the file name as Origami.

 Setting the Stage
 In Chapter 8 , we built the simplest possible hologram, a featureless cylinder that just hovered in space.
In this chapter, we will use some pre-existing assets to create a more complex scene with several different
holographic objects (called GameObjects) that have properties such as color and complex shapes, as well as
behaviors.

 Opening the Origami project in Unity
 Follow these steps to get started:

 1. Start Unity and select Open , since you want to open an existing project (Origami)
rather than start a new project.

 2. Enter the location of the Origami folder that you unarchived after downloading it
from either the Holographic Academy or GitHub.

 3. Select Origami and then click the Select Folder button, as shown at the bottom
of Figure 11-1 . It will take some time to load the project into Unity. Be patient.
A prompt may appear, saying that the files you are importing were created using
a different version of Unity. You can safely ignore this.

http://dx.doi.org/10.1007/978-1-4842-2202-7_8

CHAPTER 11 ■ BUILDING THE ORIGAMI SAMPLE APPLICATION

103

 Create a new _Scenes directory and then save the new scene into it, going to
File ➤ Save Scene As in the menu at the top left of the Unity screen. In the Save
Scene dialog box that appears, give the scene a file name of Origami and then
click the Save button.

 Setting up the main camera
 The main camera establishes the point of view of the person wearing the HoloLens. The main camera is
located where the HoloLens user is located, and it sees what the HoloLens user sees. To be optimized for
holographic mixed reality, the main camera must be set up as follows:

 1. In the Hierarchy panel at the upper left, select Main Camera .

 In the Inspector panel, set the camera’s transform position to 0,0,0.

 2. Find the Clear Flags property in the Inspector, and in the dropdown menu,
change Skybox to Solid color .

 3. Click on the Background field to display the color picker shown in Figure 11-2 .

 Figure 11-1. Connecting with the Origami project files

CHAPTER 11 ■ BUILDING THE ORIGAMI SAMPLE APPLICATION

104

 4. Set the RGBA values all to zero. You can do this either by dragging the circle in
the center of the Saturation/Brightness panel to the lower right-hand corner, or
by entering 0 in each of the four RGBA fields, or by entering #00000000 as the
Hex Color.

 Creating a scene
 Once you have set up the main camera, the next task is to create a scene, as follows:

 1. In the Hierarchy panel, click on Create , and from the menu that drops down,
select Create Empty . This causes a new GameObject to appear.

 2. Right-click on the new GameObject, and from the menu that appears, select
 Rename .

 3. Rename the object OrigamiCollection.

 4. In the Project panel, under Assets, click to open the Holograms folder.

 5. Drag the Stage hologram into the Hierarchy panel as a child of
OrigamiCollection.

 6. Drag the Sphere1 hologram into the Hierarchy panel as a child of
OrigamiCollection.

 Figure 11-2. Color picker

CHAPTER 11 ■ BUILDING THE ORIGAMI SAMPLE APPLICATION

105

 7. Drag the Sphere2 hologram into the Hierarchy panel as a child of
OrigamiCollection.

 8. Right-click the Directional Light object in the Hierarchy panel and delete it.

 9. Drag the Lights hologram into the root level of the Hierarchy panel.

 10. In the Hierarchy panel, select OrigamiCollection .

 11. In the Inspector, set the transform position to 0, -0.5, and 2.0. This establishes
the location of the OrigamiCollection relative to the position of the main camera,
which is the position of the HoloLens user.

 12. Press the Play button () at the top center of the Unity window. This shows what
the scene looks like from the point of view of the main camera. The center panel
should have turned black, with the stage in the center, including some origami
cubes, paper airplanes, and two spheres, as shown in Figure 11-3 .

 Figure 11-3. OrigamiCollection as seen in Unity

 If you do not see the stage in the center of the field of view, press Play again to exit Play mode and check
the position coordinates for both the main camera and the stage. Make sure they are right. If you do see the
stage in the center, after viewing the hologram, press Play again to exit Play mode.

CHAPTER 11 ■ BUILDING THE ORIGAMI SAMPLE APPLICATION

106

 Exporting the project to Visual Studio
 Now that your hologram is complete, you will need to export it to Visual Studio so that it can be deployed to
the HoloLens Emulator. To start the process, do the following:

 1. In Unity, go to File ➤ Build Settings.

 2. Select Windows Store in the Platform list and click the Switch Platform button.

 3. Set SDK to Universal 10 and Build Type to D3D .

 4. Check the Unity C# Projects box.

 5. Click the Add Open Scenes button to add the current scene to what will be built.
The Build Settings window should now look like Figure 11-4 .

 Figure 11-4. Build Settings window after proper choices for holograms have been made but before C# Projects
box has been checked

CHAPTER 11 ■ BUILDING THE ORIGAMI SAMPLE APPLICATION

107

 We now transition from the Build Settings dialog box to the Inspector panel. Do the following:

 1. Click the Player Settings. . . button.

 2. In the Inspector, select the small green Windows Store logo.

 3. Scroll down to the bottom of the panel and select Publishing Settings .

 4. In the Capabilities section at the bottom of the panel, make sure that the
 Microphone and Spatial Perception capabilities are checked.

 5. Back in the Build Settings window, click the Build button. The Build Windows
Store dialog box will appear, showing the contents of the Origami folder.

 6. Right-click in the open area, and from the menu that appears select New and
then create a new folder named App.

 7. Single-click the App folder to select it.

 8. Click on the Select Folder button in the lower right of the Build Windows Store
dialog box. Unity will start building your project. When it is finished, a File
Explorer window will appear.

 9. Double-click the App folder to enter it.

 10. Open the Origami Visual Studio Solution named Origami.sln by double-clicking
on it. Visual Studio will launch, and your project will be loaded.

 At the bottom of the Visual Studio screen, you may see something disheartening, such as the Error List
shown in Figure 11-5 .

 Figure 11-5. Error List upon export to Visual Studio

 Don’t panic! Even though it says there are 137 errors, you are probably fine if you carefully followed
directions up to this point. Go ahead and deploy the project to the HoloLens Emulator anyway.

CHAPTER 11 ■ BUILDING THE ORIGAMI SAMPLE APPLICATION

108

 Deploying the project to the HoloLens Emulator
 Once the project has been built in your development machine, you want to deploy it to your target device.
In this case, that will be the HoloLens Emulator, which runs under a virtual machine on your development
machine. Perform these steps:

 1. In Visual Studio’s top toolbar, change the target from Debug to Release and from
ARM to X86 .

 2. Click on the little down-pointing arrow next to the Device button to drop a menu
of possible targets.

 3. Select HoloLens Emulator from the menu. There may be several versions of this.
If so, select the latest one.

 4. From the main menu, go to Debug ➤ Start Without debugging. Ctrl + F5 will do
the same thing, which is to deploy your project to the HoloLens Emulator.

 If the deploy operation has succeeded, after a period of time the HoloLens Start
menu will appear in the Emulator window, as shown in Figure 11-6 .

 Figure 11-6. Emulator view of HoloLens Start menu

 After a while, the Emulator screen will go blank, and after another while, the Unity logo will appear.
After a third while, your hologram will appear. It may look something like Figure 11-7 .

CHAPTER 11 ■ BUILDING THE ORIGAMI SAMPLE APPLICATION

109

 The main camera is not quite perfectly aimed at the OrigamiCollection hologram. You can fix this by
clicking on the Human Input button in the vertical menu at the upper-right corner of the Emulator display
and then depressing the right mouse button to move the view down. The result should look like Figure 11-8 .

 Figure 11-7. Not exactly the hologram you wanted to see

 Figure 11-8. Looking at the OrigamiCollection straight on

 Congratulations! You have created a holographic project with multiple elements. Now, let’s add some
functionality to that project with a C# script.

CHAPTER 11 ■ BUILDING THE ORIGAMI SAMPLE APPLICATION

110

 Adding Gaze Functionality
 Since the HoloLens is self-contained and untethered, the user is free to roam. This means she is not sitting
at a desk with a keyboard under one hand and a mouse under the other. Although the HoloLens works fine
with a Bluetooth keyboard and Bluetooth mouse, using such input devices restricts what a person can do
with a holographic app. What is needed is a way of interacting with the app that does not tie the user down to
any specific location. This interaction is enabled by the user’s gaze.

 On the HoloLens, there is a camera that is pointed straight ahead. This means that the camera sees
whatever the user sees, as long as she is looking straight ahead. Because the HoloLens “knows” where all the
holograms are that it has created, it also knows whether the user’s gaze is falling on a particular hologram at
any given moment. This provides a means for the user to interact directly with the target hologram, either
by a gesture, which is also visible to the HoloLens, or by a voice command. We can add the ability to target a
hologram with gaze by adding a script to the Origami project.

 Adding a script to the project
 Here’s a step-by-step set of instructions for adding gaze capability to your project:

 1. Return to your Unity project and close the Build Settings window if it is still open.

 2. Open the Holograms folder under Assets in the Project panel.

 3. Drag the Cursor object into the root level of the Hierarchy panel.

 4. Double-click on the Cursor object in the Hierarchy panel. This displays the
Cursor object as a red ring at the origin of the coordinate system in the Scene
panel. Figure 11-9 shows what it looks like.

 Figure 11-9. Cursor hologram

 5. Right-click on the Scripts folder in the Project panel.

 6. In the menu that appears (Figure 11-10), select Create .

CHAPTER 11 ■ BUILDING THE ORIGAMI SAMPLE APPLICATION

111

 Figure 11-10. Menu that drops down after right-clicking on the Scripts folder

 7. From the Create submenu (Figure 11-11), select C# Script .

 Figure 11-11. Create submenu

CHAPTER 11 ■ BUILDING THE ORIGAMI SAMPLE APPLICATION

112

 8. In the Assets area, a new script has been added, temporarily named
NewBehaviourScript. Rename it WorldCursor.

 9. Select the Cursor object in the Hierarchy panel.

 10. Drag and drop the WorldCursor script into the Inspector panel, if it hasn’t been
placed there automatically. At this point, the script is an empty skeleton with a
 Start function and an Update function.

 11. Double-click the WorldCursor script in the Project panel to launch Visual
Studio. If MonoDevelop launches and gives you an error message, just ignore it
and exit MonoDevelop.

 12. Overwrite the script skeleton that is now in Visual Studio with the following code:

 using UnityEngine;

 public class WorldCursor : MonoBehaviour
 {
 private MeshRenderer meshRenderer;

 // Use this for initialization
 void Start()
 {
 // Grab the mesh renderer that's on the same object as this script.
 meshRenderer = this.gameObject.GetComponentInChildren<MeshRenderer>();
 }

 // Update is called once per frame
 void Update()
 {
 // Do a raycast into the world based on the user's
 // head position and orientation.
 var headPosition = Camera.main.transform.position;
 var gazeDirection = Camera.main.transform.forward;

 RaycastHit hitInfo;

 if (Physics.Raycast(headPosition, gazeDirection, out hitInfo))
 {
 // If the raycast hit a hologram...
 // Display the cursor mesh.
 meshRenderer.enabled = true;

 // Move the cursor to the point where the raycast hit.
 this.transform.position = hitInfo.point;

 // Rotate the cursor to hug the surface of the hologram.
 this.transform.rotation = Quaternion.FromToRotation(Vector3.up, hitInfo.normal);
 }
 else
 {

CHAPTER 11 ■ BUILDING THE ORIGAMI SAMPLE APPLICATION

113

 // If the raycast did not hit a hologram, hide the cursor mesh.
 meshRenderer.enabled = false;
 }
 }
 }

 ■ Note If you have an electronic copy of this book, doing a copy and paste will be much easier than retyping
this code.

 From the File menu, select Save All .

 Rebuild and reload
 Back in Unity, rebuild the project with File ➤ Build Settings. The choices you made previously should still be
there. The new WorldCursor code has replaced the skeleton code in the Inspector. Click on the Build button.

 Redeploy to the Emulator
 After the Unity build operation completes, perform the following steps to deploy what you have built:

 1. In the Build Windows Store dialog box, select App and click on the Select Folder
button.

 2. After the build completes, in the dialog box that pops up, double-click on the App
folder to open it.

 3. Double-click on Origami.sln .

 4. Make sure Visual Studio is set to Debug, X86, and HoloLens Emulator.

 5. From the menu, go to Debug ➤ Start Without Debugging

 6. You may get a warning in the Error window partway through the deploy process.
Just ignore it.

 If all went well, the Emulator will appear, show a brief triangle mesh scan, show the Unity logo, and
then show the OrigamiCollection hologram. If you have an Xbox controller, you can use it to look around the
scene and see how the cursor interacts with the objects in the Collection. Lacking an Xbox controller, you
can use the keyboard and mouse to move the position of the user as it relates to the hologram.

 If all is almost well, but not quite, try Debug ➤ Start Without Debugging again. Sometimes it will work
the second time but not the first.

 ■ Tip Documentation at the online HoloLens Academy suggests leaving the Emulator active between runs,
as it takes a while to reload. That may not be a good idea. Something might have been left in an anomalous
state on the previous run. If you are not experiencing a successful deployment, try exiting the Emulator before
attempting to deploy again.

CHAPTER 11 ■ BUILDING THE ORIGAMI SAMPLE APPLICATION

114

 Adding Gesture Functionality
 I suppose it’s great to see a cursor hitting one of your holograms, and thereby know what you are looking at.
However, the excitement soon wears off. If you want your holograms to actually do something, such as
respond to an action of the user, you will have to add some more functionality. This is where gestures come in.

 The most frequently used gesture is the air tap, which normally initiates a Select operation, but can
alternatively mean anything that the developer wants it to mean in the context of a given application. Often
a user will sweep her gaze over a holographic object without wanting to do anything to it. At other times, she
 will want to do something. On those occasions, there needs to be a way for her to select the object. The air
tap fills the bill. With your hand in the field of view, raise the index finger vertical, then tap it briefly against
the thumb. HoloLens recognizes that gesture as an air tap and, if the proper script is available, executes an
operation of some sort. The meaning of that operation will depend on the contents of the script that senses
the air tap and performs the operation.

 In the Origami application, we want holographic objects to take some action when they are the object of
the user’s gaze and have been activated by an air tap gesture. To accomplish that, we will add two new scripts
to the application. First, we will add a script to manage the user’s gaze and gesture, and then we will add a
script to manage what a holographic object does when it is being looked at and an air tap is performed.

 Create a script to manage gaze and gesture
 Follow these steps:

 1. In Unity, right-click on the Scripts folder in the Project panel, then select Create
and C# Script from the menus that appear.

 2. Name the new script GazeGestureManager.

 3. Drag the GazeGestureManager script onto the OrigamiCollection in the
Hierarchy panel.

 4. Double-click the GazeGestureManager script to open it in Visual Studio. Once
again, if MonoDevelop launches, exit it. You will not be using it. After removing
MonoDevelop, you may have to double-click on GazeGestureManager again to
cause the skeleton code for it to appear in Visual Studio.

 5. Replace the skeleton code with the following:

 using UnityEngine;
 using UnityEngine.VR.WSA.Input;

 public class GazeGestureManager : MonoBehaviour
 {
 public static GazeGestureManager Instance { get; private set; }

 // Represents the hologram that is currently being gazed at.
 public GameObject FocusedObject { get; private set; }

 GestureRecognizer recognizer;

 // Use this for initialization
 void Start()
 {
 Instance = this;

CHAPTER 11 ■ BUILDING THE ORIGAMI SAMPLE APPLICATION

115

 // Set up a GestureRecognizer to detect Select gestures.
 recognizer = new GestureRecognizer();
 recognizer.TappedEvent += (source, tapCount, ray) =>
 {
 // Send an OnSelect message to the focused object and its ancestors.
 if (FocusedObject != null)
 {
 FocusedObject.SendMessageUpwards("OnSelect");
 }
 };
 recognizer.StartCapturingGestures();
 }

 // Update is called once per frame
 void Update()
 {
 // Figure out which hologram is focused this frame.
 GameObject oldFocusObject = FocusedObject;

 // Do a raycast into the world based on the user's
 // head position and orientation.
 var headPosition = Camera.main.transform.position;
 var gazeDirection = Camera.main.transform.forward;

 RaycastHit hitInfo;
 if (Physics.Raycast(headPosition, gazeDirection, out hitInfo))
 {
 // If the raycast hit a hologram, use that as the focused object.
 FocusedObject = hitInfo.collider.gameObject;
 }
 else
 {
 // If the raycast did not hit a hologram, clear the focused object.
 FocusedObject = null;
 }

 // If the focused object changed this frame,
 // start detecting fresh gestures again.
 if (FocusedObject != oldFocusObject)
 {
 recognizer.CancelGestures();
 recognizer.StartCapturingGestures();
 }
 }
 }

CHAPTER 11 ■ BUILDING THE ORIGAMI SAMPLE APPLICATION

116

 Create a script to manage the Origami spheres
 Now it is time to create a script for the folded paper spheres, each of which is a separate holographic object:

 1. Create a new script in the Scripts folder in Unity’s Project panel and name it
SphereCommands.

 2. Expand the OrigamiCollection object in the Hierarchy view if it is not already
expanded.

 3. Drag the SphereCommands script onto the Sphere1 object in the Hierarchy
panel.

 4. Drag the SphereCommands script onto the Sphere2 object in the Hierarchy
panel.

 5. Replace the SphereCommands skeleton script with the following code:

 using UnityEngine;

 public class SphereCommands : MonoBehaviour
 {
 // Called by GazeGestureManager when the user performs a Select gesture
 void OnSelect()
 {
 // If the sphere has no Rigidbody component, add one to enable physics.
 if (!this.GetComponent<Rigidbody>())
 {
 var rigidbody = this.gameObject.AddComponent<Rigidbody>();
 rigidbody.collisionDetectionMode = CollisionDetectionMode.Continuous;
 }
 }
 }

 On the File menu, choose Save All . Now, export, build, and redeploy the project:

 1. Back in Unity, do a Build operation.

 2. Send the solution file (Origami.sln) in the App folder to Visual Studio.

 3. With Visual Studio’s icon bar set to Debug, x86, HoloLens Emulator, go to Debug
➤ Start Without Debugging to commence the deployment of the app to the
Emulator.

 ■ Warning Don’t be surprised by behavior that is inconsistent from one deployment to the next, with no
changes made in between. Earlier, I suggested exiting the emulator before making a new deployment of an
existing app. When you do that, you may get an error message such as that shown in Figure 11-12 . Often after
receiving a message such as this, trying again without changing anything and without exiting the Emulator will
lead to success. Go figure.

CHAPTER 11 ■ BUILDING THE ORIGAMI SAMPLE APPLICATION

117

 If things have worked well, placing the cursor on a sphere and then doing an air tap will suddenly make
the sphere subject to the law of gravity and it will fall down onto the paper airplane and from there to the
stage and finally off and out of sight.

 Enabling Voice Input
 The other way to affect a holographic object besides gesture is with a voice command. This is also
accomplished by adding a C# script to the app. We can upgrade the Origami app by making the spheres
sensitive to voice commands as well as to gestures. The behavior of the spheres is to fall under the influence of
gravity when they are activated. We can add a script that enables voice input. In addition, we can add a script
that specifically applies to the spheres. We want to be able to command the spheres to fall, and we also want
to be able to restore them to their original position so that we can have the fun of dropping them repeatedly.

 Create a script to manage speech input:

 1. Back in the Unity Scripts folder, create a new script named SpeechManager.

 2. Drag the SpeechManager script onto the OrigamiCollection object in the
Hierarchy panel.

 3. Open the SpeechManager script in Visual Studio.

 4. Replace the skeleton code in SpeechManager with the following:

 using System.Collections.Generic;
 using System.Linq;
 using UnityEngine;
 using UnityEngine.Windows.Speech;

 public class SpeechManager : MonoBehaviour
 {
 KeywordRecognizer keywordRecognizer = null;
 Dictionary<string, System.Action> keywords = new Dictionary<string, System.Action>();

 // Use this for initialization
 void Start()
 {
 keywords.Add("Reset world", () =>
 {

 Figure 11-12. Error message similar to one you might receive when deploying an app

CHAPTER 11 ■ BUILDING THE ORIGAMI SAMPLE APPLICATION

118

 // Call the OnReset method on every descendant object.
 this.BroadcastMessage("OnReset");
 });

 keywords.Add("Drop Sphere", () =>
 {
 var focusObject = GazeGestureManager.Instance.FocusedObject;
 if (focusObject != null)
 {
 // Call the OnDrop method on just the focused object.
 focusObject.SendMessage("OnDrop");
 }
 });

 // Tell the KeywordRecognizer about our keywords.
 keywordRecognizer = new KeywordRecognizer(keywords.Keys.ToArray());

 // Register a callback for the KeywordRecognizer and start recognizing!
 keywordRecognizer.OnPhraseRecognized += KeywordRecognizer_OnPhraseRecognized;
 keywordRecognizer.Start();
 }

 private void KeywordRecognizer_OnPhraseRecognized(PhraseRecognizedEventArgs args)
 {
 System.Action keywordAction;
 if (keywords.TryGetValue(args.text, out keywordAction))
 {
 keywordAction.Invoke();
 }
 }
 }

 That takes care of the general procedure for getting a holographic object to respond to a spoken
command. Now, to generate the specific commands we want to use with the paper spheres.

 Edit the sphere-management script to manage the spheres’ response to speech commands:

 1. Open the SphereCommands script in Visual Studio.

 2. Replace the script skeleton with the following:

 using UnityEngine;

 public class SphereCommands : MonoBehaviour
 {
 Vector3 originalPosition;

 // Use this for initialization
 void Start()
 {
 // Grab the original local position of the sphere when the app starts.
 originalPosition = this.transform.localPosition;
 }

CHAPTER 11 ■ BUILDING THE ORIGAMI SAMPLE APPLICATION

119

 // Called by GazeGestureManager when the user performs a Select gesture
 void OnSelect()
 {
 // If the sphere has no Rigidbody component, add one to enable physics.
 if (!this.GetComponent<Rigidbody>())
 {
 var rigidbody = this.gameObject.AddComponent<Rigidbody>();
 rigidbody.collisionDetectionMode = CollisionDetectionMode.Continuous;
 }
 }

 // Called by SpeechManager when the user says the "Reset world" command
 void OnReset()
 {
 // If the sphere has a Rigidbody component, remove it to disable physics.
 var rigidbody = this.GetComponent<Rigidbody>();
 if (rigidbody != null)
 {
 DestroyImmediate(rigidbody);
 }

 // Put the sphere back into its original local position.
 this.transform.localPosition = originalPosition;
 }

 // Called by SpeechManager when the user says the "Drop sphere" command
 void OnDrop()
 {
 // Just do the same logic as a Select gesture.
 OnSelect();
 }
 }

 Export, build, and redeploy
 As before, build Origami in Unity, export to Visual Studio, and deploy to the HoloLens Emulator. Then,
assuming you have a microphone on your development machine, practice placing the world cursor on a ball
and saying “Drop sphere.” After you have dropped both spheres, restore them to their original position by
saying “Reset World.”

 Giving Holograms Spatial Sound
 One of the features that helps to sell the illusion that the holographic objects that the HoloLens generates are
really there is spatial sound. Unlike stereophonic sound, which tells you whether a sound is coming from the
left or the right or somewhere in between, spatial sound tells you precisely where a sound is coming from,
whether in front of you, in back of you, or coming in from any given angle. It also gives you a sense of how far
away a hologram is by how loud the sound is that it makes. Spatial sounds can be assigned to the objects in
the Origami project. All it takes is a script. First, though, there needs to be some setup.

CHAPTER 11 ■ BUILDING THE ORIGAMI SAMPLE APPLICATION

120

 The following are the steps to set up spatial sound for the project:

 1. In Unity, from the top menu, go to Edit ➤ Project Settings ➤ Audio.

 2. In the Inspector panel, set the Spatializer Plugin to MS HRTF Spatializer .

 3. Drag the Ambience object from the Holograms folder in the Project panel onto
the OrigamiCollection object in the Hierarchy panel.

 4. Select OrigamiCollection in the Hierarchy panel and then locate the Audio
Source component in the Inspector panel. Change the following properties of the
Audio Source:

• Check the Spatialize property.

• Check the Play On Awake property.

• Change Spatial Blend to 3D by dragging the slider all the way to the right.

• Check the Loop property.

• Expand 3D Sound Settings and enter 0.1 for Doppler Level.

• Set Volume Rolloff to Custom Rolloff .

 5. In the Scripts folder in the Project panel, create a script named SphereSounds.

 6. Drag and drop the SphereSounds script onto both the Sphere1 and Sphere2
objects in the Hierarchy panel.

 Now, add the SphereSounds script to the project:

 1. Double-click on the SphereSounds script in the Project panel to open it in Visual
Studio. If MonoDevelop launches, exit it and wait for Visual Studio to finish
loading.

 2. Navigate to the SphereSounds.cs script in Visual Studio if it is not already
displayed in the script panel.

 3. Replace the skeleton code for SphereSounds.cs with the following:

 using UnityEngine;

 public class SphereSounds : MonoBehaviour
 {
 AudioSource audioSource = null;
 AudioClip impactClip = null;
 AudioClip rollingClip = null;

 bool rolling = false;

 void Start()
 {
 // Add an AudioSource component and set up some defaults
 audioSource = gameObject.AddComponent<AudioSource>();
 audioSource.playOnAwake = false;
 audioSource.spatialize = true;
 audioSource.spatialBlend = 1.0f;

CHAPTER 11 ■ BUILDING THE ORIGAMI SAMPLE APPLICATION

121

 audioSource.dopplerLevel = 0.0f;
 audioSource.rolloffMode = AudioRolloffMode.Custom;

 // Load the Sphere sounds from the Resources folder
 impactClip = Resources.Load<AudioClip>("Impact");
 rollingClip = Resources.Load<AudioClip>("Rolling");
 }

 // Occurs when this object starts colliding with another object
 void OnCollisionEnter(Collision collision)
 {
 // Play an impact sound if the sphere impacts strongly enough.
 if (collision.relativeVelocity.magnitude >= 0.1f)
 {
 audioSource.clip = impactClip;
 audioSource.Play();
 }
 }

 // Occurs each frame that this object continues to collide with another object
 void OnCollisionStay(Collision collision)
 {
 Rigidbody rigid = this.gameObject.GetComponent<Rigidbody>();

 // Play a rolling sound if the sphere is rolling fast enough.
 if (!rolling && rigid.velocity.magnitude >= 0.01f)
 {
 rolling = true;
 audioSource.clip = rollingClip;
 audioSource.Play();
 }
 // Stop the rolling sound if rolling slows down.
 else if (rolling && rigid.velocity.magnitude < 0.01f)
 {
 rolling = false;
 audioSource.Stop();
 }
 }

 // Occurs when this object stops colliding with another object
 void OnCollisionExit(Collision collision)
 {
 // Stop the rolling sound if the object falls off and stops colliding.
 if (rolling)
 {
 rolling = false;
 audioSource.Stop();
 }
 }
 }

CHAPTER 11 ■ BUILDING THE ORIGAMI SAMPLE APPLICATION

122

 Now, save the SphereSounds script and return to Unity.
 Now you are ready to export, build, and redeploy:

 1. Select Build Settings from the File menu.

 2. Click on the Build button in the Build Settings dialog box.

 3. In the Build Windows Store dialog box, select App and then click on the Select
Folder button.

 4. When the build is complete, double-click on App in the Origami folder that
appears.

 5. Double-click on the Origami.sln file to launch Visual Studio.

 6. Deploy to the Emulator as usual.

 If things have gone well, some pleasant Japanese-sounding music will accompany the hologram. An
emulated “movement” closer to the hologram will make the sound louder, and an emulated move away will
make the sound quieter.

 Establishing Context with Spatial Mapping
 You will want to place your holograms in locations that make sense in your real-world surroundings. To do
that, your HoloLens must have a map of its surroundings. That map is drawn based on the spatial-mapping
operation. We can add that capability to our Origami application with some adjustments and a new script.

 The next task is to set up spatial mapping for this project:

 1. In Unity, click on the Holograms folder in the Project panel.

 2. Drag the Spatial Mapping asset into the root level of the Hierarchy panel.

 3. Click on the Spatial Mapping object in the Hierarchy panel to select it.

 4. In the Inspector panel, make the following changes:

• Check the Draw Visual Meshes box.

• Locate Draw Material and click on the circle on the right. A menu of drawing
materials will appear. Scroll down and then click on Wireframe , then close
the window. This should set the value for Draw Material to Wireframe in the
Inspector.

 5. Build, export, and deploy Origami as you have done before.

 a. When the app runs, a mesh of a previously scanned real-world living room
will be rendered in wireframe.

 6. Command a sphere to drop and watch how it rolls off the stage and onto the floor.

 Move the OrigamiCollection to a new location
• In Unity’s scripts folder, create a new script named TapToPlaceParent.

• In the Hierarchy panel, expand the OrigamiCollection and select the Stage object.

CHAPTER 11 ■ BUILDING THE ORIGAMI SAMPLE APPLICATION

123

• Drag the TapToPlaceParent script onto the Stage object.

