
www.allitebooks.com

http:///
http://www.allitebooks.org

Direct3D Rendering

Cookbook

50 practical recipes to guide you through the advanced

rendering techniques in Direct3D to help bring your 3D

graphics project to life

Justin Stenning

BIRMINGHAM - MUMBAI

www.allitebooks.com

http:///
http://www.allitebooks.org

Direct3D Rendering Cookbook

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,

or transmitted in any form or by any means, without the prior written permission of the

publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of

the information presented. However, the information contained in this book is sold without

warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers

and distributors will be held liable for any damages caused or alleged to be caused directly

or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the

companies and products mentioned in this book by the appropriate use of capitals.

However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2014

Production Reference: 1130114

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-84969-710-1

www.packtpub.com

Cover Image by Justin Stenning (justin.stenning@gmail.com)

www.allitebooks.com

http:///
http://www.allitebooks.org

Credits

Author

Justin Stenning

Reviewers

Julian Amann

Stephan Hodes

Brian Klamik

Todd J. Seiler

Chuck Walbourn

Vinjn Zhang

Acquisition Editor

James Jones

Lead Technical Editor

Priya Singh

Technical Editors

Iram Malik

Shali Sasidharan

Anand Singh

Copy Editors

Roshni Banerjee

Gladson Monteiro

Adithi Shetty

Project Coordinator

Wendell Palmer

Proofreaders

Amy Johnson

Lindsey Thomas

Mario Cecere

Indexers

Hemangini Bari

Monica Ajmera Mehta

Rekha Nair

Graphics

Ronak Dhruv

Abhinash Sahu

Production Coordinator

Nitesh Thakur

Cover Work

Nitesh Thakur

www.allitebooks.com

http:///
http://www.allitebooks.org

About the Author

Justin Stenning, a software enthusiast since DOS was king, has been working as

a software engineer since he was 20. He has been the technical lead on a range of

projects, from enterprise content management and software integrations to mobile apps,

mapping, and biosecurity management systems. Justin has been involved in a number

of open source projects, including capturing images from fullscreen Direct3D games and

displaying in-game overlays, and enjoys giving a portion of his spare time to the open source

community. Justin completed his Bachelor of Information Technology at Central Queensland

University, Rockhampton. When not coding or gaming, he thinks about coding or gaming,

or rides his motorbike. Justin lives with his awesome wife, and his cheeky and quirky

children in Central Victoria, Australia.

To Lee, thanks for keeping things running smoothly using your special

skill of getting stuff done and of course for your awesomeness. To the

kids, yes, I will now be able to play more Minecraft and Terraria with you.

I would like to thank Michael for taking a punt on me all those years ago

and mentoring me in the art of coding.

I would also like to thank the SharpDX open source project for

producing a great interface to Direct3D from the managed code,

and Blendswap.com and its contributors for providing such a great

service to the Blender community.

Thank you to the reviewers who provided great feedback and

suggestions throughout.

Lastly, a big thank you to James, Priya, Wendell, and all the folks at

Packt Publishing who have made this book possible.

www.allitebooks.com

http:///
http://www.allitebooks.org

About the Reviewers

Julian Amann started working with DirectX 13 years ago, as a teenager. He received his

master's degree in Computer Science from the Technische Universität München (Germany)

in 2011. He has worked as a research assistant at the Chair of Computer Graphics at

Bauhaus-Universität Weimar, where he did his research on image quality algorithms and

has also been involved in teaching computer graphics. Currently, Julian works at the Chair

of Computational Modeling and Simulation (CMS) at the Technische Universität München.

He is writing his PhD thesis about product data models for infrastructure projects in the ield
of Civil Engineering. In his spare time, Julian enjoys programming computer-graphics-related

applications and blogging at vertexwahn.de.

Stephan Hodes has been working as a software engineer in the games industry

for 15 years while GPUs made the transition from ixed function pipeline to a programmable
shader hardware. During this time, he worked on a number of games released for PC as well

as Xbox 360 and PS3.

Since he joined AMD as a Developer Relations Engineer in 2011, he has been working with a

number of European developers on optimizing their technology to take full advantage of the

processing power that the latest GPU hardware provides. He is currently living with his wife

and son in Berlin, Germany.

www.allitebooks.com

http:///
http://www.allitebooks.org

Brian Klamik has worked as a software design engineer at Microsoft Corporation

for 15 years. Nearly all of this time was spent evolving the Direct3D API in Windows by

working together with the graphics hardware partners and industry’s leading application

developers. He enjoys educating developers about using Direct3D optimally, as well as

enjoying the results of their labor.

Todd J. Seiler works in the CAD/CAM dental industry as a Graphics Software Engineer

at E4D Technologies in Dallas, TX. He has worked as a Software Development Engineer in

Test on Games for Windows LIVE at Microsoft, and he has also worked in the mobile game

development industry. He has a B.S. in Computer Graphics and Interactive Media from the

University of Dubuque in Dubuque, IA with a minor in Computer Information Systems.

He also has a B.S. in Real-time Interactive Simulations from DigiPen Institute of

Technology in Redmond, WA, with minors in Mathematics and Physics.

In his spare time, he plays video games, studies Catholic apologetics and theology,

writes books and articles, and toys with new technology when he can. He periodically

blogs about random things at http://www.toddseiler.com.

Chuck Walbourn, a software design engineer at Microsoft Corporation, has been

working on games for the Windows platform since the early days of DirectX and Windows 95.

He entered the gaming industry by starting his own development house during the mid-90s

in Austin. He shipped several Windows titles for Interactive Magic and Electronic Arts, and he

developed the content tools pipeline for Microsoft Game Studios Xbox titled as Voodoo Vince.

Chuck worked for many years in the game developer relations groups at Microsoft, presenting

at GDC, Gamefest, X-Fest, and other events. He was the lead developer on the DirectX SDK

(June 2010) release. He currently works in the Xbox platform group at Microsoft, where

he supports game developers working on the Microsoft platforms through the Games for

Windows and the DirectX SDK blog, the DirectX Tool Kit and DirectXTex libraries on CodePlex,

and other projects. Chuck holds a bachelor’s degree and a master’s degree in Computer

Science from the University of Texas, Austin.

www.allitebooks.com

http:///
http://www.allitebooks.org

Vinjn Zhang is an enthusiastic software engineer. His interest in programming includes

game development, graphics shader writing, human-computer interaction, and computer

vision. He has translated two technical books into Chinese, one for the processing language

and other for OpenCV.

Vinjn Zhang has worked for several game production companies, including Ubisoft and 2K

Games. He currently works as a GPU architect in NVIDIA, where he gets the chance to see the

secrets of GPU. Besides his daily work, he is an active GitHub user who turns projects into

open source; even his blog is an open source available at http://vinjn.github.io/.

www.allitebooks.com

http:///
http://www.allitebooks.org

www.PacktPub.com

Support iles, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support iles and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub

iles available? You can upgrade to the eBook version at www.PacktPub.com and as a print

book customer, you are entitled to a discount on the eBook copy. Get in touch with us at

service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign

up for a range of free newsletters and receive exclusive discounts and offers on Packt

books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt’s online digital book
library. Here, you can access, read and search across Packt’s entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print and bookmark content

 f On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib

today and view nine entirely free books. Simply use your login credentials for immediate access.

www.allitebooks.com

http:///
http://www.allitebooks.org

Table of Contents
Preface 1

Chapter 1: Getting Started with Direct3D 7
Introduction 7

Introducing Direct3D 11.1 and 11.2 22

Building a Direct3D 11 application with C# and SharpDX 24

Initializing a Direct3D 11.1/11.2 device and swap chain 32

Debugging your Direct3D application 38

Chapter 2: Rendering with Direct3D 45
Introduction 45

Using the sample rendering framework 46

Creating device-dependent resources 51

Creating size-dependent resources 53

Creating a Direct3D renderer class 59

Rendering primitives 61

Applying multisample anti-aliasing 82

Implementing texture sampling 83

Chapter 3: Rendering Meshes 91
Introduction 91

Rendering a cube and sphere 92

Preparing the vertex and constant buffers for materials and lighting 99

Adding material and lighting 109

Using a right-handed coordinate system 119

Loading a static mesh from a ile 121

www.allitebooks.com

http:///
http://www.allitebooks.org

ii

Table of Contents

Chapter 4: Animating Meshes with Vertex Skinning 131
Introduction 131

Preparing the vertex shader and buffers for vertex skinning 131

Loading bones in the mesh renderer 139

Animating bones 147

Chapter 5: Applying Hardware Tessellation 155
Introduction 155

Preparing the vertex shader and buffers for tessellation 156

Tessellating a triangle and quad 158

Tessellating bicubic Bezier surfaces 171

Reining meshes with Phong tessellation 179
Optimizing tessellation through back-face culling and dynamic

Level-of-Detail 185

Chapter 6: Adding Surface Detail with Normal and

Displacement Mapping 191
Introduction 191

Referencing multiple textures in a material 192

Adding surface detail with normal mapping 194

Adding surface detail with displacement mapping 204

Implementing displacement decals 212

Optimizing tessellation based on displacement decal

(displacement adaptive tessellation) 220

Chapter 7: Performing Image Processing Techniques 223
Introduction 223

Running a compute shader – desaturation (grayscale) 224

Adjusting the contrast and brightness 231

Implementing box blur using separable convolution ilters 234
Implementing a Gaussian blur ilter 243
Detecting edges with the Sobel edge-detection ilter 246
Calculating an image's luminance histogram 250

Chapter 8: Incorporating Physics and Simulations 257
Introduction 257

Using a physics engine 257

Simulating ocean waves 266

Rendering particles 274

http:///

iii

Table of Contents

Chapter 9: Rendering on Multiple Threads and Deferred Contexts 295
Introduction 295

Benchmarking multithreaded rendering 296

Implementing multithreaded dynamic cubic environment mapping 305

Implementing dual paraboloid environment mapping 322

Chapter 10: Implementing Deferred Rendering 333
Introduction 333

Filling the G-Buffer 334

Implementing a screen-aligned quad renderer 346

Reading the G-Buffer 352

Adding multiple lights 357

Incorporating multisample anti-aliasing 373

Chapter 11: Integrating Direct3D with XAML and Windows 8.1 379
Introduction 379

Preparing the swap chain for a Windows Store app 380

Rendering to a CoreWindow 384

Rendering to an XAML SwapChainPanel 390

Loading and compiling resources asynchronously 397

Appendix: Further Reading 403

Index 407

http:///

iv

Table of Contents

http:///

Preface
The latest 3D graphics cards bring us amazing visuals in the latest games, from Indie

to AAA titles. This is made possible on Microsoft platforms including PC, Xbox consoles,

and mobile devices thanks to Direct3D—a component of the DirectX API dedicated to

exposing 3D graphics hardware to programmers. Microsoft DirectX is the graphics technology

powering today's hottest games on Microsoft platforms. DirectX 11 features hardware

tessellation for rich geometric detail, compute shaders for custom graphics effects,

and improved multithreading for better hardware utilization. With it comes a number of

fundamental game changing improvements to the way in which we render 3D graphics.

The last decade has also seen the rise of General-Purpose computation on Graphics

Processing Units (GPGPU), exposing the massively parallel computing power of Graphics

Processing Units (GPUs) to programmers for scientiic or technical computing. Some uses
include implementing Artiicial Intelligence (AI), advanced postprocessing and physics

within games, powering complex scientiic modeling, or contributing to large scale distributed
computing projects.

Direct3D and related DirectX graphics APIs continue to be an important part of the Microsoft

technology stack. Remaining an integral part of their graphics strategy on all platforms, the

library advances in leaps and bounds with each new release, opening further opportunities

for developers to exploit. With the release of the third generation Xbox console—the Xbox

One—and the latest games embracing the recent DirectX 11 changes in 11.1 and 11.2,

we will continue to see Direct3D be a leading 3D graphics API.

Direct3D Rendering Cookbook is a practical, example-driven, technical cookbook with

numerous Direct3D 11.1 and 11.2 rendering techniques supported by illustrations,

example images, strong sample code, and concise explanations.

http:///

Preface

2

What this book covers
Chapter 1, Getting Started with Direct3D, reviews the components of Direct3D and the

graphics pipeline, explores the latest features in DirectX 11.1 and 11.2, and looks at

how to build and debug Direct3D applications with C# and SharpDX.

Chapter 2, Rendering with Direct3D, introduces a simple rendering framework,

teaches how to render primitive shapes, and compiles HLSL shaders and use textures.

Chapter 3, Rendering Meshes, explores rendering more complex objects and demonstrates

how to use the Visual Studio graphics content pipeline to compile and render 3D assets.

Chapter 4, Animating Meshes with Vertex Skinning, teaches how to implement vertex

skinning for the animation of 3D models.

Chapter 5, Applying Hardware Tessellation, covers tessellating primitive shapes,

parametric surfaces, mesh subdivision/reinement, and techniques for optimizing
tessellation performance.

Chapter 6, Adding Surface Detail with Normal and Displacement Mapping, teaches how

to combine tessellation with normal and displacement mapping to increase surface detail.

Displacement decals are explored and then optimized for performance with displacement

adaptive tessellation.

Chapter 7, Performing Image Processing Techniques, describes how to use compute shaders

to implement a number of image-processing techniques often used within postprocessing.

Chapter 8, Incorporating Physics and Simulations, explores implementing physics,

simulating ocean waves, and rendering particles.

Chapter 9, Rendering on Multiple Threads and Deferred Contexts, benchmarks

multithreaded rendering and explores the impact of multithreading on two common

environment-mapping techniques.

Chapter 10, Implementing Deferred Rendering, provides insight into the techniques

necessary to implement deferred rendering solutions.

Chapter 11, Integrating Direct3D with XAML and Windows 8.1, covers how to implement

Direct3D Windows Store apps and optionally integrate with XAML based UIs and effects.

Loading and compiling resources within Windows 8.1 is also explored.

Appendix, Further Reading, includes all the references and papers that can be referred for

gathering more details and information related to the topics covered in the book.

http:///

Preface

3

What you need for this book
To complete the recipes in this book, it is necessary that you have a graphics card that

supports a minimum of DirectX 11.1.

It is recommended that you have the following software:

 f Windows 8.1

 f Microsoft Visual Studio 2013 Express (or higher edition)

 f Microsoft .NET Framework 4.5

 f Windows Software Development Kit (SDK) for Windows 8.1

 f SharpDX 2.5.1 or higher—http://sharpdx.org/news/

Other resources and libraries are indicated in individual recipes.

For those running Windows 7 or Windows 8, you will require a minimum of the following

software. Please note that although some portions of Chapter 11, Integrating Direct3D

with XAML and Windows 8.1, can be adapted to Windows 8, you will not be able to

complete the inal chapter in its entirety as it is speciic to Windows 8.1.

 f Microsoft Visual Studio 2012 or 2013 Express (or higher edition)

 f Microsoft .NET Framework 4.5

 f Windows 8 or Windows 7 with Platform Update for SP1*

 f Windows Software development Kit (SDK) for Windows 8

 f SharpDX 2.5.1 or higher—http://sharpdx.org/news/

Other resources and libraries as indicated in individual recipes.

Chapter 11, Integrating Direct3D with XAML and Windows 8.1,

is not compatible with Windows 7, and the Rendering to a XAML

SwapChainPanel recipe requires a minimum of Windows 8.1.

http:///

Preface

4

Who this book is for
Direct3D Rendering Cookbook is for C# .NET developers who want to learn the advanced

rendering techniques made possible with DirectX 11.1 and 11.2. It is expected that the

reader has at least a cursory knowledge of graphics programming, and although some

knowledge of Direct3D 10+ is helpful, it is not necessary. An understanding of vector

and matrix algebra is recommended.

Conventions
In this book, you will ind a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: A command list is represented by the

ID3D11CommandList interface in unmanaged C++ and the Direct3D11.CommandList

class in managed C# with SharpDX.

A block of code is set as follows:

 SharpDX.Direct3D.FeatureLevel.Level_11_1,

 SharpDX.Direct3D.FeatureLevel.Level_11_0,

 SharpDX.Direct3D.FeatureLevel.Level_10_1,

 SharpDX.Direct3D.FeatureLevel.Level_10_0,

When we wish to draw your attention to a particular part of a code block, the relevant lines

or items are set in bold:

 // Create the device and swapchain

 Device.CreateWithSwapChain(

 SharpDX.Direct3D.DriverType.Hardware,

 DeviceCreationFlags.None,

New terms and important words are shown in bold. Words that you see on the screen,

in menus or dialog boxes for example, appear in the text like this: "These are accessible

by navigating to the DEBUG/Graphics menu".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

http:///

Preface

5

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this

book—what you liked or may have disliked. Reader feedback is important for us to develop

titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,

and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or

contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help

you to get the most from your purchase.

Downloading the example code
You can download the example code iles for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can visit

http://www.packtpub.com/support and register to have the iles e-mailed directly to you.

Downloading the color images of this book
We also provide you a PDF ile that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in the output.

You can download this ile from: https://www.packtpub.com/sites/default/files/
downloads/7101OT_ColoredImages.pdf

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.

If you ind a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration

and help us improve subsequent versions of this book. If you ind any errata, please report them
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on

the errata submission form link, and entering the details of your errata. Once your errata are

veriied, your submission will be accepted and the errata will be uploaded on our website,
or added to any list of existing errata, under the Errata section of that title. Any existing

errata can be viewed by selecting your title from http://www.packtpub.com/support.

http://www.PacktPub.com
http://www.PacktPub.com/support
http:///

Preface

6

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.

At Packt, we take the protection of our copyright and licenses very seriously. If you come

across any illegal copies of our works, in any form, on the Internet, please provide us with

the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected

pirated material.

We appreciate your help in protecting our authors, and our ability to bring you

valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with

any aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com
http:///

1
Getting Started with

Direct3D

In this chapter, we will cover the following topics:

 f Components of Direct3D

 f Stages of the programmable pipeline

 f Introducing Direct3D 11.1 and 11.2

 f Building a Direct3D 11 application with C# and SharpDX

 f Initializing a Direct3D 11.1/11.2 device and swap chain

 f Debugging your Direct3D application

Introduction

Direct3D is the component of the DirectX API dedicated to exposing 3D graphics hardware to

programmers on Microsoft platforms including PC, console, and mobile devices. It is a native

API allowing you to create not only 3D graphics for games, scientiic and general applications,
but also to utilize the underlying hardware for General-purpose computing on graphics

processing units (GPGPU).

Programming with Direct3D can be a daunting task, and although the differences between

the unmanaged C++ API and the managed .NET SharpDX API (from now on referred to as the

unmanaged and managed APIs respectively) are subtle, we will briely highlight some of these
while also gaining an understanding of the graphics pipeline.

We will then learn how to get started with programming for Direct3D using C# and SharpDX

along with some useful debugging techniques.

http:///

Getting Started with Direct3D

8

Components of Direct3D
Direct3D is a part of the larger DirectX API comprised of many components that sits between

applications and the graphics hardware drivers. Everything in Direct3D begins with the device

and you create resources and interact with the graphics pipeline through various Component

Object Model (COM) interfaces from there.

Device

The main role of the device is to enumerate the capabilities of the display adapter(s) and to

create resources. Applications will typically only have a single device instantiated and must

have at least one device to use the features of Direct3D.

Unlike previous versions of Direct3D, in Direct3D 11 the device is thread-safe. This means

that resources can be created from any thread.

The device is accessed through the following interfaces/classes:

 f Managed: Direct3D11.Device (Direct3D 11), Direct3D11.Device1 (Direct3D

11.1), and Direct3D11.Device2 (Direct3D 11.2)

 f Unmanaged: ID3D11Device, ID3D11Device1, and ID3D11Device2

Each subsequent version of the COM interface descends from the previous

version; therefore, if you start with a Direct3D 11 device instance and

query the interface for the Direct3D 11.2 implementation, you will still have

access to the Direct3D 11 methods with the resulting device reference.

One important difference between the unmanaged and managed version of the APIs used

throughout this book is that when creating resources on a device with the managed API,

the appropriate class constructor is used with the irst parameter passed in being a device
instance, whereas the unmanaged API uses a Create method on the device interface.

For example, creating a new blend state would look like the following for the managed C# API:

var blendState = new BlendState(device, desc);

And like this for the unmanaged C++ API:

ID3D11BlendState* blendState;

HRESULT r = device->CreateBlendState(&desc, &blendState);

http:///

Chapter 1

9

Downloading the example code

You can download the example code iles for all Packt books you have
purchased from your account at http://www.packtpub.com. If you

purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the iles e-mailed directly to you.

Further, a number of the managed classes use overloaded constructors and methods

that only support valid parameter combinations, relying less on a programmer's deep

understanding of the Direct3D API.

With Direct3D 11, Microsoft introduced Direct3D feature levels to manage the differences

between video cards. The feature levels deine a matrix of Direct3D features that are
mandatory or optional for hardware devices to implement in order to meet the requirements

for a speciic feature level. The minimum feature level required for an application can be
speciied when creating a device instance, and the maximum feature level supported by the
hardware device is available on the Device.FeatureLevel property. More information

on feature levels and the features available at each level can be found at http://msdn.
microsoft.com/en-us/library/windows/desktop/ff476876(v=vs.85).aspx.

Device context
The device context encapsulates all rendering functions. These include setting the pipeline

state and generating rendering commands with resources created on the device.

Two types of device context exist in Direct3D 11, the immediate context and deferred context.

These implement immediate rendering and deferred rendering respectively.

The interfaces/classes for both context types are:

 f Managed: Direct3D11.DeviceContext, Direct3D11.DeviceContext1,

and Direct3D11.DeviceContext2

 f Unmanaged: ID3D11DeviceContext, ID3D11DeviceContext1, and

ID3D11DeviceContext2

Immediate context
The immediate context provides access to data on the GPU and the ability to execute/playback

command lists immediately against the device. Each device has a single immediate context

and only one thread may access the context at the same time; however, multiple threads can

interact with the immediate context provided appropriate thread synchronization is in place.

All commands to the underlying device eventually must pass through the immediate context

if they are to be executed.

http:///

Getting Started with Direct3D

10

The immediate context is available on the device through the following methods/properties:

 f Managed: Device.ImmediateContext, Device1.ImmediateContext1,

and Device2.ImmediateContext2

 f Unmanaged: ID3D11Device::GetImmediateContext, ID3D11Device1::GetI
mmediateContext1, and ID3D11Device2::GetImmediateContext2

Deferred context
The same rendering methods are available on a deferred context as for an immediate context;

however, the commands are added to a queue called a command list for later execution upon

the immediate context.

Using deferred contexts results in some additional overhead, and only begins to see beneits
when parallelizing CPU-intensive tasks. For example, rendering the same simple scene for the

six sides of a cubic environment map will not immediately see any performance beneits,
and in fact will increase the time it takes to render a frame as compared to using the

immediate context directly. However, render the same scene again with enough CPU load

and it is possible to see some improvements over rendering directly on the immediate

context. The usage of deferred contexts is no substitute for a well written engine and

needs to be carefully evaluated to be correctly taken advantage of.

Multiple deferred context instances can be created and accessed from multiple threads;

however, each may only be accessed by one thread at a time. For example, with the

deferred contexts A and B, we can access both at the exact same time from threads 1

and 2 provided that thread 1 is only accessing deferred context A and thread 2 is only

accessing deferred context B (or vice versa). Any sharing of contexts between threads

requires thread synchronization.

The resulting command lists are not executed against the device until they are played back

by an immediate context.

If a device is created with the single-threaded device creation

lag, an error will occur if you attempt to create a deferred
context. The result of accessing Direct3D interfaces from

multiple threads is also undeined.

A deferred context is created with:

 f Managed: new DeviceContext(device)

 f Unmanaged: ID3D11Device::CreateDeferredContext

http:///

Chapter 1

11

Command lists
A command list stores a queue of Direct3D API commands for deferred execution or

merging into another deferred context. They facilitate the eficient playback of a number
of API commands queued from a device context.

A command list is represented by the ID3D11CommandList interface in unmanaged

C++ and the Direct3D11.CommandList class in managed C# with SharpDX. They are

created using:

 f Managed: DeviceContext.FinishCommandList

 f Unmanaged: ID3D11DeviceContext::FinishCommandList

Command lists are played back on the immediate context using:

 f Managed: DeviceContext.ExecuteCommandList

 f Unmanaged: ID3D11DeviceContext::ExecuteCommandList

Trying to execute a command list on a deferred context or trying to

create a command list from an immediate context will result in an error.

Swap chains

A swap chain facilitates the creation of one or more back buffers. These buffers are used to

store rendered data before being presented to an output display device. The swap chain takes

care of the low-level presentation of this data and with Direct3D 11.1, supports stereoscopic

3D display behavior (left and right eye for 3D glasses/displays).

If the output of rendering is to be sent to an output connected to the current adapter, a swap

chain is required.

Swap chains are part of the DirectX Graphics Infrastructure (DXGI) API, which is responsible

for enumerating graphics adapters, display modes, deining buffer formats, sharing resources
between processes, and inally (via the swap chain) presenting rendered frames to a window
or output device for display.

A swap chain is represented by the following types:

 f Managed: SharpDX.DXGI.SwapChain and SharpDX.DXGI.SwapChain1

 f Unmanaged: IDXGISwapChain and IDXGISwapChain1

http:///

Getting Started with Direct3D

12

States

A number of state types exist to control the behavior of some ixed function stages of
the pipeline and how samplers behave for shaders.

All shaders can accept several sampler states. The output merger can accept both,

a blend state and depth-stencil state, and the rasterizer accepts a rasterizer state.

The types used are shown in the following table.

Managed type (SharpDX.Direct3D11) Unmanaged type

BlendState ID3D11BlendState

BlendState1 ID3D11BlendState1

DepthStencilState ID3D11DepthStencilState

RasterizerState ID3D11RasterizerState

RasterizerState1 ID3D11RasterizerState1

SamplerState ID3D11SamplerState

Resources

A resource is any buffer or texture that is used as an input and/or output from the Direct3D

pipeline. A resource is consumed by creating one or more views to the resource and then

binding them to stages of the pipeline.

Textures
A texture resource is a collection of elements known as texture pixels or texels—which represent

the smallest unit of a texture that can be read or written to by the pipeline. A texel is generally

comprised of between one and four components depending on which format is being used for

the texture; for example, a format of Format.R32G32B32_Float is used to store three 32-bit

loating point numbers in each texel whereas a format of Format.R8G8_UInt represents two

8-bit unsigned integers per texel. There is a special case when dealing with compressed formats

(Format.BC) where the smallest unit consists of a block of 4 x 4 texels.

A texture resource can be created in a number of different formats as deined by the DXGI
format enumeration (SharpDX.DXGI.Format and DXGI_FORMAT for managed/unmanaged,

respectively). The format can be either applied at the time of creation, or speciied when it is
bound by a resource view to the pipeline.

Hardware device drivers may support different combinations of formats for different purposes,

although there is a list of mandatory formats that the hardware must support depending on the

version of Direct3D. The device's CheckFormatSupport method can be used to determine

what resource type and usage a particular format supports on the current hardware.

http:///

Chapter 1

13

Textures do not just store image data. They are used for information,

such as height-maps, displacement-maps, or for any data structure that

needs to be read or written within a shader that can beneit from the
speed beneits of hardware support for textures and texture sampling.

Types of texture resources include:

 f 1D Textures and 1D Texture Arrays

 f 2D Textures and 2D Texture Arrays

 f 3D Textures (or volume textures)

 f Unordered access textures

 f Read/Write textures

The following table maps the managed to unmanaged types for the different textures.

Managed type (SharpDX.Direct3D11) Unmanaged type

Texture1D ID3D11Texture1D

Texture2D ID3D11Texture2D

Texture3D ID3D11Texture3D

Arrays of 1D and 2D textures are conigured with the subresource data associated with the
description of the texture passed into the appropriate constructor. A common use for texture

arrays is supporting Multiple Render Targets (MRT).

Resource views

Before a resource can be used within a stage of the pipeline it must irst have a view.
This view describes to the pipeline stages what format to expect the resource in and what

region of the resource to access. The same resource can be bound to multiple stages of the

pipeline using the same view, or by creating multiple resource views.

It is important to note that although a resource can be bound to multiple stages of the pipeline,

there may be restrictions on whether the same resource can be bound for input and output at

the same time. As an example, a Render Target View (RTV) and Shader Resource View (SRV)

for the same resource both cannot be bound to the pipeline at the same time. When a conlict
arises the read-only resource view will be automatically unbound from the pipeline, and if the

debug layer is enabled, a warning message will be output to the debug output.

http:///

Getting Started with Direct3D

14

Using resources created with a typeless format, allows the same underlying resource to be

represented by multiple resource views, where the compatible resolved format is deined
by the view. For example, using a resource with both a Depth Stencil View (DSV) and SRV

requires that the underlying resource be created with a format like Format.R32G8X24_
Typeless. The SRV then speciies a format of Format.R32_Float_X8X24_Typeless,

and inally the DSV is created with a format of Format.D32_Float_S8X24_UInt.

Some types of buffers can be provided to certain stages of the pipeline without a resource

view, generally when the structure and format of the buffer is deined in some other way,
for example, using state objects or structures within shader iles.

Types of resource views include:

 f Depth Stencil View (DSV),

 f Render Target View (RTV),

 f Shader Resource View (SRV)

 f Unordered Access View (UAV)

 f Video decoder output view

 f Video processor input view

 f Video processor output view

The following table shows the managed and unmanaged types for the different

resource views.

Managed type (SharpDX.Direct3D11) Unmanaged type

DepthStencilView ID3D11DepthStencilView

RenderTargetView ID3D11RenderTargetView

ShaderResourceView ID3D11ShaderResourceView

UnorderedAccessView ID3D11UnorderedAccessView

VideoDecoderOutputView ID3D11VideoDecoderOutputView

VideoProcessorInputView ID3D11VideoProcessorInputView

VideoProcessorOutputView ID3D11VideoProcessorOutputView

Buffers
A buffer resource is used to provide structured and unstructured data to stages of in the

graphics pipeline.

http:///

Chapter 1

15

Types of buffer resources include:

 f Vertex buffer

 f Index buffer

 f Constant buffer

 f Unordered access buffers

 � Byte address buffer

 � Structured buffer

 � Read/Write buffers

 � Append/Consume structured buffers

All buffers are represented by the SharpDX.Direct3D11.Buffer class (ID3D11Buffer

for the unmanaged API). The usage is deined by how and where it is bound to the pipeline.
The following table shows the binding lags for different buffers:

Buffer type Managed BindFlags flags Unmanaged D3D11_BIND_FLAG flags

Vertex buffer VertexBuffer D3D11_BIND_VERTEX_BUFFER

Index buffer IndexBuffer D3D11_BIND_INDEX_BUFFER

Constant buffer ConstantBuffer D3D11_BIND_CONSTANT_BUFFER

Unordered access

buffers

UnorderedAccess D3D11_BIND_UNORDERED_ACCESS

Unordered access buffers are further categorized into the following types using an additional

option/miscellaneous lag within the buffer description as shown in the following table:

Buffer type Managed

ResourceOptionFlags flags

Unmanaged D3D11_RESOURCE_

MISC_FLAG flags

Byte address buffer BufferAllowRawViews D3D11_RESOURCE_MISC_BUFFER_
ALLOW_RAW_VIEWS

Structured buffer BufferStructured D3D11_RESOURCE_MISC_BUFFER_
STRUCTURED

Read/Write buffers Either use Byte address buffer / Structured buffer and then use

RWBuffer or RWStructuredBuffer<MyStruct> instead of

Buffer and StructuredBuffer<MyStruct> in HLSL.

Append/Consume

buffers

A structured buffer and then use AppendStructuredBuffer

or ConsumeStructuredBuffer in HLSL. Use

UnorderedAccessViewBufferFlags.Append when

creating the UAV.

http:///

Getting Started with Direct3D

16

Shaders and High Level Shader Language
The graphics pipeline is made up of ixed function and programmable stages.
The programmable stages are referred to as shaders, and are programmed using small

High Level Shader Language (HLSL) programs. The HLSL is implemented with a series

of shader models, each building upon the previous version. Each shader model version

supports a set of shader proiles, which represent the target pipeline stage to compile a
shader. Direct3D 11 introduces Shader Model 5 (SM5), a superset of Shader Model 4 (SM4).

An example shader proile is ps_5_0, which indicates a shader program is for use in the pixel

shader stage and requires SM5.

Stages of the programmable pipeline
All Direct3D operations take place via one of the two pipelines, known as pipelines for

the fact that information lows in one direction from one stage to the next. For all drawing
operations, the graphics pipeline is used (also known as drawing pipeline or rendering

pipeline). To run compute shaders, the dispatch pipeline is used (aka DirectCompute

pipeline or compute shader pipeline).

Although these two pipelines are conceptually separate. They cannot be active at the same

time. Context switching between the two pipelines also incurs additional overhead so each

pipeline should be used in blocks—for example, run any compute shaders to prepare data,

perform all rendering, and inally post processing.

Methods related to stages of the pipeline are found on the device context. For the managed

API, each stage is grouped into a property named after the pipeline stage. For example, for the

vertex shader stage, deviceContext.VertexShader.SetShaderResources, whereas

the unmanaged API groups the methods by a stage acronym directly on the device context,

for example, deviceContext->VSSetShaderResources, where VS represents the vertex

shader stage.

The graphics pipeline
The graphics pipeline is comprised of nine distinct stages that are generally used to create 2D

raster representations of 3D scenes, that is, take our 3D model and turn it into what we see

on the display. Four of these stages are ixed function and the remaining ive programmable
stages are called shaders (the following diagram shows the programmable stages as a circle).

The output of each stage is taken as input into the next along with bound resources or in the

case of the last stage, Output Merger (OM), the output is sent to one or more render targets.

Not all of the stages are mandatory and keeping the number of stages involved to a minimum

will generally result in faster rendering.

http:///

Chapter 1

17

Optional tessellation support is provided by the three tessellation stages (two programmable

and one ixed function): the hull shader, tessellator, and domain shader. The tessellation
stages require a Direct3D feature level of 11.0 or later.

As of Direct3D 11.1, each programmable stage is able to read/write to an Unordered

Access View (UAV). A UAV is a view of a buffer or texture resource that has been created

with the BindFlags.UnorderedAccess lag (D3D11_BIND_UNORDERED_ACCESS from

the D3D11_BIND_FLAG enumeration).

M
e
m

o
ry

 R
e
s
o
u
rc

e
s
 (B

u
ffe

rs
, C

o
n
s
ta

n
t B

u
ffe

rs
, Te

x
tu

re
s
)

U
n
o
rd

e
re

d
 A

c
c
e
s
s
 R

e
s
o
u
rc

e
s

(R
e
a
d
/W

rite
 fro

m
 a

n
y
 s

h
a
d
e
r s

ta
g
e
 is

 n
e
w

 to
 D

ire
c
t3

D
 1

1
.1

)

R
e
n
d
e
r

Ta
rg

e
ts

(O
M

)

O
u
tp

u
t

M
e
rg

e
r

S
ta

g
e

(P
S

)

P
ixe

l

S
h
a
d
e
r

S
ta

g
e

(S
O

)

S
tre

a
m

O
u
tp

u
t

S
ta

g
e

(R
S

)

R
a
ste

rize
r

S
ta

g
e

(D
S

)

D
o
m

a
in

S
h
a
d
e
r

S
ta

g
e

(TS
)

Te
sse

lla
to

r

S
ta

g
e

(H
S

)

H
u
ll

S
h
a
d
e
r

S
ta

g
e

(V
S

)

V
e
rte

x

S
h
a
d
e
r

S
ta

g
e

(IA
)

In
p
u
t

A
sse

m
b
le

r

S
ta

g
e

(G
S

)

G
e
o
m

e
try

S
h
a
d
e
r

S
ta

g
e

Direct3D Graphics Pipeline

www.allitebooks.com

http:///
http://www.allitebooks.org

Getting Started with Direct3D

18

Input Assembler (IA) stage
The IA stage reads primitive data (points, lines, and/or triangles) from buffers and assembles

them into primitives for use in subsequent stages.

Usually one or more vertex buffers, and optionally an index buffer, are provided as input.

An input layout tells the input assembler what structure to expect the vertex buffer in.

The vertex buffer itself is also optional, where a vertex shader only has a vertex ID as

input (using the SV_VertexID shader system value input semantic) and then can either

generate the vertex data procedurally or retrieve it from a resource using the vertex ID

as an index. In this instance, the input assembler is not provided with an input layout or

vertex buffer, and simply receives the number of vertices that will be drawn. For more

information, see http://msdn.microsoft.com/en-us/library/windows/desktop/
bb232912(v=vs.85).aspx.

Device context commands that act upon the input assembler directly are found on

the DeviceContext.InputAssembler property, for example, DeviceContext.
InputAssembler.SetVertexBuffers, or for unmanaged begin with IA, for example,

ID3D11DeviceContext::IASetVertexBuffers.

Vertex Shader (VS) stage
The vertex shader allows per-vertex operations to be performed upon the vertices provided

by the input assembler. Operations include manipulating per-vertex properties such as

position, color, texture coordinate, and a vertex's normal.

A vertex can be comprised of up to sixteen 32-bit vectors (up to four components each).

A minimal vertex usually consists of position, color, and the normal vector. In order to support

larger sets of data or as an alternative to using a vertex buffer, the vertex shader can also

retrieve data from a texture or UAV.

A vertex shader is required; even if no transform is needed, a shader must be provided that

simply returns vertices without modiications.

Device context commands that are used to control the vertex shader stage are grouped within

the DeviceContext.VertexShader property or for unmanaged begin with VS, for example,

DeviceContext.VertexShader.SetShaderResources and ID3D11DeviceContext:
:VSSetShaderResources, respectively.

Hull Shader (HS) stage
The hull shader is the irst stage of the three optional stages that together support hardware

accelerated tessellation. The hull shader outputs control points and patches constant

data that controls the ixed function tessellator stage. The shader also performs culling by

excluding patches that do not require tessellation (by applying a tessellation factor of zero).

http:///

Chapter 1

19

Unlike other shaders, the hull shader consists of two HLSL functions: the patch constant

function, and hull shader function.

This shader stage requires that the IA stage has one of the patch list topologies set as

its active primitive topology (for example, SharpDX.Direct3D.PrimitiveTopology.
PatchListWith3ControlPoints for managed and D3D11_PRIMITIVE_TOPOLOGY_3_
CONTROL_POINT_PATCHLIST for unmanaged).

Device context commands that control the hull shader stage are grouped within the

DeviceContext.HullShader property or for unmanaged device begin with HS.

Tessellator stage
The tessellator stage is the second stage of the optional tessellation stages. This ixed
function stage subdivides a quad, triangle, or line into smaller objects. The tessellation

factor and type of division is controlled by the output of the hull shader stage.

Unlike all other ixed function stages the tessellator stage does not include any direct method
of controlling its state. All required information is provided within the output of the hull shader

stage and implied through the choice of primitive topology and coniguration of the hull and
domain shaders.

Domain Shader (DS) stage
The domain shader is the third and inal stage of the optional tessellation stages.
This programmable stage calculates the inal vertex position of a subdivided point
generated during tessellation.

The types of operations that take place within this shader stage are often fairly similar

to a vertex shader when not using the tessellation stages.

Device context commands that control the domain shader stage are grouped by the

DeviceContext.DomainShader property, or for unmanaged begin with DS.

Geometry Shader (GS) stage
The optional geometry shader stage runs shader code that takes an entire primitive or

primitive with adjacency as input. The shader is able to generate new vertices on output

(triangle strip, line strip, or point list).

The geometry shader stage is unique in that its output can go

to the rasterizer stage and/or be sent to a vertex buffer via the

stream output stage (SO).

http:///

Getting Started with Direct3D

20

It is critical for performance that the amount of data sent into and out of the geometry

shader is kept to a minimum. The geometry shader stage has the potential to slow down

the rendering performance quite signiicantly.

Uses of the geometry shader might include rendering multiple faces of environment maps

in a single pass (refer to Chapter 9, Rendering on Multiple Threads and Deferred Contexts),

and point sprites/billboarding (commonly used in particle systems). Prior to Direct3D 11,

the geometry shader could be used to implement tessellation.

Device context commands that control the geometry shader stages are grouped in the

GeometryShader property, or for unmanaged begin with GS.

Stream Output (SO) stage
The stream output stage is an optional ixed function stage that is used to output geometry

from the geometry shader into vertex buffers for re-use or further processing in another pass

through the pipeline.

There are only two commands on the device context that control the stream output stage

found on the StreamOutput property of the device content: GetTargets and SetTargets

(unmanaged SOGetTargets and SOSetTargets).

Rasterizer stage (RS)
The rasterizer stage is a ixed function stage that converts the vector graphics (points,

lines, and triangles) into raster graphics (pixels). This stage performs view frustum clipping,

back-face culling, early depth/stencil tests, perspective divide (to convert our vertices from

clip-space coordinates to normalized device coordinates), and maps vertices to the viewport.

If a pixel shader is speciied, this will be called by the rasterizer for each pixel, with the result
of interpolating per-vertex values across each primitive passed as the pixel shader input.

There are additional interpolation modiiers that can be applied to the pixel shader input
structure that tell the rasterizer stage the method of interpolation that should be used for

each property (for more information see Interpolation Modiiers introduced in Shader Model
4 on MSDN at http://msdn.microsoft.com/en-us/library/windows/desktop/
bb509668(v=vs.85).aspx#Remarks).

When using multisampling, the rasterizer stage can provide an additional coverage mask

to the pixel shader that indicates which samples are covered by the pixel. This is provided

within the SV_Coverage system-value input semantic. If the pixel shader speciies the SV_
SampleIndex input semantic, instead of being called once per pixel by the rasterizer, it will

be called once per sample per pixel (that is, a 4xMSAA render target would result in four calls

to the pixel shader for each pixel).

Device context commands that control the rasterizer stage state are grouped in the

Rasterizer property of the device context or for unmanaged begin with RS.

http:///

Chapter 1

21

Pixel Shader (PS) stage
The inal programmable stage is the pixel shader. This stage executes a shader program that

performs per-pixel operations to determine the inal color of each pixel. Operations that take

place here include per-pixel lighting and post processing.

Device context commands that control the pixel shader stage are grouped by the

PixelShader property or begin with PS for the unmanaged API.

Output Merger (OM) stage
The inal stage of the graphics pipeline is the output merger stage. This ixed function stage
generates the inal rendered pixel color. You can bind a depth-stencil state to control z-buffering,

and bind a blend state to control blending of pixel shader output with the render target.

Device context commands that control the state of the output merger stage are grouped by

the OutputMerger property or for unmanaged begin with OM.

The dispatch pipeline
The dispatch pipeline is where compute shaders are executed. There is only one stage in this

pipeline, the compute shader stage. The dispatch pipeline and graphics pipeline cannot run

at the same time and there is an additional context change cost when switching between the

two, therefore calls to the dispatch pipeline should be grouped together where possible.

Memory Resources (Buffers,

Constant Buffers, Textures)

Unordered Access Resources

(CS)

Compute

Shader

Stage

Direct3D Dispatch/DirectCompute Pipeline

http:///

Getting Started with Direct3D

22

Compute Shader (CS) stage
The compute shader (also known as DirectCompute) is an optional programmable stage that

executes a shader program upon multiple threads, optionally passing in a dispatch thread

identiier (SV_DispatchThreadID) and up to three thread group identiier values as input
(SV_GroupIndex, SV_GroupID, and SV_GroupThreadID). This shader supports a whole

range of uses including post processing, physics simulation, AI, and GPGPU tasks.

Compute shader support is mandatory for hardware devices from feature level 11_0 onwards,

and optionally available on hardware for feature levels 10_0 and 10_1.

The thread identiier is generally used as an index into a resource to perform an operation.
The same shader program is run upon many thousands of threads at the same time,

usually with each reading and/or writing to an element of a UAV resource.

Device context commands that control the compute shader stage are grouped in the

ComputeShader property or begin with CS in the unmanaged API.

After the compute shader is prepared, it is executed by calling the Dispatch command

on the device context, passing in the number of thread groups to use.

Introducing Direct3D 11.1 and 11.2

With the release of Windows 8 came a minor release of Direct3D, Version 11.1 and the

DXGI API, Version 1.2. A number of features that do not require Windows Display Driver

Model (WDDM) 1.2 were later made available for Windows 7 and Windows Server 2008

R2 with the Platform Update for Windows 7 SP1 and Windows Server 2008 R2 SP1.

Now with the release of Windows 8.1 in October 2013 and the arrival of the Xbox One

not long after, Microsoft has provided another minor release of Direct3D, Version 11.2

and DXGI Version 1.3. These further updates are not available on previous versions of

Windows 7 or Windows 8.

Direct3D 11.1 and DXGI 1.2 features
Direct3D 11.1 introduces a number of enhancements and additional features, including:

 f Unordered Access Views (UAVs) can now be used in any shader stage, not just the

pixel and compute shaders

 f A larger number of UAVs can be used when you bind resources to the output

merger stage

 f Support for reducing memory bandwidth and power consumption (HLSL minimum

precision and swap chain dirty regions and scroll present parameters)

http:///

Chapter 1

23

 f Shader tracing and compiler enhancements

 f Direct3D device sharing

 f Create larger constant buffers than a shader can access (by binding a subset

of a constant buffer)

 f Support logical operations in a render target with new blend state options

 f Create SRV/RTV and UAVs to video resources so that Direct3D shaders can

process video resources

 f Ability to use Direct3D in Session 0 processes (from background services)

 f Extended resource sharing for shared Texture2D resources

DXGI 1.2 enhancements include:

 f A new lip-model swap chain

 f Support for stereoscopic 3D displays

 f Restricting output to a speciic display

 f Support for dirty rectangles and scrolled areas that can reduce memory bandwidth

and power consumption

 f Events for notiication of application occlusion status (that is, knowing when
rendering is not necessary)

 f A new desktop duplication API that replaces the previous mirror drivers

 f Improved event-based synchronization to share resources

 f Additional debugging APIs

Direct3D 11.2 and DXGI 1.3 features
Direct3D 11.2 is a smaller incremental update by comparison and includes the

following enhancements:

 f HLSL compilation within Windows Store apps under Windows 8.1. This feature

was missing from Windows 8 Windows Store apps and now allows applications

to compile shaders at runtime for Windows Store apps.

 f HLSL shader linking, adding support for precompiled HLSL functions that can be

packaged into libraries and linked into shaders at runtime.

 f Support for tiled resources, large resources that use small amounts of physical

memory—suitable for large terrains.

 f Ability to annotate graphics commands, sending strings and an integer value

to Event Tracing for Windows (ETW).

http:///

Getting Started with Direct3D

24

DXGI 1.3 enhancements include:

 f Overlapping swap chains and scaling, for example, presenting a swap chain that

is rendered at a lower resolution, then up-scaling and overlapping with a UI swap

chain at the displays native resolution.

 f Trim device command, allowing memory to be released temporarily. Suitable for

when an application is being suspended and to reduce the chances that it will be

terminated to reclaim resources for other apps.

 f Ability to set the source size of the back buffer allowing the swap chain to be

resized (smaller) without recreating the swap chain resources.

 f Ability to implement more lexible and lower frame latencies by specifying the
maximum frame latency (number of frames that can be queued at one time) and

retrieving a wait handle to use with WaitForSingleObjectEx before commencing the

next frame's drawing commands.

Building a Direct3D 11 application with C#
and SharpDX

In this recipe we will prepare a blank project that contains the appropriate SharpDX

references and a minimal rendering loop. The project will initialize necessary Direct3D

objects and then provide a basic rendering loop that sets the color of the rendering

surface to Color.LightBlue.

Getting ready

Make sure you have Visual Studio 2012 Express for Windows Desktop or Professional

and higher installed. Download the SharpDX binary package and have it at hand.

To simplify the recipes in this book, lets put all our projects in a single solution:

1. Create a new Blank Solution in Visual Studio by navigating to File | New |

Project… (Ctrl + Shift + N), search for and select Blank Solution by typing

that in the search box at the top right of the New Project form (Ctrl + E).

2. Enter a solution name and location and click on Ok.

The recipes in this book will assume that the solution has

been named D3DRendering.sln and that it is located

in C:\Projects\D3DRendering.

http:///

Chapter 1

25

3. You should now have a new Blank Solution at C:\Projects\D3DRendering\
D3DRendering.sln.

4. Extract the contents of the SharpDX package into C:\Projects\D3DRendering\
External. The C:\Projects\D3DRendering\External\Bin folder should

now exist among others.

How to do it…

With the solution open, let's create a new project:

1. Add a new Windows Form Application project to the solution with .NET

Framework 4.5 selected.

2. We will name the project Ch01_01EmptyProject.

3. Add the SharpDX references to the project by selecting the project in the solution

explorer and then navigate to PROJECT | Add Reference from the main menu.

Now click on the Browse option on the left and click on the Browse... button in

Reference Manager.

4. For a Direct3D 11.1 project compatible with Windows 7, Windows 8, and Windows

8.1, navigate to C:\Projects\D3DRendering\External\Bin\DirectX11_1-
net40 and select SharpDX.dll, SharpDX.DXGI.dll, and SharpDX.Direct3D11.dll.

5. For a Direct3D 11.2 project compatible only with Windows 8.1, navigate to C:\
Projects\D3DRendering\External\Bin\DirectX11_2-net40 and add the

same references located there.

SharpDX.dll, SharpDX.DXGI.dll, and SharpDX.Direct3D11.dll are the minimum

references required to create Direct3D 11 applications with SharpDX.

6. Click on Ok in Reference Manager to accept the changes.

7. Add the following using directives to Program.cs:

using SharpDX;

using SharpDX.Windows;

using SharpDX.DXGI;

using SharpDX.Direct3D11;

// Resolve name conflicts by explicitly stating the class to use:

using Device = SharpDX.Direct3D11.Device;

http:///

Getting Started with Direct3D

26

8. In the same source ile, replace the Main() function with the following code to

initialize our Direct3D device and swap chain.

[STAThread]

static void Main()

{

 #region Direct3D Initialization

 // Create the window to render to

 Form1 form = new Form1();

 form.Text = "D3DRendering - EmptyProject";

 form.Width = 640;

 form.Height = 480;

 // Declare the device and swapChain vars

 Device device;

 SwapChain swapChain;

 // Create the device and swapchain

 Device.CreateWithSwapChain(

 SharpDX.Direct3D.DriverType.Hardware,

 DeviceCreationFlags.None,

 new [] {

 SharpDX.Direct3D.FeatureLevel.Level_11_1,

 SharpDX.Direct3D.FeatureLevel.Level_11_0,

 SharpDX.Direct3D.FeatureLevel.Level_10_1,

 SharpDX.Direct3D.FeatureLevel.Level_10_0,

 },

 new SwapChainDescription()

 {

 ModeDescription =

 new ModeDescription(

 form.ClientSize.Width,

 form.ClientSize.Height,

 new Rational(60, 1),

 Format.R8G8B8A8_UNorm

),

 SampleDescription = new SampleDescription(1,0),

 Usage = SharpDX.DXGI.Usage.BackBuffer | Usage.
RenderTargetOutput,

 BufferCount = 1,

 Flags = SwapChainFlags.None,

 IsWindowed = true,

http:///

Chapter 1

27

 OutputHandle = form.Handle,

 SwapEffect = SwapEffect.Discard,

 },

 out device, out swapChain

);

// Create references for backBuffer and renderTargetView

 var backBuffer = Texture2D.FromSwapChain<Texture2D>(swapChain,
0);

 var renderTargetView = new RenderTargetView(device,
backBuffer);

 #endregion

...

}

9. Within the same Main() function, we now create a simple render loop using

a SharpDX utility class SharpDX.Windows.RenderLoop that clears the render

target with a light blue color.

#region Render loop

// Create and run the render loop

RenderLoop.Run(form, () =>

{

 // Clear the render target with light blue

 device.ImmediateContext.ClearRenderTargetView(

 renderTargetView,

 Color.LightBlue);

 // Execute rendering commands here...

 // Present the frame

 swapChain.Present(0, PresentFlags.None);

});

#endregion

10. And inally, after the render loop we have our code to clean up the Direct3D

COM references.

#region Direct3D Cleanup

// Release the device and any other resources created

renderTargetView.Dispose();

backBuffer.Dispose();

device.Dispose();

swapChain.Dispose();

#endregion

http:///

Getting Started with Direct3D

28

11. Start debugging the project (F5). If all is well, the application will run and show a

window like the following screenshot. Nothing very exciting yet but we now have a

working device and swap chain.

Output from the empty project

How it works…

We've created a standard Windows Forms Application to simplify the example so

that the project can be built on Windows 7, Windows 8, and Windows 8.1.

Adding the SharpDX.dll reference to your project provides access to all the common

enumerations and structures that have been generated in SharpDX from the Direct3D

SDK header iles, along with a number of base classes and helpers such as a matrix
implementation and the RenderLoop we have used. Adding the SharpDX.DXGI.dll

reference provides access to the DXGI API (where we get our SwapChain from), and inally
SharpDX.Direct3D11.dll provides us with access to the Direct3D 11 types.

The using directives added are fairly self-explanatory except perhaps the SharpDX.
Windows namespace. This contains the implementation for RenderLoop and also a

System.Windows.Form descendant that provides some helpful events for Direct3D

applications (for example, when to pause/resume rendering).

When adding the using directives, there are sometimes conlicts in type names between
namespaces. In this instance there is a deinition for the Device class in the namespaces

SharpDX.DXGI and SharpDX.Direct3D11. Rather than having to always use fully qualiied
type names, we can instead explicitly state which type should be used with a device using an

alias directive as we have done with:

using Device = SharpDX.Direct3D11.Device;

Our Direct3D recipes will typically be split into three stages:

 f Initialization: This is where we will create the Direct3D device and resources

 f Render loop: This is where we will execute our rendering commands and logic

 f Finalization: This is where we will cleanup and free any resources

The previous code listing has each of the key lines of code highlighted so that you can easily

follow along.

http:///

Chapter 1

29

Initialization
First is the creation of a window so that we have a valid handle to provide while creating the

SwapChain object. We then declare the device and swapChain variables that will store

the output of our call to the static method Device.CreateDeviceAndSwapChain.

The creation of the device and swap chain takes place next. This is the irst highlighted line
in the code listing.

Here we are telling the API to create a Direct3D 11 device using the hardware

driver, with no speciic lags (the native enumeration for DeviceCreationFlags is

D3D11_CREATE_DEVICE_FLAG) and to use the feature levels available between 11.1

and 10.0. Because we have not used the Device.CreateDeviceAndSwapChain override

that accepts a SharpDX.DXGI.Adapter object instance, the device will be constructed

using the irst adapter found.

This is a common theme with the SharpDX constructors and method overrides, often

implementing default behavior or excluding invalid combinations of parameters to simplify

their usage, while still providing the option of more detailed control that is necessary with

such a complex API.

SwapChainDescription (natively DXGI_SWAP_CHAIN_DESC) is describing a back

buffer that is the same size as the window with a fullscreen refresh rate of 60 Hz. We have

speciied a format of SharpDX.DXGI.Format.R8G8B8A8_UNorm, meaning each pixel

will be made up of 32-bits consisting of four 8-bit unsigned normalized values (for example,

values between 0.0-1.0 represent the range 0-255) representing Red, Green, Blue, and Alpha

respectively. UNorm refers to the fact that each of the values stored are normalized to 8-bit

values between 0.0 and 1.0, for example, a red component stored in an unsigned byte of 255

is 1 and 127 becomes 0.5. A texture format ending in _UInt on the other hand is storing

unsigned integer values, and _Float is using loating point values. Formats ending in _SRgb

store gamma-corrected values, the hardware will linearize these values when reading and

convert back to the sRGB format when writing out pixels.

The back buffer can only be created using a limited number of the available resource formats.

The feature level also impacts the formats that can be used. Supported back buffer formats

for feature level >= 11.0 are:

SharpDX.DXGI.Format.R8G8B8A8_UNorm

SharpDX.DXGI.Format.R8G8B8A8_UNorm_SRgb

SharpDX.DXGI.Format.B8G8R8A8_UNorm

SharpDX.DXGI.Format.B8G8R8A8_UNorm_SRgb

SharpDX.DXGI.Format.R16G16B16A16_Float

SharpDX.DXGI.Format.R10G10B10A2_UNorm

SharpDX.DXGI.Format.R10G10B10_Xr_Bias_A2_UNorm

http:///

Getting Started with Direct3D

30

We do not want to implement any multisampling of pixels at this time, so we have provided

the default sampler mode for no anti-aliasing, that is, one sample and a quality of zero: new
SampleDescription(1, 0).

The buffer usage lag is set to indicate that the buffer will be used as a back buffer and as a
render-target output resource. The bitwise OR operator can be applied to all lags in Direct3D.

The number of back buffers for the swap chain is set to one and there are no lags that
we need to add to modify the swap chain behavior.

With IsWindowed = true, we have indicated that the output will be windowed to begin

with and we have passed the handle of the form we created earlier for the output window.

The swap effect used is SwapEffect.Discard, which will result in the back buffer

contents being discarded after each swapChain.Present.

Windows Store apps must use a swap effect of SwapEffect.
FlipSequential, which in turn limits the valid resource formats

for the back buffer to one of the following:

SharpDX.DXGI.Format.R8G8B8A8_UNorm

SharpDX.DXGI.Format.B8G8R8A8_UNorm

SharpDX.DXGI.Format.R16G16B16A16_Float

With the device and swap chain initialized, we now retrieve a reference to the back buffer so

that we can create RenderTargetView. You can see here that we are not creating any new

objects. We are simply querying the existing objects for a reference to the applicable Direct3D

interfaces. We do still have to dispose of these correctly as the underlying COM reference

counters will have been incremented.

Render loop
The next highlighted piece of code is the SharpDX.Windows.RenderLoop.Run helper

function. This takes our form and delegate or Action as input, with delegate executed

within a loop. The loop takes care of all application messages, and will listen for any

application close events and exit the loop automatically, for example, if the form is closed.

The render loop blocks the thread so that any code located after the call to RenderLoop.Run

will not be executed until the loop has exited.

http:///

Chapter 1

31

Now we execute our irst rendering command which is to clear renderTargetView with a

light blue color. This line is retrieving the immediate device context from the device and then

executing the ClearRenderTargetView command. As this is not a deferred context the

command is executed immediately.

Finally we tell the swap chain to present the back buffer (our renderTargetView that we

just set to light blue) to the front buffer.

Finalization
The inalization stage is quite straight forward. After the RenderLoop exits, we clean up any

resources that we have created and dispose of the device and swap chain.

All SharpDX classes that represent Direct3D objects implement the IDisposable interface

and should be disposed off to release unmanaged resources.

There's more…

To make the example a little more interesting, try using a Linear interpolation (LERP) of

the color that is being passed to the ClearRenderTargetView command. For example,

the following code will interpolate the color between light and dark blue over 2 seconds:

var lerpColor = SharpDX.Color.Lerp(SharpDX.Color.LightBlue,

 SharpDX.Color.DarkBlue,

 (float)(totalSeconds / 2.0 % 1.0));

device.ImmediateContext.ClearRenderTargetView(

 renderTargetView,

 lerpColor);

You will have noticed that there are a number of other SharpDX assemblies available within

the SharpDX binaries directory.

The SharpDX.Direct2D1.dll assembly provides you with the Direct2D API. SharpDX.
D3DCompiler.dll provides runtime shader compilation, which we will be using to compile

our shaders in later chapters. SharpDX.XAudio2.dll exposes the XAudio2 API for mixing

voices and SharpDX.RawInput.dll provides access to the raw data sent from user

input devices, such as the keyboard, mouse, and gamepads or joysticks. The Microsoft

Media Foundation, for dealing with audio/video playback, is wrapped by the SharpDX.
MediaFoundation.dll assembly.

http:///

Getting Started with Direct3D

32

Finally, the SharpDX.Toolkit.dll assemblies provide a high-level game API for Direct3D

11 much like XNA 4.0 does for Direct3D 9. These assemblies hide away a lot of the low-level

Direct3D interaction and provide a number of compilation tools and convenience functions to

streamline including shaders and other game content in your project. The framework is worth

taking a look at for high-level operations, but as we will tend to be working with the low-level

API, it is generally not suitable for our purposes here.

The SharpDX package provides binaries for various platforms. We have used the DirectX 11.1

.NET 4.0 or the DirectX 11.2 .NET 4.0 build here and will use the WinRT build in Chapter 11,

Integrating Direct3D with XAML and Windows 8.1. SharpDX also provides assemblies and

classes for Direct3D 11, Direct3D 10, and Direct3D 9.

See also
 f We will see how to gain access to the Direct3D 11.1/11.2 device and swap chain

in the next recipe, Initializing a Direct3D 11.1/11.2 device and swap chain.

 f In Chapter 2, Rendering with Direct3D, we will cover more detail about rendering,

and focus on resource creation, the rendering loop, and simple shaders.

 f Chapter 11, Integrating Direct3D with XAML and Windows 8.1, shows how to build

a Windows Store app for Windows 8.1.

 f The Microsoft Developer Network (MSDN) provides a great deal of useful

information. The Direct3D launch page can be found at http://msdn.microsoft.
com/en-us/library/windows/desktop/hh309466(v=vs.85).aspx.

Initializing a Direct3D 11.1/11.2 device and
swap chain

We now know how to create our device and swap chain, however, we do not yet have

access to some of the features available in Direct3D 11.1 or 11.2 as we are only creating

Direct3D 11 references.

In this recipe we will modify the previous example so that we are instead creating

SharpDX.Direct3D11.Device1 and SharpDX.DXGI.SwapChain1 (natively these are

ID3D11Device1 and IDXGISwapChain1, respectively) to access Direct3D 11.1 features,

and SharpDX.Direct3D11.Device2, and SharpDX.DXGI.SwapChain2 (natively these

are ID3D11Device2 and IDXGISwapChain2, respectively) to access the features of

Direct3D 11.2.

Device1 allows, among others, the creation of blend states that utilize logical operations

and access to DeviceContext1 to access larger constant buffers in shaders than would

normally be possible.

http:///

Chapter 1

33

SharpDX.DXGI.SwapChain1 includes support for stereoscopic 3D display and supports

WinRT and Windows Phone 8 development.

The Direct3D 11.2 API is only available on Windows 8.1.

Getting ready

First we will create a new Windows Form Application project named Ch01_02Direct3D11_1

in our D3DRendering.sln solution.

Now add the SharpDX references as outlined in the previous recipe, choosing the appropriate

version – Building a Direct3D 11 application with C# and SharpDX.

Set the new project as the startup project by right-clicking on the project in the solution

explorer and click on Set as StartUp Project.

For Windows 7/Windows Server 2008 R2 users, this recipe

requires that you have installed the platform update for Windows

7 Service Pack 1/Windows Server 2008 R2 SP1.

It is not possible to use the Direct3D 11.2 API with Windows 7,

as this version is available to Windows 8.1 only.

How to do it…

We'll begin by creating the Direct3D 11 device as done in the previous recipe and then

query the object for an implementation of the Direct3D 11.1 Device1 COM interface.

1. Open Program.cs and add the using directives from the previous recipe along

with one additional alias:

using SharpDX;

using SharpDX.Windows;

using SharpDX.DXGI;

using SharpDX.Direct3D11;

// Resolve name conflicts by explicitly stating the class to use:

using Device = SharpDX.Direct3D11.Device;

using Device1 = SharpDX.Direct3D11.Device1;

2. Now copy the contents of the Main() method from the previous recipe.

http:///

Getting Started with Direct3D

34

3. Build the project (F6) just to be sure everything is setup correctly before continuing.

4. Within the Main() method, replace the existing device initialization with the

following code:

// Create the device and swapchain

Device1 device;

SwapChain1 swapChain;

// First create a regular D3D11 device

using (var device11 = new Device(

 SharpDX.Direct3D.DriverType.Hardware,

 DeviceCreationFlags.None,

 new [] {

 SharpDX.Direct3D.FeatureLevel.Level_11_1,

 SharpDX.Direct3D.FeatureLevel.Level_11_0,

 }))

{

 // Query device for the Device1 interface (ID3D11Device1)

 device = device11.QueryInterfaceOrNull<Device1>();

 if (device == null)

 throw new NotSupportedException(

 "SharpDX.Direct3D11.Device1 is not supported");

}

We are explicitly excluding feature levels below 11_0 as we will be

using SM5 and other Direct3D 11 features.

Retrieving the Direct3D 11.2 interfaces is performed in the exact

same way except with SharpDX.Direct3D11.Device2.

5. With the device created, we now need to initialize our swap chain as shown in

the following code:

// Rather than create a new DXGI Factory we reuse the

// one that has been used internally to create the device

using (var dxgi = device.QueryInterface<SharpDX.DXGI.Device2>())

using (var adapter = dxgi.Adapter)

using (var factory = adapter.GetParent<Factory2>())

{

 var desc1 = new SwapChainDescription1()

 {

 Width = form.ClientSize.Width,

 Height = form.ClientSize.Height,

http:///

Chapter 1

35

 Format = Format.R8G8B8A8_UNorm,

 Stereo = false,

 SampleDescription = new SampleDescription(1, 0),

 Usage = Usage.BackBuffer | Usage.RenderTargetOutput,

 BufferCount = 1,

 Scaling = Scaling.Stretch,

 SwapEffect = SwapEffect.Discard,

 };

 swapChain = new SwapChain1(factory,

 device,

 form.Handle,

 ref desc1,

 new SwapChainFullScreenDescription()

 {

 RefreshRate = new Rational(60, 1),

 Scaling = DisplayModeScaling.Centered,

 Windowed = true

 },

 // Restrict output to specific Output (monitor)

 null);

}

To retrieve the Direct3D 11.2 swap chain, create the swap chain as

done here and then use a call to swapChain.QueryInterfaceO
rNull<SwapChain2>();

6. Finally we will change the swapChain.Present call from within the render loop of

the previous recipe to:

// Present the frame

swapChain.Present(0, PresentFlags.None, new

 PresentParameters());

7. Run the project (F5). The result should be identical to the previous recipe.

How it works…

Our irst change to the previous code is the addition of a new directive using an alias directive

for SharpDX.Direct3D11.Device1. We keep the SharpDX.Direct3D11.Device alias

because we irst create a regular device and then query it for the 11.1 implementation.

http:///

Getting Started with Direct3D

36

Within the Direct3D Initialization region and after the window is created, we have

changed the declaration of the device and swapChain variables to be of type Device1

and SwapChain1. We then create Device with the same parameters as before except

using a constructor rather than the previous Device.CreateWithSwapChain method.

This is done within a using statement so that the reference to the irst device is automatically
disposed. Within the using block we query the device for a reference to the Device1 class.

If the implementation of Device1 was unavailable in the Direct3D API, the return value from

device11.QueryInterfaceOrNull<Device1> would be null while using the regular

QueryInterface<T> method would result in a SharpDX.SharpDXException being thrown.

All SharpDX classes that wrap a native COM object support a

number of variations of the QueryInterface method to query

the underlying IUnknown interface.

To create the swap chain, we need to irst get a reference to a SharpDX.DXGI.Factory2

instance. Rather than creating a new factory, we will use the one that was initialized internally

to create our device. All device instances also implement the interface for SharpDX.DXGI.
Device, which gives us access to the Adapter property. As this is provided by the DXGI API

we can work our way back from the device to a SharpDX.DXGI.Factory2 instance via the

GetParent method.

The equivalent unmanaged example of this section would look something like:

// pd3dDevice creation omitted

IDXGIDevice2* pDXGIDevice;

hr = pd3dDevice->QueryInterface(__uuidof(IDXGIDevice2),

 &pDXGIDevice);

IDXGIAdapter* pDXGIAdapter;

hr = pDXGIDevice->GetParent(__uuidof(IDXGIAdapter),

 &pDXGIAdapter);

IDXGIFactory2* pDXGIFactory;

pDXGIAdapter->GetParent(__uuidof(IDXGIFactory2), &pDXGIFactory);

Describing the swap chain for Direct3D 11.1 is slightly different as it separates the

description into two structures. The irst structure, SwapChainDescription1, describes

the buffer size, format, size, usage, and so on like the original but introduces a Stereo

and Scaling option and excludes the fullscreen properties. The second structure,

SwapChainFullScreenDescription, describes the fullscreen behavior of the swap

chain also with a Scaling option.

http:///

Chapter 1

37

As this is a desktop application, we use the SwapChain1 constructor that accepts the window

handle to create a swap chain for it. We also pass in the swap chain description structures.

For Windows Store apps, we would instead use the appropriate

constructor that accepts a Windows.UI.Core.CoreWindow instance.

In the case of Windows.UI.Xaml.Controls.SwapChainPanel,

no window object is provided and the created swap chain is assigned to

the native panel. Details on this are provided in Chapter 11, Integrating

Direct3D with XAML and Windows 8.1.

The last parameter of the factory's swap chain creation method allows the application to

restrict the display of information to a particular display device. In this case we are not

restricting the output, so we are passing null.

Finally we present the back buffer using the recommended Present method override for

DXGI 1.2 (IDXGISwapChain1.Present1). The additional PresentParameters parameter

allows an application to optimize presentation by specifying scrolling and dirty rectangles,

which reduces memory bandwidth and power consumption. In this case we just pass through

an empty instance.

There's more…

There are a number of different ways to initialize your Direct3D device and swap chain.

For example, if you are enumerating the available adapters and allowing a user to select,

which shall be used by the device constructor instead of defaulting to the irst, you will
already have created a DXGI factory object and the previous code would look a little different.

The output restriction coniguration of the swap chain is an interesting concept and easy to
demonstrate if you have more than one screen. With the previous example in place:

1. Change null in the last parameter passed to the new SwapChain1(...)

constructor to adapter.Outputs[0].

2. Change the swap chain present line to:

swapChain.Present(0, PresentFlags.RestrictToOutput, new
PresentParameters());

www.allitebooks.com

http:///
http://www.allitebooks.org

Getting Started with Direct3D

38

If you then drag the window so that it sits between your two displays, the result will look

something like the following screenshot. Any portion that sits outside of the designated

output will not be rendered and appear black.

Result of restricting output to the first screen

See also
 f IDXGIFactory2 documentation on MSDN can be found at

http://msdn.microsoft.com/en-us/library/windows/desktop/
hh404556(v=vs.85).aspx.

 f Refer Chapter 11, Integrating Direct3D with XAML and Windows 8.1, for more

details on creating a device and swap chain for Direct3D 11.2 on Windows 8.1

and Windows Store apps.

Debugging your Direct3D application
Debugging the Direct3D pipeline can be a dificult task at times. There are so many
elements that are impacting upon the result that pinpointing the cause of an issue

can take some work and ingenuity.

This recipe will show you how to get your project ready for debugging, set up object

tracking, and show you how to start the Visual Studio 2012 Graphics Debugger in

managed applications.

First it is worth taking a look at a number of areas of Direct3D that require different

techniques for debugging:

 f Debugging Direct3D errors: Direct3D errors such as the parameter being incorrect

or invalid can be diagnosed with the help of enabling the Direct3D debug layer by

passing the DeviceCreationFlags.Debug lag during device creation. When the
debug layer is enabled, the Direct3D API will send additional details to the debug

output window about any errors that occur. There are four classes of messages,

the irst two CORRUPTION and ERROR are problems that require addressing, while

WARNING and INFO messages may or may not require programmer intervention.

http:///

Chapter 1

39

 f Tracking resources: Direct3D resource leaks are another area that can take some

tracking down, especially in complicated scenes. SharpDX allows you to enable object

tracking that you can query at any time to retrieve a list of Direct3D objects that

have not been released along with their creation stack trace. On application exit, a

complete list of any unreleased objects is printed to the debug output. Enabling the

debug layer and the object tracking takes a toll on performance and should only be

enabled as needed rather than always enabled during development.

 f Debugging a pixel: Finally there is per-pixel output and shader debugging.

Traditionally the DirectX SDK PIX tool has been used for recording Direct3D API calls,

now with the Windows 8 SDK and Visual Studio 2012 you can use the Graphics

Debugger. When active, this debugger allows you to capture frames that can then be

analyzed. You can determine what has impacted an individual pixel, including support

for stepping through shaders.

Getting ready

Before we can debug our Direct3D application, we need to prepare the project settings with

the following steps:

1. Create a new Windows Form Application named Ch01_03Debugging in our

D3DRendering.sln solution. Set this new project as the startup project.

2. To support the Visual Studio 2012 Graphics Debugger and to allow native debug

messages from Direct3D to appear in the debugger output window, we must irst
enable native code debugging for the project. To do this, right-click on the project in

the solution explorer and click on Properties, now click on the Debug settings and

check Enable native code debugging.

Enabling native code debugging

http:///

Getting Started with Direct3D

40

Mixed mode debugging for x64 is only supported starting with .NET

Framework 4.

How to do it…

First we will be adding some debug information to our code and then use the Visual Studio

Graphics Debugger to capture a frame. We'll then continue to enable the Direct3D 11 debug

layer and SharpDX object tracking.

Starting the Visual Studio Graphics Debugger:

1. Implement all the steps from the irst recipe, Building a Direct3D 11 application

with C# and SharpDX.

2. Build the project (F6) to be sure everything is working correctly.

3. Just before the render loop region, we will add the following:

// Setup object debug names

device.DebugName = "The Device";

swapChain.DebugName = "The SwapChain";

backBuffer.DebugName = "The Backbuffer";

renderTargetView.DebugName = "The RenderTargetView";

4. Let's now run the Visual Studio 2012 graphics debugger by navigating to DEBUG |

Graphics | Start diagnostics (Alt+F5).

If the option is unavailable or does not do anything, be sure to check

that you have enabled native debugging and that the selected .NET

Framework version is 4.0 or later. The project must also be using a

debug configuration not release.

5. We can ignore the warning that says that there are no native symbols in the

symbol ile. This is because we are trying to debug a managed application.
Click on Yes to continue.

6. If all is well, we should see some statistics in the top left of our application

as shown in the following screenshot:

Graphics debugger text overlay in top left

http:///

Chapter 1

41

7. Press the Prt Scr key and you should now have a frame captured in Visual

Studio. Select the frame, and then click anywhere within the preview of the

frame. This will now select a single pixel in Graphics Pixel History as shown

in the following screenshot:

The graphics debugger windows with the pixel history and object table highlighted

8. Stop the debugger.

Enabling the debug layer and object tracking:

Now that we are able to run the debugger, let's turn on the Direct3D debug layer and enable

object tracking with the following steps:

1. Continuing from where we were, add the following to Program.cs at the start

of the Main() function:

// Enable object tracking

SharpDX.Configuration.EnableObjectTracking = true;

http:///

Getting Started with Direct3D

42

2. Within the Direct3D Initialization region, change the

CreateWithSwapChain call to pass in the debug lag:
Device.CreateWithSwapChain(

 SharpDX.Direct3D.DriverType.Hardware,

 // Enable Device debug layer

 DeviceCreationFlags.Debug,

 new SwapChainDescription()

 {

3. Next, we will replace the existing swapChain.Present with the following:

// Output the current active Direct3D objects

System.Diagnostics.Debug.Write(

 SharpDX.Diagnostics.ObjectTracker.ReportActiveObjects());

// This is a deliberate invalid call to Present

swapChain.Present(0, PresentFlags.RestrictToOutput);

4. Debug the project (F5) and there should be an exception thrown. The debug

output should contain something like this for the ReportActiveObjects call:

[0]: Active COM Object: [0x11BFB00] Class: [SharpDX.DXGI.
SwapChain] Time [05/17/2013 16:32:33] Stack:

 c:\Projects\D3DRendering\Ch01_03Debugging\Program.cs(60,13)
: Void Main()

[1]: Active COM Object: [0x11A9C1C] Class: [SharpDX.Direct3D11.
Device] Time [05/17/2013 16:32:33] Stack:

 c:\Projects\D3DRendering\Ch01_03Debugging\Program.cs(60,13)
: Void Main()

[2]: Active COM Object: [0x11ABE48] Class: [SharpDX.Direct3D11.
DeviceContext] Time [05/17/2013 16:32:33] Stack:

 c:\Projects\D3DRendering\Ch01_03Debugging\Program.cs(60,13)
: Void Main()

[3]: Active COM Object: [0x11C0034] Class: [SharpDX.Direct3D11.
Texture2D] Time [05/17/2013 16:32:33] Stack:

 c:\Projects\D3DRendering\Ch01_03Debugging\Program.cs(85,13)
: Void Main()

[4]: Active COM Object: [0x11E0A74] Class: [SharpDX.Direct3D11.
RenderTargetView] Time [05/17/2013 16:32:33] Stack:

 c:\Projects\D3DRendering\Ch01_03Debugging\Program.cs(86,13)
: Void Main()

http:///

Chapter 1

43

Count per Type:

Device : 1

DeviceContext : 1

RenderTargetView : 1

SwapChain : 1

Texture2D : 1

5. The incorrect call to Present should have resulted in the following being written to

the debug output:

DXGI ERROR: IDXGISwapChain::Present: Present is being called
with DXGI_PRESENT_RESTRICT_TO_OUTPUT, which is only valid if
the SwapChain was created with a valid pRestrictToOutput. [
MISCELLANEOUS ERROR #120:]

How it works…

We begin with the code from the irst recipe that was rendering a pleasant light blue
background for our window.

The debug names that we have added are arbitrary values for you to use to distinguish

between different objects of the same type. You may have noticed that these appeared

within the Graphics Object Table when a frame has been captured (marked with a red

square in the previous screenshot). This will help when you are trying to debug with lots

of objects of the same type. From here, it is possible to inspect each object by double clicking,

to view the contents of textures and buffers, or the properties of a device or swap chain.

Once we have captured the frame and selected a pixel, the Graphics Pixel History window

(circled in red in the previous screenshot) shows the initial color, the color after the call to

ClearRenderTarget and the inal color of the selected pixel. If there were other operations
that took place on the pixel (including shaders), this is where we would be able to delve deeper.

The second part of this recipe introduces Direct3D error debugging and object tracking.

First we enabled object tracking on the irst line of Main() to demonstrate how SharpDX

will keep track of objects for us.

We create the device as before, but pass through DeviceCreationFlags.Debug instead

of DeviceCreationFlags.None. This enables the Direct3D debug layer for this device and

we will receive additional messages for any errors after this point.

Next we generate a report of all active Direct3D COM objects. This is the same report that is

generated if we were to forget to dispose of any resources before application exit. The report

includes the stack trace, and double clicking on the line in the stack trace will take you to the

appropriate line in the source code editor.

http:///

Getting Started with Direct3D

44

Finally we have introduced a deliberate error in the call to Present. The message

quite clearly indicates that there is a problem with our use of the PresentFlags.
RestrictToOutput lag. Either our initialization of the swap chain is incorrect or
the call to Present needs changing. In this case we have not conigured the
swap chain with an output to be restricted to.

There's more…

The graphics debugger has a number of useful debug windows that you can access while

you have the recorded graphics experiment open. These are accessible by navigating to the

DEBUG/Graphics menu and include Events List (shown on the bottom left of the earlier

screenshot) and Pipeline Stages in addition to the ones we have already discussed.

Because the graphics debugger has been initially designed for

unmanaged code, the Graphics Event Call Stack window does not

resolve the managed source code line numbers correctly. This may

change with a future update to Visual Studio.

The SharpDX.Diagnostics.ObjectTracker static class has a number of additional

methods that are useful at runtime, such as inding an object reference by its native IntPtr

or perhaps iterating the list to check the number of active DeviceContext objects.

It is also possible to debug the HLSL shader code by stepping through the logic based on the

selected pixel.

See also
NVIDIA, AMD, and Intel all provide development tools speciic to their hardware that can
assist with debugging and can be found on the respective websites as follows:

 f NVIDIA Nsight Visual Studio Edition at https://developer.nvidia.com/
nvidia-nsight-visual-studio-edition

 f AMD GPU PerfStudio at http://developer.amd.com/tools-and-sdks/
graphics-development/gpu-perfstudio-2/

 f Intel® GPA at http://software.intel.com/en-us/vcsource/tools/
intel-gpa

http:///

2
Rendering with

Direct3D

In this chapter, we will cover the following topics:

 f Using the sample rendering framework

 f Creating device-dependent resources

 f Creating size-dependent resources

 f Creating a Direct3D renderer class

 f Rendering primitives

 f Applying multisample anti-aliasing

 f Implementing texture sampling

Introduction

Code for rendering complex scenes can soon become quite dificult to organize. To improve
this, we will build a simple rendering framework. This framework will take care of the low-level

device and swap chain management, assist with device resource lifecycle management,

and allow the application to focus on the elements of the scene instead.

All 3D objects ultimately consist of one or more vertices that together form one of these core

primitive shapes: points, lines, or triangles. As we discussed in the previous chapter, vertices

can include information such as position, color or texture coordinate, and a normal vector.

In this chapter we will learn how to deine these structures in shaders and the Input

Assembler (IA) ixed pipeline stage.

A vital component to any 3D scene is setting up the camera and projection. We will learn how

to initialize each of these and where vertices are transformed from the local object or model

space into the World/View/Projection (WVP) space (also known as clip space).

http:///

Rendering with Direct3D

46

Using the sample rendering framework
To work with complex scenes more easily, we are going to explore a set of classes that will

serve as our simple rendering framework throughout the book. This framework will take care

of initializing our Direct3D device, swap chain and render targets, and provide appropriate

methods and events for implementing the Direct3D resource lifecycle management in our

example applications.

The three key elements of this framework include the following:

 f Device manager: This is a class that manages the lifecycle of our Direct3D device

and device context.

 f Direct3D application: This is a set of classes that manage our swap chain and

render targets, along with other common-size dependent resources, such as the

depth/stencil buffer and viewport setup. We descend from one of these to create

our Direct3D application/render loop.

 f Renderer: This is a small class that we use to implement a renderer for a single

element/area of a scene. We create instances of these within our Direct3D

application class.

The framework is based on elements of the SharpDX Windows 8

sample code and the C++ DirectX Windows Store app template.

Changes have been made to simplify the code and to make it

suitable for desktop applications.

Getting ready

The sample rendering framework can be found with the downloadable companion content

for this book. After downloading this content, we can prepare a project for use with the

framework as follows:

1. From the downloadable companion content for this book, retrieve the Common.
csproj C# class library project and source iles.

2. Copy and add Common.csproj to our solution (for example, D3DRendering.sln).

3. Add a new Windows Form Application project to the solution in order to create your

Direct3D application.

For Windows Store apps, use the Common.WinRT.csproj class

library instead. Chapter 11, Integrating Direct3D with XAML and

Windows 8.1, provides an overview of working with this library.

http:///

Chapter 2

47

How to do it…

Here, we will walk through the steps necessary to work with the sample rendering framework.

1. Add a reference to Common.csproj within your Direct3D application project.

2. In addition to the SharpDX References we added to our project in the Building a

Direct3D 11 application with C# and SharpDX recipe in Chapter 1, Getting Started

with Direct3D, we will now also include .\External\bin\SharpDX.Direct2D1.
dll for supporting 2D text rendering. References to System.Drawing and

System.Windows.Forms are also required for desktop applications.

3. Create a new class ile that will house a descendent of the
D3DApplicationDesktop class. Let's call this new class D3DApp. The following

code snippet shows the class declaration and the required using directives:

using System;

...

using System.Windows.Forms;

// SharpDX namespaces

using SharpDX;

using SharpDX.DXGI;

using SharpDX.Direct3D11;

using Common;

// Resolve class name conflicts by explicitly stating

// which class they refer to:

using Buffer = SharpDX.Direct3D11.Buffer;

...

public class D3DApp : D3DApplicationDesktop

{

 public PrimitivesApp(System.Windows.Forms.Form window)

 : base(window)

 { }

 ...

}

4. Apart from the constructor shown previously, our D3DApp class must also implement

the public void Run() method for the abstract D3DApplicationDesktop

class. This will typically contain the main application message loop and rendering

loop like the following code snippet:

public override void Run()

{

http:///

Rendering with Direct3D

48

 While(running)
 {
 ... Process messages
 ... Render frame
 Present();
 }
}

5. For desktop applications, SharpDX provides a helper class SharpDX.Windows.
RenderLoop that implements the rendering loop and processes any

window messages for us. The following code demonstrates its use within

a D3DApplicationDesktop.Run implementation:

public override void Run()
{
 SharpDX.Windows.RenderLoop.Run(Window, () => {
 ... Render frame
 Present();
 });
}

6. To take advantage of the lifecycle management built into the Common.
DeviceManager class and the Common.D3DApplicationBase abstract base

class, we can optionally override the following methods in our D3DApp implementation:

// Override / extend the default SwapChainDescription1

protected override SwapChainDescription1
CreateSwapChainDescription()

{ ... }

// Event-handler for DeviceManager.OnInitialize

protected override void CreateDeviceDependentResources(DeviceManag
er deviceManager)

{ ... }

// Event-handler for D3DApplicationBase.OnSizeChanged

protected override void CreateSizeDependentResources(D3DApplicatio
nBase app)

{ ... }

7. We are now able to create an instance of D3DApp, initialize the Direct3D device and

resources, and then start the application loop. To ensure all resources are correctly

released, we can use a using code block. The following code snippet shows how this

might be done:

using (var app = new D3DApp(form))

{

 // Only render frames at the maximum rate the

http:///

Chapter 2

49

 // display device can handle.

 app.VSync = true;

 // Initialize the framework (creates D3D device etc)

 // and any device dependent resources are also created.

 app.Initialize();

 // Run the application message/rendering loop.

 app.Run();

}

How it works…

The Common project includes a simple framework that consists of three main areas: the

device manager, the Direct3D application classes, and the renderer classes with a number

of classes inheriting the latter two. The following class diagram shows the relevant methods

and properties of the device manager and Direct3D base application classes. The methods

that we have overridden and their respective events are highlighted along with the Direct3D

device and context properties on the device manager.

Common project's class diagram showing the device manager and Direct3D application base

http:///

Rendering with Direct3D

50

The device manager (the DeviceManager class) takes care of creating our Direct3D device

and context within its Initialize function. In addition, the device manager provides an

event to notify any listeners whenever the device manager is initialized/reinitialized—the

event that our CreateDeviceDependentResources function is tied to. This facilitates the

recreation of resources when a device is lost/recreated. This is necessary as resources that

have been created with a speciic device must now be recreated with the new device.

The D3DApplicationBase base class provides appropriate methods that can be

overridden to participate within the rendering process and Direct3D resource management.

The D3DApplicationDesktop class descends from this base class and provides the ability

to initialize a swap chain from a Windows Desktop window handle. We then implement the

abstract base Run() method in order to provide a render and message loop.

By overriding the D3DApplicationBase.CreateSwapChainDescription method,

we are able to control the creation of the swap chain and render target. For example, if we

wanted to implement multisample antialiasing (MSAA), we would override this method and

update the description accordingly.

We override the D3DApplicationBase.CreateDeviceDependentResources method

to create any Direct3D resources that depend on the Direct3D device instance. This is an

event-handler that is attached to the device manager that is triggered whenever the Direct3D

device is created/recreated.

In addition, we create any resources that depend upon the swap chain/render target size

within an overridden D3DApplicationBase.CreateSizeDependentResources function.

This is an event-handler that is attached to any appropriate window size change events.

Many of our Common project classes descend from the SharpDX.Component class.

This utility class includes methods for managing the IDisposable objects. As a majority of

our code interacts with Direct3D, a native COM-based API, it is important that we are correctly

disposing of these objects to prevent memory/resource leaks. The SharpDX.Component.
ToDispose<T>(T obj) method allows us to create an instance of IDisposable objects

without having to explicitly dispose of the instance; instead, any objects registered within

the ToDispose method will be automatically released upon disposal of our SharpDX.
Component instance.

By declaring the D3DApp instance within a using block, as long as our D3DApp

class passes all created Direct3D resources into the ToDispose method,

they will be correctly released. The counterpart to this is the SharpDX.Component.
RemoveAndDispose<T>(ref T obj) function, where we can manually release resources

at the beginning of the implementation of our CreateDeviceDependentResources or

CreateSizeDependentResources methods. The following code snippet shows how to

reinitialize a resource. Note that there is no need to check for null:

RemoveAndDispose(ref myDirect3DResource);

...

myDirect3DResource = ToDispose(new ...);

http:///

Chapter 2

51

See also
 f The following recipes Creating the device-dependent resources, Creating the

size-dependent resources, and Creating a Direct3D renderer class explore the

sample rendering framework further, before we implement a full example within

Rendering primitives

 f Chapter 11, Integrating Direct3D with XAML and Windows 8.1 includes the changes

to the rendering framework that are necessary to work with the Windows Store apps

Creating device-dependent resources

In this recipe, we will see how the included sample framework deals with the initialization

of device-dependent Direct3D resources and how our custom classes can make use of this

throughout this book.

Getting ready

We continue from where we left off in the Using the sample rendering framework recipe.

How to do it…

We will review the base class's implementation of the CreateDeviceDependentResources

function, and then look at how to implement overrides within the descending classes.

1. The following protected virtual D3DApplicationBase.
CreateDeviceDependentResources implementation is assigned

as an event-handler to the DeviceManager.OnInitialize event.

protected virtual void CreateDeviceDependentResources(DeviceManag
er deviceManager)

{

 if (_swapChain != null)

 {

 // Release the swap chain

 RemoveAndDispose(ref _swapChain);

 // Force reinitialize size dependent resources

 SizeChanged(true);

 }

}

http:///

Rendering with Direct3D

52

2. Within your class descending from D3DApplicationBase

(or D3DApplicationDesktop and so on), be sure to call the base

implementation, and then initialize the resources as required. The following

code snippet shows how initializing a Direct3D shader resource might look like.

public class D3DApp: Common.D3DApplicationDesktop

{

 Texture2D myShaderResource;

protected override void

 CreateDeviceDependentResources(

 DeviceManager deviceManager)

 {

 // Call base implementation

 base.CreateDeviceDependentResources(deviceManager);

 // Release existing resources

 RemoveAndDispose(ref myShaderResource);

 // Retrieve device reference

 var device = deviceManager.Direct3DDevice;

 // Create a shader resource view

 myShaderResource = ToDispose(

 ShaderResourceView.FromFile(device, "Texture.png"));

 ...

 }

...

How it works…

By handling the device manager's OnInitialize event our Direct3D applications

descendent class is able to create its Direct3D device resources when the device is

ready, or whenever the device instance is recreated.

The D3DApplicationBase base class provides the minimal code necessary to

ensure that any existing swap chain is released and then recreated by triggering the

D3DApplicationBase.OnSizeChanged event. Unless completely overriding the

base implementation, it is important that our overrides call this base implementation.

After calling the base implementation, our own code needs to release any resources that

may have been created previously by using the SharpDX.Component.RemoveAndDispose

method. Then we retrieve the currently active Direct3D device from the device manager and

continue to create any necessary resources.

http:///

Chapter 2

53

With this approach it is important to ensure that any resources that wrap a native COM object

are passed to ToDispose, so that they are correctly registered to be released when our class

instance is disposed.

SharpDX classes that wrap COM objects all descend from SharpDX.
ComObject. This class provides access to the native pointer and also

a number of helpful variations on the native IUnknown interface's

QueryInterface method.

Creating size-dependent resources

In this recipe, we will look at how the included sample framework deals with the initialization

of size-dependent Direct3D resources within the base Direct3D application class. We review

the base class's implementation, and then implement an override for a descending class.

We also review two important graphics pipeline preparation steps that are dependent upon

the render target size: creating the viewport for the Rasterizer Stage (RS) and creating a

depth/stencil buffer and view for the Output Merger (OM) stage.

Getting ready

We continue on from where we left off in the Using the sample rendering framework recipe.

How to do it…

The application base class D3DApplicationBase initializes the swap chain buffers

and render targets within the CreateSizeDependentResources method, which is

an event-handler attached to the D3DApplicationBase.OnSizeChanged event.

This method has been implemented as follows:

1. The base implementation is a protected virtual method that allows the descending

classes to extend the default behavior.

protected virtual void CreateSizeDependentResources(D3DApplication
Base app)

{ ... }

Unless completely overriding the base class's implementation, it is

important to always call base.CreateSizeDependentResources(
this) within your overridden implementation.

http:///

Rendering with Direct3D

54

2. After retrieving the device and device context from the device manager,

the irst action should be ensuring that any previous references to buffers
have been released.

// Retrieve references to device and context

var device = DeviceManager.Direct3DDevice;

var context = DeviceManager.Direct3DContext;

// Before swapchain can resize, buffers must be released

RemoveAndDispose(ref _backBuffer);

RemoveAndDispose(ref _renderTargetView);

RemoveAndDispose(ref _depthStencilView);

RemoveAndDispose(ref _depthBuffer);

RemoveAndDispose(ref _bitmapTarget);

3. If we are resizing an existing swap chain, then we will resize it using the

ResizeBuffers method.

// If the swap chain already exists, resize it.

if (_swapChain != null)

{

 _swapChain.ResizeBuffers(

 _swapChain.Description1.BufferCount,

 Width, Height,

 SharpDX.DXGI.Format.B8G8R8A8_UNorm,

 SharpDX.DXGI.SwapChainFlags.None);

}

// Otherwise, create a new one.

else

{

 ... create swap chain

}

4. If the swap chain has not already been initialized (or the device was reset), we need

to create a new swap chain. This is done almost exactly as described in the Initializing

a Direct3D 11.1/11.2 device and swap chain recipe in Chapter 1, Getting Started

with Direct3D.

// SwapChain description

var desc = CreateSwapChainDescription();

// Rather than create a new DXGI Factory we reuse the one

// that has been used internally to create the device.

http:///

Chapter 2

55

// Retrieve the underlying DXGI Device from the D3D Device.

// Access the adapter used for that device and then create

// the swap chain

using (var dxgiDevice2 = device.QueryInterface<SharpDX.DXGI.
Device2>())

using (var dxgiAdapter = dxgiDevice2.Adapter)

using (var dxgiFactory2 = dxgiAdapter.GetParent<SharpDX.DXGI.
Factory2>())

using (var output = dxgiAdapter.Outputs.First())

{

 // The CreateSwapChain method allows us to override the

 // method of swap chain creation.

 _swapChain = ToDispose(CreateSwapChain(dxgiFactory2, device,
 desc));

 // Retrieve the list of supported display modes

 DisplayModeList = output.GetDisplayModeList(desc.Format,
 DisplayModeEnumerationFlags.Scaling

}

5. With the swap chain resized or initialized, we retrieve the back buffer and create a

render target view (RTV) for it.

// Obtain the backbuffer for this window

BackBuffer = ToDispose(

 Texture2D.FromSwapChain<Texture2D>(_swapChain, 0));

// Create an RTV for the rendertarget.

RenderTargetView = ToDispose(new RenderTargetView(device,
 BackBuffer));

6. Next, we create the viewport. This is used by the rasterizer stage to map vertices from

3D clip space to 2D render target positions. We assign the viewport to the rasterizer

stage using the SetViewport method.

// Create a viewport descriptor of the render size.

var viewport = new SharpDX.ViewportF(

 (float)RenderTargetBounds.X,

 (float)RenderTargetBounds.Y,

 (float)RenderTargetBounds.Width,

 (float)RenderTargetBounds.Height,

 0.0f, // min depth

 1.0f); // max depth

// Set the current viewport for the rasterizer stage.

context.Rasterizer.SetViewport(viewport);

http:///

Rendering with Direct3D

56

It is not necessary for the viewport to be of the same size as the render

target, as vertices will be scaled to it the viewport dimensions. If the
view port is smaller than the target, then the output will only render to a

subregion of the render target and appears zoomed-out. If the view port

is larger than the target, then a portion of the output render will not be

visible and the visible region will appear zoomed-in.

7. Next, we create the depth buffer and a depth stencil view (DSV). After creating

the DSV, we set the DSV and RTV as the render targets of the OM.

// Create a descriptor for the depth/stencil buffer.

// Allocate a 2-D texture as the depth/stencil buffer.

// Create a DSV to use on bind.

this.DepthBuffer = ToDispose(new Texture2D(device, new
Texture2DDescription()

{

 Format = SharpDX.DXGI.Format.D24_UNorm_S8_UInt,

 ArraySize = 1,

 MipLevels = 1,

 Width = (int)RenderTargetSize.Width,

 Height = (int)RenderTargetSize.Height,

 SampleDescription = SwapChain.Description.SampleDescription,

 BindFlags = BindFlags.DepthStencil,

}));

this.DepthStencilView = ToDispose(new DepthStencilView(

 device,

 DepthBuffer,

 new DepthStencilViewDescription()

 {

 Dimension =

(SwapChain.Description.SampleDescription.Count > 1 ||
SwapChain.Description.SampleDescription.Quality > 0)
? DepthStencilViewDimension.Texture2DMultisampled :
DepthStencilViewDimension.Texture2D

 }));

// Set the OutputMerger targets

context.OutputMerger.SetTargets(DepthStencilView,
RenderTargetView);

http:///

Chapter 2

57

Using a 16-bit depth buffer can result in undesirable artifacts known as

z-fighting or flimmering. A 24- or 32-bit buffer performs much better.

However, it isn't possible to completely eliminate artifacts without the

use of additional algorithms. Moving the near z-plane as far from the

camera as possible can help against depth fighting artefacts. It is then

possible to use the 16-bit depth buffer more effectively.

8. Lastly, an example of the CreateSizeDependentResources method within

a descending class to override the RS viewport might look something like the

following code snippet:

protected override void CreateSizeDependentResources(

 D3DApplicationBase app)

{

 // Call base implementation

 base.CreateSizeDependentResources(app);

 // Retrieve device immediate context

 var context = this.DeviceManager.Direct3DContext;

 // Create a viewport descriptor of the render size.

 this.Viewport = new SharpDX.ViewportF(

 (float)RenderTargetBounds.X + 100,

 (float)RenderTargetBounds.Y + 100,

 (float)RenderTargetBounds.Width - 200,

 (float)RenderTargetBounds.Height - 200,

 0.0f, // min depth

 1.0f); // max depth

 // Set the current viewport for the rasterizer.

 context.Rasterizer.SetViewport(Viewport);

}

How it works…

Before trying to create/resize a swap chain, we irst make sure that any existing views that
access swap chain resources are released. This is necessary to allow the call to SwapChain.
ResizeBuffers to work, and it is a good practice when reinitializing to ensure resources are

released in a timely manner.

http:///

Rendering with Direct3D

58

When creating a new swap chain instance, the swap chain description is retrieved by a call to

the protected virtual function CreateSwapChainDescription, and the actual creation of

the swap chain is moved into the protected abstract function CreateSwapChain. This allows

the descending classes to override the default swap chain behavior. Then, it creates the swap

chain from an Hwnd handle for the desktop applications or with the Windows.UI.Core.
CoreWindow or SwapChainPanel object for the Windows Store apps.

The DSV allows the OM to determine which fragments (all the information necessary to create

a single pixel) will become actual pixels in the render target. The depth buffer (also known

as the Z-buffer) is represented by a Texture2D instance. It stores one or two components,

the depth and, optionally, the stencil. We use the 64-bit D32_Float_S8X24_UInt format

that provides 32 bits for the depth and 8 bits for the stencil, while the remaining 24-bits are

unused. The BindFlags instance indicates that this texture will be bound as a DSV.

All render targets (including the depth buffer) bound to the OM must be of the same

size and dimension; therefore when creating the depth buffer, it is important to use the

same SampleDescription structure that was used to create the back buffer (that is,

the one returned from CreateSwapChainDescription). If multisampling is enabled

then we must use DepthStencilViewDimension.Texture2DMultisampled as the

Dimension value in the DepthStencilViewDescription structure; otherwise, we pass

DepthStencilViewDimension.Texture2D.

Finally, our descendent class's overridden method shows how to call the base implementation

to prepare the swap chain, default render target, and depth/stencil buffer. Then it changes

the viewport settings to render to the center of the render target with a 200 x 200 pixel

reduction in size.

There's more…

The way the depth buffer works is better explained with a simple example. Imagine that

a scene to be rendered includes a wall, and a cube is located behind this wall (from the

viewer's perspective). If the wall is drawn irst, then when the OM is determining whether the
fragments for the cube should be rendered to pixels, it will check the depth buffer. If it sees

that the depth of the wall is closer, then the cube fragments will not be drawn. If the cube was

drawn irst and then the wall, the pixels for the cube in the render target will be discarded.
Then the fragments of the wall will be rendered as pixels in their place.

The stencil is used as a mask on a per-pixel basis, determining whether or not a pixel should

be rendered. This can be used for rendering techniques such as dissolves, decaling (for

example, scratches on a wall), outlining, silhouettes, shadows, fades, swipes, and composites

(for example, a rear view mirror in a driving simulation), or within deferred rendering

techniques for determining where lighting should be applied.

http:///

Chapter 2

59

See also
 f Chapter 3, Rendering Meshes, provides further information about the depth buffer

Creating a Direct3D renderer class
In this recipe, we will look at the inal component of our sample rendering framework,
the renderer. These are classes that implement speciic rendering logic, such as drawing
a mesh or utility classes that wish to participate within the Direct3D resource lifecycle

management of the rendering framework.

Getting ready

We continue on from where we left off in the Using the sample rendering framework recipe.

How to do it…

We will irst look at the steps necessary to create a Common.RendererBase descendent

and then how this class would be created, initialized, and inally execute its Direct3D
draw commands.

1. Creating a renderer class within the sample framework requires the following

minimal code:

public class MyRenderer : Common.RendererBase

{

 // Create device dependent resources

 protected override void CreateDeviceDependentResources()

 { ... }

 // Create size dependent resources

 protected override void CreateSizeDependentResources()

 { ... }

 // Perform rendering commands

 protected override void DoRender()

 { ... }

}

2. Within a class that is ultimately descending from D3DApplicationBase, you would

create and initialize an instance of this renderer class as follows:

var myRenderer = ToDispose(new MyRenderer());

myRenderer.Initialize(this);

http:///

Rendering with Direct3D

60

3. Finally, within a render loop, we can tell the renderer instance to perform its draw

commands as shown in the following line of code:

myRenderer.Render();

How it works…

The Common.RendererBase abstract class is similar to the D3DApplicationBase class.

It follows the same approach for managing the lifecycle of Direct3D resources by using

the SharpDX.Component class and the CreateDeviceDependentResources and

CreateSizeDependentResources methods. In addition, a public Render method is

available for executing the renderer's Direct3D commands.

The following class diagram shows the available methods and properties:

Sample rendering framework renderer class diagram

Implementations of the RendererBase class included in the rendering framework sample

code includes the TextRenderer and the FpsRenderer classes. The text renderer uses the

Direct2D device and context to render text of the speciied font, size, and color at the desired
screen location. The FPS renderer descends from the text renderer and displays the current

frame rate and frame time (100 frames simple moving average).

See also
 f The recipes in Chapter 9, Rendering on Multiple Threads and Deferred Contexts,

demonstrate how to control the current device context for a renderer instance

http:///

Chapter 2

61

Rendering primitives

Now that we have our rendering framework ready, we can inally work on the more interesting
stuff—actually rendering something!

All rendered objects, at their simplest form, are made up of one or more primitives: points,

lines, or triangles which are made up of one or more vertices. In this recipe, we will render

the following primitives:

 f A set of colored arrows representing the x, y, and z axes (red, green, and blue)

using lines

 f A triangle using a triangle

 f A quad (made up of two triangles)

We will also implement our WVP matrix and see how multisampling affects the rendered

image. The inal result is shown in the following igure:

Rendering primitives final output

http:///

Rendering with Direct3D

62

Getting ready

We'll start by creating a new Windows Form Application project named

Ch02_01RenderingPrimitives in the D3DRendering.sln solution:

1. Add the SharpDX.dll, SharpDX.DXGI.dll and SharpDX.Direct3D11.dll

references like we did in the previous recipes.

2. Next, we will add a reference to .\External\bin\SharpDX.D3DCompiler.dll

for dealing with our shader code.

3. An important step before we get started is to ensure that we are copying the Direct3D

d3dcompiler_46.dll DLL to the build directory, as this will let us compile our

shaders at runtime. To do this, open the project properties, select Build Events,

and add the following code to the Post-build event command line:

copy "$(SolutionDir)\External\Bin\Redist\D3D\x86\d3d*.dll"
"$(TargetDir)"

If you are not entirely familiar with .NET 4.5 yet, the behavior of AnyCPU

has changed. Now there is an additional option Prefer 32-bit. For all new

.NET 4.5 projects, this is selected by default—this is why we are using the

32-bit version of d3dcompiler_46.dll.

4. Make sure that you have the Common rendering framework project (that we used in

the Using the sample rendering framework recipe earlier in this chapter) added to

your D3DRendering.sln solution, and add a reference to it to our new project.

How to do it…

For this recipe, we will irst create a HLSL shader to render our primitive shapes. We will
create a D3DApp class that compiles our shaders and creates instances of our line, triangle,

and quad renderers.

1. The irst thing we will do is create our HLSL shader ile. Do this by adding a new Text

File to the project and call it Simple.hlsl. Add the following code to the shader ile:
// Constant buffer to be updated by application per frame

cbuffer PerObject : register(b0)

{

 // WorldViewProjection matrix

 float4x4 WorldViewProj;

};

http:///

Chapter 2

63

// Vertex Shader input structure with position and color

struct VertexShaderInput

{

 float4 Position : SV_Position;

 float4 Color : COLOR;

};

// Vertex Shader output structure consisting of the

// transformed position and original color

// This is also the pixel shader input

struct VertexShaderOutput

{

 float4 Position : SV_Position;

 float4 Color : COLOR;

};

// Vertex shader main function

VertexShaderOutput VSMain(VertexShaderInput input)

{

 VertexShaderOutput output = (VertexShaderOutput)0;

 // Transform the position from object space to homogeneous

 // projection space

 output.Position = mul(input.Position, WorldViewProj);

 // Pass through the color of the vertex

 output.Color = input.Color;

 return output;

}

// A simple Pixel Shader that simply passes through the

// interpolated color

float4 PSMain(VertexShaderOutput input) : SV_Target

{

 return input.Color;

}

By default, Visual Studio will create the ile using the UTF-8 with
signature encoding. The Direct3D 11 shader compiler requires ANSI

encoding. To do this in Visual Studio, navigate to FILE | Save Simple.

hlsl As... from the menu and select the Western European (Windows)

- Codepage 1252 encoding.

Select Yes when you are asked if you want to overwrite the ile.

http:///

Rendering with Direct3D

64

2. Select the shader ile in the Solution Explorer and select Copy if newer for the

Copy to Output Directory setting within the Properties window.

3. In our project, let's add a new class called D3DApp, which is descending from

D3DApplicationDesktop (note the additional using directives):

using SharpDX;

using SharpDX.Windows;

using SharpDX.DXGI;

using SharpDX.Direct3D11;

using SharpDX.D3DCompiler;

using Common;

using Buffer = SharpDX.Direct3D11.Buffer;

public class D3DApp: D3DApplicationDesktop

{

 public PrimitivesApp(System.Windows.Forms.Form window)

 : base(window)

 { }

 ...

}

4. We will include the following private member ields:
// The vertex shader

ShaderBytecode vertexShaderBytecode;

VertexShader vertexShader;

// The pixel shader

ShaderBytecode pixelShaderBytecode;

PixelShader pixelShader;

// The vertex layout for the IA

InputLayout vertexLayout;

// A buffer that will be used to update the constant buffer

// used by the vertex shader. This contains our

// worldViewProjection matrix

Buffer worldViewProjectionBuffer;

// Our depth stencil state

DepthStencilState depthStencilState;

http:///

Chapter 2

65

5. Next, we will implement our CreateDeviceDependentResources method

override as described in the Creating the device dependent resources recipe.

Within this method, we will begin by calling the base implementation, releasing

existing references, and retrieving our Direct3D device and immediate context:

base.CreateDeviceDependentResources(deviceManager);

// Release all resources

RemoveAndDispose(ref vertexShader);

RemoveAndDispose(ref vertexShaderBytecode);

RemoveAndDispose(ref pixelShader);

RemoveAndDispose(ref pixelShaderBytecode);

RemoveAndDispose(ref vertexLayout);

RemoveAndDispose(ref worldViewProjectionBuffer);

RemoveAndDispose(ref depthStencilState);

// Get a reference to the Device1 instance and context

var device = deviceManager.Direct3DDevice;

var context = deviceManager.Direct3DContext;

6. Next, we will compile our HLSL source code into a vertex and pixel shader.

We will enabling the debug lag if we are using the Debug build coniguration:
ShaderFlags shaderFlags = ShaderFlags.None;

#if DEBUG

shaderFlags = ShaderFlags.Debug;

#endif

// Compile and create the vertex shader

vertexShaderBytecode = ToDispose(ShaderBytecode.
CompileFromFile("Simple.hlsl", "VSMain", "vs_5_0", shaderFlags));

vertexShader = ToDispose(new VertexShader(device,
vertexShaderBytecode));

// Compile and create the pixel shader

pixelShaderBytecode = ToDispose(ShaderBytecode.
CompileFromFile("Simple.hlsl", "PSMain", "ps_5_0", shaderFlags));

pixelShader = ToDispose(new PixelShader(device,
pixelShaderBytecode));

7. Next, initialize a vertex layout to match the structure deined in our HLSL
vertex shader.

// Layout from VertexShader input signature

vertexLayout = ToDispose(new InputLayout(device,

 vertexShaderBytecode.GetPart(

http:///

Rendering with Direct3D

66

 ShaderBytecodePart.InputSignatureBlob),

new[]{

// input semantic SV_Position=vertex coord in object space

new InputElement("SV_Position",0,Format.R32G32B32A32_Float, 0, 0),

// input semantic COLOR = vertex color

new InputElement("COLOR", 0, Format.R32G32B32A32_Float, 16, 0)

}));

8. Now, we will create a new Buffer used to populate the WVP matrix constant buffer

deined within our HLSL code.
// Create the buffer that will store our WVP matrix
worldViewProjectionBuffer = ToDispose(new SharpDX.Direct3D11.
Buffer(device, Utilities.SizeOf<Matrix>(), ResourceUsage.
 Default, BindFlags.ConstantBuffer, CpuAccessFlags.None,
 ResourceOptionFlags.None, 0));

9. Create the depth stencil state to control how the OM stage will handle depth:

// Configure the OM to discard pixels that are
// further than the current pixel in the depth buffer.
depthStencilState = ToDispose(new DepthStencilState(device,
new DepthStencilStateDescription()
{
 IsDepthEnabled = true, // enable depth?
 DepthComparison = Comparison.Less,
 DepthWriteMask = SharpDX.Direct3D11.DepthWriteMask.All,
 IsStencilEnabled = false,// enable stencil?
 StencilReadMask = 0xff, // 0xff (no mask)
 StencilWriteMask = 0xff,// 0xff (no mask)
 // Configure FrontFace depth/stencil operations
 FrontFace = new DepthStencilOperationDescription()
 {
 Comparison = Comparison.Always,
 PassOperation = StencilOperation.Keep,
 FailOperation = StencilOperation.Keep,
 DepthFailOperation = StencilOperation.Increment
 },
 // Configure BackFace depth/stencil operations
 BackFace = new DepthStencilOperationDescription()
 {
 Comparison = Comparison.Always,
 PassOperation = StencilOperation.Keep,
 FailOperation = StencilOperation.Keep,
 DepthFailOperation = StencilOperation.Decrement
 },
}));

http:///

Chapter 2

67

10. Lastly, we need to assign our input layout, constant buffer, vertex and pixel shaders,

and the depth stencil state to the appropriate graphics pipeline stages.

// Tell the IA what the vertices will look like

context.InputAssembler.InputLayout = vertexLayout;

// Bind constant buffer to vertex shader stage

context.VertexShader.SetConstantBuffer(0,
worldViewProjectionBuffer);

// Set the vertex shader to run

context.VertexShader.Set(vertexShader);

// Set the pixel shader to run

context.PixelShader.Set(pixelShader);

// Set our depth stencil state

context.OutputMerger.DepthStencilState = depthStencilState;

Now that the resources have been initialized, we can implement the

D3DApplicationBase.Run method as described in the Using the

sample rendering framework recipe. Here, we will host our rendering

loop, initialize the renderers, and call their Render methods.

11. First we will initialize the instances of our renderers (the implementation of

these classes will follow shortly):

// Create and initialize the axis lines renderer

var axisLines = ToDispose(new AxisLinesRenderer());

axisLines.Initialize(this);

// Create and initialize the triangle renderer

var triangle = ToDispose(new TriangleRenderer());

triangle.Initialize(this);

// Create and initialize the quad renderer

var quad = ToDispose(new QuadRenderer());

quad.Initialize(this);

12. Next, we will prepare our world, view, and projection matrices. These matrices

are multiplied and the result is used to update the WVP constant buffer within

the render loop to perform vertex transformations within the vertex shader.

// Initialize the world matrix

var worldMatrix = Matrix.Identity;

// Set camera position slightly to the right (x), above (y)

// and behind (-z)

http:///

Rendering with Direct3D

68

var cameraPosition = new Vector3(1, 1, -2);

var cameraTarget = Vector3.Zero; // Looking at origin 0,0,0

var cameraUp = Vector3.UnitY; // Y+ is Up

// Create view matrix from our camera pos, target and up

var viewMatrix = Matrix.LookAtLH(cameraPosition, cameraTarget,
cameraUp);

// Create the projection matrix

// Field of View 60degrees = Pi/3 radians

// Aspect ratio (based on window size), Near clip, Far clip

var projectionMatrix = Matrix.PerspectiveFovLH((float)Math.PI /
3f, Width / (float)Height, 0.5f, 100f);

// Maintain the correct aspect ratio on resize

Window.Resize += (s, e) => {

 projectionMatrix = Matrix.PerspectiveFovLH((float)Math.PI / 3f,
Width / (float)Height, 0.5f, 100f);

};

Note that we are using a left-handed coordinate system for this recipe.

13. We can now implement our render loop. This is done the same way as in the previous

chapter, that is, by a call to RenderLoop.Run(Window, () => { ... });.

After retrieving our device context, we irst clear the depth stencil view and clear
the render target.

// Clear depth stencil view

context.ClearDepthStencilView(DepthStencilView,
DepthStencilClearFlags.Depth|DepthStencilClearFlags.
Stencil,1.0f,0);

// Clear render target view

context.ClearRenderTargetView(RenderTargetView, Color.White);

14. Next, we will multiply the view and projection matrices, and then create our WVP

matrix. Then this matrix is assigned to our constant buffer resource.

// Create viewProjection matrix

var viewProjection = Matrix.Multiply(viewMatrix,
projectionMatrix);

// Create WorldViewProjection Matrix

http:///

Chapter 2

69

var worldViewProjection = worldMatrix * viewProjection;

// HLSL defaults to "column-major" order matrices so

// transpose first (SharpDX uses row-major matrices).

worldViewProjection.Transpose();

// Write the worldViewProjection to the constant buffer

context.UpdateSubresource(ref worldViewProjection,
worldViewProjectionBuffer);

15. We can now call each of our renderer's Render method and present the inal result.
// Render the primitives

axisLines.Render();

triangle.Render();

quad.Render();

// Render FPS

fps.Render();

// Render instructions + position changes

textRenderer.Render();

// Present the frame

Present();

16. This completes our D3DApp class. Open Program.cs, and replace the Main()

method with the following code so that we are now utilizing our D3DApp class:

static void Main()

{

#if DEBUG

 // Enable object tracking

 SharpDX.Configuration.EnableObjectTracking = true;

#endif

 // Create the form to render to

 var form = new Form1();

 form.Text = "D3DRendering - Primitives";

 form.ClientSize = new System.Drawing.Size(1024, 768);

 form.Show();

 // Create and initialize the new D3D application

 // Then run the application.

 using (D3DApp app = new D3DApp(form))

 {

 // Only render frames at the maximum rate the

 // display device can handle.

 app.VSync = true;

http:///

Rendering with Direct3D

70

 // Initialize (create Direct3D device etc)

 app.Initialize();

 // Run the application

 app.Run();

 }

}

17. Let's irst add stubs for the renderer classes so that we can test whether our project
is compiling correctly. We will add these with names according to the following iles:
AxisLinesRenderer.cs, TriangleRenderer.cs, and QuadRenderer.cs.

Go ahead and create these empty classes now and descend them from Common.
RendererBase as demonstrated in the Creating a Direct3D renderer class recipe.

18. At this point we should be able to compile and run (F5) the project. A blank form will

appear with the frames per second displayed in the top-left corner.

19. We will irst complete the axis-lines renderer class of the renderers . Begin by

opening the AxisLinesRenderer.cs ile and adding the following private
member ields:
// The vertex buffer for axis lines

Buffer axisLinesVertices;

// The binding structure of the axis lines vertex buffer

VertexBufferBinding axisLinesBinding;

20. Now we will add the following resource initialization code to the

CreateDeviceDependentResources method. This consists of irst ensuring
that the resources have been released via RemoveAndDispose and then creating

a local reference to the device.

// Ensure that if already set the device resources

// are correctly disposed of before recreating

RemoveAndDispose(ref axisLinesVertices);

// Retrieve our SharpDX.Direct3D11.Device1 instance

var device = this.DeviceManager.Direct3DDevice;

21. Next, we create our vertex buffer and binding for use in the IA stage:

// Create xyz-axis arrows

// X is Red, Y is Green, Z is Blue

// The arrows point along the + for each axis

axisLinesVertices = ToDispose(Buffer.Create(device, BindFlags.
VertexBuffer, new[]

{

http:///

Chapter 2

71

/* Vertex Position Vertex Color */

new Vector4(-1f,0f,0f,1f),(Vector4)Color.Red, // - x-axis

new Vector4(1f,0f,0f,1f), (Vector4)Color.Red, // + x-axis

new Vector4(0.9f,-0.05f,0f,1f),(Vector4)Color.Red,//head start

new Vector4(1f,0f,0f,1f), (Vector4)Color.Red,

new Vector4(0.9f,0.05f,0f,1f), (Vector4)Color.Red,

new Vector4(1f,0f,0f,1f), (Vector4)Color.Red, // head end

new Vector4(0f,-1f,0f,1f), (Vector4)Color.Lime, // - y-axis

new Vector4(0f,1f,0f,1f), (Vector4)Color.Lime, // + y-axis

new Vector4(-0.05f,0.9f,0f,1f),(Vector4)Color.Lime,//head start

new Vector4(0f,1f,0f,1f), (Vector4)Color.Lime,

new Vector4(0.05f,0.9f,0f,1f), (Vector4)Color.Lime,

new Vector4(0f,1f,0f,1f), (Vector4)Color.Lime, // head end

new Vector4(0f,0f,-1f,1f), (Vector4)Color.Blue, // - z-axis

new Vector4(0f,0f,1f,1f), (Vector4)Color.Blue, // + z-axis

new Vector4(0f,-0.05f,0.9f,1f),(Vector4)Color.Blue,//head start

new Vector4(0f,0f,1f,1f), (Vector4)Color.Blue,

new Vector4(0f,0.05f,0.9f,1f), (Vector4)Color.Blue,

new Vector4(0f,0f,1f,1f), (Vector4)Color.Blue, // head end

}));

axisLinesBinding = new VertexBufferBinding(axisLinesVertices,
Utilities.SizeOf<Vector4>() * 2, 0);

22. The axis lines drawing logic is made up of the following code which belongs to

DoRender. This sets the topology to be used, passes the vertex buffer to the IA

stage, and requests the pipeline to draw the 18 vertices we just deined.
// Get the context reference

var context = this.DeviceManager.Direct3DContext;

// Render the Axis lines

// Tell the IA we are using lines

context.InputAssembler.PrimitiveTopology = SharpDX.Direct3D.
PrimitiveTopology.LineList;

// Pass in the line vertices

context.InputAssembler.SetVertexBuffers(0, axisLinesBinding);

// Draw the 18 vertices or our xyz-axis arrows

context.Draw(18, 0);

http:///

Rendering with Direct3D

72

23. Next, we will implement the triangle renderer. Open the TriangleRenderer class

and add the following private member ields:
// The triangle vertex buffer

Buffer triangleVertices;

// The vertex buffer binding structure for the triangle

VertexBufferBinding triangleBinding;

24. We will initialize the device-dependent resources with this code. As with the axis lines

renderer, here we also need to create a vertex buffer and binding.

RemoveAndDispose(ref triangleVertices);

// Retrieve our SharpDX.Direct3D11.Device1 instance

var device = this.DeviceManager.Direct3DDevice;

// Create a triangle

triangleVertices = ToDispose(Buffer.Create(device, BindFlags.
VertexBuffer, new[] {

/* Vertex Position

 Vertex Color */

 new Vector4(0.0f, 0.0f, 0.5f, 1.0f),

 new Vector4(0.0f, 0.0f, 1.0f, 1.0f), // Base-right

 new Vector4(-0.5f, 0.0f, 0.0f, 1.0f),

 new Vector4(1.0f, 0.0f, 0.0f, 1.0f), // Base-left

 new Vector4(-0.25f, 1f, 0.25f, 1.0f),

 new Vector4(0.0f, 1.0f, 0.0f, 1.0f), // Apex

}));

triangleBinding = new VertexBufferBinding(triangleVertices,
Utilities.SizeOf<Vector4>() * 2, 0);

25. And inally, render our triangle with the following code that is placed in DoRender().

This time, we use a different topology and only need to draw three vertices.

// Get the context reference

var context = this.DeviceManager.Direct3DContext;

// Render the triangle

// Tell the IA we are now using triangles

context.InputAssembler.PrimitiveTopology = SharpDX.Direct3D.
PrimitiveTopology.TriangleList;

// Pass in the triangle vertices

context.InputAssembler.SetVertexBuffers(0, triangleBinding);

// Draw the 3 vertices of our triangle

context.Draw(3, 0);

http:///

Chapter 2

73

26. Lastly, we will implement our quad renderer. Open the QuadRenderer class,

and add the following private member ields:
// The quad vertex buffer

Buffer quadVertices;

// The quad index buffer

Buffer quadIndices;

// The vertex buffer binding for the quad

VertexBufferBinding quadBinding;

27. Initialize the device-dependent resources with the following code. We are initializing

our vertex buffer and binding in the same way as the axis lines and triangle renderer.

In addition, we are creating an index buffer to re-use the existing vertices.

RemoveAndDispose(ref quadVertices);
RemoveAndDispose(ref quadIndices);

// Retrieve our SharpDX.Direct3D11.Device1 instance
var device = this.DeviceManager.Direct3DDevice;

// Create a quad (two triangles)
quadVertices = ToDispose(Buffer.Create(device, BindFlags.
VertexBuffer, new[] {
/* Vertex Position
 Vertex Color */
 new Vector4(0.25f, 0.5f, -0.5f, 1.0f),
 new Vector4(0.0f, 1.0f, 0.0f, 1.0f), // Top-left
 new Vector4(0.75f, 0.5f, -0.5f, 1.0f),
 new Vector4(1.0f, 1.0f, 0.0f, 1.0f), // Top-right
 new Vector4(0.75f, 0.0f, -0.5f, 1.0f),
 new Vector4(1.0f, 0.0f, 0.0f, 1.0f), // Base-right
 new Vector4(0.25f, 0.0f, -0.5f, 1.0f),
 new Vector4(0.0f, 0.0f, 1.0f, 1.0f), // Base-left
}));
quadBinding = new VertexBufferBinding(quadVertices, Utilities.
SizeOf<Vector4>() * 2, 0);

// v0 v1
// |-----|
// | \ A |
// | B \ |
// |-----|
// v3 v2
quadIndices = ToDispose(Buffer.Create(device, BindFlags.
IndexBuffer, new ushort[] {
 0, 1, 2, // A
 2, 3, 0 // B

}));

http:///

Rendering with Direct3D

74

28. We will now render the quad using the following code placed in the DoRender

override. We will use the same topology as the triangle renderer; however, this

time we also need to set the index buffer and use them when drawing the vertices:

var context = this.DeviceManager.Direct3DContext;

// Tell the IA we are using a triangle list

context.InputAssembler.PrimitiveTopology = SharpDX.Direct3D.
PrimitiveTopology.TriangleList;

// Set the index buffer

context.InputAssembler.SetIndexBuffer(quadIndices, Format.R16_
UInt, 0);

// Pass in the quad vertices (note: only 4 vertices)

context.InputAssembler.SetVertexBuffers(0, quadBinding);

// Draw the 6 vertices that make up the two triangles in the quad

// using the vertex indices

context.DrawIndexed(6, 0, 0);

// Note: we have called DrawIndexed to use the index buffer

29. Compile and run the project and you will now see a result similar to the igure shown
at the beginning of this recipe.

To add the key down and mouse wheel handlers for rotating the objects,

copy the code from the sample code that can be downloaded for this book

from Packt's website. With this code in place, the scene can be rotated around

the x, y, and z axes using the arrow keys and mouse wheel. The camera is

moved with the W, A, S, and D keys and Shift + mouse wheel. Pressing X

will reinitialize the device—this is useful for testing the initialization code.

How it works…

We have started by creating our HLSL shader code. This consists of one constant buffer that

stores the WVP matrix, two structures that store the input/output of the vertex shader and

also the input for the pixel shader, and our two shader methods for the vertex shader and

pixel shader.

cbuffer PerObject : register(b0) {

 // WorldViewProjection matrix

 float4x4 WorldViewProj;

};

The preceding constant buffer declaration is named PerObject and will be loaded using the

irst constant buffer register, that is, b0 (also known as slot 0). The buffer consists of a single

4 x 4 afine transform matrix, which is our precalculated WVP matrix. The name itself is of no
consequence. It is the register number/slot number and name of the properties within that

are important.

http:///

Chapter 2

75

For performance reasons, it is best to group properties with

a similar update frequency into the same constant buffer, for

example, those updated per frame and those updated per object.

The vertex shader structures hold the position and color component. When initializing the IA

stage, we will see how the VertexShaderInput structure and the input layout match up.

Ultimately, these structures deine our vertex layout.

There are two shader entry points: VSMain represents the vertex shader and PSMain is

the pixel shader. The vertex shader will transform vertices from local object space into a

homogeneous projection space based on the world, view, and projection (by applying the

WVP matrix). The return value is the result of this along with the color, and it is the same

structure that is passed into the pixel shader. This shader will run for each vertex.

The pixel shader is provided with an interpolated VertexShaderOutput structure

by the rasterizer state—this pixel shader is doing nothing but returning the unchanged

color component.

Next, we implemented our Direct3D application class. This houses the rendering loop,

and it initializes the Direct3D pipeline and our individual renderers. We descend from

D3DApplicationDesktop, which simply creates the SwapChain1 instance based on

a System.Windows.Form, as demonstrated in Chapter 1, Getting Started with Direct3D.

We provided a compatible constructor that passes the form through to the base class.

Resource Initialization
The CreateDeviceDependentResources implementation that is provided creates our

device-dependent resources and initializes the IA and OM stages of the rendering pipeline.

First, we created our shader programs by compiling them. For example, we compile our vertex

shader by using ShaderBytecode.CompileFromFile("Simple.hlsl", "VSMain",
"vs_5_0", shaderFlags). This compiles Simple.hlsl by using the vs_5_0 shader

proile and uses VSMain as the entry point. If we have compiled for Debug, we are telling the

shader to include the debug information via the shaderFlags enumeration value. This allows

us to step through the shaders when using the graphics debugging tools in Visual Studio.

After the shaders are compiled, we prepare the input layout for the IA. This is used to tell

the IA in which memory layout the vertices can be expected when copying them to the

VertexShaderInput structure in our shader ile.

new InputLayout(..., new[] {

 new InputElement("SV_Position",0,Format.R32G32B32A32_Float, 0, 0),

 new InputElement("COLOR", 0, Format.R32G32B32A32_Float, 16, 0)

});

http:///

Rendering with Direct3D

76

The previous layout tells the input assembler that the COLOR component will be located

after the 16 bytes of the SV_Position component. In the preceding code, we can see that

the name and format of the input layout matches the type and input semantics (the name)

used in the Simple.hlsl shader.

struct VertexShaderInput

{

 float4 Position : SV_Position;

 float4 Color : COLOR;

};

Next, we will create our constant buffer to store the WVP matrix. A second buffer for

updating the per-frame information, such as light position, direction, and color, is another

common resource.

new SharpDX.Direct3D11.Buffer(device, Utilities.SizeOf<Matrix>(),
ResourceUsage.Default, BindFlags.ConstantBuffer, CpuAccessFlags.None,
ResourceOptionFlags.None, 0)

Here we created a buffer that is the size of a single Matrix structure. This buffer that is

available for read/write on the GPU (ResourceUsage.Default) is a constant buffer, and it

will not be accessible directly from the CPU. There are no additional options set, and as it is

only representing a single object there is no structure byte stride.

Next, we will create our DepthStencilState class which is used to control how the OM

stage will behave when determining whether to keep or discard a fragment based on depth

(recall that we created our depth buffer in D3DApplicationBase). The state object created

here enables depth testing, disables the stencil, and will choose pixels that are closer to the

camera over pixels that are further away. There is little need to change this state, other than

to enable the stencil.

context.InputAssembler.InputLayout = vertexLayout;

context.VertexShader.SetConstantBuffer(0, worldViewProjectionBuffer);

context.VertexShader.Set(vertexShader);

context.PixelShader.Set(pixelShader);

context.OutputMerger.DepthStencilState = depthStencilState;

http:///

Chapter 2

77

Finally, we assign the input layout to the IA, add the constant buffer to the vertex shader

stage, set the vertex shader and pixel shader programs, and set the OM depth stencil state.

Note that when setting the constant buffer, we have used slot 0.

This correlates with register(b0) in the shader code.

Render loop
The code within our D3DApp.Run() method irst initializes our renderers, then sets up
our initial camera position, sets up our view and projection matrices, and inally starts our
rendering loop.

We have initialized a world matrix using an identity matrix which effectively means that we

are not translating, rotating, or scaling any of the objects in this scene.

In Direct3D, the traditional coordinate system is left-handed, with the camera view looking

down the Z+ axis with X+ to the right, and Y+ as up. The view matrix is created with the

camera position and where it is looking at and which direction is up. Here, we are placing the

camera slightly up, to the right, and behind the origin to give us a better view of the scene.

var cameraPosition = new Vector3(1, 1, -2);

var cameraTarget = Vector3.Zero; // Looking at the origin 0,0,0

var cameraUp = Vector3.UnitY; // Y+ is Up

var viewMatrix = Matrix.LookAtLH(cameraPosition, cameraTarget,
cameraUp);

Although we have used a left-handed coordinate system in this

recipe, we will move to using a right-handed coordinate system

in all subsequent chapters.

The projection matrix is created using the desired ield-of-view angle, aspect ratio, and the
near and far Z-planes. This matrix gives us our perspective.

// FoV 60degrees = Pi/3 radians

var projectionMatrix = Matrix.PerspectiveFovLH((float)Math.PI / 3f,
Width / (float)Height, 0.5f, 100f);

http:///

Rendering with Direct3D

78

Combining the view and projection matrices, we get the view frustum—a region of space that

deines what is visible through the camera. The process of excluding objects that do not lie
within this space is called frustum culling. This region is roughly the shape of a pyramid on its

side, with its top cut off as shown in the following igure. In this igure, everything between the
Z-planes 1 (our 0.5f near plane) and 2 (our 100f far plane), and within the bounds of the

pyramid, will appear on the screen.

A view frustum for a view from the left-hand side

Other than our rendering commands, the render loop does two additional operations to the

render loops of Chapter 1, Getting Started with Direct3D. We irst cleared the depth/stencil
view, which resets our depth buffer. This is important to do or we will have depth bleeding

between frames.

Then after creating the WVP matrix, we updated the WVP matrix constant buffer with a call

to DeviceContext.UpdateSubresource. HLSL, by default, expects the matrix to be in

column-major order. Therefore, we must irst transpose our SharpDX row major WVP matrix
(write the rows of the matrix as the columns).

Renderers

The IA input layout that we deined requires that the vertices are two 4-component
loats making up 32 bytes. The irst 16 bytes represent the object-space position,
and the second 16 bytes represent the vertex color.

http:///

Chapter 2

79

When creating the vertex buffer, any structure can be used to represent the vertex as long as

its memory layout matches the input layout. We have used an array of Vector4 instances in

this example; however, this could, just as easily, have been a new structure with two Vector4

members or an array of loats. In this code, every second Vector4 represents the color of the

vertex (RGBA).

Coordinates of the vertices in the vertex buffer are in the object space

or model space, and they are usually created around the origin point.

The axis lines in the AxisLinesRenderer class are made up of 18 vertices to draw the

lines and arrow shapes for the axes. We create the buffer like any other Buffer object but

with a binding of BindFlags.VertexBuffer. Then, we create a VertexBufferBinding,

passing the size of a single element as the stride and 0 as the offset.

buffer=Buffer.Create(device, BindFlags.VertexBuffer, new[] {...});

binding = new VertexBufferBinding(buffer, Utilities.SizeOf<Vector4>()
* 2, 0);

Before issuing the draw command for the axis lines, irst we must tell the IA that the
vertex buffer represents a list of lines by setting the context.InputAssembler.
PrimitiveTopology to PrimitiveTopology.LineList. Then, we set the vertex buffers

of the IA, and issue the DeviceContext draw command for 18 vertices—starting at the irst
vertex with a call to context.Draw(18, 0).

The axis-lines could be added to any scene during development to

assist with the orientation.

The TriangleRenderer class is made in exactly the same way except that we need

three vertices to render an object, and when drawing, we must set PrimitiveTopology to

PrimitiveTopology.TriangleList. The context.Draw command passes three vertices.

The Input Assembler will automatically ignore malformed primitives, that is, lines require a

start and end point. If an odd number of vertices was provided in the vertex buffer, the last

vertex will be discarded. This applies to all vertex buffers.

The QuadRenderer class does not represent a quad primitive type (there is no such

primitive). Instead, we create two triangles for the halves of the quad. This is done exactly

the same as the triangle example, but, with two triangles. All complex shapes are made up

of multiple triangles in a similar fashion.

http:///

Rendering with Direct3D

80

Rather than creating duplicate vertices for the two points where the triangles align along their

hypotenuse, we will use an index buffer. This allows us to reduce the number of vertices sent

to the IA by reusing the same vertices by index—if we used an index buffer for the axis lines,

we would have used 12 vertices instead of 18. Although this isn't entirely necessary for our

examples, larger meshes will quickly see a reduction in the memory bandwidth used.

// v0 v1

// |-----|

// | \ A |

// | B \ |

// |-----|

// v3 v2

quadIndices = ToDispose(Buffer.Create(device, BindFlags.IndexBuffer,
new ushort[] {

 0, 1, 2, // A

 2, 3, 0 // B

}));

Here, we have four vertices in the vertex buffer. To build triangle A, we will use the indexes 0,

1, and 2; and to build triangle B, we will use the indexes 2, 3, and 0.

By default, a clockwise vertex direction will deine the front face of a primitive (for example,
from our camera position) drawing a triangle from top-left to right to bottom-right and

then back to top-left will mean that the back face is away from the camera. Rotating the

scene by 180 degrees using the arrow keys will show that the shape no longer renders

because of back-face culling. Try reversing the vertex direction to see what happens.

We can override the default direction by assigning a RasterizerState object to the

context.Rasterizer.State property, where the RasterizerStateDescription.
IsFrontCounterClockwise property can be set to true or false, as appropriate.

When we draw the triangle list for the quad, we must set an index buffer and a vertex buffer.

Indices can be deined using 16 or 32 bits. In this example, we have used an unsigned short
(16-bit). So we must use a format of Format.R16_Uint when setting the index buffer.

To let the pipeline know that we are using the index buffer, we must call the DrawIndexed

method rather than Draw. Notice that although we only deined four vertices, we have asked it
to draw six (the number of indices).

context.DrawIndexed(6, 0, 0);

http:///

Chapter 2

81

There's more…

You may have noticed that the actual pixel colors have been interpolated between the

vertices, that is, if vertex (A) of a line is red (1, 0, 0, 1) and vertex (B) is green (0, 1, 0, 1),

all the pixels in between have been linearly interpolated between those two values by the

rasterizer stage (remember that the rasterizer stage is immediately before the pixel shader).

Half-way along the line, the value of the pixel will be 0.5, 0.5, 0, and 1. This applies to all

the per-vertex attributes except the vertex position.

It is possible to control the interpolation method for individual vertex struct ields within
HLSL by preixing with one of the following interpolation modiiers:

 f linear: This is the default mode of interpolation if no modiier is provided.

 f centroid: This method may improve antialiasing if a pixel is partially covered,

and it must be combined with linear or noperspective.

 f nointerpolation: This method tells the rasterizer to perform no interpolation,

instead using the value of the closest vertex. This is the only valid option for the

int/uint types in a vertex.

 f noperspective: This method causes the rasterizer to not perform perspective

correction during interpolation.

 f sample: This method interpolates per sample location rather than per pixel

center (which is generally used in conjunction with antialiasing to change the

behavior). It may be useful to combine this with the SV_SampleIndex pixel

shader input semantic.

An example of this in HLSL is as follows:

struct VertexShaderOutput { ...

 nointerpolation float4 Color: COLOR; }

There are a number of additional primitive types that we didn't use. These include:

PointList, LineListWithAdjacency, LineStrip, TriangleListWithAdjacency,

TriangleStrip, and PatchListWith1ControlPoints through to

PatchListWith32ControlPoints. The patch list topologies are used

with the tessellation stages.

http:///

Rendering with Direct3D

82

See also
 f We will be rendering more complex objects in the recipes Rendering a cube and

sphere and Loading a static mesh from a ile in Chapter 3, Rendering Meshes

 f We will cover how to use the patch topologies in the recipe Tessellation of

primitives in Chapter 5, Applying Hardware Tessellation

 f We use a triangle-strip in Chapter 10, Implementing Deferred Rendering,

for implementing a screen-aligned quad renderer

Applying multisample anti-aliasing
In this recipe, we will enable multisample antialiasing (MSAA) to smoothen lines and edges.

Getting ready

We can apply this recipe to any of our recipes that are implemented with a class that

descends from D3DApplicationBase. Otherwise, this can be easily adapted to work

with the creation of any swap chain.

How to do it…

We can smooth the lines in our example by enabling multisampling:

1. To do this, simply override the D3DApplicationBase.
CreateSwapChainDescription() method in our class as follows:

protected override SwapChainDescription1
CreateSwapChainDescription()

{

 var description = base.CreateSwapChainDescription();

 description.SampleDescription.Count = 4;

 description.SampleDescription.Quality = 0;

 return description;

}

2. Compile and run the project (F5), and you will now have antialiased edges.

http:///

Chapter 2

83

How it works…

The following screenshot compares the difference between having antialiasing off

and on—notice the jaggies along the bottom of the triangle are not there in the

right-hand side image.

No antialiasing on the left and 4x multisampling on the right

It is important to note that all depth/stencil and render targets must use the same

SampleDescription structure.

See also
 f The Incorporating multisample antialiasing recipe in Chapter 10, Implementing

Deferred Rendering, that covers some additional advanced topics for using MSAA

textures where multisampling would otherwise be unavailable.

Implementing texture sampling
In this recipe we are going to take the quad and triangle renderers from the previous

example and apply some texture using a shader resource view (SRV), a sampler state

object, and changes to the shader program.

http:///

Rendering with Direct3D

84

The inal output from the example will look something like the following igure:

Textured triangle and quad

Getting ready

For this recipe, we will continue from where we left of in the Rendering primitives recipe.

There are two texture iles included with the sample code that you will also need. Alternatively,
you may use any BMP, JPG, PNG, or even DDS formats. For reference, the two textures used in

this project are shown in the following igure:

The two 256x256 textures used in this recipe

http:///

Chapter 2

85

How to do it…

For this recipe, we will irst change the HLSL shader code to accept the SRV and sampler
state. Then, we will update our renderers to use texture coordinates, load the textures,

and bind the SRVs to the appropriate stages of the pipeline. To do so, follow the given steps:

1. Add the two texture iles, Texture.png and Texture2.png, to the project.

Then, select Copy if newer as the Copy to Output value in the Properties window.

2. Add the following global variables to Simple.hlsl:

// Globals for texture sampling

Texture2D ShaderTexture : register(t0);

SamplerState Sampler : register(s0);

3. Modify Simple.hlsl so that the vertex structures look like the following

code snippet:

struct VertexShaderInput {

 float4 Position : SV_Position;

 float2 TextureUV : TEXCOORD0;

};

struct VertexShaderOutput {

 float4 Position : SV_Position;

 float2 TextureUV : TEXCOORD0;

};

4. Change the VSMain HLSL function so that it passes through a TextureUV

property rather than Color.

output.TextureUV = input.TextureUV;

5. Replace the content of the PSMain function so that it samples the texture as

shown in the following code:

// Sample the pixel color using the sampler and texture

// using the input texture coordinate

return ShaderTexture.Sample(Sampler, input.TextureUV);

http:///

Rendering with Direct3D

86

6. Within our Direct3D application class (D3DApp), change the vertex layout initialization

to include the texture coordinate:

vertexLayout = ToDispose(new InputLayout(device,

 ShaderSignature.GetInputSignature(vertexShaderBytecode),

new[] {

// input semantic SV_Position=vertex coord in object space

new InputElement("SV_Position",0,Format.R32G32B32A32_Float, 0, 0),

// input semantic TEXTCOORD = vertex texture coordinate

new InputElement("TEXCOORD", 0, Format.R32G32_Float, 16, 0)

}));

7. In each of the renderers, add the following private member ields:
// Shader texture resource

ShaderResourceView textureView;

// Control sampling behavior with this state

SamplerState samplerState;

8. And then, initialize member ields within the CreateDeviceDependentResources

method, changing Texture.png to Texture2.png in the TriangleRenderer

class.

// Load texture

textureView = ToDispose(

ShaderResourceView.FromFile(device, "Texture.png"));

// Create our sampler state

samplerState = ToDispose(

new SamplerState(device, new SamplerStateDescription() {

 AddressU = TextureAddressMode.Wrap,

 AddressV = TextureAddressMode.Wrap,

 AddressW = TextureAddressMode.Wrap,

 Filter = Filter.MinMagMipLinear,

}));

9. Within the DoRender method of each primitive renderer, add the following code:

// Set the shader resource

context.PixelShader.SetShaderResource(0, textureView);

// Set the sampler state

context.PixelShader.SetSampler(0, samplerState);

http:///

Chapter 2

87

10. In AxisLinesRenderer.cs, change the vertex buffer creation so that each of the

Vector4 vertex positions are only an array of loats. Then, replace the color with a
texture coordinate as shown here:

axisLinesVertices = ToDispose(Buffer.Create(device,

 BindFlags.VertexBuffer, new[] {

/* Vertex Position Texture UV */

 // ~45x10

-1f, 0f, 0f, 1f, 0.1757f, 0.039f,// - x-axis

1f, 0f, 0f, 1f, 0.1757f, 0.039f,// + x-axis

// SNIP... // ~135x35

0f, -1f, 0f, 1f, 0.5273f, 0.136f,// - y-axis

// SNIP... // ~220x250

0f, 0f, -1f, 1f, 0.859f, 0.976f, // - z-axis

// SNIP...

}));

axisLinesBinding = new VertexBufferBinding(axisLinesVertices,
Utilities.SizeOf<float>() * 6, 0);

11. Within TriangleRenderer.cs, change the vertex buffer creation to use the

following vertices (be sure to also update the VertexBufferBinding method).

/* Vertex Position Vertex UV */

0.75f, -0.75f, -0.001f, 1.0f, 1.0f, 1.0f, // Base-right

-0.75f, -0.75f, -0.001f, 1.0f, 0.0f, 1.0f, // Base-left

0.0f, 0.75f, -0.001f, 1.0f, 0.5f, 0.0f, // Apex

12. Within QuadRenderer.cs, change the vertex buffer creation as follows:

/* Vertex Position texture UV */

-0.75f, 0.75f, 0f, 1.0f, 0.0f, 0.0f, // Top-left

0.75f, 0.75f, 0f, 1.0f, 2.0f, 0.0f, // Top-right

0.75f, -0.75f, 0f, 1.0f, 2.0f, 2.0f, // Base-right

-0.75f, -0.75f, 0f, 1.0f, 0.0f, 2.0f, // Base-left

13. Compile and run (F5) your project. You should see the igure shown at the
beginning of this recipe.

If it looks like you are missing vertices or the primitives are drawing

incorrectly, you may have specified the incorrect size when creating

the vertex buffer binding. Make sure that it reads Utilities.
SizeOf<float>() * 6 noting that we are using float

(not Vector4) and there are six of them per vertex.

www.allitebooks.com

http:///
http://www.allitebooks.org

Rendering with Direct3D

88

How it works…

First, we will update our HLSL to include two global variables for storing the SRV and the

sampler state we created in our renderers. Next, we will update our shader to accept a

texture UV coordinate as input rather than a color (float2 TextureUV : TEXCOORD0;).

Texels, in a 2D texture, are addressed using the x and y axes. However,

as these names are already used in 3D space, we refer to them as UV

coordinates instead. UV coordinates are normalized, where the upper left

corner is 0(U),0(V) and the bottom right corner is 1(U),1(V). Therefore,

the UV coordinate for the pixel located at 100, 150 within a 200 x 200

texture would be 0.5(U), 0.75(V) (that is, 100/200, 150/200). There is also

a third component, W (z axis) that can be used to address 3D textures or

volume textures and cube maps. Therefore, the full term is therefore a UVW

coordinate, however, we generally use a 2D texture and drop the W.

The vertex shader now passes through an unchanged UV coordinate. The pixel shader then

determines the color by sampling from the ShaderTexture global variable provided by the

SRV by using the sampler state and interpolated vertex UV coordinate.

Since we changed the structure of the vertex, we must also update the input layout for the

IA so that it is now expecting four loats for the vertex position and two loats for the UV.

In each of the renderers, we are loading a SRV directly from the texture ile using
ShaderResourceView.FromFile. Internally this creates a Texture2D resource

and returns a SRV so that it can be bound to the pipeline.

ShaderResourceView.FromFile is unavailable for the

Windows Store apps, Chapter 11, Integrating Direct3D with XAML

and Windows 8.1, covers how to replace this method in the recipe

Loading and compiling resources asynchronously.

The SamplerState global variable that we create controls how the sampling in the pixel

shader determines the correct coordinate and which ilter method to use. The AddressU/V/W

properties of the description control how to handle values outside of the 0.0 - 1.0 UVW

range. For example, whereas TextureAddressMode.Wrap repeats the texture,

using TextureAddressMode.Clamp will make anything outside the range appear

smeared (clamping to zero or one)—try clamping the quad renderer to see this effect.

http:///

Chapter 2

89

The Filter property of the sampler state description controls which texels will be used

and how they are combined to generate the inal pixel. Here, we have used Filter.
MinMagMipLinear, which provides a better quality result than the default Filter.
MinMagMipPoint value. The sampler will now use linear interpolation when minifying,

when magnifying, and for mid-level sampling. Zooming in and out will show the effect of

the iltering method used. Try changing the triangle or quad back to the default and see
the contrast in quality. Also, try doing this with other ilter values.

To make the SRV and sampler state available to the pixel shader, we have bound them with

a call to PixelShader.SetShaderResource and PixelShader.SetSampler within

DoRender of each renderer. We have speciied slot 0 for both of these functions which
correlate to register(t0) and register(s0) within the shader for the texture and

sampler state respectively.

Next, we have deined our new vertex buffers. These buffers are now represented by an
array of six loats for each vertex. The axis lines are sampling single texels for each line that
approximates the original colors used (red/green/blue). The triangle is sampling within the

bounds of the texture (between zero and one) to select the entire width of the texture at the

base and the top-center of the texture at the apex. The quad is addressing twice the width and

height of the texture (between zero and two) that combined with the TextureAddressMode.
Wrap value that is repeating the texture four times within the surface.

To address z-ighting/limmering, the triangle has been brought forward
by a tiny amount. To see the effects of these depth artifacts, try setting

the z coordinate value back to zero.

See also
 f See Chapter 3, Rendering Meshes, and Chapter 4, Animating Meshes with Vertex

Skinning, for more examples of texture sampling and a discussion on UV unwrapping

 f The recipe Loading and compiling resources asynchronously in Chapter 11,

Integrating Direct3D with XAML and Windows 8.1, demonstrates how to load

images into an SRV for Windows Store apps

http:///

http:///

3
Rendering Meshes

In this chapter, we will cover the following topics:

 f Rendering a cube and sphere

 f Preparing the vertex and constant buffers for materials and lighting

 f Adding material and lighting

 f Using a right-handed coordinate system

 f Loading a static mesh from a ile

Introduction

A mesh is technically just a vertex and index buffer that represents a 3D object, and if we

look at what we have already covered, we can easily understand this. However, these objects

nearly always require a number of additional properties, such as material (surface and lighting

properties), textures, submeshes, bones, and animations. This is what Microsoft has done in

the past with their ID3DX10Mesh interface; however, this is not available for Direct3D 11

(along with a number of other utility classes), and it is now recommended that you roll your own.

There are other open source projects that provide the replacement

functionality, part of which is used in the SharpDX Toolkit and part of

which we will be using here. Most notable is the DirectX Tool Kit that

is available at https://directxtk.codeplex.com/.

For our purpose, a mesh is the combination of submeshes, materials, object extent, bones,

animations, and references to common assets such as textures and shaders. We will begin by

working with these elements separately and then pulling them together within a mesh renderer.

http:///

Rendering Meshes

92

With the addition of the graphics tools in Visual Studio 2012 and 2013, we now have the

ability to compile shaders as part of our build, view, and edit image assets more eficiently
and edit popular 3D model formats (OBJ, COLLADA, and Autodesk FBX) all within Visual

Studio. There is also a new Shader Designer that allows us to design pixel shaders using

Visual Shader Graphs that can be exported as HLSL source or as shader bytecode.

During this chapter, we will learn how to incorporate these tools with our C# Direct3D

development, and learn how to load a static mesh from a Visual Studio compiled mesh

object (CMO) ile that has been compiled from one of the supported 3D model formats.

Rendering a cube and sphere

In this recipe, we will be rendering a simple cube and generating and rendering a sphere and

a quad. We will explore the transformation of each of the objects within the 3D world space.

To prepare ourselves for materials and lighting, we will include a normal vector in our vertex

structure. The normal vector is a vector that indicates what direction is perpendicular to a

tangent on the surface of the object. For each fragment in the pixel shader, we can use the

normal vector to determine the angles between the viewer, light source, and surface.

This value is necessary so that we can calculate the impact of lighting.

Getting ready

For rendering our cube and sphere, we will irst prepare ourselves by following the
ensuing steps:

1. Begin by adding a new Direct3D project to our solution.

2. Prepare the new project for rendering as per the Rendering primitives recipe in

Chapter 2, Rendering with Direct3D, remembering to add the necessary references

and to add the build event to copy D3DCompile*.DLL to the output directory.

3. We will utilize the GeometricPrimitives.cs source ile for generating
our sphere. For this recipe, this ile can be found in this book's code bundle,
Ch03_01CubeAndSphere, provided on Packt's website.

How to do it…

First we will update the vertex layout to support a normal vector.

1. The input layout deined in D3DApp.CreateDeviceDependentResources needs

to be changed to include the normal vector; change the format of the position to

remove the fourth component (A32), and redeine the color to use a 4-component,
32-bit unsigned normalized integer (8 bits per component).

vertexLayout = ToDispose(new InputLayout(device,

http:///

Chapter 3

93

ShaderSignature.GetInputSignature(vertexShaderBytecode),

new[]

{

new InputElement("SV_Position",0,Format.R32G32B32_Float,0,0),

new InputElement("NORMAL", 0, Format.R32G32B32_Float, 12, 0),

new InputElement("COLOR", 0, Format.R8G8B8A8_UNorm, 24, 0),

}));

A loat (Format.*_Float) and signed/unsigned normalized integer

(Format.*_SNorm/Format.*_UNorm) format will resolve to a vector of

loating-point values within the shader, whereas a signed/unsigned integer
(Format.*_SInt/Format.*_UInt) will resolve to a vector of integers.