• Open the TapToPlaceParent script in Visual Studio and replace the script skeleton
with the following:

 using UnityEngine;

 public class TapToPlaceParent : MonoBehaviour
 {
 bool placing = false;

 // Called by GazeGestureManager when the user performs a Select gesture
 void OnSelect()
 {
 // On each Select gesture, toggle whether the user is in placing mode.
 placing = !placing;

 // If the user is in placing mode, display the spatial-mapping mesh.
 if (placing)
 {
 SpatialMapping.Instance.DrawVisualMeshes = true;
 }
 // If the user is not in placing mode, hide the spatial-mapping mesh.
 else
 {
 SpatialMapping.Instance.DrawVisualMeshes = false;
 }
 }

 // Update is called once per frame
 void Update()
 {
 // If the user is in placing mode,
 // update the placement to match the user’s gaze.

 if (placing)
 {
 // Do a raycast into the world that will only hit the spatial-mapping mesh.
 var headPosition = Camera.main.transform.position;
 var gazeDirection = Camera.main.transform.forward;

 RaycastHit hitInfo;
 if (Physics.Raycast(headPosition, gazeDirection, out hitInfo,
 30.0f, SpatialMapping.PhysicsRaycastMask))
 {
 // Move this object's parent object to
 // where the raycast hit the spatial-mapping mesh.
 this.transform.parent.position = hitInfo.point;

CHAPTER 11 ■ BUILDING THE ORIGAMI SAMPLE APPLICATION

124

 // Rotate this object's parent object to face the user.
 Quaternion toQuat = Camera.main.transform.localRotation;
 toQuat.x = 0;
 toQuat.z = 0;
 this.transform.parent.rotation = toQuat;
 }
 }
 }
 }

 From the file menu, select Save All .

 Export, build, and deploy
 Export, build, and deploy to the Emulator as before. If everything worked as it should, you will be able to
place the stage at a specific location and then freeze it there with a Select gesture (either the letter A or the
spacebar when running the Emulator). Move your gaze to a new location and use the Select gesture again to
move it to a new location.

 Shifting from the Emulator to the HoloLens Device
 Everything you have done in building Origami and deploying it to the HoloLens Emulator will work
equally well when deploying to the HoloLens device. Assuming your HoloLens is properly paired with your
development machine, the procedure is exactly the same except for the deployment target. Whereas in this
chapter we have always deployed to Debug, x86, HoloLens Emulator, when deploying over USB cable the
corresponding destination is Debug, x86, Device. When deploying to the HoloLens device over Wi-Fi, the
corresponding destination is Debug, x86, Remote Machine.

 Summary
 This chapter, by walking you through the Origami sample application, introduces you to the procedure
for building an application in Unity, exporting it to Visual Studio, adding scripts for functionality, and
finally deploying the app to the HoloLens Emulator. Once you have deployed to the Emulator, deploying
to a HoloLens device will give you a much cooler experience. There are more advanced tutorials on the
Holographic Academy Web site, but this one gives you all the basics.

125© Allen G. Taylor 2016
A. G. Taylor, Develop Microsoft HoloLens Apps Now, DOI 10.1007/978-1-4842-2202-7_12

 CHAPTER 12

 Building the Holograms 240
Shared Application

 Amazing as the HoloLens mixed-reality experience can be when you are experiencing it by yourself, it
reaches a whole new level when you can share that experience with other people. HoloLens technology
supports multiple people, all wearing HoloLens devices, sharing the same mixed reality. They can all see,
hear, and interact with the same holographic objects. This capability is directly applicable to learning and
training applications, whether they be in a college class; an industrial, commercial, or military setting; or
even in a brainstorming session. Of course, multiplayer games are also an obvious application.

 Getting Started
 As with the Holograms 101E tutorial covered in Chapter 11 , to create holographic applications you must
have the correct tools, configured the right way. Requirements for the development PC are quite specific. If
you have successfully worked through Chapter 11 , then you already have all of the following:

• 64-bit Windows 10 Pro, Enterprise, or Education Edition (the Home Edition will not
work)

• 64-bit CPU with at least four cores, or multiple CPUs that add up to at least four cores

• 8 GB of RAM or more

• The PC’s BIOS must support:

• Hardware-assisted virtualization

• Second Level Address Translation (SLAT)

• Hardware-based Data Execution Prevention (DEP)

• A GPU that supports DirectX 11.0 or later and WDDM 1.2 driver or later

 In addition to all of this, make sure that Hyper-V is enabled on your system. You can reach this from
Control Panel ➤ Programs ➤ Programs and Features ➤ Turn Windows Features on or off. The Emulator will
not install successfully without Hyper-V support.

http://dx.doi.org/10.1007/978-1-4842-2202-7_11
http://dx.doi.org/10.1007/978-1-4842-2202-7_11

CHAPTER 12 ■ BUILDING THE HOLOGRAMS 240 SHARED APPLICATION

126

 Install the tools you will need
 There are three software tools that you will need. All three may be downloaded for free:

• Visual Studio 2015 Update 3. The Community Edition is a free download from
Microsoft and supports holographic development.

• HoloLens Emulator. This also is a free download from Microsoft

• Unity version 5.4.0f3-HTP or later. Unless a major new release beyond Unity version
5.4 has been released, be sure to use the one with the HTP suffix. It is specifically
designed for HoloLens.

 Download the Sharing Holograms project files
 The files for the Sharing Holograms project can be downloaded from a link under the Holograms 240
Sharing Holograms project in Microsoft’s Holographic Academy. The files are archived in a zip file.
Unarchive them to a convenient location, leaving the file name as SharedHolograms.

 Building the App
 In Chapter 11 , we built the Origami application. The procedure here will be similar, but it is important to get
every step exactly right. Just about any slight deviation from the steps involved will lead to failure. If you do
crash and burn and cannot tell why, starting from absolute scratch is often the best route to success.

 Opening the Shared Holograms project in Unity
• Start Unity and select Open , since you want to open an existing project rather than

start a new project.

• Enter the location of the SharedHolograms folder that you unarchived after
downloading it from either the Holographic Academy or Github.

• Select SharedHolograms and then click the Select Folder button, as shown at the
bottom of Figure 12-1 . It will take some time to load the project into Unity. Be patient.
You may see a warning that the project was created with a different version of Unity
than the one you are using. As long as the version you are using is later than the one
under which the project was created, this is not a problem. Just ignore the warning.

http://dx.doi.org/10.1007/978-1-4842-2202-7_11

CHAPTER 12 ■ BUILDING THE HOLOGRAMS 240 SHARED APPLICATION

127

• Save the new scene, going to File ➤ Save Scene As in the menu at the top left of the
Unity screen.

• In the Save Scene dialog box that appears, give the scene a file name of
SharedHolograms and then click the Save button.

 Populate the Hierarchy panel with assets
 Rather than using the default main camera, we will use a prefab that contains a customized main camera, as
follows:

• In the Hierarchy panel, right-click on Main Camera and select Delete from the
menu that appears.

• In the HoloToolkit folder under Assets in the Project panel, select Prefabs and then
 Camera .

• From the Camera folder, drag the Main Camera prefab into the Hierarchy root level
and drop it there.

• In the Hierarchy panel, click on the Create button and then on the Create Empty
button. This will put a GameObect into the Hierarchy panel.

• Right-click on the GameObject and select Rename from the menu that appears.

• Rename the GameObject to HologramCollection.

• Select the HologramCollection object.

• In the Inspector, set the Transform Position to X: 0, Y: -0.25, Z: 2.

 Figure 12-1. Connecting with the SharedHolograms project files

CHAPTER 12 ■ BUILDING THE HOLOGRAMS 240 SHARED APPLICATION

128

• In the Holograms folder in the Project panel, locate the EnergyHub asset.

• Drag the EnergyHub object into the Hierarchy panel as a child of
HologramCollection.

• Go to File and then Save Scene As . . .

• In the dialog box that appears, give the scene a file name of SharedHolograms and
then click Save.

• Press Unity’s Play button () in the center of the icon bar at the top to play the
preview of the scene. The Scene panel should now show something like Figure 12-2 .

• Press Play again to stop the preview of the scene.

 Export the project to Visual Studio
• In Unity, go to File ➤ Build Settings in the main menu.

• In the Build Settings dialog box, click on the Add Open Scenes button to add the
scene you have just created to the build.

• Select Windows Store from the Platform list and click the Switch Platform button.

• Set SDK to Universal 10 and UWP Build Type to D3D .

• Check the Unity C# Projects box.

 Figure 12-2. Preview of the HologramCollection scene

CHAPTER 12 ■ BUILDING THE HOLOGRAMS 240 SHARED APPLICATION

129

• Click the Build button.

• In the File Explorer window that appears, create a new folder named App.

• Single-click the App folder and then click the Select Folder button.

• Unity will start building the project. When it is finished, a File Explorer window will
appear.

• In the File Explorer window, open the App folder.

• Double-click on SharedHolograms.sln to launch Visual Studio.

 You may see some warnings in the Error List in the bottom panel. Often such warnings are of no
consequence. Proceed with the deployment.

 Deploying the project to the HoloLens Emulator
• In Visual Studio, set the destination to Release, x86, HoloLens Emulator.

• From the menu, go to Debug ➤ Start Without Debugging. The deployment to the
Emulator will commence.

 If all has gone well, the HoloLens Emulator will appear and, after displaying the Unity logo, will show the
Energy Hub and play some accompanying music. Figure 12-3 shows what this looks like. If, by chance, the app
works in the editor but does not successfully deploy to the Emulator, try exiting the Emulator and then redeploying.
Sometimes the Emulator is not left in the proper state after a previous use, causing deployment to fail.

 Figure 12-3. Energy Hub as seen in the HoloLens Emulator

CHAPTER 12 ■ BUILDING THE HOLOGRAMS 240 SHARED APPLICATION

130

 Deploying the project to the HoloLens device
 Assuming your HoloLens is properly connected either by USB or Wi-Fi to your development PC, you can
now easily deploy the SharedHolograms project to your device.

 In Visual Studio:

• In the icon bar, change Release, x86, HoloLens Emulator to Release, x86, Remote
Machine.

• If you are asked for the network address of the HoloLens device, you can find it from
the Start Pins menu at Settings ➤ Network & Internet, Wi-Fi, Proxy ➤ Advanced
Options. The address you want is the IPv4 address.

 ■ Warning Sometimes the IPv4 address of your device will be changed without notifying you. If you find
that deploying to the HoloLens suddenly fails where it was working before, check your IPv4 address. If it has
changed, you will have to inform Visual Studio of the new address.

• Assuming your device has been successfully paired with your development machine,
from the Visual Studio menu, select Debug ➤ Start Without Debugging. After
displaying the Unity logo, the Energy Hub will pulsate in all its 3D, holographic glory,
and music will play in your ears.

 Interacting with the Hologram
 It’s fun for a while to watch an active, animated object such as the Energy Hub do its thing. However, that
starts to get old after it keeps doing the same thing time after time. Much more satisfying is to be able to
affect the Energy Hub directly. To do that you need to be able to select it, and in order to do that you must
create a raycast with your gaze and then follow up with a gesture. Let’s add gaze recognition.

 Adding gaze functionality
 Gaze is what determines where the cursor is located, and cursor location determines whether a hologram is
being targeted. To add gaze functionality, do the following:

• In Unity’s Hierarchy panel, select the HologramCollection object.

• In the Inspector panel, click the Add Component button.

• In the menu search box, type “Gaze Manager” and select the corresponding search
result.

• Note that a Gaze Manager script has been added to the Inspector panel.

• In the HoloToolkit ➤ Prefabs ➤ Input folder, find the Cursor asset.

• Drag the Cursor asset onto the root level of the Hierarchy panel and drop it there.

CHAPTER 12 ■ BUILDING THE HOLOGRAMS 240 SHARED APPLICATION

131

 Adding gesture functionality
 To add gesture functionality, do the following:

• In the Hierarchy panel, select the HologramCollection object.

• Click the Add Component button and type “Gesture Manager” into the Search field.

• Select the corresponding search result.

• Note that a Gesture Manager script has been added to the Inspector panel.

• In the Hierarchy panel, expand HologramCollection to show its child objects.

• Select the Energy Hub child object.

• In the Inspector panel, scroll down and click the Add Component button.

• In the menu that drops down, type “Hologram Placement” in the Search box and
select the corresponding search result.

• Note that a Hologram Placement script has been added to the Inspector panel.

• Save the scene by going to File ➤ Save Scene.

• Build the project and deploy it to the HoloLens as you did in the preceding section.

 ■ Note If you get a deployment error, don’t necessarily believe it. Deploy again without changing anything. It
might work. There is sometimes some initialization flakiness that gets corrected the second time through.

• Launch the app on your HoloLens and observe what the Energy Hub does as you
move your head.

• Note the appearance of the cursor when it is hitting a hologram and when it is not.

• With your gaze, move the Energy Hub to a location you choose and then use an air
tap to place it there.

 Establishing Shared Coordinates
 In order for two or more people to share the same holographic experience, they have to agree on where the
holograms are located. This means that they must see the holograms in relation to the same coordinate
system. To do this, all devices involved must be members of the same network and must agree on a common
reference point. HoloLens devices may be paired with different PCs, as long as all PCs are members of the
network. To establish the shared coordinate system, do the following:

• In Unity’s Project panel, navigate to the HoloToolkit ➤ Prefabs ➤ Sharing folder.

• Drag the Sharing Prefab object into the root level of the Hierarchy panel.

• Click on the HoloToolkit menu tab.

• Select Launch Sharing Service from the dropdown menu.

• Click on the Allow access from the Windows Security Alert firewall dialog box.

CHAPTER 12 ■ BUILDING THE HOLOGRAMS 240 SHARED APPLICATION

132

• Note the IPv4 address displayed in the Sharing Service console window. This is the
address of the machine running the sharing service. Several addresses could be
displayed. If so, use the one with either an address of 192.168.10.X or 10.0.0.X. You
can always try the others if this one does not work.

 Do the following on ALL of the PCs that will be engaged in the sharing experience:

• In the Hierarchy panel, select the Sharing object.

• In the Inspector panel, on the Sharing Stage component, set the Server Address to
the IPv4 address that you just copied from the SharingService.exe console window of
the server PC.

• In the Hierarchy panel, select the HologramCollection object.

• In the Inspector panel, click on the Add Component button.

• In the Search box that appears below the Add Component button, type “Import
Export Anchor Manager.” Select the search result.

• In the Project panel, navigate to and open the Scripts folder.

• Double-click the HologramPlacement script to open it in Visual Studio.

• Replace the contents of the HologramPlacement script with the following code:

 using UnityEngine;
 using System.Collections.Generic;
 using UnityEngine.Windows.Speech;
 using HoloToolkit.Unity;
 using HoloToolkit.Sharing;

 public class HologramPlacement : Singleton<HologramPlacement>
 {
 /// <summary>
 /// Tracks if we have been sent a transform for the anchor model.
 /// The anchor model is rendered relative to the actual anchor.
 /// </summary>
 public bool GotTransform { get; private set; }

 private bool animationPlayed = false;

 void Start()
 {
 // We care about getting updates for the anchor transform.
 CustomMessages.Instance.MessageHandlers[CustomMessages.TestMessageID.StageTransform]

= this.OnStageTransfrom;

 // And when a new user joins we will send the anchor transform we have.
 SharingSessionTracker.Instance.SessionJoined += Instance_SessionJoined;
 }

 /// <summary>
 /// When a new user joins we want to send them the relative transform for the anchor if

we have it.

CHAPTER 12 ■ BUILDING THE HOLOGRAMS 240 SHARED APPLICATION

133

 /// </summary>
 /// <param name="sender"></param>
 /// <param name="e"></param>
 private void Instance_SessionJoined(object sender, SharingSessionTracker.

SessionJoinedEventArgs e)
 {
 if (GotTransform)
 {
 CustomMessages.Instance.SendStageTransform(transform.localPosition, transform.

localRotation);
 }
 }

 void Update()
 {
 if (GotTransform)
 {
 if (ImportExportAnchorManager.Instance.AnchorEstablished &&
 animationPlayed == false)
 {
 // This triggers the animation sequence for the anchor model and
 // puts the cool materials on the model.
 GetComponent<EnergyHubBase>().SendMessage("OnSelect");
 animationPlayed = true;
 }
 }
 else
 {
 transform.position = Vector3.Lerp(transform.position,

ProposeTransformPosition(), 0.2f);
 }
 }

 Vector3 ProposeTransformPosition()
 {
 // Put the anchor 2m in front of the user.
 Vector3 retval = Camera.main.transform.position + Camera.main.transform.forward * 2;

 return retval;
 }

 public void OnSelect()
 {
 // Note that we have a transform.
 GotTransform = true;

 // And send it to our friends.
 CustomMessages.Instance.SendStageTransform(transform.localPosition, transform.

localRotation);
 }

CHAPTER 12 ■ BUILDING THE HOLOGRAMS 240 SHARED APPLICATION

134

 /// <summary>
 /// When a remote system has a transform for us, we'll get it here.
 /// </summary>
 /// <param name="msg"></param>
 void OnStageTransfrom(NetworkInMessage msg)
 {
 // We read the user ID but we don't use it here.
 msg.ReadInt64();

 transform.localPosition = CustomMessages.Instance.ReadVector3(msg);
 transform.localRotation = CustomMessages.Instance.ReadQuaternion(msg);

 // The first time, we'll want to send the message to the anchor to do its animation and
 // swap its materials.
 if (GotTransform == false)
 {
 GetComponent<EnergyHubBase>().SendMessage("OnSelect");
 }

 GotTransform = true;
 }

 public void ResetStage()
 {
 // We'll use this later.
 }
 }

 If MonoDevelop opens along with Visual Studio, just exit it and display the existing
 HologramPlacement.cs file in Visual Studio:

• Go to File ➤ Save All.

• Back in Unity, select HologramCollection in the Hierarchy panel.

• In the Inspector panel, click the Add Component button.

• In the Search box, type “App State Manager.” Select the result.

• Now build the project and deploy it to your HoloLens device.

 Once again, you may get an error message on deployment. Try deploying again without changing
anything. This usually works for me.

 Verify that everyone participating is seeing the Energy Hub in the same place and that it is oriented the
same way for all of them.

 Seeing Others as Avatars
 Now that you can all see the Energy Hub, let’s add code to enable you all to see each other, at least as avatars,
if not in the flesh. Do the following:

• In the Project panel, open the Holograms folder.

• Drag the PlayerAvatarStore object into the root level of the Hierarchy.

CHAPTER 12 ■ BUILDING THE HOLOGRAMS 240 SHARED APPLICATION

135

• In the Project panel, open the Scripts folder.

• Double-click the AvatarSelector script to open it in Visual Studio.

• Replace the contents of the AvatarSelector script with the following code:

 using UnityEngine;
 using HoloToolkit.Unity;

 /// <summary>
 /// Script to handle the user selecting the avatar.
 /// </summary>
 public class AvatarSelector : MonoBehaviour
 {
 /// <summary>
 /// This is the index set by the PlayerAvatarStore for the avatar.
 /// </summary>
 public int AvatarIndex { get; set; }

 /// <summary>
 /// Called when the user is gazing at this avatar and air taps it.
 /// This sends the user's selection to the rest of the devices in the experience.
 /// </summary>
 void OnSelect()
 {
 PlayerAvatarStore.Instance.DismissAvatarPicker();

 LocalPlayerManager.Instance.SetUserAvatar(AvatarIndex);
 }

 void Start()
 {
 // Add Billboard component so the avatar always faces the user.
 Billboard billboard = gameObject.GetComponent<Billboard>();
 if (billboard == null)
 {
 billboard = gameObject.AddComponent<Billboard>();
 }

 // Lock rotation along the Y axis.
 billboard.PivotAxis = PivotAxis.Y;
 }
 }

• Go to File ➤ Save All.

• In the Hierarchy panel, select the HologramCollection object.

• In the Inspector panel, click the Add Component button.

• In the Search box, type “Local Player Manager.” Select the search result.

• In the Hierarchy panel, select the HologramCollection object.

CHAPTER 12 ■ BUILDING THE HOLOGRAMS 240 SHARED APPLICATION

136

• In the Inspector panel, click on the Add Component button.

• In the Search box, type “Remote Player Manager.” Select the search result.

• Open the HologramPlacement script in Visual Studio.

• Replace the contents of the script with the following code:

 using UnityEngine;
 using System.Collections.Generic;
 using UnityEngine.Windows.Speech;
 using HoloToolkit.Unity;
 using HoloToolkit.Sharing;

 public class HologramPlacement : Singleton<HologramPlacement>
 {
 /// <summary>
 /// Tracks if we have been sent a transform for the model.
 /// The model is rendered relative to the actual anchor.
 /// </summary>
 public bool GotTransform { get; private set; }

 /// <summary>
 /// When the experience starts, we disable all of the rendering of the model.
 /// </summary>
 List<MeshRenderer> disabledRenderers = new List<MeshRenderer>();

 void Start()
 {
 // When we first start, we need to disable the model to avoid its obstructing the

user picking a hat.
 DisableModel();

 // We care about getting updates for the model transform.
 CustomMessages.Instance.MessageHandlers[CustomMessages.TestMessageID.StageTransform]

= this.OnStageTransfrom;

 // And when a new user joins we will send the model transform we have.
 SharingSessionTracker.Instance.SessionJoined += Instance_SessionJoined;
 }

 /// <summary>
 /// When a new user joins we want to send them the relative transform for the model if

we have it.
 /// </summary>
 /// <param name="sender"></param>
 /// <param name="e"></param>
 private void Instance_SessionJoined(object sender, SharingSessionTracker.

SessionJoinedEventArgs e)
 {
 if (GotTransform)
 {

CHAPTER 12 ■ BUILDING THE HOLOGRAMS 240 SHARED APPLICATION

137

 CustomMessages.Instance.SendStageTransform(transform.localPosition, transform.
localRotation);

 }
 }

 /// <summary>
 /// Turns off all renderers for the model.
 /// </summary>
 void DisableModel()
 {
 foreach (MeshRenderer renderer in gameObject.GetComponentsInChildren<MeshRenderer>())
 {
 if (renderer.enabled)
 {
 renderer.enabled = false;
 disabledRenderers.Add(renderer);
 }
 }

 foreach (MeshCollider collider in gameObject.GetComponentsInChildren<MeshCollider>())
 {
 collider.enabled = false;
 }
 }

 /// <summary>
 /// Turns on all renderers that were disabled.
 /// </summary>
 void EnableModel()
 {
 foreach (MeshRenderer renderer in disabledRenderers)
 {
 renderer.enabled = true;
 }

 foreach (MeshCollider collider in gameObject.GetComponentsInChildren<MeshCollider>())
 {
 collider.enabled = true;
 }

 disabledRenderers.Clear();
 }

 void Update()
 {
 // Wait till users pick an avatar to enable renderers.
 if (disabledRenderers.Count > 0)
 {
 if (!PlayerAvatarStore.Instance.PickerActive &&
 ImportExportAnchorManager.Instance.AnchorEstablished)

CHAPTER 12 ■ BUILDING THE HOLOGRAMS 240 SHARED APPLICATION

138

 {
 // After which we want to start rendering.
 EnableModel();

 // And if we've already been sent the relative transform, we will use it.
 if (GotTransform)
 {
 // This triggers the animation sequence for the model and
 // puts the cool materials on the model.
 GetComponent<EnergyHubBase>().SendMessage("OnSelect");
 }
 }
 }
 else if (GotTransform == false)
 {
 transform.position = Vector3.Lerp(transform.position, ProposeTransformPosition(), 0.2f);
 }
 }

 Vector3 ProposeTransformPosition()
 {
 // Put the model 2m in front of the user.
 Vector3 retval = Camera.main.transform.position + Camera.main.transform.forward * 2;

 return retval;
 }

 public void OnSelect()
 {
 // Note that we have a transform.
 GotTransform = true;

 // And send it to our friends.
 CustomMessages.Instance.SendStageTransform(transform.localPosition, transform.

localRotation);
 }

 /// <summary>
 /// When a remote system has a transform for us, we'll get it here.
 /// </summary>
 /// <param name="msg"></param>
 void OnStageTransfrom(NetworkInMessage msg)
 {
 // We read the user ID, but we don't use it here.
 msg.ReadInt64();

 transform.localPosition = CustomMessages.Instance.ReadVector3(msg);
 transform.localRotation = CustomMessages.Instance.ReadQuaternion(msg);

 // The first time, we'll want to send the message to the model to do its animation and
 // swap its materials.

CHAPTER 12 ■ BUILDING THE HOLOGRAMS 240 SHARED APPLICATION

139

 if (disabledRenderers.Count == 0 && GotTransform == false)
 {
 GetComponent<EnergyHubBase>().SendMessage("OnSelect");
 }

 GotTransform = true;
 }

 public void ResetStage()
 {
 // We'll use this later.
 }
 }

• Go to File ➤ Save All.

• Open the AppStateManager script in Visual Studio.

• Replace the contents of the script with the following:

 using UnityEngine;
 using HoloToolkit.Unity;

 /// <summary>
 /// Keeps track of the current state of the experience.
 /// </summary>
 public class AppStateManager : Singleton<AppStateManager>
 {
 /// <summary>
 /// Enum to track progress through the experience.
 /// </summary>
 public enum AppState
 {
 Starting = 0,
 WaitingForAnchor,
 WaitingForStageTransform,
 PickingAvatar,
 Ready
 }

 /// <summary>
 /// Tracks the current state in the experience.
 /// </summary>
 public AppState CurrentAppState { get; set; }

 void Start()
 {
 // We start in the 'picking avatar' mode.
 CurrentAppState = AppState.PickingAvatar;

 // We start by showing the avatar picker.
 PlayerAvatarStore.Instance.SpawnAvatarPicker();
 }

CHAPTER 12 ■ BUILDING THE HOLOGRAMS 240 SHARED APPLICATION

140

 void Update()
 {
 switch (CurrentAppState)
 {
 case AppState.PickingAvatar:
 // Avatar picking is done when the avatar picker has been dismissed.
 if (PlayerAvatarStore.Instance.PickerActive == false)
 {
 CurrentAppState = AppState.WaitingForAnchor;
 }
 break;
 case AppState.WaitingForAnchor:
 if (ImportExportAnchorManager.Instance.AnchorEstablished)
 {
 CurrentAppState = AppState.WaitingForStageTransform;
 GestureManager.Instance.OverrideFocusedObject = HologramPlacement.

Instance.gameObject;
 }
 break;
 case AppState.WaitingForStageTransform:
 // Now if we have the stage transform we are ready to go.
 if (HologramPlacement.Instance.GotTransform)
 {
 CurrentAppState = AppState.Ready;
 GestureManager.Instance.OverrideFocusedObject = null;
 }
 break;
 }
 }
 }

• Go to File ➤ Save All.

• Build and deploy the project to your HoloLens devices.

• When you hear a ping sound, find the avatar selection menu and select an avatar
with an air tap gesture.

• Look at the other people participating. You should see an avatar next to each of their
heads.

 Anchoring a Hologram to a Position in Space
 When multiple people are all experiencing the same hologram, it is probably best to locate the hologram in
the middle of the group. The following additions to the SharedHolograms project will place the Energy Hub
in the center of the participants, who are arrayed in a circle:

• Navigate to the Holograms folder in the Project panel.

• Drag the CustomSpatialMapping prefab onto the root level of the Hierarchy.

• In the Projects panel, navigate to the Scripts folder.

CHAPTER 12 ■ BUILDING THE HOLOGRAMS 240 SHARED APPLICATION

141

• Double-click on the AppStateManager script to open it in Visual Studio.

• Replace the contents of the script with the following:

 using UnityEngine;
 using HoloToolkit.Unity;

 /// <summary>
 /// Keeps track of the current state of the experience.
 /// </summary>
 public class AppStateManager : Singleton<AppStateManager>
 {
 /// <summary>
 /// Enum to track progress through the experience.
 /// </summary>
 public enum AppState
 {
 Starting = 0,
 PickingAvatar,
 WaitingForAnchor,
 WaitingForStageTransform,
 Ready
 }

 // The object to call to make a projectile.
 GameObject shootHandler = null;

 /// <summary>
 /// Tracks the current state in the experience.
 /// </summary>
 public AppState CurrentAppState { get; set; }

 void Start()
 {
 // The shootHandler shoots projectiles.
 if (GetComponent<ProjectileLauncher>() != null)
 {
 shootHandler = GetComponent<ProjectileLauncher>().gameObject;
 }

 // We start in the 'picking avatar' mode.
 CurrentAppState = AppState.PickingAvatar;

 // Spatial mapping should be disabled when we start up so as not
 // to distract from the avatar picking.
 SpatialMappingManager.Instance.StopObserver();
 SpatialMappingManager.Instance.gameObject.SetActive(false);

 // On device we start by showing the avatar picker.
 PlayerAvatarStore.Instance.SpawnAvatarPicker();
 }

CHAPTER 12 ■ BUILDING THE HOLOGRAMS 240 SHARED APPLICATION

142

 public void ResetStage()
 {
 // If we fall back to waiting for anchor, everything needed to
 // get us into setting the target transform state will be set up.
 if (CurrentAppState != AppState.PickingAvatar)
 {
 CurrentAppState = AppState.WaitingForAnchor;
 }

 // Reset the underworld.
 if (UnderworldBase.Instance)
 {
 UnderworldBase.Instance.ResetUnderworld();
 }
 }

 void Update()
 {
 switch (CurrentAppState)
 {
 case AppState.PickingAvatar:
 // Avatar picking is done when the avatar picker has been dismissed.
 if (PlayerAvatarStore.Instance.PickerActive == false)
 {
 CurrentAppState = AppState.WaitingForAnchor;
 }
 break;
 case AppState.WaitingForAnchor:
 // Once the anchor is established we need to run spatial mapping for a
 // little while to build up some meshes.
 if (ImportExportAnchorManager.Instance.AnchorEstablished)
 {
 CurrentAppState = AppState.WaitingForStageTransform;
 GestureManager.Instance.OverrideFocusedObject = HologramPlacement.