The vertex position (SV_Position) is a special case that will always resolve

to a float4 variable within the shader, even if only three loats are speciied.
The fourth loat component (Position.w) will be automatically set to 1.0.

The legacy vertex Position semantic is still supported and is what the

Visual Studio .DGSL ile uses when producing shader code.

2. Rather than using an array of loats for our vertices, we will create struct for the

vertex structure. This makes it easier to update the vertex structure and provides us

with more lexibility. Add a new class ile to the project and call it Vertex.cs. Add the

following code to this ile:
using System.Runtime.InteropServices;

using SharpDX;

[StructLayout(LayoutKind.Sequential, Pack = 1)]

public struct Vertex

{

 public Vector3 Position;

 public Vector3 Normal;

 public Color Color;

 // Constructor taking position, normal and color

 public Vertex(Vector3 position, Vector3 normal, Color color)

 {

 Position = position;

 Normal = normal;

 Color = color;

 }

 // Snip: additional constructors here

}

http:///

Rendering Meshes

94

3. For convenience, we will create a couple of constructors. The irst of these takes
position and color as the input and uses the normalized vertex position as the

normal vector—this works well for geometric meshes that are built around the

origin (Vector3.Zero). The second one takes only a position and defaults

the color using Color.White.

public Vertex(Vector3 position, Color color)

 : this(position, Vector3.Normalize(position), color)

{ }

public Vertex(Vector3 position)

 : this(position, Color.White)

{ }

...

We can now create our updated renderers.

4. The quad will represent a lat platform with the normal vectors pointing straight
up the y axis. Open the QuadRenderer.cs ile and make the following changes:

 � Replace the vertices in CreateDeviceDependentResources

and don't forget to set the size of the vertex binding to the size of

our Vertex structure.

var color = Color.LightGray;

quadVertices = ToDispose(Buffer.Create(device, BindFlags.
VertexBuffer, new Vertex[] {

 /* Position: float x 3, Normal: Vector3, Color */

 new Vertex(-0.5f, 0f, -0.5f, Vector3.UnitY, Color),

 new Vertex(-0.5f, 0f, 0.5f, Vector3.UnitY, color),

 new Vertex(0.5f, 0f, 0.5f, Vector3.UnitY, color),

 new Vertex(0.5f, 0f, -0.5f, Vector3.UnitY, color),

}));

quadBinding = new VertexBufferBinding(quadVertices, Utilities.
SizeOf<Vertex>(), 0);

The creation of the index buffer and the rendering commands do not change.

At this point, you should be able to compile and run the project (F5) to see the

updated light gray quad.

Although the shader used at this point does not support

our Normal input semantic, the SV_Position and

COLOR input semantics will be matched. The IA will simply

ignore the Normal component of our input layout.

http:///

Chapter 3

95

5. Next, we will create our cube renderer. Create a new renderer class,

CubeRenderer. Add the appropriate SharpDX using directives and descend

from Common.RendererBase.

6. Override CreateDeviceDependentResources and create the vertex buffer.

Remember to create private member ields as appropriate and also to remove
and dispose the buffers.

vertexBuffer = ToDispose(Buffer.Create(device, BindFlags.
VertexBuffer, new Vertex[] {

 /* Vertex Position Color */

new Vertex(-0.5f, 0.5f, -0.5f, Color.Gray), // 0-Top-left

new Vertex(0.5f, 0.5f, -0.5f, Color.Gray), // 1-Top-right

new Vertex(0.5f, -0.5f, -0.5f, Color.Gray), // 2-Base-right

new Vertex(-0.5f, -0.5f, -0.5f,Color.Gray), // 3-Base-left

new Vertex(-0.5f, 0.5f, 0.5f, Color.Gray), // 4-Topleft

new Vertex(0.5f, 0.5f, 0.5f, Color.Gray), // 5-Top-right

new Vertex(0.5f, -0.5f, 0.5f, Color.Gray), // 6-Base-right

new Vertex(-0.5f, -0.5f, 0.5f, Color.Gray), // 7-Base-left

}));

vertexBinding = new VertexBufferBinding(vertexBuffer, Utilities.
SizeOf<Vertex>(), 0);

Note that the normal vector will be generated from the

normalized position in our vertex constructor, for example,

-0.5, 0.5, -0.5 becomes -0.57735, 0.57735, -0.57735.

7. After creating the vertex buffer, we need to create the index buffer and deine all our
triangles (front in this context is the –z axis, right is +x axis, and so on).

// Front Right Top Back Left Bottom

// v0 v1 v1 v5 v1 v0 v5 v4 v4 v0 v3 v2

// |-----| |-----| |-----| |-----| |-----| |-----|

// | \ A | | \ A | | \ A | | \ A | | \ A | | \ A |

// | B \ | | B \ | | B \ | | B \ | | B \ | | B \ |

// |-----| |-----| |-----| |-----| |-----| |-----|

// v3 v2 v2 v6 v5 v4 v6 v7 v7 v3 v7 v6

indexBuffer = ToDispose(Buffer.Create(device, BindFlags.
IndexBuffer, new ushort[] {

 0, 1, 2, // Front A

 0, 2, 3, // Front B

 1, 5, 6, // Right A

 1, 6, 2, // Right B

 1, 0, 4, // Top A

http:///

Rendering Meshes

96

 1, 4, 5, // Top B

 5, 4, 7, // Back A

 5, 7, 6, // Back B

 4, 0, 3, // Left A

 4, 3, 7, // Left B

 3, 2, 6, // Bottom A

 3, 6, 7, // Bottom B

}));

8. Finally, we implement DoRender in exactly the same way as for the QuadRenderer

class, except here we're using 36 for the DrawIndexed method call to draw our

vertices and use the vertexBinding and indexBuffer member ields.

9. Back in D3DApp.cs, we can now create and initialize our CubeRenderer instance

and call it's Render method within the render loop (the same location where the

quad is created and then rendered).

// Create and initialize cube

var cube = ToDispose(new CubeRenderer());

cube.Initialize(this);

...

// Render cube

cube.Render();

Now let's create our sphere renderer.

10. First, copy the GeometricPrimitives.cs source ile from the downloaded code
to your project—be sure to change the namespace as appropriate. This contains the

GeometricPrimitives static class with a GenerateSphere method that will

generate the vertices and indices for our sphere with the provided radius. This is

based on a port of the DirectX Tool Kit C++ code.

11. Create a new renderer class: SphereRenderer.cs. Add the appropriate SharpDX

using directives and descend from the Common.RendererBase abstract class.

12. Override the CreateDeviceDependentResources method and create the

vertex and index buffer using the following code. Create the private member ields
as appropriate and also remember to call RemoveAndDispose to release the

buffers irst.
Vertex[] vertices;

int[] indices;

// Generate vertices and indices

GeometricPrimitives.GenerateSphere(out vertices, out indices,
Color.Gray);

// Create vertex buffer

http:///

Chapter 3

97

vertexBuffer = ToDispose(Buffer.Create(device, BindFlags.
VertexBuffer, vertices));

// Create vertex binding

vertexBinding = new VertexBufferBinding(vertexBuffer, Utilities.
SizeOf<Vertex>(), 0);

// Create index buffer

indexBuffer = ToDispose(Buffer.Create(device, BindFlags.
IndexBuffer, indices));

totalVertexCount = indices.Length;

13. The DoRender method is similar to the cube rendering code, except that we pass

totalVertexCount into DrawIndexed.

14. Finally, back in D3DApp, create an instance of the sphere renderer and call its

Render method as per the cube.

Running the project at this point will show just the cube. This is because the quad

and sphere are hidden inside the cube. To rectify this, we will create a matrix in

D3DApp.Run for each of our 3D objects to translate them from the local model

space to world space.

15. Where we initialize the renderers, add the following matrix deinitions:
// Scale to 5x and translate the quad on Y axis by -0.5

quad.World = Matrix.Scaling(5f);

quad.World.TranslationVector = new Vector3(0, -0.5f, 0);

// Move the cube along the X axis by -1

cube.World = Matrix.Translation(-1, 0, 0);

// Move the sphere along the Z axis by 1.1f

sphere.World = Matrix.Translation(0, 0, 1.1f)

16. We need to change the worldViewProjection calculation immediately before

the quad.Render() call with the following code:

var worldViewProjection = quad.World * worldMatrix *
viewProjection;

17. Immediately before the cube.Render() call, we add the following code:

worldViewProjection = cube.World*worldMatrix*viewProjection;

worldViewProjection.Transpose();

context.UpdateSubresource(ref worldViewProjection,
worldViewProjectionBuffer);

18. And inally, before the sphere.Render() call, we add the same code as for the

cube with the exception of using sphere.World in this case.

http:///

Rendering Meshes

98

Now the quad, cube, and sphere will be visible with the quad being 5 times larger

than normal.

Scene after applying individual world translations – solid and wireframe

How it works…

The rendering of the cube and sphere is working in the same way as when we were rendering

primitives in the previous chapter. By combining a number of triangles together, we have

created our 3D mesh. However, we are now using a structure for the vertices.

By using a vertex structure, we now have more lexibility with what information can be
included with the vertex rather than relying on an array of loats. It is important that we
mark the structure using LayoutKind.Sequential and ensure that the data is packed

correctly so that it exactly matches the input layout deinition.

By aligning the vertex buffer to 32 bytes, you may be able to slightly improve

the performance. In the example presented here, we would need to add

another 32-bit element (that is, 4 bytes) such as Format.R8G8B8A8_
UNorm as padding to both the input layout and the C# vertex structure.

We are now using a world matrix for each individual 3D object. As we already know,

rather than changing the vertices in each mesh and recreating the vertex buffers, we

use local object coordinates in the vertex buffer and then transform these in the vertex

shader using the WVP matrix. This means that we need to keep track of a world matrix

for each individual object or the hierarchy of objects so that we can continue to draw

them in the correct position/rotation/scale.

Try changing the scale of the sphere with the following code, and set the

rasterizer state to wireframe (F-key in the sample code) to see the impact

upon the mesh:

sphere.World.ScaleVector = new Vector3(1, 0.5f, 1);

http:///

Chapter 3

99

You may have noticed that although we updated the input layout in our C# code, we have not

yet changed the HLSL shader code to relect this. When the input layout is being created,
it will match the layout to the vertex shader's input signature. If any semantics are missing

in the input signature, they will simply be ignored. This does not work in the other direction.

Any semantics deined in the vertex shader's input signature must also be deined in our
input layout; otherwise, we will receive a The parameter is incorrect error message.

There's more…

As we already know, data within constant buffers should be grouped by its update frequency.

As the View/Projection matrix is only updated once per frame, an improvement upon

our implementation would be to store the View/Projection matrix within the PerFrame

constant buffer. The World matrix would remain within the PerObject constant buffer and

then the calculation of the inal World/View/Projection matrix would be performed within

the vertex shader (for example, float4x4 wvp = mul(World, ViewProjection);).

This would reduce the amount of data being sent to the constant buffer per object.

Preparing the vertex and constant buffers
for materials and lighting

In this recipe, we will update the vertex and pixel shader structures and our constant buffers

to provide additional information that our vertex shader and pixel shader need to be able to

perform material and lighting operations.

After extending our per object constant buffer to support the transformation of the normal

vector and position into world space, we will also add a per frame constant buffer that will

contain our camera position and light coniguration. How to create C# structures that relect
the HLSL constant buffers is also covered.

Our vertex shader input structure will be changed to accept the normal vector and UV

coordinates from the previous recipe, and then update the pixel shader input structure to

receive the normal vector transformed to world space in addition to the world space position

and the UV coordinates.

As our shaders are becoming more complex, we will split them into multiple iles; to support
this, we will use the HLSL #include directive. We will implement a simple shader that

outputs the depth to the red channel to demonstrate how to re-use this code.

http:///

Rendering Meshes

100

Getting ready

We'll continue from where we left off the last recipe, Rendering a cube and sphere.

We will use the static class Common.HLSLCompiler from the sample rendering framework

that wraps the Direct3D HLSL compiler and supports the use of an HLSL include handler.

How to do it…

We will reimplement our shaders, adding support for the normal vector in the vertex buffer

and extend our constant buffers. We will then split our shader code across multiple iles; this
will make it easier to create pixel shaders for different shading techniques.

1. First right-click on the project in the Solution Explorer and select New Folder in Add

and name it Shaders. Now create four new text iles in this folder named Common.
hlsl, VS.hlsl, SimplePS.hlsl, and DepthPS.hlsl. Remember to change

the text encoding to ANSI and to select Copy if newer as described in Chapter 2,

Rendering with Direct3D.

2. With Common.hlsl opened, we will add our new vertex shader structure, adding the

new property TextureUV.

struct VertexShaderInput

{

 float4 Position : SV_Position;// Position

 float3 Normal : NORMAL; // Normal - for lighting

 float4 Color : COLOR0; // Vertex color

 float2 TextureUV: TEXCOORD; // Texture UV coordinate

};

3. Also add the new pixel shader input structure along with a new property for the

UV coordinate:

struct PixelShaderInput

{

 float4 Position : SV_Position;

 // Interpolation of vertex * material diffuse

 float4 Diffuse : COLOR;

 // Interpolation of vertex UV texture coordinate

 float2 TextureUV: TEXCOORD;

 // We need the World Position and normal for lighting

 float3 WorldNormal : NORMAL;

 float3 WorldPosition : WORLDPOS;

};

http:///

Chapter 3

101

4. We will extend upon our previous per object constant buffer, adding the World and

WorldInverseTranspose matrices.

// Constant buffer to be updated by application per object

cbuffer PerObject : register(b0)

{

 // WorldViewProjection matrix

 float4x4 WorldViewProjection;

 // We need the world matrix so that we can

 // calculate the lighting in world space

 float4x4 World;

 // Inverse transpose of world, used for

 // bringing normals into world space, especially

 // necessary where non-uniform scaling has been applied

 float4x4 WorldInverseTranspose;

};

5. And inally, we will add a new per frame constant buffer. This will be updated to

include additional per frame information, such as lighting; however, for now this

will contain the camera position only. Note that this uses the constant buffer slot b1.

cbuffer PerFrame: register (b1)

{

 float3 CameraPosition;

};

6. We will now code our new vertex shader in VS.hlsl. To reference the Common.hlsl

class, add the HLSL include directive.

#include "Common.hlsl"

7. Then insert our new VSMain implementation.

PixelShaderInput VSMain(VertexShaderInput vertex)

{

 PixelShaderInput result = (PixelShaderInput)0;

 // Apply WVP matrix transformation

 result.Position = mul(vertex.Position,

 WorldViewProjection);

 result.Diffuse = vertex.Color;

 result.TextureUV = vertex.TextureUV;

 // transform normal to world space

http:///

Rendering Meshes

102

 result.WorldNormal = mul(vertex.Normal,

 (float3x3)WorldInverseTranspose);

 // transform input position to world

 result.WorldPosition = mul(vertex.Position, World).xyz;

 return result;

}

As we are now making use of the World matrix, it makes more sense to

split the WorldViewProjection matrix and place the ViewProjection

part into the PerFrame constant buffer, saving on bandwidth. We would then

calculate the value of result.WorldPosition irst and then multiply
this by the ViewProjection matrix to calculate the inal result.
Position matrix.

For simplicity, our recipes will continue to keep the matrices grouped together.

8. Next, we add our simple pixel shader, as derived earlier, in SimplePS.hlsl with the

following code:

#include "Common.hlsl"

// A simple Pixel Shader that simply passes through the

// interpolated color

float4 PSMain(PixelShaderInput pixel) : SV_Target

{

 return pixel.Diffuse;

}

9. To demonstrate the reuse of existing structures, we will implement a second pixel

shader for visualizing the depth information in DepthPS.hlsl.

#include "Common.hlsl"

float4 PSMain(PixelShaderInput pixel) : SV_Target {

// Take the (Z / W) and use as color, this gives the depth.

// Items close to the near clip-plane will be darker than

// those near the far clip-plane. Note depth is non-linear

 float4 output = float4(pixel.Position.z, 0, 0, 1);

 return output;

}

Play with different values for the near clip plane in the projection matrix

in D3DApp to see how this impacts the depth buffer.

We now need to deine the new C# structures in our application in order to update
the constant buffers.

http:///

Chapter 3

103

10. Update the Vertex structure in Vertex.cs to include the UV coordinate,

and update the constructor(s) appropriately.

public struct Vertex {

...

public Color Color;

public Vector2 UV;

11. After updating the Vertex structure, we must also change our vertex input layout to

include the UV coordinate. The following code snippet shows the necessary changes:

...

// "COLOR"

new InputElement("COLOR", 0, Format.R8G8B8A8_UNorm, 24, 0),

// "UV"

new InputElement("TEXCOORD", 0, Format.R32G32_Float,28, 0),

12. Create a new class ile, ConstantBuffers.cs.

13. Add the following code using directives and make the class public and static.

We will add each of the structures within the class.

using System.Runtime.InteropServices;

using SharpDX;

public static class ConstantBuffers

{

 // structures defined here

}

14. We will start by deining the PerObject structure as follows:

[StructLayout(LayoutKind.Sequential)]

public struct PerObject

{

 public Matrix WorldViewProjection;

 // World matrix to calculate lighting in world space

 public Matrix World;

 // Inverse transpose of World (for normals)

 public Matrix WorldInverseTranspose;

 // Transpose the matrices so that they are in column

 // major order for HLSL

 internal void Transpose()

 {

 this.World.Transpose();

 this.WorldInverseTranspose.Transpose();

 this.WorldViewProjection.Transpose();

 }

}

http:///

Rendering Meshes

104

15. Next we will deine our PerFrame structure; the structures must be of 16 bytes that

are aligned and evenly divisible by 16, thus the extra _padding0 property.

[StructLayout(LayoutKind.Sequential, Pack = 1)]

public struct PerFrame

{

 public SharpDX.Vector3 CameraPosition;

 float _padding0;

}

16. Within our D3DApp class, we must change the initialization of the shaders in

CreateDeviceDependentResources; we must also update our code to

use the constant buffer structures we just deined.

17. Before we can compile our shaders at runtime that use include directives, we

must provide an implementation of the ID3DInclude interface to the HLSL

compiler. Within the sample rendering framework, this is implemented within

the class, Common.HLSLFileIncludeHandler. A static helper class Common.
HLSLCompiler wraps this logic for us.

18. Let's now compile the new shaders using the Common.HLSLCompiler.
CompileFromFile method; we also need to add a new private member ield
for the depth pixel shader. The following code snippet shows how to compile

the depth shader using the Common.HLSLCompiler class:

// Compile and create the depth pixel shader

using (var bytecode = HLSLCompiler.CompileFromFile(

 @"Shaders\DepthPS.hlsl", "PSMain", "vs_5_0"))

 depthShader = ToDispose(

 new VertexShader(device, bytecode));

...

The graphics debugger (Alt + F5) can be used to step through the

vertex and pixel shaders using the HLSL debugger in Visual Studio

2013 (any edition) or non-express versions of Visual Studio 2012.

19. Lastly, we must create the new Buffer instances. Within

CreateDeviceDependentResources, initialize the new buffers. This is done

exactly as before, except here we pass the size of the appropriate structure.

perObjectBuffer = ToDispose(new
 SharpDX.Direct3D11.Buffer(device,
 Utilities.SizeOf<ConstantBuffers.PerObject>(),
 ResourceUsage.Default, BindFlags.ConstantBuffer,
 CpuAccessFlags.None, ResourceOptionFlags.None, 0));

http:///

Chapter 3

105

perFrameBuffer = ToDispose(new Buffer(device,
 Utilities.SizeOf<ConstantBuffers.PerFrame>(),
 ResourceUsage.Default, BindFlags.ConstantBuffer,
 CpuAccessFlags.None, ResourceOptionFlags.None, 0));

20. In the same method, we bind them to the shaders (note that we now bind a

buffer to the pixel shader as well).

// Set our vertex constant buffers

context.VertexShader.SetConstantBuffer(0, perObjectBuffer);

context.VertexShader.SetConstantBuffer(1, perFrameBuffer);

// Set our pixel constant buffers

context.PixelShader.SetConstantBuffer(1, perFrameBuffer);

21. Within our render loop, we can now change the value of the buffers to an instance

of one of the structures we have deined. First is the PerFrame constant buffer.

// Extract camera position from view matrix

var camPosition = Matrix.Transpose(

 Matrix.Invert(viewMatrix)).Column4;

cameraPosition = new Vector3(

 camPosition.X, camPosition.Y, camPosition.Z);

// Update the per frame constant buffer

var perFrame = new ConstantBuffers.PerFrame();

perFrame.CameraPosition = cameraPosition;

context.UpdateSubresource(ref perFrame, perFrameBuffer);

22. Before each call to the renderer's Render method, change the code to use our

PerObject structure. Here we show the code for the quad:

var perObject = new ConstantBuffers.PerObject();

perObject.World = quad.World * worldMatrix;

perObject.WorldInverseTranspose = Matrix.Transpose(Matrix.
Invert(perObject.World));

perObject.WorldViewProjection = perObject.World * viewProjection;

perObject.Transpose();

context.UpdateSubresource(ref perObject, perObjectBuffer);

http:///

Rendering Meshes

106

23. Setting the depth pixel shader as the active pixel shader will result in the output

as shown in the following screenshot. The completed example in the downloadable

code bundle, provided with this book on Packt's website, binds Z-key to toggle the

depth shader.

The output of depth

How it works…

As the normal vector is a vector and not a point, when we are transforming it into world space

using our matrix, we must be careful that we are performing either of the following:

 f Either using 0 in the W component of a four-component vector when multiplying with

the 4 x 4 matrix or multiplying a three-component vector with a 3 x 3 matrix (in our

vertex shader here, we are casting our matrix to a float3x3 variable)

 f Multiply with the inverse transpose of the World matrix, especially when non-uniform

scaling is involved (or always use uniform scaling)

This ensures that the normal vector is still pointing in the correct direction despite the

afine transformations; for example, if the normal vector that points one unit up the y axis is
translated by x1, y2, and z3, it is still pointing up the y axis. So, no matter where in the space

the normal vector is, it is still pointing in the same direction.

It is also important to keep track of whether a normal vector is normalized

or not. Normalizing in a shader comes at a cost, and the normal vector

that the pixel shader receives is not guaranteed to be normalized.

http:///

Chapter 3

107

We have reorganized our shaders so that we can re-use the structures deined between
multiple shaders. The example provided here is the use of the SimplePS and DepthPS pixel

shaders, although we shall shortly see more examples using different lighting techniques.

The vertex shader now calculates a number of additional properties to pass to the pixel

shader. The WorldNormal and WorldPosition properties of the pixel shader input are

both important properties for determining the correct lighting. Although our pixel shaders do

not yet make use of this information, we will be able to use the PerFrame constant buffer

to retrieve the current camera's position to create the vector that points from the current

WorldPosition to the camera (in world space).

As already discussed, in order to support non-uniform scaling, the normal must be

transformed using the inverse transpose of the World matrix and excluding the

homogeneous W component.

Using C# structures with HLSL constant buffers
In HLSL, data is packed into 4 bytes in such a way that it does not cross a 16-byte boundary.

When creating our structures for use with a constant buffer, it is important that we take this

memory layout into consideration.

For example, given a constant buffer with two floats and a float3 variable, we must

layout our structure in C# so that it matches the valid memory layout as shown in the

following igure:.

An incorrect structure for this would be deined like this:

[StructLayout(LayoutKind.Sequential, Pack = 1)]

struct IncorrectStruct {

 public float a;

 public float b;

 public Vector3 c;

}

Invalid4-bytes

16-bytes 16-bytes

a b c.X c.Y c.Z

Valid4-bytes

16-bytes 16-bytes

a b c.X c.Y c.Z

Invalid and valid memory layouts for the HLSL buffer

http:///

Rendering Meshes

108

Two methods of deining the correct structure are using padding ields or explicitly deining
the structure layout. It is important to note that the total size of the structure must be

divisible by 16 bytes. Therefore, when using padding ields, you may actually need to use
one of these methods at the end of the structure, as in CorrectStructA in the following

code. The explicit layout requires the ield offsets to be provided and that the size takes into
consideration the 4 bytes at the end, as shown in CorrectStructB.

[StructLayout(LayoutKind.Sequential, Pack = 1)]

struct CorrectStructA {

 public float a;

 public float b;

 Vector2 _padding0;

 public Vector3 c;

 float _padding1;

}

[StructLayout(LayoutKind.Explicit, Size = 32)]

struct CorrectStructB {

 [FieldOffset(0)]

 public float a;

 [FieldOffset(4)]

 public float b;

 [FieldOffset(16)]

 public Vector3 c;

}

The problem with using the explicit layout is that it can be dificult to maintain and can easily
go wrong; therefore, we have used the padding approach in our code. When trying to use an

incorrect structure, you will have bleeding of values between ields; alternatively, in the case
of an incorrect total size, you will receive a The parameter is incorrect error message when

attempting to create the buffer.

It is also possible to control the packing within the HLSL structures themselves using the

packoffset HLSL keyword.

See also
 f Chapter 1, Getting Started with Direct3D, shows how to get started with the Visual

Studio graphics debugger

 f The following link provides more information on the why and how of the inverse

transpose matrix for normal transformations: http://www.arcsynthesis.org/
gltut/Illumination/Tut09%20Normal%20Transformation.html

http:///

Chapter 3

109

 f For more information on HLSL constant buffer packing rules, refer to the following

link: http://msdn.microsoft.com/en-us/library/windows/desktop/
bb509632(v=vs.85).aspx

 f For more details on how to use the packoffset HLSL keyword, refer to the following

link: http://msdn.microsoft.com/en-us/library/windows/desktop/
bb509581(v=vs.85).aspx

Adding material and lighting
The most important properties for a mesh, other than the vertices themselves, are material

and lighting. With the ability to specify the texture, color, and the way the surface behaves

with lighting, we can generate much more realistic scenes.

In the previous recipe, we have already added two of the three input vectors needed for

calculating the lighting:

 f View direction (calculated from the camera's location)

 f Surface normal

The inal input vector is light direction. For this sample, we are going to create a simple

directional light, that is, a light that has a constant direction anywhere in the scene

(like the sun). We will deine this light with a color and direction.

We also introduce the following material properties:

 f Ambient light color: The ambient relection is a constant ambient-lighting
value. This is a simple, approximate representation of light that has bounced

around a room and is lighting the back of the object, providing the indirect light.

This value is not based on any of the three input vectors and will be provided by

our material properties.

 f Diffuse relection color: Diffuse relection is the relection of light from a diffuse
surface where the ray is relected from the surface in random directions. In a 3D

real-time rendering, we only approximate this light model. We will instead say that

the light is relected from the surface equally in all directions (Luna 2012, p280).

This means that regardless of the viewer's angle, the amount of light relected
from a point on the surface is constant.

 f Material diffuse color: This is multiplied with the vertex color within the vertex

shader to give the inal pixel-diffused color. The intensity of this value represents
the amount of direct light that the light provides to the surface and is determined

using the light direction and surface normal with Lambert's cosine law.

http:///

Rendering Meshes

110

 f Specular relection color and power (shininess of the surface): Specular relection
represents the amount of perfectly relected light that bounces off the surface of an
object. The material's specular color represents the color of this relected light,
and the specular power represents the exponent of the equation that determines

how shiny the surface is (the higher the value, the shinier the surface, and therefore,

the smaller the specular highlight). The specular amount is calculated using all three

input vectors.

 f Emissive light color: The emissive lighting value is a constant that represents the

emitted light from the surface. This value is not based on any of the input vectors

and is not affected by the light color. The value of this constant is controlled via the

material properties.

From the three input vectors and the previous material properties, we determine the four

lighting output components: the ambient relection, diffuse relection, specular relection,
and emissive lighting.

Getting ready

For this recipe, we need the vertices to include a normal vector and the supporting

changes from the previous recipe.

The completed project can be found in the companion code as

Ch02_02MaterialAndLighting.

How to do it…

The irst thing we will do is make changes to Shaders\Common.hlsl to include a new

per material constant buffer and add directional light to the per frame constant buffer to

store the light's color and direction.

1. First add a new structure for the directional light class; this must be placed

before the PerFrame structure.

// A simple directional light (e.g. the sun)
struct DirectionalLight
{
 float4 Color;
 float3 Direction;
};

2. Now we will update the PerFrame structure to include the light.

cbuffer PerFrame: register (b1)
{
 DirectionalLight Light;
 float3 CameraPosition;
};

http:///

Chapter 3

111

3. Finally, we add a new constant buffer for the material properties (note that the slot

number used is 2).

cbuffer PerMaterial : register (b2)

{

 float4 MaterialAmbient;

 float4 MaterialDiffuse;

 float4 MaterialSpecular;

 float MaterialSpecularPower;

 bool HasTexture;

 float4 MaterialEmissive;

 float4 UVTransform;

};

A good practice would be to render objects sorted by their material,

saving on pipeline changes and constant buffer updates.

4. Next, we will combine the vertex color and material diffuse and pass the result

to the pixel shader by modifying the vertex shader. Find the appropriate line in

Shaders\VS.hlsl and add the highlighted code:

result.Diffuse = vertex.Color * MaterialDiffuse;

If we do not set a vertex color or material diffuse, the color will be

black as the colors are multiplied. Therefore, it is important that both

are provided with a value. If the diffused color should have no impact

upon the inal color, for example, the texture sample provides all
the necessary surface colors, the vertex and material diffuse colors

should be set to white (1.0f, 1.0f, 1.0f, and 1.0f). Alternatively, if the

vertex color is to be ignored, provide the correct brightness, some

grayscale value, and vice versa.

5. Also within the vertex shader, we apply the material's UVTransform matrix to

the UV coordinates. The following code shows how this is done:

/ Apply material UV transformation

result.TextureUV = mul(float4(vertex.TextureUV.x,

 vertex.TextureUV.y, 0, 1), (float4x2)UVTransform).xy;

6. Within ConstantBuffers.cs, we need to update the PerFrame structure to

also include the directional light and to create a new structure, PerMaterial,

while keeping in mind the HLSL 16-byte alignment.

[StructLayout(LayoutKind.Sequential, Pack = 1)]

public struct DirectionalLight

{

http:///

Rendering Meshes

112

 public SharpDX.Color4 Color;

 public SharpDX.Vector3 Direction;

 float _padding0;

}

[StructLayout(LayoutKind.Sequential, Pack = 1)]

public struct PerFrame

{

 public DirectionalLight Light;

 ...

}

[StructLayout(LayoutKind.Sequential, Pack = 1)]

public struct PerMaterial

{

 public Color4 Ambient;

 public Color4 Diffuse;

 public Color4 Specular;

 public float SpecularPower;

 public uint HasTexture; // Has texture 0 false, 1 true

 Vector2 _padding0;

 public Color4 Emissive;

 public Matrix UVTransform; // Support UV transforms

}

7. Within our D3DApp class, create a new private member ield, perMaterialBuffer,

and initialize the constant buffer in CreateDeviceDependentResources. As the

material constant buffer will be used by both the vertex and pixel shaders, assign the

buffer to each of them using SetConstantBuffer with the slot 2.

We're now ready to update the render loop.

8. Update the per material constant buffer with the following lines of code.

var perMaterial = new ConstantBuffers.PerMaterial();

perMaterial.Ambient = new Color4(0.2f);

perMaterial.Diffuse = Color.White;

perMaterial.Emissive = new Color4(0);

perMaterial.Specular = Color.White;

perMaterial.SpecularPower = 20f;

perMaterial.HasTexture = 0;

perMaterial.UVTransform = Matrix.Identity;

context.UpdateSubresource(ref perMaterial, perMaterialBuffer);

http:///

Chapter 3

113

9. Now update the perFrame variable with the following lines of code.

perFrame.Light.Color = Color.White;
var lightDir = Vector3.Transform(new Vector3(1f, -1f, -1f),
 worldMatrix);
perFrame.Light.Direction = new Vector3(lightDir.X,
 lightDir.Y, lightDir.Z);

10. Compile and run (F5) the code. The output should still be the same as the previous

recipe; however, it is worth double checking that the shaders are compiling correctly.

The shader compilation will throw an exception with line numbers

and the description of any syntax errors. Depending on the error, it

may also provide correct examples of usage.

We will now implement three lighting shaders: diffuse (using Lambert's cosine law),

Phong, and Blinn-Phong.

Implementing diffuse shaders
Follow the given steps for implementing diffuse shaders:

1. In Common.hlsl, add the following function to determine the diffuse relection:
float3 Lambert(float4 pixelDiffuse, float3 normal, float3 toLight)
{
// Calculate diffuse color (Lambert's Cosine Law - dot
// product of light and normal). Saturate to clamp the
// value within 0 to 1.
 float3 diffuseAmount = saturate(dot(normal, toLight))
 return pixelDiffuse.rgb * diffuseAmount;
}

2. Create a new shader ile Shaders\DiffusePS.hlsl (again, remember the

encoding), add the include directive #include "Common.hlsl", and then

declare a texture and texture sampler:

Texture2D Texture0 : register(t0);

SamplerState Sampler : register(s0);

3. Within a PSMain function, include this code:

// After interpolation the values are not necessarily
// normalized
float3 normal = normalize(pixel.WorldNormal);
float3 toEye = normalize(CameraPosition –
 pixel.WorldPosition);
float3 toLight = normalize(-Light.Direction);

// Texture sample (use white if no texture)
float4 sample = (float4)1.0f;

http:///

Rendering Meshes

114

if (HasTexture)
 sample = Texture0.Sample(Sampler, pixel.TextureUV);

float3 ambient = MaterialAmbient.rgb;
float3 emissive = MaterialEmissive.rgb;
float3 diffuse = Lambert(pixel.Diffuse, normal, toLight);

// Calculate final color component
float3 color = (saturate(ambient+diffuse) * sample.rgb) * Light.
Color.rgb + emissive;
// We saturate ambient+diffuse to ensure there is no over-
// brightness on the texture sample if the sum is greater
// than 1 (we would not do this for HDR rendering)

// Calculate final alpha value
float alpha = pixel.Diffuse.a * sample.a;
return float4(color, alpha);

4. Within D3DApp.CreateDeviceDependentResources, create the pixel shader

as per the simple and depth pixel shaders.

Implementing Phong shaders
Follow the given steps for implementing Phong shaders:

1. In Common.hlsl, we will now add a function for determining specular relection
using the Phong relection model.
float3 SpecularPhong(float3 normal, float3 toLight, float3 toEye)

{

 // R = reflect(i,n) => R = i - 2 * n * dot(i,n)

 float3 reflection = reflect(-toLight, normal);

 // Calculate the specular amount (smaller specular power =

 // larger specular highlight) Cannot allow a power of 0

 // otherwise the model will appear black and white

 float specularAmount = pow(saturate(dot(reflection,toEye)), ma
x(MaterialSpecularPower,0.00001f));

 return MaterialSpecular.rgb * specularAmount;

}

2. Create a new shader ile Shaders\PhongPS.hlsl. After the include directive,

create the PSMain function with the same contents as the diffuse shader, except for

the following two changes for calculating the color component:

float3 specular = SpecularPhong(normal, toLight, toEye);

float3 color = (saturate(ambient+diffuse) * sample.rgb + specular)
* Light.Color.rgb + emissive;

http:///

Chapter 3

115

3. Within D3DApp.CreateDeviceDependentResources, create the pixel shader as

per the simple and depth pixel shaders.

Implementing Blinn-Phong shaders
Follow the given steps for implementing Blinn-Phong shaders:

1. This time in Common.hlsl, we will create a pixel shader that uses the Blinn-Phong

shading model. This is similar to the Phong relection model; however, instead of the
costly relection calculation per pixel, we use a half-way vector.
float3 SpecularBlinnPhong(float3 normal, float3 toLight, float3
toEye) {
 // Calculate the half vector
 float3 halfway = normalize(toLight + toEye);
 // Saturate is used to prevent backface light reflection
 // Calculate specular (smaller power = larger highlight)
 float specularAmount = pow(saturate(dot(normal,
 halfway)), max(MaterialSpecularPower,0.00001f));
 return MaterialSpecular.rgb * specularAmount;
}

2. Create the shader ile, Shaders\BlinnPhongPS.hlsl. After the include directives,

Texture2D and SamplerState, add the PSMain function as per the Phong shader,

except in this case, call SpecularBlinnPhong instead of SpecularPhong. Again,

create the pixel shader object in your D3DApp class.

3. The inal output of each material/lighting shader is shown in sequence in the
following screenshot. The downloadable sample code binds the number keys 1, 2, 3,

and 4 to each of these in order.

Material and lighting output comparison – None, diffuse, Phong, and Blinn-Phong

http:///

Rendering Meshes

116

How it works…

We irst added the light's color and direction to our per frame constant buffer. This groups
the camera location and light together as in most situations they will not change between

the start and end of a frame. The new per material buffer on the other hand could change

many times per frame but not necessarily for each object.

We have set the light's direction in world space as we are performing all our light

calculations in this space.

We have added a new structure for storing material properties. These properties are

based on the information that we will be loading from the Visual Studio graphics content

pipeline CMO ile.

UV mapping

By adding the UV transformation matrix to the per material constant buffer, we have

completed support for UV mapping for Visual Studio CMO meshes. The UV transform is used

to rotate or lip the vertex UV coordinates. This is necessary depending on how the mesh has
been converted by the Visual Studio graphics content pipeline. It can also be useful to use the

UV transform when changing a mesh vertex's winding order.

UV mapping is the process of unwrapping a mesh and assigning 2D texture coordinates to

vertices in such a way that when rendered in 3D space, the texture wraps around the object.

This process is performed within the 3D modeling software and looks something like the

following screenshot. From a rendering point of view, we are interested in the UV coordinates

assigned and the UV transform applied to the mesh.

UV mapping within Blender (www.blender.org)

http:///

Chapter 3

117

When performing the UV unwrapping process, it is important to consider the impact that

mip-mapping will have on the inal render result as this can lead to color bleeding. Mip-mapping
is the process of sampling from lower resolution versions of a texture to control the level of detail

for objects that are further away. For example, if a UV coordinate borders two colors with little

room to wiggle at a lower resolution, the two colors may get blended together.

Mipmaps can be created for a DDS texture within the Visual Studio graphics

editor or at runtime when loading a texture by coniguring the texture
description with the ResourceOptionFlags.GenerateMipMaps lag.

var desc = new Texture2DDescription();

...

desc.OptionsFlags = ResourceOptionFlags.
GenerateMipMaps;

Lighting

In our common shader ile, we have implemented three lighting formulas.

The Lambert function calculates the diffuse relection using Lambert's Cosine law,
while the SpecularPhong and SpecularBlinnPhong methods calculate the specular

relection using the Phong and Blinn-Phong models respectively. Our pixel shaders then

combine the components for ambient light, emissive light, and diffuse, and in the case

of the two specular light models, specular relection.

Blinn-Phong is a modiication of the Phong relection model that produces a slightly larger
specular highlight when using the same specular power as Phong. This can easily be

corrected by increasing the specular power when using the Blinn-Phong shader. The

Blinn-Phong shader generally produces more desirable results than the Phong method

(see http://people.csail.mit.edu/wojciech/BRDFValidation/index.html).

Surface

Reflection

View

Normal

Half

Light

Unit vectors used in the calculation of Phong and Blinn-Phong specular reflection

http:///

Rendering Meshes

118

Both specular formulas use the normal, light, and view unit vectors shown in the previous

igure (note that the vector directions for Light and View are the vectors towards the light and

view). The Phong model requires the calculation of a relection vector (using the normal and
the from-light vector, and not to-light vector). The dot product of the relection vector and view
vector (or the eye vector) are then used to determine the specular amount (along with the

specular power material constant).

float3 Reflection = -Light - 2 * Normal * dot(Light,Normal)

Blinn-Phong uses the vector halfway between the view and the light instead; this is then

used in the dot product between the normal and halfway vectors.

float3 halfway = normalize(Light + View);

Although Blinn-Phong is less eficient than pure Phong (as the normalization contains a
square root calculation) for directional lights, the halfway vector can be calculated outside

of the pixel shader as it does not rely on the normal vector. In most other cases where lights

are not treated to be at ininity (as in directional lights), the Phong model will be faster.

float3 normalizedV = v / sqrt(dot(v, v));

There's more…

Currently we are saturating the result of the lighting operations to keep the value within the

0.0 to 1.0 range. If instead, we are supporting high-dynamic-range (HDR) rendering, we could

choose a render target format that supports more than 8 bits per component (for example,

Format.R16G16B16A16_Float) and stores a larger range of values. To display the result,

this technique requires further processing called tone mapping to map colors from HDR to a

lower dynamic range that matches the capabilities of the display device.

Included in the companion source code is an additional project (Ch03_02WithCubeMapping.

csproj) that demonstrates how to sample a texture cube (or cube map) using float4
sample = CubeMap.Sample(SamplerClamp, normal);.

The support for sampling the texture cube was added by the following methods:

 f Creating a cube map texture (within a DDS) by importing each of the six

512 x 512 textures into the DirectX Texture Tool (DxTex.exe) found in the

June 2010 DirectX SDK

 f Adding the texture and sampler state in the cube and sphere renderers

http:///

Chapter 3

119

 f Sampling the TextureCube method in the pixel shader, passing the normal

vector as the UVW coordinate

Cube mapping with diffuse and specular highlights

Texture cube UVW coordinates are unit vectors pointing from the

center of the object to the surface where it is mapped to one of the

six textures of the cube map by the sampler within the pixel shader.

See also
 f Chapter 6, Adding Surface Detail with Normal and Displacement Mapping,

demonstrates how to add support for normal mapping

 f For more information about implementing other types of lights, including volumetric

lights, see Chapter 10, Implementing Deferred Rendering

Using a right-handed coordinate system

Up to this point, we have used a left-handed coordinate system, where the z axis points

away from the view. The Visual Studio graphics content pipeline assumes a right-handed

coordinate system when producing .cmo iles. For the resulting 3D models we use for the
remainder of this book, use a clockwise vertex winding order. The difference between

left-handed and right-handed coordinates can be seen in the following igure:

Left-handed Right-handed

+y

+z

+x

+y

+z

+x

Left-handed versus right-handed Cartesian coordinates – note that the z axis is reversed

http:///

Rendering Meshes

120

In this recipe, we will look at the changes necessary to use a right-handed coordinate

system and what this means for our 3D assets. This recipe can be applied to any

SharpDX Direct3D application.

How to do it…

We will irst step through the changes to the view and projection setup and then look at the

changes necessary to the vertices within the simple QuadRenderer class.

1. When creating the view matrix, use SharpDX.Matrix.LookAtRH instead of

SharpDX.Matrix.LookAtLH as shown in the following code:

// Create the view matrix from our camera position, look

// target and up direction

var viewMatrix = Matrix.LookAtRH(cameraPosition, cameraTarget,
cameraUp);

2. When creating the projection matrix, use SharpDX.Matrix.PerspectiveFovRH

instead of SharpDX.Matrix.PerspectiveFovLH as shown in the following

code snippet:

var projectionMatrix = Matrix.PerspectiveFovRH(

 (float)Math.PI / 3f, Width / (float)Height, 0.5f, 100f);

3. Depending on how the 3D assets were authored and exported, it may be necessary to

create a rasterizer state that correctly relects the vertex winding order. The following
example applies back-face culling with a clockwise vertex winding order representing

front faces:

var rasterizerState = ToDispose(new RasterizerState(device, new
RasterizerStateDescription()

{

 FillMode = FillMode.Solid,

 CullMode = CullMode.Back,

 IsFrontCounterClockwise = false,

}));

For assets requiring a counter-clockwise winding order, a rasterizer state

with IsFrontCounterClockwise set to true can be used.

http:///

Chapter 3

121

4. When initializing the vertices for a mesh, it may also be desirable to reverse the

vertex winding direction or to set the IsFrontCounterClockwise property to

true in the rasterizer state description. For example, to render the quad from the

Rendering a cube and sphere recipe in a right-handed coordinate system, we can

change the order of the indices as follows:

new ushort[] {

 0, 2, 1, // instead of 0, 1, 2

 2, 0, 3 // instead of 2, 3, 0

}

How it works…

By creating our view and projection matrices in a right-handed coordinate system, with the

x axis still pointing to the right, the positive z axis now extends towards the viewer. Although

we refer to the z axis, any setup where a positive axis points towards the viewer is considered

a right-handed Cartesian coordinate system. It is also common for 3D modeling software to

use a coordinate system where the y axis points towards/away from the viewer and the z axis

points up. Depending on the vertex data, simply reordering the vertices may not be suficient.
UV coordinates may need adjusting, or normal vectors updated. The PerMaterial buffer has

a UV transform matrix that can be used to adjust UV coordinates; this is covered further in the

next recipe: Loading a static mesh from a ile.

See also
 f The following information on 3D coordinate systems for DirectX on MSDN

provides more information on how to work with different coordinate systems:
http://msdn.microsoft.com/en-us/library/windows/desktop/
bb324490%28v=vs.85%29.aspx

Loading a static mesh from a ile
In this recipe, we will create a mesh renderer that renders meshes loaded from a compiled

mesh object (.CMO) ile. We will use the Visual Studio graphics content pipeline to compile
an Autodesk FBX model that has been exported from the open source 3D modeling and

animation software, Blender (blender.org).

The class Common.Mesh within the provided sample framework will be used to load the .CMO

ile format and to store the loaded mesh. The loaded mesh will contain the vertex and index
buffers along with material and lighting parameters and can also include the name of textures

and pixel shaders to use.

http:///

Rendering Meshes

122

Getting ready

This recipe assumes that a right-handed coordinate system is being used; see the previous

recipe, Using a right-handed coordinate system.

Before we get started, there are a few iles we need from the downloaded package and
a class within the Common project we will review.

1. The Common.Mesh class is a C# implementation for deserializing the compiled

mesh object (.CMO) that is generated by the Visual Studio graphics content pipeline.

Most notably, this class includes the following static method: Common.Mesh.
LoadFromFile. This class is partly based on a C# port of the ModelLoadCMO class

in DirectXTK (https://directxtk.codeplex.com).

2. The MeshContentTask.targets and MeshContentTask.props iles must be
copied to the same directory as your solution ile.

3. The Ch03_02LoadMesh\Male_base_mesh.fbx ile is the example mesh we will be
loading for this recipe.

4. Alternatively, you can export any selected objects within Blender to Autodesk FBX by

navigating to File | Export | Autodesk FBX (.fbx) within Blender.

5. On the resulting export coniguration panel, tick Selected Objects and select –Z

Forward (for right-handed coordinates) as shown in the following screenshot:

Blender Export FBX configuration for use with Visual Studio graphics content pipeline

6. Enter a ilename and click on Export FBX.

The completed project for this recipe can be found in the code bundle of this chapter,

Ch03_03LoadMesh, downloadable from Packt's website.

http:///

Chapter 3

123

How to do it…

We will begin by adding the additional build targets and then including the FBX model

and checking that it correctly compiles.

1. First we need to install the additional build targets in to our project ile.
Unload your project by right-clicking on the project in the Solution Explorer

and selecting Unload Project.

2. Next, right-click on the project again and select Edit ProjectName.csproj.

3. We need to insert the following code into the project ile just before the closing </
Project> tag. Here we are assuming that the additional build target iles are
located in the directory above this project.

<Import Project="..\MeshContentTask.targets" />

4. Right-click on the project and select Reload Project.

5. Now, add the Male_base_mesh.fbx ile into the project directory and include
it in the project.

6. Select the FBX ile within the Solution Explorer and then within the Build Action

in the Properties window, select MeshContentTask.

7. Build the project (F6) and conirm that in the build output directory, there is the
compiled mesh ile: bin\Debug\Male_base_mesh.cmo (or the bin\Debug\AppX

directory for Windows Store apps). Any messages from the content pipeline will also

appear in the build output window.

The modiied MeshContentTask.* iles are based upon the Visual
Studio 2012 Update 2 and Visual Studio 2013 releases. If for some reason

they are not working correctly for you, a copy of the compiled mesh object

is included in Ch03_03LoadMesh\Male_base_mesh.cmo. This can

then be included in the project. Once this is done, select Copy if newer as

the copy for the output directory option.

Mesh Renderer

Now that we have our compiled mesh, we need to create a mesh renderer.

1. Follow the steps given in the Creating a Direct3D renderer class recipe in Chapter 2,

Rendering with Direct3D, to create our MeshRenderer class.

2. Add the following private member ields and public property:
// The vertex buffer

List<Buffer> vertexBuffers = new List<Buffer>();

// The index buffer

http:///

Rendering Meshes

124

List<Buffer> indexBuffers = new List<Buffer>();

// Texture resources

List<ShaderResourceView> textureViews = new

 List<ShaderResourceView>();

// Control sampling behavior with this state

SamplerState samplerState;

// The loaded mesh

Common.Mesh mesh;

public Common.Mesh Mesh { get { return this.mesh; } }

// The per material buffer to use so that the mesh

// parameters can be used

public Buffer PerMaterialBuffer { get; set; }

3. Next, we will create a single constructor that accepts a Visual Studio graphics

content pipeline CMO mesh via a Common.Mesh instance.

public MeshRenderer(Common.Mesh mesh)

{

 this.mesh = mesh;

}

4. Override CreateDeviceDependentResources with the following code.

First release the existing vertex, index buffers, and texture views.

// Dispose of each vertex, index buffer and texture

vertexBuffers.ForEach(vb => RemoveAndDispose(ref vb));

vertexBuffers.Clear();

indexBuffers.ForEach(ib => RemoveAndDispose(ref ib));

indexBuffers.Clear();

textureViews.ForEach(tv => RemoveAndDispose(ref tv));

textureViews.Clear();

RemoveAndDispose(ref samplerState);

5. We read each of the vertex buffers from the CMO ile into a new buffer.
// Initialize vertex buffers

for (int indx = 0; indx < mesh.VertexBuffers.Count; indx++)

{

 var vb = mesh.VertexBuffers[indx];

 Vertex[] vertices = new Vertex[vb.Length];

 for (var i = 0; i < vb.Length; i++)

 {

 // Create vertex

http:///

Chapter 3

125

 vertices[i] = new Vertex(vb[i].Position,

 vb[i].Normal, vb[i].Color, vb[i].UV);

 }

 vertexBuffers.Add(ToDispose(Buffer.Create(device,

 BindFlags.VertexBuffer, vertices.ToArray())));

 vertexBuffers[vertexBuffers.Count - 1].DebugName =

 "VertexBuffer_" + indx.ToString();

}

6. Next we load each of the index buffers.

// Initialize index buffers

foreach (var ib in mesh.IndexBuffers)

{

 indexBuffers.Add(ToDispose(Buffer.Create(device,

 BindFlags.IndexBuffer, ib)));

 indexBuffers[indexBuffers.Count - 1].DebugName =

 "IndexBuffer_" + (indexBuffers.Count - 1).ToString();

}

7. And lastly, create Shader Resource Views (SRVs) for each of the textures

and a default sampler state.

// Initialize texture views

// The CMO file format supports up to 8 per material

foreach (var m in mesh.Materials)

{

 // Diffuse Color

 for (var i = 0; i < m.Textures.Length; i++)

 {

 if (SharpDX.IO.NativeFile.Exists(m.Textures[i]))

 textureViews.Add(ToDispose(

 ShaderResourceView.FromFile(

 device, m.Textures[i])));

 else

 textureViews.Add(null);

 }

}

// Create our sampler state

samplerState = ToDispose(new SamplerState(device, new
SamplerStateDescription() {

 AddressU = TextureAddressMode.Clamp,

 AddressV = TextureAddressMode.Clamp,

 AddressW = TextureAddressMode.Clamp,

http:///

Rendering Meshes

126

 BorderColor = new Color4(0, 0, 0, 0),

 ComparisonFunction = Comparison.Never,

 Filter = Filter.MinMagMipLinear,

 MaximumAnisotropy = 16,

 MaximumLod = float.MaxValue,

 MinimumLod = 0,

 MipLodBias = 0.0f

}));

8. We can now implement the DoRender method to render our mesh. We will be

rendering the model's submeshes grouped by material, so we begin by iterating

the mesh's available materials. After retrieving the submeshes for the material,

we update the PerMaterialBuffer instance and then render the submesh

as shown in the following code:

// Draw sub-meshes grouped by material

for (var mIndx = 0; mIndx < mesh.Materials.Count; mIndx++)

{

 // If the material buffer is assigned and submeshes

 // user the material, update the PerMaterialBuffer

 if (PerMaterialBuffer != null &&

 subMeshesForMaterial.Length > 0)

 {

 ... update material buffer

 }

 // For each sub-mesh

 foreach (var subMesh in subMeshesForMaterial)

 {

 ... render each sub-mesh

 }

}

9. We update the material buffer and assign any textures if PerMaterialBuffer is

assigned. If the irst texture view is not null, we will set the HasTexture property of

the PerMaterial buffer to true.

// update the PerMaterialBuffer constant buffer

var material = new ConstantBuffers.PerMaterial()

{

 Ambient = new Color4(mesh.Materials[mIndx].Ambient),

 Diffuse = new Color4(mesh.Materials[mIndx].Diffuse),

 Emissive = new Color4(mesh.Materials[mIndx].Emissive),

 Specular = new Color4(mesh.Materials[mIndx].Specular),

 SpecularPower = mesh.Materials[mIndx].SpecularPower,

 UVTransform = mesh.Materials[mIndx].UVTransform,

};

http:///

Chapter 3

127

// Bind textures to the pixel shader

int texIndxOffset = mIndx * Common.Mesh.MaxTextures;

material.HasTexture = (uint)(textureViews[texIndxOffset] !=

 null ? 1 : 0); // 0=false

context.PixelShader.SetShaderResources(0,

 textureViews.GetRange(texIndxOffset,

 Common.Mesh.MaxTextures).ToArray());

// Set texture sampler state

context.PixelShader.SetSampler(0, samplerState);

// Update material buffer

context.UpdateSubresource(ref material, PerMaterialBuffer);

10. To render each submesh, we set the vertex and index buffers in the Input Assembler

(IA) and then draw the vertices.

// Ensure the vert ex buffer and index
buffers are in range

if (subMesh.VertexBufferIndex < vertexBuffers.Count && subMesh.
IndexBufferIndex < indexBuffers.Count)

{

 // Retrieve and set the vertex and index buffers

 var vertexBuffer = vertexBuffers[

 (int)subMesh.VertexBufferIndex];

 context.InputAssembler.SetVertexBuffers(0, new

 VertexBufferBinding(vertexBuffer,

 Utilities.SizeOf<Vertex>(), 0));

 context.InputAssembler.SetIndexBuffer(indexBuffers[

 (int)subMesh.IndexBufferIndex], Format.R16_UInt, 0);

 // Set topology

 context.InputAssembler.PrimitiveTopology =

 SharpDX.Direct3D.PrimitiveTopology.TriangleList;

}

// Draw the sub-mesh (includes the triangle count)

// The submesh has a start index into the vertex buffer

context.DrawIndexed((int)subMesh.PrimCount * 3,

 (int)subMesh.StartIndex, 0);

Now we can load and render our mesh within our D3DApp class.

http:///

Rendering Meshes

128

11. Within D3DApp.Run(), where we have created our previous renders, insert the

following code to load the mesh ile and then create the mesh renderer.
// Create and initialize the mesh renderer
var loadedMesh =
 Common.Mesh.LoadFromFile("Male_base_mesh.cmo");
var mesh = ToDispose(new MeshRenderer(loadedMesh.First()));
mesh.Initialize(this);
mesh.World = Matrix.Identity;

For Windows Store apps, use Common.Mesh.LoadFromFileAsync.

12. And inally within the render loop, we update the PerObject constant buffer, set the

PerMaterialBuffer property of the mesh renderer, and then tell it to render.

// Update the matrices

perObject.World = mesh.World * worldMatrix;

...

context.UpdateSubresource(ref perObject, perObjectBuffer);

// Provide with material constant buffer

mesh.PerMaterialBuffer = perMaterialBuffer;

// Render the mesh

mesh.Render();

13. Compile and run (F5) the previous code, and we should now see something like the

following screenshot (note that you may want to change the default pixel shader to

Blinn-Phong irst):

Final output of the mesh renderer

http:///

Chapter 3

129

How it works…

The Visual Studio graphics content pipeline uses [VSInstallDir]\Common7\IDE\
Extensions\Microsoft\VsGraphics\vsgraphics.exe to display models/scenes

and also to compile them into objects ready for consumption in your application at runtime.

Unfortunately, Microsoft has only provided MSBuild targets for C++ projects; however,

with a few tweaks of the original MSBuild target iles (also located in the same directory),
we can now do the same for our C# projects.

The compiled mesh object ile structure may include multiple vertex buffers, index buffers,
submeshes, materials, texture references, the pixel shaders used, bones, and animations.

The exact binary ile layout is shown within the comments in the Common\Mesh.cs class ile.
The mesh class uses a BinaryReader instance and some helpful extension methods to load

the CMO ile.

The MeshContentTask method supports compiling Autodesk FBX (.fbx),

Collada (.dae), and Wavefront (.obj), to compile mesh objects (.CMO).

Our mesh renderer is now available to manage the rendering tasks for the mesh object's

vertex and index buffers, materials, and textures. This renderer simply iterates the available

materials, updating the material buffer and then for each submesh that uses this material,

it loads the appropriate vertex and index buffers.

Currently, our solution is grouping materials that are used within a single mesh and its

submeshes. For a full-engine implementation, it would be more likely that materials are

shared between different meshes and therefore it would be necessary to correctly group

multiple meshes that use a material.

You can open the FBX ile within Visual Studio and play with the material settings to see
how they affect the inal render. At this point, it is also worth trying to use models that
include textures.

There's more…

You will ind two more content pipeline MSBuild targets that have been converted to work with
C# projects in the downloaded code: one for compiling images (ImageContentTask) and one

for compiling shader graphs (the .dgls iles) to shader byte code (ShaderGraphContentTask).

http:///

Rendering Meshes

130

Note that many downloaded meshes may have counter-clockwise vertex winding.

When debugging rendering issues, it can sometimes be helpful to try disabling back-face

culling in the rasterizer state. This is done as shown in the following code snippet:

// No culling

context.Rasterizer.State = ToDispose(new RasterizerState(device, new
RasterizerStateDescription() {

 FillMode = FillMode.Solid,

 CullMode = CullMode.None,

}));

See also
 f In Chapter 4, Animating Meshes with Vertex Skinning, we extend the mesh renderer

to support animating our mesh, using a mesh's bones to perform vertex skinning.

 f For more information about working with the Visual Studio graphics content pipeline,

see http://msdn.microsoft.com/en-us/library/vstudio/hh315737.
aspx.

 f For instructions and general guidelines on how to export Blender scenes to

Autodesk FBX scenes, see http://blog.diabolicalgame.co.uk/2011/07/
exporting-animated-models-from-blender.html. These instructions

target the XNA content pipeline; however, most of the steps still apply,

especially with regards to the tips for preparing the Blender scene for export.

 f A large number of high quality Blender models/scenes are available for download

under various Creative Commons licenses from www.blendswap.com.

 f The Visual Studio graphics content pipeline build targets for C# can also be found

online at http://spazzarama.com/2013/11/20/visual-studio-graphics-
content-pipeline-csharp-projects/.

http:///

4
Animating Meshes with

Vertex Skinning

In this chapter, we will cover the following topics:

 f Preparing the vertex shader and buffers for vertex skinning

 f Loading bones in the mesh renderer

 f Animating bones

Introduction

In this chapter, we will see how a bone structure can be used to make the skin of our model

(in this case, our vertices) move, producing a dynamic mesh that we can manipulate into

poses or use for playing back animations.

Using the Visual Studio graphics content pipeline, we will learn how to make use of the skin

and bone information stored within a compiled mesh object (CMO).

Preparing the vertex shader and buffers for
vertex skinning

In this recipe, we will update our vertex structure, constant buffers, and vertex shader to

support the transforming of vertices based on an underlying bone structure.

The key component of vertex skinning or skinning is the hierarchy of pose and movement

that is produced by a bone structure or skeleton within a mesh (also known as an armature).

As we know from basic anatomy, a skeleton provides, among other functions, a mechanism

for transmitting muscular forces. It is a collection of bones, each connected to another.

http:///

Animating Meshes with Vertex Skinning

132

We apply the same concept to the armature of a mesh. We have a root bone, and each

subsequent bone is parented by the root bone or another bone that ultimately resolves

it's parentage to this root bone. In this manner, if we move the root bone, the whole body

moves with it; but if we move the shoulder, then only the arm moves with it.

The left-most igure in the following screenshot shows an example of an armature of a
simple mesh that has been divided into four segments. In this example, the root bone

is the bottom-most bone, and each subsequent bone is parented by it's previous bone.

The position or pose shown in this igure is referred to as the bind pose or rest pose,

and it represents the default starting transformation of each bone at the time the mesh

was bound to the armature or rigged.

Simply having an armature in place is not enough for it to apply forces upon the skin. We must

bind the mesh to the armature and specify how each of the bones will inluence the vertices.
By applying weights, known as bone-weights or blend-weights, to the vertex of each of the

inluencing bones, our armature will be able to inluence the placement of vertices.

In the following screenshot, the right-most igure shows how the vertices' bone-weights
have been applied in relation to the top-most bone in the hierarchy. The cooler the color,

lesser the inluence of the bone on the vertex (where the blue color at the bottom is 0.0);
and the warmer the color, the greater the inluence of the bone (where the red color at the
top is 1.0). As seen from the gradual cooling of the bone-weights toward the next bone, it is

clear that more than one bone can have an inluence upon a vertex.

Impact of bones upon the vertices of a mesh (from left to right: bind pose, a pose, and bone-weights)

http:///

Chapter 4

133

Getting ready

We can apply this recipe to any of our Direct3D applications. It is assumed that a class

descending from the D3DApplicationBase abstract class is being used, the C# vertex

structure is contained within the Vertex structure, and the C# structures for the constant

buffers are deined in ConstantBuffers.cs.

How to do it…

We will start by updating our C# vertex structure. So go ahead and open the Vertex.cs

ile for editing.

1. Update the member ields of the Vertex class to include a new property that

will store the skinning information for the vertex.

public Vector3 Position;

public Vector3 Normal;

public Color Color;

public Vector2 UV;

public Common.Mesh.SkinningVertex Skin;

2. The SkinningVertex structure is based upon the internal format of a CMO

ile, and it is included within the Common.Mesh class. For completeness, the

SkinningVertex structure is shown in the following code snippet:

[StructLayout(LayoutKind.Sequential, Pack = 1)]

public struct SkinningVertex

{

 public uint BoneIndex0;

 public uint BoneIndex1;

 public uint BoneIndex2;

 public uint BoneIndex3;

 public float BoneWeight0;

 public float BoneWeight1;

 public float BoneWeight2;

 public float BoneWeight3;

}

A CMO file supports up to four bone indices (unsigned integers)

and four bone weights (floats) that together add up to 1.0. Also,

four bone indices and weights fit nicely within a 4-component

HLSL such as uint4 and float4 respectively.

http:///

Animating Meshes with Vertex Skinning

134

3. Add an appropriate constructor to the Vertex structure. This allows us to initialize

the Skin property we had added previously.

4. As always, after updating the vertex structure, we need to change the input

layout that is passed to the Input Assembler (IA) stage. Within the D3DApp.
CreateDeviceDependentResources method, change the deinition of

the input layout to include the new vertex properties.

vertexLayout = ToDispose(new InputLayout(device,

 vsBytecode.GetPart(ShaderBytecodePart.InputSignatureBlob),

new[]

{

 new InputElement("SV_POSITION",0,Format.R32G32B32_Float,
 0,0),

 new InputElement("NORMAL", 0,
 Format.R32G32B32_Float,12,0),

 new InputElement("COLOR", 0, Format.R8G8B8A8_UNorm,
 24,0),

 new InputElement("TEXCOORD", 0, Format.R32G32_Float,
 28,0),

// "SkinIndices"

 new InputElement("BLENDINDICES", 0, Format.R32G32B32A32_UInt,
 36, 0),

// "SkinWeights"

 new InputElement("BLENDWEIGHT", 0, Format.R32G32B32A32_Float,
 52, 0),

}));

5. To complete our vertex structure changes, we need to update the vertex shader

and pixel shader inputs within .\Shaders\Common.hlsl.

6. Change the VertexShaderInput structure to include the two new vertex properties.

uint4 SkinIndices : BLENDINDICES; // blend indices

float4 SkinWeights : BLENDWEIGHT; // blend weights

7. To store the list of bone inluences (matrices) that will be used within the vertex
shader, we need to create a new constant buffer. This buffer will be updated

per armature.

// Constant buffer to hold our skin matrices for each bone.

// Note: 1024*64 = max bytes for constant buffers in SM4/5

cbuffer PerArmature : register(b3)

{

 float4x4 Bones[1024];

};

With our shader structures and constant buffers in place, we will update the vertex

shader in \Shaders\VS.hlsl to apply the vertex skinning.

http:///

Chapter 4

135

8. Create a new HLSL method called SkinVertex.

void SkinVertex(float4 weights, uint4 bones,

 inout float4 position, inout float3 normal)

{

 // If there are skin weights apply vertex skinning

 if (weights.x != 0)

 {

 // Calculate the skin transform combining up to

 // four bone influences

 float4x4 skinTransform =

 Bones[bones.x] * weights.x +

 Bones[bones.y] * weights.y +

 Bones[bones.z] * weights.z +

 Bones[bones.w] * weights.w;

 // Apply skinning to vertex and normal

 position = mul(position, skinTransform);

 // We assume here that the skin transform includes

 // only uniform scaling (if any)

 normal = mul(normal, (float3x3)skinTransform);

}

9. Immediately before applying the WorldViewProjection matrix to the vertex

position, call the new SkinVertex method as shown in the following code:

// Apply vertex skinning if any

SkinVertex(vertex.SkinWeights, vertex.SkinIndices,

 vertex.Position, vertex.Normal);

We are done with our shaders for the moment. As we have just added a new constant

buffer, we need to open ConstantBuffers.cs and make the appropriate changes.

10. Create a new class to store our per armature data. Note that we are using class

here instead of struct, as we will be passing through the Bones array when

updating the constant buffer. This simpliies the marshalling of the structure
to the Direct3D buffer, and we can initialize the array more easily.

// Per armature/skeleton constant buffer

public class PerArmature

{

 // The maximum number of bones supported by the shader

 public const int MaxBones = 1024;

 public Matrix[] Bones;

http:///

Animating Meshes with Vertex Skinning

136

 public PerArmature()

 {

 Bones = new Matrix[MaxBones];

 }

 public static int Size()

 {

 return Utilities.SizeOf<Matrix>() * MaxBones;

 }

}

11. Within the D3DApp.CreateDeviceDependentResources method, initialize a new

SharpDX.Direct3D11.Buffer ield member as shown in the following screenshot.
We use the PerArmature.Size() method to determine the correct buffer size.

perArmatureBuffer = ToDispose(new Buffer(device,

 ConstantBuffers.PerArmature.Size(), ResourceUsage.Default,

 BindFlags.ConstantBuffer, CpuAccessFlags.None,

 ResourceOptionFlags.None, 0));

12. Now assign the buffer to the fourth vertex shader constant buffer slot.

context.VertexShader.SetConstantBuffer(3,
 perArmatureBuffer);

This completes the changes necessary to support vertex skinning in our vertex shader.

How it works…

In order to apply the bone inluences on our vertices, we must be able to pass through the
bone indices and the weighting of the inluence they have on the current vertex. For this
purpose, we will re-use the existing structure deined within Common.Mesh.

Our implementation supports up to four bone inluences per vertex. This is not only the
maximum number supported by the CMO ile format produced by Visual Studio, but the four
bone indices and weights it conveniently within a HLSL uint4 and float4 as you can see

from the input layout we deined for the IA stage and the updated HLSL vertex structure.

As already discussed, the key component of skinning is the hierarchy of transformations

that is produced from the bones of an armature. These transformations or skin matrices are

implemented using the trusty old 4 x 4 afine transformation matrix. However, instead of

transforming from the local object space to world space as we have done previously,

we will be applying these transformations in bone space.

http:///

Chapter 4

137

A bone's afine transformation matrix is able to inluence a vertex's
translation, rotation, and scale.

The transformation to bone space involves calculating the current translation and rotation for

each bone, as well as its scale against its parent bone. This initial transform is now in the bind

pose or rest pose space. To bring the transform into bone space, we apply the inverse bind

pose matrix of the bone. The following igure shows the bones at rest (in the top-left), and in
various poses for the remaining layouts.

Bone A and B rotated

-90 degrees

Child Bone B

Bone A rotate -90 degrees

Bone B rotate +90 degrees

position in

bone B space

weighted /

interpolated position

position in

bone A space

P
a
re

n
t B

o
n
e
 A

P
a
re

n
t B

o
n
e
 A

Child Bone B

Child Bone B

P
a
re

n
t B

o
n
e
 B

Parent Bone A Parent Bone A

vertex with weights:
Bone A: 0.0
Bone B: 1.0surface / skin

vertex with weights:
Bone A: 0.5
Bone B: 0.5

Bone B rotated -90 degreesRest or bind pose

Blending of bone influences upon a vertex, and relationship between parent/child bones

This resulting skin matrix for each bone is what we are storing in the PerArmature constant

buffer, and it is the matrix that we refer to within the vertex shader.

Within the vertex shader, we blend the bone inluences together based upon their weight.
The previous igure shows how the central vertex is inluenced equally by the two bones,
by using a weighting of 0.5 for each bone. The following pseudocode shows how the inal
transform matrix for this vertex would be calculated from the skin matrices of bone A and B.

float4x4 transform = Bones[A] * 0.5 +

 Bones[B] * 0.5;

http:///

Animating Meshes with Vertex Skinning

138

In order to reduce the memory bandwidth, the number of bones should be reduced to

a number that relects more realistically the maximum number of bones within the models
used (for example, between 64 and 100). The value of 1024 is used in this recipe to highlight

the fact that this is the maximum number of 4 x 4 matrices that can be stored within a

constant buffer in Shader Model 4/5 (or 65,536 bytes). In contrast, Shader Model 3 supports

256 constant loat registers that can hold a single float4 component, or a maximum of

sixty-four 4 x 4 matrices. This is shared between other loating point data. So, the actual
number available would be less.

There are tricks to increase the number of bones, such as using 4

x 3 matrices, as bones rarely require non-afine transformations.
For DirectX 11 class hardware, there is probably no need; although,

perhaps on some mobile devices or if you must support older

hardware, it may still be something to consider.

With the armature's skin matrices in place, we can apply the vertex skinning within the vertex

shader. For each of the bone inluences (speciied in SkinIndices), the skin transform

matrix is retrieved and multiplied by the bone-weight (stored in SkinWeights). These four

matrices are then added together to determine the inal skin transform for this vertex.

float4x4 skinTransform = Bones[bones.x] * weights.x +

 Bones[bones.y] * weights.y +

 Bones[bones.z] * weights.z +

 Bones[bones.w] * weights.w;

// Apply skinning to vertex and normal

position = mul(position, skinTransform);

normal = mul(normal, (float3x3)skinTransform);

We then apply the skin transform to the vertex position and vertex normal. The normal

transformation presented here will only work if the bone matrices always contain uniform

scaling. For this to work with non-uniform scaling, it requires the usage of an inverse

transpose of the matrix as described in the Preparing the vertex and constant buffers for

material and lighting recipe in Chapter 3, Rendering Meshes.

If the irst bone has a weight of zero, we are skipping this process. This is important because
we are using this vertex shader for meshes whether or not they have any bones. A very small

performance improvement can possibly be gained by splitting the vertex shader into two and

choosing which shader to use on the CPU per mesh instead of making the decision within

a single vertex shader for each vertex. There is, however, a performance overhead when

switching shaders; so your results may vary.

The result of applying a skin matrix of zero upon all of our vertices will place them all

at the origin. In the case of triangle primitives, this will result in no output. This symptom

can indicate that the PerArmature constant buffer hasn't been updated correctly.

http:///

Chapter 4

139

Debugging incorrect vertex placement is sometimes easier by

changing the IA primitive topology to a point list and changing

the background color of the scene to white or black (depending

on the expected vertex color).

There's more…

Performing vertex skinning results in a constant per-vertex performance hit. Therefore, it is

desirable to have as few vertices as possible in large scenes that have multiple armatures.

A common technique of getting around the limitations of a lower maximum bone count on

older hardware was implementing bone partitioning, whereby the mesh is broken up into

smaller parts that share the same subset of bones. Each part is then drawn separately.

See also
 f The Loading bones in the mesh renderer recipe provides an implementation for

loading the bones from a CMO mesh within a mesh renderer

Loading bones in the mesh renderer

In this recipe, we will modify the mesh renderer to support transforming vertices based on

the underlying bone structure. This necessitates the loading of the armature from the loaded

mesh. This is required in order to implement mesh animations.

The Visual Studio graphics content pipeline includes bones and animations from Autodesk

FBX models in the resulting CMO ile. Bones are stored in the ile as an array of bones,
consisting of a parent index and the inverse bind pose, the bind pose, and bone local

transform matrices. The root bone in a hierarchy of bones has a parent index of -1.

Getting ready

We will be using a new Autodesk FBX model along with a texture ile that can be found
in the downloaded content. The precompiled mesh ile and texture are also included.

In this example, we will need the MeshRenderer class and the graphics content pipeline's

build targets in place that were created in the Loading a static mesh from a ile recipe in

Chapter 3, Rendering Meshes. We will also require the vertex shader from the previous

recipe, Preparing the vertex shader and buffers for vertex skinning.

 f The completed project for this recipe (Ch04_01VertexSkinning) includes a new

axis-grid renderer for the x and z axes, which can be optionally included.

http:///

Animating Meshes with Vertex Skinning

140

 f From the downloaded source, copy .\Ch04_01VertexSkinning\Character.fbx

to the project directory and include it in the project. The build action needs to

be changed to MeshContentTask.

 f Also, copy .\Ch04_01VertexSkinning\Character.png to the project directory.

You can include it in the project if you want. There is no need to apply a build task to

this item as it will already be processed by MeshContentTask.

The compiled character mesh (.cmo) and character texture

(.dds) can be found in the same location if there are issues

with the VS compilation process. Simply add these to the

project instead and select Copy if newer.

How to do it…

We will now update our mesh renderer so that it loads the bone information from the

Common.Mesh class that we have been using for loading the CMO iles.

1. First, add a new public property that provides access to the PerArmature buffer

we added in the previous recipe.

// The per armature constant buffer to use

public Buffer PerArmatureBuffer { get; set; }

2. Now, within the MeshRenderer.CreateDeviceDependentResources

method, we can load the skinning information for the vertices. Update the

existing vertex buffer initialization code so that we are now including the

SkinningVertex structure.

// Initialize vertex buffers
for (int indx = 0; indx < mesh.VertexBuffers.Count; indx++)
{
 ...
 for (var i = 0; i < vb.Length; i++)
 {
 // Retrieve skinning information for vertex
 Common.Mesh.SkinningVertex skin = new
 Common.Mesh.SkinningVertex();
 if (mesh.SkinningVertexBuffers.Count > 0)
 skin = mesh.SkinningVertexBuffers[indx][i];

 // Create vertex
 vertices[i] = new Vertex(vb[i].Position,
 vb[i].Normal, vb[i].Color, vb[i].UV, skin);

 ...

}

http:///

Chapter 4

141

3. Within the MeshRenderer.DoRender method, we will now calculate the skin

transforms for each of the bones, and then update the armature constant buffer.

Let's add this code just before the existing material loop.

// Calculate skin matrices for each bone

ConstantBuffers.PerArmature skinMatrices = new ConstantBuffers.
PerArmature();

if (mesh.Bones != null)

{

 ... Calculate skin matrices

}

// Update constant buffer with skin matrices of each bone

context.UpdateSubresource(skinMatrices.Bones,
 PerArmatureBuffer);

// Draw sub-meshes grouped by material

for (var mIndx = 0; mIndx < mesh.Materials.Count; mIndx++)

...

Within the previous if statement, we will perform the following operations:

1. First, we load the bone's local transform (which is currently in the bone's local

bind pose/rest pose space) using the following code snippet:

// Retrieve each bone's local transform

for (var i = 0; i < mesh.Bones.Count; i++)

{

 skinMatrices.Bones[i] = mesh.Bones[i].BoneLocalTransform;

}

2. Next, we apply the transform of the parent bone upon each child bone, making the

assumption that each parent bone appears before its children in the list of bones.

// TODO: Load bone transforms from animation frames here

// Apply parent bone transforms.

// We assume here that the first bone has no parent

// and that each parent bone appears before children

for (var i = 1; i < mesh.Bones.Count; i++)

{

 var bone = mesh.Bones[i];

 // ParentIndex == -1 means this is a root bone

 if (bone.ParentIndex > -1)

 {

http:///

Animating Meshes with Vertex Skinning

142

 // Retrieve and apply parent bone transform

 var parentTransform =

 skinMatrices.Bones[bone.ParentIndex];

 skinMatrices.Bones[i] = (skinMatrices.Bones[i] *

 parentTransform);

 }

}

If the mesh's bones do not match the previous assumptions, then the

rendered mesh may end up looking strange in the final render. See the

screenshot in the How it works… section that shows the result of using

invalid skin transforms.

3. Then, we convert the transform from bind pose space into bone space by using

the inverse of the bind pose for the bone loaded with the mesh.

// Change the bone transform from rest pose space into bone space
// (using the inverse of the bind/rest pose)

for (var i = 0; i < mesh.Bones.Count; i++)

{

 skinMatrices.Bones[i] =

 Matrix.Transpose(mesh.Bones[i].InvBindPose *

 skinMatrices.Bones[i]);

}

// TODO: Check need to loop animation here

4. Finally, we must update D3DApp.Run so that we are loading the correct mesh and

passing in the armature buffer when rendering. Instead of limiting the rendering

to only the irst mesh found in the loaded CMO ile, we will instead create a mesh
renderer for each mesh.

5. Change the initialization of the mesh renderer to the following code:

// Create and initialize the mesh renderers

var loadedMesh = Common.Mesh.LoadFromFile("Character.cmo");

List<MeshRenderer> meshes = new List<MeshRenderer>();

meshes.AddRange((from mesh in loadedMesh

 select ToDispose(new MeshRenderer(mesh))));

meshes.ForEach(m => m.Initialize(this));

var meshWorld = Matrix.Identity;

6. Replace the rendering of the mesh within the render loop with:

foreach (var m in meshes)

{

 ... update perObjectBuffer

http:///

Chapter 4

143

 m.PerMaterialBuffer = perMaterialBuffer;

 m.PerArmatureBuffer = perArmatureBuffer;

 m.Render();

}

7. Compile and run (F5). You should see something like the irst igure of the following
screenshot (while using the Blinn-Phong shader). The second igure shows what the
armature looks like within the Blender.

Although the character here is static and indeed appears exactly as it would

had we not loaded any bones, it will in fact move with the bones when animated.

Render output in bind pose (top) and armature in Blender (bottom). Model by Rui Teixeira @ blendswap.com

http:///

Animating Meshes with Vertex Skinning

144

How it works…

As already covered in the Loading a static mesh from a ile recipe in Chapter 3, Rendering

Meshes, the sample rendering framework's Common.Mesh class supports loading a CMO

ile, including the bones and animations.

The structure that stores the hierarchy of bones within a CMO and their representation in the

Common.Mesh class is shown within the following code extracted from Common\Mesh.cs:

public class Mesh {

 ...

 [StructLayout(LayoutKind.Sequential, Pack = 1)]

 public struct Bone

 {

 public int ParentIndex; // Indexes into Mesh.Bones

 public Matrix InvBindPose;

 public Matrix BindPose;

 public Matrix BoneLocalTransform;

 };

 ...

 // Flat list of all bones

 public List<Bone> Bones { get; private set; }

 // Bone name is stored in Mesh.BoneNames (indexes match

 // between Bones and BoneNames)

 public List<string> BoneNames { get; private set; }

}

The Mesh.Bone.ParentIndex property links the bones to their immediate parent,

with root bones having a parent index of -1.

We calculate the bone skin matrices within our mesh renderer by irst loading the bone's local
transform, then applying the parent transform, and inally applying the inverse bind pose.

http:///

Chapter 4

145

Removing the code that applies the inverse bind pose will result in a mesh that looks like the

following igure. This may also happen if the parent bones appear after the children or for
some reason the transforms are incorrect.

Result of incorrect bone skin transforms

http:///

Animating Meshes with Vertex Skinning

146

As we can see from the previous igure, it is important to be in the correct space when applying
transformation matrices; otherwise, when rotations are applied to an object, it will pivot around

the origin within the wrong space. For example, applying a rotation matrix to a ball will not cause

it to rotate on its own axis if the ball is within world space, but around the origin of the scene

instead. To correctly rotate the ball, irst transform it into its local space. To demonstrate the
problem, the igure on the left-hand side of the following diagram shows how a rotation and
translation is applied upon an object directly within world space. On the right-hand side,

the object is irst translated to its local space. This works in the same manner for our bones,
and this is why we must use the bone's inverse bind pose matrix to transform into bone space.

{0,0,0}

{-1,-1,0} {0.5,-1,0}

Scene

{1,1,0}

2) translation

1) rotate

Scene

{1,1,0}

3) translation

{1.5,0,0}

1) translate to local

2) rotate

{0,0,0}

Left: an object being rotated directly in world space. Right: the same object correctly rotated within

its local/model space

There's more…

Rigging is the process of binding an armature to a static model. This process usually

involves creating a hierarchical bone structure that roughly relects the shape of the static
model. The amount of inluence that the individual bones have on the vertices is then
determined either automatically through some proximity algorithm in the authoring tool

or by manual weight painting.

See also
 f The models used in this book have been prepared using Blender, an open source 3D

modeling and animation tool available at www.blender.org. There are plenty of

great tutorials on rigging models within Blender available on YouTube. A number of

great models can be found at www.blendswap.com.

 f The Animating bones recipe takes our mesh renderer to the next step and adds

support for animating our bones.

http:///

Chapter 4

147

Animating bones

With an armature loaded and our vertex skinning in place, we are now ready to playback

bone animations. In this recipe, we will access the animation's keyframes that are loaded

from the irst animation in a mesh, and playback within a loop.

Getting ready

For this recipe, we will continue from where we left off in the Loading bones in the mesh

renderer recipe.

The completed project for this recipe, called Ch04_02Animate, is available within the

companion source code provided with this book's code bundle. It is available on Packt website.

How to do it…

We will start by adding a few new properties to our mesh renderer.

1. Open MeshRenderer.cs and add the following code:

// Create and allow access to a timer

System.Diagnostics.Stopwatch clock = new System.Diagnostics.
Stopwatch();

public System.Diagnostics.Stopwatch Clock

{

 get { return clock; }

 set { clock = value; }

}

// The currently active animation (allows nulls)

public Mesh.Animation? CurrentAnimation { get; set; }

// Play once or loop the animation?

public bool PlayOnce { get; set; }

2. At the start of our MeshRenderer.DoRender method, calculate the number of

seconds elapsed:

var time = clock.ElapsedMilliseconds / 1000.0f;

3. In place of the irst TODO comment that we added in the previous recipe for loading

bone transforms, add the following code:

// Load bone transforms from animation frames

if (CurrentAnimation.HasValue)

{

http:///

Animating Meshes with Vertex Skinning

148

 // Keep track of the last key-frame used for bones

 Mesh.Keyframe?[] lastKeyForBones =

 new Mesh.Keyframe?[mesh.Bones.Count];

 // Keep track of bone interpolation

 bool[] lerpedBones = new bool[mesh.Bones.Count];

 for (var i = 0; i <
 CurrentAnimation.Value.Keyframes.Count; i++)

 {

 // Retrieve current key-frame

 var frame = CurrentAnimation.Value.Keyframes[i];

 // If the current frame is not in the future

 if (frame.Time <= time)

 {

 // Retrieve transform from current key-frame

 skinMatrices.Bones[frame.BoneIndex] =
 frame.Transform;

 // Keep track of last key-frame for bone

 // for interpolation with future frame

 lastKeyForBones[frame.BoneIndex] = frame;

 }

 // Otherwise frame is in future check interpolation

 else

 {

 ... perform frame interpolation

 }

 }

}

4. To provide smoother animations, we will interpolate the current keyframe for each

bone with the next key-frame for each bone. We will use the following code:

// Only interpolate a bone's key-frames ONCE

if (!lerpedBones[frame.BoneIndex])

{

 // Retrieve the previous key-frame for bone

 Mesh.Keyframe prevFrame;

 if (lastKeyForBones[frame.BoneIndex] != null)

 prevFrame =
 lastKeyForBones[frame.BoneIndex].Value;

 else

 continue; // nothing to interpolate

 // Make sure we only interpolate with

 // one future key-frame for this bone

 lerpedBones[frame.BoneIndex] = true;

http:///

Chapter 4

149

 // Calculate time difference between frames

 var frameLength = frame.Time - prevKeyForBone.Time;

 var timeDiff = time - prevKeyForBone.Time;

 var amount = timeDiff / frameLength;

 // Interpolation using Lerp on scale and translation,

 // and Slerp on Rotation (Quaternion)

 Vector3 t1, t2; // Translation

 Quaternion q1, q2;// Rotation

 float s1, s2; // Scale

 // Decompose the previous key-frame's transform

 prevFrame.Transform.DecomposeUniformScale(out s1,

 out q1, out t1);

 // Decompose the current key-frame's transform

 frame.Transform.DecomposeUniformScale(out s2,
 out q2, out t2);

 // Perform interpolation and reconstruct matrix

 skinMatrices.Bones[frame.BoneIndex] =
 Matrix.Scaling(MathUtil.Lerp(s1, s2, amount)) *

 Matrix.RotationQuaternion(

 Quaternion.Slerp(q1, q2, amount)) *

 Matrix.Translation(Vector3.Lerp(t1, t2, amount));

}

5. And inally, in place of the second TODO comment regarding the animation loop,

insert the following code:

// Check if need to loop animation

if (!PlayOnce && CurrentAnimation.HasValue &&
 CurrentAnimation.Value.EndTime <= time)

{

 this.Clock.Restart();

}

6. To start our animation, add the following code to the D3DApp.Run method just after

we inish loading and initializing our mesh renderers:
// Set first animation as the current animation and start

foreach (var m in meshes) {

 if (m.Mesh.Animations != null && m.Mesh.Animations.Any())

 m.CurrentAnimation = m.Mesh.Animations.First().Value;

 m.Clock.Start();

}

http:///

Animating Meshes with Vertex Skinning

150

The animations are stored by name in a dictionary. Therefore, the original

name of the animation from the 3D authoring tool can be used to retrieve

the appropriate animation. For example, mesh.Animations["Walk"];

7. Simply compile and run (F5) the project. You will see that our character is now

following an animation that moves through the poses, as shown in the sequence

in the following screenshot:

The three poses used in our animation sequence.

http:///

Chapter 4

151

How it works…

As you can see, all the hard work has already been completed in the two previous recipes.

Along with the bones, the CMO ile includes a list of animations for manipulating these bones.
Each animation consists of a start and end time, and a list of key-frames. These are loaded

into the Common.Mesh.Animations property. The structure of these objects within the CMO

ile and how they are represented in the Common.Mesh class is shown in the following code

extracted from Common\Mesh.cs.

public class Mesh {

 ...

 [StructLayout(LayoutKind.Sequential, Pack = 1)]

 public struct Keyframe

 {

 public uint BoneIndex;

 public float Time;

 public Matrix Transform;

 };

 [StructLayout(LayoutKind.Sequential, Pack = 1)]

 public struct Animation

 {

 public float StartTime;

 public float EndTime;

 public List<Keyframe> Keyframes;

 };

 ...

 // Named list of bone animations

 public Dictionary<string, Animation> Animations { get; }

}

What we're doing in this recipe is retrieving the key-frames of an animation that was created

within the original scene by using Blender. When exporting the scene to Autodesk FBX from

Blender, the option to include animations was selected. The Visual Studio graphics content

pipeline has then preserved these animations when creating the compiled mesh.

Our mesh class loads the animation key-frames (which are basically a set of frame times),

bone transforms (or animation transforms), and bone indices. We iterate these frames up

to the current frame time and replace the existing bone's local transform with that of the

key-frame. We then interpolate each bone's current key-frame with its next future key-frame

based on the amount of time that has lapsed between the two frames.

http:///

Animating Meshes with Vertex Skinning

152

To produce a smoother animation without artefacts introduced from the linear interpolation of

rotation matrices, we have decomposed our transformation matrices for the two key-frames

into its translation, rotation, and scale components. The translation is stored within Vector3,

the uniform scale within a float variable, and inally the rotation component is now stored

within a quaternion.

prevFrame.Transform.DecomposeUniformScale(out s1, out q1, out t1);

frame.Transform.DecomposeUniformScale(out s2, out q2, out t2);

A quaternion is an alternative mathematical entity used to represent rotations. The use of

quaternion has advantages over rotation matrices in numerous situations because they

require less storage, fewer arithmetic operations for concatenation, and quaternions are more

easily interpolated (which is most important for this recipe). Spherical linear interpolation is

used here as the method for interpolating the quaternions because regular linear interpolation

does not trace out the arc between q1 and q2 at a constant rate (Lengyel, 2012, pp. 80-87).

Using linear interpolation between two matrices with the SharpDX.Matrix.Lerp method

would not necessarily result in a correct rotation matrix. It may work ine if the key-frames
are close together and there are no large movements; however, it would be necessary to use

either normalized linear interpolation or spherical linear interpolation to get correct results.

Both of these operations are more eficient when using quaternions.

We linearly interpolate (lerp) between the two scale loats (s1 and s2) and the two

translation vectors (t1 and t2). Then we perform spherical linear interpolation (Slerp)

between the two quaternions (q1 and q2). The matrix is then reconstructed from the

interpolated scale, rotation, and translation.

// Perform interpolation and reconstruct matrix

skinMatrices.Bones[frame.BoneIndex] =

 Matrix.Scaling(MathUtil.Lerp(s1, s2, amount)) *

 Matrix.RotationQuaternion(

 Quaternion.Slerp(q1, q2, amount)) *

 Matrix.Translation(Vector3.Lerp(t1, t2, amount));

To ensure that we end up with the correct result, multiply the matrices in the following order:

irst apply scale, then rotate, and inally translate.

To exaggerate the effect of the frame smoothing, try slowing down the

animation. For example, to get 1sec of the animation equal to 10secs,

use the following code:

// Calculate elapsed seconds as 1sec = 10sec

var time = clock.ElapsedMilliseconds / 10000.0f;

http:///

Chapter 4

153

Finally, we do a simple check to see whether we have reached the end of the animation

sequence; and if looping is enabled, we reset the timer.

if (!PlayOnce && CurrentAnimation.HasValue &&
 CurrentAnimation.Value.EndTime <= time)

{

 this.Clock.Restart();

}

By allowing the CurrentAnimation variable to be deined, and if the animation will be
looped, it is possible for the calling code to determine which animation in the mesh will be

played and when it will start/stop.

There's more…

Animation blending is possible by interpolating between frames from different animation

sequences over a period of time. This is similar to how we have implemented the smoothing

between frames in this recipe. For example, a walking sequence blending into a jumping

animation when a character jumps.

It is possible to apply transforms manually to animate the bone by performing the transform

against a bone's bind pose. For example, applying a rotation to the bone's bind pose

matrix will apply the rotation to the bone relative to its bind position. This would take place

irrespective of where we have applied the animation frame transforms in this recipe. This is

still a tricky process, and it is much easier to bake animations using a 3D modeling software.

Another option that can be used instead of baking animations or manual transformations

is ragdoll physics, a type of procedural animation. This technique is named so due to the

fact that characters using the system would typically fall into a heap like a toy rag doll.

Ragdoll physics involves using a physics solver that takes into consideration collisions and

the constraints built into each of the joints in a collection of rigid bodies that make up the

character. This can allow a character to respond more dynamically to its environment. For

example, if a character were to be hit by a bus or trip down some stairs, it may lop and
bounce around realistically.

As already mentioned, getting models to work as expected after three conversions (.blend,

.fbx, and then .cmo) can be quite tricky at times. For any large scale development, it would

be worth investigating using other formats directly, or by using a custom structure that aligns

with the projects requirements more closely.

The types of issues that can be encountered include, among others, incorrect normals,

inconsistent vertex winding between meshes, and issues with coordinate handedness

(that is, right-handed instead of left-handed). When choosing a 3D modeling package,

be sure that it has the lexibility to apply custom export logic. Blender supports the
extension of the export modules by editing the applicable Python script.

http:///

http:///

5
Applying Hardware

Tessellation

In this chapter, we will cover the following topics:

 f Preparing the vertex shader and buffers for tessellation

 f Tessellating a triangle and quad

 f Tessellating bicubic Bezier surfaces

 f Reining meshes with Phong tessellation

 f Optimizing tessellation through back-face culling and dynamic Level-of-Detail

Introduction

Tessellation is the process of tiling/dicing a plane with one or more geometric shapes,

for example, the creation of mosaics. In Direct3D 11, this process refers to the division

of geometry into smaller triangles according to an algorithm and a tessellation factor.

Hardware tessellation is available in Shader Model 5.0 and, therefore, hardware must

support a Direct3D feature level of 11_0 or higher.

When applying tessellation, we are submitting a control point patch to the input assembler

using one of the available control point input topologies (supporting up to 32 control points

per patch). A patch is a Direct3D primitive made up of a list of control points. For example,

we can re-use our existing meshes, made up of triangle lists, for tessellation by using the

PrimitiveTopology.PatchListWith3ControlPoints enumeration value (natively,

D3D11_PRIMITIVE_3_CONTROL_POINT_PATCH). What each control point does or means

is entirely up to the implementation within the hull and domain shaders; the tessellator itself

does not use the control points as it doesn't know how to interpret them.

http:///

Applying Hardware Tessellation

156

As already covered in Chapter 1, Getting Started with Direct3D, the tessellation stages of the

graphics pipeline are made up of two programmable shader stages and one ixed function
stage—the hull shader, tessellator, and domain shader stages. Similar to the geometry shader,

the tessellation stages are able to generate additional vertices. However, the vertices tend to

be a part of the same surface, whereas a geometry shader might be used to create an entirely

new unrelated shape or copies of the existing primitive.

Using tessellation can reduce the memory bandwidth by allowing the use of lower quality

meshes with fewer vertices, while still maintaining the high quality detailed meshes in the

inal render. The lexibility gained through the programmable stages of the tessellation
pipeline allows multiple uses from supporting dynamic Level-of-Detail (LoD), to rendering

parametric surfaces from a single control point.

Preparing the vertex shader and buffers for
tessellation

In this recipe, we will update the constant buffers to accept the tessellation parameters,

and update the vertex shader to output a structure for input into the hull shaders in the

next few recipes in this chapter.

Getting ready

For this recipe, we can begin with any Direct3D project with an existing vertex shader,

the PerObject and PerFrame constant buffers, and their C# counterparts in

ConstantBuffers.cs.

The completed source code for this recipe can be found within the

Ch05_01TessellationPrimitives project, contained within the companion source code.

How to do it…

We will irst update our HLSL (High-level Shader Language) and C# structures, and then

make a new vertex shader to use with the tessellation pipeline.

1. Update the PerObject constant buffer within Common.hlsl to include the

following property:

// Matrix to take world coordinates to view/projection

// Used in the domain shader

float4x4 ViewProjection;

http:///

Chapter 5

157

As mentioned in the recipe, Rendering a cube and sphere, in Chapter 3,

Rendering Meshes, the ViewProjection matrix should ideally be placed

within the PerFrame constant buffer. Here, for simplicity, we continue to

group the matrices within the PerObject constant buffer.

2. Update the corresponding structure in ConstantBuffers.cs to include public
Matrix ViewProjection; remember that it also needs to be transposed in the

Transpose method.

3. To relect the desired tessellation factor, update the perFrame constant buffer in

Common.hlsl to include a new member named float TessellationFactor.

4. In the corresponding PerFrame structure in the ConstantBuffers.cs ile,
we add public float TessellationFactor; remember to keep in mind

the 16-byte alignment and to match the layout with the HLSL structure.

5. Jump over to the D3DApp render loop and locate where the perObject.
WorldViewProjection property is set and add the following:

perObject.ViewProjection = viewProjection;

6. Then, ind where the perFrame.CameraPosition property is updated and

add the following:

perFrame.TessellationFactor = tessellationFactor;

The tessellationFactor variable is a float value that

is set between 1.0f and 64.0f. The completed sample

maps the +/- keys to increase/decrease the value.

We are now done with the changes to Common.hlsl and the constant buffers.

7. Next, let's create the Shaders\CommonTess.hlsl ile that houses the
common shader structures and functions used by our tessellation shader code.

Now, we will add the following HLSL structures:

1. The HullShaderInput structure, a subset of the existing vertex structure

input, is as shown in the following code snippet:

struct HullShaderInput

{

 float3 WorldPosition : POSITION;

 float4 Diffuse : COLOR;

 float2 TextureUV: TEXCOORD0;

 float3 WorldNormal : TEXCOORD1;

};

http:///

Applying Hardware Tessellation

158

2. The common domain shader input structure is as follows:

// Max 32 outputs

struct DS_ControlPointInput {

 float3 Position : BEZIERPOS;

 float4 Diffuse : COLOR0;

};

8. With the prerequisites in place, let us create a new vertex shader for use with the

tessellation pipeline.

1. With VS.hlsl open, add a new include directive:

#include "CommonTess.hlsl"

2. Create a copy of your existing vertex shader function and name

it as VSPassThruTessellate. Then, change the return type to

HullShaderInput.

9. Update the vertex shader to set the four properties of the preceding

HullShaderInput structure. We will continue to apply the PerObject.World

transform to the position and normal variables.

How it works…

As the domain shader will now be performing the multiplication of the position by the

ViewProjection matrix and it is easier to work with the vertices in world space, we need

to ensure our per object structures in Common.hlsl and ConstantBuffers.cs include a

copy of our ViewProjection matrix to take the position from world space to view/projection

space (or clip space).

The vertex shader now simply passes through the vertex attributes within world space to be

processed by the hull and domain shaders.

Tessellating a triangle and quad
In this recipe, we will perform tessellation upon a triangle and a quad patch. We will create

the hull and domain shaders that are necessary to use the triangle and quad tessellation

domains, respectively.

As the ixed function tessellation stage is used to deine new vertices, it is necessary
to move some of the vertex shader code into the applicable domain shader, such as

applying the ViewProjection matrix and calculating the interpolated vertex normal

and texture coordinates.

http:///

Chapter 5

159

We will update the CommonTess.hlsl shader code to perform barycentric interpolation,

to calculate the attributes for new vertices in a triangle domain, and bilinear interpolation

to interpolate between the four attributes within the quad domain.

Getting ready

We will continue from the previous recipe, Preparing the vertex shader and buffers

for tessellation.

For this recipe, we will also re-use the triangle and quad renderers from the recipe Rendering

primitives in Chapter 2, Rendering with Direct3D, along with the Texture2.png texture.

1. Add the Texture2.png texture, and the TriangleRenderer.cs and

QuadRenderer.cs renderers to your project.

2. Update the quad and triangle renderers to use the Vertex structure for the vertices,

passing in the vertex positions and UV coordinates as appropriate.

3. The vertex winding will also need to be reversed, as these renderers were created for

a left-handed coordinate system.

Remember to update the vertex binding in order to use the size

of the Vertex structure.

The completed project for this recipe can be found in Ch05_01TessellationPrimitives

within the downloaded companion code.

How to do it…

We will begin by creating the interpolation functions necessary for the tri and quad domains

within Shaders\CommonTess.hlsl. We will then implement the hull and domain shaders,

and inally update the renderers. Perform the following steps:

1. First add a new HLSL function BarycentricInterpolate to CommonTess.hlsl.

As we may need to interpolate float2, float3, and float4 values, we will add a

number of overloaded versions of this function. For convenience, we can accept the

inputs as individual parameters or as an array. The following code snippet shows the

float3 version; you need to do the same using float2 and float4:

float3 BarycentricInterpolate(float3 v0, float3 v1,
 float3 v2, float3 barycentric)

{

 return barycentric.z * v0 + barycentric.x * v1 +

http:///

Applying Hardware Tessellation

160

 barycentric.y * v2;

}

float3 BarycentricInterpolate(float3 v[3],
 float3 barycentric)

{

 return BarycentricInterpolate(v[0], v[1], v[2],

 barycentric);

}

2. To perform bilinear interpolation between the four values of a quad domain, add a

Bilerp function to CommonTess.hlsl. Again, we will need to interpolate between

float2 and float3 values. The following code snippet shows the implementation

for the four float3 values; you need to do the same using float2 and float4:

float3 Bilerp(float3 v[4], float2 uv)

{

 // bilerp the float3 values

 float3 side1 = lerp(v[0], v[1], uv.x);

 float3 side2 = lerp(v[3], v[2], uv.x);

 return lerp(side1, side2, uv.y);

}

3. The hull shader constant data that is generated for a triangle patch will use the

following structure, which we also add to CommonTess.hlsl:

// Max 32 outputs

struct HS_TrianglePatchConstant {

 float EdgeTessFactor[3] : SV_TessFactor;

 float InsideTessFactor : SV_InsideTessFactor;

 float2 TextureUV[3]: TEXCOORD0;

 float3 WorldNormal[3] : TEXCOORD3;

};

4. Lastly, to support the hull shader constant data for a quad patch, add the following

HLSL structure:

// Max 32 outputs

struct HS_QuadPatchConstant {

 float EdgeTessFactor[4] : SV_TessFactor;

 float InsideTessFactor[2] : SV_InsideTessFactor;

 float2 TextureUV[4]: TEXCOORD0;

 float3 WorldNormal[4] : TEXCOORD4;

};

http:///

Chapter 5

161

5. Create a new shader ile named Shaders\TessellateTri.hlsl; this will

contain our triangle tessellation hull shaders, hull shader patch constant function,

and domain shader.

Remember that the file encoding needs to be changed to Western

European (Windows) – Codepage 1252, and select Copy if newer.

6. Add the following include directives to the start of the code:

#include "Common.hlsl"

#include "CommonTess.hlsl"

7. For simplicity, we will create four hull shaders, one for each of the available

partitioning methods, HS_TrianglesInteger, HS_TrianglesFractionalOdd,

HS_TrianglesFractionalEven, and HS_TrianglesPow2. Each of these

functions is identical, except for the name and the partitioning type attribute applied.

[domain("tri")] // Triangle domain for our shader

[partitioning("integer")] // Partitioning type

[outputtopology("triangle_ccw")] // winding order
[outputcontrolpoints(3)] // Number of points for each patch

// The constant hull shader function

[patchconstantfunc("HS_TrianglesConstant")]
DS_ControlPointInput HS_TrianglesInteger(

 InputPatch<HullShaderInput, 3> patch,

 uint id : SV_OutputControlPointID,

 uint patchID : SV_PrimitiveID)

{

 DS_ControlPointInput result = (DS_ControlPointInput)0;

 result.Position = patch[id].WorldPosition;

 result.Diffuse = patch[id].Diffuse;

 return result;

}

8. Here, we have shown the integer partitioning type function; repeat the preceding

step for each of the following partitioning types (substituting the partitioning attribute

and changing the function name accordingly): fractional_odd, fractional_
even, and pow2.

This could also be achieved by defining a conditional macro, for example:

#define HS_PARTITIONING "integer"

This can also be specified as a parameter to the HLSL compiler when

compiling the shader code.

http:///

Applying Hardware Tessellation

162

9. Next, we will add the patch constant function, which will be executed only once

for each patch; this is the same function used by each of the hull shaders and is

referenced in the hull shader with the patchconstantfunc attribute.

// Triangle patch constant function

// (executes once for each triangle patch)

HS_TrianglePatchConstant HS_TrianglesConstant(

 InputPatch<HullShaderInput, 3> patch)

{

 HS_TrianglePatchConstant result =

 (HS_TrianglePatchConstant)0;

 // Determine the rounded tess factor

 float3 roundedEdgeTessFactor;

 float roundedInsideTessFactor, insideTessFactor;

 ProcessTriTessFactorsMax((float3)TessellationFactor,

 1.0, roundedEdgeTessFactor, roundedInsideTessFactor,

 insideTessFactor);

 // Apply the edge and inside tessellation factors

 result.EdgeTessFactor[0] = roundedEdgeTessFactor.x;

 result.EdgeTessFactor[1] = roundedEdgeTessFactor.y;

 result.EdgeTessFactor[2] = roundedEdgeTessFactor.z;

 result.InsideTessFactor = roundedInsideTessFactor;

 // Apply constant information

 [unroll]

 for (uint i = 0; i < 3; i++)

 {

 result.TextureUV[i] = patch[i].TextureUV;

 result.WorldNormal[i] = patch[i].WorldNormal;

 }

 return result;

}

10. Next, we will add the domain shader. This shader performs the necessary

barycentric interpolation, and then returns the pixel shader input structure. The inal
transformation to clip space with the view/projection matrix is also performed here:

// This domain shader applies control point weighting to

// the barycentric coords produced by the fixed function

// tessellator stage

[domain("tri")]

http:///

Chapter 5

163

PixelShaderInput DS_Triangles(HS_TrianglePatchConstant
constantData, const OutputPatch<DS_ControlPointInput, 3> patch,
float3 barycentricCoords : SV_DomainLocation)

{

 PixelShaderInput result = (PixelShaderInput)0;

 // Interpolate using barycentric coordinates

 float3 position = BarycentricInterpolate(

 patch[0].Position, patch[1].Position,

 patch[2].Position, barycentricCoords);

 // Interpolate the array of UV coords

 float2 UV = BarycentricInterpolate(

 constantData.TextureUV, barycentricCoords);

 float4 diffuse = BarycentricInterpolate(

 patch[0].Diffuse, patch[1].Diffuse,

 patch[2].Diffuse, barycentricCoords);

 // Interpolate the array of normals

 float3 normal = BarycentricInterpolate(

 constantData.WorldNormal, barycentricCoords);

 // Prepare pixel shader input:

 // Transform world position to view-projection

 result.Position = mul(float4(position,1),

 ViewProjection);

 result.Diffuse = diffuse;

 result.TextureUV = UV;

 result.WorldNormal = normal;

 result.WorldPosition = position;

 return result;

}

We will now create a quad domain hull and domain shader that accepts four

control points.

11. Create a new shader ile named Shaders\TessellateQuad.hlsl and set

the encoding, build action, and add the include directives as per the preceding

triangle tessellator.

12. Now, we will create a hull shader for each of the tessellation partitioning methods

as before. The hull shader for the integer partitioning type is shown as follows;

create one for each of the partitioning types as before. The differences from the

triangle hull shader are highlighted:

[domain("quad")] // Quad domain for our shader

[partitioning("integer")] // Partitioning type

http:///

Applying Hardware Tessellation

164

[outputtopology("triangle_ccw")] // order of the tris

[outputcontrolpoints(4)] // Number of times called for patch

// The constant hull shader function

[patchconstantfunc("HS_QuadsConstant")] DS_ControlPointInput HS_
QuadsInteger(

 InputPatch<HullShaderInput, 4> patch,

 uint id : SV_OutputControlPointID,

 uint patchID : SV_PrimitiveID)

{

 DS_ControlPointInput result = (DS_ControlPointInput)0;

 result.Position = patch[id].WorldPosition;

 result.Diffuse = patch[id].Diffuse;

 return result;

}

13. Now, add the quad patch constant function. Here, the changes from the triangle

tessellator are highlighted:

HS_QuadPatchConstant HS_QuadsConstant(
 InputPatch<HullShaderInput, 4> patch)
{
 HS_QuadPatchConstant result = (HS_QuadPatchConstant)0;

 // Perform rounding
 float4 roundedEdgeTessFactor;
 float2 roundedInsideTessFactor, insideTessFactor;
 Process2DQuadTessFactorsMax((float4)TessellationFactor, 1.0,
roundedEdgeTessFactor, roundedInsideTessFactor, insideTessFactor);

 // Apply the edge and inside tessellation factors
 result.EdgeTessFactor[0] = roundedEdgeTessFactor.x;
 result.EdgeTessFactor[1] = roundedEdgeTessFactor.y;
 result.EdgeTessFactor[2] = roundedEdgeTessFactor.z;
 result.EdgeTessFactor[3] = roundedEdgeTessFactor.w;

 result.InsideTessFactor[0] = roundedInsideTessFactor.x;
 result.InsideTessFactor[1] = roundedInsideTessFactor.y;

 // Apply constant information
 [unroll]
 for (uint i = 0; i < 4; i++)
 {
 result.TextureUV[i] = patch[i].TextureUV;
 result.WorldNormal[i] = patch[i].WorldNormal;
 }

 return result;

}

http:///

Chapter 5

165

14. And inally, we will add the quad domain shader. This time, we will perform a bilinear

interpolation using the Bilerp function from CommonTess.hlsl:

// Applies control point weighting with bilinear
// interpolation
[domain("quad")]
PixelShaderInput DS_Quads(
 HS_QuadPatchConstant constantData,
 const OutputPatch<DS_ControlPointInput, 4> patch,

 float2 uv : SV_DomainLocation)
{
 PixelShaderInput result = (PixelShaderInput)0;

 // Interpolate using bilerp
 float4 c[4];
 float3 p[4];
 [unroll]
 for(uint i=0;i<4;i++) {
 p[i] = patch[i].Position;
 c[i] = patch[i].Diffuse;
 }
 float3 position = Bilerp(p, uv);
 float2 UV = Bilerp(constantData.TextureUV, uv);
 float4 diffuse = Bilerp(c, uv);
 float3 normal = Bilerp(constantData.WorldNormal, uv);

 // Prepare pixel shader input:
 ...SNIP as per the triangle tessellator domain shader
 return result;
}

15. Within the D3DApp.CreateDeviceDependentResources method, compile the

TessellateTri.hlsl and TessellateQuad.hlsl shader functions, using the

hs_5_0 shader proile for each of the hull shader functions, and ds_5_0 for the

domain shader function.

16. We will also need to provide access to the PerObject and PerFrame constant

buffers within the hull and domain shaders. To do this, add the following code

to the D3DApp.CreateDeviceDependentResources method:

// Set our hull/domain shader constant buffers

context.HullShader.SetConstantBuffer(0, perObjectBuffer);

context.HullShader.SetConstantBuffer(1, perFrameBuffer);

context.DomainShader.SetConstantBuffer(0, perObjectBuffer);

context.DomainShader.SetConstantBuffer(1, perFrameBuffer);

Lastly, we need to update the renderers, so that they pass through the correct

input topology.

http:///

Applying Hardware Tessellation

166

17. For the TriangleRenderer C# class, change the DoRender method to set the

PrimitiveTopology enumeration to a patch list with three control points:

context.InputAssembler.PrimitiveTopology =
 PrimitiveTopology.PatchListWith3ControlPoints;

18. For the QuadRenderer class, we do not need an index buffer. Instead, we will

use the following code in the DoRender method to set up the patch topology

and draw the vertices:

context.InputAssembler.PrimitiveTopology =
 PrimitiveTopology.PatchListWith4ControlPoints;

context.InputAssembler.SetVertexBuffers(0, quadBinding);

context.Draw(4, 0);

19. Create an instance of our renderers within D3DApp.Run, and add a call to their

Render method within the render loop.

20. Add the TriangleRenderer and QuadRenderer classes to the render loop:

// TRIANGLE

context.VertexShader.Set(tessellateVertexShader);

context.HullShader.Set(activeTriTessellator);

context.DomainShader.Set(tessellateTriDomainShader);

triangle.Render();

// QUAD

context.VertexShader.Set(tessellateVertexShader);

context.HullShader.Set(activeQuadTessellator);

context.DomainShader.Set(tessellateQuadDomainShader);

quad.Render();

...

// RESET SHADERS

context.VertexShader.Set(vertexShader);

context.HullShader.Set(null);

context.DomainShader.Set(null);

Attempting to use the wrong primitive topology type with the hull/domain

shader may result in an unexpected behavior; therefore, we clear the

shaders to ensure that they don't interfere with other renderers.

For example, on a test machine, it was possible to crash the display driver

subsystem by specifying a standard triangle list while a hull shader was set.

http:///

Chapter 5

167

21. In the preceding code, active*Tessellator is one of the applicable integer,

pow2 hull shaders. The completed project maps keys from F1 to F4 to the different

partitioning types. Compiling and running the application will produce results similar

to those shown in the following sequence of igures:

Examples of each of the partitioning methods with varying tessellation factors. Applying a tessellation

factor of 0 will cull the primitive, while setting the [maxtessfactor] attribute of the hull shader will limit the

maximum tessellation factor.

http:///

Applying Hardware Tessellation

168

How it works…

As already covered in Chapter 1, Getting Started with Direct3D, the tessellation phase of

the graphics pipeline incorporates three distinct stages, the hull shader, the ixed function
tessellator, and the domain shader.

The hull shader is made of two shader functions: the hull shader itself that is responsible for

outputting per control point properties, and the patch constant function that is responsible for

outputting per patch properties and tessellation factor that will be used by the ixed function
tessellator stage. Both the methods have access to the entire input patch. After the ixed
function tessellator stage is processed, the new geometry is passed to the domain shader,

where the attributes of each new control point can be determined.

Tessellation pipeline for a triangle domain

While creating the triangle hull shader, we have indicated with the domain attribute that the

domain of the tessellator is triangles, and this instructs the ixed function tessellator stage
to generate barycentric coordinates as the SV_DomainLocation parameter that is passed

to the domain shader. This domain attribute must be consistent across the hull and domain

shaders currently bound to the pipeline.

[domain("tri")]

The impact of the partitioning attribute upon the tessellator is shown in the previous

example output. You can see that depending on the selected partitioning method and for

the same tessellation factor, additional geometry of varying amount is generated at different

locations. This is best experienced by seeing the tessellation factor slowly increasing in time.

http:///

Chapter 5

169

The integer and pow2 methods will increase the number of primitives generated based on

the current whole number or power of two respectively, while showing no change for the values

in between. Whereas the fractional_even and fractional_odd methods will show a

gradual increase of the tessellation level between the whole numbers—with odd numbers

starting from the outside edges and even the center. As more or less geometry is generated

with changes in the tessellation factor, integer and pow2 will show popping geometry, while

the fractional partitioning schemes can result in swimming geometry. These two behaviors are

important to consider while you are using dynamic levels of tessellation:

[partitioning("fractional_odd")]

The outputtopology attribute controls, whether the output primitive topology is a triangle

(clockwise or counter-clockwise), a point or a line, as shown in the following code snippet:

[outputtopology("triangle_cw")] // triangle clockwise

[outputtopology("triangle_ccw")] // triangle counter-clockwise

[outputtopology("point")] // point

[outputtopology("line")] // line

The outputcontrolpoints attribute value deines how many times the hull shader
will be called for each input patch. Each hull shader execution is passed an ID through the

SV_OutputControlPointID input semantic and the input patch, and it returns a single

control point. The complete list of control points for the primitive will be passed on to the

domain shader by the ixed function tessellator stage. This can be seen in the preceding
pipeline diagram. The last attribute, patchconstantfunc, tells the tessellator pipeline

which function is the counterpart of the hull shader. This function is required and is used

to deine the edge and internal tessellation factors of the patch along with any other
patch attributes.

[patchconstantfunc("HS_TrianglesConstant")]

The body of our hull shader is simply retrieving the control point from the input patch and

passing this information to the result. By using the SV_OutputControlPointID parameter,

it is possible to load additional information for the control points from precalculated textures

or buffers.

The constant function of the hull shader patch must provide the tessellation factor for

the patch. In our example, this is a constant value that is provided in the perFrame

constant buffer.

http:///

Applying Hardware Tessellation

170

Although it is possible to provide multiple tessellation factors (left, right, top, and bottom,

depending on the domain), we are providing a constant tessellation factor across all the

edges by casting TessellationFactor float to a float3 for tri domain or float4

for the quad domain. We use the built-in HLSL functions to round the tessellation factor.

This ensures that the values used for the inside and outside edges are correct for the

speciied partitioning method.

ProcessTriTessFactorsMax((float3)TessellationFactor, 1.0,
 roundedEdgeTessFactor, roundedInsideTessFactor,
 insideTessFactor);

Process2DQuadTessFactorsMax((float4)TessellationFactor, 1.0,
 roundedEdgeTessFactor, roundedInsideTessFactor,
 insideTessFactor);

The last part of the hull shader constant function returns data to be shared across all the

control points of the patch. The maximum number of outputs supported for a structure

involved in the tessellation pipeline is 32 float4 properties, allowing a total of 1024 bytes

per patch (remember that the structure will be padded to 16 bytes). Generally the amount of

information should be kept to a minimum, and it may be necessary to use buffers or texture

sampling to load additional data.

The domain shader is called for each newly created output control point in each patch by the

ixed function tessellator stage. This shader is responsible for generating appropriate texture
coordinates, and so on, across the newly created geometry. The result is then output to the

pixel shader.

Our two renderers use two different interpolation techniques: barycentric interpolation

(for the tri domain), and bilinear interpolation (for the quad domain with four control points).

There's more…

Controlling the tessellation factors for individual outside and inside edges within the hull

shader constant function is especially useful while performing screen adaptive tessellation.

This form of adaptive tessellation determines the tessellation factor for an edge based upon

the length of the edge within screen space.

See also
We cover culling of primitives within the tessellation pipeline in the recipe, Optimizing

tessellation through back-face culling and dynamic Level-of-Detail, later in this chapter.

http:///

Chapter 5

171

Tessellating bicubic Bezier surfaces
In this recipe, we will perform tessellation upon a bicubic Bezier control patch using the

tessellation stages of the graphics pipeline. This tessellation will use the quad domain of the

tessellator. We will update the CommonTess.hlsl shader code to include the methods to

perform bicubic interpolation of the Bezier control points using De Casteljau's algorithm to

subdivide a Bezier curve at an arbitrary point along the curve.

Getting ready

We will continue on from the earlier recipe, Preparing the vertex shader and buffers

for tessellation.

How to do it…

We will irst implement the shader code for tessellating our Bezier control points. We will

then implement a renderer for a bicubic Bezier surface. Consider the following steps:

1. First within CommonTess.hlsl, we add the hull shader constant data structure

to be generated for a Bezier patch:

// Max 32 outputs

struct HS_BezierPatchConstant {

 float EdgeTessFactor[4] : SV_TessFactor;

 float InsideTessFactor[2] : SV_InsideTessFactor;

 float2 TextureUV[16]: TEXCOORD0;

};

2. Then, we add a new function for bicubic interpolation to CommonTess.hlsl.

As with the previous recipe, we will implement the interpolation for float2 and

float3 variables. The following code shows the implementation for float3:

// Calculate point upon Bezier curve and return

void DeCasteljau(float u, float3 p0, float3 p1, float3 p2, float3
p3, out float3 p, out float3 t)

{

 float3 q0 = lerp(p0, p1, u);

 float3 q1 = lerp(p1, p2, u);

 float3 q2 = lerp(p2, p3, u);

http:///

Applying Hardware Tessellation

172

 float3 r0 = lerp(q0, q1, u);

 float3 r1 = lerp(q1, q2, u);

 t = r0 - r1; // tangent

 p = lerp(r0, r1, u);

}

// Bicubic interpolation of cubic Bezier surface

void DeCasteljauBicubic(float2 uv, float3 p[16], out float3
result, out float3 normal)

{

 // Interpolated values (e.g. points)

 float3 p0, p1, p2, p3;

 // Tangents (derivatives)

 float3 t0, t1, t2, t3;

 // Calculate tangent and positions along each curve

 DeCasteljau(uv.x, p[0], p[1], p[2], p[3], p0, t0);

 DeCasteljau(uv.x, p[4], p[5], p[6], p[7], p1, t1);

 DeCasteljau(uv.x, p[8], p[9], p[10], p[11], p2, t2);

 DeCasteljau(uv.x, p[12], p[13], p[14], p[15], p3, t3);

 // Calculate final position and tangents across surface

 float3 du, dv, tmp;

 DeCasteljau(uv.y, p0, p1, p2, p3, result, dv);

 DeCasteljau(uv.y, t0, t1, t2, t3, du, tmp);

 // du represents tangent

 // dv represents bitangent

 normal = normalize(cross(du, dv));

}

A difference in the implementation of float2 support is that we

will not calculate the normal vector.

3. Create a new shader ile named Shaders\TessellateBezier.hlsl, as per the

quad example provided in the previous recipe.

4. The hull shaders are identical to the quad hull shaders, except that the number of

input and output control points is now 16 instead of 4, and the names should begin

with HS_Bezier (for example, HS_BezierInteger). The patchconstantfunc

attribute should also be changed to HS_BezierConstant.

5. The Bezier patch constant function, as shown in the following code snippet, is very

similar to the quad example:

HS_BezierPatchConstant HS_BezierConstant(InputPatch<HullShaderInp
ut, 16> patch)

{

http:///

Chapter 5

173

 HS_BezierPatchConstant result =

 (HS_BezierPatchConstant)0;

 // Perform rounding

 ...SNIP as per quad patch constant function above

 // Apply constant information

 [unroll]

 for (uint I = 0; i < 16; i++)

 {

 result.TextureUV[i] = patch[i].TextureUV;

 }

 return result;

}

6. Next, we create the Bezier patch domain shader. This time, we will use bicubic

Bezier surface interpolation with the DeCasteljauBicubic function within

CommonTess.hlsl. The domain shader code for the Bezier surface is as follows:

// Applies control point weighting using Bezier bicubic

// interpolation

[domain(""quad"")]

PixelShaderInput DS_Bezier(HS_BezierPatchConstant constantData,

 const OutputPatch<DS_ControlPointInput, 16> patch,

 float2 uv : SV_DomainLocation)

{

 PixelShaderInput result = (PixelShaderInput)0;

 // input Colors

 float3 c[16];

 // input Control points

 float3 p[16];

 [unroll]

 for(uint i=0;i<16;i++) {

 p[i] = patch[i].Position;

 c[i] = patch[i].Diffuse.rgb;

 }

 float3 position, normal;

 // Perform De Casteljau bicubic interpolation of

 // positions then output final position and normal

 DeCasteljauBicubic(uv, p, position, normal);

 // Perform De Casteljau bicubic interpolation of UV

 DeCasteljauBicubic(uv, constantData.TextureUV,

 result.TextureUV);

http:///

Applying Hardware Tessellation

174

 // Calculate diffuse color with consideration of all 16
 // control points (using alpha from only the first)
 float3 color, c1;
 DeCasteljauBicubic(uv, c, color, c1);
 float4 diffuse = float4(color, patch[0].Diffuse.a);
 // Prepare pixel shader input:
 // Transform world position to view-projection
 result.Position = mul(float4(position, 1),
 ViewProjection);
 result.Diffuse = diffuse;
 result.WorldNormal = normal;
 result.WorldPosition = position;
 return result;
}

7. Add a new C# renderer class named BezierPatchRenderer with the appropriate

SharpDX using directives. This renderer will be used to render a 16 control point

Bezier surface.

8. Within the BezierPatchRenderer.CreateDeviceDependentResources

override, we will add the following code to deine the 16 control points:
// Create the cubic Bezier surface
// Note: the normals are calculated from the Bezier surface
vertexBuffer = ToDispose(Buffer.Create(device, BindFlags.
VertexBuffer, new[] {
 // x, y, z u, v texture coord
 new Vertex(-1, 0, 1, 0, 0),
 new Vertex(-0.34f, 0, 1, 1, 0),
 new Vertex(0.34f, 0, 1, 2, 0),
 new Vertex(1, 0, 1, 3, 0),

 new Vertex(-1, 0, 0.34f, 0, 1),
 new Vertex(-0.34f, 2, 0.34f,1, 1),
 new Vertex(0.34f, 2, 0.34f, 2, 1),
 new Vertex(1, 0, 0.34f, 3, 1),

 new Vertex(-1, 0, -0.34f, 0, 2),
 new Vertex(-0.34f, 2, -0.34f, 1, 2),
 new Vertex(0.34f, 2, -0.34f, 2, 2),
 new Vertex(1, 0, -0.34f, 3, 2),

 new Vertex(-1, 0, -1, 0, 3),
 new Vertex(-0.34f, 0, -1, 1, 3),
 new Vertex(0.34f, 0, -1, 2, 3),
 new Vertex(1, 0, -1, 3, 3),}));
vertexBinding = new VertexBufferBinding(vertexBuffer,
 Utilities.SizeOf<Vertex>(), 0);

http:///

Chapter 5

175

9. We can load the control points from a ile, such as for the famous Utah Teapot (refer
to the link in the See also section). The following diagram shows how the vertices

match the control points of a cubic Bezier surface:

Cubic Bezier surface control point layout

10. Finally, within the DoRender override, we will draw the surface with the

following code:

// Tell the IA we are using a list of patches with 16

// control points each

context.InputAssembler.PrimitiveTopology =
 PrimitiveTopology.PatchListWith16ControlPoints;

// Pass in the vertices

context.InputAssembler.SetVertexBuffers(0, vertexBinding);

context.Draw(16, 0);

The completed sample within the downloaded content includes the options

to enable a second and third draw sequence for the Bezier patch that

outputs the control points as PointList and LineList. This can be

helpful to visualize how the control points impact the final result.

11. Within the D3DApp.CreateDeviceDependentResources method, compile the

shader methods as per the triangle and quad shader code from the previous recipe.

12. Lastly, render the Bezier surface, as shown in the previous recipe. Remember to reset

the vertex, hull, and domain shaders afterwards.

http:///

Applying Hardware Tessellation

176

13. In the completed project, the Backspace key is mapped to toggle between the

renderers. The following screenshot shows the Bezier output:

Bezier patch with integer partitioning and tessellation factors from top to bottom of: 1.2, 2.0, and 12.0

How it works…

In this recipe, we use bicubic interpolation of Bezier patches (for a quad domain with 16

control points), which can be used as a method for approximating Catmull-Clark subdivision

surfaces (Loop and Schaefer 2008).

The bicubic Bezier surface consists of four rows of Bezier curves using four control points

each. The interpolation across the Bezier surface works by irst linear interpolating (lerp)

each of the Bezier curves, and then linear interpolating the results of these four curves.

The following diagram shows how this works for a single Bezier curve with a lerp value of 0.5:

http:///

Chapter 5

177

Using De Casteljau's algorithm to calculate a point upon a Bezier curve where u == 0.5

The following diagram shows the control points used to generate our cubic Bezier surface:

Bezier patch showing lines between 12 of the 16 control points

There's more…

At this point, we have only scratched the surface of what can be done with tessellation.

With the exception of the Bezier patch, our tessellation has only created additional triangles,

and they have not been displaced or otherwise manipulated to improve the level of detail.

For example, if we were to apply the triangle tessellation against a 3D mesh, we would see

that the mesh remains in the same shape albeit with a denser distribution of triangles.

http:///

Applying Hardware Tessellation

178

Parametric surfaces
By implementing a domain shader for parametric shapes, it is possible to generate

complex shapes with minimal memory bandwidth, for example, a single control point can

be used to create a sphere. By passing a single control point using the primitive topology,

PrimitiveTopology.PatchListWith1ControlPoints, and duplicating the Quad

renderer HLSL while changing the hull and domain shaders in order to accept a single input

and output control point, we can implement a range of parametric surfaces. The domain shader

provides two parameters for our equations via the SV_DomainLocation (UV) parameter.

The completed project includes the parametric renderer along with shader source code:

PixelShaderInput DS_Parametric(HS_QuadPatchConstant constantData,
const OutputPatch<DS_ControlPointInput, 1> patch, float2 uv : SV_
DomainLocation)

{

 PixelShaderInput result = (PixelShaderInput)0;

 float PI2 = 6.28318530;

 float PI = 3.14159265;

 float S = PI2 * uv.x;

 float T = PI2 * uv.y;

 float sinS, cosS, sinT, cosT;

 sincos(S, sinS, cosS);

 sincos(T, sinT, cosT);

 // Torus

 float R1 = 0.5; // radius of ring

 float R2 = 0.25;// radius of tube

 float R3 = (R1 + R2 * cosT);

 float3 torusPos = float3(R3 * cosS, R3 * sinS, R2 * sinT);

 float3 position = torusPos;

 float4 diffuse = float4(normalize(position)+0.4, 1);

 float3 normal = normalize(position);

 // Prepare pixel shader input:

 // Transform to World-view-projection

 result.Position = mul(float4(position,1),WorldViewProjection);

 result.Diffuse = diffuse;

 result.WorldNormal = normal;

 result.WorldPosition = position;

 return result;

}

http:///

Chapter 5

179

The previous domain shader code renders a torus, as shown in the following screenshot:

Render of a torus using a parametric surface domain shader (wireframe on the left and solid on the right)

It is also possible to implement the parametric surfaces directly within the vertex shader

with no vertex buffers, and with the use of the SV_VertexId input semantic to index into a

shader resource or as input into some function. This may result in an even faster generation

of the parametric geometry as compared to the tessellation pipeline, although it would also

require additional logic to be implemented either on CPU or within further shader functions.

See also
Bezier surface patches for the famous Utah Teapot can be found at:

http://www.holmes3d.net/graphics/teapot/. These can be loaded directly

into a vertex buffer for use with this recipe. Remember that every four vertices represent

a Bezier curve, and there are four curves to a patch giving 16 control points per patch.

Reining meshes with Phong tessellation
In this recipe, we will implement a simple technique for the local reinement of triangle

meshes through tessellation—Phong tessellation. This technique, put forward by Boubekeur

and Alexa in 2008, follows the same principles as Phong shading (thus the name) and

normal mapping, but instead of improving the perceived visual smoothness of lat surfaces,
it improves the actual smoothness of contours and silhouettes.

Phong tessellation is computationally inexpensive when compared to algorithms for

approximating Catmull-Clark subdivision surfaces. It still achieves smooth silhouettes

and more importantly, it can be locally implemented on the tessellation hardware without

requiring any additional precalculated weights/control points or specially prepared meshes

unlike bicubic Bezier patches or Gregory patches.

This means that most existing triangulated meshes will work reasonably well with Phong

tessellation with few or no changes to the original mesh.

http:///

Applying Hardware Tessellation

180

Getting ready

For this recipe, we will be continuing on from the recipe, Tessellating a triangle and quad,

and will be using the completed mesh renderer C# class from Chapter 4, Animating Meshes

with Vertex Skinning.

The completed project for this recipe can be found in the Ch05_02TessellatedMesh

project within the companion source code.

How to do it…

We will irst update the MeshRenderer class to supply a patch list with three control points.

Then, we will continue to implement a Phong tessellation domain shader. Consider the

following steps:

1. Create a copy of the MeshRenderer class named TessellatedMeshRenderer,

so that we don't get confused between the two classes later on.

2. Find the location at which the primitive topology is set, and change it to the following:

// Set topology

context.InputAssembler.PrimitiveTopology =
 SharpDX.Direct3D.PrimitiveTopology
 .PatchListWith3ControlPoints;

This is all that we need to change in order to prepare the mesh renderer for the

tessellation pipeline.

3. We will use the triangle hull shaders from the previous project and use a modiied
version of the domain shader to implement the Phong tessellation.

The Character.cmo model from Chapter 4, Animating Meshes

with Vertex Skinning, requires the tessellation winding order to be

triangle_cw.

4. Create a new shader ile called Shaders\TessellatePhong.hlsl, and remember

to change the encoding and build action.

5. Open the new shader ile and add the following include directives:

#include "Common.hlsl"

#include "CommonTess.hlsl"

6. Next, we will add a new function for orthogonally projecting a point on to a plane,

as follows:

// Orthogonal projection on to plane

// v2_projected = v2 - dot(v2-v1, n) * n;

http:///

Chapter 5

181

float3 ProjectOntoPlane(float3 planeNormal, float3 planePoint,
float3 pointToProject)

{

 return pointToProject - dot(pointToProject-planePoint,

 planeNormal) * planeNormal;

}

7. Finally, we create the new domain shader. Begin by copying the existing triangle

domain shader from the recipe, Tessellating a triangle and quad, and rename to

DS_PhongTessellation.

8. Within the new domain shader, after the code that performs the barycentric

interpolation, we insert the following Phong tessellation logic:

// Interpolate using barycentric coordinates

...SNIP – existing triangle domain shader code

// BEGIN Phong Tessellation

// Orthogonal projection in the tangent planes

float3 posProjectedU =
 ProjectOntoPlane(constantData.WorldNormal[0],
 patch[0].Position, position);

float3 posProjectedV =
 ProjectOntoPlane(constantData.WorldNormal[1],
 patch[1].Position, position);

float3 posProjectedW =
 ProjectOntoPlane(constantData.WorldNormal[2],
 patch[2].Position, position);

// Interpolate the projected points

position = BarycentricInterpolate(posProjectedU,
 posProjectedV, posProjectedW, barycentricCoords);

// END Phong Tessellation

// Transform world position to view-projection

...SNIP – existing triangle domain shader code

9. Within D3DApp.CreateDeviceDependentResources, compile the new domain

shader. Remember to use the ds_5_0 shader proile.

10. Within the render loop, ensure that the Character.cmo mesh is being loaded

correctly into a TessellatedMeshRenderer instance, and update the mesh

rendering section of the render loop with the following code:

context.VertexShader.Set(tessellateVertexShader);

context.HullShader.Set(activeTriTessellator);

if (usePhongTessellation)

 context.DomainShader.Set(tessellatePhongDomainShader);

else

http:///

Applying Hardware Tessellation

182

 context.DomainShader.Set(tessellateTriDomainShader);

meshes.ForEach((m) =>

{

 m.PerMaterialBuffer = perMaterialBuffer;

 m.PerArmatureBuffer = perArmatureBuffer;

 m.Render();

});

The completed example maps the F5 key to toggle Phong tessellation.

11. Compiling and running (F5) the project will result in the same character animation

present at the end of Chapter 4, Animating Meshes with Vertex Skinning; however,

if you look carefully at the silhouette, changing the tessellation level now improves

the smoothness.

The following screenshot shows the results of using an integer partitioning type with Phong

tessellation active and a tessellation factor of 1.0 (equivalent to no tessellation), 2.0, and 3.0:

Phong tessellation at work

http:///

Chapter 5

183

How it works…

In the preceding screenshot, the impact of Phong tessellation upon contours and silhouettes

(the ear and nose) is quite clear. With only a small increase in the tessellation factor, a fairly

smooth surface is quickly possible.

As shown in the following diagram, calculating the vertex displacement in Phong tessellation

is done by:

1. Computing p1 as the position on the lat surface (as per the previous triangle domain
shader using barycentric interpolation):

float3 p1 = BarycentricInterpolate(v0, v1, v2, baryUVW);

2. Projecting p1 orthogonally to the tangent plane of each of the triangle vertices'

normal vectors (outputting Proj1, Proj2, and Proj3):

float3 proj1 = ProjectOntoPlane(n0, v0, p1);

float3 proj2 = ProjectOntoPlane(n1, v1, p1);

float3 proj3 = ProjectOntoPlane(n2, v2, p1);

3. And inally, computing the barycentric interpolation of the three projected points that
gives us our inal position of P1:

P1 = BarycentricInterpolate(proj1, proj2, proj3, baryUVW);

Calculation of the new vertex's displacement for Phong tessellation

http:///

Applying Hardware Tessellation

184

The character mesh is already fairly smooth, so in order to see a more dramatic result,

the completed example includes a very low polygon frog character with only 60 triangles.

The following screenshot shows the frog rendered at varying tessellation levels:

Low-poly frog (60 triangles) with no tessellation (top), Phong tessellation and fractional odd partitioning

with tessellation factor of 1.6 (middle) and 12.0 (bottom). Original model by kednar @ blendswap.com

Reviewing the impact of Phong tessellation for the preceding screenshots of the character

and frog highlights the following issues:

 f The number of primitives increases quite signiicantly and it will be necessary to cull
some primitives or use an adaptive Level–of-Detail to prevent performance issues.

 f Although the model does not need to be authored with tessellation in mind, it is still

beneicial if it has been. For example, to maintain a crease or hard edge in some
instances, it will now be necessary to include additional primitives to ensure that the

Phong tessellation process does not curve them off too much, as we saw happening

to the preceding frog mesh.

 f Unless there are additional details to be incorporated (for example, displacement

mapping), the beneits of Phong tessellation only lie with the smoother contours
and silhouettes (which is its purpose in the irst place). Therefore, to improve the
performance, we may only need to tessellate the contours.

http:///

Chapter 5

185

There's more…

It is important to note that the low-poly mesh has already been transformed (by the animation

code) into the appropriate pose before the tessellation, and therefore, we have been able

to increase the smoothness of the mesh (especially for contours and silhouettes) without

increasing the animation cost.

There are a number of other techniques that can be used for mesh reinement or subdivision.
Curved PN Triangles (Vlachos, Peters et al. 2001) is one such technique that also allows

local mesh reinement with similar results to Phong tessellation; however, this is a more
computationally expensive algorithm (Boubekeur and Alexa 2008). This algorithm does

keep the vertices closer to the original bounding mesh as opposed to Phong tessellation's

more bulging appearance. Other implementations such as Approximating Catmull-Clark

Subdivision Surfaces with Bicubic Patches (Loop and Schaefer 2008), or Approximating

subdivision surfaces with Gregory patches for hardware tessellation (Loop, Schaefer et

al. 2009) may provide more lexibility and more exact results. However, they also require
signiicant additional asset worklow or some preprocessing to implement and incur a larger
computational cost.

See also
 f Chapter 6, Adding Surface Detail with Normal and Displacement Mapping, will look

into more detail at tessellation and displacement mapping

 f Refer to the Phong tessellation paper and video at: http://perso.telecom-
paristech.fr/~boubek/papers/PhongTessellation/

 f Refer to Approximating Subdivision Surfaces with Gregory Patches for Hardware

Tessellation at: http://research.microsoft.com/en-us/um/people/
cloop/sga09.pdf

 f Refer to the implementation of Curved PN Triangles that can be found within

Shaders\TessellatePNTri.hlsl for comparison.

Optimizing tessellation through back-face
culling and dynamic Level-of-Detail

As we saw in the previous recipe, the number of generated triangles from tessellation can be

quite high, and the most obvious optimization is to exclude any triangles that are facing away

from the camera. This is called back-face culling. We will also look at how we may implement

dynamic Level-of-Detail (LoD) by changing the tessellation levels, depending on whether the

triangles are silhouetted or aligned roughly perpendicular to the camera view.

http:///

Applying Hardware Tessellation

186

Getting ready

We will continue on from the point where we left off with the Reining meshes with Phong
tessellation recipe.

All the code for implementing the back-face culling methods

and dynamic LoD is included as comments within the HS_
TrianglesConstant function in TessellateTri.hlsl

for the Ch05_02TessellatedMesh project.

How to do it…

We will implement two methods of back-face culling, and then incorporate a reduction

of the tessellation factor for non-silhouette faces.

Back-face culling using face normal vectors
Consider the following steps:

1. After loading the project from our previous recipe, open Shaders\TessellateTri.
hlsl.

2. Locate the HS_TrianglesConstant function, and modify it to include the

following code:

...SNIP

HS_TrianglePatchConstant result = (HS_TrianglePatchConstant)0;

// Backface culling – using face normal

// Calculate face normal

float3 edge0 = patch[1].WorldPosition –

 patch[0].WorldPosition;

float3 edge2 = patch[2].WorldPosition –

 patch[0].WorldPosition;

float3 faceNormal = normalize(cross(edge2, edge0));

// Create view vector

float3 view = normalize(CameraPosition –

 patch[0].WorldPosition);

// If cosine(angle) < -0.25

if (dot(view, faceNormal) < -0.25) {

 result.EdgeTessFactor[0] = 0;

 result.EdgeTessFactor[1] = 0;

http:///

Chapter 5

187

 result.EdgeTessFactor[2] = 0;

 result.InsideTessFactor = 0;

 return result; // culled, so no further processing

}

// end: backface culling

...SNIP rest of function excluded from listing

3. Running the project and switching to wireframe (the F key in the provided code)

will show that the back-facing triangles are no longer rendered. The following

screenshot shows the output.

The sample project has disabled back-face culling within the rasterizer state

(RasterizerStateDescription.CullMode = CullMode.None),

so that this can be tested correctly.

Back-face culling using vertex normal vectors
Consider the following steps:

1. Comment out or remove the previous code for back-face culling based

on the face normal, and include the following code instead:

...SNIP

HS_TrianglePatchConstant result = (HS_TrianglePatchConstant)0;

// Backface culling - using Vertex normals

bool backFacing = true; // default to cull

[unroll]

for (uint j = 0; j < 3; j++)

{

 // Create view vector

 float3 view = normalize(CameraPosition –

 patch[j].WorldPosition);

 float a = dot(view, patch[j].WorldNormal);

 if (a >= -0.125) {

 backFacing = false; // do not cull patch

 }

}

if (backFacing) {

 result.EdgeTessFactor[0] = 0;

 result.EdgeTessFactor[1] = 0;

 result.EdgeTessFactor[2] = 0;

 result.InsideTessFactor = 0;

http:///

Applying Hardware Tessellation

188

 return result; // culled, so no further processing

}

// end: backface culling

...SNIP rest of function excluded from listing

2. Running the project now, we see a very similar result. However, if you look closely at the

two renders, the culling based on the face normal will sometimes remove a partially

visible triangle whereas using the vertex normal does not (circled in the following

screenshot). This is especially noticeable in low-poly models, where a larger angle

threshold is necessary. By increasing the angle threshold, we can address the issue.

Back-face culling (left using the face normal and right by checking all vertex normals)

Dynamic Level-of-Detail (LoD) near silhouettes
We will now take advantage of Phong tessellation to improve contours and silhouettes,

while minimizing the number of triangles generated elsewhere. We do this by reducing the

tessellation factor on surfaces that are facing more directly to the camera.

1. First, implement back-face culling, as described earlier, using vertex normals.

2. If the dot product is larger than 0.125, we will set a multiplier variable to reduce the

inside tessellation factor by 0.25 of the full tessellation factor. Otherwise, we will

leave the insideMultiplier value as 1.0f:

float insideMultiplier = 0.25f;

...

result.InsideTessFactor = roundedInsideTessFactor *

 insideMultiplier;

http:///

Chapter 5

189

How it works…

By calculating the face normal, we were able to determine if, on average, the triangle was

facing towards or away from the camera. If a face is within the viewing threshold's cosine

angle, we keep the patch (in this case, larger than -0.25), otherwise it is discarded before it

even reaches the rasterizer stage (remember to turn off back-face culling in the rasterizer to

test this). Setting the patch tessellation factor to zero tells the ixed function tessellator stage
to discard the patch. This method of using the face normals occasionally results in some

visual artifacts, such as partially visible triangles popping in and out, that is, where one of the

three vertices' normals is within the threshold and the other two are not. The more the source

mesh is detailed, the smaller threshold necessary to remove the artifact.

In our second approach, we look at each vertex's normal. If any of the normals are within the

threshold, we keep the patch; otherwise, we set the tessellation factor to zero in order to tell

the ixed function tessellator stage to discard the patch.

A couple of beneits to this approach are that the popping of triangles is mostly ixed, and
the threshold can be reduced resulting in even fewer extraneous triangles. In the example of

the vertex normal, we were able to use -0.125 (or 97.18 degrees), whereas the face normal

approach needed -0.25 for the same model (or 104.5 degrees). This approach does have a

slightly higher cost.

Finally, we have implemented a very basic dynamic LoD within the patch constant function.

Rather than applying the modiier to the edge and inner tessellation factors, we have only
changed the inside factor. This is because the neighboring/adjacent edges must have the

same tessellation factor in order to maintain water tightness; otherwise, the resulting mesh

will have visible seams (especially near curves). We have done this to keep the example

simple and fast. It is important to note that this method of dynamic LoD does not work well

with the fractional_odd partitioning type, due to the additional inside vertices that are

nearer to the edges.

It is important to remember that tessellation is not free; it should be used wisely where

tessellation will beneit the image quality the most.

There's more…

Tessellation can be optimized in many ways and we have only covered a few of them.

Other options might include analyzing the complexity of a patch's location in a displacement

map or using a feature complexity map (feature adaptive), frustum culling, checking the

triangle size, distance, or based on edge length, and screen adaptive.

http:///

Applying Hardware Tessellation

190

See also
 f For more information about calculating watertight positions, normals, and UV

coordinates, refer to Eficient substitutes for subdivision surfaces in feature-quality
games Tianyun Ni, ACM SIGGRAPH ASIA 2010 Courses

 f Refer to the Optimizing tessellation based on displacement decal (displacement

adaptive tessellation) recipe in Chapter 6, Adding Surface Detail with Normal and

Displacement Mapping

 f Refer to Adaptive Tessellation of Bezier Surfaces Based on Displacement Maps by

Espino, F. J., et al. in WSCG (Short Papers). 2005. available at: http://ac.usc.
es/system/files/gac2005-c01.pdf.gz

 f Refer to Feature Adaptive Rendering of Loop Subdivision Surfaces on GPU at:
http://www.cad.zju.edu.cn/home/jqfeng/papers/TR_FAGRL.pdf

http:///

6
Adding Surface Detail

with Normal and
Displacement Mapping

In this chapter, we will cover the following topics:

 f Referencing multiple textures in a material

 f Adding surface detail with normal mapping

 f Adding surface detail with displacement mapping

 f Implementing displacement decals

 f Optimizing tessellation based on displacement decal

(displacement adaptive tessellation)

Introduction

Displacement mapping is the process of displacing vertices (usually created via the

process of tessellation) based upon the information sampled from a height map texture.

This process extends upon traditional normal mapping to provide additional detail to the

surface. Displacement mapping is not a replacement for normal mapping. They both work

together to produce a more realistic result. While normal mapping manipulates lighting to

give the appearance of a more irregular surface, displacement mapping will physically

manipulate the mesh to give it additional 3D detail—especially noticeable for silhouettes,

contours, and therefore shadows. The example output shown in Adding surface detail with

normal mapping highlights the impact of normal and displacement mapping both separately

and when combined.

http:///

Adding Surface Detail with Normal and Displacement Mapping

192

In this chapter, we will learn how to use these techniques together to produce more realistic

real-time rendering results, and then see how to extend the process to implement local

deformations such as footprints or scratch marks.

Referencing multiple textures in a material
In this recipe, we will create a Visual Shader Graph for use with our models that accepts

multiple textures. This is necessary to include multiple textures, such as the diffuse texture

and the normal and displacement maps, within the same material.

How to do it…

In order to specify multiple textures for the materials in our models with the Visual Studio

graphics content pipeline, we need to implement a new Visual Shader Graph (.dgsl ile)
that allows the selection of additional textures:

1. Start by right-clicking on the project and selecting Add \ New Item….

2. Click on the Graphics node, and then click on Visual Shader Graph (.dgsl).

We will name the ile MultipleTextures.dgsl.

In order to improve the preview of the models when using this shader

graph, you can copy the existing phong.dgsl from \Common7\IDE\
Extensions\Microsoft\VsGraphics\Assets\Effects\

located in the Visual Studio installation directory (the default being C:\
Program Files (x86)\Microsoft Visual Studio 11.0

for VS 2012 or C:\Program Files (x86)\Microsoft Visual
Studio 12.0 for VS 2013)

3. With the shader graph open, click within the dark background so as to unselect any

graph nodes.

http:///

Chapter 6

193

4. Now, in the properties window, we simply need to change the Access property of

Texture1 through to Texture8 to Public Access.

Editing the DGSL to enable multiple textures per material in a Visual Studio 3D Scene (.fbx)

5. At this point, we will also make the additional lighting variables visible to our models if

they aren't already visible. Scroll down the list of shader graph properties and change

the Access to Public Access for Variable:MaterialAmbient.

Although the graphics content pipeline supports compiling the

shader graph to HLSL for us (it requires manual tweaking to

support Feature Level 9 x devices), we aren't using this within

our recipes as we require a little more control and want to delve

deeper into the underlying shader code. This is especially the case

when implementing tessellation and displacement mapping.

6. When editing models with materials that require multiple textures within a 3D

Scene (.fbx), we can now reference the MultipleTextures.dgsl shader graph

in an object's Effect property and provide the name of a ile for each of the texture
properties as necessary.

http:///

Adding Surface Detail with Normal and Displacement Mapping

194

How it works…

By changing the texture properties in the DGSL ile to Public Access, we make the

corresponding texture properties visible within the 3D Scene (.fbx) graphics editor.

The Visual Studio graphics content pipeline will then convert the assigned textures to DDS

textures, and copy them to the output directory along with the compiled mesh (.cmo) ile.

Adding surface detail with normal mapping
Normal mapping allows us to perturb normal vectors so that the light bounces from the

surface in the correct direction, making the appearance of additional detail on the surface

where otherwise there is not. We have already added support for loading multiple textures for

a mesh, both in the MeshRenderer class in the Loading a static mesh from a ile recipe in

Chapter 3, Rendering Meshes, and within models in the previous recipe Referencing multiple

textures in a material with the Visual Studio graphics content pipeline. Now, we need to

update our shaders to sample the normal map and calculate the inal normal direction.

Here, we will update the vertex structure and shaders to support passing a vertex's

tangent vector from the loaded mesh in order to calculate the new normal direction.

We also look at the changes necessary to support normal mapping within the tessellation

pipeline if that is in use.

Getting ready

In this recipe, we will begin with the completed mesh renderer class from

Chapter 4, Animating Meshes with Vertex Skinning.

We will be using a number of new models along with some new textures. These assets are

available with the completed project in the companion download. The completed version

of this recipe is available from the companion code as Ch06_01DisplacementMapping.

These models also require the use of MultipleTextures.dgsl that we created in the

previous Referencing multiple textures in a material recipe with the Visual Studio graphics

content pipeline.

To add the models for this recipe, follow these steps:

1. With the Visual Studio shader graph MultipleTextures.dgsl in place, we can

add the new 3D scenes from the downloaded content. Go ahead and add Cube.
fbx, Plane.fbx, and Tree.fbx along with their textures to the root of our

project directory. The *.fbx iles need to be included in the project, and have the
MeshContentTask applied as explained in Chapter 3, Rendering Meshes.

http:///

Chapter 6

195

2. Within D3DApp.Run, change the existing mesh loading code to the following:

// Create and initialize the mesh renderer

var loadedMesh = Common.Mesh.LoadFromFile("Tree.cmo");

loadedMesh.AddRange(Common.Mesh.LoadFromFile("Plane.cmo"));

loadedMesh.AddRange(Common.Mesh.LoadFromFile("Cube.cmo"));

3. At this point, you should be able to compile the project and view the models.

The completed sample maps the Backspace key to cycle through the loaded meshes.

How to do it...

As we have often done in previous recipes, we will begin by updating our constant buffers

and structures. Then, we will start updating our shaders and C# rendering code:

1. We need to modify our per material constant buffer to indicate whether a normal map

is available. The updated PerMaterial HLSL structure in Shaders\Common.hlsl

is as follows:

cbuffer PerMaterial : register (b2)

{

...

 bool HasTexture;

 bool HasNormalMap;

 float4 MaterialEmissive;

 float4x4 UVTransform;

};

2. The updated ConstantBuffers.PerMaterial structure within

ConstantBuffers.cs is as follows (note that we changed the padding property):

public struct PerMaterial {

...

 public uint HasTexture; // (0 false, 1 true)

 public uint HasNormalMap; // (0 false, 1 true)

 float _padding0;

 public Color4 Emissive;

 public Matrix UVTransform;

}

Note that we have not placed the new property at the end of the buffer.

Instead, we are adding them in such a way that we can efficiently pack

data, given the HLSL 16-byte data alignment.