Instance.gameObject;

 SpatialMappingManager.Instance.gameObject.SetActive(true);
 SpatialMappingManager.Instance.DrawVisualMeshes = true;
 SpatialMappingDeformation.Instance.ResetGlobalRendering();
 SpatialMappingManager.Instance.StartObserver();
 }
 break;
 case AppState.WaitingForStageTransform:
 // Now if we have the stage transform we are ready to go.
 if (HologramPlacement.Instance.GotTransform)
 {
 CurrentAppState = AppState.Ready;
 GestureManager.Instance.OverrideFocusedObject = shootHandler;
 }
 break;
 }
 }
 }

CHAPTER 12 ■ BUILDING THE HOLOGRAMS 240 SHARED APPLICATION

143

• Go to File ➤ Save All.

• In the Projects panel, navigate to the Scripts folder.

• Double-click on the HologramPlacement script to open it in Visual Studio.

• Replace the contents of the script with the following:

 using UnityEngine;
 using System.Collections.Generic;
 using UnityEngine.Windows.Speech;
 using HoloToolkit.Unity;
 using HoloToolkit.Sharing;

 public class HologramPlacement : Singleton<HologramPlacement>
 {
 /// <summary>
 /// Tracks if we have been sent a transform for the model.
 /// The model is rendered relative to the actual anchor.
 /// </summary>
 public bool GotTransform { get; private set; }

 /// <summary>
 /// When the experience starts, we disable all of the rendering of the model.
 /// </summary>
 List<MeshRenderer> disabledRenderers = new List<MeshRenderer>();

 /// <summary>
 /// We use a voice command to enable moving the target.
 /// </summary>
 KeywordRecognizer keywordRecognizer;

 void Start()
 {
 // When we first start, we need to disable the model to avoid its obstructing the

user picking a hat.
 DisableModel();

 // We care about getting updates for the model transform.
 CustomMessages.Instance.MessageHandlers[CustomMessages.TestMessageID.StageTransform]

= this.OnStageTransfrom;

 // And when a new user joins we will send the model transform we have.
 SharingSessionTracker.Instance.SessionJoined += Instance_SessionJoined;

 // And if the users want to reset the stage transform.
 CustomMessages.Instance.MessageHandlers[CustomMessages.TestMessageID.ResetStage] =

this.OnResetStage;

 // Set up a keyword recognizer to enable resetting the target location.
 List<string> keywords = new List<string>();
 keywords.Add("Reset Target");
 keywordRecognizer = new KeywordRecognizer(keywords.ToArray());

CHAPTER 12 ■ BUILDING THE HOLOGRAMS 240 SHARED APPLICATION

144

 keywordRecognizer.OnPhraseRecognized += KeywordRecognizer_OnPhraseRecognized;
 keywordRecognizer.Start();
 }

 /// <summary>
 /// When the keyword recognizer hears a command, this will be called.
 /// In this case we only have one keyword, which will re-enable moving the
 /// target.
 /// </summary>
 /// <param name="args">information to help route the voice command.</param>
 private void KeywordRecognizer_OnPhraseRecognized(PhraseRecognizedEventArgs args)
 {
 ResetStage();
 }

 /// <summary>
 /// Resets the stage transform, so users can place the target again.
 /// </summary>
 public void ResetStage()
 {
 GotTransform = false;

 // AppStateManager needs to know about this so that
 // the right objects get input routed to them.
 AppStateManager.Instance.ResetStage();

 // Other devices in the experience need to know about this as well.
 CustomMessages.Instance.SendResetStage();

 // And we need to reset the object to its start animation state.
 GetComponent<EnergyHubBase>().ResetAnimation();
 }

 /// <summary>
 /// When a new user joins we want to send them the relative transform for the model if

we have it.
 /// </summary>
 /// <param name="sender"></param>
 /// <param name="e"></param>
 private void Instance_SessionJoined(object sender, SharingSessionTracker.

SessionJoinedEventArgs e)
 {
 if (GotTransform)
 {
 CustomMessages.Instance.SendStageTransform(transform.localPosition, transform.

localRotation);
 }
 }

 /// <summary>
 /// Turns off all renderers for the model.

CHAPTER 12 ■ BUILDING THE HOLOGRAMS 240 SHARED APPLICATION

145

 /// </summary>
 void DisableModel()
 {
 foreach (MeshRenderer renderer in gameObject.GetComponentsInChildren<MeshRenderer>())
 {
 if (renderer.enabled)
 {
 renderer.enabled = false;
 disabledRenderers.Add(renderer);
 }
 }

 foreach (MeshCollider collider in gameObject.GetComponentsInChildren<MeshCollider>())
 {
 collider.enabled = false;
 }
 }

 /// <summary>
 /// Turns on all renderers that were disabled.
 /// </summary>
 void EnableModel()
 {
 foreach (MeshRenderer renderer in disabledRenderers)
 {
 renderer.enabled = true;
 }

 foreach (MeshCollider collider in gameObject.GetComponentsInChildren<MeshCollider>())
 {
 collider.enabled = true;
 }

 disabledRenderers.Clear();
 }

 void Update()
 {
 // Wait till users pick an avatar to enable renderers.
 if (disabledRenderers.Count > 0)
 {
 if (!PlayerAvatarStore.Instance.PickerActive &&
 ImportExportAnchorManager.Instance.AnchorEstablished)
 {
 // After which we want to start rendering.
 EnableModel();

 // And if we've already been sent the relative transform, we will use it.
 if (GotTransform)
 {
 // This triggers the animation sequence for the model and
 // puts the cool materials on the model.

CHAPTER 12 ■ BUILDING THE HOLOGRAMS 240 SHARED APPLICATION

146

 GetComponent<EnergyHubBase>().SendMessage("OnSelect");
 }
 }
 }
 else if (GotTransform == false)
 {
 transform.position = Vector3.Lerp(transform.position,

ProposeTransformPosition(), 0.2f);
 }
 }

 Vector3 ProposeTransformPosition()
 {
 Vector3 retval;
 // We need to know how many users are in the experience with good transforms.
 Vector3 cumulatedPosition = Camera.main.transform.position;
 int playerCount = 1;
 foreach (RemotePlayerManager.RemoteHeadInfo remoteHead in RemotePlayerManager.

Instance.remoteHeadInfos)
 {
 if (remoteHead.Anchored && remoteHead.Active)
 {
 playerCount++;
 cumulatedPosition += remoteHead.HeadObject.transform.position;
 }
 }

 // If we have more than one player ...
 if (playerCount > 1)
 {
 // Put the transform in between the players.
 retval = cumulatedPosition / playerCount;
 RaycastHit hitInfo;

 // And try to put the transform on a surface below the midpoint of the players.
 if (Physics.Raycast(retval, Vector3.down, out hitInfo, 5, SpatialMappingManager.

Instance.LayerMask))
 {
 retval = hitInfo.point;
 }
 }
 // If we are the only player, have the model act as the 'cursor' ...
 else
 {
 // We prefer to put the model on a real-world surface.
 RaycastHit hitInfo;

 if (Physics.Raycast(Camera.main.transform.position, Camera.main.transform.
forward, out hitInfo, 30, SpatialMappingManager.Instance.LayerMask))

 {
 retval = hitInfo.point;
 }

CHAPTER 12 ■ BUILDING THE HOLOGRAMS 240 SHARED APPLICATION

147

 else
 {
 // But if we don't have a ray that intersects the real world, just put the

model 2m in
 // front of the user.
 retval = Camera.main.transform.position + Camera.main.transform.forward * 2;
 }
 }
 return retval;
 }

 public void OnSelect()
 {
 // Note that we have a transform.
 GotTransform = true;

 // And send it to our friends.
 CustomMessages.Instance.SendStageTransform(transform.localPosition, transform.

localRotation);
 }

 /// <summary>
 /// When a remote system has a transform for us, we'll get it here.
 /// </summary>
 /// <param name="msg"></param>
 void OnStageTransfrom(NetworkInMessage msg)
 {
 // We read the user ID but we don't use it here.
 msg.ReadInt64();

 transform.localPosition = CustomMessages.Instance.ReadVector3(msg);
 transform.localRotation = CustomMessages.Instance.ReadQuaternion(msg);

 // The first time, we'll want to send the message to the model to do its animation and
 // swap its materials.
 if (disabledRenderers.Count == 0 && GotTransform == false)
 {
 GetComponent<EnergyHubBase>().SendMessage("OnSelect");
 }

 GotTransform = true;
 }

 /// <summary>
 /// When a remote system has a transform for us, we'll get it here.
 /// </summary>
 void OnResetStage(NetworkInMessage msg)
 {
 GotTransform = false;

 GetComponent<EnergyHubBase>().ResetAnimation();
 AppStateManager.Instance.ResetStage();
 }
 }

CHAPTER 12 ■ BUILDING THE HOLOGRAMS 240 SHARED APPLICATION

148

• Go to File ➤ Save All.

• Build and deploy the project to your HoloLens devices.

• When the app is ready, stand in a circle and notice that the Energy Hub appears in
the center of everyone. If there is only one participant, it will appear in front of you.

• Perform an air tap to fix the Energy Hub in place.

• Try the “Reset Target” voice command to release the fixed placement of the Energy
Hub, move it, and try placing it again.

 Turning on Physics
 By turning on physics, we can get the holograms to act like real objects. When they collide with other
holograms, they bounce off each other. To add this functionality, do the following:

• In the Hierarchy panel, select the HologramCollection object.

• In the Inspector panel, click the Add Component button.

• In the Search box, type “Projectile Launcher.” Select the search result.

• Build and deploy the project to the HoloLens devices.

• When the app is running on all the devices, perform an air tap to launch a projectile
at a real-world surface.

 Unlock a New World through Collaboration
 In this final section, we will see how people can work together to accomplish something that none of them
could achieve working alone. Make the following changes to the project:

• In the Project panel, navigate to the Holograms folder.

• Drag the Underworld asset onto the HologramCollection in the Hierarchy folder.

• With HologramCollection selected, click the Add Component button in the
Inspector panel.

• In the Search box, type “Explode Target.” Select the search result.

• With the HologramCollection selected, drag the EnergyHub object from the
Hierarchy to the Target field in the Inspector panel.

• With the HologramCollection selected, drag the Underworld object from the
Hierarchy to the Underworld field in the Inspector panel.

• Build the project and deploy it to your HoloLens devices.

• After the app is launched and activated, everyone start launching projectiles at the
Energy Hub as rapidly as possible.

• When the Energy Hub explodes and the Underworld appears, launch projectiles at
the evil Underworld robots. See what happens when you hit them multiple times.

CHAPTER 12 ■ BUILDING THE HOLOGRAMS 240 SHARED APPLICATION

149

 Summary
 This project reinforces what you have learned in previous chapters by giving you practice at using gaze,
gesture, and voice to interact with holograms. More important, it shows how to configure a setup where
multiple people wearing HoloLens devices can interact with holograms and with each other. This may be the
biggest benefit of HoloLens technology — the fact that people can collaborate while sharing and interacting
with holographic objects or even holographic environments.

 PART IV

 Deep Dive into HoloLens

153© Allen G. Taylor 2016
A. G. Taylor, Develop Microsoft HoloLens Apps Now, DOI 10.1007/978-1-4842-2202-7_13

 CHAPTER 13

 HoloLens Hardware

 The HoloLens is a breakthrough device that opens up a whole new, more intimate way for humans to
interact with technology, but it is not in itself a new technology. Rather, it is a new way of bringing together
a number of existing technologies, and in so doing creates massive new opportunities for creativity and
communication.

 The individual components that make up the hardware part of the HoloLens, although based on
existing technology, have been miniaturized and optimized so that the entire device is light enough to be
worn comfortably on the head without any wire to external power or an external computational resource.
Kudos go to the packaging engineers and designers as much as to those who developed the holographic
functionality. Figure 13-1 shows the elegant, clean design of the HoloLens Development Edition device.

 Figure 13-1. Breakthrough capability in a classic design

 Every component included in the HoloLens is state of the art, but, beyond that, those components come
together as a cohesive system that gives the user an immersive and engaging experience. In the following
sections, I describe the components that form the HoloLens, but the whole is indeed greater than the sum of
its parts. All the parts fit together beautifully to create a truly elegant as well as functional device.

CHAPTER 13 ■ HOLOLENS HARDWARE

154

 The Processors
 The core of any computing device is the processing unit. In the case of the HoloLens, there are three processor
chips, each assigned a different segment of the overall processing task. In addition to the central processing
unit (CPU), there is a graphics processing unit (GPU) as well as a holographic processing unit (HPU).
Figure 13-2 shows the processors and their support chips in a breakout view from the HoloLens device.

 The CPU
 The CPU is an Intel Atom processor — specifically, the Atom x5-Z8100 — running at 1.04 GHz. It contains four
logical processors and is capable of 64-bit operation. Although the CPU is capable of 64-bit operation, it is
running a 32-bit version of Windows 10. 32-bit instructions take up only half as much space in RAM as 64-bit
instructions do, and for a computer that you wear on your head, you want to get as much functionality as
possible out of the limited amount of RAM that you can reasonably carry just above your eyebrows.

 The GPU
 Processing two video streams, one for the right eye and the other for the left, at a minimum of 30 frames per
second, with peak processing at 60 fps, would bog the CPU down if it had to handle all that in addition to its
regular duties as a full-blown Windows 10 computer. Thus, the need arose to take the graphics processing
offline to a GPU, also manufactured by Intel.

 The HPU
 The processing demands of rendering holograms and placing them appropriately in the real world make
it necessary for a specialized processor built specifically for holographic processing to be included in the
HoloLens. This is a custom chip, designed and built specifically for the HoloLens.

 Figure 13-2. The HoloLens processors on the main logic board

CHAPTER 13 ■ HOLOLENS HARDWARE

155

 Memory Limits
 If you have to wear all your electronics on a visor that sticks out from your forehead, there is not a lot of room
for memory, RAM or otherwise. However, the HoloLens has quite a bit, considering the space restrictions.
There is 2 GB of RAM and 64 GB of Flash SSD. Of the 64 GB of Flash, 54 GB is available for use. Of the 2 GB of
RAM, 980 MB are reserved for shared system memory, 114 MB are dedicated video memory, and 900 MB are
available for applications to use.

 The Head Band
 The head band that secures the HoloLens firmly to your head is separate from the visor that holds all the
functional parts of the device. Its main function is to support the HoloLens as comfortably as possible. As
Figure 13-3 shows, the head band is adjustable by the turning of a wheel located at the back, which either
shortens or lengthens the head band’s diameter. The range of sizes accommodates just about any adult
head size likely to be encountered. Microsoft specifically states that the HoloLens is not for children. Their
head sizes would be too small for the head band to adjust to. The lesson here is that the apps you create
initially should be targeted at adults rather than children. Perhaps by the time the commercial version of the
HoloLens arrives, it will be able to work for children too.

 The Visor
 The visor, which is connected to the head band, but is not aligned with it, as shown in Figure 13-4 , contains
all the sensors, speakers, and microphones that enable the user to interact with the holographic constructs
in her environment.

 Figure 13-3. Adjustable head band

CHAPTER 13 ■ HOLOLENS HARDWARE

156

 Whereas the head band is positioned so as to give the most comfortable fit on the user’s head, the visor
is positioned so as to give the user the best view through the lenses and to have the cameras track with the
user’s eyes.

 Environment Sensors and Cameras
 The front of the visor, in addition to holding the circuit board and electronics shown in Figure 13-2 , also
holds multiple cameras and a light sensor. Figure 13-5 shows these.

 At the center top of the sensor fixture is the depth camera. An infrared flash is sent out, and the time it takes
for a reflection to return tells the distance to the real-world object that the user is looking at. This is important
in order for holographic objects to interact properly with the environment. If you want one of your holographic
characters to sit on a couch in the room, you will need to know how far away from the user the couch is.

 Figure 13-4. The visor is not aligned with the head band

 Figure 13-5. Cameras and light sensor

CHAPTER 13 ■ HOLOLENS HARDWARE

157

 Two cameras are located on the left side of the fixture, and two more are located on the right side. These
give the HoloLens awareness of the environment outside of where the user is looking at the moment.

 Suspended from the bottom of the fixture, closest to the position of the user’s eyes, is a 2.4 megapixel
camera/HD video camera. This enables the user to make either still or video recordings of exactly what
she sees, including both real and holographic content. When taking still photos, the camera takes a 2.4
megapixel picture in a 2048 x 1152 format. When taking video, it delivers 1.1 megapixel frames in a 1408 x
792 format, at a speed of 30 frames per second.

 Off to the right of the 2.4 MP camera is an ambient light sensor. The HoloLens must know what the
ambient light level is in the room in order to project the holograms with an appropriate level of brightness. If
the room is very bright, then the holograms must be bright as well in order to be seen properly in context.

 The Light Engines and Lenses
 The HoloLens creates holograms in the user’s field of view with a light engine for each eye that takes the 3D
images created by your application and processes them into lines of light that are then projected into the user’s
eyes from grooves in the lenses that the user looks through. The grooves are so fine that they are invisible to the
naked eye. Each light engine shoots out holographic images at a minimum rate of 30 frames per second, which
is the same rate that video from DVDs is sent to TVs. Figure 13-6 shows the lenses and the IMU.

 The light engines, found at the bottom of the fixture holding the lenses, deliver a 16 x 9 HD image to
each eye. The IMU (inertial measurement unit) measures the movement and rotation of the user’s head.
This enables your app to respond to the movements that the user makes.

 Sound Generation
 Just as a hologram can have visible attributes, such as color, shape, and depth, it can have an audible
attribute too. Sound files can be incorporated into a hologram, and they will play when the hologram is
instantiated. If a user is too far away from a hologram to see it, she will probably be too far away to hear it. As
she moves closer, the audio signal — whether music, speech, or just noise — will get progressively louder. The
sound emerges from two red but otherwise unobtrusive speakers that are attached to the visor just above the
ears. Figure 13-7 shows a closeup view of one of them.

 Figure 13-6. Lenses, light engines, and IMU

CHAPTER 13 ■ HOLOLENS HARDWARE

158

 By adjusting the phase of the sound sent to each ear, it can appear to the user that the sound coming
from a hologram is actually coming from the location of the hologram in space, regardless of whether the
hologram is to the left, right, or behind the user. This feature, called spatial sound, greatly enhances the
immersiveness of the user’s experience.

 There is a pair of buttons above each speaker. The pair above the speaker on the right controls the
sound volume. The concave button decreases the volume coming out of both speakers, and the convex
button increases it. Figure 13-8 shows the buttons above the speaker on the right.

 On the left side, above the speaker for the left ear, there are two buttons that are identical to the ones on
the right, but in this case they control the brightness of the holograms. Press the convex button to make the
hologram brighter and the concave button to make it dimmer.

 Whereas the Micro USB 2.0 connector on the back end of the left wing of the visor provides access to the
Device Portal of your PC and power to recharge the HoloLens battery, there is a 3.5mm audio mini-jack on
the back end of the right wing of the visor.

 Figure 13-7. Speaker

 Figure 13-8. Volume controls

CHAPTER 13 ■ HOLOLENS HARDWARE

159

 The Microphones
 The HoloLens includes four microphones so the user can issue voice commands. They are integrated into
the visor in such a way as to be invisible.

 Battery Capacity and Recharging
 The HoloLens is untethered and self-contained. That means that, with no external power source, it must
depend on battery power. Its battery has a 16,500 mWh capacity, which translates to about 2.5 hours of
continuous usage before needing a recharge. It can be recharged through the same USB cable that is used to
connect it to your development PC when you are uploading your apps to the HoloLens via the Device Portal.
There are five LEDs on the visor near the micro-USB connector that give you an indication of the state of
charge of the battery.

 Bluetooth
 HoloLens supports Bluetooth 4.1 LE and can be used with Bluetooth keyboards, mice, and other Bluetooth
peripheral devices.

 Wi-Fi
 HoloLens connects to its paired PC as well as it does to the world in general through Wi-Fi 802.11ac. You can
access the Internet using the Edge browser on the HoloLens Start Pins menu, and you can also make Skype
calls directly from your HoloLens.

 Cortana
 Cortana is available to assist you, just as she is on your PC. She is listening all the time, so when you say
“Hey, Cortana” she will ask you how she can help you. You can also reach her from the Start Pins menu.
Select the top tile with an air tap, and she will be at your service.

 Summary
 This chapter gives a complete rundown of the hardware that is included in the HoloLens device.
A tremendous amount of optical, computational, and auditory capability is packed into an elegant,
self-contained, wearable package that is easy and comfortable to wear in a wide variety of situations.

161© Allen G. Taylor 2016
A. G. Taylor, Develop Microsoft HoloLens Apps Now, DOI 10.1007/978-1-4842-2202-7_14

 CHAPTER 14

 Creating Holographic Objects

 The first part of developing a holographic app is to decide on the audience for the app and what you want
the app to accomplish with that audience. What does that audience need, and what will engage their
interest? After you have planned out what you want the app to do, it is time to get down to the nitty gritty of
actually building it. This is where designing a holographic app differs in important ways from designing an
app to be run on a device with a flat screen. Unlike flat-screen apps, holographic apps incorporate awareness
of the physical space that the user is embedded in. The holograms you create must take into account where
the user is, what she does, and how she relates to her surroundings.

 In previous chapters, we covered the mechanics of creating holograms using the Unity/Visual Studio/
HoloLens Emulator tool chain. In one sense, that is the way to create holograms. But, in another sense, that
is only a superficial way of looking at the task. To create truly engaging holographic content, we must dig
deeper into what makes a good holographic design. That is the subject of this chapter.

 The Interaction Model (Gaze, Gesture, and Voice)
 The mixed-reality characteristic of holographic applications is just the latest aspect of a trend toward ever
more participatory media. A hundred years ago, the dominant medium was radio, which you could hear but
not see. That was followed by television, which you could see but not interact with, unless you call changing
the channel an interaction. Computer games added a level of interaction in that you could control the
actions of Mario and Luigi to a relatively limited extent by pressing buttons on a console. The Nintendo Wii
and later the Microsoft Kinect technology added gestures to the ways you could affect what happened in the
game you were running.

 The HoloLens takes the next step in interactivity by combining what you are looking at (your gaze) with how
you want to affect what the app is doing (your gestures and voice commands). In an app that generates multiple
holograms, the user can select which one she wants to activate or affect in some other way merely by looking at
it. Once the user has locked her gaze on a specific target, she can cause it to enter an animated sequence with a
gesture, or grow bigger or shrink smaller with a voice command. You, as an app developer, can give a hologram a
variety of behaviors and enable the user to invoke them with corresponding voice commands.

 The number of gestures available is fairly limited. There are three: the air tap, the tap and hold, and the
bloom. In the context of the operating system, these gestures have specific meanings. The air tap generally
means the same thing as the “Select” voice command. It activates the hologram in some way. The tap and
hold gesture may display some information about the hologram your gaze is fixed upon, or it may enable you
to scroll content into the field of view that is not initially visible. The bloom gesture takes you from wherever
you are in an app back to the Start menu.

 Once the user is in an app that you have written, you can reassign what these gestures do to new
functions. For example, you might make the air tap fire a projectile at an enemy spaceship rather than
perform the Select function. You could give new functions to the tap and hold and the bloom gestures too.

CHAPTER 14 ■ CREATING HOLOGRAPHIC OBJECTS

162

 You have more flexibility with voice commands than you do with gestures, since you can program a
hologram to respond in many different ways to many different voice commands. The only restriction is that
you want to make sure that the voice commands that you use are distinct enough that the speech recognizer
can understand what was said rather than becoming confused by similar-sounding utterances. Commands
made up of short, one-syllable words work best.

 Spatial Sound
 Just as a 3D hologram that you can walk around and view from any angle is a step beyond a 2D image on a
screen in terms of visual realism, spatial sound, which seems to be coming from anywhere in a 360 degree
circle around the user, is a step beyond stereo sound, which comes from one stereo speaker on the user’s
left and another on the user’s right, in terms of auditory realism. If the app that you develop can make use of
a sound component, you are going to want the sound supposedly being emitted by a hologram to actually
seem to be coming from the direction of that hologram, and the volume of the sound to be louder the closer
the user is to it. You don’t have to do anything special to make this happen. The sound asset that you assign
to a hologram will share the location of that hologram. The HoloLens holographic processor chip will
compute where each hologram is in space relative to the user and alter the phasing and volume of the sound
coming out of the speakers above the user’s ears to make the sound appear to come from the hologram.

 One effective, but often neglected, use of spatial sound is to direct the user’s attention to the area in
which you want her to be looking. If an important GameObject is behind her, when she hears the sound it is
emitting, she will turn around to look for the source of the sound.

 Spatial Mapping and Location Awareness
 In order to place holographic objects appropriately in the user’s environment, the HoloLens must be
aware of where it is located relative to its surroundings. This means that, assuming it is in a room or series
of connected spaces, it must know where the walls and the floor are, as well as all the furniture and other
obstacles. To gain this information, it does a scan of wherever the user is looking and builds up a map of its
surroundings.

 Some applications ask the user to look around or even walk around, looking all over while doing so in
order to build up a map of the space. This map is then used while the app is running so that the holographic
objects interact realistically with the real-world objects they encounter. If a holographic ball drops onto a
real table, you don’t want it to pass right through. You want it to roll off the edge and fall to the floor, where it
eventually will come to a stop. The accuracy of such behavior depends heavily on the accuracy of the spatial
map produced by the initial scan of the room. Scans continue to be done while the app is running so as to
refine the map and also to modify it as objects such as tables and chairs are moved to new locations or are
taken out of the room completely.

 Designing a Mixed-Reality App
 When you are designing a mixed-reality app, there are several things you must be mindful of. One is the
design of the holograms that the app will contain, and others have to do with putting those holograms in
the context of the real-world environment in which the app will execute. Each one of these concerns is
important, and thus requires advance thought.

CHAPTER 14 ■ CREATING HOLOGRAPHIC OBJECTS

163

 Design
 The design of the holograms can be a collaborative effort, but the job of actually creating them should fall
to the graphic designer on your team. This person should be adept at using modern 3D modeling software
tools to produce holographic assets with a high level of quality using as little in the way of computational
resources as is possible. Execution speed depends on the complexity of a scene. You want your holograms to
be detailed and realistic, but also simple enough so as not to bog down the HPU.

 There are several software tools that are specifically designed for the creation of three-dimensional assets.
These could be items that appear in screen-bound 3D games or models to be used with a 3D printer to create
an actual physical artifact, or they could be holograms that will become visible to the user of a HoloLens.

 Maya from Autodesk is one of the most popular of the computer graphics design tools. The latest version
is HoloLens-aware. This means that as you make modifications to a design on your screen in Maya, they are
reflected immediately on the hologram that corresponds to the design. It’s possible to make changes using
your keyboard and mouse that appear both on screen and on hologram. You can even activate hologram
menu controls with your mouse, causing your hologram to rotate, change size, or do whatever you want.

 If you are more familiar with other CG tools, such as Autodesk’s 3ds Max or the open-source Blender
package, you can use them instead to create the 3D models that you can then transfer to Unity, and from
there turn into holograms.

 Placement
 The designer of a virtual-reality app has complete control over where elements are placed in the VR world.
A mixed-reality designer has a more complex problem, because the holographic elements of an app must
mesh seamlessly with the room the user happens to be in, as well as with any furniture or other objects
that might occupy space in the room. The user’s position in the room when the app launches, as well as the
direction she is facing, can affect the placement of holograms, which can, in turn, affect the user experience.

 While prototyping your app, you will want to run it in as many different environments as you can
imagine your user inhabiting. You may find some problems that you might not have otherwise considered,
which only show up in some rooms or in a room with furniture arranged in a certain way.

 Lighting
 One of the areas in which it is most difficult to make holograms seem to be a part of the real landscape is
lighting. You may know the layout of the room due to a scan that is done before your app starts executing,
but that does not tell you how the room is lit, which may vary with the time of day or even with the weather.

 In Unity, you can place light sources where you want them in a scene, but in most cases you will not
have advance knowledge of what the light environment will be in the room where the app will be run.
Furthermore, holograms cannot cast shadows, which represent the absence of light. Holograms are made by
adding light to a scene, not subtracting it.

 ■ Tip One hack that you can use to simulate a shadow is to add an aura of light around a holographic object
and then subtract out that light from where a shadow would normally be.

 One thing that can be controlled is the intensity of the light coming from a hologram. An ambient light
sensor on the HoloLens gives an ambient light level, which you can use to help set the brightness level of
your hologram. If the ambient light is very bright, you will want to increase the brightness of your hologram
so that it is not washed out by the real-world lighting conditions.

CHAPTER 14 ■ CREATING HOLOGRAPHIC OBJECTS

164

 Size
 Consideration of the size of a mixed-reality hologram is more involved than it is in VR. In virtual reality,
the developer has control over the entire “world” and so can ensure that everything is the right size relative
to everything else. With mixed reality, holographic objects must be adjusted to be the same size that they
would be in the real world, because they must fit in with the real-world objects in the room. If a holographic
representation of a real object is not the right size relative to its surroundings, the illusion of reality is
lost. This means that you must pay attention to the scale of the holograms you create. Not only must the
holograms in a scene all be proportionally sized to each other, but also they must be appropriately sized for
their real-world surroundings.

 Animation
 3D animation is a well-established discipline in the video game field. The tools and techniques that game
developers use are directly applicable to the design of animated holograms. In addition to visible movement,
an animated hologram can also emit audible sounds, including speech, that go along with the movement.
This is an area where skills you may have acquired in the process of developing games carries over
essentially intact to developing for the HoloLens.

 Connecting the Holographic World with the Real
 In a virtual-reality experience or a 3D video game, once you designate where things are relative to each
other, there is no question about where they will be at any point in the future. Any movement that an object
makes will be calculated, and can be reversed at any time to bring the object back to its original position if
that is what is desired. This is because the field of play will be laid out according to a coordinate system. The
position of any object in 3D space can be defined relative to three mutually perpendicular axes, normally
labeled X, Y, and Z.