A bool in HLSL is 4 bytes, and a uint 0 and 1 map to the false and

true values respectively.

http:///

Adding Surface Detail with Normal and Displacement Mapping

196

3. Next, we will modify the vertex structure by adding a new Tangent property to the

end of the VertexShaderInput structure in Shaders\Common.hlsl.

struct VertexShaderInput {

...

 float4 Tangent: TANGENT; // for normal mapping

};

4. Now, let's add a new WorldTangent property to the end of the PixelShaderInput

structure within Shaders\Common.hlsl.

struct PixelShaderInput {

...

 float4 WorldTangent: TANGENT; // for normal mapping

};

5. Next, we will modify the vertex skinning (if any) to skin the tangent vector.

void SkinVertex(float4 weights, uint4 bones, inout float4
 position, inout float3 normal, inout float4 tangent) {

 // If there are skin weights apply vertex skinning

 if (weights.x != 0)

 {

... SNIP

 // also for the tangent (the w component contains

 // the handedness used for calculating bitangent)

 tangent = float4(mul(tangent.xyz,

 (float3x3)skinTransform),
 tangent.w);

 }

}

6. Within each vertex shader in Shaders\VS.hlsl, we add the input tangent to the

parameter list of SkinVertex. Then, we will apply the same transform matrix as

per the WorldNormal property. The new code is highlighted in the following code:

... SNIP vertex shader code

// Apply vertex skinning if any

SkinVertex(vertex.SkinWeights, vertex.SkinIndices, vertex.
Position, vertex.Normal, vertex.Tangent);

... SNIP vertex shader code

result.WorldNormal = mul(vertex.Normal, (float3x3)
WorldInverseTranspose);

result.WorldTangent = float4(mul(vertex.Tangent.xyz,
 (float3x3)WorldInverseTranspose), vertex.Tangent.w);

... SNIP vertex shader code

http:///

Chapter 6

197

7. In order to support normal mapping in our tessellation pipeline, let's add the

new WorldTangent property to the end of the HullShaderInput and

DS_ControlPointInput structures within Shaders\CommonTess.hlsl.

Any other implementations such as the DS_PNControlPointInput structure

within TessellatePNTri.hlsl can also be updated.

struct HullShaderInput / DS_ControlPointInput / etc {

...

 float4 WorldTangent: TANGENT; // for normal mapping

};

8. For each hull shader, we must pass the Tangent property from the patch

to the control point. The updated HS_TrianglesInteger function from

TessellateTri.hlsl is shown as follows:

//... attributes domain, partitioning, etc

DS_ControlPointInput HS_TrianglesInteger(

 InputPatch<HullShaderInput, 3> patch,

 uint id : SV_OutputControlPointID,

 uint patchID : SV_PrimitiveID) {

 DS_ControlPointInput result = (DS_ControlPointInput)0;

 result.Position = patch[id].WorldPosition;

 result.WorldTangent = patch[id].WorldTangent;

 return result;

}

9. Within each domain shader, we must interpolate the tangent in the same way that

the normal is interpolated, and then assign the tangent to PixelShaderInput.
Tangent. The code for the triangle and Phong tessellation shaders would look

something like the following:

 PixelShaderInput result = (PixelShaderInput)0;

...SNIP

 float3 normal = BarycentricInterpolate(constantData.
WorldNormal, barycentricCoords);

 float3 tangent = BarycentricInterpolate(patch[0].WorldTangent,
patch[1].WorldTangent, patch[2].WorldTangent, barycentricCoords);

...SNIP

 result.WorldNormal = normal;

 result.WorldPosition = position;

 result.WorldTangent = tangent;

...SNIP

}

http:///

Adding Surface Detail with Normal and Displacement Mapping

198

10. Next, we need to update the Vertex structure within Vertex.cs to include the

Tangent property. The constructors will also need to be updated to relect this. The
complete Vertex structure members are shown here with the changes highlighted:

public Vector3 Position;

public Vector3 Normal;

public Color Color;

public Vector2 UV;

public Common.Mesh.SkinningVertex Skin;

public Vector4 Tangent;

11. Now, we tell the input assembler stage what our updated input layout for the vertex

structure looks like. This change is highlighted in the next code snippet, and is made

within D3DApp.CreateDeviceDependentResources.

// Layout from VertexShader input signature

vertexLayout = ToDispose(new InputLayout(device, ShaderSignature.
GetInputSignature(vertexShaderBytecode),

new[] {

// "SV_Position" = vertex coordinate in object space

new InputElement("SV_Position",0, Format.R32G32B32_Float,

 0, 0),

...

// "TANGENT" = tangent vector, from loaded Mesh

new InputElement("TANGENT", 0,
 Format.R32G32B32A32_Float,68,0),

}));

12. Lastly, we need to use the Tangent property of the mesh in MeshRenderer.
CreateDeviceDependentResources when creating the vertex buffer.

for (var i = 0; i < vb.Length; i++) {

...

// Create vertex

vertices[i] = new Vertex(vb[i].Position, vb[i].Normal,
 vb[i].Color, vb[i].UV, skin, vb[i].Tangent);

}

With the tangent data now available to the pipeline, we can update each pixel shader

to perform the normal mapping.

13. First, we add the new function ApplyNormalMap within Shaders\Common.hlsl.

This will allow us to adjust the normal direction using a normal map sample.

float3 ApplyNormalMap(float3 normal, float4 tangent,

 float3 normalSample) {

 // Remap normalSample to the range (-1,1)

 normalSample = (2.0 * normalSample) - 1.0;

http:///

Chapter 6

199

 // Ensure tangent is orthogonal to normal vector

 // Gram-Schmidt orthogonalize

 float3 T = normalize(tangent - normal *

 dot(normal, tangent));

 // Create the Bitangent

 float3 bitangent = cross(normal, T) * tangent.w;

 // Create TBN matrix to transform from tangent space

 float3x3 TBN = float3x3(T, bitangent, normal);

 return normalize(mul(normalSample, TBN));

}

14. Within the Diffuse, Blinn-Phong, and Phong pixel shaders, add a new input texture

for the normal map (using the second texture slot t1). Then, update the PSMain

function to adjust the normal prior to any lighting calculations.

Texture2D Texture0 : register(t0);

Texture2D NormalMap : register(t1);

SamplerState Sampler : register(s0);

float4 PSMain(PixelShaderInput pixel) : SV_Target

{

 // Normalize our vectors as they are not

 // guaranteed to be unit vectors after interpolation

 float3 normal = normalize(pixel.WorldNormal);

 float3 tangent = normalize(pixel.WorldTangent.xyz);

 float3 toEye = normalize(CameraPosition –

 pixel.WorldPosition);

 float3 toLight = normalize(-Light.Direction);

 // If there is a normal map, apply it

 if (HasNormalMap)

 normal = ApplyNormalMap(normal,

 float4(tangent, pixel.WorldTangent.w),

 NormalMap.Sample(Sampler,
 pixel.TextureUV).rgb);

 // Texture sample here (use white if no texture)

 float4 sample = (float4)1.0f;

 if (HasTexture)

 sample = Texture0.Sample(Sampler, pixel.TextureUV);

 ...

}

http:///

Adding Surface Detail with Normal and Displacement Mapping

200

Performing the normal transformation to world space within the pixel

shader as we are doing within ApplyNormalMap is a suboptimal

solution with regards to performance in certain circumstances.

While it's useful to have the flexibility gained by using HasNormalMap

and HasTexture when trying out different techniques, it is more

efficient to have multiple shaders that may or may not support normal

mapping or textures (as appropriate).

Last of all, we need to update our MeshRenderer class to update the

HasNormalMap constant buffer property.

15. Add a new public property to the MeshRenderer class.

public bool EnableNormalMap { get; set; }

16. Initialize this property within the constructor.

this.EnableNormalMap = true;

17. We can now update the MeshRenderer.DoRender function so that when we are

applying the mesh's materials to the per material constant buffer, we are now also

updating the PerMaterial.HasNormalMap property. Here, we are assuming that

the normal map is assigned to the second texture of the material within the mesh ile.
The changes are highlighted in the following code snippet:

protected override void DoRender() {

...

int texIndxOffset = mIndx * Common.Mesh.MaxTextures;

material.HasTexture = (uint)(textureViews[texIndxOffset] !=

 null ? 1 : 0); // 0=false

material.HasNormalMap = (uint)(EnableNormalMap &&

 textureViews[texIndxOffset+1] != null ? 1 : 0);

// Bind textures to the pixel shader

context.PixelShader.SetShaderResources(0,

 textureViews.GetRange(texIndxOffset,

 Common.Mesh.MaxTextures).ToArray());

...

// Update material buffer

context.UpdateSubresource(ref material, PerMaterialBuffer);

...

}

http:///

Chapter 6

201

18. The results of normal mapping are visible in the right-hand side images of the tree

log render image in the Adding surface detail with displacement mapping recipe.

The following igure highlights the differences between normal mapping only (left),

displacement mapping only (center), and displacement mapping with normal

mapping (right).

Comparison of normal mapping (left), displacement mapping (center), and displacement mapping

with normal mapping (right). Cube displacement scale is 0.69, and plane displacement scale 0.5—tessellation

factor of 8.0 for middle and right.

How it works…

Using a normal map gives us additional directional information about a normal that allows us

to simulate surface detail. When viewed straight-on the illusion is quite convincing; however,

it falls short where there are silhouettes or contours (in the top-left cube in the previous igure,
the left edge and the top are obviously incomplete, whereas the side facing us looks correct).

Normal maps are usually in tangent space (also known as vertex space), which is aligned to

the tangent plane and normal vector at a vertex. The normal, tangent, and bitangent are all

vectors that are at right angles to each other (orthogonal). The tangent and bitangent are

usually used in relation to the texture map, with the tangent pointing along the u axis and

bitangent pointing along the V axis.

http:///

Adding Surface Detail with Normal and Displacement Mapping

202

The following diagram shows the coordinate systems for texture and tangent space:

Texture space in Direct3D (left) and tangent space (right). The completed project for this recipe maps

the N key to toggle rendering of the normal, tangent, and bitangent vectors.

The tangents for the compiled mesh object (CMO) models are calculated during compilation.

From the normal vector and tangent vector, we are able to determine the bitangent vector

(also known as binormal), and therefore our Tangent Bitangent Normal (TBN) matrix for

transforming from the normal map tangent space into world/object space or vice versa.

The meshes also include the handedness of the bitangent vector within the tangent vector,

allowing us to correctly calculate the direction of the bitangent vector as can be seen in point

B in the following calculations:

A) Orthogonalization of tangent vector T to normal vector N, B) Calculating the bitangent vector, C)

Resulting TBN matrix

The Microsoft .cmo ile format stores a fourth component in the tangent vector to indicate the

handedness of the tangent. Therefore, we have used float4 instead of float3. This would

not be used within a streamlined asset worklow. Instead, all shaders and assets would be
built with the same handedness in mind.

By using a normal map that is stored in tangent space, we sample the red, green, and blue

channels (x, y, and z respectively); and then transform the sample into world space using the

current pixel's normal and tangent vectors. We irst remap the normal sample from the range
(0, 1) to (-1, 1) as the color data stored in the texture is packed between 0 and 1.

// Remap normalSample to the range -1,1

normalSample = (2.0 * normalSample) - 1.0;

http:///

Chapter 6

203

Next, we will ensure that the tangent vector is orthogonal (perpendicular) to the normal

vector with the Gram-Schmidt process (Lengyel, 2001). Then, we will determine the bitangent

(perpendicular to both the normal and tangent) by calculating the cross product of the normal

and tangent vectors.

// Ensure tangent is orthogonal to normal- Gram-Schmidt

float3 T = normalize(tangent - normal * dot(normal, tangent));

// Create the Bitangent

float3 bitangent = cross(normal, T);

The following diagram illustrates this orthonormalization process:

To make v1 orthogonal to v2, project v1 onto v2, then subtract from v1, and then normalize.

In this recipe, both our normal and tangent are in world space. Therefore, so is the bitangent

and the resulting TBN matrix.

With the tangent, bitangent, and normal unit vectors, we are able to construct the 3 x 3 TBN

matrix to transform the sampled normal from tangent space into world space. Note that

when researching this topic, you will come across many instances where the matrix is

used in the other direction. It all depends in what space the basis vectors are in,

for example, tangent space T, B, and N or world space T, B, and N.

float3x3 TBN = float3x3(tangent, bitangent, normal);

return normalize(mul(normalSample, TBN));

For simplicity, our examples have used the tangent and normal vectors

in world coordinates. Traditionally, the best practice has been to keep

these in tangent space, sample the normal, and calculate the lighting

in tangent space. Since we also need the normal in world space to

implement the vertex displacement, we have left the lighting calculations

in world space. This brings with it a performance hit when used with normal

mapping, as we are transforming the sampled normal to world coordinates

(in ApplyNormalMap) for every pixel in every frame rather than calculating

the tangent camera and light directions for each vertex.

A version of Ch06_01DisplacementMapping is available in the

downloaded content that implements normal mapping by using tangent space

instead. A comparison of the source code will show the necessary changes.

The project is called Ch06_01DisplacementMapping_TangentSpace.

http:///

Adding Surface Detail with Normal and Displacement Mapping

204

There's more…

As mentioned previously, it is important to consider whether to perform the lighting

calculations for normal mapping in tangent space or world space. This will greatly reduce the

number of matrix operations performed within the pixel shader. However, it can also increase

the amount of information needed in the PixelShaderInput, and it can introduce some

additional complexity to our vertex, hull, domain and geometry shaders.

See also
 f For information about manually calculating tangents for an arbitrary mesh, refer to

http://www.terathon.com/code/tangent.html

Adding surface detail with displacement
mapping

In this recipe, we will use displacement mapping via the tessellation pipeline to add additional

geometric detail to an otherwise smooth or lat surface. This is the key technique used for
approximating the detail on high-poly meshes using a low-poly version of the same mesh.

Displacement mapping uses a displacement map texture (also known as a height map)

that consists of a single channel that is used to control the amount to displace a vertex.

Depending on the method of construction, this height map can have a midpoint that allows

the vertex to be lowered/raised, or the map may only support displacement in one direction.

A displacement map will generally use the same UV coordinates as the diffuse texture and

normal map. We will make changes to our existing tessellation shaders and incorporate

displacement mapping to the solution to improve the surface detail of the inal render.

Getting ready

In this recipe, we require the normal mapping changes we made in the Adding surface detail

with normal mapping recipe, including the additional assets that were added within the

Getting ready section—these include the displacement maps.

We will also need to implement the changes necessary to support tessellation from the

previous chapter's recipe Mesh reinement with Phong Tessellation.

http:///

Chapter 6

205

How to do it...

As we have often done in previous recipes, we will begin by updating our constant buffers,

and then move on to updating our shaders and C# rendering code:

1. We need to modify our per material constant buffer to indicate which displacement

scale to apply (if any), zero being the equivalent of no displacement. The updated

PerMaterial HLSL structure in Shaders\Common.hlsl is as follows:

cbuffer PerMaterial : register (b2)

{

 ...

 bool HasNormalMap;

 float DisplaceScale;

 float4 MaterialEmissive;

 float4x4 UVTransform;

};

2. And the updated ConstantBuffers.PerMaterial structure within ConstantBuffers.cs is

as follows (note that we replaced the padding property):

public struct PerMaterial

{

 ...

 public uint HasNormalMap; // (0 false, 1 true)

 public float DisplaceScale;// displacement scale

 public Color4 Emissive;

 public Matrix UVTransform;

}

3. At the start of Shaders\CommonTess.hlsl, add our input displacement texture.

Texture2D DisplacementMap : register(t0);

SamplerState Sampler : register(s0);

4. We will add our CalculateDisplacement HLSL function to the end of this ile.
This will be used by each of the domain shaders to apply the vertex displacement.

// Simple displacement calculation from displacement map

// If DisplaceScale is 0 no displacement takes place

// The float3 result should be added to the vertex position

float3 CalculateDisplacement(float2 UV, float3 normal)

{

 // Skip displacement sampling if 0 multiplier

 if (DisplaceScale == 0)

 return 0;

http:///

Adding Surface Detail with Normal and Displacement Mapping

206

 // Choose the most detailed mipmap level

 const float mipLevel = 1.0f;

 // Sample height map - using R channel

 float height = DisplacementMap.SampleLevel(Sampler, UV,

 mipLevel).r;

 // remap height from 0 to 1, to -1 to 1

 height = (2 * height) – 1;

 // Return offset along normal.

 return height * DisplaceScale * normal;

}

5. Within each domain shader, just prior to applying the ViewProjection matrix

to the new vertex position, we can apply the displacement function.

... existing domain shader code

// Perform displacement

position += CalculateDisplacement(UV, normal);

// Transform world position to view-projection

result.Position = mul(float4(position,1), ViewProjection);

... existing domain shader code

6. To use our models with displacement mapping, we need to create a copy

of TessellatedMeshRenderer.cs from the previous chapter and call it

DisplacedMeshRenderer.cs. Then, we need to incorporate the changes

from the previous recipe Adding surface detail with normal mapping.

7. Add a new property DisplacementScale to DisplacedMeshRenderer.

public float DisplacementScale { get; set; }

8. Initialize the default value for DisplacementScale within the constructor.

this.DisplacementScale = 1.0f;

9. We now update the DisplacedMeshRenderer.DoRender function; so that when

applying the mesh's materials to the per material constant buffer, we are also binding

the displacement map and updating the PerMaterial.DisplacementScale

property. We will assume that the third texture is the displacement map.

int texIndxOffset = mIndx * Common.Mesh.MaxTextures;

...

material.HasNormalMap = (uint)(EnableNormalMap &&

 textureViews[texIndxOffset+1] != null ? 1 : 0);

material.DisplaceScale = (textureViews[texIndxOffset+2] !=

 null ? DisplacementScale : 0);

http:///

Chapter 6

207

// If displace scale > 0 then assign texture resource

if (material.DisplaceScale > 0)

{

 context.DomainShader.SetShaderResources(0,

 textureViews[texIndxOffset+2]);

 context.DomainShader.SetSampler(0, samplerState);

}

...

// Update material buffer

context.UpdateSubresource(ref material, PerMaterialBuffer);

Now, we will update D3DApp.cs to bind the per material constant buffer to the domain

shader stage, and use our new mesh renderer and properties in the render loop.

1. First, add the perMaterialBuffer constant buffer to the domain shader stage

within D3DApp.CreateDeviceDependentResources (or the applicable location

where the pipeline state was initialized).

context.DomainShader.SetConstantBuffer(0, perObjectBuffer);

context.DomainShader.SetConstantBuffer(1, perFrameBuffer);

context.DomainShader.SetConstantBuffer(2,
 perMaterialBuffer);

context.DomainShader.Set(tessellateTriDomainShader);

2. Within D3DApp.Run, change the creation of the mesh renderers to use the new

DisplacedMeshRenderer.

List<DisplacedMeshRenderer> meshes = new
 List<DisplacedMeshRenderer>();

meshes.AddRange((from mesh in loadedMesh

 select ToDispose(new DisplacedMeshRenderer(mesh))));

3. And lastly, we will change the mesh rendering within the render loop so that we are

setting the mesh properties with our desired values.

var m = meshes[meshIndex]; // show one mesh at a time

m.EnableNormalMap = enableNormalMap;

m.DisplacementScale = displacementScale;

m.PerMaterialBuffer = perMaterialBuffer;

m.PerArmatureBuffer = perArmatureBuffer;

m.Render();

The completed sample maps Shift +/- to increase and decrease the

displacement scale and Shift + N to toggle the normal map on/off.

http:///

Adding Surface Detail with Normal and Displacement Mapping

208

At this point, it is possible to compile and run the project to see displacement mapping in

action. The bottom right image (D) of the following igure shows an example of the result:

Tree log render: (A) no displacement and with a tessellation factor of 2.0, (B) as per A, but with

normal mapping applied, (C) as per A, but with displacement mapping applied and using a displacement

scale of 0.020, (D) as per C, but with normal mapping applied.

How it works...

Displacement mapping modiies the structure of the mesh in the direction of the normal.

Looking at the tree log render and the comparison of normal and displacement mapping in

the previous recipe, it is clear that normal mapping or displacement mapping alone are not

enough. However, when combined together, they can have a profound impact on the scene.

We have combined these techniques by irst modifying our model's material to support
multiple textures in addition to the diffuse texture (refer to the Referencing multiple textures

in a material with the Visual Studio graphics content pipeline recipe), the normal map,

and the displacement or height map. We then sample these textures within the pixel

shader and domain shader respectively.

http:///

Chapter 6

209

It is important to note that too many small triangles can impact the GPUs

ability to process many pixel shaders in parallel resulting in adverse

performance. This is where dynamic level of detail and other tessellation

optimizations become quite important.

In our recipe, we will support moving the vectors outwards if the value sampled from the

displacement map is larger than 0.5, and inwards if it is less. In an optimized asset worklow,
it may be desirable to support a single direction only. Moving excessively in either direction

can result in problems. Moving too far outwards can cause the object to be too large to it
inside its bounding box, resulting in issues with geometry intersections; whereas, moving

too far inwards can result in degenerate, thin, and strange-looking meshes. Applying both

displacement directions within the one displacement map can make it more dificult to ine
tune these artifacts.

When our domain shader is processing newly created vertices from the ixed function
tessellation stage, we sample the displacement map for the given UV coordinates. If the value

is closer to black, we push the vertices in the opposite direction of the normal; and if the value

is closer to white, we pull the vertices out in the direction of the normal. Note that the normal

used here must be in world space.

// Perform displacement

position += CalculateDisplacement(UV, normal);

The distance that the vertices are moved depends not only on the sampled displacement

value, but also on the value of the newly created DisplaceScale property in the per

material constant buffer. The meshes used in this project all require different scales for

optimal display. Ideally, this value would be stored with the mesh, or the models and

displacement maps would all be created with the same scale in mind.

// Sample height map - using Red channel

float height = DisplacementMap.SampleLevel(Sampler, UV, mipLevel).r;

// remap height from 0 to 1, to -1 to 1 (with midlevel offset)

... SNIP

// Return offset along normal.

return height * DisplaceScale * normal;

http:///

Adding Surface Detail with Normal and Displacement Mapping

210

The smoothness and quality of the resulting mesh depends on the original base mesh,

the tessellation factor, method of tessellation and the displacement scale. The following

skull jaw igure shows the data from the displacement and normal maps that affect the
mapping process:

Skull jaw showing the impact of normal (left) and displacement (right) maps (displacement scale 0.020),—using the

Backspace key within the completed project cycles through the available models

The displacement and normal maps for the models used in this recipe were generated by

baking the normals and displacement between too meshes into textures within Blender.

This is done by creating a low-poly version of a model by decimating it, then selecting the

high and low-poly versions, and running the baking functions.

The displacement process presented in this recipe cannot add detail under the displaced

vertices; for example, the simple plane we have rendered includes a spiral like cone in the

original model. However, the displacement map does not include enough information to

produce the same output. Instead, it results in a stretched region under the overhanging

geometry as shown in the following igure. Therefore, it is necessary for the base model
to contain enough geometry to approximate the inal surface topology, and then the
displacement can be applied for the inal touches.

Comparison of missing 3D detail in the left cone between original model (left) and displaced render (right)

http:///

Chapter 6

211

There's more…

Displacement mapping provides maximum impact around edges and contours. As we

have seen with normal mapping, when we are looking straight at a surface, it does not

necessarily require additional geometry to make it look realistic. Another pixel technique that

can simulate additional surface detail without modifying the underlying geometry is parallax

occlusion mapping.

Parallax occlusion mapping uses a height map like displacement mapping. By sampling

within a maximum radius from the current UV coordinate, the algorithm will use the height

map to determine if another sample occludes it; and if so, will use its UV coordinate instead.

This is a useful approach that produces more than suficient results in many cases, while
being faster than tessellation and displacement mapping. However, this technique does not

create additional geometry around edges. By combining displacement mapping (with only

contours being displaced) and parallax occlusion mapping, it may be possible to achieve a

similar visual effect while still allowing a reduction in the amount of tessellation needed.

You may have noticed that we only sample the red channel of the displacement map, and

the red, green, and blue channels of the normal map. This means that we could add the

displacement map into the alpha channel of the normal map. Whether this is of beneit really
depends on the asset worklow and speciics of the implementation. However, it could reduce

the number of texture slots used. Although Shader Model 4 (SM4) or later supports 128

texture slots, there is a maximum of eight textures that can be assigned to a material in the

Microsoft .cmo ile format. Of course this becomes less of an issue when using a purpose
built mesh/material format.

The displacement height calculation could be modiied to support a mid-level value
that is provided as an additional PerMaterial constant buffer variable. This provides

greater control over the displacement process. For example, if iner detail is required in
the peaks, it may be useful to move the mid-level more towards the black end of the range,

leaving additional room in the upper-half of the spectrum.

// remap height from 0 to 1, to -1 to 1 (with offset)

float midLevel = max(DisplaceMidLevel, 0.00001); // no zero

if (height > midLevel)

 // Remap the range between (midlevel,1) to (0,1)

 height = (height-midLevel) / (1 - midLevel);

else

 // Remap the range between (0,midlevel) to (-1,0)

 height = height / midLevel - 1;

http:///

Adding Surface Detail with Normal and Displacement Mapping

212

See also
 f Chapter 5, Applying Hardware Tessellation, provides more information on the

hardware tessellation process

 f The Optimizing tessellation through back-face culling and dynamic Level-of-Detail

recipe in Chapter 5, Applying Hardware Tessellation, includes how to reduce the

tessellation factor for nonsilhouette triangles

 f Search on YouTube for blender baking displacement or blender baking normals for

tutorials on how to bake normal and displacement maps in Blender

 f The following link provides an overview of the decimate modiier (to produce a
low-poly model from a high-poly model) within Blender: http://wiki.blender.
org/index.php/Doc:2.4/Manual/Modifiers/Generate/Decimate

 f MeshLab is a useful software for mesh manipulation (Visual Computing Lab

of-ISTI-CNR at http://meshlab.sourceforge.net/)

 f An overview and implementation of parallax occlusion mapping can be found at:

http://www.d3dcoder.net/Data/Resources/ParallaxOcclusion.pdf

Implementing displacement decals
In this recipe, we will be creating a displacement decal in order to add dynamic detail to a mesh

on the GPU in real-time. This technique combines hardware tessellation and displacement to

implement local mesh deformations such as footsteps, bullet holes, and craters.

Getting reading

We are using three new textures that are available in the downloaded content for this recipe,

Crater_Diffuse.png, Crater_Displacement.png, and Crater_Normal.png.

The completed project can be found in the companion code Ch06_02DisplacementDecals.

How to do it…

We will begin by creating our new Shaders\CommonDecal.hlsl HLSL shader ile.
This will introduce a new constant buffer to hold the necessary information that will be

applied to our decal, include the texture references we need, and house the functions

to calculate our decal's displacement:

1. First, create a new HLSL ile, Shaders\CommonDecal.hlsl; be sure to change

the encoding or copy an existing HLSL ile and clear the contents.

2. Within our new shader ile, add the following global textures:
// To support decal displacement mapping

Texture2D DecalDisplacementMap : register(t2);

http:///

Chapter 6

213

Texture2D DecalDiffuse : register(t3);

Texture2D DecalNormalMap : register(t4);

// Assumes that SamplerState Sampler : register(s0); exists

3. Now, add our new DecalBuffer constant buffer (note that we use the ifth constant
buffer slot b4).

// Controls the decal displacement

cbuffer DecalBuffer : register(b4) {

 float DecalDisplaceScale; // If 0 no decal applied

 float3 DecalNormal;// If normal is 0 no decal applied

 float3 DecalTangent; // used to determine texcoord

 float3 DecalBitangent;// used to determine texcoord

 float3 DecalPosition; // decal position in local space

 float DecalRadius; // decal size

}

4. We will create three new functions: one for sampling the normal, one for sampling the

diffuse, and one for calculating the displacement.

float3 DecalNormalSample(float2 decalUV)

{

 return DecalNormalMap.Sample(Sampler, decalUV).rgb;

}

float4 DecalDiffuseSample(float2 decalUV)

{

 return DecalDiffuse.Sample(Sampler, decalUV).rgba;

}

// The float3 result should be added to the vertex position

float3 DecalDisplacement(float3 worldNormal, float3 worldPosition,
out float3 decalUV)

{

 float3 result = (float3)0;

 // Note: if the decalUV.z == 0 the pixel shader will

 // assume no decal map needs to be queried

 decalUV = (float3)0;

 // Skip displacement sampling if 0 multiplier or if the

 // decal normal is not set

 if (DecalDisplaceScale == 0 || (DecalNormal.x == 0.0 &&

 DecalNormal.y == 0.0 && DecalNormal.z == 0))

 return result;

http:///

Adding Surface Detail with Normal and Displacement Mapping

214

 // Determine decal world position

 float3 decalPosWorld = mul(float4(DecalPosition, 1),

 World).xyz;

 // Calculate distance from vertex to decal

 float distanceToDecal = distance(worldPosition,

 decalPosWorld);

 // if distance to the decal position is within radius

 // then we need to perform displacement based on decal

 if (distanceToDecal <= DecalRadius)

 {

... SNIP see below

 }

 return result;

}

Within the if (distanceToDecal <= DecalRadius){…} block of the

DecalDisplacement function, if the distance to the decal from the current

vertex is within the decal radius we need to do the following:

5. Determine the current decal UV coordinate based upon the decal's normal/tangent/

bitangent and the difference between the vertex position and decal position.

// Convert vectors to world space

float3 dT = normalize(mul(DecalTangent,

 (float3x3)WorldInverseTranspose));

float3 dB = normalize(mul(DecalBitangent,

 (float3x3)WorldInverseTranspose));

float3 dN = normalize(mul(DecalNormal,

 (float3x3)WorldInverseTranspose));

float3x3 worldToDecal = float3x3(dT, dB, dN);

decalUV = mul(worldToDecal, worldPosition - decalPosWorld);

// Remap to range between 0 and 1

decalUV /= 2 * DecalRadius; // (-0.5,0.5)

decalUV += 0.5; // (0,1)

// z=1 tells pixel shader to sample decal diffuse texture

decalUV.z = 1.0;

6. Sample the displacement value and perform the displacement in the same way as we

did for regular displacement mapping.

// Choose the most detailed mipmap level

const float mipLevel = 1.0f;

// Sample height map - using R channel

http:///

Chapter 6

215

float height = DecalDisplacementMap.SampleLevel(Sampler,

 decalUV.xy, mipLevel).r;

// remap height from (0,1) to (-1, 1)

height = (2 * height) – 1;

// Return offset along DecalNormal. This allows the decal

// to be applied at an angle to the surface, e.g. to allow

// the direction of a bullet to decide the direction of

// deformation. Using the worldNormal instead will result

// in uniform decals.

result = height * DecalDisplaceScale * dN;// worldNormal;

7. We now have the decal UV property that needs to be forwarded to the pixel shader.

For this, we add a new property to the PixelShaderInput structure within

Common.hlsl

float3 DecalUV: TEXCOORD5; // .z==1 means there is a decal

In the domain shaders that we want to support displacement decals, we can now

add the following:

8. Include CommonDecal.hlsl after the other includes within the domain shader's

HLSL ile:
#include "Common.hlsl"

#include "CommonTess.hlsl"

#include "CommonDecal.hlsl"

9. After the existing displacement code in the domain shader, add a call to the

DecalDisplacement function we just created.

// Perform displacement

normal = normalize(normal);

position += CalculateDisplacement(UV, normal);

// Perform decal displacement

position += DecalDisplacement(normal, position,

 result.DecalUV);

10. Next, we need to update each pixel shader that implements texture and normal map

sampling (for example, BlinnPhongPS.hlsl, DiffusePS.hlsl, and PhongPS.
hlsl).

11. Then, we include the CommonDecal.hlsl shader ile after Common.hlsl.

http:///

Adding Surface Detail with Normal and Displacement Mapping

216

12. After the normal and texture sampling, and before the lighting calculations, we can

check if the decal has been applied to this fragment:

// Normal mapping

... SNIP

// Texture sample here (use white if no texture)

... SNIP

// Check if we have a decal .z == 1 means we do

if (pixel.DecalUV.z > 0.5)

{

 // Decal normal sample using the pixel.DecalUV and

 // apply to the existing normal. Note that we are

 // blending the existing normal map sample with the

 // decal normal sample

 normal = ApplyNormalMap(normal, pixel.WorldTangent,

 DecalNormalSample(pixel.DecalUV.xy));

 // Decal texture sample

 float4 decalDiffuse = DecalDiffuseSample(

 pixel.DecalUV.xy);

 // lerp the current sample and the decal diffuse, using

 // the alpha channel of the decal as 't'.

 sample = lerp(sample, float4(decalDiffuse.rgb,

 sample.a), decalDiffuse.a);

}

// Final color and lighting calculations

float3 ambient = MaterialAmbient.rgb;

...SNIP

We are nearly done. All we have to do now is create our C# decal constant buffer,

assign it to the appropriate shader stages, load some decal textures, and then

update the decal constant buffer subresource with the location, size, and normals.

13. Within ConstantBuffers.cs, add a new structure DecalBuffer with the

equivalent properties we used in the HLSL structure. Note that we perform the

appropriate padding to align correctly to 16 bytes:

// The decal constant buffer

[StructLayout(LayoutKind.Sequential, Pack = 1)]

public struct DecalBuffer

{

 public float DecalDisplaceScale; // If 0 no decal

 public Vector3 DecalNormal; // If 0 no decal

 public Vector3 DecalTangent;

 public float _padding0;

 public Vector3 DecalBitangent;

http:///

Chapter 6

217

 public float _padding1;

 public Vector3 DecalPosition;

 public float DecalRadius;

}

14. Within D3DApp.cs, create the new private member ields to hold the decal buffer
and textures:

// A buffer that is used to update the displacement decal

Buffer decalBuffer;

ShaderResourceView decalDiffuse;

ShaderResourceView decalDisplacement;

ShaderResourceView decalNormal;

15. Within D3DApp.CreateDeviceDependentResources, add the obligatory

RemoveAndDispose calls for these new properties; and after the existing

constant buffers, initialize, the new resources as follows:

// Create the decal buffer

decalBuffer = ToDispose(new Buffer(device, Utilities.
SizeOf<ConstantBuffers.DecalBuffer>(), ResourceUsage.
Default, BindFlags.ConstantBuffer, CpuAccessFlags.None,
ResourceOptionFlags.None, 0));

// Load the decal textures

decalDiffuse = ToDispose(ShaderResourceView.FromFile(

 device, "Crater_Diffuse.png"));

decalDisplacement = ToDispose(ShaderResourceView.FromFile(

 device, "Crater_Displacement.png"));

decalNormal = ToDispose(ShaderResourceView.FromFile(

 device, "Crater_Normal.png"));

16. Next, apply the constant buffer to the shader stages (remember that we used

the b4 constant buffer slot in the shader code):

// Add the decal buffer to the pixel, hull and domain

// shaders (it uses the 5th slot 0-indexed)

context.HullShader.SetConstantBuffer(4, decalBuffer);

context.DomainShader.SetConstantBuffer(4, decalBuffer);

context.PixelShader.SetConstantBuffer(4, decalBuffer);

17. As our DisplacementMeshRenderer class will clear the pixel shader resources,

we will make its textureViews property publicly available so that we can assign

the decal shader resources to the active mesh:

public List<ShaderResourceView> TextureViews

 { get { return textureViews; } }

http:///

Adding Surface Detail with Normal and Displacement Mapping

218

18. Now, within the render loop prior to any draw calls, assign the shader resource views

to the domain shader and the mesh's new TextureView property.

context.DomainShader.SetShaderResource(2,

 decalDisplacement);

...

var m = meshes[meshIndex];

// Assign decal textures to mesh pixel shader

// using registers t3 and t4

m.TextureViews[3] = decalDiffuse;

m.TextureViews[4] = decalNormal;

19. And lastly, we will hard code an example decal location within the render loop by

updating the decal constant buffer as follows:

var decal = new ConstantBuffers.DecalBuffer();

decal.DecalDisplaceScale = 0.10f; // static scale for now

// Create orthonormalized normal/tangent/bitangent vectors

var decalVectors = new Vector3[3];

Vector3.Orthonormalize(decalVectors, new[] { new Vector3(0,

 0.5f, 0.5f), Vector3.UnitX, -Vector3.UnitY });

decal.DecalNormal = decalVectors[0];

decal.DecalTangent = decalVectors[1]; // U-axis of tex

decal.DecalBitangent = decalVectors[2]; // V-axis of tex

decal.DecalPosition = new Vector3(0, 1, 1);

decal.DecalRadius = 0.5f;

context.UpdateSubresource(ref decal, decalBuffer);

20. That's it! If we compile and run the project now, we will see that the displacement

decal is modifying the existing surface to create a crater as per our textures.

Note that the decal position must be located in the correct position so that it

can be applied to the surface.

Displacement decal shown on plane (top-left), plane with displacement (top-right), corner of cube (bottom-left),

and the tree log (bottom-right).

http:///

Chapter 6

219

How it works…

Basically, displacement decals work in the same way as regular displacement mapping.

The main differences are that the existence and location of the decal is dependent upon

information passed into a constant buffer, and the UV coordinates for the displacement/

normal and diffuse sampling are determined based on the difference between the current

vertex position and decal position.

Reviewing the tangent space that we covered in Adding surface detail with normal mapping,

we can see how the normal, tangent, and bitangent vectors that we assign to the decal

constant buffer are controlling the orientation (rotation and angle) of the decal on the

surface it is applied.

The example decal position and tangent vectors in the code for this recipe will result in no

decal appearing on the plane. This is not only due to the position not meeting the surface,

but also because the angle of the decal will look odd. The following code snippet includes

values that will appear on the plane in the example scene:

Vector3.Orthonormalize(decalVectors, new[] {

 new Vector3(0, 0.5f, 0.2f), Vector3.UnitX, Vector3.UnitZ });

decal.DecalPosition = new Vector3(0, 0, 0);

Our current implementation blends the two displacements together; although in certain

circumstances, such as the crater shown previously, you may want to replace the existing

displacement. This is easy enough to do; however, it is also necessary to blend the normal

correctly, otherwise the two surfaces will appear disjointed. A solution for this is to include

another channel in the decal displacement map that controls where and to what extent the

decal overrides the existing displacement and normal (functioning like an alpha channel).

There's more…

The constant buffer could be easily extended to support multiple decals by changing it

to an array of parameters. Chapter 4, Animating Meshes with Vertex Skinning, has an

example of how to use arrays of elements in a constant buffer structure for the bones.

Currently we are just setting the decal properties directly in code; instead, we could have

this event based (for example, mouse click) and determine the correct location from there.

The decal constant buffer only needs to be updated when a decal is changed. If a signiicant
number of decals need to be supported, then it may be a better option to store the decal

properties within a regular buffer or texture.

Another interesting effect can be easily created by decreasing the decal displacement scale

over time to simulate a fading decal (for example, a fading footstep). However, you will want to

apply the same decay on the diffuse/normal texture samples.

http:///

Adding Surface Detail with Normal and Displacement Mapping

220

Optimizing tessellation based on
displacement decal (displacement
adaptive tessellation)

By modifying our hull shader constant function, we can easily modify the tessellation factor

based on whether or not a decal is located within the vicinity of a patch. This is also known

as displacement adaptive tessellation.

Getting ready

Within the completed sample available for download in Implementing displacement decals,

there is an additional function in Shaders\CommonDecal.hlsl that adds the provided

tessellation factor to the appropriate edges and inside tessellation factors depending on

whether the decal position and radius would impact the current patch.

void DecalTessellationFactor(float3 p[3], inout float3 edgeTessFactor,
inout float insideTessFactor, float tessellation)

How to do it…

To apply displacement adaptive tessellation to the triangle tessellation hull shader perform

the following steps:

1. Update the triangle hull shader constant function HS_TrianglesConstant with the

following highlighted changes:

...SNIP

ProcessTriTessFactorsMax((float3)TessellationFactor, 1.0,
roundedEdgeTessFactor, roundedInsideTessFactor, insideTessFactor);

float3 p[3];

[unroll]

for (uint j = 0; j < 3; j++)

 p[j] = patch[j].WorldPosition;

// Increase tessellation by 10 if decal

DecalTessellationFactor(p, roundedEdgeTessFactor,

 roundedInsideTessFactor, 10);

// Apply the edge and inside tessellation factors

result.EdgeTessFactor[0] = roundedEdgeTessFactor.x;

result.EdgeTessFactor[1] = roundedEdgeTessFactor.y;

result.EdgeTessFactor[2] = roundedEdgeTessFactor.z;

result.InsideTessFactor = roundedInsideTessFactor;

...SNIP

http:///

Chapter 6

221

2. That's it. The resulting output with a base tessellation factor of 1.0 is shown in the

following igure:

Example output of meshes with a tessellation increase of 10.0 for patches impacted by the displacement decal

How it works…

When we calculate the edge and inside tessellation factors, we are now adding 10.0 to

 the tessellation factor value if a decal happens to be located within range of the patch.

The calculation correctly ignores edges that are not covered by the decal, and it generally

results in crack free decal displacements. In situations where cracks appear, try using the

inside tessellation factor only and discard the changes to the edges—or create a modiied
version of the DecalTessellationFactor method to exclude the edges or inside

tessellation factor, as appropriate.

float3 ignoreEdge;

DecalTessellationFactor(p, ignoreEdge, roundedInsideTessFactor,

 10);

The DecalTessellationFactor method determines the tessellation factors for us

using the Pythagorean Theorem to calculate the distance of each edge of the current

patch (triangle) from the location of the decal as provided by the DecalPosition and

DecalRadius properties in the decal constant buffer.

The example output shown previously uses a tessellation factor of 1.0 for all triangles not

covered by a decal, and a tessellation factor of 11.0 for those that are. It can be seen that

the increase in triangle count can be quite signiicant. Therefore, it is a good idea to apply
the maxtessfactor attribute to your hull shaders, as shown in the following code snippet.

This will prevent decals from increasing the tessellation factor beyond a certain limit,

safeguarding performance:

[domain("tri")]

...

[maxtessfactor(12.0f)]

http:///

Adding Surface Detail with Normal and Displacement Mapping

222

DS_ControlPointInput HS_TrianglesInteger(
 InputPatch<HullShaderInput, 3> patch,

 uint id : SV_OutputControlPointID,

 uint patchID : SV_PrimitiveID)

{ ... }

There's more…

The resulting triangles will beneit from a screen-based tessellation limit. This helps to
prevent the occurrence of very small triangles by preventing the tessellation factor from

increasing beyond certain limits depending on the triangle edge lengths of the screen. That is,

when a triangle is far away from the view, and therefore small on the screen, the tessellation

factor is reduced; and when the triangle is close, the tessellation factor is increased. If the

triangle is at a glancing angle and the edge lengths are short, the tessellation factor would

also be reduced.

http:///

7
Performing Image

Processing Techniques

In this chapter, we will use compute shaders (or DirectCompute) for the following image

processing techniques:

 f Running a compute shader – desaturation (grayscale)

 f Adjusting the contrast and brightness

 f Implementing box blur using separable convolution ilters

 f Implementing a Gaussian blur ilter

 f Detecting edges with the Sobel edge-detection ilter

 f Calculating an image's luminance histogram

Introduction

Image processing is the process of applying a signal-processing technique against an input

image. The input image is generally a two-dimensional signal with the output being either

another image or any properties derived from the input signal.

During this chapter, we will implement a number of iltering techniques using compute

shaders (also known as DirectCompute). Utilizing compute shaders for this process allows

us to provide image processing in general applications, including non-UI applications, and

in some cases is able to achieve a signiicant performance improvement over pixel shaders

(most notably large radius ilters). In some circumstances it may be desirable to implement
the ilter technique within a pixel shader by rendering to a screen-aligned quad, although we
lose some of the unique capabilities of the compute shader when doing so—such an example

might be small radius blurs where we can utilize the bilinear hardware support.

http:///

Performing Image Processing Techniques

224

One of the main advantages of compute shaders over other solutions is that it is designed

to integrate well with Direct3D, allowing them to be used for both compute-only applications

as well as to augment graphics algorithms.

Running a compute shader – desaturation

(grayscale)
The irst task we will tackle is a simple conversion of an input image to grayscale

(color desaturation); the input image can be an image ile or any texture resource
(such as a rendered scene). The formula is used in subsequent recipes for ilters,
such as the Sobel edge detector.

Getting ready

For this recipe we just need to have a Direct3D device and device context available,

and an image to process. The image used for illustration here is available within the

downloadable content from Packt's website.

How to do it…

First we will prepare our input and output shader resources. The compute shader

will take a Shader Resource View (SRV) of a Texture2D variable as input and an

Unordered Access View (UAV) of another Texture2D as output.

1. Load the source image into an SRV and retrieve the texture:

var srcTextureSRV = ShaderResourceView.FromFile(device,

 "Village.png");

var srcTexture = srcTextureSRV.ResourceAs<Texture2D>();

2. Initialize a new texture that is the same size as the original texture and create an

unordered access view for it. Note that we are also setting a debug name:

var desc = srcTexture.Description;

desc.BindFlags = BindFlags.UnorderedAccess;

var target = new Texture2D(device, desc);

target.DebugName = "CSTarget";

var targetUAV = new UnorderedAccessView(device, target);

http:///

Chapter 7

225

A compute shader cannot use an SRV and UAV of the same underlying

texture resource at the same time. In fact, an SRV to the same texture as

the UAV cannot be bound to any stage of the pipeline at the same time as

running the compute shader. Doing so will result in a warning if the debug

layer is active and will remove the SRV from the pipeline stage it is bound

to. For simple processing, such as desaturation/contrast/brightness,

we could however use the same UAV as the input and output.

Next we will create the HLSL compute shader, compile, and run it.

3. The complete compute shader source code is:

Texture2D<float4> input : register(t0);

RWTexture2D<float4> output : register(u0);

// used for RGB/sRGB color models

#define LUMINANCE_RGB float3(0.2125, 0.7154, 0.0721)

#define LUMINANCE(_V) dot(_V.rgb, LUMINANCE_RGB)

// Desaturate the input, the result is returned in output

[numthreads(THREADSX, THREADSY, 1)]

void DesaturateCS(uint groupIndex: SV_GroupIndex,

 uint3 groupId : SV_GroupID,

 uint3 groupThreadId: SV_GroupThreadID,

 uint3 dispatchThreadId : SV_DispatchThreadID)

{

 float4 sample = input[dispatchThreadId.xy];

 // Calculate the relative luminance

 float3 target = (float3)LUMINANCE(sample.rgb);

 output[dispatchThreadId.xy] = float4(target, sample.a);

}

4. We can add the previous shader code to a string variable easily by @-quoting (for

example, var hlslCode = @"…";) to interpret the string as a literal value and

ignore normal escaping rules (this also allows the string to span multiple lines).

5. With the previous shader source code within a string variable named hlslCode,

we can now compile and run the shader as follows:

// Define the thread group size

SharpDX.Direct3D.ShaderMacro[] defines = new[] {

 new SharpDX.Direct3D.ShaderMacro("THREADSX", 16),

 new SharpDX.Direct3D.ShaderMacro("THREADSY", 4),

};

using (var bytecode = ShaderBytecode.Compile(hlslCode,

http:///

Performing Image Processing Techniques

226

 "DesaturateCS", "cs_5_0", ShaderFlags.None,

 EffectFlags.None, defines, null))

using (var cs = new ComputeShader(device, bytecode))

{

 // Set the source resource

 context.ComputeShader.SetShaderResource(0,

 srcTextureSRV);

 // Set the destination resource

 context.ComputeShader.SetUnorderedAccessView(0,

 targetUAV);

 context.ComputeShader.Set(cs);

 // e.g. 640x480 -> Dispatch(40, 120, 1);

 context.Dispatch((int)Math.Ceiling(desc.Width / 16.0),

 (int)Math.Ceiling(desc.Height / 4.0), 1);

}

6. After running the previous code, the target texture now contains the desaturated

image. We can use the graphics debugger to peek at the contents of the texture

without having to render or save to a ile. To do this, ensure that the project is
conigured to enable native code debugging (see Chapter 1, Getting Started with

Direct3D) and run the project within the Visual Studio Graphics Debugger (Alt + F5).

Pressing the Print Screen key will capture all resources and list them in the graphics

object table where you can select the texture with the debug name CSTarget

as shown in the following screenshot (a grayscale result when viewed within the

Graphics Debugger of Visual Studio):

Grayscale result when viewed within the Graphics Debugger of Visual Studio

http:///

Chapter 7

227

How it works…

We began by preparing the input and output resources, using an SRV as the input and a

UAV as the output. By creating the target Texture2D, using the source image's texture

description, we simply have to change the desc.BindFlags method to BindFlags.
UnorderedAccess, and we are ready to create the texture and UAV.

After assigning the shader resources and compiling the compute shader, we dispatch a

number of thread groups relative to the source image size. We use the Ceiling method to

ensure that if the image dimensions are not evenly divisible by the thread group size, we are

still covering the entire image (anything sampled outside the bounds of the SRV will be black

and anything written will be discarded):

// 640x480 -> Dispatch(40, 120, 1);

context.Dispatch((int)Math.Ceiling(desc.Width / 16.0),
 (int)Math.Ceiling(desc.Height / 4.0), 1);

In our shader code, we have deined the input texture as we would for any SRV; it uses the irst
texture slot (t0). Our output resource is assigned to the irst UAV slot (u0).

We have deined the number of threads per thread group to be 64 by specifying the
[numthreads(16,4,1)] attribute. This size was deined by our shader macros THREADSX

and THREADSY. The minimum recommended thread group size on AMD hardware is 64

and on NVidia hardware is 32. Generally, the thread group size should be a multiple of

this minimum size. The maximum size supported by Shader Model 5 is 1024. The optimal

thread group size varies depending on the hardware and what tasks the compute shader is

performing. During performance tests, the optimal thread group sizes for this shader were

16x4x1 and 32x32x1.

Given a source image with the dimensions 640x480, we dispatch 40x120x1 groups

of 16x4x1 threads. This effectively creates a thread for each pixel within the 640x480

source image.

Compute shader functions support the following input semantics: SV_GroupID,

SV_GroupThreadID, SV_DispatchThreadID, and SV_GroupIndex. These values are

used to identify the current thread and index into any resources required by the thread.

The following diagram shows how each of these input semantics are calculated based on an

image with the dimensions 640x480, using [numthreads(32,32,1)] for the number of

threads per group, and dispatching the thread groups with context.Dispatch(20,15,1).

Threads and thread groups execute in an undeined order with respect to each other during
a single Dispatch call. There are thread synchronization commands for threads within the

same thread group. These allow threads within the same thread group to communicate with

each other using the thread group-shared memory.

http:///

Performing Image Processing Techniques

228

Note that the number of groups in the x and y axes is determined by dividing the width

of the image by the x axis threads/group count, and the height of the image by the y axis

threads/group count. In this example, we only use a single slice (along the z axis).

The following diagram shows the compute shader thread addressing for a thread

group (large illed square) and a single thread (small illed square):

Compute shader thread addressing showing a thread group (large filled square) and a single thread

(small filled square)

To sample from the source texture, we are using the pixel coordinate rather than a normalized

UV coordinate (that is, for our 640x480 image we use 0-639 along the x axis rather than

0.0-1.0). This is done using the array access operator of the input texture input[].

Because we have a single thread created for each pixel, the dispatchThreadId attribute

matches the appropriate pixel's XY coordinate for the input and output image (see the

previous diagram). As we are using a Texture2D variable rather than a StructureBuffer

or RawStructuredBuffer variable for the input texture, we are still taking advantage of the

texture-fetch hardware, which converts the image pixel RGBA data to a float4 variable:

float4 sample = input[dispatchThreadId.xy];

Next, we determine the pixel's relative luminance (Y) by calculating the dot product of the

linear RGB components with the appropriate coeficients (these depend on the colors that
contribute the most to light intensity for the human eye and are based upon the ITU-R

Recommendation BT.709):

Y = R * 0.2125 + G * 0.7154 + B * 0.0721;

Y = dot(sample.rgb, float3(0.2125,0.7154,0.0721));

http:///

Chapter 7

229

If using sRGB input textures, the non-linear RGB components will be automatically linearized

for you when sampling; however, writing back to the UAV will require a manual reapplication

of the gamma correction because an sRGB texture cannot be bound to a UAV. This would look

something similar to the following:

output[dispatchThreadId.xy] = pow(value, (1/2.2));

After calculating the relative luminance, we apply this to the red, green, and blue components

of the result and write this value back to the appropriate location within the UAV—as we are

using RWTexture2D, we take advantage of the video hardware's automatic conversion from

float4 to the appropriate pixel format. We have now desaturated the source pixel

by 100 percent.

The completed project for this chapter supports rendering the output

back to the render target. It also supports using the render target as

the input into the compute shaders as well as a number of sample

images (Ctrl + /- cycles through these).

There's more…

It is often useful to be able to apply a percentage of the effect upon the source image.

For example, rather than a 100 percent desaturation, we might want to only apply

50 percent of the effect.

This can easily be achieved by linearly interpolating (lerp) between the original pixel and

target pixel using the lerp HLSL intrinsic function. In fact, because linear interpolation can

be extrapolated beyond the 0 to 1 range, we can use this approach to implement the reverse

of desaturation and saturate the image.

We can add a constant buffer to the previous HLSL and create the equivalent structure

in C# to pass in this information in the same way we can with vertex or pixel shaders.

1. Create a new constant buffer in the compute shader:

cbuffer ComputeConstants : register(b0)

{

 float Intensity;

};

2. The corresponding C# structure for the constant buffer is shown in the following

code snippet:

[System.Runtime.InteropServices.StructLayout(System.Runtime.
InteropServices.LayoutKind.Sequential)]

public struct ComputeConstants

{

http:///

Performing Image Processing Techniques

230

 public float Intensity;

 public Vector3 _padding0;

}

Remember that constant buffers are aligned to 16 bytes, so we need

to include the additional Vector3 padding property (12 bytes).

3. Create and update the constant buffer as shown here:

var computeBuffer = new Buffer(device,
 Utilities.SizeOf<ComputeConstants>(),
 ResourceUsage.Default, BindFlags.ConstantBuffer,
 CpuAccessFlags.None, ResourceOptionFlags.None, 0);

var constants = new ComputeConstants {

 Intensity = 0.5f

};

context.UpdateSubresource(ref constants, computeBuffer);

4. Next, set the constant buffer to the compute shader pipeline stage:

context.ComputeShader.SetConstantBuffer(0, computeBuffer);

5. And inally we change our compute shader code so that it interpolates the values,
gradually adding gray to the result:

output[dispatchThreadId.xy] = float4(lerp(target, sample.rgb,
 Intensity), sample.a);

With the lerp in place, it is now possible to control the level of saturation/desaturation with

negative/positive values for Intensity, respectively. The following igure shows the results
of applying different interpolation amounts, starting with (A) normal image at 1.0, (B) half

desaturated at 0.5, (C) oversaturated at 2.0, and (D) desaturated using 0.0:

Various levels of saturation – A: original, B: half desaturation, C: 100 percent saturation, D: 100 percent desaturation

http:///

Chapter 7

231

See also
 f The ITU-R Recommendation BT.709 can be found here: http://www.itu.int/

dms_pubrec/itu-r/rec/bt/R-REC-BT.709-5-200204-I!!PDF-E.pdf

Adjusting the contrast and brightness

In this recipe we will adjust the contrast of the image by interpolating the color towards

or away from gray, and adjusting the brightness by adding or removing the black color from

the image. By moving the colors closer to gray (0.5, 0.5, 0.5), we are reducing the contrast,

and by moving away in the positive direction we are increasing the contrast. Reducing the

contrast by 100 percent will result in a totally gray image, while reducing by 200 percent,

generates a negative image.

Getting ready

Begin with the resulting code from the previous recipe to adjust the color saturation levels,

including the There's more… section for the interpolation of the source and target values.

How to do it…

First we will implement the contrast adjustment shader.

1. As we did in the Running a compute shader – desaturation (grayscale) recipe earlier

in this chapter, add the following HLSL shader code to a string variable such as

hlslCode. This will form our compute shader:

Texture2D<float4> input : register(t0);

RWTexture2D<float4> output : register(u0);

// Compute constant buffer

cbuffer ComputeConstants : register(b0)

{

 float LerpT;

};

// Lerp helper functions

float4 lerpKeepAlpha(float4 source, float3 target,

 float T)

{

 return float4(lerp(source.rgb, target, T), source.a);

}

float4 lerpKeepAlpha(float3 source, float4 target,

 float T)

{

http:///

Performing Image Processing Techniques

232

 return float4(lerp(source, target.rgb, T), target.a);

}

// Adjust the image contrast

[numthreads(THREADSX, THREADSY, 1)]

void ContrastCS(uint groupIndex : SV_GroupIndex,

 uint3 groupId : SV_GroupID,

 uint3 groupThreadId: SV_GroupThreadID,

 uint3 dispatchThreadId : SV_DispatchThreadID)

{

 float4 sample = input[dispatchThreadId.xy];

 // Adjust contrast by moving towards or away from gray

 // Note: if LerpT == -1, we achieve a negative image

 // LerpT == 0.0 will result in gray

 // LerpT == 1.0 will result in no change

 // LerpT > 1.0 will increase contrast

 float3 target = float3(0.5,0.5,0.5);

 output[dispatchThreadId.xy] = lerpKeepAlpha(target,

 sample, LerpT);

}

2. Next, we compile the shader as in the previous recipe; the only change is that we

must update the constant buffer before dispatching the compute shader threads:

// Set the source resource

context.ComputeShader.SetShaderResource(0, srcTextureSRV);

// Set the destination resource

context.ComputeShader.SetUnorderedAccessView(0, targetUAV);

context.ComputeShader.Set(cs);

var computeBuffer = new Buffer(device, Utilities.
SizeOf<ComputeConstants>(), ResourceUsage.Default, BindFlags.
ConstantBuffer, CpuAccessFlags.None, ResourceOptionFlags.None, 0);

var constants = new ComputeConstants { LerpT = 0.5f };

context.UpdateSubresource(ref constants, computeBuffer);

// e.g. 640x480 -> Dispatch(20, 15, 1);

context.Dispatch(desc.Width / 32, desc.Height / 32, 1);

3. Next, we will implement a similar shader to adjust the brightness of the image.

Everything is as per the ContrastCS shader; however, this time we set the target

variable to black:

// Adjust brightness by adding or removing Black

// LerpT == 1.0 original image

// LerpT > 1.0 brightens

// LerpT < 1.0 darkens

http:///

Chapter 7

233

float3 target = float3(0,0,0);

output[dispatchThreadId.xy] = lerpKeepAlpha(target, sample,
 LerpT);

4. The output of the contrast and brightness is shown in the following screenshot

(Top (left to right): contrast 1.40, 0.6, -1.0 (negative); Bottom (left to right):

brightness 0.70, 1.0 (original image), 1.4):

Top (left to right): contrast 1.40, 0.6, -1.0 (negative); Bottom (left to right): brightness 0.70, 1.0 (original image), 1.4

How it works…

Through the process of linear interpolation, we are able to add or remove levels of gray and

black from the source image. By extrapolating the lerp, we are able to extend the effect past

the standard 0-1 range.

We control the time (t) component of the lerp by updating a constant buffer that has been

bound to the compute shader pipeline stage. To maintain the correct alpha for the initial

sample, we exclude this component from the lerp, and add two helper functions to simplify

the code.

Try experimenting with different LerpT values and different constants for the color that is

being added/removed.

There's more…

Through a similar process as shown here, we can now perform any number of color

manipulations within the compute shader.

http:///

Performing Image Processing Techniques

234

Another simple example is applying a sepia tone to an image (sepia is a reddish brown color):

float4 sample = input[dispatchThreadId.xy];

float3 target;

target.r = saturate(dot(sample.rgb, float3(0.393, 0.769, 0.189)));

target.g = saturate(dot(sample.rgb, float3(0.349, 0.686, 0.168)));

target.b = saturate(dot(sample.rgb, float3(0.272, 0.534, 0.131)));

output[dispatchThreadId.xy]= lerpKeepAlpha(sample, target, LerpT);

See also
 f The Implementing box blur using separable convolution ilters recipe to learn how you

can apply multiple ilters in sequence

Implementing box blur using separable
convolution ilters

So far we have implemented some simple color manipulation techniques. Now we will create

an image blur effect using a ilter kernel. This technique will make more effective use of the
compute shader thread groups by utilizing group shared memory and thread synchronization.

Convolution ilters can be used to apply a wide range of image processing effects, and among
these effects, a number of them are separable, meaning that a 2D ilter can be split into two
1D ilters: the irst representing the horizontal aspect of the ilter, and the second representing
the ilter to be applied to the image vertically. These two 1D ilters can then be processed in
any order to produce the same result as the original 2D ilter; however, the total number of
texture reads required is signiicantly reduced.

How to do it…

Our blur operation will consist of two ilters: horizontal and vertical blur ilters that will be
applied one after the other to produce the inal blur. By adjusting the weights, we will be
able to use the same shader for a box blur ilter and a Gaussian blur ilter.

There are faster methods of implementing box blur and Gaussian

blur ilters; however, we can use the shader code presented here to
implement a range of separable convolution ilters. For blurs with

smaller radiuses, a pixel shader version can be faster as we can take

advantage of the bilinear hardware.

http:///

Chapter 7

235

We'll begin with creating the horizontal blur compute shader.

1. The start of our shader code will introduce the input and output resources as before

and in addition, we will use the #define macros to control the thread group size

and ilter tap.
Texture2D<float4> input : register(t0);

RWTexture2D<float4> output : register(u0);

#define FILTERTAP 5 // Must be ODD

// Note: at a thread group size of 1024, the maximum

// FILTERTAP possible is 33

#define FILTERRADIUS ((FILTERTAP-1)/2)

#define THREADSX 1024

#define THREADSY 1

// The total group size (DX11 max 1024)

#define GROUPSIZE (THREADSX * THREADSY)

2. Next, we will create our thread group shared memory. The shared memory needs to

be large enough to store the samples for a complete thread group. Border threads at

the start and end of the x axis for the thread group need to load an extra texel.

// Shared memory for storing thread group data for filters

// with enough room for

// GROUPSIZE + (THREADSY * FILTERRADIUS * 2)

// Max size of groupshared is 32KB

groupshared float4 FilterGroupMemX[GROUPSIZE + (THREADSY *
 FILTERRADIUS*2)];

3. Our last global variable is the blur ilter kernel. For now we will conigure the kernel
as a simple box ilter (where each texel under the kernel is given equal weight). It is
important to note that the kernel must be of the same size as the ilter-tap speciied
in FILTERTAP and that the middle element represents the kernel origin and

therefore, the current texel.

static const float BlurKernel[FILTERTAP] =
 (float[FILTERTAP])(1.0/(FILTERTAP));

As we are only creating a 1D ilter (for example, the horizontal and vertical ilters are
separated), we are using a ilter-tap x 1 convolution kernel. Here we have used a

shortcut to create the even weightings of a box ilter by initializing the array with
1.0 / ilter-tap.

As a general rule, the sum of all elements in the kernel must

equal 1.0.

http:///

Performing Image Processing Techniques

236

4. Next, we create our BlurFilterHorizontalCS compute shader method:

[numthreads(THREADSX, THREADSY, 1)]

void BlurFilterHorizontalCS(uint groupIndex: SV_GroupIndex,

 uint3 groupId : SV_GroupID,

 uint3 groupThreadId: SV_GroupThreadID,

 uint3 dispatchThreadId : SV_DispatchThreadID)

{ ... }

5. Within our compute shader, we have the following code:

// Calculate the correct index into FilterGroupMemX

uint offsetGroupIndex = groupIndex + (groupThreadId.y * 2 *

 FILTERRADIUS) + FILTERRADIUS;

// 1. Sample the current texel (clamp to max input coord)

FilterGroupMemX[offsetGroupIndex] =

 input[min(dispatchThreadId.xy, input.Length.xy - 1)];

// 2. If thread is within FILTERRADIUS of thread group

// boundary, sample an additional texel.

// 2a. additional texel @ dispatchThreadId.x – FILTERRADIUS

if (groupThreadId.x < FILTERRADIUS)

{ // Clamp out of bound samples that occur at image

 // borders (i.e. if x < 0, set to 0).

 int x = dispatchThreadId.x - FILTERRADIUS;

 FilterGroupMemX[offsetGroupIndex - FILTERRADIUS] =

 input[int2(max(x, 0), dispatchThreadId.y)];

}

// 2b. additional texel @ dispatchThreadId.x + FILTERRADIUS

if(groupThreadId.x >= THREADSX - FILTERRADIUS)

{ // Clamp out of bound samples that occur at image

 // borders (if x > imageWidth-1, set to imageWidth-1)

 int x = dispatchThreadId.x + FILTERRADIUS;

 FilterGroupMemX[offsetGroupIndex + FILTERRADIUS] =

 input[int2(min(x, input.Length.x - 1),

 dispatchThreadId.y)];

}

// 3. Wait for all threads in group to complete sampling

GroupMemoryBarrierWithGroupSync();

// 4. Apply blur kernel to the current texel using the

// samples we have already loaded for this thread group

float4 result = float4(0, 0, 0, 0);

int centerPixel = offsetGroupIndex;

[unroll]

for(int i = -FILTERRADIUS; i <= FILTERRADIUS; ++i)

{ int j = centerPixel + i;

http:///

Chapter 7

237

 result += BlurKernel[i + FILTERRADIUS] *

 FilterGroupMemX[j];

}

// Write the result to the output

output[dispatchThreadId.xy] = result;

This completes our horizontal ilter. The vertical ilter function
BlurFilterVerticalCS works similarly to the horizontal ilter. The source for
the function can be found in the downloadable code for this chapter available on

Packt's website.

6. In order to run both the horizontal and vertical ilters over the source image, it is
necessary to use two texture resources and ping-pong between them.

7. We begin by changing our target resource description so that desc.BindFlags also

indicates that the resource will be used as an SRV. We then create an SRV for the irst
target in addition to the UAV. Thereafter, deine a second target (target2) with the

same description, and create its SRV and UAV.

var srcTextureSRV = ShaderResourceView.FromFile(device,

 "Village.png");

var srcTexture = srcTextureSRV.ResourceAs<Texture2D>();

var desc = srcTexture.Description;

desc.BindFlags = BindFlags.ShaderResource |
 BindFlags.UnorderedAccess;

var target = new Texture2D(device, desc);

target.DebugName = "CSTarget";

var targetUAV = new UnorderedAccessView(device, target);

var targetSRV = new ShaderResourceView(device, target);

var target2 = new Texture2D(device, desc);

target2.DebugName = "CSTarget2";

var target2UAV = new UnorderedAccessView(device, target2);

var target2SRV = new ShaderResourceView(device, target2);

8. With our two resources ready, and the shader code for the horizontal and vertical

shaders in the strings horizHLSLCode and vertHLSLCode, respectively, we need

to compile both the horizontal and vertical shaders, and then dispatch the thread

groups for each, switching the SRV and UAV each time.

// Compile the shaders

using (var horizBC = ShaderBytecode.Compile(horizHLSLCode,

 "BlurFilterHorizontalCS", "cs_5_0"))

using (var vertBC = ShaderBytecode.Compile(vertHLSLCode,

 "BlurFilterVerticalCS", "cs_5_0"))

using (var horizCS = new ComputeShader(device, horizBC))

http:///

Performing Image Processing Techniques

238

using (var vertCS = new ComputeShader(device, vertBC))

{

 // The first source resource is the original image

 context.ComputeShader.SetShaderResource(0,

 srcTextureSRV);

 // The first destination resource is target

 context.ComputeShader.SetUnorderedAccessView(0,

 targetUAV);

 // Run the horizontal blur first (order doesn't matter)

 context.ComputeShader.Set(horizCS);

 context.Dispatch((int)Math.Ceiling(desc.Width / 1024.0),

 (int)Math.Ceiling(desc.Height / 1.0), 1);

 // We must set the compute shader stage SRV and UAV to

 // null between calls to the compute shader

 context.ComputeShader.SetShaderResource(0, null);

 context.ComputeShader.SetUnorderedAccessView(0, null);

 // The second source resource is the first target

 context.ComputeShader.SetShaderResource(0, targetSRV);

 // The second destination resource is target2

 context.ComputeShader.SetUnorderedAccessView(0,

 target2UAV);

 // Run the vertical blur

 context.ComputeShader.Set(vertCS);

 context.Dispatch((int)Math.Ceiling(desc.Width / 1.0),

 (int)Math.Ceiling(desc.Height / 1024.0), 1);

 // Set the compute shader stage SRV and UAV to null

 context.ComputeShader.SetShaderResource(0, null);

 context.ComputeShader.SetUnorderedAccessView(0, null);

}

An image processing renderer class (ImageProcessingCS.cs)

for running multiple filters and a utility class for implementing the

texture ping-pong (TexturePingPong.cs) is available within the

downloadable code for this chapter (Ch07_01ImageProcessing)

available on Packt's website.

http:///

Chapter 7

239

9. The result of running both the horizontal and vertical blur ilters is shown in the
following igure comparing three ilter sizes (3x3 (A), 5x5 (B), and 9x9 (C)):

Uniform box blur using varying kernel sizes: 3x3 (A), 5x5 (B), and 9x9 (C)

How it works…

To implement our blur ilters, we use the convolution of two signals. This involves moving
our irst signal, a 2D matrix (called a kernel or convolution matrix, or sometimes a mask),

from texel to texel over the source texture (our second signal). Usually the process replaces

the original texel for the current kernel position (generally the central element of the kernel)

with the sum of the products of the kernel elements with the texel underneath (see the

following igure). This process is used to implement a range of other image iltering effects,
such as edge detection and sharpening.

Convolution filter kernel (center) applied to input image, origin element is highlighted

The size of this kernel, and therefore the number of samples needed for the ilter,
is commonly referred to as the number of taps, that is, an N-tap ilter. For example,

a 3x3-tap ilter will use a 3x3 kernel (and nine samples), whereas a 3-tap ilter will
use a 3x1 kernel (and three samples).

http:///

Performing Image Processing Techniques

240

The box blur ilter used in this recipe is separable, meaning that the vertical and horizontal

components of the ilter can be applied separately (one after the other) and still achieve
the same result—generally this results in a much faster algorithm. For example, we can take

the separable 3x3-tap box blur kernel shown in the previous igure and split it into two 3-tap
kernels applied in two passes. The 3-tap horizontal kernel and 3-tap vertical kernel can be

applied in any order (although the second ilter must use the output of the irst as its input).
The inal result is that instead of requiring nine samples per texel, the exact same output is
achieved using only six samples per texel; for a 9x9, the difference is even greater, requiring

only 18 samples per texel instead of 81. For smaller ilters this is also possible within a pixel
shader using a bilinear ilter and the Gather texture sample command.

The coeficients of the resulting 1D ilters must be normalized; therefore, instead of each
texel contributing one ninth of the inal result in the previous 3x3 box blur ilter, each texel
will contribute one third of the inal result for the 3-tap horizontal/vertical ilter.

To further reduce the number of samples required, we have taken advantage of the compute

shader's local group shared memory. The actual number of samples is now close to two

samples per texel instead of 6.6. Of course, the texture sampling isn't the only overhead;

although the 32 KB shared memory sits closely with each of the SIMD units on the hardware,

it still incurs a cost. We do this by irst loading a texel into the group-shared memory for
each thread within the group. After all threads in the current thread group have loaded their

texel, each thread then applies the blur kernel to its texel accessing the cached values of

neighboring texels from the group-shared memory. The following code snippet highlights

the process:

// 1. Sample the texel for current thread and place in group

// shared memory

...

// 2. Wait for all threads in group to complete sampling

GroupMemoryBarrierWithGroupSync();

// 3. Apply kernel to current texel, reading neighboring texels

// from group shared memory. Write result to output UAV

...

To deal with the threads at the edge of the thread group, we need to load an additional

FILTERRADIUS*2 texels (that is, for a 5-tap blur, we need to load an additional texel

for the irst three and the last three threads on a row for the horizontal blur, or a column
for the vertical blur). Our group-shared memory is set up to it the thread's group size
plus an additional (THREADSY*FILTERRADIUS*2) for the horizontal shader,

and (THREADSX*FILTERRADIUS*2) for the vertical shader (see the outside

elements in the following group-shared memory layout diagram):

http:///

Chapter 7

241

Layout of group-shared memory for horizontal and vertical filters for a 5-tap filter with varying thread group

dimensions. The numbers represent which thread in the group loads the texel for that memory location where top-left

is the 0th index. The outer cells indicate additional texels loaded from outside the bounds of the thread group.

If you recall the compute shader thread addressing igure in the explanation of the Running

a compute shader – desaturation (grayscale) recipe, each thread group consists of up to a

maximum of 1024 threads in Shader Model 5. These threads are given an ID based upon

the number of groups dispatched and the dimensions within the numthreads attribute

of the compute shader. Instead of a 32x32x1 or a 16x4x1 thread group, as we have

used in the previous image processing recipes, in this recipe we have deined a thread
group size to be 1024 threads wide (X-dimension) and one thread high (Y-dimension) for

our BlurFilterHorizontalCS shader, and one thread wide and 1024 high for the

BlurFilterVerticalCS shader. This means that for an ideal image size of 1024x1024,

we sample (1024*1024*2) + (1024*2*radius) + (1024*2*radius) texels—with a ilter radius
of three (5-tap ilter). This equates to 2.0117 samples per texel (2,109,440 total, a far cry
from the approximately 6.29 million samples needed for a pixel shader implementation).

Of course, this is the best case scenario; for a 1920x1080 image, the average samples per

texel is 2.0119. This is due to the overlap of 2*radius between thread groups (that is,

we need two horizontal and vertical groups to cover the width/height respectively—although

this could be alleviated by changing the thread dimensions). The previous igure shows
the shared memory layout for the horizontal and vertical ilters for a thread group with the
dimensions 1024x1 and 1x1024, respectively, as well as a horizontal and vertical 32x32

thread group size to demonstrate the capabilities of the ilter for dealing with 2D shared
memory layouts.

http:///

Performing Image Processing Techniques

242

This implementation could be improved further to support

sampling four texels per thread, although fewer threads would be

possible due to the maximum thread group shared memory size.

The following igure shows the group-shared memory values during the convolution of a
horizontal 3-tap box blur ilter and image using this recipe:

Convolution of horizontal 3-tap filter and image in progress showing the shared memory of two thread groups.

Out-of-bound samples have been clamped.

Looking at the full 3x3 kernel in the Convolution ilter kernel (center) applied to input image

igure from earlier, it is apparent that the edge cases require some additional checking,
that is, if the kernel is over the top-left pixel, the top and right side of the kernel will be

outside the image bounds. This can be ignored but will result in some artifacts around

borders—as an example, the box blur ilter will gain a dark border around the right and
bottom edges. Alternatively, we can clamp to the bounds of the input image, lending additional

weight to border pixels (as we have done in this recipe, see the previous igure), or start the
ilter within the bounds of the image and produce a slightly smaller image on output. Clamping
has the added beneit that we do not need to worry if the thread count does not exactly match
the texel count, if there are a few extra it will not impact the result.

To allow us to accumulate multiple ilters, we have created an additional texture. As the target
textures must now also be used as input, we have enabled the shader resource binding lag.
The example output of the Implementing a Gaussian blur ilter recipe includes comparisons of

ilters that have been applied multiple times. With this ping-pong approach to textures, we can

combine any number of ilters together.

http:///

Chapter 7

243

There's more…

If you are familiar with ilters, you may have realized already that the
BlurFilterHorizontalCS and BlurFilterVerticalCS methods can

be used to apply any simple convolution ilters provided they are separable.

For example, to apply the image sharpening ilter using our existing ilter methods:

1. Change the FILTERTAP method to 3 and the BlurKernel declaration to

the following:

static const float BlurKernel[3] = {

 -0.3333333, 1.6666666, -0.3333333

};

2. And then run both the horizontal and vertical ilters.

Original image on left, sharpened image on right (using lerp with T=2.0)

Implementing a Gaussian blur ilter
In this recipe, we use the separability of the Gaussian blur convolution ilter to apply a
Gaussian blur in two passes for a vertical and horizontal Gaussian blur.

The Gaussian blur is used in many image processing and 3D graphics operations. The ilter
can be used to soften edges, apply blurring during depth of ield operations, or for use within
the Bloom lighting technique.

Getting ready

This recipe begins with the completed horizontal and vertical ilter compute shaders
and C# code to execute them from the Implementing box blur using separable convolution

ilters recipe.

http:///

Performing Image Processing Techniques

244

How to do it…

By adjusting the kernel values, we can create a Gaussian blur ilter. For each of the following
kernels, the center weight (weight of current texel) is highlighted:

1. In order to create a 3-tap Gaussian blur, change the BlurKernel method of the

horizontal and vertical compute shaders to:

#define FILTERTAP 3
...SNIP
static const float BlurKernel[FILTERTAP] = {
 0.2740686, 0.4518628, 0.2740686
};

2. For a 5-tap Gaussian blur, change the BlurKernel method of the horizontal and

vertical compute shaders to:

#define FILTERTAP 5
...SNIP
static const float BlurKernel[FILTERTAP] = {
 0.1524691, 0.2218413, 0.2513791, 0.2218413, 0.1524691
};

3. And lastly, for a 9-tap Gaussian blur, use the following kernel:

#define FILTERTAP 9
...SNIP
static const float BlurKernel[9] = {
 0.08167442, 0.1016454, 0.1188356, 0.1305153, 0.1346584,
 0.1305153, 0.1188356, 0.1016454, 0.08167442
};

4. Executing both, the vertical and horizontal ilters, will achieve the full Gaussian blur.
The following image shows a comparison of the box and Gaussian blur ilters at
varying kernel sizes.

Comparison of box and Gaussian blur filters with varying kernel sizes.

http:///

Chapter 7

245

The previous comparison of blur ilter sizes and types shows how a box blur ilter applied
multiple times is able to approximate a Gaussian blur. In our blur recipes, this is of little

consequence as our box blur ilter and Gaussian blur ilter have a similar cost.

How it works…

A Gaussian blur convolution kernel is a separable ilter that is generated using the following
Gaussian function formula. The weights of the kernel elements reduce as you move further

away from the origin, meaning that the weighted average of the Gaussian blur is better at

preserving the edge details than the box blur ilter (see the previous comparison of the 11x11
Gaussian and box blur). The sum of the weights, as with most image ilters, is 1.0.

Gaussian blur formula in a single dimension, where σ (sigma) is the standard deviation of the Gaussian distribution

(for example, blur radius) and x represents the distance from the origin

The previous formula can be implemented in C# for a given distance with the following

code snippet:

var sigma = radius;

var twoSigmaSqrd = (2.0 * sigma * sigma);

var value = Math.Exp(-(distance*distance) / twoSigmaSqrd) /
 Math.Sqrt(twoSigmaSqrd));

When we specify a ilter-tap size, we are effectively controlling the radius of the blur.

For example, a 3-tap horizontal Gaussian blur has a radius of one, while a 9-tap ilter has a
radius of four. This is calculated by subtracting the origin pixel and dividing the result by two,

for example, (9-1) / 2 = 4. Therefore, creating a Gaussian blur with a radius of nine requires

a 19-tap ilter.

The ilter-tap size must be larger than one, an odd number, and no more than 33 depending
on the thread group dimensions. The maximum size is dependent upon the maximum size

of a compute shader's group-shared memory, which in Shader Model 5 is 32 KB.

The command-line project ComputeGaussian.csproj used to generate these Gaussian

weights is included with the downloadable content for this Chapter, available on Packt's website.

The weights used here were generated with the appropriate radius and a blur amount of 1.0.

There's more…

By applying a blur multiple times, it is possible to approximate a larger radius blur;

for example, a 9-tap ilter applied three times results in a similar amount of blur
compared to a single pass of a 27-tap blur ilter.

http:///

Performing Image Processing Techniques

246

Detecting edges with the Sobel edge-
detection ilter

In this recipe we will implement a single pass 3x3 Sobel convolution ilter. This is the
irst convolution ilter we will look at that does not implement a simple "sum of products"
calculation as well as not being separable.

To keep things simple, this implementation has not undergone the same level of optimization

as the separable convolution ilter compute shaders; however, it would be a fairly simple task
to modify it to work with the group-shared memory approach.

Getting ready

This recipe makes use of the constant buffer and the lerpKeepAlpha function that we

implemented in the Adjusting the contrast and brightness recipe.

You will also use the LUMINANCE #define macro we created in the Running a compute

shader – desaturation (grayscale) recipe.

How to do it…

We will implement two variations of the Sobel edge-detection compute shader, one will overlay

the result onto the original image (producing an outlining effect), and the other will return the

black and white result. Both use the same Sobel function to detect the edge.

1. Add the following HLSL code, for the Sobel edge overlay, to a string or HLSL shader

ile. We will implement the SobelEdge function used here, shortly.

#define THREADSX 32

#define THREADSY 32

// used for RGB/sRGB color models

#define LUMINANCE_RGB float3(0.2125, 0.7154, 0.0721)

#define LUMINANCE(_V) dot(_V.rgb, LUMINANCE_RGB)

[numthreads(THREADSX, THREADSY, 1)]

void SobelEdgeOverlayCS(uint groupIndex: SV_GroupIndex,
 uint3 groupId : SV_GroupID, uint3 groupThreadId:
 SV_GroupThreadID, uint3 dispatchThreadId :
 SV_DispatchThreadID)

{

 float4 sample = input[dispatchThreadId.xy];

 float threshold = 0.4f;

 float thickness = 1;

http:///

Chapter 7

247

 float3 target = sample.rgb *
 SobelEdge(dispatchThreadId.xy, threshold, thickness);

 output[dispatchThreadId.xy] = lerpKeepAlpha(sample,
 target, LerpT);

}

Remember that the maximum total thread count is 1024.

2. Append the Sobel edge-detection shader without overlaying to the same HLSL ile
or string variable.

[numthreads(THREADSX, THREADSY, 1)]

void SobelEdgeCS(uint groupIndex: SV_GroupIndex, uint3
 groupId : SV_GroupID, uint3 groupThreadId:
 SV_GroupThreadID, uint3 dispatchThreadId :
 SV_DispatchThreadID)

{

 float threshold = 0.4f;

 float thickness = 1;

 output[dispatchThreadId.xy] = float4(

 (float3)SobelEdge(dispatchThreadId.xy, threshold,

 thickness), 1);

}

3. Now, we will create the shared SobelEdge HLSL function that applies the

convolution kernel.

float SobelEdge(float2 coord, float threshold, float thickness)

{ // Sobel 3x3 tap filter: approximate magnitude

 // Cheaper than the full Sobel kernel evaluation

 // http://homepages.inf.ed.ac.uk/rbf/HIPR2/sobel.htm

 // ------------------------------

 // p1 p2 p3 | x

 // p4 (p5) p6 | convolution kernel

 // p7 p8 p9 |

 // ------------------------------

 // Gx = (p1 + 2 * p2 + p3) - (p7 + 2 * p8 + p9)

 // ------------------------------

 // p3 p6 p9 | y (x rotated counter cw)

 // p2 (p5) p8 | convolution kernel

 // p1 p4 p7 |

 // ------------------------------

 // Gy = (p3 + 2 * p6 + p9) - (p1 + 2 * p4 + p7)

 // ------------------------------

 // Formula:

http:///

Performing Image Processing Techniques

248

 // |G| = |Gx| + |Gy| => pow(G,2) = Gx*Gx + Gy*Gy

 // |G| = |(p1 + 2 * p2 + p3) - (p7 + 2 * p8 + p9)| +

 // |(p3 + 2 * p6 + p9) - (p1 + 2 * p4 + p7)|

 // p5 == current pixel,

 // sample neighbors to create 3x3 kernel

 float p1 = LUMINANCE(input[coord + float2(-thickness,

 -thickness)]);

 float p2 = LUMINANCE(input[coord + float2(0,

 -thickness)]);

 float p3 = LUMINANCE(input[coord + float2(thickness,

 -thickness)]);

 float p4 = LUMINANCE(input[coord + float2(-thickness,

 0)]);

 float p6 = LUMINANCE(input[coord + float2(thickness,

 0)]);

 float p7 = LUMINANCE(input[coord + float2(-thickness,

 thickness)]);

 float p8 = LUMINANCE(input[coord + float2(0,

 thickness)]);

 float p9 = LUMINANCE(input[coord + float2(thickness,

 thickness)]);

4. Next we apply the Sobel formula on the values loaded for the kernel.

//float sobelX = (p1 + 2 * p2 + p3) - (p7 + 2 * p8 + p9);

//float sobelY = (p3 + 2 * p6 + p9) - (p1 + 2 * p4 + p7);

float sobelX = mad(2, p2, p1 + p3) - mad(2, p8, p7 + p9);

float sobelY = mad(2, p6, p3 + p9) - mad(2, p4, p1 + p7);

5. And inally, return the result based on the threshold.

 float edgeSqr = (sobelX * sobelX + sobelY * sobelY);

 float result = 1.0 - (edgeSqr > threshold * threshold);

 // if (edgeSqr > threshold * threshold) { is edge }

 return result; // black (0) = edge, otherwise white (1)

} // End SobelEdge

http:///

Chapter 7

249

6. The result of applying the two Sobel edge-detection ilters can be seen in the
following igure:

Left: Sobel filter, Right: 3x3 Blur + Sobel filter

How it works…

The Sobel ilter is the combination of applying a formula to determine the gradient magnitude

of two convolution kernels (the second is the irst rotated counter-clockwise), and then
checking the result against a provided threshold. If it passes the test, it is an edge (black),

otherwise it is left blank (white).

The following formula is a faster approximation of the more complete Sobel gradient

magnitude formula:

Faster approximation of the Sobel gradient magnitude formula

http:///

Performing Image Processing Techniques

250

There's more…

By irst applying blur to the source image, we are able to reduce the level of noise generated
by the Sobel ilter as shown in the right-hand example of the previous example output. This is

where the Implementing a Gaussian blur ilter recipe can be useful as this type of blur ilter is
better at preserving edges while still reducing noise within the source image.

See also
 f The Implementing box blur using separable convolution ilters recipe will cover how

you can apply multiple ilters one after another

Calculating an image's luminance histogram
In this recipe we will explore using a compute shader to gather characteristics from the source

image and output to a buffer. The characteristic that we will be determining is the image's

luminance histogram, that is, how many texels are there within the texture for each luminance

value (mapped from 0.0-1.0 to 0-255).

We will also cover how to retrieve the data from the GPU and load it into an array that is

accessible from the CPU.

How to do it…

We'll begin with the HLSL code necessary to calculate the histogram.

1. The input continues to be a Texture2D SRV; however, this time our output UAV will

be RWByteAddressBuffer.

Texture2D<float4> input : register(t0);

RWByteAddressBuffer outputByteBuffer : register(u0);

#define THREADSX 32

#define THREADSY 32

// used for RGB/sRGB color models

#define LUMINANCE_RGB float3(0.2125, 0.7154, 0.0721)

#define LUMINANCE(_V) dot(_V.rgb, LUMINANCE_RGB)

2. Our actual compute shader is quite simple:

// Calculate the luminance histogram of the input

// Output to outputByteBuffer

[numthreads(THREADSX, THREADSY, 1)]

void HistogramCS(uint groupIndex: SV_GroupIndex, uint3

http:///

Chapter 7

251

 groupId : SV_GroupID, uint3 groupThreadId: SV_GroupThreadID,
uint3 dispatchThreadId :
 SV_DispatchThreadID)

{ float4 sample = input[dispatchThreadId.xy];

 // Calculate the Relative luminance (and map to 0-255)

 float luminance = LUMINANCE(sample.xyz) * 255.0;

 // Addressable as bytes, x4 to store 32-bit integers

 // Atomic increment of value at address.

 outputByteBuffer.InterlockedAdd((uint)luminance * 4,

 1);

}

3. In order to interact with this compute shader, we need to prepare a buffer to store the

results. Note that we also create a buffer that is accessible from the CPU. The two

properties that make the buffer accessible to the CPU are highlighted.

var histogramResult = new SharpDX.Direct3D11.Buffer(device,
 new BufferDescription

{

 BindFlags = BindFlags.UnorderedAccess,

 CpuAccessFlags = CpuAccessFlags.None,

 OptionFlags = ResourceOptionFlags.BufferAllowRawViews,

 Usage = ResourceUsage.Default,

 SizeInBytes = 256 * 4,

 StructureByteStride = 4

});

histogramResult.DebugName = "Histogram Result";

var histogramUAV = CreateBufferUAV(device, histogramResult);

// Create resource that can be read from the CPU for

// retrieving the histogram results

var cpuReadDesc = histogramResult.Description;

cpuReadDesc.OptionFlags = ResourceOptionFlags.None;

cpuReadDesc.BindFlags = BindFlags.None;

cpuReadDesc.CpuAccessFlags = CpuAccessFlags.Read;

cpuReadDesc.Usage = ResourceUsage.Staging;

var histogramCPU = new Buffer(device, cpuReadDesc);

histogramCPU.DebugName = "Histogram Result (CPU)";

4. We will wrap the logic to create the buffer's UAV into a reusable function called

CreateBufferUAV.

public static UnorderedAccessView
 CreateBufferUAV(SharpDX.Direct3D11.Device device,
 SharpDX.Direct3D11.Buffer buffer)

{

http:///

Performing Image Processing Techniques

252

 UnorderedAccessViewDescription uavDesc = new
 UnorderedAccessViewDescription

 {

 Dimension = UnorderedAccessViewDimension.Buffer,

 Buffer = new UnorderedAccessViewDescription

 .BufferResource { FirstElement = 0 }

 };

 // If a raw buffer

 if ((buffer.Description.OptionFlags &

 ResourceOptionFlags.BufferAllowRawViews) ==

 ResourceOptionFlags.BufferAllowRawViews)

 {

 // A raw buffer requires R32_Typeless

 uavDesc.Format = Format.R32_Typeless;

 uavDesc.Buffer.Flags =

 UnorderedAccessViewBufferFlags.Raw;

 uavDesc.Buffer.ElementCount =

 buffer.Description.SizeInBytes / 4;

 }

 // else if a structured buffer

 else if ((buffer.Description.OptionFlags &

 ResourceOptionFlags.BufferStructured) ==

 ResourceOptionFlags.BufferStructured)

 {

 uavDesc.Format = Format.Unknown;

 uavDesc.Buffer.ElementCount =

 buffer.Description.SizeInBytes /

 buffer.Description.StructureByteStride;

 } else {

 throw new ArgumentException("Buffer must be raw or
 structured", "buffer");

 }

 // Create the UAV for this buffer

 return new UnorderedAccessView(device, buffer,

 uavDesc);

}

5. With the output resources in place, we can continue to load the image, and run with

the previous HistogramCS shader code.

// Firstly clear the target UAV otherwise the value will

// accumulate between calls.
context.ClearUnorderedAccessView(histogramUAV, Int4.Zero);

// Load the image to process (this could be any compatible

// SRV).

http:///

Chapter 7

253

var srcTextureSRV = ShaderResourceView.FromFile(device,

 "Village.png");

var srcTexture = srcTextureSRV.ResourceAs<Texture2D>();

var desc = srcTexture.Description;

// Compile the shaders

using (var bytecode = ShaderBytecode.Compile(hlslCode,

 "HistogramCS", "cs_5_0"))

using (var cs = new ComputeShader(device, bytecode))

{

 // The source resource is the original image

 context.ComputeShader.SetShaderResource(0,

 srcTextureSRV);

 // The destination resource is the histogramResult

 context.ComputeShader.SetUnorderedAccessView(0,

 histogramUAV);

 // Run the histogram shader

 context.ComputeShader.Set(cs);

 context.Dispatch((int)Math.Ceiling(desc.Width / 1024.0),

 (int)Math.Ceiling(desc.Height / 1.0), 1);

 // Set the compute shader stage SRV and UAV to null

 context.ComputeShader.SetShaderResource(0, null);

 context.ComputeShader.SetUnorderedAccessView(0, null);

...SNIP

}

6. Lastly, we copy the result into our CPU accessible resource and then load this into

an array.

// Copy the result into our CPU accessible resource

context.CopyResource(histogramResult, histogramCPU);

// Retrieve histogram from GPU into int array

try

{ var databox = context.MapSubresource(histogramCPU, 0,

 MapMode.Read, SharpDX.Direct3D11.MapFlags.None);

 int[] intArray = new int[databox.RowPitch / sizeof(int)];

 System.Runtime.InteropServices.Marshal.Copy(

 databox.DataPointer, intArray, 0, intArray.Length);

 // intArray now contains the histogram data,

 // alternatively access databox.DataPointer directly

 // MapSubresource has a number of overrides that, one

 // provides a DataStream.

}

finally

{

http:///

Performing Image Processing Techniques

254

 // We must unmap the subresource so it can be used

 // within the graphics pipeline again

 context.UnmapSubresource(histogramCPU, 0);

}

7. The result of running the HistogramCS compute shader over the Village.png

image is shown in the following chart:

Luminance histogram result exported to a chart

How it works…

We have already covered the calculation of the relative luminance itself; however, we now map

the normalized luminance value to the 0-255 range. To determine the luminance histogram,

we count how many texels there are within the source image at each relative luminance level.

We have done this by mapping an unstructured (raw) buffer to a byte address UAV as the

output of the histogram shader. We then use the intrinsic InterlockedAdd method of

the UAV to increment the appropriate index within the buffer for each texel based on its

relative luminance. For example, a luminance of 255 (white), will result in the equivalent of

output[255]++;, and a relative luminance of 127 (gray), will result in output[127]++;.

The more threads there are, the more collisions with the interlock.

By processing several pixels within a single thread, we can reduce the

number of threads required, although this needs to be balanced with

having enough threads to make effective use of the available hardware.

We have created a reusable function to create the UAV from a buffer. This simply determines

if the buffer is a structured or raw buffer, and creates the UAV description accordingly with

the appropriate size and element count based on the relevant byte stride (size of uint for

raw or the size of the buffer.Description.StructureByteStride method for a

structured buffer).

The interlocked methods on the RWByteAddressBuffer UAV allow us to write from multiple

threads to the same buffer. Usually, a compute shader is only able to write to addresses

reserved for the current thread. The range of interlocked operations include: Add, AND,

CompareExchange, CompareStore, Exchange, Max, Min, OR, and XOR.

http:///

Chapter 7

255

Once we have executed the shader function, we copy the result from the GPU

histogramResult buffer into the histogramCPU resource that is accessible from

the CPU. In order to be able to read the resource from the CPU, we have created the

resource with the following settings:

cpuReadDesc.CpuAccessFlags = CpuAccessFlags.Read;

cpuReadDesc.Usage = ResourceUsage.Staging;

Once the result has been copied to the CPU accessible resource, we can then map it to a

system memory location and read the data for whatever purpose we need. Transferring data

from the GPU to CPU is slow and mapping the subresource can stall until the GPU is ready.

C# can incur additional overhead if not careful, resulting in an extra memory copy operation.

If the resource is correctly protected from further use, the actual reading of the data once

mapped could potentially occur within another thread, but care must be taken, and the

unmapping of the resource must be done in a thread-safe manner for the device context.

There's more…

It might be tempting to try to use the group-shared memory for the histogram calculation;

however, our threads potentially need to write to any address and a thread is only allowed to

write to its own region of the group memory without synchronization. Any thread synchronization

would most likely defeat any potential performance gains. Reading from the same location in

shared memory across multiple threads is allowed.

http:///

http:///

8
Incorporating Physics

and Simulations

In this chapter, we will cover the following topics:

 f Using a physics engine

 f Simulating ocean waves

 f Rendering particles

Introduction

In this chapter, we will look at implementing physics and simulations into our scene rendering.

We will irst look at a CPU-based physics engine, and then we will explore the power of the
GPU to simulate waves and render millions of particles.

Using a physics engine

In this recipe, we will extend our existing mesh renderer to support the simulation of physics

within a scene. We will continue to use the built-in Visual Studio graphics content pipeline,

and rely on a simple mesh naming convention to designate static and dynamic objects

within our scene.

http:///

Incorporating Physics and Simulations

258

Getting ready

For our physics engine, we will use BulletSharp, a .NET wrapper of the popular Bullet
Physics library used in many AAA game and movie titles. Consider the following steps:

1. Download the BulletSharp library from https://code.google.com/p/
bulletsharp/. It is also included in the \External folder within the downloadable

content for this book.

2. Add a reference to the \External\bulletsharp-2.82\Release SharpDX\
BulletSharp.dll assembly.

Referencing the SharpDX version of the BulletSharp assembly

uses the existing SharpDX vector and matrix structures.

3. We use an example scene to demonstrate the physics engine. This is available

within the downloadable content.

4. A debug renderer class, PhysicsDebugDraw, is included in the completed project

for debugging the rigid body shapes and constraints. This depends on .\Shaders\
PhysicsDebug.hlsl and the BufferedDebugDraw class.

5. Finally, we will need a project that has the MeshRenderer class available.

How to do it…

We will begin by loading our 3D scene and generate their corresponding rigid bodies in

the Bullet Physics Library.

1. Add the PhysicsScene1.fbx 3D scene to the project and set Build Action

to MeshContentTask.

2. At the start of D3DApp.Run where we initialize our renderers, load

PhysicsScene1.cmo (the compiled mesh object ile) and create the
MeshRenderer instances, as follows:

// Create and initialize the mesh renderer

var loadedMesh =

 Common.Mesh.LoadFromFile("PhysicsScene1.cmo");

List<MeshRenderer> meshes = new List<MeshRenderer>();

meshes.AddRange(from mesh in loadedMesh

 select ToDispose(new MeshRenderer(mesh)));

foreach (var m in meshes) {

 m.Initialize(this);

 m.World = Matrix.Identity;

}

var meshWorld = Matrix.Identity;

http:///

Chapter 8

259

3. In order to make the physics engine update our mesh's world matrix, we will

implement a class that is inherited from the BulletSharp.MotionState class.

using BulletSharp;

using SharpDX;

public class MeshMotionState: BulletSharp.MotionState

{

 public MeshRenderer Mesh { get; private set; }

 public MeshMotionState(MeshRenderer mesh)

 {

 Mesh = mesh;

 }

 // Retrieve or Sets the Mesh's world transform

 public override SharpDX.Matrix WorldTransform

 {

 get

 {

 return Mesh.World * Matrix

 .Translation(Mesh.Mesh.Extent.Center);

 }

 set

 {

 Mesh.World = Matrix

 .Translation(-Mesh.Mesh.Extent.Center) *

 value;

 }

 }

}

4. After initializing the renderers and before the render loop, let's now initialize the

physics engine within the D3DApp.Run method directly.

using BulletSharp;

...

DynamicsWorld world = null;

CollisionConfiguration defaultConfig =

 new DefaultCollisionConfiguration();

ConstraintSolver solver =

 new SequentialImpulseConstraintSolver();

BulletSharp.Dispatcher dispatcher =

 new CollisionDispatcher(defaultConfig);

BroadphaseInterface broadphase = new DbvtBroadphase();

// Function to initialize the world and rigid bodies for

// the loaded meshes. Done as an action so we can easily

http:///

Incorporating Physics and Simulations

260

// reset the simulation state.

Action initializePhysics = () =>

{

 RemoveAndDispose(ref world);

 // Initialize the Bullet Physics "world"

 world = ToDispose(new DiscreteDynamicsWorld(dispatcher,

 broadphase, solver, defaultConfig));

 world.Gravity = new Vector3(0, -10, 0);

 // For each mesh, create a RigidBody and add to "world"

 // for simulation

 meshes.ForEach(m =>

 {

 ... SNIP see below

 });

});

initializePhysics();

5. Within the meshes.ForEach loop in the previous code snippet, we'll initialize a

rigid body for each mesh. Initially check to ensure that the mesh has a value for

the Name attribute.

// We use the name of the mesh to determine the correct

// type of physics body to create

if (String.IsNullOrEmpty(m.Mesh.Name))

 return;

var name = m.Mesh.Name.ToLower();

var extent = m.Mesh.Extent;

BulletSharp.CollisionShape shape;

6. Next, we will determine whether to use a BulletSharp box or sphere collision

shape, or to create one based on the mesh's vertices.

#region Create collision shape

if (name.Contains("box") || name.Contains("cube"))

{

 // Assumes the box/cube has an axis-aligned orientation

 shape = new BulletSharp.BoxShape(

 Math.Abs(extent.Max.Z - extent.Min.Z) / 2.0f,

 Math.Abs(extent.Max.Y - extent.Min.Y) / 2.0f,

 Math.Abs(extent.Max.X - extent.Min.X) / 2.0f);

}

else if (name.Contains("sphere"))

{

http:///

Chapter 8

261

 shape = new BulletSharp.SphereShape(extent.Radius);

}

else // use mesh vertices directly

{

 // for each SubMesh, merge the vertex and index

 // buffers to create a TriangleMeshShape for collisions

 List<Vector3> vertices = new List<Vector3>();

 List<int> indices = new List<int>();

 int vertexOffset = 0;

 foreach (var sm in m.Mesh.SubMeshes)

 {

 vertexOffset += vertices.Count;

 indices.AddRange(

 (from indx in m.Mesh.IndexBuffers

 [(int)sm.IndexBufferIndex]

 select vertexOffset + (int)indx));

 vertices.AddRange(

 (from v in m.Mesh

 .VertexBuffers[(int)sm.VertexBufferIndex]

 select v.Position - extent.Center));

 }

 // Create the collision shape

 shape = new BvhTriangleMeshShape(

 new TriangleIndexVertexArray(indices.ToArray(),

 vertices.ToArray()), true);

}

#endregion

7. At the end of the intiailizePhysics action, we will create the rigid body from the

shape, determine if it is a dynamic or static shape (that is, whether it can be affected

by collisions and gravity), and add it to the physics world object for simulation:

m.World = Matrix.Identity; // Reset mesh location

float mass; Vector3 vec; // use radius as mass

shape.GetBoundingSphere(out vec, out mass);

// Create the rigid body, if static/kinematic set mass to 0

var body = new BulletSharp.RigidBody(

 new RigidBodyConstructionInfo(

 name.Contains("static") ? 0 : mass,

 new MeshMotionState(m),

 shape, shape.CalculateLocalInertia(mass)));

if (body.IsStaticObject)

{

http:///

Incorporating Physics and Simulations

262

 body.Restitution = 1f;

 body.Friction = 0.4f;

}

// Add to the simulation

world.AddRigidBody(body);

8. In order to enable the debug drawing of bodies, you can include the following code

(if you want) after having loaded all the bodies.

#if DEBUG

 world.DebugDrawer = ToDispose(
 new PhysicsDebugDraw(this.DeviceManager));

 world.DebugDrawer.DebugMode = DebugDrawModes.DrawAabb |
 DebugDrawModes.DrawWireframe;

#endif

With the physics world and bodies in place, we are ready to step through the

simulation and apply the transformations to our mesh objects.

9. At the beginning of the D3DApp rendering loop, we will step forward the simulation

in time. We will provide the last frame time, and also provide the maximum number

of steps that the simulation will try to catch-up on, if it has fallen behind. We will use

the default ixed time step of one sixtieth of a second.
var simTime = new System.Diagnostics.Stopwatch();

simTime.Start();

float time = 0.0f;

float timeStep = 0.0f;

#region Render loop

RenderLoop.Run(Window, () =>

{

 // Update simulation

 if (!paused)

 {

 if ((float)simTime.Elapsed.TotalSeconds < time)

 { // Reset if the simTime is reset

 time = 0;

 timeStep = 0;

 }

 timeStep = ((float)simTime.Elapsed

 .TotalSeconds - time);

 time = (float)simTime.Elapsed.TotalSeconds;

 world.StepSimulation(timeStep, 7);

 }

... SNIP

});

http:///

Chapter 8

263

The completed sample maps the P key to pause/unpause the

simulation, and maps the R key to reset the simulation with a

call to the initializePhysics()method.

10. The MeshMotionState objects that we created for each mesh are already

updating the mesh's world matrix, so now we just have to render the objects:

meshes.ForEach((m) =>

{

 perObject.World = m.World * worldMatrix;

 perObject.WorldInverseTranspose = Matrix

 .Transpose(Matrix.Invert(perObject.World));

 perObject.WorldViewProjection = perObject.World *

 viewProjection;

 perObject.ViewProjection = viewProjection;

 perObject.Transpose();

 context.UpdateSubresource(ref perObject,

 perObjectBuffer);

 // Provide the material constant buffer

 m.PerMaterialBuffer = perMaterialBuffer;

 m.PerArmatureBuffer = perArmatureBuffer;

 m.Render();

}

11. Lastly, we can render the debug layer (over the existing geometry) by using the

following code snippet:

if (debugDraw)

{

 perObject.World = Matrix.Identity;

 ... as above

 perObject.Transpose();

 context.UpdateSubresource(ref perObject,

 perObjectBuffer);

 (world.DebugDrawer as PhysicsDebugDraw)

 .DrawDebugWorld(world);

 // Restore vertex/pixel shader and vertex layout

 context.VertexShader.Set(vertexShader);

 context.PixelShader.Set(pixelShader);

 context.InputAssembler.InputLayout = vertexLayout;

}

http:///

Incorporating Physics and Simulations

264

The completed sample maps the E key to toggle the debug renderer on and off.

The following screenshot shows the inal result with debug draw switched on:

Physics debug render over 3.5 seconds

How it works…

A prominent part of the physics engine is collision detection. Collision detection typically

involves two phases, a broad phase and a narrow phase. The broad phase detection is usually

where the axis-aligned bounding boxes (AABB) of objects are checked for possible collisions,

where false positives are allowed. Once the broad phase has been completed, and if one or

more possible collisions have been detected, the narrow phase detection is run to determine

where the two shapes are intersecting:

Collision detection: no collision (left), false positive broad-phase collision detected (center), and narrow-phase

collision detected (right)

http:///

Chapter 8

265

The 3D scene we have used in this recipe includes two static objects (the ramp and the

loor) and eleven dynamic objects (a ball at the top of the ramp and 10 stacked boxes at the
bottom). We have used a simple naming convention for the models in the scene, where the

occurrence of the box or cube text in the name indicates that we will use the mesh's extent

to deine a box collision shape. For the names containing the text sphere, we create a sphere

collision shape; and for everything else we will use the vertices to deine a triangular mesh
collision shape.

Any mesh in the scene with a name that contains static will be initialized as a static rigid

body (unaffected by gravity and immovable), by giving a mass of zero to the rigid body. All the

other shapes are created as dynamic rigid bodies.

During the render loop, we tell the physics world to step through the simulation. The amount of

time taken by the last frame in seconds is used to determine how many substeps the simulation

will attempt to catch up on. We have provided a value of seven as the maximum number of

substeps, which is based on the following rule to prevent the simulation from losing time:

Rule for determining values for substeps and fixed time step for a given time step (frame time)

This means our simulation will continue to keep up until the frame rate slows to approximately

9 FPS (that is, 1/9 < 7 * 1/60).

By default, the physics simulation uses a ixed time step of one-sixtieth of a second, that is,
the simulation moves forward at one sixtieth of a second per step. If a higher frame rate is

used by the render loop, for example, 120 FPS, then the simulation will be interpolating one

in every two ticks. As we have just seen, running at a slower frame rate results in additional

substeps being applied in an attempt to keep up.

Apart from the physics simulation itself and setting the time, the key to this implementation is

the correct updating of each mesh's world afine transform matrix. The Bullet Physics library
uses a MotionState object attached to each rigid body in order to update the transformation

matrix of the underlying object. We have implemented our own MeshMotionState class that

supports retrieving and updating of the MeshRenderer.World property.

The collision shapes in the scene have been created in a local model space (with origin at 0,

0, 0), although the corresponding mesh's are not necessarily centered at the origin (they are

in scene space, not in model space). Therefore, our MeshMotionState class must translate

the world matrix to and from scene space as appropriate. This is done by taking the mesh's

extent (which is in scene space) and moving it back from its center point to the origin.

The world matrix calculation for setting the MeshMotionState.WorldTransform

property becomes: Matrix.Translation(-m.Mesh.Extent.Center) * value.

The Bullet Physics library not only supports rigid bodies, but also supports soft bodies,

clothes, ropes, and constraints.

http:///

Incorporating Physics and Simulations

266

There's more…

In order to allow our character animations to have an impact within the physics of the

simulated world, we can create a collision shape of bounding box for each bone in a

character's rig. With a new class inheriting from BulletSharp.MotionState, we can

retrieve each bone's current transform for the current frame in the animation. Using a

kinematic rigid body allows us to apply forces to the world without them, in turn,

affecting the bone's rigid body.

Due to the availability of a large number of threads and fast sorting capabilities of compute

shaders (for example, bitonic sort), it is possible to signiicantly increase the speed of the
broad- and narrow-phase collision detection for the rigid body collisions by implementing them

within compute shaders. However, the entire simulation will probably need to be implemented

on the GPU. This is because you will not want to do a part of the computation on the GPU and

then read the results back to CPU. Since the CPU and GPU run asynchronously to each other,

this can result in a lag or GPU/CPU underutilization.

See also
 f Bullet Physics library homepage available at http://bulletphysics.org

 f A soft body solver (for example, cloth) implemented with Direct3D 11

compute shaders within the Bullet Physics library 2.x available at

https://code.google.com/p/bullet/

 f OpenCL implementation of Sweep and Prune (SAP) broad-phase and

Separate Axis Theorem (SAT) narrow-phase collision detection available

at https://github.com/erwincoumans/bullet3

 f Stepping the World available at http://www.bulletphysics.org/
mediawiki-1.5.8/index.php/Stepping_The_World

 f Example implementation of the bitonic sorting algorithm within a compute shader

available at http://code.msdn.microsoft.com/DirectCompute-Basic-
Win32-7d5a7408

Simulating ocean waves
In this recipe, we will look at a tried and tested technique for simulating ocean waves using

a series of Gerstner waves at varying amplitudes, wave lengths, frequencies, and directions

within a vertex shader (or domain shader).

http:///

Chapter 8

267

Getting ready

For this recipe, we need to render a plane along the x and z axis. The completed solution uses

an FBX scene with a simple subdivided mesh and UV coordinates for a normal map, however,

a quad passed to the tessellation pipeline will also work; or better yet, a mesh generated in

the vertex shader based on the SV_VertexID and SV_InstanceID input semantics.

A prerequisite is the mesh renderer and shaders that implement normal mapping as shown

in the Adding surface detail with normal mapping recipe of Chapter 6, Adding Surface Detail

with Normal and Displacement Mapping.

How to do it…

As we will be generating sine waves over a period of time, we need to add a Time property

to our PerFrame constant buffer. Then we will implement the vertex displacement within

a vertex shader. Consider the following steps:

1. Within Common.hlsl, update the PerFrame structure (as shown in the

highlighted section of the following code):

cbuffer PerFrame: register (b1)

{

 DirectionalLight Light;

 float3 CameraPosition;

 float Time;

};

2. Within your ConstantBuffers.cs ile, update the matching PerFrame

structure to include the time component.

[StructLayout(LayoutKind.Sequential, Pack = 1)]

public struct PerFrame

{

 public DirectionalLight Light;

 public SharpDX.Vector3 CameraPosition;

 public float Time;

}

3. Within the render loop, update the code for setting up the perFrame constant

buffer, by setting up the Time property.

perFrame.CameraPosition = cameraPosition;

// Provide simulation time to shader

perFrame.Time = (float)simTime.Elapsed.TotalSeconds;

context.UpdateSubresource(ref perFrame, perFrameBuffer);

http:///

Incorporating Physics and Simulations

268

The simTime variable is a System.Diagnostics.Stopwatch

instance that has the P key mapped to pause/unpause the simulation

in the completed sample.

4. Next, add the SubdividedPlane.fbx to your project, set the Build Action to

MeshContentTask, and load it into a MeshRenderer instance. Alternatively,

if you are using the tessellation pipeline, create a quad with a width (X-axis)

and depth (Z-axis) of around 24 units and a tessellation factor in the range

of approximately 10.0 to 20.0.

var loadedMesh =
 Common.Mesh.LoadFromFile("SubdividedPlane.cmo");

var waterMesh = ToDispose(new
 MeshRenderer(loadedMesh.First()));

waterMesh.Initialize(this);

Now, we can update the vertex shader to implement the displacement. If you

are using the tessellation pipeline, the same changes will be made to your

domain shader instead.

5. First, we will add a new HLSL function to our vertex shader ile in order to
generate the waveform.

void GerstnerWaveTessendorf(
 float waveLength,

 float speed,

 float amplitude,

 float steepness,

 float2 direction,

 in float3 position,

 inout float3 result,

 inout float3 normal,

 inout float3 tangent)

{

...SNIP see next steps

}

6. Within the preceding function, we will initialize the values for the Gerstner formula

as follows:

float L = waveLength;// wave crest to crest

float A = amplitude; // wave height

float k = 2.0 * 3.1416 / L; // wave length

float kA = k*A;

float2 D = normalize(direction); // normalized direction

http:///

Chapter 8

269

float2 K = D * k; // wave vector and magnitude (direction)

// peak/crest steepness, higher means steeper, but too much

// can cause the wave to become inside out at the top

// A value of zero results in a sine wave.

float Q = steepness;

// Calculate wave speed (frequency) from input

float S = speed * 0.5; // Speed 1 =~ 2m/s so halve first

float w = S * k; // Phase/frequency

float wT = w * Time;

// Calculate values for reuse

float KPwT = dot(K, position.xz)-wT;

float S0 = sin(KPwT);

float C0 = cos(KPwT);

7. Next, we will calculate the vertex offset from the provided direction and current

vertex position.

// Calculate the vertex offset along the X and Z axes

float2 xz = position.xz - D*Q*A*S0;

// Calculate the vertex offset along the Y (up/down) axis

float y = A*C0;

8. Then, we need to calculate the new normal and tangent vectors, as follows:

// Calculate the tangent/bitangent/normal

// Bitangent

float3 B = float3(

 1-(Q * D.x * D.x * kA * C0),

 D.x * kA * S0,

 -(Q*D.x * D.y * kA * C0));

// Tangent

float3 T = float3(

 -(Q * D.x * D.y * kA * C0),

 D.y * kA * S0,

 1-(Q*D.y * D.y * kA * C0));

B = normalize(B);

T = normalize(T);

float3 N = cross(T, B);

9. And lastly, set the output values. Note that we are accumulating the results in

order to call the method multiple times with varying parameters.

// Append the results

result.xz += xz;

http:///

Incorporating Physics and Simulations

270

result.y += y;

normal += N;

tangent += T;

With the Gerstner wave function in place, we can now displace the vertices within

our vertex or domain shader.

10. The following is an example of the code that is necessary to generate gentle

ocean waves. This should be inserted before any WorldViewProjection or

ViewProjection transforms.

...SNIP

// Existing vertex shader code

float3 N = (float3)0; // normal

float3 T = (float3)0; // tangent

float3 waveOffset = (float3)0; // vertex xyz offset

float2 direction = float2(1, 0);

// Gentle ocean waves

GerstnerWaveTessendorf(8, 0.5, 0.3, 1, direction, vertex.Position,

 waveOffset, N, T);

GerstnerWaveTessendorf(4, 0.5, 0.4, 1, direction + float2(0, 0.5),

 vertex.Position, waveOffset, N, T);

GerstnerWaveTessendorf(3, 0.5, 0.3, 1, direction + float2(0, 1),

 vertex.Position, waveOffset, N, T);

GerstnerWaveTessendorf(2.5, 0.5, 0.2, 1, direction,

 vertex.Position, waveOffset, N, T);

vertex.Position.xyz += waveOffset;

vertex.Normal = normalize(N);

vertex.Tangent.xyz = normalize(T); // If using normal mapping

// Existing vertex shader code

result.Position = mul(vertex.Position, WorldViewProjection);

...SNIP

11. For larger and more choppy waves, you can try the following code instead:

// Choppy ocean waves

GerstnerWaveTessendorf(10, 2, 2.5, 0.5, direction,
 vertex.Position, waveOffset, N, T);

GerstnerWaveTessendorf(5, 1.2, 2, 1, direction,
 vertex.Position, waveOffset, N, T);

GerstnerWaveTessendorf(4, 2, 2, 1, direction + float2(0,
 1), vertex.Position, waveOffset, N, T);

http:///

Chapter 8

271

GerstnerWaveTessendorf(4, 1, 0.5, 1, direction + float2(0,
 1), vertex.Position, waveOffset, N, T);

GerstnerWaveTessendorf(2.5, 2, 0.5, 1, direction +
 float2(0, 0.5), vertex.Position, waveOffset, N, T);

GerstnerWaveTessendorf(2, 2, 0.5, 1, direction,
 vertex.Position, waveOffset, N, T);

This completes our HLSL shader code.

12. Now, render the mesh within your render loop, and ensure that the correct vertex

shader is assigned (if a new shader has been created, compile it within the

appropriate location).

// If showing normal map

waterMesh.DisableNormalMap = disableNormalMap;

waterMesh.PerMaterialBuffer = perMaterialBuffer;

waterMesh.PerArmatureBuffer = perArmatureBuffer;

waterMesh.Render();

The completed project in the downloadable companion code maps the Backspace

key to switch between the previous physics scene and this recipe. Pressing Shift + N

toggles between the diffuse mapping as well as the diffuse and normal mapping,

and the N key will toggle the display of the debug normal vectors. The inal result
of the gentle and choppy waves, is shown in the following diagram:

Multiple Gerstner waves: gentle ocean waves (left), choppy ocean waves (right), wireframe (top) with debug normal

vectors (top-left), diffuse shader (middle), and diffuse + normal mapping (bottom).

http:///

Incorporating Physics and Simulations

272

How it works…

By combining multiple Gerstner waves of varying wave lengths and directions together,

we have been able to produce a reasonable simulation of ocean waves. The Gerstner

waves are an approximate solution to luid dynamics, and our implementation is based
upon the following formula, which in turn is based upon Tessendorf 2004.

Formula used to generate the Gerstner waves

A similar effect can be generated using multiple sine waves. However, the Gerstner waves

not only displace the vertices vertically, but also horizontally. In order to produce a more

natural result the vertices are displaced along the X and Z axes towards the crest of the

wave, resulting in a sharper peak and smoother trough, we can control the amount of

displacement through the steepness parameter of the GerstnerWaveTessendorf function.

The following screenshot shows three examples of waves, the irst is a regular sine wave
(Gerstner wave with a steepness of 0.0), the second is the same wave except with a

steepness of 0.5, and the last is a wireframe of the same wave again with a steepness

of 1.0. See how the vertices in the wireframe come closer along the length of the crest.

When comparing a single wave to the gentle and choppy waves, it is fairly obvious that

a good simulation of a wave requires multiple waves of varying lengths, amplitudes,

directions, and possibly frequencies; these different individual wave deinitions are often
referred to as octaves. By summing together the entire set of waves, we achieve a more

realistic and varied result. The gentle waves are generated using four octaves, while the

choppy waves are generated using six octaves.

Although we have generated the waves on the GPU, it is interesting to note that if we place a

ship (similar to the one in the following screenshot – section D) , we still need to compute its

movement as a part of the wider physics simulation. This would most likely occur on the CPU.

http:///

Chapter 8

273

Three examples of a single wave with a length of 10 m and amplitude of 2.5 m, A) Crest steepness of 0.0, B)

Crest steepness of 0.5, C) Steepness of 1.0, and D) A static ship on dynamic waves.

http:///

Incorporating Physics and Simulations

274

There's more…

There are a number of methods for simulating water, depending on whether it is shallow

or deep, a lake or a river, and a realistic simulation or an approximation. One such method

is the combination of the Fast Fourier Transform (FFT) and Perlin Noise.

In this recipe, we looked at the wave geometry. However, for a realistic water or

ocean simulation, you must consider the caustics, refraction, relectivity, dispersion,
and interactivity as well.

Providing a static value for time, adding some texture, and playing with the amplitude could

also produce interesting sand dunes or other terrain such as mountains or rolling hills.

See also
 f For more information on implementing normal mapping, refer to Chapter 6,

Adding Surface Detail with Normal and Displacement Mapping

 f Vertex instancing and indirect draws are covered in the next recipe,

Rendering particles

Rendering particles
In this recipe, we will implement a simple particle system on the GPU. Compute shaders will

be used to generate and update the particles within append/consume buffers, and we will

use the vertex shader input semantics, SV_VertexID and SV_InstanceID, to generate

billboards from the particle points.

We will introduce blend states to deal with the alpha blending of particles. In order to render

the particles without regard to the order, we will also disable writing to the depth buffer.

Getting ready

Let us start with one of the previous rendering projects used in the recipe, Animating bones,

of Chapter 4, Animating Meshes with Vertex Skinning. In this recipe, we will make use of a

modiied version of the CreateBufferUAV C# function that we created in the Calculating an

image's luminance histogram recipe of Chapter 7, Performing Image Processing Techniques.

http:///

Chapter 8

275

The completed project and the following textures can be found in the downloadable

companion code as well as the following textures for use within our particle renderer:

Two semitransparent particle textures (the transparent area is black). Particle on left-hand side

and Snowflake on right-hand side

How to do it…

To begin with, we will add our new HLSL shader code, then create a particle renderer to run

the compute shaders to generate/update the particles, and lastly render the particles:

1. Add four new HLSL source iles, Particle.hlsl, ParticleCS.hlsl,

ParticlePS.hlsl, and ParticleVS.hlsl. Include them in the project and

select Copy if newer as the build action. Remember to change the text encoding

or copy from the existing HLSL iles (as described in the Rendering primitives

recipe of Chapter 2, Rendering with Direct3D).

2. Within Particle.hlsl, add our particle constant buffers and structures.

// Particle system constants

cbuffer ParticleConstants : register(b0)

{

 float3 DomainBoundsMin;

 float ForceStrength;

 float3 DomainBoundsMax;

 float MaxLifetime;

 float3 ForceDirection;

 uint MaxParticles;

 float3 Attractor;

 float Radius;

};

// Particles per frame constant buffer

cbuffer ParticleFrame : register(b1)

{

http:///

Incorporating Physics and Simulations

276

 float Time;

 float FrameTime;

 uint RandomSeed;

 uint ParticleCount; // consume buffer count

}

// Represents a single particle

struct Particle {

 float3 Position;

 float Radius;

 float3 OldPosition;

 float Energy;

};

// Pixel shader input

struct PS_Input {

 float4 Position : SV_Position;

 float2 UV : TEXCOORD0;

 float Energy : ENERGY;

};

3. Within ParticleVS.hlsl, we will create an instancing vertex shader that reads the

particle for the current instance ID and computes the position for a quad.

#include "Common.hlsl"

#include "Particle.hlsl"

// Access to the particle buffer

StructuredBuffer<Particle> particles : register(t0);

// Computes the vertex position

float4 ComputePosition(in float3 pos, in float size,

 in float2 vPos)

{

 // Create billboard (quad always facing the camera)

 float3 toEye = normalize(CameraPosition.xyz - pos);

 float3 up = float3(0.0f, 1.0f, 0.0f);

 float3 right = cross(toEye, up);

 up = cross(toEye, right);

 pos += (right * size * vPos.x) + (up * size * vPos.y);

 return mul(float4(pos, 1), WorldViewProjection);

}

PS_Input VSMain(in uint vertexID : SV_VertexID,

 in uint instanceID : SV_InstanceID)

{

http:///

Chapter 8

277

 PS_Input result = (PS_Input)0;

 // Load particle using instance Id

 Particle p = particles[instanceID];

 // 0-1 Vertex strip layout

 // /

 // 2-3

 result.UV = float2(vertexID & 1, (vertexID & 2) >> 1);

 result.Position = ComputePosition(p.Position, p.Radius,

 result.UV * float2(2, -2) + float2(-1, 1));

 result.Energy = p.Energy;

 return result;

}

4. Within ParticlePS.hlsl, we will sample the texture and create a fading value.

#include "Particle.hlsl"

Texture2D ParticleTexture : register(t0);

SamplerState linearSampler : register(s0);

float4 PSMain(PS_Input pixel) : SV_Target

{

 float4 result = ParticleTexture.Sample(linearSampler,

 pixel.TextureUV);

 // Fade-out as approaching the near clip plane

 // and as a particle loses energy between 1->0

 return float4(result.xyz,

 saturate(pixel.Energy) * result.w *

 pixel.Position.z * pixel.Position.z);

}

5. Within ParticleCS.hlsl, we will irst add our particle's append/consume
buffers, a method for applying forces to particles and methods for generating

random numbers:

#include "Particle.hlsl"

// Append and consume buffers for particles

AppendStructuredBuffer<Particle> NewState : register(u0);

ConsumeStructuredBuffer<Particle> CurrentState :

 register(u1);

// Apply ForceDirection with ForceStrength to particle

void ApplyForces(inout Particle particle)

{

http:///

Incorporating Physics and Simulations

278

 // Forces

 float3 force = (float3)0;

 // Directional force

 force += normalize(ForceDirection) * ForceStrength;

 // Damping

 float windResist = 0.9;

 force *= windResist;

 particle.OldPosition = particle.Position;

 // Integration step

 particle.Position += force * FrameTime;

}

// Random Number Generator methods

uint rand_lcg(inout uint rng_state)

{ // Linear congruential generator

 rng_state = 1664525 * rng_state + 1013904223;

 return rng_state;

}

uint wang_hash(uint seed)

{ // Initialize a random seed

 seed = (seed ^ 61) ^ (seed >> 16);

 seed *= 9;

 seed = seed ^ (seed >> 4);

 seed *= 0x27d4eb2d;

 seed = seed ^ (seed >> 15);

 return seed;

}

6. Next, we will create the particle generator that inserts new particles into an

append buffer.

[numthreads(THREADSX, 1, 1)]

void Generator(uint groupIndex: SV_GroupIndex,

 uint3 groupId : SV_GroupID, uint3 groupThreadId:

 SV_GroupThreadID, uint3 threadId : SV_DispatchThreadID)

{

 uint indx = threadId.x + threadId.y * THREADSX;

 Particle p = (Particle)0;

 // Initialize random seed

 uint rng_state = wang_hash(RandomSeed + indx);

 // Random float between [0, 1]

 float f0 = float(rand_lcg(rng_state)) *

 (1.0 / 4294967296.0);

http:///

Chapter 8

279

 float f1 = float(rand_lcg(rng_state)) *

 (1.0 / 4294967296.0);

 float f2 = float(rand_lcg(rng_state)) *

 (1.0 / 4294967296.0);

 // Set properties of new particle

 p.Radius = Radius;

 p.Position.x = DomainBoundsMin.x + f0 *

 ((DomainBoundsMax.x - DomainBoundsMin.x) + 1);

 p.Position.z = DomainBoundsMin.z + f1 *

 ((DomainBoundsMax.z - DomainBoundsMin.z) + 1);

 p.Position.y = (DomainBoundsMax.y - 6) + f2 *

 ((DomainBoundsMax.y - (DomainBoundsMax.y-6)) + 1);

 p.OldPosition = p.Position;

 p.Energy = MaxLifetime;

 // Append the new particle to the output buffer

 NewState.Append(p);

}

7. Next, we will add a compute shader that takes the consume buffer to simulate

falling snow.

[numthreads(THREADSX, THREADSY, 1)]

void Snowfall(uint groupIndex: SV_GroupIndex,

 uint3 groupId : SV_GroupID,

 uint3 groupThreadId: SV_GroupThreadID,

 uint3 threadId : SV_DispatchThreadID)

{

 uint indx = threadId.x + threadId.y * THREADSX;

 // Skip out of bounds threads

 if (indx >= ParticleCount)

 return;

 // Load/Consume particle

 Particle p = CurrentState.Consume();

 ApplyForces(p);

 // Ensure the particle does not fall endlessly

 p.Position.y = max(p.Position.y, DomainBoundsMin.y);

 // Count down time to live

 p.Energy -= FrameTime;

 // If no longer falling only let sit for a second

http:///

Incorporating Physics and Simulations

280

 if (p.Position.y == p.OldPosition.y && p.Energy > 1.0f)

 p.Energy = 1.0f;

 if (p.Energy > 0) {

 // If particle is alive add back to append buffer

 NewState.Append(p);

 }

}

This completes our HLSL code. Now, we will create our C# renderer class.

8. Add a new renderer class named ParticleRenderer that inherits from the

Common.RendererBase instance, and implement an empty default constructor.

9. Within the ParticleRenderer class, we will deine the C# structures for the HLSL
structures declared earlier.

// Structure for particle

public struct Particle

{

 public Vector3 Position;

 public float Radius;

 public Vector3 OldPosition;

 public float Energy;

}

// Particle constants (updated on initialization)

public struct ParticleConstants

{

 public Vector3 DomainBoundsMin;

 public float ForceStrength;

 public Vector3 DomainBoundsMax;

 public float MaxLifetime;

 public Vector3 ForceDirection;

 public int MaxParticles;

 public Vector3 Attractor;

 public float Radius;

}

// particle constant buffer updated per frame

public struct ParticleFrame

{

 public float Time;

 public float FrameTime;

 public uint RandomSeed;

 // use CopyStructureCount for last component

 uint _padding0;

}

http:///

Chapter 8

281

10. Within the ParticleRenderer.CreateDeviceDependentResources method,

irst override and reset the device resources using RemoveAndDispose, and then

compile the vertex and pixel shaders VSMain and PSMain respectively.

11. Next, we will create the two blend states, as shown in the following code:

#region Blend States

var blendDesc = new BlendStateDescription() {

 IndependentBlendEnable = false,

 AlphaToCoverageEnable = false,

};

// Additive blend state that darkens when overlapped

blendDesc.RenderTarget[0] = new RenderTargetBlendDescription

{

 IsBlendEnabled = true,

 BlendOperation = BlendOperation.Add,

 AlphaBlendOperation = BlendOperation.Add,

 SourceBlend = BlendOption.SourceAlpha,

 DestinationBlend = BlendOption.InverseSourceAlpha,

 SourceAlphaBlend = BlendOption.One,

 DestinationAlphaBlend = BlendOption.Zero,

 RenderTargetWriteMask = ColorWriteMaskFlags.All

};

blendState = ToDispose(new BlendState(device, blendDesc));

// Additive blend state that lightens when overlapped

// (needs a dark background)

blendDesc.RenderTarget[0]

 .DestinationBlend = BlendOption.One;

blendStateLight = ToDispose(new BlendState(device,

 blendDesc));

#endregion

12. Next, we will create our depth stencil state that disables the write operation.

// depth stencil state to disable Z-buffer write

disableDepthWrite = ToDispose(new DepthStencilState(device,

new DepthStencilStateDescription {

 DepthComparison = Comparison.Less,

 DepthWriteMask = SharpDX.Direct3D11.DepthWriteMask.Zero,

 IsDepthEnabled = true,

 IsStencilEnabled = false

}));

http:///

Incorporating Physics and Simulations

282

13. In order to complete the CreateDeviceDependentResources method,

we will create the particle constant buffers and load the particle textures.

// Create the per compute shader constant buffer

perComputeBuffer = ToDispose(new Buffer(device,
 Utilities.SizeOf<ParticleConstants>(),
 ResourceUsage.Default, BindFlags.ConstantBuffer,
 CpuAccessFlags.None, ResourceOptionFlags.None, 0));

// Create the particle frame buffer

perFrame = ToDispose(new Buffer(device,
 Utilities.SizeOf<ParticleFrame>(),

 ResourceUsage.Default, BindFlags.ConstantBuffer,
 CpuAccessFlags.None, ResourceOptionFlags.None, 0));

particleTextureSRV = ToDispose(ShaderResourceView
 .FromFile(device, "Particle.png"));

14. Copy the CreateBufferUAV function into the ParticleRenderer class

created in the Calculating an image's luminance histogram recipe of Chapter 7,

Performing Image Processing Techniques. We need to make the following

highlighted changes to support the append/consume buffers:

public static UnorderedAccessView CreateBufferUAV(
 SharpDX.Direct3D11.Device device, Buffer buffer,
 UnorderedAccessViewBufferFlags flags =
 UnorderedAccessViewBufferFlags.None)

{

 ...

 else if ((buffer.Description.OptionFlags &
 ResourceOptionFlags.BufferStructured) ==
 ResourceOptionFlags.BufferStructured)

 {

 uavDesc.Format = Format.Unknown;

 uavDesc.Buffer.Flags = flags;

 ...

 }

 ...

}

15. We will initialize our particle buffers and set the constants within a new function

named InitializeParticles.

// Private member fields

Buffer indirectArgsBuffer;

List<Buffer> particleBuffers = new List<Buffer>();

List<ShaderResourceView> particleSRVs =

 new List<ShaderResourceView>();

http:///

Chapter 8

283

List<UnorderedAccessView> particleUAVs =

 new List<UnorderedAccessView>();

public int ParticlesPerBatch = 16;

float limiter = 0f;

// Initialize the particle buffers

public void InitializeParticles(int maxParticles,

 float maxLifetime)

{

 ... RemoveAndDispose(...)

 this.Constants.MaxParticles = maxParticles;

 this.Constants.MaxLifetime = maxLifetime;

 // How often and how many particles to generate

 this.ParticlesPerBatch = (int)(maxParticles * 0.0128f);

 this.limiter = (float)(Math.Ceiling(ParticlesPerBatch /

 16.0) * 16.0 * maxLifetime) / (float)maxParticles;

#region Create Buffers and Views

 ... SNIP see below

#endregion

 // Update the ParticleConstants buffer

 device.ImmediateContext.UpdateSubresource(

 ref Constants, perComputeBuffer);

}

16. We will create the particle buffers and views with the following code:

// Create 2 buffers, these are our append/consume

// buffers and will be swapped each frame

particleBuffers.Add(

 ToDispose(new Buffer(device,

 Utilities.SizeOf<Particle>() * maxParticles,
 ResourceUsage.Default,
 BindFlags.ShaderResource |
 BindFlags.UnorderedAccess,
 CpuAccessFlags.None,
 ResourceOptionFlags.BufferStructured,
 Utilities.SizeOf<Particle>())));

particleBuffers.Add(...same as above...);

// Create a UAV and SRV for each particle buffer

particleUAVs.Add(ToDispose(CreateBufferUAV(device,
 particleBuffers[0],

 UnorderedAccessViewBufferFlags.Append)));

http:///

Incorporating Physics and Simulations

284

particleUAVs.Add(ToDispose(CreateBufferUAV(device,
 particleBuffers[1],

 UnorderedAccessViewBufferFlags.Append)));

particleSRVs.Add(ToDispose(new

 ShaderResourceView(device, particleBuffers[0])));

particleSRVs.Add(...particleBuffers[1]...);

// Set the starting number of particles to 0

context.ComputeShader.SetUnorderedAccessView(0,
 particleUAVs[0], 0);

context.ComputeShader.SetUnorderedAccessView(1,
 particleUAVs[1], 0);

17. And inally, we will create a buffer that will store the current consume buffer's
particle count for input into the DeviceContext.DrawInstancedIndirect

function within the render loop.

// Create particle count buffers:

var bufDesc = new BufferDescription {

 BindFlags = SharpDX.Direct3D11.BindFlags.ConstantBuffer,

 SizeInBytes = 4 * SharpDX.Utilities.SizeOf<uint>(),

 StructureByteStride = 0,

 Usage = ResourceUsage.Default,

 CpuAccessFlags = SharpDX.Direct3D11.CpuAccessFlags.None,

};

// Used as input to the context.DrawInstancedIndirect

// The 4 elements represent the 4 parameters

bufDesc.OptionFlags =

 ResourceOptionFlags.DrawIndirectArguments;

bufDesc.BindFlags = BindFlags.None;

indirectArgsBuffer = ToDispose(new Buffer(device,

 bufDesc));

// 4 vertices per instance (i.e. quad)

device.ImmediateContext.UpdateSubresource(new uint[4] { 4,
 0, 0, 0 }, particleCountIABuffer);

With all our resources initialized, we will now work on the compute shader's

update stage.

18. Then, we will create a new method named ParticleRenderer.Update,

as shown here:

float genTime = 0f; // time since Generator last run

public void Update(string generatorCS, string updaterCS)

{

 var append = particleUAVs[0];

http:///

Chapter 8

285

 var consume = particleUAVs[1];

 // Assign UAV of particles

 context.ComputeShader.SetUnorderedAccessView(0,

 append);

 context.ComputeShader.SetUnorderedAccessView(1,

 consume);

 // Update the constant buffers

 // Generate the next random seed for particle generator

 Frame.RandomSeed = (uint)random.Next(int.MinValue,

 int.MaxValue);

 context.UpdateSubresource(ref Frame, perFrame);

 // Copy current consume buffer count into perFrame

 context.CopyStructureCount(perFrame, 4 * 3, consume);

 context.ComputeShader.SetConstantBuffer(0,

 perComputeBuffer);

 context.ComputeShader.SetConstantBuffer(1, perFrame);

 // Update existing particles

 UpdateCS(updaterCS, append, consume);

 // Generate new particles (if reached limiter time)

 genTime += Frame.FrameTime;

 if (genTime > limiter) {

 genTime = 0;

 GenerateCS(generatorCS, append);

 }

 // Retrieve the particle count for the render phase

 context.CopyStructureCount(indirectArgsBuffer, 4,

 append);

 // Clear the shader and resources from pipeline stage

 context.ComputeShader.SetUnorderedAccessViews(0, null,

 null, null);

 context.ComputeShader.SetUnorderedAccessViews(1, null,

 null, null);

 context.ComputeShader.Set(null);

 // Flip UAVs/SRVs

 particleUAVs[0] = consume; particleUAVs[1] = append;

 var s = particleSRVs[0];

 particleSRVs[0] = particleSRVs[1]; particleSRVs[1] = s;

}

http:///

Incorporating Physics and Simulations

286

19. We will now create the ParticleRenderer.UpdateCS function for compiling

and running the particle simulation's update compute shader:

private void UpdateCS(string csName, UnorderedAccessView

 append, UnorderedAccessView consume)

{

 var context = this.DeviceManager.Direct3DContext;

 // Compile the shader if it isn't already

 if (!computeShaders.ContainsKey(csName))

 CompileComputeShader(csName);

 // Set the shader to run

 context.ComputeShader.Set(computeShaders[csName]);

 // Dispatch the compute shader thread groups

 context.Dispatch((int)Math.Ceiling(Constants

 .MaxParticles / (double)ThreadsX), 1, 1);

}

20. Next, we will create the ParticleRenderer.GenerateCS function for running

the particle generator's compute shader.

public const int GeneratorThreadsX = 16;

private void GenerateCS(string name,

 UnorderedAccessView append)

{

 // Compile the shader if it isn't already

 if (!computeShaders.ContainsKey(name))

 {

 int oldThreadsX = ThreadsX;

 ThreadsX = GeneratorThreadsX;

 CompileComputeShader(name);

 ThreadsX = oldThreadsX;

 }

 // Set the shader to run

 context.ComputeShader.Set(computeShaders[name]);

 // Dispatch the compute shader thread groups

 context.Dispatch((int)Math.Ceiling(ParticlesPerBatch /
 16.0), 1, 1);

}

21. We will use the following CompileComputeShader function to compile our

compute shaders on demand. This allows easy addition of more shaders.

public Dictionary<String, ComputeShader> computeShaders =
 new Dictionary<string, ComputeShader>();

public int ThreadsX = 128; // default thread group width

http:///

Chapter 8

287

public int ThreadsY = 1; // default thread group height

// Compile compute shader from file

public void CompileComputeShader(string csFunction,

 string csFile = @"Shaders\ParticleCS.hlsl")

{

 SharpDX.Direct3D.ShaderMacro[] defines = new[] {

 new SharpDX.Direct3D.ShaderMacro("THREADSX",

 ThreadsX),

 new SharpDX.Direct3D.ShaderMacro("THREADSY",

 ThreadsY),

 };

 using (var bytecode = HLSLCompiler.CompileFromFile(

 csFile, csFunction, "cs_5_0", defines))

 {

 computeShaders[csFunction] = ToDispose(new

 ComputeShader(this.DeviceManager

 .Direct3DDevice, bytecode));

 }

}

22. To complete our ParticleRenderer class, we will add the DoRender

implementation. The following snippet shows the code to back up and

restore the state of the pipeline:

protected override void DoRender()

{

 // Retrieve existing pipeline states for backup

 Color4 oldBlendFactor;

 int oldSampleMask;

 int oldStencil;

 var oldPSBufs
 =context.PixelShader.GetConstantBuffers(0,1);

 using (var oldVS = context.VertexShader.Get())

 using (var oldPS = context.PixelShader.Get())

 using (var oldGS = context.GeometryShader.Get())

 using (var oldSamp = context.PixelShader

 .GetSamplers(0, 1).FirstOrDefault())

 using (var oldBlendState = context.OutputMerger

 .GetBlendState(out oldBlendFactor, out oldSampleMask))

 using (var oldIA = context.InputAssembler.InputLayout)

 using (var oldDepth = context.OutputMerger

http:///

Incorporating Physics and Simulations

288

 .GetDepthStencilState(out oldStencil))

 {

...SNIP draw logic here

 // Restore previous pipeline state

 context.VertexShader.Set(oldVS);

 context.PixelShader.SetConstantBuffers(0, oldPSBufs);

 context.PixelShader.Set(oldPS);

 context.GeometryShader.Set(oldGS);

 context.PixelShader.SetSampler(0, oldSamp);

 context.InputAssembler.InputLayout = oldIA;

 // Restore previous blend and depth state

 context.OutputMerger.SetBlendState(oldBlendState,
 oldBlendFactor, oldSampleMask);

 context.OutputMerger.SetDepthStencilState(oldDepth,
 oldStencil);

 }

}

23. The draw logic for the preceding snippet is as follows:

// There is no input layout for this renderer

context.InputAssembler.InputLayout = null;

// The triangle strip input topology

context.InputAssembler.PrimitiveTopology =
 SharpDX.Direct3D.PrimitiveTopology.TriangleStrip;

// Disable depth write

context.OutputMerger

 .SetDepthStencilState(disableDepthWrite);

// Set the additive blend state

if (!UseLightenBlend)

 context.OutputMerger.SetBlendState(blendState, null,
 0xFFFFFFFF);

else

 context.OutputMerger.SetBlendState(blendStateLight,
 Color.White, 0xFFFFFFFF);

// Assign consume particle buffer SRV to vertex shader

context.VertexShader.SetShaderResource(0, particleSRVs[1]);

context.VertexShader.Set(vertexShader);

// Set pixel shader resources

context.PixelShader.SetShaderResource(0,

 particleTextureSRV);

http:///

Chapter 8

289

context.PixelShader.SetSampler(0, linearSampler);

context.PixelShader.Set(pixelShader);

// Draw the number of quad instances stored in the

// indirectArgsBuffer. The vertex shader will rely upon

// the SV_VertexID and SV_InstanceID input semantics

context.DrawInstancedIndirect(indirectArgsBuffer, 0);

This completes our particle renderer class. Now it is ready to use in your

D3DApp class.

24. Within D3DApp.Run, initialize an instance of our particle renderer with the

following code snippet:

var particleSystem = ToDispose(new ParticleRenderer());

// Initialize renderer

particleSystem.Initialize(this);

var totalParticles = 100000;

particleSystem.Constants.DomainBoundsMax =
 new Vector3(20, 20, 20);

particleSystem.Constants.DomainBoundsMin =
 new Vector3(-20, 0, -20);

particleSystem.Constants.ForceDirection = -Vector3.UnitY;

// Gravity is normally ~9.8f, we want slower snowfall

particleSystem.Constants.ForceStrength = 1.8f;

// Initialize particle resources

particleSystem.InitializeParticles(totalParticles, 13f);

// Initialize simulation timer

var simTime = new System.Diagnostics.Stopwatch();

simTime.Start();

25. And lastly in the render loop which is in turn within D3DApp.Run, add the

following code to update the particle simulation, and then render it:

// 1. Update the particle simulation

if (simTime.IsRunning)

{

 particleSystem.Frame.FrameTime = (float)simTime.Elapsed

 .TotalSeconds - particleSystem.Frame.Time);

 particleSystem.Constants.Time = (float)simTime.Elapsed

 .TotalSeconds;

 // Run the compute shaders (compiles if necessary)

 particleSystem.Update("Generator", "Snowfall");

}

// 2. Render the particles

particleSystem.Render();

http:///

Incorporating Physics and Simulations

290

An example of the inal output is shown in the following screenshot:

Top-left: 100 k particles, Top-right: 500 k particles, Bottom-left: 1 million particles, Bottom-right: View of

particle domain with 1 million particles

How it works…

We initialized two append/consume buffers and their corresponding views within

ParticleRenderer.InitializeParticles. These buffers can contain up to the

MaxParticles number of Particle structures. The initial number of items in the

append/consume buffers is set to zero by assigning them to the pipeline and passing in 0.

If you want to initialize the particles on the CPU, the starting count can be provided here.

We have elected not to initialize any particles on the CPU. Instead we will create the particles

in the Generator compute shader on the GPU to randomly disperse particles within

the top two meters of our particle domain (as speciied by the DomainBoundsMin and

DomainBoundsMax properties of the constant buffer). We use two pseudo random number

generators in our shader, as too much uniformity on either axis will result in visible gaps and

patterns appearing between the particles. The generator adds the particles to the buffer by

using NewState.Append(newParticle).

The ParticleRenderer.Update method sets up the pipeline stage and executes the

GeneratorCS and UpdateCS methods, which dispatch their respective compute shaders.

We implemented a simple method of limiting the number of particles created, based upon

the maximum number of particles, particle batch size, and the lifetime of the particles.

The current number of particles is copied from the consume buffer and is applied to the

perFrame constant buffer before updating the simulation.

http:///

Chapter 8

291

The Snowfall compute shader applies the force that has been passed into the

ParticleConstants constant buffer with a call to ApplyForces. This simply computes

the current force vector and applies it to the particle's position, based on the current

FrameTime value. Then, the Snowfall shader clamps the Particle.Position.y value

to DomainBoundsMin.y; if the old and new Y positions are the same (that is, the particle

is sitting on the ground), the Particle.Energy property is set to 1.0f. To ensure that

we do not try to create too many particles, we decreased their Energy property by the

current FrameTime value. Once the amount of energy reaches zero, the particle is

removed; otherwise, it is added into the NewState buffer.

The DeviceContext.DrawInstancedIndirect method allows us to generate our

sprites or billboards by passing in a GPU-generated parameter list; the irst two being the
instance vertex count (always four for our quads) and number of instances. The instance

count comes directly from the current consume buffer with a call to the DeviceContext.
CopyStructureCount method. This allows our compute shaders to control the number

of particles to be rendered.

By utilizing the vertex shader system value input semantics SV_InstanceID and

SV_VertexID, we are able to index into the particle buffer directly and generate our

camera-aligned quads without passing any additional information into the vertex shader.

We compute the vertex UV coordinates and their positions based on the incoming

SV_VertexID value. Another approach is to use a lookup table, saving approximately

two instructions. The resulting camera-aligned quads (also known as sprites or billboards)

will always face the camera.

Once the quad is rasterized and the fragments are sent to the pixel shader, we sample the

texture and return the value. The texture used in the recipe is a white dot or snowlake shape
with transparency. Multiplying this with any other color allows us to control the particle's inal
color. We also fade out the alpha as the particle approaches the near-clip plane, and during

its inal second of life.

To allow the particles to perform alpha-blending correctly, we have created an additive

BlendState instance within our particle renderer. By setting the blendDesc.
RenderTarget[0].SourceBlend to BlendOption.SourceAlpha, and blendDesc.
RenderTarget[0].DestinationBlend to BlendOption.InverseSourceAlpha, we

are telling the output merger stage to use the alpha component returned by the pixel shader,

and merge with the render target accordingly. Given a source color of (1, 1, 1, 0.5) and

destination color of (0.6, 0.0, 0.6, 0.9), the blending calculation is as follows:

Final Color = (Source Color * BlendOption.SourceAlpha)
 BlendOperation.Add (Dest Color * BlendOption.InverseSourceAlpha)

Final Color = ((1, 1, 1) * 0.7) + ((0.6, 0.0, 0.6) * (1 – 0.7))

 = (0.7, 0.7, 0.7) + (0.18, 0.0, 0.18)

 = (0.88, 0.7, 0.88)

http:///

Incorporating Physics and Simulations

292

To ignore the draw order of the particles, we have disabled the depth buffer write in the

output merger stage. If we don't do this, we would have darker or lighter squares around

each particle (the size of the quad). Leaving the depth test enabled allows the particles to

disappear behind other objects in the scene.

The completed project available for this recipe includes the following key mappings:

Key Action

Backspace Cycle between available compute shaders

Shift + Backspace Switch between the blend states

Enter Cycle between the loaded particle textures

B Toggle between a light and dark background

+/- and Shift plus +/- Increase or decrease the number of particles by 10,000

or 100,000 respectively (also resets the particles)

Mouse right-click Change attractor location

There's more…

Our simple snowfall shader could be extended to allow the snow to land on objects within

the scene by generating a top-down orthographic projection of the scene, and then sampling

the resulting depth buffer to compare the particle's Y position against the top of the object

underneath the particle's XZ location.

It is now quite easy to implement a range of particle simulations. For example, if we take the

GerstnerWaveTessendorf function from the previous Simulating ocean waves recipe,

we can make the particles form waves. This is shown in the following screenshot:

Particles with the Gerstner wave function applied.

http:///

Chapter 8

293

By applying the lighten blend state, setting up the Attractor property of the

ParticleConstants constant buffer, and using a compute shader that moves the particles

around the attractor location, we can achieve something similar to the following screenshot:

Sequential frames of 9 million particles moving towards and around an attractor location

See also
 f Chapter 7, Performing Image Processing Techniques, for more information about

running compute shaders and thread addressing

 f Render target blend description is available at http://msdn.microsoft.com/
en-us/library/windows/desktop/hh404492(v=vs.85).aspx

 f Quick and Easy GPU Random Numbers at http://www.reedbeta.com/
blog/2013/01/12/quick-and-easy-gpu-random-numbers-in-d3d11/

http:///

http:///

9
Rendering on Multiple
Threads and Deferred

Contexts

In this chapter, we will cover the following topics:

 f Benchmarking multithreaded rendering

 f Implementing multithreaded dynamic cubic environment mapping

 f Implementing dual paraboloid environment mapping

Introduction

One of the improvements that came with Direct3D 11 is the improved multithreading support.

This is facilitated through the use of deferred contexts, additional device contexts that are

used to create a command list for future execution on the immediate context. Creating

multiple deferred contexts allow us to prepare rendering commands on multiple threads at

once, and therefore, take advantage of multiple CPU cores that are common on modern PCs.

In this chapter, we will look at how to implement multithreaded rendering and take a look at

the impact on performance and under what circumstances it can provide us with beneits.
We will then apply it to dynamic environment mapping, where we are performing multiple

scene passes per frame. We will simulate additional CPU load (or CPU burn) by introducing

additional matrix multiplications on the CPU within each thread. By increasing and decreasing

the level of CPU burn, we will examine the impact on performance with and without

multithreaded rendering enabled to gain an understanding of the circumstances in which

it is beneicial to introduce multithreaded rendering. An introduction to the immediate and
deferred contexts can be found in Chapter 1, Getting Started with Direct3D.

http:///

Rendering on Multiple Threads and Deferred Contexts

296

Benchmarking multithreaded rendering
In this recipe, we will introduce multithreaded rendering techniques and implement a

simple benchmark application to analyze the performance of using multiple deferred

contexts. We will render the same model multiple times, comparing the results between

varying numbers of deferred contexts and the immediate context. We will introduce

additional CPU processing overhead to compare GPU-bound and CPU-bound frame times.

Getting ready

We can begin with any completed rendering loop and apply the techniques presented in this

recipe to it. However, for the purpose of this recipe, we will assume a starting point based

upon the inished result from the Animating bones recipe in Chapter 4, Animating Meshes

with Vertex Skinning.

How to do it…

In order to support multithreaded rendering, it is necessary to pass the DeviceContext

deferred context instance that will receive the rendering commands for the renderer.

We will implement support for starting a new thread for each deferred context and

split the recording of rendering tasks between them.