 Coordinate systems
 Coordinate systems based on three mutually perpendicular coordinate systems are called Cartesian
coordinate systems after French mathematician Rene Descartes, who originated the idea. Unity uses a
particular form of Cartesian coordinate system called a spatial coordinate system. One unit of distance in
Unity’s spatial coordinate system corresponds to one meter of distance in the real world. When dealing
with mixed reality, if you want your holographic objects to interact appropriately with your real-world
surroundings, the coordinate system you use for your holograms must accurately locate the real objects in
the user’s environment. This is not as easy as you might think.

 When you first place a holographic object into the world, you establish a stationary frame of reference
based on the location of that object. As the user, and thus the HoloLens on her head, moves around the
environment, the object remains fixed at that location. This system keeps the positions of holographic
objects near the user as stable as possible. An app will typically establish one stationary frame of reference at
startup and maintain it throughout the app’s lifetime. Any content located relative to that stationary frame of
reference is called world-locked content.

 The HoloLens’ mapping of a user’s environment is an ongoing activity, constantly refining and
adjusting the locations of real-world objects while your app is running. This can lead to offsets in the
positions of your holograms as time goes on, particularly as the user moves farther way from the origin of the
reference frame.

CHAPTER 14 ■ CREATING HOLOGRAPHIC OBJECTS

165

 Spatial anchors
 If the elements in a scene extend beyond a distance of about nine meters, distortions in the locations of
these elements may start to appear. In trying to maintain their positions relative to each other, holographic
objects may drift away from their initial position in the real world. Usually, you will not want that to happen.
To address this issue, you can place a hologram using a spatial anchor. A spatial anchor fixes the position
of an object in the real world. If adjustments are needed, they will be made with respect to the distant
holographic objects rather than with the real-world anchor point.

 A good approach to this issue is to drop a spatial anchor every time you place a holographic object. If
the distance between a nearby object and a faraway object changes a little, that will be a lot less noticeable to
the user than would be an offset of the nearby object from its real-world context.

 Spatial anchors can be persisted from one running of an app to another in the app’s spatial anchor
store. When you save or load an anchor, provide a string key that your app recognizes and will use to identify
the anchor later. You can associate other data with the anchor, such as the hologram that is located at that
spot, by saving it to local storage and associating it with the key that you chose.

 Attached frame of reference
 In contrast to the stationary frame of reference just discussed, some holograms are designed to move with
the user, floating at a chosen position with respect to the user. These holograms are located in an attached
frame of reference, which moves with the user as she walks around. The user can comfortably look at the
holograms while walking from one place to another. Content that follows the user in this way is called body-
locked content because its position is locked relative to the position of the user’s body.

 Head-locked content
 Head-locked content stays in the same position relative to the user’s gaze in the same way that a heads-up
display stays in front of a fighter pilot’s view of the world. This is what the Start menu does after you invoke it
with the bloom gesture. It appears right in front of you, and when you move your head it moves to stay in the
center of your vision. This may be fine for the Start menu, but it is a bad idea for any app that you might write.
It’s not natural and quickly becomes annoying, as it gets in the way of other things that you might want to do.

 Types of Holographic Objects
 Holographic objects could potentially come in a variety of shapes and sizes. One way of characterizing
them is by how they interact with the real world. Some objects are most appropriately located in one kind of
environment and others in a different kind of environment.

 Table top
 As the name implies, small holograms designed to be viewed close up are best located on a flat surface such
as a table or desk. A classic example of this was the holographic chess game between R2-D2 and Chewbacca
in Star Wars: A New Hope , where C-3PO wisely counseled R2-D2 to let the wookie win.

CHAPTER 14 ■ CREATING HOLOGRAPHIC OBJECTS

166

 Surface-locked
 Surface-locked objects are fixed in place on a surface, such as a wall. An Edge browser window or a Calendar
screen are two examples of 2D apps that would be easy to use if locked to a wall or other flat surface.

 Floating
 A floating object just hangs suspended in mid-air. This is fine for anything that does not require a direct
connection with the real world. A Skype screen could possibly work as a floating object, but, depending on the
situation, surface-locked might be better. The holograms you can invoke from the Start menu are examples of
floating objects. Once you invoke one, you can fix it where you want in space, and it will remain there.

 Companion
 A companion object would be one that moves along with the user. A companion object would be body-
locked to the user by an attached frame of reference.

 Immersive
 In immersive holographic environment is one that puts you into another world. NASA’s Destination: Mars
puts you in the middle of a Martian landscape with Buzz Aldrin as your guide (Figure 14-1).

 That is an immersive application.

 Figure 14-1. HoloLens view of a holographic Buzz Aldrin on a holographic Mars (Courtesy of NASA)

CHAPTER 14 ■ CREATING HOLOGRAPHIC OBJECTS

167

 Sharing and Collaboration
 In many applications, you will want your app to be shared by multiple people, enabling them to collaborate
in ways that would be impossible otherwise. As we saw with the Holograms 240 app in Chapter 12 , it is quite
possible to not only share a holographic experience with multiple people, but also for those people to act
collaboratively to achieve what none of them could do alone. One user must launch the sharing service
on one PC on the network. Other users select the Sharing object in Unity’s Hierarchy panel and connect to
the IPv4 address of the PC upon which the sharing service is running. Once communication is established,
serious work can begin.

 Importing an Object Definition
 Sometimes you don’t have to create a holographic object, because the object already exists. Any 3D object
created in a computer graphics package such as Maya or 3ds Max can be uploaded to a HoloLens as a
hologram and then be given behaviors with scripts, if appropriate. Considering the flexibility, power, and
resources of products such as Maya, using such tools will probably be the preferred method of creating
holographic assets.

 Creating an Object with HoloStudio
 Whereas creating a holographic object with professional tools such as Maya or 3ds Max requires quite a bit
of knowledge of the tools as well as experience using them, Microsoft offers a free hologram-creation app
named HoloStudio to get you started in holographic app development. When you download HoloStudio
from the Windows Store and launch it, you are taken through a tutorial that walks you through the
hologram-creation process.

 HoloStudio includes a toolbox that contains a number of holographic objects that you can combine to
make more complex objects. It also includes tools that enable you to alter the holograms so as to transform
them into the shapes, colors, and sizes that you want. If you leave the tutorial mid-lesson for any reason,
when you return you will find yourself right where you left off.

 Summary
 This chapter discusses many of the considerations that you must deal with when creating a mixed-reality
application. Meshing the virtual with the real adds a number of complications beyond what you would need
to think about when designing a purely virtual app. There are a variety of ways in which the virtual relates
to the real, including spatially, aurally, and in terms of lighting. Holographic scenes made up of multiple
holographic elements must be carefully arranged in order to maintain the illusion that the virtual objects are
a part of the real world. That’s what we will discuss in the next chapter.

http://dx.doi.org/10.1007/978-1-4842-2202-7_12

169© Allen G. Taylor 2016
A. G. Taylor, Develop Microsoft HoloLens Apps Now, DOI 10.1007/978-1-4842-2202-7_15

 CHAPTER 15

 Manipulating Holographic Objects

 In Chapter 14, we discussed creating virtual objects. Once an object has been created, it must be located
somewhere in the space surrounding the user, and if it is an active object it must have behaviors of some
kind, either in response to user actions or things that it does regardless of user actions. For example, in
the RoboRaid first-person shooter game that comes with the Developer’s Kit, the alien robotic scorpion
enemies break through the walls and maneuver independent of user actions. However, when the user shoots
at one and scores a direct hit, the scorpion explodes in a satisfying manner in response. These actions are
programmed by scripts that the developer has written.

 There are a number of behaviors that you can assign to an object, either in response to some action by
the user or in response to some other event, such as a collision with another hologram or with a surface in
the real environment, such as a wall or table.

 Creating a Holographic Object
 There are several ways to create a holographic object, but the easiest is to use the Unity/Visual Studio/
Emulator tool chain described in several of the earlier chapters in this book. That is the method most heavily
supported by Microsoft and the developer community that has grown up around the HoloLens. Once you
have created a 3D object and it is resident in Unity, you can start working on locating the object relative to
the user who will be running your app while wearing the HoloLens. Beyond that, you can add behaviors to
the object with C# scripts.

 You can either create a 3D object in Unity using the tools it includes for creating GameObjects, or you
can import 3D objects that you have created externally with tools such as Maya, 3dsMax, and Blender. The
external tools, since they are specifically designed for the creation of 3D objects rather than for the creation
of games, are capable of highly detailed representations of objects both real and fanciful.

 Creating a simple 3D object in Unity is easy. From the GameObject menu, select 3D Object and then
choose one of the submenu options as a starting point. Cubes, spheres, and cylinders are examples of
things you can choose. Once you have chosen one, you can change its size or shape. You can make it bigger
or smaller along each of the X, Y, or Z directions, effectively stretching it or squashing it along one or more
of those directions. You could, for example, create a cylinder and then squash it into a disk of minimal
thickness.

 Establishing the Location of a Holographic Object
 As the app developer, you establish the initial location of all the objects in a scene. That location will be
relative to the initial location of the user. In most cases, it’s a good idea to place the most significant object
directly in front of the user. You can give the user audible or visual cues as to where to look if she is looking
away from where she should be in order for the app to carry forward.

CHAPTER 15 ■ MANIPULATING HOLOGRAPHIC OBJECTS

170

 You can set the initial position of an object in Unity’s Inspector panel, as shown in Figure 15-1 . The
user is located where you have placed the main camera, and the initial hologram is located where you have
placed it in the Cartesian X, Y, Z coordinate system.

 Once the user has seen your initial hologram, you may give her the ability to move the holograms in the
scene or manipulate them in some other way.

 Programming the Behavior of a Holographic Object
 There are a variety of behaviors that you can give to a holographic object. Here are some examples:

• You can give it the ability to move appropriately through the environment.

• You can make it move in response to the user’s gaze.

• You can make it respond in some way to a user’s gesture.

• You can make it respond to a user’s voice command.

• You can enable the user to affix it to a real-world surface.

• You can enable it to play music or emit other sounds.

• You can animate it.

• You can cause an animation to loop continuously.

 In summary, you have a lot of control over what the user sees and hears. You can use that control to
create an engaging experience for the user.

 Figure 15-1. Inspector panel’s Transform section shows offsets from origin in X, Y, and Z directions

CHAPTER 15 ■ MANIPULATING HOLOGRAPHIC OBJECTS

171

 Moving a holographic object around in space
 Gaze, gesture, and voice are the three main tools you have at your disposal to affect the position of a
holographic object. When you look directly at a holographic object, a raycast from the HoloLens hits the point
in space where the object is apparently located. The HoloLens recognizes that the hologram is being targeted
and changes the gaze-following cursor from a point of light to a small annulus or ring. This alerts the user to
the fact that an air tap or voice command is directed to the targeted hologram rather than to any other.

 Locking a holographic object to the user’s gaze and then giving it a fixed
location
 One way of moving a holographic object is to have it move such that it remains centered in the user’s field of
view. In this way, the user can move it to a desired location and then fix it there with either an air tap gesture
or a voice command. It can be pretty annoying to have a hologram always centered in your field of view no
matter where you are looking. But if you materialize a hologram in front of you and then move it to where
you want it placed just by looking at your chosen destination for it and making an air tap gesture, you can fix
it there and then move around it to view it from any angle.

 Let’s consider the example of a simple cube. With a simple series of operations, we can create a
holographic cube, materialize it in front of and facing the user, and then with an air tap gesture place it at
a desired spot in the world. It will persist in that spot even if we turn off the HoloLens and then launch the
project again at a later time.

 To create a cube hologram from scratch, follow these steps:

 1. Start a new Unity project named Scratch.

 2. Select Main Camera in the Hierarchy, and in the Inspector give it a Transform of
X=0, Y=0, Z=0.

 3. Set Clear Flags to Solid Color and Background to 0,0,0,0 . The Inspector panel
should look like Figure 15-2 .

CHAPTER 15 ■ MANIPULATING HOLOGRAPHIC OBJECTS

172

 4. From the GameObject menu, go to 3D Object ➤ Cube.

 5. Select Cube and set its Transform to X=0, Y=0, Z=3. Set its Scale to x=0.25, Y=0.25,
Z=0.25. The Inspector panel should look like Figure 15-3 .

 Figure 15-2. Inspector panel for the main camera

CHAPTER 15 ■ MANIPULATING HOLOGRAPHIC OBJECTS

173

 6. Add the MyCube.cs C# script to the Assets folder of your project, then drag it
onto the cube’s Inspector panel. This script and the Main.cs script seen later use
functions available in the HoloToolkit, which can be found at https://github.
com/Microsoft/HoloToolkit-Unity :

 using UnityEngine;
 using System.Collections;

 using UnityEngine.VR.WSA.Persistence;
 using UnityEngine.VR.WSA;

 public class MyCube : MonoBehaviour {

 //unique id for the cube
 public string ObjectAnchorStoreName;

 Figure 15-3. Inspector panel for a cube

https://github.com/Microsoft/HoloToolkit-Unity
https://github.com/Microsoft/HoloToolkit-Unity

CHAPTER 15 ■ MANIPULATING HOLOGRAPHIC OBJECTS

174

 //persistant location storage
 WorldAnchorStore anchorStore;

 //state
 bool Placing = false;

 // Use this for initialization
 void Start () {
 WorldAnchorStore.GetAsync(AnchorStoreReady);
 }

 void AnchorStoreReady(WorldAnchorStore store)
 {
 anchorStore = store;
 Placing = true;

 Debug.Log("Find Anchor for " + ObjectAnchorStoreName);
 string[] ids = anchorStore.GetAllIds();
 for (int index = 0; index < ids.Length; index++)
 {
 Debug.Log(ids[index]);
 if (ids[index] == ObjectAnchorStoreName)
 {
 WorldAnchor wa = anchorStore.Load(ids[index], gameObject);
 Placing = false;
 break;
 }
 }
 }

 // Update is called once per frame
 void Update () {
 if (Placing)
 {
 //look at the user while placing, follow the gaze
 gameObject.transform.position = Camera.main.transform.position + Camera.main.

transform.forward * 2;
 gameObject.transform.LookAt(Camera.main.transform);
 }
 }

 public void Place()
 {
 Debug.Log("Place");

 if (anchorStore == null)
 {
 return;
 }

 if (Placing)
 {

CHAPTER 15 ■ MANIPULATING HOLOGRAPHIC OBJECTS

175

 WorldAnchor attachingAnchor = gameObject.AddComponent<WorldAnchor>();
 if (attachingAnchor.isLocated)
 {
 Debug.Log("Saving persisted position immediately");
 bool saved = anchorStore.Save(ObjectAnchorStoreName, attachingAnchor);
 Debug.Log("saved: " + saved);
 }
 else
 {
 attachingAnchor.OnTrackingChanged += AttachingAnchor_OnTrackingChanged;
 }
 }
 else
 {
 WorldAnchor anchor = gameObject.GetComponent<WorldAnchor>();

 //delete any previous state
 if (anchor != null)
 {
 DestroyImmediate(anchor);
 }

 string[] ids = anchorStore.GetAllIds();
 for (int index = 0; index < ids.Length; index++)
 {
 Debug.Log(ids[index]);
 if (ids[index] == ObjectAnchorStoreName)
 {
 bool deleted = anchorStore.Delete(ids[index]);
 Debug.Log("deleted: " + deleted);
 break;
 }
 }
 }

 Placing = !Placing;
 }

 private void AttachingAnchor_OnTrackingChanged(WorldAnchor self, bool located)
 {
 if (located)
 {
 Debug.Log("Saving persisted position in callback");
 bool saved = anchorStore.Save(ObjectAnchorStoreName, self);
 Debug.Log("saved: " + saved);
 self.OnTrackingChanged -= AttachingAnchor_OnTrackingChanged;
 }
 }
 }

CHAPTER 15 ■ MANIPULATING HOLOGRAPHIC OBJECTS

176

 The MyCube.cs script locates the hologram relative to the user’s gaze. The
following Main.cs script recognizes the user’s air tap gesture and sends a
message back to MyCube.cs that fixes the cube in its current position. With Cube
selected in the Hierarchy, drag Main.cs from the Assets section of the Project
window onto a blank area of the Inspector panel. Here’s the code for Main.cs:

 using UnityEngine;
 using System.Collections;

 using UnityEngine.VR.WSA.Persistence;
 using UnityEngine.VR.WSA.Input;
 using UnityEngine.VR.WSA;

 public class Main : MonoBehaviour {

 GestureRecognizer recognizer;

 // Use this for initialization
 void Awake()
 {

 recognizer = new GestureRecognizer();
 recognizer.SetRecognizableGestures(GestureSettings.Tap);
 recognizer.TappedEvent += Recognizer_TappedEvent;

 recognizer.StartCapturingGestures();
 }

 private void Recognizer_TappedEvent(InteractionSourceKind source, int tapCount, Ray headRay)
 {
 Debug.Log("tapped");

 // Figure out which hologram is the focus of this frame.
 GameObject focusedObject;

 // Do a raycast into the world based on the user's
 // head position and orientation.
 var headPosition = Camera.main.transform.position;
 var gazeDirection = Camera.main.transform.forward;

 RaycastHit hitInfo;
 if (Physics.Raycast(headPosition, gazeDirection, out hitInfo))

CHAPTER 15 ■ MANIPULATING HOLOGRAPHIC OBJECTS

177

 {
 // If the raycast hits a hologram, use that as the focused object.
 focusedObject = hitInfo.collider.gameObject;
 MyCube cube = focusedObject.GetComponent<MyCube>();
 if (cube != null)
 {
 cube.Place();
 Debug.Log("focusedObject is" + cube.ObjectAnchorStoreName);
 }

 }
 else
 {
 // If the raycast did not hit a hologram, clear the focused object.
 focusedObject = null;
 Debug.Log("focusedObject is null");
 }
 }

 }

 7. Save the scene.

 8. Go to File ➤ Build Settings.

 9. In the Build Settings window, do the following:

 a. Click the Add Open Scenes button.

 b. Switch Platform to Windows Store .

 c. Switch SDK to Universal 10 .

 d. Switch UWP Build Type to D3D .

 10. Check the Unity C# Projects box. The Build Settings window should look like
Figure 15-4 .

CHAPTER 15 ■ MANIPULATING HOLOGRAPHIC OBJECTS

178

 11. Click the Build button. Unity build operation will commence.

 12. After a wait, the Scratch directory will appear, containing a number of subfolders
created by the build operation. Create a new folder named App and select it.

 13. Click the Select Folder button. This builds the project and puts it into the new
App folder.

 14. The directory will reappear. Double-click on the App folder to enter it.

 15. Double-click on scratch.sln , the solution file, to launch Visual Studio.

 16. When Visual Studio appears, set the parameters in the icon row to Debug, x86,
and Remote Machine, as shown in Figure 15-5 .

 Figure 15-4. Build Settings window after being configured correctly

CHAPTER 15 ■ MANIPULATING HOLOGRAPHIC OBJECTS

179

 17. Put on your HoloLens and turn it on.

 18. Go to Debug ➤ Start Without Debugging. A build and deploy operation will
commence.

 19. After Visual Studio goes through its operations, with luck the “Made with Unity”
logo will appear, followed by a white square right in front of your face. The square
is the closest face of your cube.

 20. Look around and see how the square follows your gaze.

 21. Decide where you want to place the cube, move it there with your gaze, and give
it an air tap to fix it in place.

 22. Move around it to see that it is indeed a three-dimensional cube and not just a
2D square in the center of your vision.

 Hologram movement can be scripted
 Another way to cause a holographic object to move is to add a script to it that choreographs its movement in
light of real-world furniture and other environmental features that were mapped by a previous room scan.
In the Young Conker game, Conker can jump onto tables and climb up walls based on the scan. This feature
also enables characters in the Fragments mystery game to sit on a real couch in the room.

 Hologram movement can be controlled by physics
 You can also move a holographic object by turning on the Physics option, which makes the object respond
as if it were influenced by gravity, causing it to fall out of the air or roll down hills, finally coming to rest due
to “friction” on the floor. This is showcased in the Origami sample application in the HoloLens tutorials.

 Creating a cursor that follows the user’s gaze
 In order for a HoloLens user to affect a hologram in some way, she must first designate which hologram she
means to affect. This can be done with a cursor, and the cursor can designate a spot in space by following
the user’s gaze. A raycast shooting out from the HoloLens will follow the user’s gaze as long as she is looking
straight ahead. The processor in the HoloLens knows where the user is looking and also knows where all the
holograms in the room are located. Thus, it knows if one of them is being targeted by the cursor, and if one is,
it knows which hologram to affect if the user performs an air tap or issues a voice command.

 Figure 15-5. Settings for deployment of application to HoloLens

CHAPTER 15 ■ MANIPULATING HOLOGRAPHIC OBJECTS

180

 A cursor is an asset that you can add to your project in the same way that you add a camera that sees
what the user is seeing or lights that illuminate the scene. In Microsoft’s Origami example application, the
cursor is implemented with the WorldCursor.cs script given here:

 using UnityEngine;

 public class WorldCursor : MonoBehaviour
 {
 private MeshRenderer meshRenderer;

 // Use this for initialization
 void Start()
 {
 // Grab the mesh renderer that's on the same object as this script.
 meshRenderer = this.gameObject.GetComponentInChildren<MeshRenderer>();
 }

 // Update is called once per frame
 void Update()
 {
 // Do a raycast into the world based on the user's
 // head position and orientation.
 var headPosition = Camera.main.transform.position;
 var gazeDirection = Camera.main.transform.forward;

 RaycastHit hitInfo;
 if (Physics.Raycast(headPosition, gazeDirection, out hitInfo))
 {
 // If the raycast hit a hologram...

 // Display the cursor mesh.
 meshRenderer.enabled = true;
 // Move the cursor to the point where the raycast hit.
 this.transform.position = hitInfo.point;
 // Rotate the cursor to hug the surface of the hologram.
 this.transform.rotation =
 Quaternion.FromToRotation(Vector3.up, hitInfo.normal);
 }
 else
 {
 // If the raycast did not hit a hologram, hide the cursor mesh.
 meshRenderer.enabled = false;
 }
 }
 }

 The default cursor is a doughnut-shaped marker that moves with the user’s gaze and hugs the surface of
whatever hologram it contacts. This means that if the cursor is on a vertical surface, the user sees it face on. If
it is on a horizontal surface, the user sees it edge on. If the surface is sloping, the cursor appears slanted. In the
last statement of the preceding code, we see that if the cursor does not hit a hologram, it becomes invisible.

CHAPTER 15 ■ MANIPULATING HOLOGRAPHIC OBJECTS

181

 Changing a cursor when it hits a hologram
 Often, you do not want a cursor to be invisible when it is not impinging on a hologram. The user wants
to know where the cursor is so that she can move her head in a manner that will move the cursor onto a
hologram. This is hard to do if you don’t know where the cursor is to begin with. Thus, many applications
have a cursor with two different appearances: one when it is hitting a hologram and the other when it is not.
A common convention is to use the doughnut shape when the cursor is hitting a hologram and just a dot of
light when it is not.

 Activating a targeted hologram with an air tap
 As we saw with the preceding MyCube.cs example, you can write a script that does something to a targeted
hologram when an air tap gesture is performed. In that example, the action was to fix the hologram in its
current position. However, any action that you would like to perform when the air tap gesture is made can be
done, as long as you can code it into a script.

 Activating a targeted hologram with a voice command
 Just as you can affect a hologram with a gesture, you can affect it with a voice command. Voice command
is even more powerful than gesture in that there are a lot more recognized commands than there are
recognized gestures. While you can count the number of recognized gestures on the fingers of one hand,
the number of voice commands available is virtually infinite. It’s good if a voice command is short and not
similar to other voice commands that it might be confused with, but beyond that there are more possibilities
than you are ever likely to need. (W3C has a formal grammar definition for speech recognition called the
Speech Recognition Grammar Specification. It is available here: www.w3.org/TR/speech-gramar/ .) The
code for voice commands in the Origami sample application is given here:

 using System.Collections.Generic;
 using System.Linq;
 using UnityEngine;
 using UnityEngine.Windows.Speech;

 public class SpeechManager : MonoBehaviour
 {
 KeywordRecognizer keywordRecognizer = null;
 Dictionary<string, System.Action> keywords = new Dictionary<string, System.Action>();

 // Use this for initialization
 void Start()
 {
 keywords.Add("Reset world", () =>
 {
 // Call the OnReset method on every descendant object.
 this.BroadcastMessage("OnReset");
 });

 keywords.Add("Drop Sphere", () =>
 {
 var focusObject = GazeGestureManager.Instance.FocusedObject;
 if (focusObject != null)
 {

http://www.w3.org/TR/speech-gramar/

CHAPTER 15 ■ MANIPULATING HOLOGRAPHIC OBJECTS

182

 // Call the OnDrop method on just the focused object.
 focusObject.SendMessage("OnDrop");
 }
 });

 // Tell the KeywordRecognizer about our keywords.
 keywordRecognizer = new KeywordRecognizer(keywords.Keys.ToArray());

 // Register a callback for the KeywordRecognizer and start recognizing!
 keywordRecognizer.OnPhraseRecognized += KeywordRecognizer_OnPhraseRecognized;
 keywordRecognizer.Start();
 }

 private void KeywordRecognizer_OnPhraseRecognized(PhraseRecognizedEventArgs args)
 {
 System.Action keywordAction;
 if (keywords.TryGetValue(args.text, out keywordAction))
 {
 keywordAction.Invoke();
 }
 }
 }

 As you can see, to add a keyword just add it to the dictionary with a statement like the following:

 {
 keywords.Add("Reset world", () =>
 {
 // Call the OnReset method on every descendant object.
 this.BroadcastMessage("OnReset");
 });

 Summary
 In this chapter we have seen how to create holographic objects, give them behaviors, and control how
they respond to actions taken by the user. We have seen how to perform the basic operations of hitting a
target hologram with a cursor, affecting it with a gesture, and affecting it with a voice command. Now that
we can do all these things, in the next chapter we will look at a practical use of HoloLens holography in an
educational context.

 PART V

 Creating Mixed-Reality Apps

185© Allen G. Taylor 2016
A. G. Taylor, Develop Microsoft HoloLens Apps Now, DOI 10.1007/978-1-4842-2202-7_16

 CHAPTER 16

 Creating a Holographic
Teaching Tool

 HoloLens technology could be profitably applied in a wide variety of contexts, but there are several for which
it is particularly valuable. One that stands to benefit the most is the field of education. Education is one of
the oldest professions that humans have engaged in, right after hunting and gathering. In prehistoric times,
skilled hunters and gatherers had to pass on their expertise to the next generation before the end of their
short lives. In those days, education was one to one and very hands-on. Later, as the student-teacher ratio
increased, the connection between teacher and student became weaker.

 The Limitations of Traditional Education
 The education model that has come down to us over the past few centuries has a single teacher in a room
with a large number of students, perhaps aided by a blackboard and a piece of chalk. Numerous studies have
shown that this model is not particularly effective at transferring knowledge from the teacher to the students.
Recently, technological advances have changed this picture somewhat, but we still largely have a teacher/
instructor/professor standing up in front of a class and lecturing. For some subjects, this arrangement
works reasonably well, provided the instructor is not only knowledgeable about the subject matter, but also
is an excellent communicator. For other subject areas, this method does not work very well at all. Happily,
technological advances are improving the situation.

 How Education Is Changing
 In many schools and other educational venues, computer-hosted PowerPoint slideshows have replaced
blackboards and chalk. Photos and graphs enhance the text to provide students with a more visually
engaging experience. Video and sound may augment the presentation. The instructor still has to know how
to use these tools wisely, but, in general, more time is spent in the actual transmission of information and
less in scribbling on a blackboard. The PowerPoint can be distributed to the students after class, so they
don’t have to take extensive notes during class. They can concentrate on the lesson being taught and only
take notes on points not covered in the slides. This may seem to be an advantage, but in reality it makes the
student less of a participant and more of being merely an observer.

 Now, with the HoloLens being employed in an educational context, rather than the student being
talked at and viewing a distant screen, she can become an active participant in the learning experience. An
instructor can point out different parts of a hologram and comment on them. A student can move closer — or
rather, left, right, or completely around the hologram — to get a more holistic idea of it than is possible on a
screen or a page in a book.

CHAPTER 16 ■ CREATING A HOLOGRAPHIC TEACHING TOOL

186

 Seeing the Unseen: Inside the Human Body
 Some of the hardest subjects to teach are those that have a lot of internal complexity that is not visible from
the outside. Consider human anatomy. There is a lot going on under the skin, and medical students need to
understand how it all works. Machines that need to be diagnosed and repaired represent a similar problem.
How do you teach human anatomy or auto mechanics to students in a way that they understand in depth?
How can they see how the digestive system fits in with the circulatory system, the nervous system, and the
skeletal system? How can they see the way the gears of an automatic transmission mesh and turn depending
on which clutches are applied? If you take apart a human or an automatic transmission in order to see its
parts, you miss out on seeing those parts in operation.

 Figure 16-1 shows a professor explaining details of the human skeleton to a small group of medical
students, all wearing HoloLenses.

 Figure 16-1. HoloLens-aided anatomy class

 The medical school at Carnegie-Mellon University is using HoloLens in this way. They are pioneering
use cases that many other educational institutions are bound to follow. Once you see what has always been
unseeable, you will never want to go back to color slides, videos, or transparent overlays in books.

CHAPTER 16 ■ CREATING A HOLOGRAPHIC TEACHING TOOL

187

 Mixed reality home study
 A student with a HoloLens can carry on the learning experience at home. Once you have a hologram
resident on the device, you can call it up anywhere that is convenient and take all the time you want to study
it in detail. Figure 16-2 shows the digestive system as seen from the back of the anatomical model, with the
pancreas located and labeled.

 Figure 16-2. Transparent anatomical model showing digestive system and highlighting the pancreas. Taken
with a HoloLens in a dimly lit hallway

 Even models of the brain can be viewed in full three dimensionality, with brain regions identified and
differentiated by color. Figure 16-3 shows such a model.

CHAPTER 16 ■ CREATING A HOLOGRAPHIC TEACHING TOOL

188

 Internal neural networks, shown differentiated by color, control different body and mental functions.
Seeing, for example, the location of a tumor relative to these networks will indicate which impairments a
patient is likely to start experiencing. Figure 16-4 shows a tumor in red impinging on a network in light blue.
Yellow, red, and dark blue networks are not affected.

 Figure 16-3. Model of brain with frontal lobe highlighted

CHAPTER 16 ■ CREATING A HOLOGRAPHIC TEACHING TOOL

189

 Seeing the Unseen: Inside an Automotive Automatic
Transmission
 Automotive repair is much like the practice of medicine. In both cases, the practitioner diagnoses a problem
and then decides on a course of action to fix it. Automotive technicians are like doctors for cars. As such,
they need a comprehensive education, just as medical doctors do. There are hundreds of millions of cars on
the road in the United States alone, and the overwhelming majority of them have automatic transmissions.
Transmission repair, along with engine repair and repair of other major subsystems, is taught at community
colleges and trade schools around the country as well as at training centers owned by car manufacturers.

 How does it all fit together?
 For complex mechanisms such as automatic transmissions, being able to see how all the many parts not
only fit together, but also work together, is one of the key advantages that holographic learning can provide.
In a relatively simple transmission, a sun gear, a set of planetary gears, and a ring gear all either rotate or not
depending on the condition of a set of clutches. It’s hard to imagine how this works just from looking at the
disassembled parts. Figure 16-5 shows the main components of a disassembled automatic transmission.

 Figure 16-4. Brain showing tumor discovered by an MRI scan of an actual patient

CHAPTER 16 ■ CREATING A HOLOGRAPHIC TEACHING TOOL

190

 When a student mechanic takes apart a transmission in the shop, this is the result. She may be able
to put it back together again correctly, but that does not tell her much about how it works. This is where
HoloLens instruction can really add to the learning experience.

 Hands-on experience will always be needed, but . . .
 Having an active holographic representation of either a human body or an automatic transmission does not
mean that hands-on experience in the dissection lab or the shop is no longer necessary. Future practitioners
need to know how tissues feel and how heavy gears and casings are. The holographic representations
supplement current learning practices and give a deeper appreciation of what is being operated on. As a
result, they become better diagnosticians and can solve more problems quickly and efficiently.

 As is the case with human anatomy, it’s impossible to see what all the gears and clutches in a transmission
are doing while the transmission is operating. That makes it difficult to gain a true understanding of what is
going on. With a HoloLens, student mechanics can see through the case of a model transmission and see the
operation of all the parts. By issuing voice commands, for example, an instructor can have the transmission run
through the gears while he describes which clutches are engaged and which gears are rotating with the shaft.
Descriptions of gear ratios and the corresponding speed of rotation of the drive shaft can accompany the
animation of the action. Figure 16-6 shows a hologram of an automatic transmission used in a transmission repair
course at Clackamas Community College in Oregon City, Oregon. Clackamas Community College and nearby
Portland Community College are leaders in applying holographic technology to automotive repair courses.

 Figure 16-5. Automatic transmission in pieces

CHAPTER 16 ■ CREATING A HOLOGRAPHIC TEACHING TOOL

191

 By actually being able to see the clutches engage and the change in the speed of the gears, students are much
better able to grasp how the mechanism works. Figure 16-7 shows the same hologram from a different angle.

 Figure 16-6. Photo of hologram of exploded view of an automatic transmission, taken in the author’s messy office

 Figure 16-7. Perspective 2 of exploded view

[AU5]

CHAPTER 16 ■ CREATING A HOLOGRAPHIC TEACHING TOOL

192

 Figure 16-8 shows a closer view with more detail of the planetary gears.

 Figure 16-8. Closer view of transmission

 Figure 16-9. View from the inside

 Figure 16-9 is a view from inside a magnified, unexploded view of the transmission, with the shaft and planetary
gears removed. You can actually walk through the entire transmission, examining how the parts fit together.

CHAPTER 16 ■ CREATING A HOLOGRAPHIC TEACHING TOOL

193

 Instructor-driven Animation
 One of the cool things about the type of holography that HoloLens produces is the fact that you can array
students all around a hologram or even inside it. What better way to see the internals of something than from
inside it? Since you can scale a hologram any way you want, you could put students inside a large hologram
while describing what is happening, as in Figure 16-9 .

 The hologram can be animated, with voice commands from the instructor starting and stopping the
animation as she describes what’s happening to the students. This type of instruction could be even more
effective in an architecture class, for example, than in one about anatomy or auto mechanics. You could put
students inside a holographic building so they could see what it would be like for people to live in the real thing.

 Making the Student an Active Participant
 The instructor isn’t the only one who could affect the hologram in a class situation. In addition to moving
around and viewing the hologram from any desired position, students could also affect it with air taps and
voice commands. The instructor may want to set rules about what students may do. In addition, the app
should probably have a “Reset” command that puts everything back in its original condition, to be used if
student interactions change the hologram in a way that does not contribute to learning.

 Creating a Compelling Educational App
 Creating an app that teaches human anatomy, transmission repair, or any equally complex topic is not a
job for the lone developer. A team with diverse areas of expertise is required. First of all, you need a domain
expert who is highly knowledgeable about the subject matter. You also need an experienced teacher
who knows how to communicate ideas in an easily understandable way. You need a computer graphics
guru who is a master with tools such as Maya, 3ds Max, or Blender, and a wizard with Unity and Visual
Studio development tools. Just as important, you need a tester or quality assurance person who is adept at
finding the weaknesses and bugs that infest any and all complex applications. To get involved in HoloLens
development, find and get involved with people whose skills and interests complement your own. You will
need them, and they will need you.

 Summary
 There is broad agreement that feeding students facts through lectures and having them regurgitate the
information back on tests and exams is not the best way to promote learning. Recent advances in presentation
using computer-facilitated media has improved this situation somewhat. The HoloLens technology has the
potential to transform education in a much more profound way. It has the potential to put the student right in
the middle of the subject matter by mixing the student’s environment with the environment of what is being
studied in such a way that makes the subject matter real to the student, unlike what they experience through
listening to a lecture, reading a book, or viewing a 2D video presentation. Finally, find those people whose
talents complement yours. Find some simple projects that you can work on together, and in the process forge
a working relationship that works for everyone.

 I mentioned that your team needs a specialist in testing and quality assurance. Many times developers
give little thought to this. However, if you want to deliver a quality product that will build your reputation
rather than destroy it, you need to give quality assurance the attention it deserves. It is not unusual for more
time and effort to be spent on the quality assurance of a complex application than is spent on coding it
in the first place. In the next chapter, we will talk about Microsoft’s HoloToolkit, which makes application
development much easier than it otherwise would be. In the chapter after that, we will delve into the many
important aspects of software quality assurance.

195© Allen G. Taylor 2016
A. G. Taylor, Develop Microsoft HoloLens Apps Now, DOI 10.1007/978-1-4842-2202-7_17

 CHAPTER 17

 Creating Your App Using
HoloToolkit

 In Chapter 5 , we got a first look at creating holographic applications by working through the tutorials
at Microsoft’s online Holographic Academy. From the Holograms 101 Origami tutorial through to the
Holograms 240 Shared Holograms tutorial, we were able to see the features and interactivity of some real,
although simple, holographic applications. This was fine as far as it went, but it didn’t give a real feel for what
it would be like to actually develop an application ourselves, because the holographic objects in the tutorials
were already created and the scripts that gave them active capabilities were already written. This is a far cry
from developing a non-trivial application from scratch.

 Developing a holographic application from scratch is pretty challenging. You need a top-notch computer
graphics designer to create the 3D assets that will be turned into holograms. You need a Unity wizard who is
adept at putting those holograms into the context of an environment, and you need a C# coding guru who can
give those holograms the functionality that they need. It is rare to find a single person who can perform all of
these functions at a top level. Microsoft knows this, and to help out has produced the HoloToolkit.

 What is HoloToolkit?
 The HoloToolkit is a collection of scripts and components that will make it easier for you to create
applications that target Windows Holographic. It makes it possible to build holographic apps without using
Unity. You can find information about how to do that at https://github.com/Microsoft/HoloToolkit . If
you are using Unity, as I describe in this book, a targeted subset of the HoloToolkit is available at https://
github.com/microsoft/HoloToolkit-Unity . The Unity version of HoloToolkit contains prebuilt assets and
scripts that you will be able to apply in a wide variety of situations in your applications. They will save you
from having to build assets and code scripts from absolute scratch so that you can concentrate on those
aspects of your application that are unique rather than having to spend a lot of time on the boilerplate that
underlies all applications.

 After downloading the zipped HoloToolkit from GitHub, create a new project in Unity or open an
existing one. From there, navigate to the package you just downloaded via:

 Assets ➤ Import Package ➤ Custom Package (package you downloaded)
 Once you have done this, a HoloToolkit menu item should appear in your main menu.
 Regardless of what holographic app you are developing, you should delete the default camera that

appears in Unity when you create a new project and replace it with the Main Camera prefab that was added
to your assets from the Toolkit. This main camera is specifically designed for holographic applications. If you
add the ManualCameraControl.cs script to the Main Camera prefab, you will be able to manually control
the camera when in Unity player mode. This will let you see what things look like without having to build
and deploy the project to either the HoloLens Emulator or the HoloLens device.

http://dx.doi.org/10.1007/978-1-4842-2202-7_5
https://github.com/Microsoft/HoloToolkit
https://github.com/microsoft/HoloToolkit-Unity
https://github.com/microsoft/HoloToolkit-Unity

CHAPTER 17 ■ CREATING YOUR APP USING HOLOTOOLKIT

196

 Before building and deploying a project, it is also a good idea to make the following selections:
 HoloToolkit ➤ Configure ➤ Apply HoloLens Scene Settings
 HoloToolkit ➤ Configure ➤ Apply HoloLens Project Settings

 Toolkit Contents
 The assets in the Toolkit fall into six major categories:

 1. Input

 2. Sharing

 3. Spatial Mapping

 4. Spatial Sound

 5. Utilities

 6. Build

 The assets include prefabs and scripts that are useful in a wide variety of situations. Also included are
tests of the capabilities provided by these assets to help you learn how to use them effectively.

 Input Assets
 A hologram’s interactivity with the user is one of the most dynamic aspects of its presence. How it responds
to a user’s gaze, gesture, and voice is controlled by assets in the Toolkit that you can incorporate into your
apps. The Input folder contains several subfolders, each containing a different category of asset that you
might want to use in your scene. The assets contained in these subfolders will probably grow over time as
new features are added.

 Materials
 The hand_up material is an image of a hand with the index finger pointing up. You might want to use this as
a cursor when the user is gazing at something that will respond to an air tap. The ring_shadow material is a
dark ring with fuzzy edges that you might want to use as a cursor shadow.

 Models
 There are models of several different cursors in this folder.

 Prefabs
 The prefabs in this folder are all variations of the cursor. There are cursors for when the user’s gaze is on a
hologram (a ring) and when it is off (a dot). There is also a cursor shaped like a hand to indicate that the
user’s hand is in the field of view.

• BasicCursor.prefab is a torus-shaped cursor that follows the user’s gaze around.

• Cursor.prefab is a torus-shaped cursor when the user is gazing at a hologram
(CursorOnHolograms) and a point of light when the user’s gaze is not impinging on
any holograms (CursorOffHolograms).

CHAPTER 17 ■ CREATING YOUR APP USING HOLOTOOLKIT

197

• CursorWithFeedback.prefab is a torus-shaped cursor that follows the user’s gaze
and gives the user feedback when a hand is detected in the ready state (index finger
pointing up).

• FocusedObjectKeywordManager.prefab is a keyword manager that sends messages
to the object currently being focused upon by the FocusedObjectMessageSender
component.

• SelectedObjectKeywordManager.prefab is a keyword manager that sends messages
to the currently selected object via the SelectedObjectMessageSender component.

 Scripts
 Scripts are associated with various GameObjects and give them functionality. You can pretty much tell
which GameObjects the scripts relate to by the following brief descriptions.

• BasicCursor.cs does three things. It

 1. decides where to display the cursor;

 2. positions the cursor at the gazed-at hit location; and

 3. rotates the cursor to match the hologram normals so that it seems to be
hugging the surface of the hologram.

• CursorFeedback.cs gives the user feedback if a hand is detected when a GameObject
is being hit by the cursor.

• CursorManager.cs does three things. It

 1. shows the appropriate cursor when a hologram is hit;

 2. places the appropriate cursor at the hit position; and

 3. matches the cursor normal to that of the hit surface.

 You must provide GameObjects for the CursorOnHologram and
CursorOffHologram public fields. CursorOnHologram is the cursor object to
display when the user is gazing at a hologram. CursorOffHologram is the cursor
object to display when the user is not gazing at a hologram.

 DistanceFromCollision is the distance in meters to offset the cursor from a
collision with a hologram in the scene. This prevents the cursor from being
occluded by a hologram.

• FocusedObjectMessageSender.cs sends a Unity message to the object currently
focused on by the Gaze Manager.

• GazeManager.cs performs a Physics Raycast in the direction of the user’s gaze to get
the position and normal of any collision.

 The MaxGazeDistance is the maximum distance to raycast. Any holograms
beyond this distance will not be raycasted to.

 The RaycastLayerMask declares the Unity layers that will be raycasted against. If
you have holograms that should not be raycasted against, such as a cursor, do not
include their layers in this mask.

• GazeStabilizer.cs stabilizes the user’s gaze to account for head jitter. Multiple
samples are taken and the average of all of them is used to define the gaze direction.

CHAPTER 17 ■ CREATING YOUR APP USING HOLOTOOLKIT

198

• StoredStabilitySamples is the number of samples that you want to use. A larger
number will correspond to more stability, but less performance. It’s a tradeoff.

 PositionDropOffRadius is the position-based distance away from the gravity well.

 DirectionDropOffDistance is the direction-based distance away from the gravity well.

 PositionStrength is the position lerp (linear interpolation) factor.

 DirectionStrength is the direction lerp factor.

 StabilityAverageDistanceWeight is the stability average weight multiplier factor.

 StabilityVarianceWeight is the stability variance weight multiplier factor.

• GestureManager.cs creates a gesture recognizer and looks for an air tap gesture.
When one is detected, it uses GazeManager to find the target object and then sends
a message to that object. GestureManager also has an OverrideFocusedObject
function that lets you send a message to a specific object by overriding the gaze.

• HandGuidance.cs displays a GameObject when the user’s hand is close to leaving
the camera’s view. This script requires a cursor and a HandGuidanceIndicator
public field. The HandGuidanceIndicator will be rendered around the
cursor and will be displayed when the user’s hand is about to lose tracking.
The HandGuidanceThreshold determines when to start showing the
HandGuidanceIndicator.

• HandsManager.cs tracks when the user’s hand has been detected in the ready
position.

• KeywordManager.cs enables you to specify keywords and methods in the Unity
Inspector rather than including them in code. For this to work, microphone
capability must be enabled in Unity. Find it under Edit ➤ Project Settings ➤
Player ➤ Settings for Windows Store ➤ Publishing Settings ➤ Capabilities.

 Use KeywordsAndResponses to set the size of the number of keywords you want to
listen for, then specify the keywords and method responses to complete the array.

 Set RecognizerStart to determine whether the keyword recognizer will start
immediately or wait for your code to tell it to start.

• SelectedObjectMessageSender.cs sends a Unity message to the currently selected
object. Object selection is controlled by OnSelectObject and OnClearSelection
events. Because messages can be triggered by voice commands, keyword responses
must be registered in the KeywordManager.

 Shaders
 There is a cursor shader that has a sprite texture.

 Tests
 The tests included in the Input folder of the HoloToolkit are simple scenes that test basic functionality of
input.

CHAPTER 17 ■ CREATING YOUR APP USING HOLOTOOLKIT

199

• BasicCursor creates a target sphere and a cursor. The sphere is fixed in space, while
the cursor is torus-shaped when the user’s gaze is on the sphere and disappears
when the user’s gaze moves off the sphere.

• Cursor creates a target sphere and a cursor. The sphere is fixed in space, while the
cursor is torus-shaped and hugs the surface of the sphere when the user’s gaze is on
the sphere. The cursor changes to a diffuse point of light when the user’s gaze moves
off the sphere.

• CursorWithFeedback creates a target sphere and cursor as in the preceding Cursor
test. In addition, when the user’s hand comes into view in the ready position, the
cursor changes from a torus to a hand-with-upraised-index-finger icon.

• FocusedObjectKeywords tests the ability to send keyword messages. When the
cursor is on the focused object, saying “Make Bigger” will make the object bigger and
saying “Make Smaller” will make the object smaller.

• SelectedObjectKeywords tests the selecting of a gaze-targeted object with a “Select
Object” voice command. The selection persists even after gaze is removed from
the object. Further voice commands, such as “Make Bigger” or “Make Smaller,”
continue to affect the selected object regardless of cursor position. Finally, the “Clear
Selection” command deselects the object.

 Sharing
 For many applications, and most especially educational ones, the ability for multiple people to share a
mixed-reality experience is crucial. The HoloToolkit supports this requirement with plugins, prefabs, and
scripts. In the Toolkit Sharing folder there are five subfolders.

 Editor
 The Editor folder contains the Sharing Menu script. It exposes the HoloToolkit menu option, which launches
the sharing service, among other functions.

 Plugins
 This folder contains compiled architecture-specific binaries for Sharingclient.dll, which are needed for
access to sharing APIs.

 Prefabs
 The Sharing prefab enables sharing and networking in a Unity application and enables communication
between a Windows and a non-Windows device.

 In the prefab, SharingStage.cs allows you to be a Primary Client. Server Address is the IP address of the
machine running the HoloToolkit ➤ Launch Sharing Service program. Server Port displays the port being
used for communicating.

 SharingSessionTracker.cs keeps track of clients joining and leaving a shared session.
 AutoJoinSession.cs creates a shared session with Session Name “Default.” It joins a new client to that

session if it already exists.

CHAPTER 17 ■ CREATING YOUR APP USING HOLOTOOLKIT

200

 Scripts
 This folder contains scripts that relate to the sharing and networking features of a project. One folder
contains the Sharing SDK, which holds a large number of scripts. The Utilities folder contains several scripts,
including the AutoJoinSession script just mentioned in the Prefabs section. Also included here are the
SharingStage and SharingSessionTracker scripts.

 Tests
 To test the sharing features:

• Navigate to the Tests folder under Sharing in the HoloToolkit.

• Drag the Sharing project from the Project folder into the root level of the Hierarchy
panel.

• Go to File ➤ Build Settings to display the Build Settings window.

• Click the Add Open Scenes button to add the Sharing project to Scenes to Build.

• Uncheck any other projects that are already in Scenes to Build.

• Make sure Platform is Windows Store , SDK is Universal 10 , and UWP Build Type is
 D3D .

• Check the Unity C# Projects box.

• Click the Build button.

• Create an App folder.

• When the compile is finished, open the .sln solution.

• Build and deploy with Visual Studio.

 The Sharing project demonstrates how to use the Sharing prefabs for networking and sharing custom
messages with client HoloLens devices. It also demonstrates how to share world anchors between clients to
establish a shared space.

 To run the tests:

• Ensure the sharing service is launched, using HoloToolkit ➤ Launch Sharing Service.

• Enter the IP address displayed in the console window into the Server Address of the
Sharing object.

• CustomMessages.cs shows how to communicate specific information among clients.

• ImportExportAnchorManager.cs shows how to create anchors and share them with
other clients using the sharing service.

• RemoteHeadManager.cs draws cubes on remote heads of users joining the session.

 Spatial Mapping
 HoloLens’s spatial-mapping capability maps out the room around the user so that holographic objects can
be placed appropriately in relation to the real environment.

CHAPTER 17 ■ CREATING YOUR APP USING HOLOTOOLKIT

201

 Spatial Perception
 To use spatial mapping in your app, the SpatialPerception capability must be enabled in the AppxManifest
file. To enable SpatialPerception, do the following:

• Go to Edit ➤ Project Settings ➤ Player to put Player Settings into the Inspector panel.

• Click on the small green Windows Store icon.

• Expand the Publishing Settings section, scroll down, and check the
 SpatialPerception box in the Capabilities list.

 ■ Note If you have already exported your Unity project to a Visual Studio solution, you will need to either
export to a new folder or manually set this capability in the AppxManifest file. Following that:

• In Visual Studio, right-click on Package.appxmanifest in the Solution Explorer and select
View Code .

• Find the line specifying TargetDeviceFamily and make sure MaxVersionTested="10.0.10586.0

• Save Package.appxmanifest.

 Editor
 The Editor subfolder of the SpatialMapping folder contains two scripts: SpatialMappingColliderInspector
and SpatialMappingRendererInspector. These files are used to adjust the settings for the
SpatialMappingCollider and the SpatialMappingRenderer scripts.

 Materials
 There are two materials: Occlusion and Wireframe.

 Plugins
 In this folder are WSA, x64, and x86 subfolders, each containing an appropriate version of PlaneFinding.dll.

 Prefabs
 There are three prefabs: RemoteMapping, SpatialMapping, and SurfacePlane.

 The RemoteMapping prefab contains three scripts: RemoteMeshTarget, RemoteMeshSource, and
RemoteMappingManager.

 The SpatialMapping prefab contains three scripts: SpatialMappingObserver, SpatialMappingManager,
and FileSurfaceObserver.

 The SurfacePlane prefab contains a Cube mesh filter, a Box Collider, a Mesh Renderer, and a
SurfacePlane script. It also includes the Default-Material.

CHAPTER 17 ■ CREATING YOUR APP USING HOLOTOOLKIT

202

 Scripts
 Spatial mapping is a complex problem to solve. Happily, the HoloToolkit provides a large number of scripts
to help accomplish this. Within the scripts folder, along with over a dozen scripts, is a subfolder named
SpatialMappingComponent.

 Spatial mapping component
 The Spatial Mapping Component is a unified set of scripts that provides physics or rendering support for
spatial mapping. When you add a SpatialMappingColllider component and a SpatialMappingRenderer
component to a GameObject, spatial mapping starts working.

 SpatialMappingRenderer.cs

 This script is used for rendering spatial mapping. In rendering mode, it determines how to render the mesh.
The default is Occlusion. Occlusion will cause the mesh to occlude holograms behind it. Material will apply
the specified material. If you specify None for material, the meshes will not render at all.

 The Occlusion material, mentioned earlier in the Materials section, is used to occlude holograms with
the spatial-mapping mesh. If a hologram is behind an occluding object such as a table or chair, it will not be
displayed.

 The Rendering Material, also mentioned in the Materials section, should be set to Wireframe. Its purpose
is to render the spatial-mapping mesh. This is only relevant when the rendering mode is set to Material.

 SpatialMappingCollider.cs

 This script is used to perform physics collisions with the spatial-mapping mesh. The _enableCollisions
variable determines whether to create a collider for RigidBody physics.

 Component design considerations
 If you want spatial mapping to work for a user who moves from one location to another, attach the
components to the camera, and the spatial mapping will move with the user.

 If you want collisions to continue taking place in the user’s original location even after she has walked
away, leave a second SpatialMappingCollider in the original location.

 If you want both physics collisions and to render the spatial-mapping mesh for an area, add both a
SpatialMappingCollider and a SpatialMappingRenderer to that area. The component’s default values for all
the variables work fine in most situations, but are customizable if need be.

 By default, removed meshes are cached. They can be restored if the user returns to an area whose mesh
had been removed.

 Other Scripts
 The following scripts help you to load the spatial-mapping mesh from a file or the network into a Unity
scene.

 FileSurfaceObserver.cs

 This class is a SpatialMappingSource that loads spatial-mapping data from a file into Unity. MeshFileName
is the name of the file when either loading surface mesh data or saving it back to a file.

CHAPTER 17 ■ CREATING YOUR APP USING HOLOTOOLKIT

203

 MeshSaver.cs

 This is a static class that can read and write mesh data to and from the file specified in FileSurfaceObserver.cs.

 PlaneFinding.cs

 This script wraps the native PlaneFinding DLL. It is used by SurfaceMeshesToPlanes.cs

 RemoteMappingManager.cs

 This script enables the sending of meshes remotely from HoloLens to Unity.

 RemoteMeshSource.cs

 This is the networking component that runs on the HoloLens to send meshes to Unity so that it can build up
a map of the room.

 RemoteMeshTarget.cs

 This script runs in the Unity editor and receives spatial-mapping data from the HoloLens.

 RemoveSurfaceVertices.cs

 This script removes spatial-mapping vertices that fall within a specified bounding volume.

 SimpleMeshSerializer.cs

 This script is a static class that converts a Unity mesh to an array of bytes. It is used by MeshSaver.cs to
serialize and deserialize mesh data.

 SpatialMappingManager.cs

 This script manages the interactions between the running application and all spatial-mapping data sources,
whether they come from a file, an observer, or the network.

 SpatialMappingObserver.cs

 This script adds and updates spatial-mapping data for all surfaces discovered by the SurfaceObserver
running on the HoloLens.

 SpatialMappingSource.cs

 This script is a class that generates and retrieves meshes based on spatial-mapping data coming from
the current source object, which could be a file, an observer, or the network. SpatialMappingManager.cs
manages switching between source types and interacting with this class.

CHAPTER 17 ■ CREATING YOUR APP USING HOLOTOOLKIT

204

 SurfaceMeshesToPlanes.cs

 This script finds and creates planes based on spatial-mapping meshes. It uses PlaneFinding.cs and requires
the PlaneFinding plugin.

 SurfacePlane.cs

 This script generates planes and classifies them by type, whether wall, ceiling, floor, table, or unknown. It
should be a component of the SurfacePlane prefab that is used by SurfaceMeshesToPlanes.cs.

 TapToPlace.cs

 This is a script you add to a GameObject that enables users to place the GameObject somewhere in the
spatial-mapping mesh by performing an air tap gesture. It requires the GazeManager, the GestureManager,
and the SpatialMappingManager to be in the scene.

 Shaders
 There are two shaders in the HoloToolkit that are used with spatial mapping: the occlusion shader and the
wireframe shader. They contain code and instructions for the GPU to execute. When a hologram moves
behind a real-world object that has been represented with a mesh, it should be occluded. That effect is
enabled by the occlusion shader. A wireframe shader is used to render a wireframe representation of a
holographic object.

 Tests
 In addition to some additional assets, there are four simple projects that demonstrate some key aspects of
spatial mapping:

• The PlaneFinding scene (PlaneFinding.unity) runs in a loop. In scene view in
Unity, you will see a visualization of the planes found. This test exposes properties
that enable you to manipulate API parameters in real time and observe the impact
of your manipulations. When you use the code contained in this scene, call the
PlaneFinding APIs from a background thread to avoid stalling the rendering thread
and causing a drop in frame rate.

• The SpatialProcessing scene tests the two processing scripts that are available in the
HoloToolkit: SurfaceMeshesToPlanes and RemoveSurfaceVertices. If you already
have a room file saved, this test will automatically load it and run it in Unity. If you
don’t have such a file, you can run the test directly in a HoloLens. The scene will scan
your surroundings for 15 seconds and then convert all meshes to planes. If a floor
plane is found, the scene will remove vertices from surface meshes that fall within
the bounds of any active plane.

• The Example scene in the SpatialMappingComponent subfolder shows a static play
space that preserves physics around it while maintaining the physics and wireframe
rendering of spatial mapping around the camera. You can also tap to drop a cube
with a RigidBody component in front of the camera, displaying the effect of gravity.

CHAPTER 17 ■ CREATING YOUR APP USING HOLOTOOLKIT

205

• The TapToPlace scene demonstrates the TapToPlace capability by attaching
the TapToPlace script to a cube. The GazeManager, GestureManager, and
SpatialMapping prefabs are also included, as is the BasicCursor. A first tap will move
the cube along the spatial-mapping mesh. A second tap will fix it in its new position.

 Spatial Sound Scripts
 The SpatialSound folder in the HoloToolkit contains a collection of scripts in the UAudioManager subfolder.
These scripts can help you to set up complex sound playback events. You can introduce randomization to
avoid sound becoming repetitive and trite. Different audio clips can be played, volume can be varied, and so
can pitch, all randomly. Audio events may invoke the playing of multiple sounds, either at once or sequentially.

 Spatial sound in Unity uses the SetSpatializerFloat API to set the spatial properties of the AudioSource
component. The UAudioManager makes relevant parameter values immediately accessible to the sound
designer.

 In addition, with UAudioManager events, sounds can be categorized into the bus system of Unity’s
audio mixer. This enables the sound designer to control the sounds coming from multiple holograms with a
single setting.

 Editor Scripts
 The Editor subfolder of the UAudioManager folder contains the UAudioManagerBaseEditor, the
UAudioManagerEditor, the UAudioMiniManagerEditor, and the UAudioProfiler. These editors enable the
sound designer to add sounds when triggered by an event or to modify an existing sound, again, when
triggered by an event.

 Other Scripts
 The UAudioManager folder contains a collection of scripts that you can use to design and control your app’s
audio, including spatial sound.

 ActiveEvent
 This script controls currently active AudioEvents and their AudioSource components for instance-limiting
events.

 AudioClip
 This script encapsulates a single Unity AudioClip with playback settings.