1. The irst change we will make to our renderer(s) is that we want it to support
executing commands on a deferred context. So that a renderer can use the provided

context, we will use the following Render override of Common.RendererBase:

public void Render(SharpDX.Direct3D11.DeviceContext context)

{

 if (Show)

 DoRender(context);

}

2. Within appropriate renderer classes (for example, MeshRenderer.cs),

we will change to the RendererBase.DoRender method override that

accepts a DeviceContext parameter.

protected override void DoRender(DeviceContext context) {

 ... SNIP – previous DoRender() code

}

3. Within the D3DApp class, we need code for initializing the requested number

of deferred context DeviceContext instances. This might look similar to the

following code snippet:

DeviceContext[] contextList;

int threadCount = 2;

http:///

Chapter 9

297

contextList = new DeviceContext[threadCount];

if (threadCount == 1) {

 // Use the immediate context if only 1 thread

 contextList[0] = this.DeviceManager

 .Direct3DDevice.ImmediateContext;

} else {

 for (var i = 0; i < threadCount; i++)

 {

 contextList[i] = ToDispose(new DeviceContext(

 this.DeviceManager.Direct3DDevice));

 InitializeContext(contextList[i]);

 }

}

4. Within the previous code snippet, we are initializing the pipeline state for each

new deferred context with a call to a new function named InitializeContext.

Before the new context can be used for Draw calls, it must at least have a viewport

and render target assigned. The following code snippet shows an example for

representing this function in our simplistic, example-rendering framework:

protected void InitializeContext(DeviceContext context)

{

 // Tell the IA what the vertices will look like

 context.InputAssembler.InputLayout = vertexLayout;

 // Set the constant buffers for vertex shader stage

 context.VertexShader.SetConstantBuffer(0,

 perObjectBuffer);

 context.VertexShader.SetConstantBuffer(1,

 perFrameBuffer);

 context.VertexShader.SetConstantBuffer(2,

 perMaterialBuffer);

 context.VertexShader.SetConstantBuffer(3,

 perArmatureBuffer);

 // Set the default vertex shader to run

 context.VertexShader.Set(vertexShader);

 // Set our pixel shader constant buffers

 context.PixelShader

 .SetConstantBuffer(1, perFrameBuffer);

 context.PixelShader

 .SetConstantBuffer(2, perMaterialBuffer);

 // Set the default pixel shader to run

 context.PixelShader.Set(blinnPhongShader);

 // Set our depth stencil state

 context.OutputMerger

http:///

Rendering on Multiple Threads and Deferred Contexts

298

 .DepthStencilState = depthStencilState;

 // Set viewport

 context.Rasterizer.SetViewports(this.DeviceManager

 .Direct3DContext.Rasterizer.GetViewports());

 // Set render targets

 context.OutputMerger.SetTargets(this.DepthStencilView,
 this.RenderTargetView);

}

5. In order to test the performance beneits or costs of multithreaded rendering within
D3DApp.Run, we need to load a number of additional copies of a mesh (or perhaps

load one very large scene). For loading the same model multiple times, let's create

a grid of models using the same mesh and separate them by their Mesh.Extent

property. The following code snippet can load simple or complex scenes and apply

a World matrix to the MeshRenderer instances, laying them out in a grid:

// Create and initialize the mesh renderer

var loadedMesh = Common.Mesh.LoadFromFile("Character.cmo");

List<MeshRenderer> meshes = new List<MeshRenderer>();

int meshRows = 10;

int meshColumns = 10;

// Create duplicates of mesh separated by the extent

var minExtent = (from mesh in loadedMesh

 orderby new { mesh.Extent.Min.X, mesh.Extent.Min.Z }

 select mesh.Extent).First();

var maxExtent = (from mesh in loadedMesh

 orderby new { mesh.Extent.Max.X, mesh.Extent.Max.Z }

 descending select mesh.Extent).First();

var extentDiff = (maxExtent.Max - minExtent.Min);

// X-axis

for (int x = -(meshColumns/2); x < (meshColumns/2); x++)

{ // Z-axis

 for (int z = -(meshRows/2); z < (meshRows/2); z++)

 {

 var meshGroup = (from mesh in loadedMesh

 select ToDispose(new MeshRenderer(mesh))).ToList();

 // Reposition based on width/depth of combined extent

 foreach (var m in meshGroup)

 {

 m.World.TranslationVector = new Vector3(

 m.Mesh.Extent.Center.X + extentDiff.X * x,
 m.Mesh.Extent.Min.Y, m.Mesh.Extent.Center.Z +
 extentDiff.Z * z);

 }

http:///

Chapter 9

299

 meshes.AddRange(meshGroup);

 }

}

// Initialize each mesh renderer

meshes.ForEach(m => m.Initialize(this));

To analyze the performance accurately, it is necessary to either disable

the animation or pause on a particular frame. This is because the

frames later in the animation will apply additional CPU load due to the

increased number of bone matrix transformations that are necessary

causing the frame times to increase and decrease at different times

during the animation. It is also critical to run a release build.

We are now ready to update our rendering loop for multithreaded rendering.

6. At the start of the rendering loop in D3DApp.Run, we will retrieve the immediate

context and the irst context within the contextList array.

// Retrieve immediate context

var immediateContext = DeviceManager.Direct3DDevice

 .ImmediateContext;

// Note: the context at index 0 is always executed first

var context = contextList[0];

7. All the operations within the main render loop are now taking place on the irst
device context within the contextList array, such as the following call to clear

the render target:

// Clear render target view

context.ClearRenderTargetView(RenderTargetView,
 background);

Assuming all the contexts are using the same pipeline state, we only

want to do this once and on the first context; otherwise, we will be

clearing the results of other render contexts.

8. Towards the end of the render loop, where we normally call the Render method of

our renderers, we will create a System.Threading.Tasks.Task instance for each

render context, which will perform the render logic and then record its SharpDX.
Direct3D11.CommandList value.

Task[] renderTasks = new Task[contextList.Length];

CommandList[] commands = new CommandList[contextList.Length];

for (var i = 0; i < contextList.Length; i++)

{

http:///

Rendering on Multiple Threads and Deferred Contexts

300

 // Must store value of iterator in another variable

 // otherwise all threads will end up using the last

 // context.

 var contextIndex = i;

 renderTasks[i] = Task.Run(() => {

 // Retrieve render context for thread

 var renderContext = contextList[contextIndex];

 // TODO: regular render logic goes here

 // Create the command list

 if (contextList[contextIndex].TypeInfo ==
 DeviceContextType.Deferred)

 {

 commands[contextIndex] = contextList[contextIndex]
 .FinishCommandList(true);

 }

 });

}

// Wait for all the tasks to complete

Task.WaitAll(renderTasks);

9. Next, we need to replay command lists on the immediate context. We are applying

them in the order in which they are located within the contextList array.

// Replay the command lists on the immediate context

for (var i = 0; i < contextList.Length; i++)

{

 if (contextList[i].TypeInfo ==

 DeviceContextType.Deferred && commands[i] != null)

 {

 immediateContext.ExecuteCommandList(commands[i],
 false);

 commands[i].Dispose();

 commands[i] = null;

 }

}

10. The following code snippet shows an example of the logic that belongs to the

preceding rendering task's loop. The only difference compared to our regular

rendering process is that we are only rendering a portion of the available meshes for

the current context, optionally simulating the additional CPU load, and we are calling

the MeshRenderer.Render method with a context.

// Retrieve appropriate context

var renderContext = contextList[contextIndex];

// Create viewProjection matrix

http:///

Chapter 9

301

var viewProjection = Matrix.Multiply(viewMatrix,
 projectionMatrix);

// Determine the meshes to render for this context

int batchSize = (int)Math.Floor((double)meshes.Count /
 contextList.Length);

int startIndex = batchSize * contextIndex;

int endIndex = Math.Min(startIndex + batchSize,
 meshes.Count - 1);

// If the last context include remaining meshes due to

// the rounding above.

if (contextIndex == contextList.Length - 1)

 endIndex = meshes.Count - 1;

// Loop over the meshes for this context and render them

var perObject = new ConstantBuffers.PerObject();

for (var i = startIndex; i <= endIndex; i++)

{

 // Simulate additional CPU load

 for (var j = 0; j < additionalCPULoad; j++)

 {

 viewProjection = Matrix.Multiply(viewMatrix,

 projectionMatrix);

 }

 var m = meshes[i];

 // Update perObject constant buffer

 perObject.World = m.World * worldMatrix;

 perObject.WorldInverseTranspose = Matrix.Transpose(

 Matrix.Invert(perObject.World));

 perObject.WorldViewProjection = perObject.World *
 viewProjection;

 perObject.Transpose();

 renderContext.UpdateSubresource(ref perObject,
 perObjectBuffer);

 // Provide the material and armature constant buffer

 m.PerArmatureBuffer = perArmatureBuffer;

 m.PerMaterialBuffer = perMaterialBuffer;

 // Render the mesh using the provided DeviceContext

 m.Render(renderContext);

}

http:///

Rendering on Multiple Threads and Deferred Contexts

302

11. The following screenshot shows an example by running at a frame time of 8.2 ms

with seven deferred contexts and threads. By comparison, rendering only on the

immediate context on the same hardware coniguration results in a frame time
of 24.8 ms.

Multithreaded rendering benchmark application running with 100 meshes, seven threads and deferred context

instances, and an additional 3,000 matrix multiplications performed per mesh.

How it works…

A deferred context allows for a sequence of commands and state changes to be recorded and

then packaged up into a command buffer for later execution on the Direct3D device's immediate

context. We have implemented a method of creating a number of deferred contexts, starting

with a new thread for each context and then splitting the load of rendering meshes across them.

Our renderers are then able to use the deferred context to submit Direct3D commands by using

the provided context instead of retrieving the device.ImmediateContext property directly.

We implement this by calling the Render(DeviceContext context) function to support

circumstances where the same instance of the renderer needs to be rendered multiple times in

different threads. Before playing back the command lists on the immediate context, we irst wait
for all the threads to complete.

http:///

Chapter 9

303

The process is outlined in the following diagram:

Rendering across multiple deferred contexts

While setting up the deferred context, it is necessary to conigure the pipeline state as
you would for the immediate context. The deferred context begins with a default state,

the equivalent of when the DeviceContext.ClearState method is called. When we create

the SharpDX.Direct3D11.CommandList instance via a call to the DeviceContext.
FinishComandList(bool restoreState) instance, we are passing in the true value

so that the context's state remains as we have set it; otherwise, it reverts to its default state.

Conversely, the immediateContext.ExecuteCommandList method is passed a false

value because we don't need to preserve the immediate context state.

Passing true to either DeviceContext.FinishCommandList

or DeviceContext.ExecuteCommandList can potentially

degrade the performance by introducing avoidable and ineficient
state transitions. In order to throw away the current state, we need

to call something similar to the InitializeContext method for

each deferred context on every frame (or rendering pass).

Each context can have a different state applied depending on its purpose; in fact, this might be

a convenient way of separating pipeline states for your rendering logic, for example, a deferred

context with a different render target for shadow mapping, another for a lighting pass, and so

on. Another example may be of a deferred context that is to be used only for preparing compute

shaders in which there may be no need to set a viewport and render a target.

Multithreaded rendering performance as compared to single threaded (higher is better). Results with an AMD®

Radeon HD 7950 on an Intel® i7-3770K.

http:///

Rendering on Multiple Threads and Deferred Contexts

304

It is important to run any performance tests using a release

build coniguration and without the Direct3D debug layer to get
accurate results.

By applying both GPU and CPU load, we are better able to identify where multithreaded

rendering might be beneicial. After reviewing the preceding graphs, it is apparent that unless
a certain amount of CPU load is present, there is only a small improvement in frame times;

in some cases, we even see a decrease in performance. The frame times have been

calculated using a 100-frame simple moving average.

There's more…

Another important feature of multithreading support in Direct3D 11 is that it also includes the

creation of Direct3D resources on multiple threads. This does not involve using immediate or

deferred contexts and is instead a feature of the Direct3D 11 device class. By creating resources

on multiple threads, we can decrease the initialization time of our Direct3D applications, and

importantly, for Windows 8, we are able to load and compile our resources asynchronously.

To identify the areas where multithreaded rendering has the most impact, it may be necessary

to employ the use of performance proilers or implement an in-application frame proiler.

GPUView is a CPU/GPU proiler included with the Windows Performance Toolkit; an overview
of using this proiling tool is available at http://graphics.stanford.edu/~mdfisher/
GPUView.html. The default install location for this tool on Windows 8 is C:\Program
Files (x86)\Windows Kits\8.0\Windows Performance Toolkit\gpuview.

To check whether multithreading is supported at the hardware/driver level, we can use the

following function:

// Determine if the hardware driver supports CommandLists

// If not, the Direct3D framework will emulate support.

bool createResourcesConcurrently;

bool nativeCommandListSupport;

device.CheckThreadingSupport(out createResourcesConcurrently, out
nativeCommandListSupport);

The CheckThreadingSupport function wraps the native API ID3D11Device::CheckFeat
ureSupport method, returning two Boolean values and indicating whether the driver natively

supports the creation of resources simultaneously on multiple threads or command lists.

If not supported, the Direct3D 11 API will emulate the behavior, albeit with potentially

smaller performance gains.

http:///

Chapter 9

305

See also
 f The Loading and compiling resources asynchronously recipe in Chapter 11,

Integrating Direct3D with XAML and Windows 8.1

Implementing multithreaded dynamic cubic
environment mapping

In this recipe, we will implement dynamic cubic environment mapping or cube mapping and

explore how threading impacts the rendering performance. A cube map is commonly used

for skyboxes with the camera located inside the cube. In this recipe, we will be using cube

maps to implement relections for objects. We will also be rendering directly to the cube map
resource in order to implement dynamic relections. In Direct3D, a cube map is implemented
using a texture cube; this is a special texture array with six slices where each slice represents

a face of the cube along an axis. The TextureCube HLSL shader resource provides built-in

sampling support. The following igure shows a static cube map laid out lat, and the texture
array indices are matched to the appropriate axis:

Static cubic environment map with texture array indices.

Note that the cube map is deined using a left-handed coordinate system (that is, +Z is

forward, +X is to the right, and +Y is upward). Our recipe will, therefore require axis scaling

and vertex winding changes when generating dynamic cube maps.

The Collosseum cube map is by Emil Persson, who has a number

of static cube map textures released under a Creative Commons

Attribution 3.0 license available at http://www.humus.name/
index.php?page=Textures.

http:///

Rendering on Multiple Threads and Deferred Contexts

306

Getting ready

For this recipe, we will start with the project from the previous recipe, Benchmarking

multithreaded rendering. The scene ile named Scene.fbx, used in the example

screenshots, is available from the companion source download for this book. The completed

project can also be found in the companion source named Ch09_02DynamicCubeMapping.

How to do it…

We will begin by creating the necessary HLSL code to generate and consume our cube maps.

Generating the cube map will involve creating a new vertex shader (VS_CubeMap), geometry

shader (GS_CubeMap), and pixel shader (PS_CubeMap); to consume cube maps, we will

update the PerMaterial constant buffer and each pixel shader.

1. Firstly, we will update the PerMaterial constant buffer in Shaders\Common.hlsl

to include a lag indicating whether a material is relective and how relective it is.
This will be used by the pixel shaders.

cbuffer PerMaterial : register (b2)

{...

 bool IsReflective;

 float ReflectionAmount;

...};

Remember that HLSL structures are 16-byte aligned.

2. Create a new HLSL source ile named Shaders\CubeMap.hlsl, and ensure that

it has the correct encoding as described in Chapter 2, Rendering with Direct3D.

Add the following include directive to use our existing constant buffers, vertex,

and pixel structures:

#include "Common.hlsl"

3. Add the following per environment map constant buffer to be updated using the

ifth buffer slot, and deine the geometry shader input to be the same as the pixel
shader input:

// Cube map ViewProjections for each face

cbuffer PerEnvironmentMap : register(b4) {

 float4x4 CubeFaceViewProj[6];

};

// Use the PixelShaderInput as GeometryShaderInput

#define GeometryShaderInput PixelShaderInput

http:///

Chapter 9

307

4. The output from the geometry shader (and therefore, input to our new pixel shader)

is exactly the same as the PixelShaderInput structure within Shaders\Common.
hlsl, except that we have added one new property to control the render target

(that is, the face of the cube map) used.

// Pixel Shader input structure (from Geometry Shader)

struct GS_CubeMapOutput

{ float4 Position : SV_Position;

...SNIP (existing PixelShaderInput structure properties)

 // Allows writing to multiple render targets

 uint RTIndex : SV_RenderTargetArrayIndex;

};

5. The new vertex shader is almost the same as the existing one in Shaders\VS.hlsl;

however, we need to apply the World matrix transform on the Position property.

// Vertex shader cubemap function

GeometryShaderInput VS_CubeMap(VertexShaderInput vertex)

{ GeometryShaderInput result = (GeometryShaderInput)0;

...SNIP

 // Only apply world transform (not WorldViewProjection)

 result.Position = mul(vertex.Position, World);

...SNIP

}

6. The new geometry shader is where we use the geometry shader instance

attribute of Shader Model 5 to execute the shader six times per input primitive

(that is, six times per triangle).

[maxvertexcount(3)] // Outgoing vertex count (1 triangle)

[instance(6)] // Number of times to execute for each input

void GS_CubeMap(triangle GeometryShaderInput input[3],

 uint instanceId: SV_GSInstanceID,

 inout TriangleStream<GS_CubeMapOutput> stream)

{

 // Output the input triangle using the View/Projection

 // of the cube face identified by instanceId

 float4x4 viewProj = CubeFaceViewProj[instanceId];

 GS_CubeMapOutput output;

 // Assign the render target instance

 // i.e. 0 = +X-face, 1 = -X-face and so on

 output.RTIndex = instanceId;

 // In order to render correctly into a TextureCube we

 // must either:

http:///

Rendering on Multiple Threads and Deferred Contexts

308

 // 1) use a left-handed view/projection; OR

 // 2) use a right-handed view/projection with -1 X-

 // axis scale

 // Our meshes assume a right-handed coordinate system

 // therefore both cases above require vertex winding

 // to be switched.

 uint3 idx = uint3(0,2,1);

 [unroll]

 for (int v = 0; v < 3; v++)

 {

 // Apply cube face view/projection

 output.Position =

 mul(input[idx[v]].Position, viewProj);

 // Copy other vertex properties as is

 output.WorldPosition = input[idx[v]].WorldPosition;

...SNIP

 // Append to the stream

 stream.Append(output);

 }

 stream.RestartStrip();

}

To achieve the best geometry shader performance, it is critical

to try and minimize the amount of data passing in and out of

the stage. The PixelShaderInput structure used in our

recipes includes a number of additional properties for illustrative

purposes that should be removed when not needed.

7. Add a new pixel shader for generating a cube map; this is a copy of our Blinn-Phong

pixel shader. There are three differences highlighted in the following snippet from

the original shader:

// Globals for texture sampling

Texture2D Texture0 : register(t0);

TextureCube Reflection : register(t1);

SamplerState Sampler : register(s0);

float4 PS_CubeMap(GS_CubeMapOutput pixel) : SV_Target

{

 // Normalize our vectors

 float3 normal = normalize(pixel.WorldNormal);

 float3 toEye = normalize(pixel.ToCamera);

...SNIP

http:///

Chapter 9

309

 // Calculate reflection (if any)

 if (IsReflective) {

 float3 reflection = reflect(-toEye, normal);

 color = lerp(color, Reflection.Sample(Sampler,

 reflection).rgb, ReflectionAmount);

 }

 // Calculate final alpha value and return

 float alpha = pixel.Diffuse.a * sample.a;

 return float4(color, alpha);

}

8. Within each of our existing pixel shaders (for example, BlinnPhongPS.hlsl) that

will implement relections, add the highlighted changes (as shown in the preceding
code snippet), except for the function signature. This includes the TextureCube

shader resource and blending of the relection sample.

9. This completes our HLSL source changes. We will now make the corresponding

changes to the C# PerMaterial structure, create our DynamicCubeMap renderer

class, and update our MeshRenderer class to use the cube map for relections.

10. Within the ConstantBuffers.cs ile, add the IsReflective and

ReflectionAmount properties to the PerMaterial structure.

[StructLayout(LayoutKind.Sequential, Pack = 1)]

public struct PerMaterial {

...

 public uint IsReflective; //reflective (0 false, 1 true)

 public float ReflectionAmount; // how reflective? 0-1

...

}

11. Create a new renderer class descending from Common.RendererBase called

DynamicCubeMap.

using SharpDX;

using SharpDX.DXGI;

using SharpDX.Direct3D11;

using Common;

using Buffer = SharpDX.Direct3D11.Buffer;

// Represents a dynamic cubic environment map (cube map)

public class DynamicCubeMap: Common.RendererBase

{

...

}

http:///

Rendering on Multiple Threads and Deferred Contexts

310

12. Create a new structure for storing the cube face camera view projections.

// Represents the camera for a cube face

// Note: the View matrix includes the current position

// Matrix.Transpose(Matrix.Invert(View)).Column4==Position

public struct CubeFaceCamera

{

 public Matrix View;

 public Matrix Projection;

}

13. Add the following private and public member ields and constructors to the
DynamicCubeMap class:

// The cubic environment map texture array (6 slices)

Texture2D EnvMap;

// The RTV for all cube map faces (for single pass)

RenderTargetView EnvMapRTV;

// The DSV for all cube map faces (for single pass)

DepthStencilView EnvMapDSV;

// The TextureCube SRV for use by the mesh/renderer

public ShaderResourceView EnvMapSRV;

// The 'per cube map buffer' to be assigned to the geometry

// shader stage when rendering the cubemap. This will

// contain the 6 ViewProjection matrices for the cube map.

public Buffer PerEnvMapBuffer;

// The viewport based on Size x Size

ViewportF Viewport;

// The renderer instance using the cube map reflection

public RendererBase Reflector { get; set; }

// The cameras for each face of the cube

public CubeFaceCamera[] Cameras = new CubeFaceCamera[6];

// The cube map texture size (e.g. 256x256)

public int Size { get; private set; }

public DynamicCubeMap(int size = 256)

 : base()

{ // Set the cube map resolution (e.g. 256 x 256)

 Size = size;

}

http:///

Chapter 9

311

14. Create an override for DynamicCubeMap.CreateDeviceDependentResources

with the following code to reset the resources and to retrieve the device reference:

RemoveAndDispose(ref EnvMap);

RemoveAndDispose(ref EnvMapSRV);

RemoveAndDispose(ref EnvMapRTV);

RemoveAndDispose(ref EnvMapDSV);

RemoveAndDispose(ref PerEnvMapBuffer);

var device = this.DeviceManager.Direct3DDevice;

15. Within the same function, we will irst initialize our texture array resource. The two

important properties that deine a resource compatible with the TextureCube HLSL

shader resource are highlighted in the following code snippet:

// Create the cube map TextureCube (array of 6 textures)

var textureDesc = new Texture2DDescription()

{

 Format = Format.R8G8B8A8_UNorm,

 Height = this.Size,

 Width = this.Size,

 ArraySize = 6, // 6-sides of the cube

 BindFlags = BindFlags.ShaderResource |
 BindFlags.RenderTarget,

 OptionFlags = ResourceOptionFlags.GenerateMipMaps |
 ResourceOptionFlags.TextureCube,

 SampleDescription = new SampleDescription(1, 0),

 MipLevels = 0,

 Usage = ResourceUsage.Default,

 CpuAccessFlags = CpuAccessFlags.None,

};

EnvMap = ToDispose(new Texture2D(device, textureDesc));

16. Next, we will deine the Shader Resource View (SRV) for the previous resource.

// Create the SRV for the texture cube

var descSRV = new ShaderResourceViewDescription();

descSRV.Format = textureDesc.Format;

descSRV.Dimension = SharpDX.Direct3D.ShaderResourceViewDimension.
TextureCube;

descSRV.TextureCube.MostDetailedMip = 0;

descSRV.TextureCube.MipLevels = -1;

EnvMapSRV = ToDispose(new ShaderResourceView(device, EnvMap,
descSRV));

http:///

Rendering on Multiple Threads and Deferred Contexts

312

17. After that, we will deine the Render Target View (RTV) for our texture cube.

// Create the RTVs

var descRTV = new RenderTargetViewDescription();

descRTV.Format = textureDesc.Format;

descRTV.Dimension = RenderTargetViewDimension
 .Texture2DArray;

descRTV.Texture2DArray.MipSlice = 0;

// Single RTV array for single pass rendering

descRTV.Texture2DArray.FirstArraySlice = 0;

descRTV.Texture2DArray.ArraySize = 6;

EnvMapRTV = ToDispose(new RenderTargetView(device, EnvMap,
 descRTV));

18. And then, we will create the Depth Stencil View (DSV) for rendering our cube map.

// Create DSVs

using (var depth = new Texture2D(device, new Texture2DDescription

{ Format = Format.D32_Float,

 BindFlags = BindFlags.DepthStencil,

 Height = Size,

 Width = Size,

 Usage = ResourceUsage.Default,

 SampleDescription = new SampleDescription(1, 0),

 CpuAccessFlags = CpuAccessFlags.None,

 MipLevels = 1,

 OptionFlags = ResourceOptionFlags.TextureCube,

 ArraySize = 6 // 6-sides of the cube

}))

{ var descDSV = new DepthStencilViewDescription();

 descDSV.Format = depth.Description.Format;

 descDSV.Dimension = DepthStencilViewDimension
 .Texture2DArray;

 descDSV.Flags = DepthStencilViewFlags.None;

 descDSV.Texture2DArray.MipSlice = 0;

 // Single DSV array for single pass rendering

 descDSV.Texture2DArray.FirstArraySlice = 0;

 descDSV.Texture2DArray.ArraySize = 6;

 EnvMapDSV = ToDispose(new DepthStencilView(device,
 depth, descDSV));

}

19. Lastly, we will create the viewport and per environment map buffer.

// Create the viewport

Viewport = new Viewport(0, 0, Size, Size);

http:///

Chapter 9

313

// Create the per environment map buffer (to store the 6

// ViewProjection matrices)

PerEnvMapBuffer = ToDispose(new Buffer(device,
 Utilities.SizeOf<Matrix>() * 6, ResourceUsage.Default,
 BindFlags.ConstantBuffer, CpuAccessFlags.None,
 ResourceOptionFlags.None, 0));

This completes the initialization of our cube map's Direct3D resources.

20. Still within the DynamicCubeMap class, we will create a new public method for

updating the current camera positions.

// Update camera position for cube faces

public void SetViewPoint(Vector3 camera)

{ // The LookAt targets for view matrices

 var targets = new[] {

 camera + Vector3.UnitX, // +X

 camera - Vector3.UnitX, // -X

 camera + Vector3.UnitY, // +Y

 camera - Vector3.UnitY, // -Y

 camera + Vector3.UnitZ, // +Z

 camera - Vector3.UnitZ // -Z

 };

 // The "up" vector for view matrices

 var upVectors = new[] {

 Vector3.UnitY, // +X

 Vector3.UnitY, // -X

 -Vector3.UnitZ,// +Y

 +Vector3.UnitZ,// -Y

 Vector3.UnitY, // +Z

 Vector3.UnitY, // -Z

 };

 // Create view and projection matrix for each face

 for (int i = 0; i < 6; i++)

 {

 Cameras[i].View = Matrix.LookAtRH(camera,

 targets[i],

 upVectors[i]) * Matrix.Scaling(-1, 1, 1);

 Cameras[i].Projection = Matrix.PerspectiveFovRH(

 (float)Math.PI * 0.5f, 1.0f, 0.1f, 100.0f);

 }

}

http:///

Rendering on Multiple Threads and Deferred Contexts

314

To remain consistent, we have used a right-handed coordinate

system for the view. However, the TextureCube resource will be

a little backwards unless we also scale -1 along the x axis. We will

also need to reverse the vertex winding order (as we have done

in the geometry shader GS_CubeMap) or switch the culling from

back face to front face (or use no culling).

21. For the scene to be rendered in its entirety while generating the cube map, it is

necessary to pass through delegate that will perform the rendering logic. Therefore,

we will not use the DynamicCubeMap.DoRender override and instead create a new

public function named UpdateSinglePass.

protected override void DoRender()

{

 throw new NotImplementedException("Use UpdateSinglePass
 instead.");

}

// Update the 6-sides of the cube map using a single pass

// via Geometry shader instancing with the provided context

// renderScene: The method that will render the scene

public void UpdateSinglePass(

 DeviceContext context,

 Action<DeviceContext, Matrix, Matrix, RenderTargetView,
 DepthStencilView, DynamicCubeMap> renderScene)

{

 // Don't render the reflector itself

 if (Reflector != null)

 Reflector.Show = false;

 // Prepare pipeline

 context.OutputMerger.SetRenderTargets(EnvMapDSV,

 EnvMapRTV);

 context.Rasterizer.SetViewport(Viewport);

 // Prepare the view projections

 Matrix[] viewProjections = new Matrix[6];

 for (var i = 0; i < 6; i++)

 viewProjections[i] = Matrix.Transpose(

 Cameras[i].View * Cameras[i].Projection);

 // Update perEnvMapBuffer with the ViewProjections

 context.UpdateSubresource(viewProjections,

 PerEnvMapBuffer);

 // Assign perEnvMapBuffer to the GS stage slot 4

 context.GeometryShader

http:///

Chapter 9

315

 .SetConstantBuffer(4, PerEnvMapBuffer);

 // Render scene using the view, projection, RTV and DSV

 renderScene(context, Cameras[0].View,

 Cameras[0].Projection, EnvMapRTV, EnvMapDSV, this);

 // Unbind the RTV and DSV

 context.OutputMerger.ResetTargets();

 // Prepare the SRV mip levels

 context.GenerateMips(EnvMapSRV);

 // Re-enable the Reflector renderer

 if (Reflector != null)

 Reflector.Show = true;

}

This completes our DynamicCubeMap renderer class. Next, we need to update the

MeshRenderer class to consume DyanamicCubeMap.EnvMapSRV.

22. Within MeshRenderer, add a new public property for assigning a cube map.

public DynamicCubeMap EnvironmentMap { get; set; }

23. In the MeshRenderer.DoRender method, where the material constant buffer is

prepared, add the following code to assign the cube map SRV:

...SNIP

// If this mesh has a cube map assigned set

// the material buffer accordingly

if (this.EnvironmentMap != null)

{

 material.IsReflective = 1;

 material.ReflectionAmount = 0.4f;

 context.PixelShader.SetShaderResource(1,
 this.EnvironmentMap.EnvMapSRV);

}

// Update material buffer

context.UpdateSubresource(ref material, PerMaterialBuffer);

...SNIP

For our inal changes, we'll move over to D3DApp.cs where we will compile

the *_CubeMap shaders, move our rendering logic into a reusable action,

and implement threading.

24. We will compile the shaders in CubeMap.hlsl within D3DApp.
CreateDeviceDependentResources as we have done in previous chapters.

Compile the shader functions VS_CubeMap, GS_CubeMap, and PS_CubeMap

using the vs_5_0, gs_5_0, and ps_5_0 shader proiles respectively.

http:///

Rendering on Multiple Threads and Deferred Contexts

316

25. We need to perform most of our DeviceContext initialization within a D3DApp.
InitializationContext function. However, we will be calling this for each context

before each rendering pass and need to preserve the existing render targets under

certain circumstances. In addition, the vertex, pixel, and geometry shaders change

depending on whether we are rendering the cube map or the inal scene.
VertexShader activeVertexShader = null;

GeometryShader activeGeometryShader = null;

PixelShader activePixelShader = null;

protected void InitializeContext(DeviceContext context,

 bool updateRenderTarget)

{

...SNIP

 // Set the default vertex shader to run

 context.VertexShader.Set(activeVertexShader);

 // Set the constant buffer for geometry shader stage

 context.GeometryShader.SetConstantBuffer(0,

 perObjectBuffer);

 context.GeometryShader.SetConstantBuffer(1,

 perFrameBuffer);

 // Set the geometry shader

 context.GeometryShader.Set(activeGeometryShader);

...SNIP

 // Set the pixel shader to run

 context.PixelShader.Set(activePixelShader);

...SNIP

// When rendering cube maps don't change the render target

 if (updateRenderTarget)

 {

 // Set viewport

 context.Rasterizer.SetViewport(this.Viewport);

 // Set render targets

 context.OutputMerger.SetTargets(this.DepthStencilView,

 this.RenderTargetView);

 }

}

26. Within D3DApp.Run, add a new local List<DynamicCubeMap> instance to keep

track of the available cube maps.

// Keep track of list of cube maps

List<DynamicCubeMap> envMaps = new List<DynamicCubeMap>();

http:///

Chapter 9

317

27. And then, for each mesh that supports relections, create a new DynamicCubeMap

instance and initialize.

// If MeshRenderer instance is reflective:

var mesh = ...some reflective MeshRenderer instance

var envMap = ToDispose(new DynamicCubeMap(256));

envMap.Reflector = mesh;

envMap.Initialize(this);

m.EnvironmentMap = envMap;

// Add to list of cube maps

envMaps.Add(envMap);

28. The bulk of our rendering loop will now be moved into a local anonymous method.

In our simple example, this should be located before the start of the rendering loop

as shown in the following code snippet:

// Action for rendering the entire scene

Action<DeviceContext, Matrix, Matrix, RenderTargetView,

DepthStencilView, DynamicCubeMap> renderScene =

(context, view, projection, rtv, dsv, envMap) =>

{

 // We must initialize the context every time we render

 // the scene as we are changing the state depending on

 // whether we are rendering a cube map or final scene

 InitializeContext(context, false);

 // We always need the immediate context

 var immediateContext = this.DeviceManager.Direct3DDevice

 .ImmediateContext;

 // Clear depth stencil view

 context.ClearDepthStencilView(dsv,

 DepthStencilClearFlags.Depth |

 DepthStencilClearFlags.Stencil, 1.0f, 0);

 // Clear render target view

 context.ClearRenderTargetView(rtv, background);

 // Create viewProjection matrix

 var viewProjection = Matrix.Multiply(view, projection);

 // Extract camera position from view

 var camPosition = Matrix.Transpose(Matrix.Invert(view))
 .Column4;

 cameraPosition = new Vector3(camPosition.X,
 camPosition.Y, camPosition.Z);

...SNIP perform all rendering actions and multithreading

}

http:///

Rendering on Multiple Threads and Deferred Contexts

318

29. If the current pass of renderScene is rendering the environment map, it is

necessary to assign the per environment map constant buffer to the geometry

shader stage for each deferred context.

// If multithreaded

...

// If environment map is being rendered

if (envMap != null)

 renderContext.GeometryShader.SetConstantBuffer(4,
 envMap.PerEnvMapBuffer);

30. Finally, we will update our main rendering loop, RenderLoop.Run(Window, () =>
{ ... }), to irst render each cube map, then render the inal scene, as shown in
the following code:

// Retrieve immediate context

var context = DeviceManager.Direct3DContext;

#region Update environment maps

// Assign the environment map rendering shaders

activeVertexShader = envMapVSShader;

activeGeometryShader = envMapGSShader;

activePixelShader = envMapPSShader;

// Render each environment map

foreach (var envMap in envMaps)

{

 var mesh = envMap.Reflector as MeshRenderer;

 if (mesh != null)

 {

 // Calculate view point for reflector

 var center = Vector3.Transform(

 mesh.Mesh.Extent.Center, mesh.World * worldMatrix);

 envMap.SetViewPoint(new Vector3(center.X, center.Y,

 center.Z));

 // Render envmap in single full render pass using

 // geometry shader instancing.

 envMap.UpdateSinglePass(context, renderScene);

 }

}

#endregion

#region Render final scene

// Reset the vertex, geometry and pixel shader

activeVertexShader = vertexShader;

activeGeometryShader = null;

http:///

Chapter 9

319

activePixelShader = blinnPhongShader;

// Initialize context (also resetting the render targets)

InitializeContext(context, true);

// Render the final scene

renderScene(context, viewMatrix, projectionMatrix,
 RenderTargetView, DepthStencilView, null);

#endregion

How it works…

The following screenshot shows the dynamic cube map from this recipe used with seven

relective surfaces. The 100 cubes in the sky are rotating around the y axis, and the cube
maps are updated dynamically. The close up of the spheres illustrates how relections
include the relections on other surfaces:

A scene with seven reflective surfaces using cubic environment maps

Rather than rendering the entire scene six times per cube map, we use multiple render

targets and the instance attribute of the geometry shader to do this in a single render

pass in a fraction of the time (approximately three to four times faster). For each triangle

output from the vertex shader, the Direct3D pipeline calls the geometry shader six times

as per the instance attribute. The SV_GSInstanceID input semantic contains the

zero-based instance ID; this ID is used to index the view/projections that we calculated

for each cube face. We indicate which render target to send the fragment to by setting the

SV_RenderTargetArrayIndex input semantic (GS_CubeMapOutput.RTIndex in our

example HLSL) to the value of the geometry shader's instance ID.

http:///

Rendering on Multiple Threads and Deferred Contexts

320

The following diagram outlines the process within the pipeline:

Direct3D pipeline view of cube map generation with geometry shader instancing

To calculate the relection in our pixel shader, we use the intrinsic HLSL reflect

function; this takes the camera direction and surface normal to compute a relection
vector. This relection vector is used to sample the cube from its SRV as shown in the
following diagram:

Sampling texture cube using reflection vector (right-handed coordinate system)

The view/projections are calculated for each face by taking the object's center point and

creating "look at" view matrices for all the six faces. Because we are using a right-handed

coordinate system, it is necessary for us to lip the x axis of the cube map view matrix by scaling

the x axis by -1 and reversing the vertex winding order in the geometry shader. By implementing

multithreaded deferred contexts, we can improve the performance when there is an increased

CPU load or larger numbers of draw calls (for example, more relective surfaces).

http:///

Chapter 9

321

The following graph shows the performance impact of multithreading:

Impact of multithreaded cube map rendering with varying reflective surfaces, scene objects, CPU load, and threads.

The worst case scenario indicates a situation where there are two dynamic cube maps,

no CPU load, and only 100 cubes relecting in the sky. The best case scenario is of three
dynamic cube maps with 2,000 matrix operations per mesh and 300 cubes in the sky.

The impact of multithreading did not hit a positive result when there was no additional

CPU load for 100 or 200 cubes in the sky but did for 300 cubes. It is clear that once there

is enough CPU load, multithreaded rendering produces signiicant performance beneits;
however, there are certain cases where it can have a detrimental effect.

There's more…

It is important to note that our implementation does not implement frustum culling

or object occlusion. We also do not take into consideration whether or not a face of the

cube map will be visible; however, this gets more complicated when you consider the

relections of relections.

Within the completed companion project for this recipe, any mesh with a name containing

reflector will have a cube map associated, any mesh name containing rotate will be

rotated around the y axis, and adding a mesh name containing replicate will cause the

object to be duplicated and arranged in a grid pattern. The same mesh can contain any or all

of the three of these key words. There is also an implementation of the six-pass cube map for

performance comparison.

http:///

Rendering on Multiple Threads and Deferred Contexts

322

Implementing dual paraboloid environment
mapping

For this recipe, we extend the geometry shader's instancing approach to create environment

maps that were introduced in the previous recipe, Implementing multithreaded cubic

environment mapping, and generate a dual paraboloid environment map. A dual paraboloid

map (DPM) requires only two render targets instead of the six used in the cube maps,

therefore requiring less texture memory. However, there is also no built-in hardware support

for sampling a DPM that instead requires a manual implementation of the sampling based on

the relection vector.

Getting ready

We will start with the inished result from the previous recipe, Implementing multithreaded

cubic environment mapping.

How to do it…

In order to generate the dual paraboloid map, we will apply geometry instancing and ill two
render targets. To sample the environment map for relections, we will implement a new HLSL
function that determines the location and the texture (half of the DPM) to sample.

1. We'll begin by creating two new HLSL iles: EnvironmentMap.hlsl and

DualParaboloidMap.hlsl. The irst of these will include the common HLSL code
for use when generating or sampling our environment maps. The second ile will
include the code necessary to generate our DPM.

2. Within the EnvironmentMap.hlsl ile, add the relection texture array and the
following constant buffer:

// Texture array for Dual Paraboloid map

Texture2DArray Reflection : register(t1);

// Dual Paraboloid Map view and near/far distance

cbuffer PerEnvironmentMap : register(b4)

{

 float4x4 DualMapView; // for sampling

 float NearClip; // for depth

 float FarClip; // for depth

};

http:///

Chapter 9

323

3. Unlike the TextureCube texture, there is no built-in support for sampling a

paraboloid texture; therefore, we need to implement our own method.

float4 SampleEnvMap(SamplerState s, float3 R)

{

 // Transform to the Paraboloid view-space

 R = mul(R, (float3x3)DualMapView);

 float3 texCoord = (float3)0;

 texCoord.xy = (R.xy / (2*(1 + abs(R.z)))) + 0.5f;

 texCoord.y = 1-texCoord.y;

 if (R.z > 0) {

 texCoord.z = 0; // Front half (texture array index 0)

 } else {

 texCoord.z = 1; // Back half (texture array index 1)

 }

 return Reflection.Sample(s, texCoord.xyz);

}

4. Within the DualParaboloidMap.hlsl ile, we add the following include

directives and structures:

#include "Common.hlsl"

#include "EnvironmentMap.hlsl"

// Geometry shader input structure (from Vertex shader)

struct GS_DualMapInput

{

 float4 Position : SV_Position;

...SNIP – same as PixelShaderInput properties

 // Normalized Z for Paraboloid

 float DualMapZ: TEXCOORD4;

};

// Pixel Shader input structure (from Geometry Shader)

struct GS_DualMapOutput

{

 float4 Position : SV_Position;

...SNIP – same as PixelShaderInput properties

 // Normalized Z for Paraboloid

 float DualMapZ: TEXCOORD4;

 // Allows us to write to multiple render targets

 uint RTIndex : SV_RenderTargetArrayIndex;

};

http:///

Rendering on Multiple Threads and Deferred Contexts

324

5. The new vertex shader is an exact copy of our original vertex shader with the following

highlighted changes:

GS_DualMapInput VS_DualMap(VertexShaderInput vertex)

{

 GS_DualMapInput result = (GS_DualMapInput)0;

...SNIP vertex skinning

// We use the Paraboloid's view within the

// WorldViewProjection with an Identity matrix for the

// projection.

 result.Position = mul(vertex.Position,

 WorldViewProjection);

...SNIP set other vertex output properties

// We are relative to the DPM's view, the length of

// result.Position is the distance from Paraboloid's origin

// to result.Position

 float L = length(result.Position); // => for depth

 result.Position = result.Position / L; // normalize

 result.DualMapZ = result.Position.z; // Keep normalized

 // Scale depth to [0, 1]

 result.Position.z = (L - NearClip) / (FarClip - NearClip);

 result.Position.w = 1.0f; // No perspective distortion

 return result;

}

6. The instanced geometry shader is very similar to that used in the previous recipe,

Implementing multithreaded dynamic cubic environment mapping. The differences

are highlighted in the following code snippet:

[maxvertexcount(3)] // Outgoing vertex count (1 triangle)

[instance(2)] // Number of times to execute for each input

void GS_DualMap(triangle GS_DualMapInput input[3],
 uint instanceId: SV_GSInstanceID,
 inout TriangleStream<GS_DualMapOutput> stream)

{

 // Output the input triangle and calculate whether

 // the vertex is in the +ve or -ve half of the DPM

 GS_DualMapOutput output = (GS_DualMapOutput)0;

 // Assign the render target instance

 // i.e. 0 = front half, 1 = back half

 output.RTIndex = instanceId;

 // Direction (1.0f front, -1.0f back)

 float direction = 1.0f - instanceId*2;

http:///

Chapter 9

325

 // Vertex winding

 uint3 indx = uint3(0,2,1);

 if (direction < 0)

 indx = uint3(0,1,2);

 [unroll]

 // for each input vertex

 for (int v = 0; v < 3; v++)

 {

 // Calculate the projection for the the DPM, taking

 // into consideration which half of the DPM we are

 // rendering.

 float projection = input[indx[v]].DualMapZ * direction

 + 1.0f;

 output.Position.xy = input[indx
 v]].Position.xy / projection;

 output.Position.z = input[indx[v]].Position.z;

 output.Position.w = 1; // no further perspective change

 output.DualMapZ = input[indx[v]].DualMapZ * direction;

 ...SNIP copy other vertex properties unchanged

 // Append to the stream

 stream.Append(output);

 }

 stream.RestartStrip();

}

7. Lastly, we will implement our modiied pixel shader for generating the DPM.
float4 PS_DualMap(GS_DualMapOutput pixel) : SV_Target

{

 // Ignore this pixel if located behind.

 // We add a little additional room to ensure that

 // the two halves of the dual paraboloid meet at the

 // seams.

 clip(pixel.DualMapZ + 0.4f);

... SNIP pixel shader code

}

8. The existing pixel shaders will now implement DPM relections by including the
EnvironmentMap.hlsl ile and using the following snippet:
// Calculate reflection (if any)

if (IsReflective) {

 float3 reflection = reflect(-toEye, normal);

 color = lerp(color, SampleEnvMap(Sampler, reflection),

 ReflectionAmount);

}

http:///

Rendering on Multiple Threads and Deferred Contexts

326

9. This completes our HLSL source code changes. Within our C# project, make a

copy of the DyanamicCubeMap.cs ile from the previous recipe, Implementing

multithreaded cubic environment mapping, and name it DualParaboloidMap.cs.

10. Add the PerEnvMap structure and the DualMapView property to the new class.

public struct PerEnvMap

{

 public Matrix View;

 public float NearClip;

 public float FarClip;

 Vector2 _padding0;

}

public PerEnvMap DualMapView;

11. Within the DualParaboloidMap.CreateDeviceDependentResources method,

change the texture creation so that it has an array size of 2 and is not a texture cube.

var textureDesc = new Texture2DDescription()

{

...

 ArraySize = 2, // 2-paraboloids

 OptionFlags = ResourceOptionFlags.GenerateMipMaps,

...

};

EnvMap = ToDispose(new Texture2D(device, textureDesc));

12. Next, we need to change the Shader Resource View (SRV) declaration to use a

dimension of Texture2DArray.

// Create the SRV for the texture cube

var descSRV = new ShaderResourceViewDescription();

descSRV.Format = textureDesc.Format;

descSRV.Dimension = SharpDX.Direct3D
 .ShaderResourceViewDimension.Texture2DArray;

descSRV.Texture2DArray.MostDetailedMip = 0;

descSRV.Texture2DArray.MipLevels = -1;

descSRV.Texture2DArray.FirstArraySlice = 0;

descSRV.Texture2DArray.ArraySize = 2;

13. The creation of the Render Target View (RTV) needs to use a descRTV.
Texture2DArray.ArraySize instance with a value of two instead of six.

14. The texture resource for the depth stencil will be a regular texture array with an array

size of two.

using (var depth = new Texture2D(device, new Texture2DDescription

{

...

http:///

Chapter 9

327

 OptionFlags = ResourceOptionFlags.None,

 ArraySize = 2 // 2-sides of the env map

}))

15. And the corresponding Depth Stencil View (DSV) is also initialized with an array

size of two.

descDSV.Texture2DArray.ArraySize = 2;

EnvMapDSV = ToDispose(new DepthStencilView(device, depth,
 descDSV));

16. Lastly, the DualParaboloidMap.PerEnvMapBuffer property needs to be

initialized with the size of the PerEnvMap structure.

PerEnvMapBuffer = ToDispose(new Buffer(device,

 Utilities.SizeOf<PerEnvMap>(), ResourceUsage.Default,

 BindFlags.ConstantBuffer, CpuAccessFlags.None,

 ResourceOptionFlags.None, 0));

17. The SetViewPoint method will now be changed to update the

DualParaboloidMap.DualMapView property as follows:

public void SetViewPoint(Vector3 camera)

{

 this.DualMapView.View = Matrix.LookAtRH(camera, camera
 + Vector3.UnitZ Vector3.UnitY);

 this.DualMapView.NearClip = 0.0f;

 this.DualMapView.FarClip = 100.0f;

}

18. In order to complete the changes in the DualParaboloidMap class, we will change

the UpdateSinglePass function with the following highlighted changes:

public void UpdateSinglePass(DeviceContext context,
 Action<DeviceContext, Matrix, Matrix, RenderTargetView,
 DepthStencilView, DualParaboloidMap> renderScene)

{

...

 context.Rasterizer.SetViewport(Viewport);

 // Update perCubeMap with the ViewProjections

 PerEnvMap pem = this.DualMapView;

 pem.View.Transpose(); // transpose the matrix for HLSL

 context.UpdateSubresource(ref pem, PerEnvMapBuffer);

 // Assign the buffer to the VS and PS stages at slot 4

 context.VertexShader.SetConstantBuffer(4, PerEnvMapBuffer);

 context.PixelShader.SetConstantBuffer(4, PerEnvMapBuffer);

http:///

Rendering on Multiple Threads and Deferred Contexts

328

// Render the scene using the view, projection, RTV and DSV

// Note that we use an identity matrix for the projection!

 renderScene(context, this.DualMapView.View,
 Matrix.Identity, EnvMapRTV, EnvMapDSV, this);

 // Unbind the RTV and DSV

 context.OutputMerger.ResetTargets();

 // Prepare the SRV mip levels

 context.GenerateMips(EnvMapSRV);

...

}

This completes the changes to the DualParaboloidMap class.

19. Within MeshRenderer.cs, change the type for the EnvironmentMap property.

public DualParaboloidMap EnvironmentMap { get; set; }

20. In the MeshRenderer.DoRender method, where the IsReflective property of

the material constant buffer is prepared, make the following highlighted changes:

...SNIP

if (this.EnvironmentMap != null)

{

 material.IsReflective = 1;

 material.ReflectionAmount = 0.4f;

 context.PixelShader.SetShaderResource(1,

 this.EnvironmentMap.EnvMapSRV);

 // Assign the per dual map buffer to the PS

 // stage at slot 4

 context.PixelShader.SetConstantBuffer(4,

 this.EnvironmentMap.PerEnvMapBuffer);

}

...SNIP

21. Within the D3DApp.CreateDeviceDependentResources method, compile the

DualParaboloidMap.hlsl shaders, namely, VS_DualMap, GS_DualMap, and

PS_DualMap, using the vs_5_0, gs_5_0, and ps_5_0 shader proiles respectively.

22. Next, change all of the remaining instances of DynamicCubeMap to

DualParaboloidMap throughout the D3DApp class.

23. Our last change pertains to multithreaded rendering within the renderScene

method, and for the thread Task delegate, it is necessary to assign the environment

map constant buffer to vertex and pixel shaders.

// If multithreaded

...

// If we are rendering for an env map we must set the

// per environment map constant buffer.

http:///

Chapter 9

329

if (envMap != null)

{

 renderContext.VertexShader.SetConstantBuffer(4,

 envMap.PerEnvMapBuffer);

 renderContext.PixelShader.SetConstantBuffer(4,

 envMap.PerEnvMapBuffer);

}

How it works…

The following screenshot shows the result of using dual paraboloid mapping using a

similar scene as used in the previous recipe, Implementing multithreaded cubic

environment mapping:

Results using the dual paraboloid mapping.

The DPM is generated by irst applying the relective surfaces' view afine transform to the
vertices; this differs from the generation of the cubic environment map as there is only one

view matrix required, and we can use the existing WorldViewProjection constant buffer

property. Then, we calculate the distance from the vertex to the origin and prepare the z value

for the depth buffer for further processing within the geometry shader (to apply the paraboloid

projection). The implementation of the GS_DualMap geometry shader is similar to creating

the cubic environment map; however, we are only generating two instances. As there is only

one view, we can simply reverse the direction along the z axis for the second copy of each

vertex. First, we determine the direction based on the current instance, set the vertex winding

order accordingly, and then manually project the vertex onto the paraboloid.

// Project the xy based on which half of DPM we are in

float projection = input[indx[v]].DualMapZ * direction + 1.0f;

output.Position.xy = input[indx[v]].Position.xy / projection;

http:///

Rendering on Multiple Threads and Deferred Contexts

330

Within the PS_DualMap pixel shader, we simply skip the current pixel if it has a negative

DualMapZ property. It may also be necessary to adjust the value slightly to include more

pixels in the output; otherwise, you may get gaps along the hemisphere seam, for example,

when directly looking down on one of the spheres in the example scene. To sample our DPM,

we must take the relection vector and transform it into the relective surfaces' view-space,
thus adding the DualMapView constant buffer property. This allows us to determine the UVW

coordinates for the texture lookup. Based on the sign of the relection's z value, we assign

half of the dual paraboloid to it. We have separated the DualMapView property from the

WorldViewProjection matrix so that we are able to sample other DPMs for the relections
of relective surfaces. Compared to a cube map of the same resolution, a DPM requires
one-third of the texture memory. The DPM does waste some of this space due to the curved

images (the sampled portion is a parabola, as highlighted in the cross section of the following

diagram), and as a result, the quality of the DPM is less than that of the cube map:

Visualization of sampling from one half of a dual paraboloid map, note the cross section.

Our simple test scene achieves a very similar performance for both dual paraboloid mapping

and cubic environment mapping. Before geometry instancing and improvements in hardware

support for cube mapping, we would have seen a greater performance difference between

dual paraboloid and cube mapping. As it stands, fewer geometry instances are most likely

offset by the increased sampling cost within the pixel shader.

http:///

Chapter 9

331

The following table lists some pros and cons between the two methods. Note that both

implementations presented here require Direct3D 10 or later.

Dynamic cubic environment mapping Dual paraboloid environment mapping

Pros f Provides good quality and is

seamless

 f Supports hardware sampling

 f It is view independent

 f Uses less memory (two textures)

 f Uses only up to two copies of

a primitive

 f It is view independent

Cons f Larger memory use (six textures)

 f Uses up to six copies of a primitive

 f Can be dificult to remove seams

 f Custom sampling is required

 f There may be some distortion and

the quality is lower than normal

See also
 f Practical Rendering and Computation with Direct3D 11 by Jason Zink and Dual

Paraboloid Mapping at http://members.gamedev.net/JasonZ/Paraboloid/
DualParaboloidMappingInTheVertexShader.pdf

 f View-independent Environment Maps by Wolfgang Heidrich and Hans-Peter

Seidel (1998) provides additional information on the underlying mathematics

http:///

http:///

10
Implementing Deferred

Rendering

In this chapter, we will cover the following topics:

 f Filling the G-Buffer

 f Implementing a screen-aligned quad renderer

 f Reading the G-Buffer

 f Adding multiple lights

 f Incorporating multisample anti-aliasing

Introduction

Deferred rendering refers to any rendering technique that defers the calculation of one or

more components of a rendered frame to a screen-space operation using information that

has been collected during one or more attribute collection passes.

One of the beneits of deferred rendering over forward rendering is that it can simplify
and improve the performance of implementations using many lights and support better

GPU utilization. It does, however, require extra texture memory for a G-Buffer, and can

introduce complexities around the implementation of multisample anti-aliasing (MSAA)

and transparencies.

There are a number of deferred rendering techniques with their own pros and cons. We will

present a classic deferred rendering technique in this chapter. The same basic concepts

can be applied across techniques although the number of rendering passes and/or the

information recorded at each stage may vary. Other techniques such as tiled deferred

rendering may also make use of compute shaders.

http:///

Implementing Deferred Rendering

334

It is important to note that deferred rendering techniques require hardware support for

Multiple Render Targets (MRTs). Direct3D feature level 9.3 supports four simultaneous

render targets, while a feature level above 10 supports up to eight.

Filling the G-Buffer
A geometry buffer or G-Buffer is a collection of one or more textures that contain attributes

of the current frame necessary to render the inal scene at a later stage, usually within
screen space. The attributes stored in the G-Buffer might consist of data, such as position,

normal vectors, diffuse, and other material properties.

This recipe prepares a G-Buffer that collects the information needed for a classic deferred

rendering technique (or deferred shading); however, the approach can be easily extended

to cache information for any deferred technique.

Getting ready

We will need a scene with a number of objects and varying materials. We will use the

MeshRenderer class and vertex structure from the Adding surface detail with normal

mapping recipe in Chapter 6, Adding Surface Detail with Normal and Displacement Mapping.

We will assume that the second and third texture slots in both the loaded meshes and the

pixel shaders are used for normal maps and specular intensity maps, respectively.

The example scene used throughout this chapter is the Sponza Model made available to the

public by Crytek at http://www.crytek.com/cryengine/cryengine3/downloads.

The FBX version is available with the downloadable source for this chapter and the textures

can be retrieved from the previous URL.

The render targets required and the layout of the G-Buffer that we will use in this recipe

is shown in the following diagram. We will create three render targets and reconstruct the

position data from the depth buffer and screen coordinates. Although we only pack the

normals in this recipe, we could also pack everything into a single 128-bit render target.

Example G-Buffer render target layout representing a single pixel

http:///

Chapter 10

335

How to do it…

We will begin by creating a new class to manage rendering to the G-Buffer:

1. Let's create a new C# class, GBuffer, descending from Common.RendererBase

and with the following public and private member ields:
// List of render target textures

public List<Texture2D> RTs = new List<Texture2D>();

// List of SRVs to the render targets

public List<ShaderResourceView> SRVs = new
 List<ShaderResourceView>();

// List of RTVs to the render targets

public List<RenderTargetView> RTVs = new
 List<RenderTargetView>();

// The Depth/Stencil buffer

public Texture2D DS0;

public ShaderResourceView DSSRV;

public DepthStencilView DSV;

// Dimensions

int width;

int height;

// The sample description (e.g. for MSAA)

SampleDescription sampleDescription;

// The Render target formats to be used

SharpDX.DXGI.Format[] RTFormats;

2. The only constructor initializes the width, height, and the number and format of

render targets:

public GBuffer(int width, int height, SampleDescription
 sampleDesc, params SharpDX.DXGI.Format[] targetFormats)

{

 System.Diagnostics.Debug.Assert(targetFormats != null
 && targetFormats.Length > 0 && targetFormats.Length <
 9, "Between 1 and 8 render target formats must be
 provided");

 this.width = width;

 this.height = height;

 this.sampleDescription = sampleDesc;

 RTFormats = targetFormats;

}

http:///

Implementing Deferred Rendering

336

In Direct3D 11, render target formats are not required to have

identical bits-per-element counts, that is a 32-bit render target

can be used alongside a 64-bit one.

3. Within the CreateDeviceDependentResources() method, irst clean up
any resources and retrieve the device from the DeviceManager property:

RemoveAndDispose(ref DSSRV);

RemoveAndDispose(ref DSV);

RemoveAndDispose(ref DS0);

RTs.ForEach(rt => RemoveAndDispose(ref rt));

SRVs.ForEach(srv => RemoveAndDispose(ref srv));

RTVs.ForEach(rtv => RemoveAndDispose(ref rtv));

RTs.Clear();

SRVs.Clear();

RTVs.Clear();

var device = DeviceManager.Direct3DDevice;

4. Next, we will prepare the description for the render target textures, and the

Render Target Views (RTVs) and Shader Resource Views (SRVs) for these textures:

// Render Target texture description

var texDesc = new Texture2DDescription();

texDesc.BindFlags = BindFlags.ShaderResource |
 BindFlags.RenderTarget;

texDesc.ArraySize = 1;

texDesc.CpuAccessFlags = CpuAccessFlags.None;

texDesc.Usage = ResourceUsage.Default;

texDesc.Width = width;

texDesc.Height = height;

texDesc.MipLevels = 1;

texDesc.SampleDescription = sampleDescription;

bool isMSAA = sampleDescription.Count > 1;

// Render Target View description

var rtvDesc = new RenderTargetViewDescription();

rtvDesc.Dimension = isMSAA ?

 RenderTargetViewDimension.Texture2DMultisampled :

 RenderTargetViewDimension.Texture2D;

rtvDesc.Texture2D.MipSlice = 0;

http:///

Chapter 10

337

// SRV description for render targets

var srvDesc = new ShaderResourceViewDescription();

srvDesc.Format = SharpDX.DXGI.Format.R8G8B8A8_UNorm;

srvDesc.Dimension = isMSAA ? SharpDX.Direct3D.

 ShaderResourceViewDimension.Texture2DMultisampled :

 SharpDX.Direct3D.ShaderResourceViewDimension.Texture2D;

srvDesc.Texture2D.MipLevels = -1; // auto

srvDesc.Texture2D.MostDetailedMip = 0;

All render targets and the depth stencil buffer used simultaneously

for Multiple Render Targets (MRTs) must use the same underlying

dimension (for example, Texture2D and Texture3D) and have

the same value for SampleDescription.

5. We now need to create the corresponding texture, RTV and SRV, for each of the

speciied render target formats of the G-Buffer using the description objects we
created previously:

// Create Render Target's texture (with SRV and RTV)

foreach (var format in RTFormats)

{

 texDesc.Format = format;

 srvDesc.Format = format;

 rtvDesc.Format = format;

 RTs.Add(ToDispose(new Texture2D(device, texDesc)));

 SRVs.Add(ToDispose(new ShaderResourceView(device,

 RTs.Last(), srvDesc)));

 RTVs.Add(ToDispose(new RenderTargetView(device,

 RTs.Last(), rtvDesc)));

}

6. To complete the CreateDeviceDependentResources method, we will create

the depth stencil texture and Depth Stencil View (DSV), along with an SRV in order

to access the depth buffer from our shaders:

// Create Depth/Stencil

texDesc.BindFlags = BindFlags.ShaderResource |
 BindFlags.DepthStencil;

// typeless so we can use as shader resource

texDesc.Format = SharpDX.DXGI.Format.R32G8X24_Typeless;

DS0 = ToDispose(new Texture2D(device, texDesc));

http:///

Implementing Deferred Rendering

338

srvDesc.Format =
 SharpDX.DXGI.Format.R32_Float_X8X24_Typeless;

DSSRV = ToDispose(new ShaderResourceView(device, DS0,
 srvDesc));

// Depth Stencil View

var dsvDesc = new DepthStencilViewDescription();

dsvDesc.Flags = DepthStencilViewFlags.None;

dsvDesc.Dimension = isMSAA ?

 DepthStencilViewDimension.Texture2DMultisampled :

 DepthStencilViewDimension.Texture2D;

dsvDesc.Format = SharpDX.DXGI.Format.D32_Float_S8X24_UInt;

DSV = ToDispose(new DepthStencilView(device, DS0,
 dsvDesc));

7. Next, we create methods to bind and unbind the render targets to the pipeline and

inally to clear the G-Buffer:
// Bind the render targets to the OutputMerger

public void Bind(DeviceContext1 context)

{

 context.OutputMerger.SetTargets(DSV, 0,

 new UnorderedAccessView [0], RTVs.ToArray());

}

// Unbind the render targets

public void Unbind(DeviceContext1 context)

{

 context.OutputMerger.ResetTargets();

}

// Clear the render targets and depth stencil

public void Clear(DeviceContext1 context, Color background)

{

 context.ClearDepthStencilView(DSV,

 DepthStencilClearFlags.Depth |

 DepthStencilClearFlags.Stencil, 1.0f, 0);

 foreach (var rtv in RTVs)

 context.ClearRenderTargetView(rtv, background);

}

This completes our generic GBuffer class. With this we can easily create new

G-Buffer layouts depending on the speciic rendering requirements.

http:///

Chapter 10

339

8. Next, we will create the necessary shader code to ill the G-Buffer. First we will
update the PerObject constant buffer within Common.hlsl to include the View,

InverseView, Projection, and InverseProjection matrices shown as follows:

cbuffer PerObject : register(b0)

{

...

 // The view matrix

 float4x4 View;

 // The inverse view matrix

 float4x4 InverseView;

 // The projection matrix

 float4x4 Projection;

 // The inverse of the projection matrix

 float4x4 InverseProjection;

};

You may notice that these matrices are not necessarily changing per object, and

perhaps should instead be moved to the PerFrame constant buffer. However, for

simplicity we will continue to keep the afine transform matrices together.

9. We'll now put the logic for illing the G-Buffer into a new HLSL ile named
FillGBuffer.hlsl. Remember to use ANSI encoding as described in

Chapter 2, Rendering with Direct3D.

10. Deine the necessary input texture references, include the Common.hlsl HLSL ile,
and deine our pixel shader output structure:
Texture2D Texture0 : register(t0);

Texture2D NormalMap: register(t1);

Texture2D SpecularMap: register(t2);

...

SamplerState Sampler : register(s0);

#include "Common.hlsl"

// From Vertex shader to PSFillGBuffer

struct GBufferPixelIn

{

 float4 Position : SV_Position;

 float4 Diffuse : COLOR;

 float2 TextureUV: TEXCOORD0;

 // view-space Normal and tangent

 float3 ViewNormal : TEXCOORD1;

 float4 ViewTangent : TANGENT; // .w handedness from CMO

};

http:///

Implementing Deferred Rendering

340

// Pixel Shader output structure

struct GBufferOutput

{

 float4 Target0 : SV_Target0;

 uint Target1 : SV_Target1;

 float4 Target2 : SV_Target2;

 // | -----------32 bits-----------|

 // | Diffuse (RGB) | SpecInt (A) | RT0

 // | Packed Normal--------------->| RT1

 // | Emissive (RGB) | SpecPwr (A) | RT2

};

11. We will be using view-space for our G-Buffer operations; therefore, we need to provide

a new vertex shader that passes the normal and tangent vectors in view-space:

GBufferPixelIn VSFillGBuffer(VertexShaderInput vertex)

{

 GBufferPixelIn result = (GBufferPixelIn)0;

 result.Position = mul(vertex.Position,

 WorldViewProjection);

...

 // Transform normal/tangent into world view-space

 result.ViewNormal = mul(vertex.Normal,

 (float3x3)WorldInverseTranspose);

 result.ViewNormal = mul(result.ViewNormal, (float3x3)View);

 result.ViewTangent = float4(mul(vertex.Tangent.xyz,

 (float3x3)WorldInverseTranspose), vertex.Tangent.w);

 result.ViewTangent.xyz = mul(result.ViewTangent.xyz,

 (float3x3)View);

 return result;

}

12. We will use the following functions within our pixel shader to encode and pack our

normal vectors into the second render target:

float2 EncodeAzimuthal(in float3 N)

{

 // Lambert azimuthal equal-area projection

 // with normalized N is equivalent to

 // Spheremap Transform but slightly faster

 //http://aras-p.info/texts/CompactNormalStorage.html

 float f = sqrt(8*N.z+8);

 return N.xy / f + 0.5;

}

http:///

Chapter 10

341

uint PackNormal(in float3 N)

{

 float2 encN = EncodeAzimuthal(N);

 // Pack float2 into uint

 uint result = 0;

 result = f32tof16(encN.x);

 result |= f32tof16(encN.y) << 16;

 return result;

}

13. And inally, create the pixel shader to collect and output the attributes to the
G-Buffer render targets:

GBufferOutput PSFillGBuffer(GBufferPixelIn pixel)

{

 // Normalize our vectors as they are not

 // guaranteed to be unit vectors after interpolation

 float3 normal = normalize(pixel.WorldNormal);

...

 float3 diffuse;

 float specIntensity;

... sample normal, texture and specular intensity

 GBufferOutput result = (GBufferOutput)0;

 result.Target0.xyz = diffuse;

 result.Target0.w = specIntensity;

 result.Target1 = PackNormal(normal);

 result.Target2.xyz = MaterialEmissive.rgb;

 // Specular Power normalized to 0-50 range

 result.Target2.w = MaterialSpecularPower / 50;

 // Return result

 return result;

}

14. Within ConstantBuffers.cs, we need to update the PerObject structure to

include the additional matrices we deined in HLSL:
public struct PerObject {

...

 public Matrix ViewProjection;

 public Matrix View;

 public Matrix InverseView;

http:///

Implementing Deferred Rendering

342

 public Matrix Projection;

 public Matrix InverseProjection;

// Transpose the matrices so that they are in column-major

// order for HLSL (in memory).

 internal void Transpose()

 {

...

 this.ViewProjection.Transpose();

 this.View.Transpose();

 this.InverseView.Transpose();

 this.Projection.Transpose();

 this.InverseProjection.Transpose();

 }

}

15. We are now ready to ill the G-Buffer within the D3DApp class. Compile the vertex and

pixel shaders given previously within CreateDeviceDependentResources and

assign each to a new property (for example, fillGBufferVS and fillGBufferPS).

16. Within the D3DApp.Run method, initialize a new GBuffer instance as shown in the

following snippet:

GBuffer gbuffer = ToDispose(

 new GBuffer(this.RenderTargetSize.Width,

 this.RenderTargetSize.Height,

 new SampleDescription(1, 0),

 Format.R8G8B8A8_UNorm,

 Format.R32_UInt,

 Format.R8G8B8A8_UNorm));

gbuffer.Initialize(this);

17. Finally, within the render loop we set the vertex and pixel shader to fillGBufferVS

and fillGBufferPS, prepare and bind the render targets of the G-Buffer,

perform any rendering, and then restore the previous render targets:

...

context.VertexShader.Set(fillGBufferVS);

context.PixelShader.Set(fillGBufferPS);

gbuffer.Clear(context, new Color(0, 0, 0, 0));

gbuffer.Bind(context);

meshes.ForEach((m) =>

{

http:///

Chapter 10

343

...

 perObject.View = viewMatrix;

 perObject.InverseView = Matrix.Invert(viewMatrix);

 perObject.Projection = projectionMatrix;

 perObject.InverseProjection = Matrix.Invert(projectionMatrix);

...

 m.Render();

}

gbuffer.Unbind(context);

// Optionally restore previous render targets

context.OutputMerger.SetRenderTargets(this.DepthStencilView
 , this.RenderTargetView);

... use G-Buffer for screen-space rendering

The following image shows the resulting G-Buffer contents:

G-Buffer contents from top-left: diffuse/albedo, view-space normals, specular power, specular intensity, depth,

and lastly view-space positions reconstructed from depth and screen coordinates (center is 0,0,0 or black).

http:///

Implementing Deferred Rendering

344

How it works…

The GBuffer class is used to initialize a new render target for each DXGI format that

is passed to the constructor. These render target textures are created with both the

BindFlags.ShaderResource and BindFlags.RenderTarget binding lags speciied,
allowing them to be used as RTVs for our PSFillGBuffer pixel shader and also as SRVs

for retrieving the G-Buffer attributes in our future deferred shaders.

This means that in our textures we can only use DXGI formats that are compatible with both

RTVs and SRVs. For example, Direct3D 11.1 compatible hardware can optionally support the

SharpDX.DXGI.Format.R32G32B32_Float format for render targets, whereas they must

support the SharpDX.DXGI.Format.R32G32B32A32_Float format.

To check the format support at runtime, use the Device.CheckFormatSupport function,

as shown in the following example:

FormatSupport fs = device.CheckFormatSupport(
 SharpDX.DXGI.Format.R32G32B32_Float);
if ((fs & FormatSupport.RenderTarget) ==
 FormatSupport.RenderTarget)
{
... format is supported for render targets
}

We also create a depth stencil buffer for the G-Buffer, using a Typeless format of SharpDX.
DXGI.Format.R32G8X24_Typeless for the underlying texture, so that it can be used with

both a DSV and an SRV. For the SRV, we then use SharpDX.DXGI.Format.R32_Float_
X8X24_Typeless making the irst 32 bits available within our shader while the remaining 32
bits are unused. The DSV uses a format of SharpDX.DXGI.Format.D32_Float_S8X24_
UInt, utilizing the irst 32 bits as the depth buffer, the next 8 bits as the stencil and leaving
the remaining 24 bits unused. We have added the View, InverseView, Projection, and

InverseProjection afine transform matrices to the PerObject structure so we can

transform between view-space and world-space, and clip-space and view-space.

When we read the G-Buffer attributes again, we will be reconstructing the position into

view-space. Rather than applying a transformation to bring the position to world space for

lighting calculations, it is more eficient to leave them in view-space. This is why we have also
transformed the normal and tangent vectors into view-space. It doesn't matter in what space

the calculations are performed but generally, you want to do lighting in the space that requires

the least amount of transformations and/or calculations.

For our PSFillGBuffer pixel shader, we have described the output structure

GBufferOutput using the SV_Target output semantic on each property to control which

render target is illed, using SV_Target0 for the irst render target, SV_Target1 for the

second, and so on up to a maximum of eight targets. The pixel shader performs standard

operations, such as normal mapping and texture sampling, and then assigns the attributes to

the appropriate render target property in the GBufferOutput structure.

http:///

Chapter 10

345

In this recipe, we are encoding our normal vector so that we can reconstruct the Z component

from the X and Y components, giving a higher precision for the same amount of space in the

G-Buffer. There are a number of methods for compacting normal vectors. We have used an

approach called Lambert azimuthal equal-area projection (LAEAP) that when used with

normalized vectors is equivalent to sphere map transformations except with a slightly lower

computing cost (Compact Normal Storage for Small G-Buffers, Pranckevičius, 2009). LAEAP

is an azimuthal map projection commonly used in cartography for mapping the surface of a

sphere to a lat disc; the projection and its inverse are shown in the following formula. As with
other sphere map transformations, the direction of Z is preserved after encoding/decoding.

Formula to project the normalized vector (x,y,z) of a sphere to (X,Y) on a plane and its inverse using Lambert

azimuthal equal-area projection.

In addition to encoding our normal, we are then packing the encoded X and Y components

into uint. Packing the encoded X and Y of the normal into uint is not required or even

optimal, as we could easily use SharpDX.DXGI.Format.R16G16_UNorm for SV_Target1

to store the float2 directly. However, for demonstrative purposes, we have copied the X and

Y components into the low and high bits of a SharpDX.DXGI.Format.R32_UInt texture

using the f32tof16 intrinsic HLSL function and bit shifting. This is a common method to

pack as much information into the smallest G-Buffer possible. Using a similar technique, we

could instead use a R32G32B32A32 format render target to pack our entire G-Buffer into a

single render target.

You may have noticed that we are not outputting the position into the G-Buffer. In order to

store the position with full precision, we would require 96 bits (3 x 32-bit loats), which on
some hardware would require the use of a 128-bit texture (or a number of additional render

targets). We could reduce the precision of the position; however, this may also introduce

visual artifacts. Instead, with modern graphics pipelines, it is possible to read directly from

the depth buffer. By using the depth buffer to reconstruct the position, we are able to save

on bandwidth, one of the key limiting factors of modern graphics hardware.

We must also consider that because GPUs often handle the depth/stencil differently to other

render targets (for example, hierarchical-Z/Hi-Z and compression), it may be worth using a

dedicated depth texture in the G-Buffer instead of the depth/stencil, especially if you want to

continue using the depth buffer later on. On modern hardware, we could use a single 128-bit

render target to store our entire G-Buffer including depth.

There's more…

It is important to realize that there is no hard and fast rule as to how and what is stored

within a G-Buffer (for example, we could also utilize unordered access views), or even how

to implement deferred rendering. There are a range of deferred rendering approaches and

alternatives, such as light prepass, tiled deferred rendering, light indexed deferred rendering,

tile-based forward rendering, Forward+ and so on.

http:///

Implementing Deferred Rendering

346

See also
 f Refer to the Reading the G-Buffer recipe to read the G-Buffer and reconstruct the

position from depth

 f Compact Normal Storage for Small G-Buffers at http://aras-p.info/texts/
CompactNormalStorage.html

 f Inline format conversion reference at http://msdn.microsoft.com/en-us/
library/windows/desktop/ff728753(v=vs.85).aspx

 f Hardware support for Direct3D 10Level9 Formats at http://msdn.microsoft.
com/en-us/library/windows/desktop/ff471324(v=vs.85).aspx

 f Hardware support for Direct3D 11.1 Formats at http://msdn.microsoft.com/
en-us/library/windows/desktop/hh404483(v=vs.85).aspx

 f Interesting links on tiled forward shading techniques at http://aras-p.info/
blog/2012/03/27/tiled-forward-shading-links/

Implementing a screen-aligned quad
renderer

Screen-aligned quads, also known as fullscreen quads, are a staple of deferred rendering

techniques. They have traditionally been used to perform a range of screen-space operations,

such as applying ambient lighting or implementing screen space ambient occlusion (SSAO),

and provide a convenient method of addressing information within the G-Buffer.

Although image iltering and computation can be performed within compute shaders, the inal
result still needs to be presented to the screen, and this is usually through a screen-aligned

quad. This recipe can be used where screen-space operations are required or visualization

of textures is necessary.