 AudioContainer
 This class is the sound container for an AudioEvent. It specifies the rules for playing back the AudioClips it
contains.

 AudioEvent
 This script defines how an audio object should be played back.

CHAPTER 17 ■ CREATING YOUR APP USING HOLOTOOLKIT

206

 AudioSourcePlayClipExtension
 This class is a shortcut to assigning a clip to an AudioSource component and playing the source repeatedly.

 AudioSourcesReference
 This class encapsulates a cache of references to AudioSource components on a given local audio emitter
GameObject. It is used primarily by UAudioManager. It improves performance by bypassing the need to re-
query for a list of attached components for each use.

 MiniAudioEvent
 This class is the main component of UAudioMiniManager. It contains settings and a container for playing
audio clips.

 SpatialSoundSettings
 This class provides a set of methods that simplify making modifications to SpatialSoundSpatializer
parameters.

 UAudioManager
 This class is a singleton that provides organization and control of an application’s AudioEvents. Designers
and coders can share the names of the AudioEvents to enable rapid iteration on the application’s sound in
a way that is similar to the way XAML is used for user interfaces. It enables sound designers to set up audio
events with playback behaviors and play AudioEvents via a singleton API.

 UAudioManagerBase
 This script provides the base functionality for the UAudioManager classes.

 UAudioMiniManager
 This script plays all the AudioEvents in the manager.

 Utilities
 The scripts in the Utilities folder are useful tools that you can use in your applications.

 Editor
 The Editor subfolder contains several scripts that you can use in building your application.

 BuildCommands
 Builds HoloLens applications.

CHAPTER 17 ■ CREATING YOUR APP USING HOLOTOOLKIT

207

 BuildMenu
 Gives developer a menu item to build the current application for HoloLens.

 ConfigureMenu
 Applies project settings to the current project.

 EditorGUIExtensions
 Sets up the current application’s graphical user interface (GUI).

 EditorGUILayoutExtensions
 Uses EditorGUIExtensions to produce the GUI layout.

 LayerMaskExtensions
 Makes extensions to the UnityEngine.LayerMask class.

 Prefabs
 The MainCamera prefab is designed for HoloLens and should be used in place of the default main camera
that is present when Unity is launched.

 The FPSDisplay prefab displays the number of frames per second an app is running at. This helps you to
know whether your app has a frame-rate problem.

 Scripts
 There are several scripts that you could find helpful in a number of different situations.

 Billboard
 This class keeps a GameObject facing the user.

 DirectionIndicator
 This class creates an indicator around the cursor that shows which direction to look to find a GameObject.

 FixedAngularSize
 This class causes a hologram to appear the same angular size, regardless of how far it is from the camera.

 FpsDisplay
 This class calculates the frame rate and displays frames per second in a referenced Text control.

CHAPTER 17 ■ CREATING YOUR APP USING HOLOTOOLKIT

208

 Interpolator
 This MonoBehaviour interpolates a transform’s position, rotation, or scale to smooth animations.

 ManualCameraControl
 Attach this class to the MainCamera object to enable manual control of the camera in the Unity editor.

 NearPlaneFade
 This MonoBehaviour enables the near-plane limit to be a gradual fade out rather than an abrupt cutoff.

 SimpleTagalong
 This script makes a GameObject stay a fixed distance from the camera and always have a part of itself in the
view frustum of the camera.

 Singleton
 This class finds and returns an instance of an object of a specified type.

 Tagalong
 This extension of the SimpleTagalong enables you to specify the minimum and target percentage of an
object to keep in the view frustum of the camera. It keeps the Tagalong object in front of other holograms,
including the spatial-mapping mesh.

 TextToSpeechManager
 This class enables text-to-speech using the Windows 10 SpeechSynthesizer class. SpeechSynthesizer
generates speech as a SpeechSynthesisStream. It converts the stream into a Unity AudioClip and plays the
clip using the AudioSource that you supply in the Inspector. You can position the voice where you like in
3D space. One possibility is to place the AudioSource on an empty GameObject that is a child of the main
camera and position it about 0.6 units above the camera. This is similar to where Cortana’s speech emanates
from in the operating system.

 VectorExtensions
 This class is a collection of useful extension methods for Unity’s Vector structs.

 Shaders
 Several shaders that go beyond the functionality of the StandardShader are included, such as two variants of
the Blinn-Phong shader, two variants of the Lambertian shader, two variants of an unlit shader, two variants
of the vertex lit shader, and the StandardFast shader.

CHAPTER 17 ■ CREATING YOUR APP USING HOLOTOOLKIT

209

 Tests
 The ManualCameraControl.unity test shows how to use the ManualCameraControl.cs script. The script is a
child of the main camera of the scene. When in preview mode in Unity, the user can move around the scene
using the WASD keys and look in various directions using Ctrl + mouse.

 The TextToSpeechManager.unity text shows how to use the TextToSpeech.cs script. The script is a child
of three cube GameObjects in the scene. An air tap on a cube will trigger a text-to-speech voice from the
cube. In addition, the user can ask “What time is it?” and hear a voice intoning the current time. This voice
follows the user wherever she goes.

 Designing a Simple App
 If you have worked through the tutorials at the Holographic Academy, starting with Origami and working
through to sharing holograms, you must have a pretty good idea of how to map a space with spatial mapping,
create a hologram and place it in a location, select a hologram with gaze and gesture, affect a hologram with
an air tap gesture, affect a hologram with voice, have the hologram emit a sound, and get multiple HoloLens
users to experience the same holograms. The code and other assets used in those example applications are
available to you for your use or modification, as are the code and the other assets in the HoloToolkit.

 You can create 3D objects with a computer graphics package such as Maya, 3ds Max, or Blender
and then import them into Unity. Alternatively, you can start with the 3D objects available under the
GameObject menu option and modify them as you wish within Unity.

 Setting Up Unity for Holographic Development
 You may have a simple app in mind that you want to develop. However, if it needs to be aware of the
environment around the user, it will need to include spatial mapping, and that will be one of the not-so-
simple things that you are going to have to deal with. The procedure followed in the Holograms 230 tutorial
is instructive. Let’s follow the sequence outlined there:

• Start Unity and create a new 3D project.

• Go to Edit ➤ Project Settings ➤ Player.

• In the Inspector, find and select the small green Windows Store icon.

• Expand Other Settings.

• In the Rendering section, check the Use 16-bit Depth Buffers box.

• In the Rendering section, check the Virtual Reality Supported box.

• Verify that Windows Holographic appears in the list of Virtual Reality SDKs. If it
doesn’t, select the + button, add it to the bottom of the list, and then choose it.

• Scroll down and expand Publishing Settings.

• In the Capabilities section, do the following:

• Check the InternetClientServer box.

• Check the PrivateNetworkClientServer box.

• Check the Microphone box.

• Check the SpatialPerception box.

CHAPTER 17 ■ CREATING YOUR APP USING HOLOTOOLKIT

210

• Go to Edit ➤ Project Settings ➤ Quality.

• In the Inspector panel, under the Windows Store icon, select the black dropdown
arrow under the Default row and change the default setting to Fastest .

 Downloading and Installing the HoloToolkit
 The HoloToolkit is constantly evolving, so you will want to have the latest version. This means that you
should build the Toolkit from source. Follow these steps:

• Go to https://github.com/Microsoft/HoloToolkit-Unit y .

• Click the green Clone or Download button.

• From the dialog box that appears, click Download Zip.

• Right-click the downloaded zip file, select Properties, check the Unblock checkbox,
and click the OK button.

• Unzip the contents of the folder HoloToolkit-Unity-master to a convenient location,
such as your desktop.

• Launch Unity and click on the Open icon.

• When the Open Existing Project window opens, select the HoloToolkit-Unity-master
folder that you just downloaded and click the Select Folder button.

• After much disk activity and many progress messages, HoloToolkit should appear in
the main menu and also in the Assets folder in the Project panel.

 ■ Note In addition to giving you all the cool tools in the HoloToolkit, the menu options under HoloToolkit in
the main menu include Launch Sharing Service, Launch Session Manager, and Launch Profiler. You would not
get these if you just copied the HoloToolkit files into the Assets folder in the Project panel manually.

 Mapping Your Environment
 To create a simple project that makes use of spatial mapping, perform the following sequence:

• Delete the default main camera from the Hierarchy panel.

• Find the MainCamera prefab located in the Project panel at Assets ➤ HoloToolkit ➤
Utilities ➤ Prefabs and drag it into the root level of the Hierarchy panel.

• Find the Cursor prefab located in the Project panel at Assets ➤ HoloToolkit ➤
Input ➤ Prefabs and drag it into the root level of the Hierarchy panel.

• In the Hierarchy panel, select the Cursor object.

• In the Inspector panel, click the Layer dropdown menu and select Add Layer .

• Name User Layer 31 as Spatial Mapping.

• Save the new scene with File ➤ Save Scene As. . .

https://github.com/Microsoft/HoloToolkit-Unit

CHAPTER 17 ■ CREATING YOUR APP USING HOLOTOOLKIT

211

• Create a new folder in the Assets folder and name it Scenes.

• Find the SpatialMapping prefab in the Project panel via HoloToolkit ➤
SpatialMapping ➤ Prefabs. Drag and drop it into the root level of the Hierarchy panel.

• In the Main menu, select GameObject ➤ 3d Object ➤ Cylinder.

• With Cylinder selected in the Hierarchy panel, make the following edits in the
Inspector panel:

• Change the X, Y, Z position to (0, 0, 2). This will put the cylinder two meters in
front of the user.

• Change the X, Y, Z rotation to (45, 45, 45)

• Change the X, Y, Z scale to (0.25, 0.25, 0.25)

• Click the Play button in the center of the icon line below the menu line to see how
the cylinder looks.

• Click the Play button again to return to Development mode.

• Save scene.

 Build and Deploy Project
 Build and deploy the project to your HoloLens at this early stage in the process to make sure everything is
working as expected so far:

• Go to File ➤ Build Settings to display the Build Settings dialog box.

• Click the Add Open Scenes button to add the Cylinder scene to the build.

• Select Windows Store in the Platform list and click the Switch Platform button.

• Set SDK to Universal 10 and UWP Build Type to D3D .

• Check the Unity C# Projects box.

• In the Build Window Store dialog box that appears, create a new folder named App.

• Select App to put it in the Folder text box and then click on the Select Folder button.
The build operation will commence.

• In the File Explorer window that opens up when the build is done, double-click on
the App folder to open it.

• Double-click on the .sln solution file to launch Visual Studio.

• In Visual Studio, in the top toolbar, change the configuration from Debug to Release .

• Change the platform from ARM to x86 .

• Click the dropdown menu to the right of the platform menu and select Remote
Machine .

• In the Remote Connections dialog box that appears, enter your HoloLens’s IP
address.

• For Authentication mode, select Universal (Unencrypted Protocol) .

CHAPTER 17 ■ CREATING YOUR APP USING HOLOTOOLKIT

212

• Make sure your HoloLens is on and running.

• Click the Select button.

• From the Main menu, select Debug ➤ Start Without Debugging. Visual Studio will
start building your project and then deploy it to the HoloLens whose IP address you
entered.

 If everything has gone well, you should see a holographic cylinder in front of you, canted at an angle
from the vertical and rotated 45 degrees in the horizontal plane. Shortly thereafter, a mesh of triangles should
appear, approximating the contours of the walls, floor, ceiling, and furniture in your room. Figure 17-1 shows
what this might look like.

 The reason you would want an app to perform spatial mapping is so that the app’s holographic objects
interact realistically with the real environment. If a holographic object falls onto a table, you want it to stop there
rather than falling through the tabletop. It can only do that if the app has an accurate map of where the tabletop
is. You can give your GameObjects behaviors and then trigger those behaviors with inputs from the user.

 Responding to Inputs
 Holographic objects can respond to two kinds of input: hand gestures and voice commands. Responses
could be of any nature. For example, as is the case in the Origami sample application, an air tap or a voice
command could cause a GameObject to suddenly become responsive to physics in the form of being subject
to gravity or colliding with other GameObjects or real objects. A GameObject could also respond to a user
input by starting or stopping an animation that gives it a specific behavior.

 Figure 17-1. Cylinder embedded in spatial map

CHAPTER 17 ■ CREATING YOUR APP USING HOLOTOOLKIT

213

 Before a GameObject can respond to a user input, the user must be targeting it with gaze so that the
HoloLens knows which GameObject should respond. To add this capability, we will need to add some assets
from the HoloToolkit to Unity’s Hierarchy panel. Here are the steps to take:

• In the Create menu above the Hierarchy panel, select Create Empty .

• Right-click the new GameObject and rename it Managers.

• In the Hierarchy panel, select the Managers GameObject.

• In the Inspector panel, click the Add Component button.

• In the search box above the menu, type “Gaze Manager,” then select it when it
appears in the menu.

• In the Inspector panel, select the RaycastLayerMask dropdown menu and unselect
 Transparent FX .

• Select the Cursor object in the Hierarchy panel and expand it.

• If it has not already been done automatically, drag the CursorOnHolograms object
onto the Cursor Off Holograms property in the Inspector panel and drop it there.

• If it has not already been done automatically, drag the CursorOffHolograms object
onto the Cursor On Holograms property in the Inspector panel and drop it there.

• Now build and deploy as you did in the previous section. If all went well, your view
of the cylinder and the spatial map should be the same as before. In addition, a
torus-shaped cursor should now appear at the center of your gaze, conforming to the
contour of the cylinder. Figure 17-2 shows this.

 Figure 17-2. Cylinder hologram, targeted by cursor

CHAPTER 17 ■ CREATING YOUR APP USING HOLOTOOLKIT

214

 ■ Warning Notice how I keep saying, “If all has gone well . . .” I do this because sometimes things do not go
well. As I write, the tool chain we are using is still beta-level software. It does not always behave consistently.
Sometimes something doesn’t get reset properly between runs. Sometimes a build will just refuse to deploy
for no apparent reason. Don’t let this discourage you. Persist and you will prevail. It also helps to consult the
community on the Windows Holographic Developer Forum.

 To enable response to gesture inputs, do the following:

• Select the Managers object in the Hierarchy panel.

• In the Inspector panel, click the Add Component button.

• In the search box above the menu, type “Hands Manager.”

• Select the search result.

• Select the Cursor object in the Hierarchy panel.

• In the Inspector panel, click the Add Component button.

• In the search box above the menu, type “Cursor Feedback.”

• Select the search result.

• In the Project panel’s Assets ➤ HoloToolkit ➤ Input ➤ Prefabs folder, find the
 HandDetectedFeedback asset.

• Drag it onto the Hand Detected Asset property in the Cursor Feedback (Script)
component.

• In the Project panel’s Assets ➤ HoloToolkit ➤ Input ➤ Prefabs folder, find the
 FeedbackParent asset, which is found under the CursorWithFeedback asset.

• Drag it onto the Feedback Parent property in the Cursor Feedback (Script)
component.

• Drag the CursorWithFeedback asset from Assets ➤ HoloToolkit ➤ Input ➤ Prefabs
into the root level of the Hierarchy panel.

• Build and deploy the app as you have done before. If things have gone well, when
your hand with an upraised index finger enters the field of view, the cursor changes
from a torus to a hand-with-upraised-index-finger icon. When your hand moves out
of the field of view, the cursor reverts to its original torus shape. This shows that your
app is now able to sense the presence of a hand in the “ready” position. Figure 17-3
shows the resulting cursor image.

CHAPTER 17 ■ CREATING YOUR APP USING HOLOTOOLKIT

215

 Now, it’s time to cause a gesture to affect the holographic object and have the object respond. Let’s use
an air tap to cause physics to start functioning, which will cause the cylinder to fall to the floor. To do this, we
will need a small amount of code in addition to resources in the HoloToolkit. Write the following code and
call it CylinderCommands.cs:

 using UnityEngine;

 public class CylinderCommands : MonoBehaviour
 {
 // Called by GestureManager when the user performs a Select gesture
 void OnSelect()
 {
 // If the sphere has no Rigidbody component, add one to enable physics.
 if (!this.GetComponent<Rigidbody>())
 {
 var rigidbody = this.gameObject.AddComponent<Rigidbody>();
 rigidbody.collisionDetectionMode = CollisionDetectionMode.Continuous;
 }
 }
 }

 Figure 17-3. Hand icon cursor, with user’s hand in field of view

CHAPTER 17 ■ CREATING YOUR APP USING HOLOTOOLKIT

216

• In Unity, drag the CylinderCommands script onto the Cylinder asset in the
Hierarchy panel.

• Drag the GestureManager script from Assets ➤ HoloToolkit ➤ Input ➤ Scripts onto
the Managers asset in the Hierarchy panel.

• Drag the GazeStabilizer script from Assets ➤ HoloToolkit ➤ Input ➤ Scripts onto
the Managers asset in the Hierarchy panel.

• Build and deploy the app as before. If all goes well, when you target the cylinder with
your gaze and the cursor turns into a hand with uplifted finger, perform an air tap.
The cylinder will suddenly realize that it is in a gravitational field and it will fall to the
floor. Figure 17-4 shows the fallen cylinder.

 In addition to gestures, the other way for the user to affect a holographic object is with a voice
command.

 Responding to Voice Commands
 To get the hologram to respond to voice commands, we will need to use the KeywordManager.cs script from
the HoloToolkit:

• In Unity, drag the KeywordManager from Assets ➤ HoloToolkit ➤ Input ➤ Scripts
onto the Managers asset in the Hierarchy panel.

 We will also need some code to inform the HoloLens of the specific words we want it to recognize and
what we want the targeted holographic object to do as a result. The speech-recognition code will go into a
script named SpeechManager.cs. Here’s the code:

 Figure 17-4. The cylinder has fallen under the influence of virtual gravity

CHAPTER 17 ■ CREATING YOUR APP USING HOLOTOOLKIT

217

 using System.Collections.Generic;
 using System.Linq;
 using UnityEngine;
 using UnityEngine.Windows.Speech;
 using HoloToolkit.Unity;

 public class SpeechManager : MonoBehaviour
 {
 KeywordRecognizer keywordRecognizer = null;
 Dictionary<string, System.Action> keywords = new Dictionary<string, System.Action>();

 // Use this for initialization
 void Start()
 {

 keywords.Add("Drop Cylinder", () =>
 {
 var focusObject = GazeManager.Instance.FocusedObject;

 if (focusObject != null)
 {
 // Call the OnSelect method on just the focused object.
 focusObject.SendMessage("OnSelect");
 }
 });

 keywords.Add("Reset World", () =>
 {
 // Call the OnReset method for the targeted object.
 var focusObject = GazeManager.Instance.FocusedObject;

 if (focusObject != null)
 {
 focusObject.SendMessage("OnReset");
 }
 });

 // Tell the KeywordRecognizer about our keywords.
 keywordRecognizer = new KeywordRecognizer(keywords.Keys.ToArray());

 // Register a callback for the KeywordRecognizer and start recognizing!
 keywordRecognizer.OnPhraseRecognized += KeywordRecognizer_OnPhraseRecognized;
 keywordRecognizer.Start();
 }

 private void KeywordRecognizer_OnPhraseRecognized(PhraseRecognizedEventArgs args)
 {
 System.Action keywordAction;
 if (keywords.TryGetValue(args.text, out keywordAction))
 {
 keywordAction.Invoke();

CHAPTER 17 ■ CREATING YOUR APP USING HOLOTOOLKIT

218

 }
 }
 }

• Drag the SpeechManager.cs script into the Scripts folder outside the HoloToolbox in
the Project panel.

• Drag the SpeechManager script from the Scripts subfolder of the Assets folder in the
Project panel onto the Managers asset in the Hierarchy panel.

 At this point, we must update the CylinderCommands.cs script to accept voice commands in addition
to the gestures that we told it to accept it earlier. Replace the CylinderCommands script currently in the
project with the one here:

 using UnityEngine;

 public class CylinderCommands : MonoBehaviour
 {
 Vector3 originalPosition;
 // Called by GestureManager when the user performs a Select gesture and by SpeechManager
 // when user says "Drop Cylinder".
 // Initialization
 void Start()
 {
 //Get original local position of cylinder
 originalPosition = transform.localPosition;
 }

 void OnSelect()
 {
 // If the cylinder has no Rigidbody component, add one to enable physics.
 if (!this.GetComponent<Rigidbody>())
 {
 var rigidbody = this.gameObject.AddComponent<Rigidbody>();
 rigidbody.collisionDetectionMode = CollisionDetectionMode.Continuous;
 }
 }

 // Called by SpeechManager when the user says "Reset World".
 void OnReset()
 {
 // If the cylinder has a Rigidbody component, remove it to disable physics.
 var rigidbody = GetComponent<Rigidbody>();
 if (rigidbody != null)
 {
 DestroyImmediate(rigidbody);
 }

 // Put the cylinder back into its original local position.
 transform.localPosition = originalPosition;
 }
 }

CHAPTER 17 ■ CREATING YOUR APP USING HOLOTOOLKIT

219

 In its current state, the app we have been developing using the tools in the HoloToolkit and a little bit of
extra code will do the following:

• Make a spatial map of the user’s surroundings

• Place a holographic cylinder in mid-air in the room

• Capture the user’s gaze and locate where it hits with a cursor

• Indicate when the user’s hand is in the field of view

• Cause the cylinder to respond to an air tap gesture by falling to the floor

• Cause the cylinder to respond to a voice command by falling to the floor

• Restore the cylinder to its initial position in mid-air with a voice command

 That’s quite a lot of functionality, produced with very little coding by you. You can go on from here to
add spatial sound and to refine what we have done to create highly functional applications.

 Summary
 The HoloToolkit is a collection of helpful assets that can save a developer much time and effort by
performing tasks that are common to many different kinds of mixed-reality applications. This chapter
enumerates all the major elements of the Toolkit, with a brief description of each one. It then shows how to
use some of those tools to create a simple application with minimal additional coding.

 Once you have created an application, the next thing to do is to test it carefully and fully. There are
bound to be situations that you did not anticipate or encounter while you were doing the development,
which could cause problems to users. You will want to correct these problems before you let your creation
out into the world. We’ll cover the many aspects of testing in the next chapter.

221© Allen G. Taylor 2016
A. G. Taylor, Develop Microsoft HoloLens Apps Now, DOI 10.1007/978-1-4842-2202-7_18

 CHAPTER 18

 Testing Your App

 There’s no feeling quite like the one you get when you finally get the app you have been working on to run as
intended for the very first time. Yay! Success!! Let’s celebrate!!! Getting your app to work is indeed worthy of
celebration, so, by all means, go ahead and party hearty. However, this does not mean that you are finished.
Not by a long shot.

 You don’t just want an app that works. You want an app that works consistently under all conditions, at
all times, for all users. Nothing will kill the popularity of an app faster than word getting out about problems
with it. You want to make sure that you have not only squashed all the bugs, but also anticipated and
neutralized all the potential usage problems that might make the experience of using your app less than
what the user is expecting.

 Users have pretty high expectations. They want apps, even free ones, to be polished and ready for prime
time. There are a number of characteristics that people expect out of an application regardless of what kind
of application it is, as follows:

• It has to do what the developer says it will do.

• It has to be responsive, not frustrating the user with slowness.

• It has to be intuitive and easy to understand and use.

• It has to work consistently, as expected, every time.

• It has to be safe. When holographic objects obscure portions of the real world,
people can get hurt.

• It has to be secure. When a person is wearing a computer on her head, apps should
not be hackable.

 Bottom line: there are a lot of things to consider beyond the question of whether or not the app works.
Let’s look at each of these other considerations.

 Functionality
 Before any software-development project begins, there should be a Statement of Requirements (SoR) that
states in detail exactly what the application should deliver. It’s a great day when an app runs for the first time
with its essential functionality. However, at that point, can you check ALL the boxes for capability that were
set forth in the SoR? Probably not. There is usually some additional work, some cleaning up, that needs to be
done. You may not even be aware of what some of this additional work might be. To cover that blindside, you
should distribute the app to a representative sample of naïve users who you can use as beta testers. They will
complain about absent functionality that you never even considered that you might need.

CHAPTER 18 ■ TESTING YOUR APP

222

 Sometimes, during the course of development, you will discover that an item specified in the SoR is
in fact not feasible to include in light of the time and budget that is available. Sometimes the client or the
market changes while development is under way. These considerations may cause you to re-scope the
project and generate a new SoR in consultation with all stakeholders. In any event, when you are ready to
call the project complete, you must be sure that it not only meets up with what you expect of it, but that it
also meets up with what your target audience expects.

 ■ Bottom Line Make sure your app does everything your target audience expects it to do.

 Performance
 It’s all well and good that an application does what it’s supposed to do. Bravo. However, that is not enough
to make it successful. It also must perform up to the expectations of its target audience. Are the animations
irritatingly slow? Are the responses to the user’s gestures or voice commands sluggish or inconsistent? You
want to build apps that users return to again and again rather than ones that they try a few times and then
ignore or even delete. The experience of using your app must be enjoyable rather than frustrating. If your
app is working but has performance issues, deal with them up front, as you do not want it to die a silent
death after a brief period of use.

 Things you can do include optimizing your code for speed of loading as well as speed of execution. In
spatial mapping, you should set the TrianglesPerCubicMeter parameter to the minimum acceptable value.
Mapping more triangles than you need just takes up valuable time. Always be on the lookout for places
where you can eliminate a millisecond here or there. With the app updating 30 to 60 times per second, those
milliseconds can add up to a perceptible delay. Make sure your Update() loop is as lean as possible.

 ■ Bottom Line Make sure your app performs as well as your target audience expects it to perform.

 Ease of Use
 An application can be functional and performant and still not catch on with its target audience. Once
they become familiar with the app, users should be able to navigate it quickly and easily without having to
remember a lot of arcane knowledge. The user interface should be intuitive and natural. Users should not
need to refer to documentation or online user forums to determine what the functions and capabilities are.
To the extent possible, feedback signals coming to the user from the app should have obvious meanings.
A trap that developers often fall into is to assume that the user is as interested in the app as the developer
is and has the same background knowledge. This is not a good assumption. When choosing between two
different ways of presenting information to the user, choose the one that is easier to understand. This is a
piece of ancient wisdom that I call Taylor’s Razor.

 ■ Taylor’s Razor When choosing between two different ways of presenting information to a user, choose the
one that is easier for them to understand.

CHAPTER 18 ■ TESTING YOUR APP

223

 Reliability
 Some code is more reliable than others. If you are using Unity and Visual Studio as tools in your development,
any unreliable aspects of those tools must be considered along with any unreliable aspects of your own code.
Vendors of software publish lists of known bugs that they have not gotten around to correcting yet. You should
be familiar with such lists for any tools that you use so that you can avoid the problematical areas. No complex
software is free of bugs. That is the principal reason that new point releases are made for every software
product of consequence. This is certainly true of both Unity and Visual Studio. You need to understand the
problems as well as the positive features of any tools that you use and protect yourself and your users by
keeping up on what problems are arising, modifying your app accordingly to steer clear of them.

 Safety
 Running mixed-reality apps leaves the user subject to some safety concerns that are not an issue for
someone sitting in front of a computer monitor. The recent popularity of the Pokémon Go game has
highlighted some of these concerns. A couple of people fell off a cliff while searching for Pokémon near the
ocean. Someone else was shot at by an irate property owner. Other mishaps have also occurred. People out
in the world who are paying too much attention to virtual content in their visual field are at risk.

 With HoloLens, the problem is not quite as serious. People are probably not going to be walking out in
public while wearing a HoloLens, although they could, and if Pokémon Go ever comes to the HoloLens it will
be more immersive and thus more distracting than it is with a smartphone or tablet. The HoloLens device
works best indoors, where light levels are significantly lower than is the case with direct sunlight. Even so,
there are still risks. Probably users don’t have to worry about falling off cliffs or having people in nearby offices
consider them a trespasser and fire a warning shot across their bow. But they do have to worry about running
into things or tripping over obstacles that they don’t see because the obstacles are occluded by a hologram.

 You, as a developer, want to create apps that do not endanger your users. That may mean leaving
enough of the real world visible to the user for her to navigate successfully through it. You definitely don’t
want to have to defend yourself against a liability claim when a user of your app accidentally falls down a
flight of stairs.

 Security
 The HoloLens is a Windows 10 device, so it is subject to the same threats as any other Windows 10 device. If
it connects to the Internet through its Wi-Fi connection, it is presenting an attack surface to the hackers of
the world. This is more of an operating system issue than it is an application issue, unless your application
makes use of the Internet connection. If so, then security is your problem too. Your best defense is to stick to
creating self-contained holographic experiences. If your app must connect to the outside world, incorporate
all the security features that you would use if you were running your app on a Windows 10 desktop or laptop
computer. Hopefully, your users will have their Wi-Fi protected by a hard-to-break password and their local
area network protected by a strong firewall.

 For you as a developer, another security concern is in establishing a trusted connection between
your HoloLens and the computer that is paired to it and running the HoloLens Device Portal. Initially, the
computer will not recognize your HoloLens as a trusted device. It will issue a warning similar to the one
shown in Figure 18-1 .

CHAPTER 18 ■ TESTING YOUR APP

224

 You will have to go against the warning and recommendation to proceed. You can establish a trusted
connection between your host computer and your HoloLens by downloading your HoloLens’s security
certificate from the Security page on the Device Portal and installing it in the Trusted Root Certification
Authorities folder on the PC.

 If you want to access the Internet using the Edge browser on the HoloLens, you will have to surmount
another hurdle, one also designed to protect your security. Figure 18-2 shows what this looks like.

 Any of your users who check the "Remember my credentials" box, as shown in Figure 18-2 , will be
exposing a potential security vulnerability to anyone who gains physical access to the HoloLens device.

 Figure 18-1. Connection warning screen

 Figure 18-2. Edge browser login

CHAPTER 18 ■ TESTING YOUR APP

225

 Unusual User Behavior
 When you write an application for the HoloLens, you probably have an idea of how you expect the app to be
used. You have a clear idea of how the app should be used, and that is what you expect users to do. However,
if your app sees widespread use, which of course is what you hope for it, people will try to use it in ways that
you have not anticipated. Sometimes these attempts will cause your app to fail in strange ways. Put your app
into the hands of as many different kinds of people as possible. They will try what seems logical to them. If
you are lucky, some of these people will take your app places you never intended it to go and expose a flaw in
the process. Fix as many of these as you can before releasing the app to the wild.

 Unusual User Environments
 With HoloLens apps there is a much greater chance that your app will have problems than is true for
a normal PC-based app. This is because the environment where the user is located meshes with the
holographic content that you have created in ways that you cannot control. The environment may be
bare and sterile or it may be cluttered. It may be large or it may be small. Walls may be square or not. The
user may be indoors or outdoors. Whatever set of unusual conditions you anticipate, there will be users
who come up with new ones that affect the way your app runs. Try to think of and design for any bizarre
environment that you can imagine. Someone will probably try to run your app in just such a place.

 Room size and shape
 You should test your app in rooms of various sizes and shapes. If a room is too small, your holograms may
not appear properly, or perhaps not even at all. If a hologram is at a location that is farther away than the
wall you are facing, the hologram will be occluded by the wall and will thus be invisible. Depending on
the application, there is probably an ideal size and shape for the room that the app runs in. You may want
to suggest to your users what that ideal size and shape is so that they can have the best experience when
running your app.

 Lighting conditions
 Since you are mixing your holograms with the real world that the user inhabits, you can control how your
hologram is lit by your virtual lights, but you have no control over where the environment light is coming
from or how strong it is. You want your app to deliver the desired experience across a range of light directions
and levels. This means that you need to design it to look good under as many lighting conditions as possible.
Testing under many different lighting conditions is crucial to providing the desired experience regardless of
the environment in which your users find themselves.

 Movement conditions
 HoloLens users are not tied down to sitting in front of a computer monitor. They can turn around for a 360
degree view or even walk from one room to another. This opens up possibilities for you, but also constrains
your design. Do you want your holograms to be located at fixed places in a room, or perhaps move along
with the user from place to place?

 Some users can move pretty fast. Can your holograms keep up? Can they maintain the same level of
immersion as the user moves? Will your spatial mapping ensure that holograms are occluded when they
move behind real-world obstacles, from the moving point of view of the user? These are all questions that
need to be asked, and then answered, by thorough testing.

CHAPTER 18 ■ TESTING YOUR APP

226

 Hologram Shape and the User’s Field of View
 One of the persistent criticisms of the HoloLens is that it has a limited field of view. The display is 1268 x 720
pixels per eye. This is a rectangle that is much wider than it is high. With a visual field in the neighborhood of
35 to 40 degrees in width and somewhat more than half that in height, you will have to consider both the size
and the shape of any holograms you create. If you create, for example, an avatar of a person, you don’t want
the avatar to be chopped off at the knees or, even worse, at the neck. Whenever possible you are going to
want to create holograms that completely fit into the visual field. That means they should be wider than they
are high, unless they are either small or designed to be viewed from rather far away.

 Since the field of view is as small as it is, you may want to use spatial sound as well as visual cues to
direct the user’s attention to the point in space where your active content is positioned. The Robo Raid and
Fragments applications that come with HoloLens use visual cues. Rather than thinking of the limited field of
view as a problem, just think of it as a design constraint.

 Heat Generation
 In addition to the optics, sound generation, and sensor hardware in the HoloLens, it also contains a full-
blown Windows 10 computer, complete with memory, storage, and battery. All this stuff generates heat, which
must be dissipated passively, as there are no fans or other active cooling devices. The HoloLens is worn on the
user’s head, so it’s not wise to let it get too hot. People won’t want to run your app if doing so burns their brow.

 Where you come into the heat issue is with how complex your app is when it is running. If it requires a lot
of real-time computation, that will cause the processor to heat up faster than the passive cooling is able to shed
the heat. You don’t really want your user’s head to be the device’s heat sink. Test your app by running it flat out
and see how long you can wear it in that condition before you become aware that the HoloLens is heating up.
When you reach that point, you have gone too far. Decide what you can do to reduce the computational load.
You can’t anticipate how long a person will use your app at a single stretch. Some of them may run it far longer
than you ever imagined. Those people need to be considered too, since the heat will build up over time.

 Battery Depletion
 When the computational load is high, you are not only generating heat faster than it can be dissipated, but
you are also running down the battery faster than the nominal spec for battery life. For someone using the
HoloLens in a professional or industrial setting, wearing the HoloLens for a full eight hour shift is not an
option. You need to write your app so that it accomplishes its purpose in less time than that. Microsoft says
the battery will last about four hours of what they consider normal use. You probably don’t want to write an
app that requires users to wear it for more than a couple of hours at a time.

 Summary
 While often underappreciated, adequate testing of applications can spell the difference between market
acceptance and market failure. Be sure to plan for an extended period of testing after completing
development, including adequate time to correct any problems that are uncovered by those tests.

 Once you complete your app, unless you are building it for a specific client, you probably want to make
it available to the world. The easy way to do that is to upload it to the Microsoft Store. The next chapter tells
you what you need to know to make it available and gives some tips on how to promote it.

 PART VI

 Going Beyond App Development

229© Allen G. Taylor 2016
A. G. Taylor, Develop Microsoft HoloLens Apps Now, DOI 10.1007/978-1-4842-2202-7_19

 CHAPTER 19

 Becoming a HoloLens Pro

 Today, there are several ways to make a living while having fun with really cool tech and developing
applications for the HoloLens. In a couple of years, there will be many more ways. Now is the time to get up
to speed on the technology so as to be ready when the demand curve rises steeply. All it takes is one killer
app to drive a new technology mainstream. With HoloLens, there is the possibility of many killer apps,
because the technology can be applied in so many different areas.

 There are pioneering opportunities today for beginning HoloLens developers. The field is wide open,
because almost everybody who is currently developing for HoloLens is also a beginning developer. The field
is that new, and you are truly getting in on a ground-floor opportunity.

 One opportunity is to get a job developing for an early adopter of the HoloLens technology, such as
Lowe’s in the retail business, Volvo in the automobile business, or Trimble in the geospatial-data business.
Another is to work for one of the startups that are springing up specifically to develop HoloLens apps for
corporate clients, such as Object Theory in Portland, Oregon.

 HoloLens in the Enterprise
 Microsoft is selling HoloLens devices to commercial enterprises, and in some cases started doing so before
the highly anticipated release of Wave One to developers in March 2016. Lowe’s and Volvo are examples of
such enterprises. They have developers on staff who work for them as salaried employees. With the many
potential uses that the HoloLens has in the enterprise context, and as these use cases become more obvious,
enterprises will be looking to hire talent with HoloLens development experience.

 If you would like to be in a position to land one of those future jobs, you can prepare yourself by starting
now to develop HoloLens apps on your own. You can consider the cost of the HoloLens Developer Edition to
be an investment in your future career. $3,000 may seem like a lot, but that is about what it cost back in 1981
(in 1981 dollars) to buy an IBM PC with dual floppy disks and 640 kB of RAM. That was a great investment at
that time for anyone who wanted to build a career in the computer business, which was about to explode. In
comparison, $3,000 in much-inflated 2016 dollars for a HoloLens seems like a pretty good deal.

 With a HoloLens, you can start building simple apps and, as your skill grows, create ever more
interesting and useful ones. In the meantime, network with your local HoloLens community. There are
bound to be other people in your area who want to get into the development of holographic applications.
There may be a Meetup dedicated to HoloLens. If not, you could start one. Existing Meetups for Unity or
Visual Studio would also be good places to become active and network. At the beginning of a new field,
being at the right place at the right time is not a random chance. You can orchestrate it yourself. When
opportunity arises, you will be there to seize it.

CHAPTER 19 ■ BECOMING A HOLOLENS PRO

230

 Startup Opportunities
 Existing enterprises such as Lowe’s and Volvo are not the only places where HoloLens-related employment
might exist. Individuals with an eye to the future are creating startup companies specifically to develop
HoloLens applications. In some cases, these firms are co-founded by former Microsoft employees who have
worked on the development of the HoloLens and are excited about its potential. In others, the founders are
just far-sighted entrepreneurs who sense a major opportunity.

 Jobs will become available at these startup development houses as they start to land contracts with
enterprises that do not have the staff or the desire to develop apps internally. Microsoft has posted the logos
of these partner organizations. Any one of them might be a good place for you to get started as a HoloLens
developer.

 If, through your networking, you find the right mix of people with complementary skills, you might
co-found a HoloLens development shop of your own. It’s rare to be able to get in on the ground floor of an
industry that is on the verge of experiencing exponential growth. The mixed-reality industry in general — and
HoloLens in particular — has all the hallmarks of just such an opportunity. This is the time. This is the place.
And you are here now.

 Publishing HoloLens Apps to the Windows Store
 You can publish or sell any Holographic application you create any way you want to. For example, a client
might contract with you to create a particular app. You deliver the app and get paid for it, and all is good.
However, your company brand may not be as well known as is Microsoft’s. People who do not know you or
other developers and are looking for HoloLens apps will probably go to Microsoft’s Windows Store first, just
as they would if they were looking for any application designed to run under Windows.

 The Windows Store is a great place for you to showcase your apps, and Microsoft makes it easy for
customers to buy them. You can get started by building simple apps and offering them for free to build name
recognition for your brand. You can move on from there to create apps that address problems that are well
suited for holographic solutions.

 Windows Store policies
 Any app that you intend to publish on the Windows Store must conform to the policies Microsoft has set out
for apps. These policies must be followed or your app will not be accepted for publication. The policies fall
under several major categories.

 Function and value
 Your app must be fully functional and provide a valuable and quality user experience, and it must be
accurately described in its associated metadata.

 Security
 Your app must not jeopardize or compromise in any way the security or functionality of the HoloLens or
associated devices, and must not have the potential to cause harm to the user or any other person.

 Testability
 Your app must be fully testable by Microsoft test personnel.

CHAPTER 19 ■ BECOMING A HOLOLENS PRO

231

 Usability
 Your app must start up promptly and stay responsive to user input.

 Personal information
 If your app accesses user information, you must maintain a privacy policy, which must be accessible from
your app at any time. Apps that receive device location information must allow users to enable and disable
the app’s access to and use of location from the location service API. Personal information may be shared
with third parties only with the express consent of the customer.

 Capabilities
 To access capabilities such as the camera or the microphone, your app must declare those capabilities in the
app’s package manifest.

 Localization
 You must localize your app for all languages that it supports.

 Financial transactions
 You must use the Microsoft in-app purchase API to sell digital items or services that are consumed or used
within your app. In-app products sold in your app cannot be converted to any legally valid currency or any
physical goods or services.

 For purchases of physical goods, real-world gambling, or charitable contributions, you must use a
secure third-party purchase API.

 Notifications
 Your app must respect system settings for notifications and remain functional when they are disabled.
Notifications sent from your app must be related to the app or to other apps you publish in the Store catalog.

 Advertising
 Your app must respect advertising ID settings that the user has selected. The primary content of your app
cannot be advertising, and advertising must be clearly distinguishable from other content.

 Allowed content
 All content in your app must be either originally created by you, appropriately licensed from a third-party
rights holder, used as permitted by the rights holder, or used as otherwise permitted by law.

 Forbidden content
 Your app must not contain anything that facilitates or glamorizes gratuitous violence, human rights
violations, or the creation or illegal use of weapons against a person or animal in the real world. It must not
contain anything that is defamatory, libelous, slanderous, or threatening.

CHAPTER 19 ■ BECOMING A HOLOLENS PRO

232

 The App Developer Agreement
 The App Developer Agreement is a legal document that establishes your relationship to Microsoft with
respect to the sale of your apps in the Windows Store. It defines the terms and conditions of the relationship.
When you sign it, you will be legally bound by its provisions. The agreement is lengthy and detailed. Painful
as it might be, it is a good idea to read it carefully before embarking on a development effort that might result
is an app that fails to comply.

 How to pass app certification
 Any app published in the Windows Store must pass a certification test given by Microsoft. Some common-
sense tips for easing the road to certification include:

• Don’t submit your app for certification before it is finished. Everything should work,
and all links should go to live and functional places.

• Test your app with the Windows App Certification Kit.

• Make sure your app does not crash without network connectivity. Even if it needs
network connectivity, it should fail gracefully.

• Make sure the app’s description clearly represents what the app does.

• Provide complete and accurate answers to all the questions in the Age Ratings
section.

• If your app uses the commerce APIs from the Windows.ApplicationModel.Store
namespace, verify that the app handles all typical exceptions. Use the CurrentApp
class rather than the CurrentAppSimulator class.

• Don’t say that your app is accessible unless you have specifically engineered it and
tested it for accessibility.

• If your app requires a user name and password, be sure to provide a test account so
Microsoft can test the app, as well as any steps required to access hidden or locked
features.

 Submitting an app for publication in the Store
 The procedure for submitting a Windows Holographic app to the Windows Store is the same as it is for any
app for either Windows or Windows Mobile. Microsoft provides a handy checklist here: https://msdn.
microsoft.com/windows/uwp/publish/app-submissions .

 The checklist has several pages:

• Pricing and Availability page: You must specify how you want to price the app as well
as where and when you want to make it available.

• App Properties page: What category of app is it and what can your customers do with it?

• Age Ratings page: For what age groups is the app appropriate?

• Packages page: App must be uploaded as one or more packages.

• Descriptions page: This contains all the required metadata in at least one language.
Best practice is to provide it in all the languages you claim to support.

• Notes for Certification page: This is optional.

https://msdn.microsoft.com/windows/uwp/publish/app-submissions
https://msdn.microsoft.com/windows/uwp/publish/app-submissions

CHAPTER 19 ■ BECOMING A HOLOLENS PRO

233

 Uploading your app
 Before you can upload an app to the Windows Store, you must put it into a package. There is a list of things
that you must do before packaging your app, then you must configure your package, and then you create the
package. The steps for doing all this can be found here:

 https://msdn.microsoft.com/windows/uwp/packaging/packaging-uwp-apps

 Once the app is packaged and tested with the Windows App Certification Kit, and once you have
registered with Microsoft as a developer, the app can be uploaded. You can register at the Microsoft Dev Center.

 Setting a price for your app
 When setting the base price for your app, be aware that Microsoft will retain 30 percent of what you charge in
exchange for hosting your app on the Windows Store. Some countries lump a value added tax (VAT) into the
cost of the product. That is subtracted from your net income. In addition to that, in a number of countries
there is an additional charge, called a Commerce Expansion Adjustment, of 13.9 percent for mobile operator
billing. If the customer pays with a gift card, in most countries, including the United States, there is an
additional 2.24 percent charge.

 You must strike a balance between a price that customers will gladly pay for your app and the net
revenue that you would like to receive for it. Coming up with the right pricing is not easy, so give it the
thought it deserves.

 Monitoring sales with analytic reports
 How well are your apps doing in the marketplace? The data is out there, but how do you access it? Microsoft
has this covered for you. You can view detailed analytics for your apps in the Windows Dev Center
dashboard. It has statistics and charts that are broken down in all the important ways. How is it selling?
What is the demographic breakdown of the people who are acquiring it? How is it being rated by customers?
What are the reviews like? All of that plus more is available.

 Receiving payment
 After you set up a payout account and execute the necessary tax forms, you can start receiving revenue for
your apps. Payouts will occur monthly, provided you have accrued more than a set minimum of credit in
your account.

 Promoting Your Apps
 Once you have completed your first holographic app and uploaded it to the Windows Store, you have every
right to take a moment to celebrate. However, your job is not done. Apps don’t get downloaded, even if they
are free, if people don’t know about them. It is your job to promote your apps to the people most likely to be
interested in acquiring them. Who might that be?

 Initially, and probably for some time to come, the only prospective customers who will have HoloLens
devices are going to be developers such as yourself and enterprises such as Japan Airlines, Volvo, Lowe’s, and
NASA. You will want to target your promotional efforts toward them. Although it will be possible to run your app
on any compatible Windows 10 device, there is not much point to doing so on anything other than a HoloLens.

 Where can you find your target customers? They will be in places such as user groups and meetups that
are aimed at developers, computer-graphics artists, and techno geeks in general.

https://msdn.microsoft.com/windows/uwp/packaging/packaging-uwp-apps

CHAPTER 19 ■ BECOMING A HOLOLENS PRO

234

 Early on, your goal should not so much be to make money by selling your apps but more to get your
name and brand out there in the community so that when the market does finally open up you will be
positioned to ramp up and take off.

 Summary
 This chapter is all about the opportunities that are opening up for you in the brand-new field of holographic
development. Mixed reality is slated to become a huge market over the next five to ten years. Some analysts
are stating their belief that the HoloLens could change modern life to the same extent that the original
iPhone and its successors have changed people’s lives in less than a decade.

 The road to HoloLens development success runs through the Windows Store. We talked about what
you need to do to get your apps published there and what you can expect in terms of compensation for your
efforts. This is one of those ground-floor moments that only come along every decade or two. The potential
is definitely there to take you to amazing places.

 What amazing places might HoloLens development take you to? That’s what the next chapter is about.

235© Allen G. Taylor 2016
A. G. Taylor, Develop Microsoft HoloLens Apps Now, DOI 10.1007/978-1-4842-2202-7_20

 CHAPTER 20

 Where Is This Technology
Taking Us?

 It’s early days for holographic technology, and nobody knows for sure where it will lead. But recall that when,
in December 1974, the Altair 8800 microcomputer was featured on the cover of Popular Electronics magazine,
nobody had any idea of the tectonic shifts in the computer industry that would follow. First dismissed as a toy
to be played with by nerdy enthusiasts, the personal computer went on to displace the “serious” mainframe
computers that had preceded it. In the early days of the Internet, called DARPANET at the time, a few select
universities were connected to federal government research centers for scientific research collaborations. Few
foresaw that it would span the globe, connect billions of people, and even reach out into space.

 We probably won’t be any better at prognosticating where things will go with holographic computing
now than we were with personal computing and long-distance networking then. However, there are a few
things that we can foresee even now. One thing that is clear is that there will be career opportunities for people
who have skills in the disciplines that go into the production of holographic applications. These skills include
computer graphics, computer programming, Unity and platforms like it, Visual Studio and tools like it, computer
animation, storyboarding, and many other skill areas that relate to the production of software products.

 Opportunities Opening Up
 There are many fields in which a 3D representation of a physical or conceptual item that can be viewed from
any angle, including from inside it, would enable understanding on a deeper level than would otherwise be
possible. Those who can create such representations, or animate them, or include them in a narrative that
tells a story, will always be able to find interesting and challenging work.

 Education and training
 Probably the first area in which HoloLens technology will be deployed in any kind of volume will be in
education and training. It is said that a picture is worth a thousand words. If that’s true, then a hologram
ought to be worth a million. If people have a hard time “wrapping their heads around” a concept, with
holography they can literally not only wrap their heads around it, they can dive right into it. Carnegie Mellon
University in Pittsburgh, Pennsylvania, is an institution that is researching HoloLens devices in a traditional
educational context, while companies such as Volvo and Japan Airlines are using the device to train
employees in how to assemble or maintain complex machinery. As educators become aware of the way that
holograms can make a concept real to a student in a way that a photograph, movie, or description in a book
never could, the demand for holographic development in education will multiply.

CHAPTER 20 ■ WHERE IS THIS TECHNOLOGY TAKING US?

236

 Sales
 Lowe’s Home Improvement is using HoloLens technology now to sell kitchen remodels. After fitting
potential customers with HoloLens devices, the Lowe’s associate places holographic overlays on top of a
basic kitchen layout, enabling the customers to see how a wide variety of cabinets and counter surfaces
would look in their own kitchen. The richer the experience you can give the customer, the greater the
likelihood that they will buy. For any sales situation in which it is not possible to allow the customer to
directly experience the product itself, such as a test drive of a new car, a holographic view of the product is
the next best thing.

 Medical
 MRI scans are a wonderful diagnostic tool, but they only show one slice of a subject, such as a human brain,
at a time. Imagine how much easier it would be to arrive at an accurate diagnosis if instead of a series of
slices, the diagnostician could see an accurate, full-sized holographic representation of the entire brain,
along with any pathology that might be present. Every possible view of the subject would be available,
including one that penetrates into the innermost parts. Diagnosis could be arrived at quicker and with
greater confidence. Dynamic processes, such as the beating of a heart, could also be modeled and viewed,
providing greater insight into how both normal and diseased organs operate.

 Game development
 The mixed-reality world provided by the HoloLens enables gaming to expand in a major new direction. The
instant worldwide popularity of Pokémon Go illustrates this, even though it is not immersive at all in the
way the HoloLens is. In addition, game developers are already familiar with the tool chain that Microsoft
recommends for development of holographic apps. Many of the skills needed for traditional video game
development are directly applicable to developing HoloLens apps, whether or not they are game apps.

 The big question mark for game developers is, “Where is the market for my games, and when will it
materialize?” At present, the HoloLens is not a mass-market device. It is sold to people who are primarily
interested in getting commercial value out of it rather than playing games with it. The Developer Edition
costs $3,000, which is a justifiable expense for an organization that has a commercial application, but
probably not justifiable for many people who just see it as a gaming device.

 A lot depends on Microsoft’s plans. They originally envisioned the HoloLens as a gaming platform, as
witnessed by the mind-blowing Minecraft demo that they gave in 2015 when they introduced HoloLens to the
world. Later, they changed their focus when it became clear that commercial and industrial applications would
emerge sooner than gaming applications would. Will they develop and deliver a version of the HoloLens that
has a price point that gamers will willingly pay? I think it is clear that they will. The question is, when?

 Holoportation
 Alex Kipman’s TED talk in February 2016 introduced another mind-blowing capability of the HoloLens —
 holoportation. Similar to the teleportation foretold in numerous science fiction stories and reminiscent of
the holodeck on the Starship Enterprise in the Star Trek: The Next Generation TV show, holoportation puts
a hologram of a person who is physically in another room into the same room with you. That other room
could be across the street, as it was at the TED talk, or it could be anywhere in the world that has a
high-speed Internet connection.

CHAPTER 20 ■ WHERE IS THIS TECHNOLOGY TAKING US?

237

 Create your own holodeck
 Holoportation is an ingenious use of HoloLens technology, plus some additional optical and computational
resources. A person wearing a HoloLens is located in a rectangular room. Video cameras at the four corners
of the room and at the midpoints of the four walls image the contents of the room from every angle. Software
and external compute power meld this information into a three-dimensional model of the room and the
people in it; this model is updated in real time.

 Somewhere else, an identical layout is constructed. A HoloLens-wearing person in this second room
can see and interact with the people in the first room and vice versa.

 Interact with holopeople
 In Alex Kipman’s TED talk, a holographic landscape appeared that had been filmed by the Curiosity rover on
Mars. Into that context, suddenly a life-sized holographic Jeff Norris appeared. Jeff is one of the scientists at
NASA’s Jet Propulsion Lab, which built Curiosity. The Martian landscape, viewed with HoloLens technology,
looked highly realistic, and so did Jeff. In actuality, Jeff was in a hotel room across the street that had been set
up in such a way that he saw a holographic Alex in his room, while Alex saw him on the TED stage.

 The end of business air travel?
 In the pre-industrial world, when people wanted to do business with someone far away, they would send a
letter with somebody who happened to be traveling to that faraway place. It could be months or even years
before they heard anything back. Later, letters could travel by railroad train, and then telegrams could be
sent over wires. These methods did not give a person the sense that they were having a conversation with the
other person. The telephone added that conversational element, if only for audio. More recently, Skype and
Facetime have added a visual element to long-distance communication. None of these things were “real”
enough to displace actual physical travel for the most important encounters, and that will probably continue
to be the case. However, holoportation comes pretty close to the experience of a real physical encounter.
It’s possible that many of the less consequential meetings between people could take place holographically
rather than in person.

 The Internet of Things
 There is a tremendous amount of buzz right now about the Internet of Things (IoT). The IoT goes beyond
using the Internet to connect people to each other; it connects sensors, effectors, and other devices to each
other without humans necessarily being in the loop. The HoloLens provides humans with a mechanism for
getting involved in the IoT loop. Holographic controls of IoT devices can be activated by air taps or other
gestures, or by voice commands. There is potential here for a host of new applications.

 Are There Dangers in Merging the Real with the Virtual?
 Anything that takes even part of your attention away from what is happening around you is potentially
dangerous. People have walked into traffic and fallen off cliffs playing Pokémon Go. Having said that,
HoloLens should be quite safe when used correctly. It should be used indoors in an uncluttered room with
no dangerous things such as trip hazards, stairwells, or low-hanging chandeliers.

CHAPTER 20 ■ WHERE IS THIS TECHNOLOGY TAKING US?

238

 HoloLens can be used outdoors, but that is not its best use. HoloLens works best when ambient light
levels are between 50 and 200 lux, which is the range you normally find in indoor venues. As ambient
conditions get brighter, the holograms tend to get more and more washed out. On a sunny day, holograms
become virtually transparent, even in the shade. On the bright side (no pun intended), people are not going
to fall off cliffs playing HoloLens Pokémon Go, unless it is a very cloudy day. The Pokémon characters would
be too hard to see. You probably don’t want to wear your HoloLens in public anyway, lest you become a
social outcast like the people who tried to casually walk around wearing Google Glass.

 Psychological issues
 Some people have concerns that people who immerse themselves in virtual reality will become isolated
from the real world and the real people who inhabit it. This should be less of an issue with mixed reality of
the HoloLens sort than with the virtual reality of Oculus Rift or Vive, but it is still something to watch out for.
Susceptible people may have a problem separating what is real from what is virtual.

 Can mixed reality experiences become addictive?
 Anything that has a reward, whether physical or virtual, can become habit-forming. This is true for coffee
drinking and for playing Spider Solitaire. If you create apps that reward your users in some way, they could
become habit forming too. Hopefully this will not cause them to abandon the things that they should be
doing so that they can run your app. This is probably not an issue for commercial or industrial apps, but
could apply to game apps. If you include some fun, game-like aspects in an educational app, your users
might enjoy things more while they learn. They are also more likely to want to acquire more of your work.

 Summary
 The future is bright for developers who acquire skills and expertise in creating holographic applications.
Wherever your interests might lie, there probably is a way to incorporate holographic development into that
field. By learning how to develop holographic applications, you will have a wide variety of application areas
to choose from, as well as challenging and enjoyable work.

239© Allen G. Taylor 2016
A. G. Taylor, Develop Microsoft HoloLens Apps Now, DOI 10.1007/978-1-4842-2202-7

 APPENDIX A

 Windows Dev Center Resources

 The HoloLens device runs Windows Holographic, a variant of Windows 10, the Universal Windows Platform
(UWP). This means that when you develop on the UWP, your app could potentially run on any device
running Windows 10. Figure A-1 shows the Platform’s family of devices.

 This means that apps originally written for other devices can also be made to run on HoloLens.
Conversely, applications written for HoloLens can also run on other Windows 10 platforms, such as PCs,
mobile phones, or Xbox. Users may well want to run apps originally intended for other devices on HoloLens.
The adaptation should be relatively easy, although any such apps may not show the three dimensionality of
an app specifically created for HoloLens.

 The Universal Windows Dev Center
 The Universal Windows Dev Center (https://developer.microsoft.com/en-us/windows) is the primary
place to look for information and other resources that apply to development for any device supported
by the Universal Windows Platform. You will find resources there that are very helpful in your own
development efforts. There are several major tabs on the Windows Dev Center menu. Let’s take a brief
look at each.

https://developer.microsoft.com/en-us/windows

APPENDIX A ■ WINDOWS DEV CENTER RESOURCES

240

 Explore
 This section introduces the Universal Windows Platform and goes into more depth on what you can do with it.

 What’s new for Windows 10

 The Windows 10 SDK has been available to developers for a year, and on its first anniversary a new build
(Build 1607) was released. A number of new capabilities are provided by this new build.

 Intro to Universal Windows Platform

 This is a guide to Universal Windows Platform apps. It covers a lot of what you need to know if you want to
develop apps on the Universal Windows Platform.

 Coding challenges

 Under the Holographic option in this category are a number of videos and also some downloads that are
relevant to the HoloLens. There are coding challenges too.

 Develop for accessibility

 Microsoft recommends that, wherever possible, you should design your apps with accessibility in mind. This
means including user interface features that can assist people with either visual, auditory, or motion-related
disabilities. This relates to four main design principles:

• Use XAML Common Controls whenever possible.

• Include keyboard equivalents to mouse actions.

• Expose the content of your UI through UI Automation.

• Respect the accessibility settings that have been set by the user.

 Build for enterprise

 Applications built for enterprises have different requirements than those designed to be sold in the Windows
Store. Security is a major concern, entailing authentication and cryptography. Connections to external
databases and external devices, either with or without network connectivity, are also important. Deployment
of line-of-business apps differs from the Windows Store model, although that may be used too in the
enterprise context. Links to pages that address all of these concerns can be found in this section.

 Windows Store opportunities

 This page includes helpful tips on how to put apps in the Windows Store, get them discovered by users, and
monetize them.

 Docs
 This is a treasure trove of links to vital information on the writing and production of all kinds of Windows 10
apps, from games and desktop apps to IoT apps and holographic apps.

APPENDIX A ■ WINDOWS DEV CENTER RESOURCES

241

 Windows apps

 Here’s where to look for information that applies to all types of apps running on all types of hardware. From
design through development and publication, and on to monetization and promotion, the information you
need is all here.

 Games

 If you are concentrating specifically on games, how to design, develop, and publish them can be found here.

 Desktop

 Specifics for desktop applications regarding design, development, testing, and deployment can be found here.

 Windows IoT

 The Internet of Things is a whole new area of opportunity for developers. This section describes how
Windows 10 supports IoT development and points to resources that are available to get you started.

 Microsoft Edge

 Microsoft Edge is the new browser that is the successor to Internet Explorer. There are tools here to help
developers make sure their apps are compatible with Edge on any platform, even a Mac.

 Holographic

 This is a link to Windows Dev Center-Holographic, which is discussed later.

 Downloads
 This page takes you to all the free downloads that you might need in order to develop for Windows 10.

 Samples
 Here we find sample applications that showcase the kinds of things that can be done with Windows 10
applications, and code for the sample apps is available on GitHub. You can use the code as is or modify it to
meet your needs.

 Foundational samples

 Foundational samples highlight the features and capabilities of the Universal Windows Platform. By studying
them, you can learn how to make use of those features and capabilities in your own applications.

 Showcase samples

 In this category, we find a photo-sharing app that demonstrates photo sharing on social media.

APPENDIX A ■ WINDOWS DEV CENTER RESOURCES

242

 Playful samples

 This category includes IoT projects that makers have developed around tiny computers, such as the Arduino
and Raspberry Pi.

 Other Microsoft samples

 Included here is sample code and documentation for things that don’t fall into any of the preceding
categories, but that could provide valuable learning experiences for developers.

 Support
 Microsoft puts extensive effort into supporting developers. Online resources cover most of the questions you
might have, and responses to questions on the developer forums generally come quickly and contain quality
feedback that will get you going again quickly.

 Windows apps and games

 Forums cover a number of topics of concern to all developers, as well as a forum dedicated specifically to
HoloLens issues.

 Classic desktop apps

 Questions specific to desktop apps would go to the forums found here, as well as any questions regarding
the Windows SDKs.

 MSDN subscriptions

 MSDN subscriptions are available at several levels and feature different benefits and term lengths.

 Windows Dev Center-Holographic
 The Windows Holographic Dev Center (https://developer.microsoft.com/en-us/windows/Holographic)
contains resources that are specifically aimed at holographic development for HoloLens. This is the place
to go to learn about Windows Holographic development and where to find the answers to questions that
inevitably crop up. Let’s look at the menu tabs that you will find here.

 Get the tools
 Below the “Welcome to Windows Holographic” greeting that sits under a photo of a HoloLens device is a
small blue Get the Tools button. This takes you to the Install the Tools page, which tells you what you will
need in order to develop for HoloLens. There are software packages that you must install. Check here for the
latest versions. Even if you have, for example, a copy of Visual Studio or Unity, you will want to download the
ones that are linked to from here and use them instead. New versions are being continually issued, and some
that are not specifically tweaked for HoloLens will not work at all. If you already have a working stack, read
the release notes before upgrading any one tool. Doing so might break compatibility with other tools. You
may have to update the entire tool chain to get things working again.

https://developer.microsoft.com/en-us/windows/Holographic

APPENDIX A ■ WINDOWS DEV CENTER RESOURCES

243

 Also listed here are the requirements of the system you plan to develop on. The requirements are
extensive and stringent. There are CPU requirements, RAM requirements, graphics requirements, BIOS
requirements, and Windows version requirements.

 Although there are a lot of requirements to get started as a HoloLens developer, it is not terribly
expensive. All the software you need, aside from Windows 10 Pro, is free. A late-model, low-end Windows
Pro machine will probably fit the requirements too. Be sure to check the requirements before buying. Even
an inexpensive refurbished machine from Fry’s Electronics will probably be fine.

 Get Started
 The Get Started page gives you an overview of the HoloLens Developer Edition and encourages you
to try some of the example apps that come with it. It then directs you to the tutorials to be found at the
Holographic Academy.

 Academy
 The Holographic Academy, which I describe in Chapter 5 , contains a series of tutorials that takes you
through the steps of building and deploying example apps that exercise each of the major functions of
the HoloLens. Starting with the creation of your first hologram (a cube), the tutorials cover one capability
after another, until the last tutorial puts it all together with a fun, game-like app that exercises all the major
functions.

 Documentation
 The Documentation page contains links to useful information about the development of different kinds of
holographic applications; you will find this valuable. It includes tips for designing holograms and even a
couple of case studies.

 Community
 You DO want to join the community. The Developer Engagement Crew that hangs out on the forums is
knowledgeable and helpful. Forum regulars who are not Microsofties are also very helpful to newbies.
Everybody was a newbie once, so if you have knowledge that you can pass along, pay it forward by doing so.
There is also a HoloLens Twitter feed and a HoloLens YouTube channel, both of which can be sources of
valuable information.

http://dx.doi.org/10.1007/978-1-4842-2202-7_5

245© Allen G. Taylor 2016
A. G. Taylor, Develop Microsoft HoloLens Apps Now, DOI 10.1007/978-1-4842-2202-7

 APPENDIX B

 Other Resources

 The Windows Dev Center is by far the number one place to go for additional information about
developing for HoloLens. However, there are other places that also contain valuable resources. Probably
the next most valuable resource after the Windows Dev Center is the area maintained by Microsoft on
GitHub. GitHub is a code-hosting platform for version control and collaboration. With it, people in
different locations can work on the same project. It supports both open-source and private projects.
Microsoft has uploaded a lot of information relevant to HoloLens to open-source repositories on GitHub.
In this appendix, we will look at some of what Microsoft and other HoloLens developers have posted
there. The repositories on GitHub are growing all the time as ever more developers become active in
learning and building for the HoloLens.

 Microsoft Resources on GitHub
 Resources in GitHub are stored in repositories, and at the present time, there are three repositories in the
Microsoft open-source area, which can be found here:

 https://github.com/Microsoft?utf8=%E2%9C%93&query=hol

 Two of the repositories deal with the HoloToolkit that I showed in action in Chapter 17 . The other
contains all the resources used in the tutorials that I described in Chapter 5 .

 HoloToolkit-Unity
 This is the HoloToolkit that I describe extensively in Chapter 17 . The resources to be found here are
specifically designed for use in developing holographic applications for the HoloLens using the Unity
platform.

 HoloToolkit
 It is possible to develop holographic applications without using Unity. You may want to bypass Unity, and
by doing so not have to worry about paying them for the use of their platform. This is only an issue if your
app becomes a commercial success, which you probably hope it will. Building on top of the Unity platform,
on the other hand, can save you a lot of work. It’s a tradeoff. If you do decide to develop outside of the Unity
toolchain, there are scripts and components here that you might find helpful.

https://github.com/Microsoft?utf8=✓&query=hol
http://dx.doi.org/10.1007/978-1-4842-2202-7_17
http://dx.doi.org/10.1007/978-1-4842-2202-7_5
http://dx.doi.org/10.1007/978-1-4842-2202-7_17

APPENDIX B ■ OTHER RESOURCES

246

 Holographic Academy
 All the code and other assets that are included in all the tutorials can be found here. These files are being
updated as needed whenever improved versions of components are created. The latest versions of all files
can always be found here. If you find a problem with any of the code here and can determine that it is an
actual bug, you can report it here.

 Resources on GitHub from Developers
 Anybody can create a repository on GitHub and put into it whatever files they want. As people become
familiar with holographic development, they will create projects and place them into a repository here so
as to share their success with or solicit feedback from the community of developers. Early on, many of the
repositories contain projects related to Microsoft’s holographic tutorials. Other repositories contain simple
games. As people become more proficient, the complexity and usefulness of the things to be found here will
increase. You may also find value in resources to be found here that are not specific to HoloLens, but are
relevant and instructive nonetheless.

 HoloLens YouTube Videos
 To get an idea of the variety of things that are possible with HoloLens, you need look no further than to
YouTube.com. There are over 100,000 videos up on the site showing things you can do with HoloLens, and
more are being added every day. As more developers get their hands on the hardware, this number is bound
to explode.

247© Allen G. Taylor 2016
A. G. Taylor, Develop Microsoft HoloLens Apps Now, DOI 10.1007/978-1-4842-2202-7

 A
 Advertising , 231
 Air tap , 26–27, 81, 85, 89, 114, 117, 131, 140, 148,

159, 161, 171, 176, 179, 181, 193, 196, 198,
204, 212, 215, 216, 219

 Animation , 52, 54, 56, 99, 164, 170, 190, 193, 208,
212, 222, 235

 App Developer Agreement , 232
 Assets , 5, 22, 55, 56, 61, 67, 75, 77, 102, 104, 110, 112,

122, 127–128, 130, 148, 162, 163, 167, 173,
176, 180, 195, 196–199, 204, 209–211,
213–214, 216, 218, 219, 246

 Augmented reality , 3–4, 6–7, 53
 Avatar , 25, 134–140, 226

 B
 BIOS , 17, 19–20, 61, 101, 125, 243
 Bluetooth , 5, 81, 99, 110, 159

 C
 C# , 22, 23, 70, 75–78, 87, 91–101, 106, 109, 111, 114,

117, 128, 169, 173, 177, 195, 200, 211
 Certifi cation , 30–31, 224, 232–233
 Communication

 intergroup , 57
 Components , 22, 39, 55, 76, 81, 91–92–100, 120,

130–132, 134–136, 148, 153, 162, 189, 195,
197, 202–206, 213–214, 245, 246

 Connecting
 via USB , 29
 via Wi-Fi , 27–28

 Coordinate systems , 110, 131, 164, 170
 Cortana . See Universal Windows Platform (UWP)
 Cursor , 23, 26, 76, 85, 88, 110, 112–114, 117, 119,

130–131, 171, 179–182, 196–199, 207, 210,
213–216, 219

 D
 Developer forum

 Windows Holographic , 18
 Device family

 holographic , 14–15
 universal , 14

 Device Portal , 25–46, 82–83, 158–159,
223–224

 DirectX 12 , 11, 87

 E
 Emulator , 18–19, 21–24, 26, 45, 80, 82–83, 101–102,

106–109, 113, 116, 119, 122, 124–126, 129,
130, 161, 169, 195

 Event function
 LateUpdate , 99
 Start , 99
 Update , 99

 F
 Field of view , 4–5, 24, 26, 84, 89, 105, 114, 157, 161,

171, 196, 214–215, 219, 226
 Frame of reference , 164–166

 G
 Gaze , 15, 22–27, 74, 79, 82, 85, 86–88, 101,

110–114, 124, 130, 131, 149, 161–162,
165, 170, 171, 179, 180, 196–199, 209,
213, 216, 219

 Gesture , 4–6, 15, 22–27, 42, 45, 76, 81–83,
85–87, 89, 101, 110, 114–117, 124,
130–131, 140, 149, 161–162, 165,
170, 171, 176, 181–182, 196, 198,
204, 209, 212, 214, 215–216, 218–219,
222, 237

 Index

■ INDEX

248

 H
 Heat , 226
 Hierarchy panel , 64–65, 67, 77, 92, 103–105, 110,

112, 114, 116, 117, 120, 122, 127–128,
130–132, 134–135, 148, 167, 200, 210–211,
213–214, 216, 218

 Hologram , 3, 22, 49, 56, 61, 75, 91, 101, 125, 154,
161, 170, 195, 225, 235

 Holographic Academy , 18, 22–25, 46, 80, 82, 101,
102, 124, 126, 195, 209, 243, 246

 HoloLens , 3, 9, 13, 17, 19, 49, 56, 61, 75, 91, 101, 125,
153, 161, 169, 185, 195, 223, 229, 235

 Holoportation , 236–237
 HoloStudio , 167
 HoloToolkit , 85, 127, 130–131, 173, 193,

195–219, 245
 Hyper-V , 17, 19–20, 61, 64, 102, 125

 I, J, K
 IMU . See Inertial measurement unit (IMU)
 Inertial measurement unit (IMU) , 5, 6, 157
 Inspector , 64–69, 77, 87, 92–98, 103, 105, 107,

112–113, 120, 122, 127, 130–132, 134–136,
148, 170–173, 176, 196, 201, 208–211,
213–214

 Intellisense , 78
 Internet of Th ings (IoT) , 11, 14, 237, 240–242
 IoT . See Internet of Th ings (IoT)

 L
 Light engines , 157
 Localization , 231

 M, N
 Materials , 122, 196, 201–202, 236
 Microphones , 6, 24, 38, 107, 119, 155, 159, 198,

209, 231
 Mixed reality , 3–4, 7, 9, 25, 37–38, 54, 56, 61, 81, 84,

85, 88, 103, 125, 161–164, 167, 187–189,
199, 219, 223, 230, 234, 236, 238

 MonoBehaviour , 76, 99, 208

 O
 Origami , 22–23, 87, 101–124, 126, 179–181, 195,

209, 212

 P, Q
 Parallel development , 56–57
 Physics , 25, 75, 99, 148, 179, 197, 202, 204, 212, 215

 Prefabs , 127, 130, 131, 196–197, 199–201, 205, 207,
210–211, 214

 Pricing , 232–233
 Processor

 CPU , 5, 19, 39–40, 101, 125, 154, 243
 GPU , 5, 19, 39–40, 101, 125, 154, 204
 HPU , 5, 154, 163

 Project
 build , 72–73
 deploy , 74

 Project panel , 64, 104, 110, 112, 114, 116, 120, 122,
127–128, 131–132, 134–135, 140, 148, 210,
211, 214, 218

 Psychological issues , 238

 R
 RAM , 17, 19, 61, 64, 101, 125, 154, 155, 229, 243
 Refactoring , 78
 Reset command , 193

 S
 Scripts , 22–23, 75–77, 87, 91–100, 110, 114, 116–117,

120, 122, 124, 132, 135, 140, 143, 167, 169,
195–202, 204–207, 216, 218, 245

 Security , 21, 28–33, 35, 84, 131, 223–224, 230, 240
 Sensor , 5, 45, 155–157, 163, 226, 237
 Sensor fusion , 6
 Shaders , 25, 198, 204, 208
 Shared holograms , 126–127, 195
 Sharing , 125, 131–132, 149, 167, 196, 199–200, 209,

210, 241
 Sharing holograms , 25, 126, 209
 Skype , 51, 159, 166, 237
 Solid State Disk,
 Spatial anchors , 165
 Spatial mapping , 22–23, 25, 37, 45, 56, 82, 85–86, 89,

101, 122–124, 162, 196, 200–205, 208, 209,
210, 212–213, 219, 222, 225

 Spatial perception , 107, 201
 Spatial sound , 5, 22–24, 56, 82, 85–86, 89, 101,

119–122, 158, 162, 196, 205, 219, 226
 Speakers , 5, 24, 56, 155–158, 162
 Start Pins , 26–27, 29, 130, 159
 Statement of requirements (SOR) , 221–222

 T
 Team

 audio , 56–57
 computer graphics , 56–57
 computer vision , 56–57
 design , 55–57
 QA , 56–57

■ INDEX

249

 U
 Unity

 Personal Edition , 62
 Professional Edition , 62

 Universal Windows Platform (UWP) , 12, 13–15, 69,
81, 82, 87, 89, 128, 177, 200, 211, 239–241

 UWP . See Universal Windows Platform (UWP)

 V
 Virtual reality , 3–4, 6–7, 69–70, 77, 85, 163, 164, 209, 238
 Visual Studio 2015

 Community Edition , 21, 102, 126
 Voice , 14–15, 22–25, 82, 85–87, 89, 101, 117–119,

149, 161–162, 171, 196, 208–209

 Voice command , 4–6, 11, 24, 76, 81, 83, 89, 110,
117, 148, 159, 161–162, 170–171, 179,
181–182, 190, 193, 198, 199, 212,
216–219, 222, 237

 W, X, Y, Z
 Wi-Fi , 27–29, 34–45, 74, 82–83, 124, 130, 159, 223
 Windows 10 , 7, 9–15, 17, 19–22, 29, 51, 61, 64, 69, 83,

86–87, 89, 101, 125, 154, 208, 223, 226, 233,
239, 240–241, 243

 Windows Dev Center , 22, 80–91, 233,
239–243

 Windows Store , 11, 13, 68–70, 77, 82, 84, 106, 107,
113, 122, 128, 167, 177, 198, 200–201, 209–211,
230–234, 240

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Part I: The Windows 10 Development Environment and HoloLens
	Chapter 1: What Is the Microsoft HoloLens?
	Virtual Reality, Augmented Reality, and Mixed Reality
	The HoloLens Headset
	The headband
	Speakers and spatial sound
	Controls
	The processors
	The Inertial Measurement Unit (IMU)
	The cameras
	The microphone
	Other input devices
	The lenses

	Sensor Fusion
	How HoloLens Differs from Virtual Reality and Ordinary Augmented Reality
	Summary

	Chapter 2: The Windows 10 Platform
	The Windows 10 User Interface
	Differences between Windows 7 and Windows 10
	Differences between Windows 8 and Windows 10
	New Capabilities of Windows 10
	Summary

	Chapter 3: The Universal Windows Platform (UWP)
	Device Families
	The Universal Device Family
	Developing for a Specific Device Family
	The Holographic Device Family
	Summary

	Chapter 4: The Development Edition
	Development System Requirements
	The Development Edition
	Required Tools
	Summary

	Chapter 5: Getting Started with HoloLens Development
	Configuring Your Windows 10 Computer for Development
	Confirm that your computer BIOS supports HoloLens development
	Install Hyper-V support
	Enable Developer mode on your development machine
	Install Visual Studio 2015 Community Edition, Update 3
	Install the HoloLens Emulator
	Install Unity

	The Holographic Academy
	Holograms 100: Getting Started with Unity
	Holograms 101e: Introduction with Emulator
	Holograms 101: Introduction with HoloLens Device
	Holograms 210: Gaze
	Holograms 211: Gesture
	Holograms 212: Voice
	Holograms 220: Spatial Sound
	Holograms 230: Spatial Mapping
	Holograms 240: Sharing Holograms

	Development with Unity
	The Windows Device Portal
	Setting up the HoloLens
	Connecting the HoloLens to the development machine
	Connecting via Wi-Fi
	Connecting via USB

	Identifying yourself with a username and password
	Creating a security certificate
	Device Portal features
	Home page
	3D view
	Mixed reality capture
	Performance tracing
	Processes
	System performance
	Apps
	App crash dumps

	Kiosk mode
	Logging
	Simulation
	Networking
	Virtual input

	Device Portal REST APIs

	Summary

	Part II: Building Apps
	Chapter 6: Choosing a Project to Tackle
	It Isn’t All About Games
	The First Applications: Industrial, Commercial, and Educational
	Industrial applications
	Commercial applications
	Educational applications

	Tearing Down and Reassembling an Automatic Transmission
	Summary

	Chapter 7: Forming Project Teams
	The Project Leader
	The Design Team
	The Computer Graphics Team
	The Computer Vision Team
	The Audio Team
	The QA Team
	Parallel Development Paths
	Intergroup Communication
	Summary

	Part III: Developing with the Unity Framework
	Chapter 8: Create a Hologram with Unity and Visual Studio
	Development System Requirements
	Develop Apps without Hardcore Programming Skills
	Installing Unity and Visual Studio
	Quick Tour of the Unity Framework
	Your First Hologram
	Make sure you have the right equipment, configured in the right way
	Create a new project in Unity
	Place the camera
	Create a hologram

	Export Your Project to Visual Studio
	Build the Project in Visual Studio
	Deploy Your Project to the HoloLens
	Summary

	Chapter 9: Developing with Unity and Visual Studio
	Combining Scripts from Visual Studio with Assets in Unity Project Explorer
	Giving Objects Behaviors Using Scripts
	Sensing User Actions with Scripts
	Unity/Visual Studio Integration
	Unity’s MonoBehaviour scripting wizard
	The Quick MonoBehaviour scripting wizard

	Debugging Holographic Projects
	Debugging in Unity
	Debugging in Visual Studio
	Using Intellisense while debugging
	Refactoring
	Code Browsing

	Visual Studio’s Error List
	Getting Support from the Windows Dev Center
	Get the tools
	Get started
	Academy
	Documentation
	Understanding HoloLens
	Holograms
	Hardware details
	HoloLens shell overview
	App views on HoloLens
	Using mixed-reality capture
	Working with accessories

	Developing for HoloLens
	Basics of holographic development
	Tools for developing on HoloLens
	Getting started
	App model
	Install the tools
	Using Visual Studio
	Using the HoloLens Emulator
	Using the Windows Device Portal
	Performance recommendations
	Testing
	Submitting an app to the Windows Store
	FAQ
	Release notes
	Known issues

	Building blocks of holographic apps
	World coordinates
	Gaze input
	Gesture input
	Voice input
	Spatial sound
	Spatial mapping

	Building 2D apps
	Building holographic apps with Unity
	Unity development overview
	Recommended settings for Unity
	Performance recommendations for Unity
	Exporting and building a Unity Visual Studio solution
	Best practices for working with Unity and Visual Studio

	Adding holographic capabilities to middleware
	DirectX development overview
	Creating a holographic DirectX project
	Rendering in DirectX

	Designing holograms
	Designing for mixed reality
	Types of holographic apps
	Cursors
	Gaze targeting
	Gesture design
	Voice design
	Spatial-sound design
	Spatial-mapping design
	Color design
	Updating existing universal apps for HoloLens

	Community
	The Microsoft HoloLens team
	Follow HoloLens on Twitter for the latest news
	Interact with other developers on the forums
	See what’s possible on the HoloLens YouTube channel

	Support
	Developer support
	Hardware support

	Summary

	Chapter 10: Using C# with Visual Studio and Unity
	The C# Language
	C# Scripts
	Adding Behaviors to Unity Components with C# Scripts
	Add a script component using Unity’s Inspector
	Visual Studio will launch, but MonoDevelop may launch too
	Skeleton of a script file
	Controlling GameObjects using components
	Accessing components
	Accessing other objects

	Event functions
	Update events
	Initialization events
	GUI events
	Physics events

	Unity scripting resources

	Summary

	Chapter 11: Building the Origami Sample Application
	Getting Started
	Install the tools you will need
	Download the Origami project files

	Setting the Stage
	Opening the Origami project in Unity
	Setting up the main camera
	Creating a scene
	Exporting the project to Visual Studio
	Deploying the project to the HoloLens Emulator

	Adding Gaze Functionality
	Adding a script to the project
	Rebuild and reload
	Redeploy to the Emulator

	Adding Gesture Functionality
	Create a script to manage gaze and gesture
	Create a script to manage the Origami spheres

	Enabling Voice Input
	Export, build, and redeploy

	Giving Holograms Spatial Sound
	Establishing Context with Spatial Mapping
	Move the OrigamiCollection to a new location
	Export, build, and deploy

	Shifting from the Emulator to the HoloLens Device
	Summary

	Chapter 12: Building the Holograms 240 Shared Application
	Getting Started
	Install the tools you will need
	Download the Sharing Holograms project files

	Building the App
	Opening the Shared Holograms project in Unity
	Populate the Hierarchy panel with assets
	Export the project to Visual Studio
	Deploying the project to the HoloLens Emulator
	Deploying the project to the HoloLens device

	Interacting with the Hologram
	Adding gaze functionality
	Adding gesture functionality

	Establishing Shared Coordinates
	Seeing Others as Avatars
	Anchoring a Hologram to a Position in Space
	Turning on Physics
	Unlock a New World through Collaboration
	Summary

	Part IV: Deep Dive into HoloLens
	Chapter 13: HoloLens Hardware
	The Processors
	The CPU
	The GPU
	The HPU

	Memory Limits
	The Head Band
	The Visor
	Environment Sensors and Cameras
	The Light Engines and Lenses
	Sound Generation
	The Microphones
	Battery Capacity and Recharging
	Bluetooth
	Wi-Fi
	Cortana
	Summary

	Chapter 14: Creating Holographic Objects
	The Interaction Model (Gaze, Gesture, and Voice)
	Spatial Sound
	Spatial Mapping and Location Awareness
	Designing a Mixed-Reality App
	Design
	Placement
	Lighting
	Size
	Animation

	Connecting the Holographic World with the Real
	Coordinate systems
	Spatial anchors
	Attached frame of reference
	Head-locked content

	Types of Holographic Objects
	Table top
	Surface-locked
	Floating
	Companion
	Immersive

	Sharing and Collaboration
	Importing an Object Definition
	Creating an Object with HoloStudio
	Summary

	Chapter 15: Manipulating Holographic Objects
	Creating a Holographic Object
	Establishing the Location of a Holographic Object
	Programming the Behavior of a Holographic Object
	Moving a holographic object around in space
	Locking a holographic object to the user’s gaze and then giving it a fixed location
	Hologram movement can be scripted
	Hologram movement can be controlled by physics

	Creating a cursor that follows the user’s gaze
	Changing a cursor when it hits a hologram
	Activating a targeted hologram with an air tap
	Activating a targeted hologram with a voice command

	Summary

	Part V: Creating Mixed-Reality Apps
	Chapter 16: Creating a Holographic Teaching Tool
	The Limitations of Traditional Education
	How Education Is Changing
	Seeing the Unseen: Inside the Human Body
	Mixed reality home study

	Seeing the Unseen: Inside an Automotive Automatic Transmission
	How does it all fit together?
	Hands-on experience will always be needed, but . . .

	Instructor-driven Animation
	Making the Student an Active Participant
	Creating a Compelling Educational App
	Summary

	Chapter 17: Creating Your App Using HoloToolkit
	What is HoloToolkit?
	Toolkit Contents
	Input Assets
	Materials
	Models
	Prefabs
	Scripts
	Shaders
	Tests

	Sharing
	Editor
	Plugins
	Prefabs
	Scripts
	Tests

	Spatial Mapping
	Spatial Perception
	Editor
	Materials
	Plugins
	Prefabs
	Scripts
	Spatial mapping component
	SpatialMappingRenderer.cs
	SpatialMappingCollider.cs

	Component design considerations
	Other Scripts
	FileSurfaceObserver.cs
	MeshSaver.cs
	PlaneFinding.cs
	RemoteMappingManager.cs
	RemoteMeshSource.cs
	RemoteMeshTarget.cs
	RemoveSurfaceVertices.cs
	SimpleMeshSerializer.cs
	SpatialMappingManager.cs
	SpatialMappingObserver.cs
	SpatialMappingSource.cs
	SurfaceMeshesToPlanes.cs
	SurfacePlane.cs
	TapToPlace.cs

	Shaders
	Tests

	Spatial Sound Scripts
	Editor Scripts
	Other Scripts
	ActiveEvent
	AudioClip
	AudioContainer
	AudioEvent
	AudioSourcePlayClipExtension
	AudioSourcesReference
	MiniAudioEvent
	SpatialSoundSettings
	UAudioManager
	UAudioManagerBase
	UAudioMiniManager

	Utilities
	Editor
	BuildCommands
	BuildMenu
	ConfigureMenu
	EditorGUIExtensions
	EditorGUILayoutExtensions
	LayerMaskExtensions

	Prefabs
	Scripts
	Billboard
	DirectionIndicator
	FixedAngularSize
	FpsDisplay
	Interpolator
	ManualCameraControl
	NearPlaneFade
	SimpleTagalong
	Singleton
	Tagalong
	TextToSpeechManager
	VectorExtensions

	Shaders
	Tests

	Designing a Simple App
	Setting Up Unity for Holographic Development
	Downloading and Installing the HoloToolkit
	Mapping Your Environment
	Build and Deploy Project
	Responding to Inputs
	Responding to Voice Commands
	Summary

	Chapter 18: Testing Your App
	Functionality
	Performance
	Ease of Use
	Reliability
	Safety
	Security
	Unusual User Behavior
	Unusual User Environments
	Room size and shape
	Lighting conditions
	Movement conditions

	Hologram Shape and the User’s Field of View
	Heat Generation
	Battery Depletion
	Summary

	Part VI: Going Beyond App Development
	Chapter 19: Becoming a HoloLens Pro
	HoloLens in the Enterprise
	Startup Opportunities
	Publishing HoloLens Apps to the Windows Store
	Windows Store policies
	Function and value
	Security
	Testability
	Usability
	Personal information
	Capabilities
	Localization
	Financial transactions
	Notifications
	Advertising
	Allowed content
	Forbidden content

	The App Developer Agreement
	How to pass app certification
	Submitting an app for publication in the Store
	Uploading your app
	Setting a price for your app
	Monitoring sales with analytic reports
	Receiving payment

	Promoting Your Apps
	Summary

	Chapter 20: Where Is This Technology Taking Us?
	Opportunities Opening Up
	Education and training
	Sales
	Medical
	Game development
	Holoportation
	Create your own holodeck
	Interact with holopeople
	The end of business air travel?

	The Internet of Things

	Are There Dangers in Merging the Real with the Virtual?
	Psychological issues
	Can mixed reality experiences become addictive?

	Summary

	Appendix A: Windows Dev Center Resources
	The Universal Windows Dev Center
	Explore
	What’s new for Windows 10
	Intro to Universal Windows Platform
	Coding challenges
	Develop for accessibility
	Build for enterprise
	Windows Store opportunities

	Docs
	Windows apps
	Games
	Desktop
	Windows IoT
	Microsoft Edge
	Holographic

	Downloads
	Samples
	Foundational samples
	Showcase samples
	Playful samples
	Other Microsoft samples

	Support
	Windows apps and games
	Classic desktop apps
	MSDN subscriptions

	Windows Dev Center-Holographic
	Get the tools
	Get Started
	Academy
	Documentation
	Community

	Appendix B: Other Resources
	Microsoft Resources on GitHub
	HoloToolkit-Unity
	HoloToolkit
	Holographic Academy

	Resources on GitHub from Developers
	HoloLens YouTube Videos

	Index