How to do it…

We will begin by creating the vertex shader and its input and output structures. We'll then

move onto creating the C# renderer class ScreenAlignedQuadRenderer:

1. Begin with a new HLSL shader ile, SAQuad.hlsl, including Common.hlsl for

the PerObject constant buffer matrices and adding the following new structures:

#include "Common.hlsl"

struct VertexIn

{

 float4 Position : SV_Position;

http:///

Chapter 10

347

};

struct PixelIn

{

 float4 Position : SV_Position;

 float2 UV : TEXCOORD0;

};

2. Add a new vertex shader passing through the input positions unchanged,

and calculate the UV coordinates from these:

// Screen-Aligned Quad: vertex shader main function

PixelIn VSMain(VertexIn vertex)

{

 PixelIn result = (PixelIn)0;

 // The input quad is expected in device coordinates

 // (i.e. 0,0 is center of screen, -1,1 top left, 1,-1

 // bottom right). Therefore no transformation!

 result.Position = vertex.Position;

 result.Position.w = 1.0f;

 // The UV coordinates are top-left 0,0 bottom-right 1,1

 result.UV.x = result.Position.x * 0.5 + 0.5;

 result.UV.y = result.Position.y * -0.5 + 0.5;

 return result;

}

3. Create a new C# class, ScrenAlignedQuadRenderer, descending from

Common.BaseRenderer, and add the following private and public members

and default constructor:

public class ScreenAlignedQuadRenderer :
 Common.RendererBase

{

 // The vertex shader

 VertexShader vertexShader;

 // The vertex layout for the IA

 InputLayout vertexLayout;

 // The vertex buffer

 Buffer vertexBuffer;

 // The vertex buffer binding

 VertexBufferBinding vertexBinding;

http:///

Implementing Deferred Rendering

348

 // Pixel shader to assign to use

 public PixelShader Shader { get; set; }

 // Shader resources to bind to pixel shader

 public ShaderResourceView[] ShaderResources {get; set;}

 /// <summary>

 /// Default constructor

 /// </summary>

 public ScreenAlignedQuadRenderer()

 {

 }

...

}

4. Within the overridden function ScreenAlignedQuadRenderer.
CreateDeviceDependentResources, initialize the device resources

as shown in the following snippet:

RemoveAndDispose(ref vertexShader);

RemoveAndDispose(ref vertexLayout);

RemoveAndDispose(ref vertexBuffer);

// Retrieve our SharpDX.Direct3D11.Device1 instance

var device = DeviceManager.Direct3DDevice;

ShaderFlags shaderFlags = ShaderFlags.None;

#if DEBUG

shaderFlags = ShaderFlags.Debug |
 ShaderFlags.SkipOptimization;

#endif

// Use our HLSL file include handler to resolve #include
 directives in the HLSL source

var includeHandler = new
 HLSLFileIncludeHandler(System.IO.Path.Combine
 (System.IO.Path.GetDirectoryName(System.Reflection.
 Assembly.GetEntryAssembly().Location), "Shaders"));

// Compile and create the vertex shader

using (var vertexShaderBytecode =
 ShaderBytecode.CompileFromFile(@"Shaders\SAQuad.hlsl",
 "VSMain", "vs_5_0", shaderFlags, EffectFlags.None, null,
 includeHandler))

http:///

Chapter 10

349

{

 vertexShader = ToDispose(new VertexShader(device,
 vertexShaderBytecode));

 // Layout from VertexShader input signature

 vertexLayout = ToDispose(new InputLayout(device,

 ShaderSignature.GetInputSignature
 (vertexShaderBytecode),

 new[]

 {

 // "SV_Position"=vertex coordinate

 new InputElement("SV_Position", 0, Format.R32G32B32_Float,
0, 0),

 }));

 // Create vertex buffer

 vertexBuffer = ToDispose(Buffer.Create(device,
 BindFlags.VertexBuffer, new Vector3[] {

 /* Position in normalized device coords */

 new Vector3(-1.0f, -1.0f, -1.0f),

 new Vector3(-1.0f, 1.0f, -1.0f),

 new Vector3(1.0f, -1.0f, -1.0f),

 new Vector3(1.0f, 1.0f, -1.0f),

 }));

 vertexBinding = new VertexBufferBinding(vertexBuffer,
 Utilities.SizeOf<Vector3>(), 0);

 // Triangle strip:

 // v1 v3

 // |\ |

 // | \ B|

 // | A\ |

 // | \|

 // v0 v2

}

5. And inally, within protected override void DoRender, with the provided pixel

shader and SRVs, draw the screen-aligned quad vertices:

var context = this.DeviceManager.Direct3DContext;

// Retrieve the existing shader and IA settings

using(var oldVertexLayout = context.InputAssembler.InputLayout)

using(var oldPixelShader = context.PixelShader.Get())

using(var oldVertexShader = context.VertexShader.Get())

{

http:///

Implementing Deferred Rendering

350

 // Set pixel shader

 if (ShaderResources != null && ShaderResources.Length >
 0 && !ShaderResources[0].IsDisposed)

 {

 context.PixelShader.SetShaderResources(0,
 ShaderResources);

 }

 // Set a default pixel shader

 if (Shader != null)

 {

 context.PixelShader.Set(Shader);

 }

 // Set vertex shader

 context.VertexShader.Set(vertexShader);

 // Update vertex layout to use

 context.InputAssembler.InputLayout = vertexLayout;

 // Tell the IA we are using a triangle strip

 context.InputAssembler.PrimitiveTopology =

 SharpDX.Direct3D.PrimitiveTopology.TriangleStrip;

 // Pass in the vertices (note: only 4 vertices)

 context.InputAssembler.SetVertexBuffers(0,

 vertexBinding);

 // Draw the 4 vertices that make up the triangle strip

 context.Draw(4, 0);

 // Unbind pixel shader resources

 if (ShaderResources != null && ShaderResources.Length >

 0)

 {

 context.PixelShader.SetShaderResources(0, new

 ShaderResourceView[ShaderResources.Length]);

 }

 // Restore previous shader and IA settings

 context.PixelShader.Set(oldPixelShader);

 context.VertexShader.Set(oldVertexShader);

 context.InputAssembler.InputLayout = oldVertexLayout;

}

This completes our ScreenAlignedQuadRenderer class.

http:///

Chapter 10

351

How it works…

By using normalized device coordinates as the position of the input vertices, we can generate

the UV coordinates within the vertex shader. Because the positions are already normalized

device coordinates, there is also no need to apply any transformations. The following diagram

shows the screen-aligned quad triangle-strip layout, and coordinates. In this recipe, we have

used a Z value of -1.0f to represent the far clip plane. In a left-handed coordinate system,

this would need to be 1.0f.

Screen-aligned Quad triangle-strip, positions in device coordinates, and generated UV texture coordinates

The DoRender method irst backs up the current context state properties that are to
be modiied, then binds the provided SRVs to the pixel shader, sets the active pixel and
vertex shader, and draws the four vertices of the quad's triangle strip. Finally, we restore

the previous device context state so as to not interfere with any other renderers.

There's more…

The SV_Position input semantic of the PixelIn.Position property gives us the screen

coordinates in pixels, for example, with a viewport of 640 x 480, this gives an X value in the

range of 0-639 and a Y value in the range of 0-479. Assuming the texture is the same size

as the viewport, this allows us to use the Texture2D.Load function to retrieve the SRV

contents, as shown in the following snippet.

Texture2D<float4> Texture0 : register(t0);

float4 PSMain(PixelIn input) : SV_Target

{

 int3 screenPos = int3(pixel.Position.xy, 0);

 return Texture0.Load(screenPos);

}

The above pixel shader effectively copies the contents of Texture0 into the current

RTV. Although we haven't used the UV coordinates above, for lexibility we will keep
these properties in the PixelIn structure.

http:///

Implementing Deferred Rendering

352

In order to render a multisampled input SRV to a MSAA render target, we can use the pixel.
Position property along with the pixel shader SV_SampleIndex input semantic to sample

all the source samples without any loops. This effectively tells the pipeline to run the pixel

shader once for each sample rather than once for each pixel (that is, for an MSAA sample

count of four, it runs the pixel shader four times instead of once). The following code snippet

shows what this pixel shader might look like:

Texture2DMS<float4> TextureMS0 : register(t0);

float4 PSMainMultisample(PixelIn input,

 uint sampleIndex: SV_SampleIndex) : SV_Target

{

 int2 screenPos = int2(input.Position.xy);

 return TextureMS0.Load(screenPos, sampleIndex);

}

See also
 f The screen-aligned quad can be useful to preview the results of the image

processing recipes in Chapter 7, Performing Image Processing Techniques

 f We also make use of this screen-aligned quad throughout the remainder of

this chapter

 f We use the multisampled anti-aliasing pixel shader shown here in the

Incorporating multisample anti-aliasing recipe later in this chapter

Reading the G-Buffer
In this recipe, we will look at the HLSL shader code necessary to read from the G-Buffer's

resources. We will then use the screen-aligned quad to implement a debug pixel shader for

displaying information from the G-Buffer to screen.

Getting ready

We will follow on from where we left off with Filling the G-Buffer using the same G-Buffer

layout as described in that recipe, and make use of the screen-aligned quad from

Implementing a screen-aligned quad renderer.

http:///

Chapter 10

353

How to do it…

First let's begin by outlining the HLSL code necessary to extract the attributes from the G-Buffer.

1. We'll start by deining a structure to store the loaded G-Buffer attributes in, as shown
in the following HLSL code snippet:

// Structure for holding loaded G-Buffer attributes
struct GBufferAttributes
{
 float3 Position;
 float3 Normal;
 float3 Diffuse;
 float SpecularInt; // specular intensity
 float3 Emissive;
 float SpecularPower;
};
// Screen-aligned Quad PixelIn
struct PixelIn
{
 float4 Position : SV_Position;
 float2 UV : TEXCOORD0;
};

2. In order to unpack the normal, we will require the following functions:

float3 DecodeAzimuthal(in float2 enc)
{
 // Unproject Lambert azimuthal equal-area projection
 // http://aras-p.info/texts/CompactNormalStorage.html
 float2 fenc = enc*4-2;
 float f = dot(fenc,fenc);
 float g = sqrt(1-f/4);
 float3 n;
 n.xy = fenc*g;
 n.z = 1-f/2;
 return n;
}
float3 UnpackNormal(in uint packedN)
{
 // Unpack uint to float2
 float2 unpack;
 unpack.x = f16tof32(packedN);
 unpack.y = f16tof32(packedN >> 16);
 // Decode azimuthal (unproject)
 return DecodeAzimuthal(unpack);
}

http:///

Implementing Deferred Rendering

354

3. The following function can then be called whenever we need to access the attributes

of the G-Buffer:

void ExtractGBufferAttributes(in PixelIn pixel,

 in Texture2D<float4> t0,

 in Texture2D<uint> t1,

 in Texture2D<float4> t2,

 in Texture2D<float> t3,

 out GBufferAttributes attrs)

{

 int3 screenPos = int3(pixel.Position.xy, 0);

 // Load diffuse RGB

 attrs.Diffuse = t0.Load(screenPos).xyz;

 // Specular Intensity

 attrs.SpecularInt = t0.Load(screenPos).w;

 // Unpack and decode the normal

 attrs.Normal = UnpackNormal(t1.Load(screenPos));

 // Retrieve the emissive light

 attrs.Emissive = t2.Load(screenPos).xyz;

 // Load the specular power and rescale to 0-50

 attrs.SpecularPower = t2.Load(screenPos).w * 50;

 // Retrieve non-linear depth

 float depth = t3.Load(screenPos);

 // Reconstruct the view-space position from viewport

 // position and depth

 // Convert UV coords to normalized device coordinates

 float x = pixel.UV.x * 2 - 1;

 float y = (1 - pixel.UV.y) * 2 - 1;

 // Unproject -> transform by inverse projection

 float4 posVS = mul(float4(x, y, depth, 1.0f),

 InverseProjection);

 // Perspective divide to get final view-space position

 attrs.Position = posVS.xyz / posVS.w;

}

4. Assuming the above structures and functions are now within an HLSL ile,
GBuffer.hlsl, we can deine a pixel shader to be used with the screen-aligned
quad to output the view-space normals as follows:

#include "Common.hlsl"

#include "GBuffer.hlsl"

// G-Buffer resources

http:///

Chapter 10

355

Texture2D<float4> Texture0 : register(t0);

Texture2D<uint> Texture1 : register(t1);

Texture2D<float4> Texture2 : register(t2);

Texture2D<float> TextureDepth : register(t3);

// Render normals

float4 PS_GBufferNormal(PixelIn pixel) : SV_Target

{

 GBufferAttributes attrs;

 ExtractGBufferAttributes(pixel,

 Texture0, Texture1,

 Texture2, TextureDepth,

 attrs);

 return float4(attrs.Normal, 1);

}

5. Putting it all together within our D3DApp class in C# would look something like the

following code snippet:

PixelShader gBufferNormalPS = ...;

ScreenAlignedQuad saQuad = new ScreenAlignedQuad();

saQuad.Initialize(this);

GBuffer gbuffer = ...;

gbuffer.Initialize(this);

// Assign G-Buffer resources to saQuad including depth

saQuad.ShaderResources = gbuffer.SRVs.ToArray()

 .Concat(new[] { gbuffer.DSSRV }).ToArray();

...

// Rendering loop

... Fill the G-Buffer

gbuffer.Unbind(context);

// Restore previous render targets

context.OutputMerger.SetRenderTargets(this.DepthStencilView,
this.RenderTargetView);

// Update the PerObject constant buffer

var perObject = new ConstantBuffers.PerObject();

...

perObject.View = viewMatrix;

perObject.InverseView = Matrix.Invert(viewMatrix);

perObject.Projection = projectionMatrix;

perObject.InverseProjection = Matrix.Invert(

 projectionMatrix);

http:///

Implementing Deferred Rendering

356

perObject.Transpose();

context.UpdateSubresource(ref perObject, perObjectBuffer);

context.PixelShader.SetConstantBuffer(0, perObjectBuffer);

saQuad.Shader = gBufferNormalPS;

saQuad.Render();

The result of running the above code will be similar to that shown in the top-right image

of the G-Buffer contents from Filling the G-Buffer.

There is an obvious difference between rendering a debug view of

world-space and view-space normals. If you use view-space normals and

rotate the camera, the color of the rendered normals will change, whereas

world-space normals will remain static regardless of camera rotation.

How it works…

The C# render loop simply ills the G-Buffer and then renders a debug view of the normals by
assigning the G-Buffer resources to a ScreenAlignedQuadRenderer instance along with

our debug pixel shader. To make the additional matrices available within the pixel shader,

we have bound perObjectBuffer to the irst constant buffer slot of the pixel shader stage.

Retrieving the information from the G-Buffer within the pixel shader is quite self-explanatory.

The pixel shader calls the ExtractGBufferAttributes HLSL function, passing in the

textures to load the attributes from. When working with the G-Buffer, we generally have a

one-to-one relationship between the rendered pixel and the value retrieved from the G-Buffer.

Therefore we can use the SV_Position input semantic of the PixelIn structure to load

the appropriate information from the provided shader resources using the Texture2D.Load

function, bypassing the need to provide a sampler.

Unpacking the normal involves retrieving the low and high bits of the normal sample with bit

shifting and the f16tof32 HLSL intrinsic function. We then decode the azimuthal projected

coordinate using the inverse of the Lambert azimuthal equal-area projection described in

Filling the G-Buffer.

Reconstructing the position from depth involves a little bit more work. We do this by

calculating the projected position. The X and Y values are derived from pixel.UV and using

the existing non-linear depth sample as Z. We can then simply transform the position with the

inverse of the projection matrix (the PerObject.InverseProjection matrix), and then

apply the perspective divide to calculate our inal view-space position.

http:///

Chapter 10

357

See also
 f The previous recipe Implementing a screen-aligned quad renderer includes more

information about the use of the SV_Position input semantic

 f For more in-depth details and examples of other ways in which you can calculate the

position from non-linear and linear depth, see http://mynameismjp.wordpress.
com/2009/03/10/reconstructing-position-from-depth/ and http://
mynameismjp.wordpress.com/2010/09/05/position-from-depth-3/

Adding multiple lights
In this recipe, we will implement a lighting pass that reads in the G-Buffer attributes while

processing each light. The lights will be rendered using a light volume, where appropriate,

in order to process only those pixels that lie within the bounds of the light. By utilizing

an additive blend state, we can accumulate the light contribution for each light. When

rendering many lights, it becomes important that we are only performing the expensive

lighting operations on pixels that are actually affected by the current light. By implementing

light volumes that approximate the light's range, shape, and attenuation, we can improve

performance by utilizing the culling and clipping features of the graphics pipeline to limit the

operations to pixels that require them.

A point light represents a light positioned in space with a limited range, and emits light equally

in all directions. With this type of light, we are able to easily represent its area of effect with

a bounding sphere, using the light position and range to translate and scale the sphere,

accordingly. Our recipe will accept a mesh to be used for this purpose; this could be a simple

box, sphere, or any other mesh.

Ambient and directional lights are both global lights that are rendered using a screen-aligned

quad. The difference between the two is that the ambient light does not have a direction

and, therefore, can be applied directly to the diffuse albedo stored in the G-Buffer without

computing the angles between the light, surface, and eye, or calculating specular highlights.

Getting ready

We will make use of the HLSL functions we created in the previous recipe Reading the

G-Buffer, along with the screen-aligned quad implementation.

http:///

Implementing Deferred Rendering

358

How to do it…

We'll begin by creating the HLSL shaders that will read the G-Buffer and output the

contribution of light based on a simple Blinn-Phong lighting model.

1. Create a new HLSL ile named Lights.hlsl and add the G-Buffer texture references
and functions that we created in the previous recipe to read the G-Buffer attributes.

2. Add the following additional HLSL structures:

struct LightStruct
{
 float3 Direction;
 uint Type; // 0=Ambient, 1=Direction, 2=Point
 float3 Position;
 float Range;
 float3 Color;
};
cbuffer PerLight : register(b4)
{
 LightStruct LightParams;
};
struct PixelIn // Same as SA Quad
{
 float4 Position : SV_Position;
 float2 UV : TEXCOORD0;
};

3. We need a new simple vertex shader that accepts the default vertex structure for

rendering meshes, and outputs only the position and a UV coordinate based upon

the inal normalized device coordinate. This shader will be used to render any light
volume meshes:

PixelIn VSLight(VertexShaderInput vertex)
{
 PixelIn result = (PixelIn)0;
 vertex.Position.w = 1.0f;
 result.Position = mul(vertex.Position,
 WorldViewProjection);
 // Determine UV from device coords
 result.UV.xy = result.Position.xy / result.Position.w;
 // The UV coords: top-left [0,0] bottom-right [1,1]
 result.UV.x = result.UV.x * 0.5 + 0.5;
 result.UV.y = result.UV.y * -0.5 + 0.5;

 return result;
}

http:///

Chapter 10

359

4. As we will be supporting multiple light types with multiple pixel shaders we will split

our light calculations into the following two functions. The irst calculates the inal
light contribution from the lighting inputs and G-Buffer attributes. The second will

prepare the light inputs: to eye vector, to light vector, half vector for Blinn-Phong,

distance, and the light attenuation factor:

// Basic Lambert and BlinnPhong light contribution

float3 LightContribution(GBufferAttributes attrs, float3 V,

 float3 L, float3 H, float3 D, float attenuation)

{

 float NdotL = saturate(dot(attrs.Normal, L));

 if (NdotL <= 0)

 discard; // discard as no impact

 float NdotH = saturate(dot(attrs.Normal, H));

 // Lambert diffuse

 float3 diffuse = NdotL * LightParams.Color *

 attrs.Diffuse;

 // BlinnPhong specular term

 float specPower = max(attrs.SpecularPower,0.00001f);

 float3 specular = pow(NdotH, specPower) *

 attrs.SpecularInt * LightParams.Color;

 return (diffuse + specular) * attenuation +

 attrs.Emissive;

}

// Prepares the LightContribution inputs

void PrepareLightInputs(in float3 camera,

 in float3 position, in float3 N, in LightStruct light,

 out float3 V, out float3 L, out float3 H, out float D,

 out float attenuation)

{

 V = camera - position;

 L = light.Position - position;

 D = length(L);

 L /= D;

 H = normalize(L + V);

 // Simple light attenuation

 attenuation = max(1-D/light.Range, 0);

 attenuation *= attenuation;

}

http:///

Implementing Deferred Rendering

360

5. We can then deine the pixel shaders for each of the light types. The following snippet
of code supports a point light:

float4 PSPointLight(in PixelIn pixel) : SV_Target
{
 float4 result = (float4)0;
 result.a = 1.0f;

 GBufferAttributes attrs;
 ExtractGBufferAttributes(pixel,
 Texture0, Texture1,
 Texture2, TextureDepth,
 attrs);
 float3 V, L, H;
 float D, attenuation;
 PrepareLightInputs((float3)0, attrs.Position,
 attrs.Normal, LightParams,
 V, L, H, D, attenuation);
 result.xyz = LightContribution(attrs, V, L, H, D,
 attenuation);
 return result;
}

6. The directional light simply overrides the L (to light) vector and sets the attenuation

back to 1.0f (no fall off).

float4 PSDirectionalLight(in PixelIn pixel) : SV_Target
{
...
 PrepareLightInputs((float3)0, attrs.Position,
 attrs.Normal, LightParams,
 V, L, H, D, attenuation);
 L = normalize(-LightParams.Direction);
 H = normalize(L + V);
 attenuation = 1.0f;
 result.xyz = LightContribution(attrs, V, L, H, D,
 attenuation);
 return result;
}

7. And lastly, we have our simple ambient light pixel shader.

float4 PSAmbientLight(in PixelIn pixel) : SV_Target
{
...
 result.xyz = attrs.Diffuse * LightParams.Color;
 return result;
}

We are now ready to move onto creating the LightRenderer class in our C# project,

deine some lights, and hook up the G-Buffer

http:///

Chapter 10

361

8. First let's add the following C# light type enumeration and PerLight constant buffer

structure for use in our renderer.

public enum LightType : uint

{

 Ambient = 0,

 Directional = 1,

 Point = 2,

}

[StructLayout(LayoutKind.Sequential)]

public struct PerLight

{

 public Vector3 Direction;

 public LightType Type;

 public Vector3 Position;

 public float Range;

 public Color4 Color;

}

9. Declare the LightRenderer class and add the following private and public

member ields:
public class LightRenderer: Common.RendererBase

{

 #region Initialized by CreateDeviceDepenedentResources

 // PerLight constant buffer

 Buffer perLightBuffer;

 // Light texture and its RTV and SRV

 Texture2D lightBuffer;

 RenderTargetView RTV;

 public ShaderResourceView SRV;

 VertexShader vertexShader;

 PixelShader psAmbientLight;

 PixelShader psDirectionalLight;

 PixelShader psPointLight;

 RasterizerState rsCullBack;

 RasterizerState rsCullFront;

 RasterizerState rsWireframe;

 // Additive blend state

 BlendState blendStateAdd;

http:///

Implementing Deferred Rendering

362

 // Depth stencil states

 DepthStencilState depthLessThan;

 DepthStencilState depthGreaterThan;

 DepthStencilState depthDisabled;

 // Read-only depth stencil view

 DepthStencilView DSVReadonly;

 #endregion

 // Initialized by caller

 public List<PerLight> Lights { get; private set; }

 public BoundingFrustum Frustum { get; set;}

 public ConstantBuffers.PerObject PerObject { get; set;}

 public Buffer PerObjectBuffer { get; set; }

...

}

10. And then add the following constructor and additional ield members:
MeshRenderer pointLightVolume;

ScreenAlignedQuadRenderer saQuad;

GBuffer gbuffer;

public LightRenderer(

 MeshRenderer pointLightVolume,

 ScreenAlignedQuadRenderer saQuad,

 GBuffer gbuffer)

{

 this.Lights = new List<PerLight>();

 this.pointLightVolume = pointLightVolume;

 this.saQuad = saQuad;

 this.gbuffer = gbuffer;

}

11. Now within the light renderer's protected override void
CreateDeviceDependentResources() method, we will initialize the

necessary Direct3D resources. First we use the G-Buffer depth buffer to

determine the width/height and initialize the read-only Depth Stencil View (DSV).

... RemoveAndDispose(ref <all disposable resources>);

var device = this.DeviceManager.Direct3DDevice;

int width, height;

SampleDescription sampleDesc;

// Retrieve DSV from GBuffer, extract width/height then

// create a new read-only DSV

using (var depthTexture = gbuffer.DSV.ResourceAs<Texture2D>())

{

http:///

Chapter 10

363

 width = depthTexture.Description.Width;

 height = depthTexture.Description.Height;

 sampleDesc = depthTexture.Description

 .SampleDescription;

 // Initialize read-only DSV

 var dsvDesc = gbuffer.DSV.Description;

 dsvDesc.Flags = DepthStencilViewFlags.ReadOnlyDepth |
 DepthStencilViewFlags.ReadOnlyStencil;

 DSVReadonly = ToDispose(new DepthStencilView(device,
 depthTexture, dsvDesc));

}

// Check if GBuffer is multi-sampled

bool isMSAA = sampleDesc.Count > 1;

12. Next, we deine the light render target texture and its Render Target View (RTV)

and Shader Resource View (SRV). This is done exactly as we have done within the

recipe Filling the G-Buffer.

// Initialize the light render target

var texDesc = new Texture2DDescription();

texDesc.BindFlags = BindFlags.ShaderResource | BindFlags.
RenderTarget;

...

texDesc.SampleDescription = sampleDesc;

texDesc.Format = Format.R8G8B8A8_UNorm;

lightBuffer = ToDispose(new Texture2D(device, texDesc));

// Render Target View description

var rtvDesc = new RenderTargetViewDescription();

...

RTV = ToDispose(new RenderTargetView(device, lightBuffer,
 rtvDesc));

// SRV description

var srvDesc = new ShaderResourceViewDescription();

...

SRV = ToDispose(new ShaderResourceView(device, lightBuffer,
 srvDesc));

13. To allow rendering multiple lights onto each other, we will use additive blending.

The following code snippet shows how to initialize this blend state:

// Initialize additive blend state (assuming single RT)

BlendStateDescription bsDesc = new BlendStateDescription();

bsDesc.RenderTarget[0].IsBlendEnabled = true;

http:///

Implementing Deferred Rendering

364

bsDesc.RenderTarget[0].AlphaBlendOperation =
 BlendOperation.Add;

bsDesc.RenderTarget[0].SourceAlphaBlend = BlendOption.One;

bsDesc.RenderTarget[0].DestinationAlphaBlend =
 BlendOption.One;

bsDesc.RenderTarget[0].BlendOperation = BlendOperation.Add;

bsDesc.RenderTarget[0].SourceBlend = BlendOption.One;

bsDesc.RenderTarget[0].DestinationBlend = BlendOption.One;

bsDesc.RenderTarget[0].RenderTargetWriteMask =
 ColorWriteMaskFlags.All;

blendStateAdd = ToDispose(new BlendState(device, bsDesc));

As more lights overlap, it is quite possible for the accumulated

light value to exceed the maximum 1.0f supported by a UNorm

format. In order to support High Dynamic Range (HDR), a larger

bits-per-element format is required, and if you continue using a

UNorm format, scaling will also be necessary.

14. Next, we have our rasterizer states. These are required so that we can easily control

whether it is the front face or back face of the light volume that will be culled.

// Initialize rasterizer states

RasterizerStateDescription rsDesc = new
 RasterizerStateDescription();

rsDesc.FillMode = FillMode.Solid;

rsDesc.CullMode = CullMode.Back;

rsCullBack = ToDispose(new RasterizerState(device, rsDesc));

rsDesc.CullMode = CullMode.Front;

rsCullFront = ToDispose(new RasterizerState(device, rsDesc));

15. We now need to create three depth stencil states.

// Initialize depth state

var dsDesc = new DepthStencilStateDescription();

dsDesc.IsStencilEnabled = false;

dsDesc.IsDepthEnabled = true;

// Less-than depth comparison

dsDesc.DepthComparison = Comparison.Less;

depthLessThan = ToDispose(new DepthStencilState(device, dsDesc));

// Greater-than depth comparison

dsDesc.DepthComparison = Comparison.Greater;

depthGreaterThan = ToDispose(new DepthStencilState(device,
 dsDesc));

// Depth testing disabled

dsDesc.IsDepthEnabled = false;

depthDisabled = ToDispose(new DepthStencilState(device,
 dsDesc));

http:///

Chapter 10

365

16. Finally, we create the PerLight constant buffer and initialize our shaders.

// Buffer to light parameters

perLightBuffer = ToDispose(new Buffer(device,
 Utilities.SizeOf<PerLight>(), ResourceUsage.Default,
 BindFlags.ConstantBuffer, CpuAccessFlags.None,
 ResourceOptionFlags.None, 0));

...

// Compile and create the vertex shader

using (var bytecode =
 ShaderBytecode.CompileFromFile(@"Shaders\Lights.hlsl",
 "VSLight", "vs_5_0", shaderFlags, EffectFlags.None, null,
 includeHandler))

 vertexShader = ToDispose(new VertexShader(device,
 bytecode));

// Compile pixel shaders

using (var bytecode = ShaderBytecode.CompileFromFile(@"Shaders\
Lights.hlsl",
 "PSAmbientLight", "ps_5_0", shaderFlags,
 EffectFlags.None, null, includeHandler))

 psAmbientLight = ToDispose(new PixelShader(device,
 bytecode));

... psDirectionLight

... psPointLight

17. Like the GBuffer class, we need to be able to bind, unbind, and clear the lighting

render target. The following code snippet shows these methods:

public void Bind(DeviceContext1 context)

{

 context.OutputMerger.SetTargets(DSVReadonly, RTV);

}

public void Unbind(DeviceContext1 context)

{

 context.OutputMerger.ResetTargets();

}

public void Clear(DeviceContext1 context)

{

 context.ClearRenderTargetView(RTV, new Color(0,0,0,1));

}

18. To complete the LightRenderer class, we implement the abstract DoRender

method. This begins by retrieving the device context and backing up the current

context state so that we can restore it after rendering the lights.

http:///

Implementing Deferred Rendering

366

19. We then assign the G-Buffer SRVs, set the Output Merger blend state, retrieve the

camera parameters from the frustum, and then iterate over each of the lights.

// Retrieve device context

var context = this.DeviceManager.Direct3DContext;

// backup existing context state

int oldStencilRef = 0;

Color4 oldBlendFactor;

int oldSampleMaskRef;

using(var oldVertexLayout =
 context.InputAssembler.InputLayout)

using(var oldPixelShader = context.PixelShader.Get())

using (var oldVertexShader = context.VertexShader.Get())

using (var oldBlendState = context.OutputMerger

 .GetBlendState(out oldBlendFactor, out oldSampleMaskRef))

using (var oldDepthState = context.OutputMerger

 .GetDepthStencilState(out oldStencilRef))

using (var oldRSState = context.Rasterizer.State)

{

 // Assign shader resources

 context.PixelShader.SetShaderResources(0,
 gbuffer.SRVs.ToArray().Concat(new[] { gbuffer.DSSRV
 }).ToArray());

 // Assign the additive blend state

 context.OutputMerger.BlendState = blendStateAdd;

 // Retrieve camera parameters

 SharpDX.FrustumCameraParams cameraParams =
 Frustum.GetCameraParams();

 // For each configured light

 for (var i = 0; i < Lights.Count; i++)

 {

 ... see next step

 }

 // Reset pixel shader resources (all to null)

 context.PixelShader.SetShaderResources(0, new
 ShaderResourceView[gbuffer.SRVs.Count + 1]);

 // Restore context states

 context.PixelShader.Set(oldPixelShader);

 context.VertexShader.Set(oldVertexShader);

 context.InputAssembler.InputLayout = oldVertexLayout;

 context.OutputMerger.SetBlendState(oldBlendState,
 oldBlendFactor, oldSampleMaskRef);

http:///

Chapter 10

367

 context.OutputMerger

 .SetDepthStencilState(oldDepthState, oldStencilRef);

 context.Rasterizer.State = oldRSState;

}

20. For each of the lights in the previous for loop, we need to irst choose the correct
shader based on the type of light, and update perLightBuffer with the current

light's parameters. As our G-Buffer has been stored in view-space, we will transform

the light parameters into the same space using the PerObject.View matrix before

updating the constant buffer resource.

PerLight light = Lights[i];

PixelShader shader = null; // Assign shader

if (light.Type == LightType.Ambient)

 shader = psAmbientLight;

else if (light.Type == LightType.Directional)

 shader = psDirectionalLight;

else if (light.Type == LightType.Point)

 shader = psPointLight;

// Update the perLight constant buffer

// Calculate view space position and direction

Vector3 lightDir = Vector3.Normalize(Lights[i].Direction);

Vector4 viewSpaceDir = Vector3.Transform(lightDir,
 PerObject.View);

light.Direction = new Vector3(viewSpaceDir.X,
 viewSpaceDir.Y, viewSpaceDir.Z);

Vector4 viewSpacePos =
 Vector3.Transform(Lights[i].Position, PerObject.View);

light.Position = new Vector3(viewSpacePos.X,
 viewSpacePos.Y, viewSpacePos.Z);

context.UpdateSubresource(ref light, perLightBuffer);

context.PixelShader.SetConstantBuffer(4, perLightBuffer);

21. Now we check whether the light needs to be rendered full screen using the screen-

aligned quad, or only the region deined by a light volume. In our implementation,
directional and ambient lights will always be applied to the full G-Buffer (that is

rendered fullscreen). For a point light, we only want to use the full G-Buffer if the

bounding sphere is clipping the near- and far-clip plane of the frustum.

// Check if the light should be considered full screen

bool isFullScreen = light.Type == LightType.Directional ||

 light.Type == LightType.Ambient;

http:///

Implementing Deferred Rendering

368

if (isFullScreen || (cameraParams.ZNear > viewSpacePos.Z -
 light.Range && cameraParams.ZFar < viewSpacePos.Z + light.
Range))

{

 // Use SAQuad to process entire G-Buffer

 context.OutputMerger.DepthStencilState = depthDisabled;

 saQuad.ShaderResources = null;

 saQuad.Shader = shader; // Set appropriate light shader

 saQuad.Render();

}

else // Render volume (point light)

{

 ... see next step

}

22. In the case above, when the camera is not fully enclosed by the point light's volume,

we need to scale and position the volume mesh for the light (for example, a sphere).

Prior to rendering the mesh, we determine whether to cull front or back faces,

and whether to perform a greater-than/lesser-than depth test.

// Set appropriate shader

context.PixelShader.Set(shader);

context.VertexShader.Set(vertexShader);

MeshRenderer volume = pointLightVolume;

// Prepare world matrix

Matrix world = Matrix.Identity;

world.ScaleVector = Vector3.One * light.Range;

world.TranslationVector = Lights[i].Position;

volume.World = world;

var transposed = PerObject; // Transpose PerObject matrices

transposed.World = volume.World;

transposed.WorldViewProjection = volume.World *

 PerObject.ViewProjection;

transposed.Transpose();

context.UpdateSubresource(ref transposed, PerObjectBuffer);

if (cameraParams.ZFar < viewSpacePos.Z + light.Range)

{

 // Cull the back face and only render where there is

 // something behind the front face.

 context.Rasterizer.State = rsCullBack;

 context.OutputMerger.DepthStencilState = depthLessThan;

}

else

http:///

Chapter 10

369

{

 // Cull front faces and only render where there is

 // something located in-front of the back face.

 context.Rasterizer.State = rsCullFront;

 context.OutputMerger.DepthStencilState =
 depthGreaterThan;

}

volume.Render();

23. This completes the LightRenderer class. The following code snippet shows how

you might use this with the G-Buffer and render the result to screen:

// Initialize light renderer and lights

var lightRenderer = ToDispose(new LightRenderer(sphereRenderer,
 saQuad, gbuffer));

lightRenderer.Initialize(this);

// Define lights

lightRenderer.Lights.Add(new PerLight

{ Color = new Color4(0.2f, 0.2f, 0.2f, 1.0f),

 Type = LightType.Ambient

});

lightRenderer.Lights.Add(new PerLight

{ Color = Color.Red,

 Position = new Vector3(0, 8, 1),

 Range = 10,

 Type = LightType.Point

});

// Fill G-Buffer

...

gbuffer.Unbind(context);

// Lighting pass

context.PixelShader.SetConstantBuffer(0, perObjectBuffer);

// Prepare perObject for use in LightRenderer

perObject.ViewProjection = viewProjection;

...

perObject.InverseProjection =
 Matrix.Invert(projectionMatrix);

lightRenderer.PerObject = perObject;

lightRenderer.PerObjectBuffer = perObjectBuffer;

// Assign the Frustum (from projection matrix)

lightRenderer.Frustum = new
 BoundingFrustum(projectionMatrix);

http:///

Implementing Deferred Rendering

370

// Clear the render target, bind, render, unbind

lightRenderer.Clear(context);

lightRenderer.Bind(context);

lightRenderer.Render(); // Render lights

lightRenderer.Unbind(context);

// Restore default render targets

context.OutputMerger.SetRenderTargets(this.DepthStencilView
 , this.RenderTargetView);

// Render the light buffer using SA-Quad's default shader

saQuad.Shader = null; // use default shader

saQuad.ShaderResources = new[] { lightRenderer.SRV };

saQuad.Render();

Final result of the lighting pass

The previous screenshot shows the resulting output with 14 point lights and a single

ambient light.

http:///

Chapter 10

371

How it works…

In this recipe, we have implemented a method for culling light volumes based on their

depth in order to only render where the light is likely to have an impact upon the inal
rendering result. The following diagram shows four objects: A, B, C, and D, lit by three

point lights: 1, 2, and 3:

A diagram showing how light volumes are rendered. The outlined halves of light 1 and 2 represent the faces that are

rendered, while the outlined portions of A, C, and D represent which pixels will be affected after the depth tests.

The area of each light's volume that will be rendered is determined as follows:

 f The irst light is within the frustum near and far clip planes; therefore, we choose
to cull the front faces and set the depth test so that the light volume fragments will

only render if they have a depth greater than the contents of the depth buffer at that

point, that is, render when there is something in front of the back faces of the light

volume. The highlighted portion of object A shows the area of the G-Buffer that will

have lighting applied for the irst light.

 f The second light on the other hand partially lies beyond the far clip plane; therefore,

we choose to cull the back faces and set the depth test so that the light volume

fragments will only render if they have a depth lesser than the contents of the depth

buffer at that point, that is, render when there is something behind the front faces of

the light volume. The highlighted portions of objects C and D show the areas of the

G-Buffer that will have lighting applied for this light.

 f The third light fully encloses the frustum; therefore, we use a fullscreen quad to

process the entire buffer, applying lighting to all four objects. There is no depth

test in this instance.

http:///

Implementing Deferred Rendering

372

By using this approach, it is clear that the number of fragments that need to be processed by

the pixel shader are greatly reduced for the irst two lights. The last light, however, potentially
wastes time processing pixels that have no content. This could be addressed by using the

stencil buffer when rendering the geometry into the G-Buffer and enabling stencil testing

within the subsequent lighting pass. By using the stencil buffer, we could exclude any portions

of the screen that do not have anything rendered or that we do not want to participate in the

lighting pass. A prime example is the skybox of outdoor scenes, where potentially a large

portion of the screen does not require any lighting operations. As with render targets,

the depth buffer cannot be bound for reading and writing at the same time. In order for us to

use the depth buffer from the G-Buffer stage as both, an SRV to retrieve position information

and for depth testing, we have created a read-only DSV using DepthStencilViewFlags.

dsvDesc.Flags = DepthStencilViewFlags.ReadOnlyDepth;

There's more…

There are of course many ways to optimize the rendering of lights for deferred rendering.

One is to use the rasterizer stage's scissor test, allowing a region of the screen to be enabled

to render while culling anything that would be rendered outside this region. Another approach

for eficient lighting is tiled deferred rendering, where the screen is divided into imaginary

tiles. Lights that impact a speciic tile are grouped and processed together (also known as
light binning).

See also
 f Overview of a number of different deferred rendering techniques along with example

code can be found in Deferred Rendering for Current and Future Rendering Pipelines

by Andrew Lauritzen, Beyond Programmable Shading, SIGGRAPH 2010, July 2010

at http://visual-computing.intel-research.net/art/publications/
deferred_rendering/

 f Stencil buffer for deferred lights at http://www.altdevblogaday.
com/2011/08/08/stencil-buffer-optimisation-for-deferred-lights/

 f Light Indexed Deferred Rendering at https://code.google.com/p/
lightindexed-deferredrender/

 f Performance comparison of light indexed deferred rendering and tiled deferred

rendering at http://mynameismjp.wordpress.com/2012/03/31/light-
indexed-deferred-rendering/

http:///

Chapter 10

373

Incorporating multisample anti-aliasing
One of the problems with classic deferred rendering is that to support the built-in hardware

anti-aliasing, we must implement some extra shader code to correctly sample from the MSAA

G-Buffer. More recent improvements in Direct3D have made this problem easy to solve by using

the SV_SampleIndex and SV_Coverage pixel shader system-value semantics to run the

shader for each sample and to determine which samples are covered by the current fragment.

Getting ready

It is necessary that all render targets are created with multisampling enabled. This includes

the render targets of the G-Buffer, the depth buffer, and also the light accumulation buffer

of the light renderer. Our implementations of the GBuffer and LightRenderer classes

already support multisampling provided we pass in the correct sample description to the

GBuffer constructor, for example, new SampleDescription(4, 0).

Our existing ScreenAlignedQuadRenderer must be modiied to use the
multisampling pixel shader found in the There's more… section of Implementing a

screen-aligned quad renderer. A good way to organize this would be to check if the irst
ScreenAlignedQuadRenderer.ShaderResources SRV has a ShaderResourceView.
Description.Dimension of SharpDX.Direct3D.ShaderResourceViewDimension.
Texture2DMultisampled or not and choose the default pixel shader accordingly. This will

allow us to continue to use the same class when MSAA is on or off.

Be sure to have the Direct3D debug layer active during development. This provides useful

information to help address any incorrect coniguration of resources.

How to do it…

We'll begin by updating our existing HLSL code to read the G-Buffer. We'll then update each

of the LightRenderer pixel shaders.

1. First we need to use the multisampled textures of the G-Buffer by changing

Texture2D to Texture2DMS, as shown in the following HLSL snippet.

Texture2DMS<float4> Texture0 : register(t0);

Texture2DMS<uint> Texture1 : register(t1);

Texture2DMS<float4> Texture2 : register(t2);

Texture2DMS<float> TextureDepth : register(t3);

Unlike the Texture2D resource, the Texture2DMS resource requires a

<data_type> to be speciied, for example, Texture2DMS<float4>

http:///

Implementing Deferred Rendering

374

2. Next, we update the signature of our ExtractGBufferAttributes function to

use Texture2DMS resources and include one additional parameter to control which

sample index will be retrieved as highlighted in the following code snippet:

void ExtractGBufferAttributes(in PixelIn pixel,
 in Texture2DMS<float4> t0,
 in Texture2DMS<uint> t1,
 in Texture2DMS<float4> t2,
 in Texture2DMS<float> t3,
 in int sampleIndex,
 out GBufferAttributes attrs)
{
 int3 screenPos = int3(pixel.Position.xy, 0);
 float depth = t3.Load(screenPos, sampleIndex);
 attrs.Diffuse = t0.Load(screenPos, sampleIndex).xyz;
 attrs.SpecularInt = t0.Load(screenPos, sampleIndex).w;
 attrs.Normal = UnpackNormal(t1.Load(screenPos, sampleIndex));
 attrs.Emissive = t2.Load(screenPos, sampleIndex).xyz;
 attrs.SpecularPower = t2.Load(screenPos, sampleIndex).w * 50;
...
}

3. Our updated pixel shaders will use a similar approach to the multisampling pixel

shader of the screen-aligned quad; in addition, we will use the SV_Coverage pixel

shader input semantic. Let's go ahead and make these changes to each of the

LightRenderer pixel shaders. The following updated point light shader shows

the highlighted changes:

float4 PSPointLight(in PixelIn pixel,
 uint coverage: SV_Coverage,
 uint sampleIndex: SV_SampleIndex) : SV_Target
{
 GBufferAttributes attrs;
 // Is sample covered
 if (coverage & (1 << sampleIndex))
 {
 ExtractGBufferAttributes(pixel,
 Texture0, Texture1,
 Texture2, TextureDepth,
 sampleIndex,
 attrs);
...
 return float4(LightContribution(attrs, V, L, H, D,
 attenuation), 1.0f);
 }
 discard;
 return 0;
}

http:///

Chapter 10

375

This completes our HLSL changes. Before updating our render loop, be sure

to compile the MSAA pixel shaders within LightRenderer. By placing the

MSAA pixel shaders in a new ile and using the existing isMSAA variable within

CreateDeviceDependentResources to conditionally compile the MSAA

and non-MSAA shaders, we can support both scenarios.

4. Within our D3DApp class we need to enable multisampling for the swap chain,

as shown in the following code:

protected override SwapChainDescription1
CreateSwapChainDescription()

{ var description = base.CreateSwapChainDescription();

 description.SampleDescription =new SampleDescription(4,0);

 return description;

}

5. We can then put it all together in our D3DApp.Run method as shown in the

following code sample:

GBuffer gbufferMS = ToDispose(new
 GBuffer(this.RenderTargetSize.Width,

 this.RenderTargetSize.Height,

 new SampleDescription(4, 0),

 Format.R8G8B8A8_UNorm,

 Format.R32_UInt,

 Format.R8G8B8A8_UNorm));

gbufferMS.Initialize(this);

...

var lightRendererMS = ToDispose(new LightRenderer(sphereRenderer,
saQuad, gbufferMS));

... add lights

lightRendererMS.Initialize(this);

...

// Fill G-Buffer

...

gbufferMS.Unbind();

// Lighting pass

...

lightRendererMS.Unbind();

context.OutputMerger.SetRenderTargets(this.DepthStencilView, this.
RenderTargetView);

saQuadMS.Shader = null; // use default shader

saQuadMS.ShaderResources = new[] { lightRendererMS.SRV };

saQuadMS.Render();

http:///

Implementing Deferred Rendering

376

6. The following sequence of screenshots shows the comparison of the inal render
and G-Buffer contents between aliased and anti-aliased MSAA x4:

Comparison between aliased (top) and anti-aliased (bottom) from left: light pass, diffuse/albedo, normals, depth

How it works…

As discussed in the Implementing a screen-aligned quad renderer recipe, the

SV_SampleIndex input system-value semantic causes a pixel shader to be run for each

sample instead of for each pixel (for example, four times for 4xMSAA). This works great for a

screen-aligned quad as, by deinition, we know that when rendered it will fully cover all samples
and, therefore, all samples are required. However, when rendering our light volumes or other

smaller regions, we are potentially wasting time calculating the lighting for a sample that isn't

even covered by the current fragment. This is where we can use the pixel shader SV_Coverage

input semantic to determine if the current sample index is covered or not. Each bit of the

coverage value indicates whether that sample is covered by the fragment, for example,

a coverage value of 1 indicates that only the irst sample is covered whereas a value of 3

indicates that both, the irst and second samples are covered as shown in the following diagram:

http:///

Chapter 10

377

Relationship between MSAA rasterization, SV_Coverage and SV_SampleIndex

When we determine that the sample is covered, we execute the relevant operations;

otherwise, we exclude the pixel shader result via a call to discard.

There's more…

An optimization might be to detect edge pixels and store them in a stencil. We can then

perform an MSAA shading pass only for those pixels, while using another pass that only

reads a single sample for all other pixels. Or alternatively, run a blur over those pixels.

See also
 f HLSL semantics at http://msdn.microsoft.com/en-us/library/windows/

desktop/bb509647(v=vs.85).aspx

 f Rasterization Rules at http://msdn.microsoft.com/en-us/library/
windows/desktop/cc627092%28v=vs.85%29.aspx

http:///

http:///

11
Integrating Direct3D

with XAML and

Windows 8.1

In this chapter, we will cover the following topics:

 f Preparing the swap chain for a Windows Store app

 f Rendering to a CoreWindow

 f Rendering to a XAML SwapChainPanel

 f Loading and compiling resources asynchronously

Introduction

In this chapter, we will look at how to integrate Direct3D rendering into a Windows Store app

within Visual Studio 2013 using SharpDX and C#.

Extensible Application Markup Language (XAML) is an XML-based language created by

Microsoft that is most commonly used for creating UI layouts for .NET Framework applications.

XAML was originally used with the Windows Presentation Foundation (WPF) and Silverlight

but has also been used for designing worklows within Windows Worklow Foundation (WF).

Generally, a C# Windows Store app is built using XAML.

http:///

Integrating Direct3D with XAML and Windows 8.1

380

Preparing the swap chain for a Windows
Store app

In this recipe, we will look at the code necessary to create a new class inheriting from

the D3DApplicationBase class from Chapter 2, Rendering with Direct3D, that will

prepare a swap chain description for use in a Windows Store app for Windows 8.1.

We will also prepare a Windows Store compatible version of the Common library we

have used throughout this book.

Getting ready

To target Windows 8.1, we need to use Visual Studio 2013.

Before commencing, we will need to have the SharpDX 11.2 WinRT binaries at hand. At the

time of writing this book, this requires using the latest development package (2.5.1) found on

the SharpDX webpage http://sharpdx.org/news/. For the remainder of the chapter,

we will assume that these can be located upon navigating to .\External\Bin\
DirectX11_2-Signed-winrt under the solution location.

There exists a SharpDX NuGet package; however, at the time of

writing this book, the package has not yet been updated for Windows

8.1 and Direct3D 11.2.

How to do it…

We'll begin by creating a new class library and reusing a majority of the Common project

used throughout the book so far, then we will create a new class D3DApplicationWinRT

inheriting from D3DApplicationBase to be used as a starting point for our Windows Store

app's render targets.

1. Within Visual Studio, create a new Class Library (Windows Store apps)

called Common.WinRT.

http:///

Chapter 11

381

New Project dialog to create a class library project for Windows Store apps

2. Add references to the following SharpDX assemblies: SharpDX.dll, SharpDX.
D3DCompiler.dll, SharpDX.Direct2D1.dll, SharpDX.Direct3D11.dll,

and SharpDX.DXGI within .\External\Bin\DirectX11_2-Signed-winrt.

3. Right-click on the new project; navigate to Add | Existing item...; and select

the following iles from the existing Common project: D3DApplicationBase.
cs, DeviceManager.cs, Mesh.cs, RendererBase.cs, and

HLSLFileIncludeHandlers.hlsl, and optionally, FpsRenderer.cs

and TextRenderer.cs.

4. Instead of duplicating the iles, we can choose to Add As Link within the ile selection
dialog, as shown in the following screenshot:

Files can be added as a link instead of a copy

5. Any platform-speciic code can be wrapped with a check for the NETFX_CORE

deinition, as shown in the following snippet:
#if NETFX_CORE

 ...Windows Store app code

#else

 ...Windows Desktop code

#endif

http:///

Integrating Direct3D with XAML and Windows 8.1

382

6. Add a new C# abstract class called D3DApplicationWinRT.

// Implements support for swap chain description for

// Windows Store apps

public abstract class D3DApplicationWinRT

 : D3DApplicationBase

{

...

}

7. In order to reduce the chances of our app being terminated to reclaim system

resources, we will use the new SharpDX.DXGI.Device3.Trim function whenever

our app is suspended (native equivalent is IDXGIDevice3::Trim). The following

code shows how this is done:

public D3DApplicationWinRT()

 : base()

{

 // Register application suspending event

 Windows.ApplicationModel.Core

 .CoreApplication.Suspending += OnSuspending;

}

// When suspending hint that resources may be reclaimed

private void OnSuspending(Object sender, Windows.ApplicationModel.
SuspendingEventArgs e)

{

 // Retrieve the DXGI Device3 interface from our

 // existing Direct3D device.

 using (SharpDX.DXGI.Device3 dxgiDevice = DeviceManager

.Direct3DDevice.QueryInterface<SharpDX.DXGI.Device3>())

 {

 dxgiDevice.Trim();

 }

}

8. The existing D3DApplicationBase.CreateSwapChainDescription function is

not compatible with Windows Store apps. Therefore, we will override this and create

a SwapChainDescription1 instance that is compatible with Windows Store apps.

The following code shows the changes necessary:

protected override SharpDX.DXGI.SwapChainDescription1
CreateSwapChainDescription()

{

 var desc = new SharpDX.DXGI.SwapChainDescription1()

 {

 Width = Width,

 Height = Height,

http:///

Chapter 11

383

 Format = SharpDX.DXGI.Format.B8G8R8A8_UNorm,

 Stereo = false,

 SampleDescription.Count = 1,

 SampleDescription.Quality = 0,

 Usage = SharpDX.DXGI.Usage.BackBuffer |

 SharpDX.DXGI.Usage.RenderTargetOutput,

 Scaling = SharpDX.DXGI.Scaling.Stretch,

 BufferCount = 2,

 SwapEffect = SharpDX.DXGI.SwapEffect.FlipSequential,

 Flags = SharpDX.DXGI.SwapChainFlags.None

 };

 return desc;

}

9. We will not be implementing the Direct3D render loop within a Run method for our

Windows Store apps—this is because we will use the existing composition events

where appropriate. Therefore, we will create a new abstract method Render and

provide a default empty implementation of Run.

public abstract void Render();

[Obsolete("Use the Render method for WinRT", true)]

public override void Run()

{ }

How it works…

As of Windows 8.1 and DirectX Graphics Infrastructure (DXGI) 1.3, all Direct3D devices

created by our Windows Store apps should call SharpDX.DXGI.Device3.Trim when

suspending to reduce the memory consumed by the app and graphics driver. This reduces the

chance that our app will be terminated to reclaim resources while it is suspended—although

our application should consider destroying other resources as well. When resuming, drivers

that support trimming will recreate the resources as required.

We have used Windows.ApplicationModel.Core.CoreApplication rather than

Windows.UI.Xaml.Application for the Suspending event, so that we can use the class

for both an XAML-based Direct3D app as well as one that implements its own Windows.
ApplicationModel.Core.IFrameworkView in order to render to CoreWindow directly.

Windows Store apps only support a lip presentation model and therefore require that

the swap chain is created using a SharpDX.DXGI.SwapEffect.FlipSequential

swap effect; this in turn requires between two and 16 buffers speciied in the
SwapChainDescription1.BufferCount property. When using a lip model, it is also
necessary to specify the SwapChainDescription1.SampleDescription property with

Count=1 and Quality=0, as multisample anti-aliasing (MSAA) is not supported on the

swap chain buffers themselves. A lip presentation model avoids unnecessarily copying the
swap-chain buffer and increases the performance.

http:///

Integrating Direct3D with XAML and Windows 8.1

384

By removing Windows 8.1 speciic calls (such as the SharpDX.
DXGI.Device3.Trim method), it is also possible to implement

this recipe using Direct3D 11.1 for Windows Store apps that

target Windows 8.

See also
 f The Rendering to a CoreWindow and Rendering to a SwapChainPanel recipes show

how to create swap chains for non-XAML and XAML apps respectively

 f NuGet Package Manager can be downloaded from http://visualstudiogallery.
msdn.microsoft.com/4ec1526c-4a8c-4a84-b702-b21a8f5293ca

 f You can ind the lip presentation model on MSDN at http://msdn.microsoft.
com/en-us/library/windows/desktop/hh706346(v=vs.85).aspx

Rendering to a CoreWindow

The XAML view provider found in the Windows Store app graphics framework cannot be

modiied. Therefore, when we want to implement the application's graphics completely
within DirectX/Direct3D without XAML interoperation, it is necessary to create a basic view

provider that allows us to connect our DirectX graphics device resources to the windowing

infrastructure of our Windows Store app.

In this recipe, we will implement a CoreWindow swap-chain target and look at how to hook

Direct3D directly to the windowing infrastructure of a Windows Store app, which is exposed by

the CoreApplication, IFrameworkViewSource, IFrameworkView, and CoreWindow

.NET types.

This recipe continues from where we left off with the Preparing the swap chain for Windows

Store apps recipe.

How to do it…

We will irst update the Common.WinRT project to support the creation of a swap chain

for a Windows Store app's CoreWindow instance and then implement a simple Hello

World application.

1. Let's begin by creating a new abstract class within the Common.WinRT project, called

D3DAppCoreWindowTarget and descending from the D3DApplicationWinRT

class from our previous recipe. The default constructor accepts the CoreWindow

instance and attaches a handler to its SizeChanged event.

using Windows.UI.Core;

using SharpDX;

http:///

Chapter 11

385

using SharpDX.DXGI;

...

public abstract class D3DAppCoreWindowTarget

 : D3DApplicationWinRT

{

 // The CoreWindow this instance renders to

 private CoreWindow _window;

 public CoreWindow Window { get { return _window; } }

 public D3DAppCoreWindowTarget(CoreWindow window)

 {

 _window = window;

 Window.SizeChanged += (sender, args) =>

 {

 SizeChanged();

 };

 }

...

}

2. Within our new class, we will now override the CurrentBounds property and the

CreateSwapChain function in order to return the correct size and create the swap

chain for the associated CoreWindow.

// Retrieve current bounds of CoreWindow

public override SharpDX.Rectangle CurrentBounds

{ get

 {

 return new SharpDX.Rectangle((int)_window.Bounds.X,
(int)_window.Bounds.Y, (int)_window.Bounds.Width, (int)_window.
Bounds.Height);

 }

}

// Create the swap chain

protected override SharpDX.DXGI.SwapChain1 CreateSwapChain(

 SharpDX.DXGI.Factory2 factory,

 SharpDX.Direct3D11.Device1 device,

 SharpDX.DXGI.SwapChainDescription1 desc)

{

 // Create the swap chain for the CoreWindow

 using (var coreWindow = new ComObject(_window))

 return new SwapChain1(factory, device, coreWindow,

 ref desc);

}

http:///

Integrating Direct3D with XAML and Windows 8.1

386

This completes the changes to our Common.WinRT project. Next, we will create

a Hello World Direct3D Windows Store app rendering directly to the application's

CoreWindow instance.

3. Visual Studio 2013 does not provide us with a suitable C# project template to create

a non-XAML Windows Store app, so we will begin by creating a new C# Windows Store

Blank App (XAML) project.

4. Add references to the SharpDX assemblies: SharpDX.dll, SharpDX.Direct3D11.
dll, SharpDX.D3DCompiler.dll, and SharpDX.DXGI.dll. Also, add a reference

to the Common.WinRT project.

5. Next, we remove the two XAML iles from the project: App.xaml and

MainPage.xaml.

6. We will replace the previous application entry point, App.xaml, with a new static

class called App. This will house the main entry point for our application where

we start our Windows Store app using a custom view provider, as shown in the

following snippet:

using Windows.ApplicationModel.Core;

using Windows.Graphics.Display;

using Windows.UI.Core;

...

internal static class App

{

 [MTAThread]

 private static void Main()

 {

 var viewFactory = new D3DAppViewProviderFactory();

 CoreApplication.Run(viewFactory);

 }

 // The custom view provider factory

 class D3DAppViewProviderFactory : IFrameworkViewSource

 {

 public IFrameworkView CreateView()

 {

 return new D3DAppViewProvider();

 }

 }

 class D3DAppViewProvider

 : SharpDX.Component, IFrameworkView

 {

 ...

 }

}

http:///

Chapter 11

387

7. The implementation of the IFrameworkView members of D3DAppViewProvider

allows us to initialize an instance of a concrete descendent of the

D3DAppCoreWindowTarget class within SetWindow and to implement

the main application loop in the Run method.

Windows.UI.Core.CoreWindow window;

D3DApp d3dApp; // descends from D3DAppCoreWindowTarget

public void Initialize(CoreApplicationView applicationView)

{ }

public void Load(string entryPoint) { }

public void SetWindow(Windows.UI.Core.CoreWindow window)

{

 RemoveAndDispose(ref d3dApp);

 this.window = window;

 d3dApp = ToDispose(new D3DApp(window));

 d3dApp.Initialize();

}

public void Uninitialize() { }

public void Run()

{

 // Specify the cursor type as the standard arrow.

 window.PointerCursor = new CoreCursor(

 CoreCursorType.Arrow, 0);

 // Activate the application window, making it visible

 // and enabling it to receive events.

 window.Activate();

 // Set the DPI and handle changes

 d3dApp.DeviceManager.Dpi = Windows.Graphics.Display

 .DisplayInformation.GetForCurrentView().LogicalDpi;

 Windows.Graphics.Display.DisplayInformation

 .GetForCurrentView().DpiChanged += (sender, args) =>

 {

 d3dApp.DeviceManager.Dpi = Windows.Graphics.Display

 .DisplayInformation.GetForCurrentView().LogicalDpi;

 };

 // Enter the render loop. Note that Windows Store apps

 // should never exit here.

 while (true)

 {

 // Process events incoming to the window.

 window.Dispatcher.ProcessEvents(

 CoreProcessEventsOption.ProcessAllIfPresent);

http:///

Integrating Direct3D with XAML and Windows 8.1

388

 // Render frame

 d3dApp.Render();

 }

}

8. The D3DApp class follows the same structure from our previous recipes throughout

the book. There are only a few minor differences as highlighted in the following

code snippet:

class D3DApp: Common.D3DAppCoreWindowTarget

{

 public D3DApp(Windows.UI.Core.CoreWindow window)

 : base(window)

 { this.VSync=true; }

 // Private member fields

 ...

 protected override void CreateDeviceDependentResources(

 Common.DeviceManager deviceManager)

 {

 ... create all device resources

 ... and create renderer instances here

 }

 // Render frame

 public override void Render()

 {

 var context = this.DeviceManager.Direct3DContext;

 // OutputMerger targets must be set every frame

 context.OutputMerger.SetTargets(

 this.DepthStencilView, this.RenderTargetView);

 // Clear depthstencil and render target

 context.ClearDepthStencilView(

 this.DepthStencilView,

 SharpDX.Direct3D11.DepthStencilClearFlags.Depth |

 SharpDX.Direct3D11.DepthStencilClearFlags.Stencil

 , 1.0f, 0);

 context.ClearRenderTargetView(

 this.RenderTargetView, SharpDX.Color.LightBlue);

 ... setup context pipeline state

 ... perform rendering commands

 // Present the render target

 Present();

 }

}

http:///

Chapter 11

389

9. The following screenshot shows an example of the output using CubeRenderer

from the recipes in Chapter 3, Rendering Meshes, and overlaying the 2D text with

the TextRenderer class:

Output from the simple Hello World sample using the CoreWindow render target

How it works…

As mentioned, Visual Studio 2013 only provides templates for XAML-based Windows Store

apps in C#. Therefore, we started with the C# Blank App (XAML) and then removed the XAML

classes so that we could use our own view provider.

To create our own basic view provider, it is necessary for us to deine a view provider factory
and a view provider class: D3DAppViewProviderFactory and D3DAppViewProvider,

respectively, in our sample. Within the static Main entry-point, we then create an instance

of our view provider factory and tell the application singleton to run our factory using

CoreApplication.Run. Our custom view provider implements the four methods of

the IFrameworkView interface: Initialize, SetWindow, Load, and Run. Within

SetWindow, we create a swap chain for the provided CoreWindow and initialize our

D3DAppCoreWindowTarget concrete descendent class.

The D3DAppCoreWindowTarget class connects to the SizeChanged event of CoreWindow

within the constructor, provides the size of CoreWindow through the CurrentBounds

property, and inally creates a swap chain using the SharpDX.DXGI.SwapChain1

constructor that accepts a CoreWindow instance. The equivalent in native code would

be to use the IDXGIFactory2.CreateSwapChainForCoreWindow method.

// Create the swap chain for the CoreWindow

using (var coreWindow = new ComObject(_window))

 return new SwapChain1(factory, device, coreWindow, ref desc);

http:///

Integrating Direct3D with XAML and Windows 8.1

390

Within the D3DAppViewProvider.Run function, we initialize the dots per inch (dpi) for our

device resources and enter our main application message loop, invoking the event dispatcher

with a call to CoreDispatcher.ProcessEvents. After processing the events, we call the

D3DAppCoreWindowTarget.Render method. The message loop here replaces the use of

the D3DApplicationBase.Run method we have used in the rest of this book, necessitating

a few structural changes to our D3DAppCoreWindowTarget descendants, such as creating

renderer instances within the CreateDeviceDependentResources method. There is one

critical difference when rendering a frame with a lip model swapchain—and therefore all

Windows Store apps—it is that we must set the Output Merger render targets for every frame.

There's more…

Our C# DirectX Windows Store app implementation is very similar to how you would create a

DirectX Windows Store app in C++. Visual Studio provides two C++ DirectX templates, DirectX

App and DirectX App (XAML). This recipe is a roughly equivalent C# version of the C++

DirectX App template.

The ability to compile HLSL at runtime was unavailable in Windows Store apps on Windows

8, and manually copying the DLL to the build directory only worked within development

environments. However, Windows 8.1 now includes the latest version of D3DCompiler (47)

with the OS and is available for compiling HLSL at runtime within our Windows Store apps. The

downloadable source for this chapter includes the HLSLCompiler static class that provides

a wrapper for compiling shaders from HLSL iles within a Windows Store app; this includes a
synchronous and asynchronous implementation. As the D3DCompiler binaries are part of

the OS, there is no need to include a post-build event to copy the d3dcompiler_*.dll ile
to the build directory. This should still be done for desktop applications under Windows 8.1.

See also
 f For more information about the setup of a custom view provider, and application

and windows events, see How to set up your DirectX Windows Store app to display

a view on http://msdn.microsoft.com/en-us/library/windows/apps/
hh465077.aspx

 f The Loading and compiling resources asynchronously recipe includes an

implementation of compiling HLSL code from iles asynchronously

Rendering to an XAML SwapChainPanel
In this recipe, we will render to an XAML SwapChainPanel. This panel allows us to eficiently
render using Direct2D/Direct3D within an XAML Windows Store app. By integrating Direct3D

into XAML we are able to use XAML to create lexible and dynamic UIs for our DirectX
application. Or we can use the power of DirectX to implement advanced 2D or 3D rendering

techniques within a wider XAML application.

http:///

Chapter 11

391

A swap chain that participates within an XAML composition, such as the SwapChainPanel

swap chain, is also known as a composition swap chain. The SwapChainPanel XAML

element is new to Windows 8.1.

This recipe continues from where we left off with Preparing the swap chain for Windows

Store apps.

How to do it…

As with the previous recipe, we will irst update the Common.WinRT project to support the

creation of a swap chain for the Windows Store app XAML SwapChainPanel element.

We will then create a simple Hello World sample that demonstrates the integration of

Direct3D into XAML.

1. Let's begin by creating a new abstract class called D3DAppSwapChainPanelTarget

within the Common.WinRT project, descending from the D3DApplicationWinRT

class.

public abstract class D3DAppSwapChainPanelTarget

 : D3DApplicationWinRT

{

 private SwapChainPanel panel;

 private ISwapChainPanelNative nativePanel;

 public SwapChainPanel SwapChainPanel {

 get { return panel; }

 }

 public D3DAppSwapChainPanelTarget(SwapChainPanel panel)

 {

 this.panel = panel;

 nativePanel = ToDispose(ComObject.As

 <SharpDX.DXGI.ISwapChainPanelNative>(panel));

 this.panel.CompositionScaleChanged += (s, args) =>

 {

 ScaleChanged();

 };

 this.panel.SizeChanged += (sender, args) =>

 {

 SizeChanged();

 };

 }

...

}

http:///

Integrating Direct3D with XAML and Windows 8.1

392

2. Next, we retrieve the current size of the SwapChainPanel element taking into

consideration the scale composition (that is, zoom).

public override int Width

{ get

 {

 return (int)(panel.RenderSize.Width *

 panel.CompositionScaleX);

 }

}

public override int Height

{ get

 {

 return (int)(panel.RenderSize.Height *

 panel.CompositionScaleY);

 }

}

public override SharpDX.Rectangle CurrentBounds

{

 get

 {

 return new SharpDX.Rectangle(0, 0,

 (int)panel.RenderSize.Width,

 (int)panel.RenderSize.Height);

 }

}

3. Within Windows 8.1, a composition swap chain's visuals are exposed to touch scaling

and translation scenarios via a touch UI. The following code snippet shows how we

can apply this transformation:

protected void ScaleChanged()

{

 // Resize the SwapChain appropriately

 base.CreateSizeDependentResources(this);

 // Retrieve SwapChain2 reference and apply 2D scaling

 using (var swapChain2 = this.SwapChain.
QueryInterface<SwapChain2>())

 {

 // 2D affine transform matrix (inverse of scale)

 Matrix3x2 inverseScale = new Matrix3x2();

http:///

Chapter 11

393

 inverseScale.M11 = 1.0f / panel.CompositionScaleX;

 inverseScale.M22 = 1.0f / panel.CompositionScaleY;

 swapChain2.MatrixTransform = inverseScale;

 // Update the DPI (affects Direct2D)

 DeviceManager.Dpi = 96.0f * panel.CompositionScaleX;

 }

}

4. Next, we override the CreateSwapChainDescription method to apply settings

speciic to connecting a swap chain to the SwapChainPanel instance with the

IDXGISwapChainPanelNative instance.

protected override SwapChainDescription1
 CreateSwapChainDescription()

{

 // Create description in base D3DApplicationWinRT

 var desc = base.CreateSwapChainDescription();

 // Update as SwapChainPanel requires Stretch scaling

 desc.Scaling = Scaling.Stretch;

 return desc;

}

protected override SharpDX.DXGI.SwapChain1
CreateSwapChain(SharpDX.DXGI.Factory2 factory, SharpDX.Direct3D11.
Device1 device, SharpDX.DXGI.SwapChainDescription1 desc)

{

 // Create the swap chain for XAML composition

 var swapChain = new SwapChain1(factory, device, ref desc);

 // Attach swap chain to SwapChainPanel

 nativePanel.SwapChain = swapChain;

 return swapChain;

}

5. This completes our changes to the Common.WinRT project. Now we will use the

D3DAppSwapChainPanelTarget method within a Windows Store app.

6. Begin by creating a new C# Blank App (XAML) project and adding the SharpDX

and the Common.WinRT references.

7. Add a new blank page to the project, and name it D3DPanel.xaml.

http:///

Integrating Direct3D with XAML and Windows 8.1

394

8. Open the new XAML ile in the designer (Shift + F7), and change the Page tag to

SwapChainPanel, as shown in the following screenshot:

Changing the Page element to SwapChainPanel

9. Now, open the C# code for the XAML ile (F7), and change the class we inherit to

SwapChainPanel instead of Page.

public sealed partial class D3DPanel : SwapChainPanel

{

...

}

10. Within the default constructor, we will initialize a new instance of a D3DApp class

(that inherits from the D3DAppSwapChainPanelTarget class), and create the

rendering loop using the Windows.UI.Xaml.Media.CompositionTarget.
Rendering event.

D3DApp d3dApp;

public D3DPanel()

{

 this.InitializeComponent();

 // Only use Direct3D if outside of the designer

 if (!Windows.ApplicationModel.DesignMode

 .DesignModeEnabled)

 {

 d3dApp = new D3DApp(this);

 d3dApp.Initialize();

 CompositionTarget.Rendering +=

 CompositionTarget_Rendering;

 }

}

void CompositionTarget_Rendering(object sender, object e)

{

 if (d3dApp != null)

 d3dApp.Render();

}

http:///

Chapter 11

395

11. The D3DApp class itself is implemented in exactly the same way as we did for

the Rendering to a CoreWindow recipe, with the exception that it descends from

D3DAppSwapChainPanelTarget and the constructor looks like the following

code snippet:

class D3DApp: Common.D3DAppSwapChainPanelTarget

{

 public D3DApp(Windows.UI.Xaml.Controls.SwapChainPanel

 panel) : base(panel)

 {

 this.VSync = true;

 }

...

}

How it works…

The default constructor accepts a SwapChainPanel instance, attaches a handler to its

SizeChanged and CompositionScaleChanged events, and retrieves a reference to the

ISwapChainPanelNative interface. The SwapChainPanel XAML control descends from

Windows.UI.Xaml.Controls.Grid and therefore, supports layouts for child controls and

can be added as a child to other controls. As can be seen from the following sequence of

screenshots, the panel allows our Direct3D output to integrate with the XAML UI composition,

including user inputs, transitions, and storyboards:

SwapChainPanel with spinning cube, Hello World text, and an XAML stack panel child control, top: zoomed in and

zoomed out, bottom: transparency and XAML transformation applied through a storyboard.

http:///

Integrating Direct3D with XAML and Windows 8.1

396

Although the panel allows any number of immediate child controls as would a regular grid,

the Microsoft guidelines indicate that no more than eight immediate child controls should be

used. Another best practice is to avoid placing a control over the entire swap chain panel in

order to prevent overdraws. Each child control of the swap chain panel can then contain any

number of subsequent child controls depending on the element type; for example, the UI in

the top right of each of the previous screenshots is contained within a StackPanel instance

that is an immediate child of our SwapChainPanel implementation.

By retrieving the ISwapChainPanelNative interface from the SwapChainPanel

instance, we have connected our new swap chain to the panel through the

ISwapChainPanelNative.SwapChain property (natively this is done through the

ISwapChainPanelNative.SetSwapChain method). The panel then takes care of

associating the swap chain with the appropriate area on the screen.

The Windows.UI.Xaml.Media.CompositionTarget class is a static class that

represents the display surface on which our application is being drawn. The Rendering

event is ired for each frame, allowing us to integrate our Direct3D rendering with the XAML
scene. For applications that require more control over the frame rate, a separate rendering

loop thread can be implemented, provided there is appropriate synchronization in place to

prevent threading issues when resizing/rescaling during the render loop.

As with the previous recipe, we must set the Output Merger render targets in each frame of

our D3DApp class's Render method.

There's more…

When changing the size of a composition swap chain, it is possible to set the SwapChain2.
SourceSize property provided, the new size is less than or equal to the original swap chain

size. This identiies a portion of the swap chain to be used when presenting its contents to the
display and is more eficient than using the SwapChain.ResizeBuffers function which

forces the swap chain buffers to be physically resized.

There are a couple of other approaches to rendering Direct3D surfaces to XAML controls using

brushes. We can use the Windows.UI.Xaml.Media.Imaging.SurfaceImageSource

and Windows.UI.Xaml.Media.Imaging.VirtualSurfaceImageSource classes and

their corresponding DXGI interfaces, SharpDX.DXGI.ISurfaceImageSourceNative and

SharpDX.DXGI.IVirtualSurfaceImageSourceNative respectively. However, these

are not suitable for real-time rendering—instead they can be useful for effects or rendering

content that requires less frequent updates.

See also
 f For more information on XAML and DirectX interoperation within Windows Store

apps using SurfaceImageSource, see http://msdn.microsoft.com/en-us/
library/hh825871.aspx

http:///

Chapter 11

397

Loading and compiling resources
asynchronously

Within Windows Store apps, it is desirable to keep your application as responsive as possible

at all times. Instead of showing a static splash screen for the duration of compiling shaders

and loading resources, in this recipe we will initialize our renderers and resources using the

async/await keywords.

Getting ready

For this recipe, we will continue from where we left off in the previous recipe Rendering to an

XAML SwapChainPanel.

How to do it…

We will irst make changes to the SwapChainPanel C# class ile and then update the
CreateDeviceDependentResources implementation to support asynchronous resource

creation. Lastly, we will take a look at some of the additional changes necessary within the

code for loading meshes and textures.

1. Let's begin by opening the D3DPanel.xaml.cs ile and registering an event handler
for the Loaded event within the constructor.

public D3DPanel()

{

 this.InitializeComponent();

 this.Loaded += swapChainPanel_Loaded;

 CompositionTarget.Rendering +=

 CompositionTarget_Rendering;

}

private void swapChainPanel_Loaded(object sender,
 RoutedEventArgs e)

{

...

}

2. We will move the initialization of the D3DApp descendent of

D3DAppSwapChainPanelTarget from the default constructor into the Loaded

event handler.

// Only use Direct3D if outside of the designer

if (!Windows.ApplicationModel.DesignMode.DesignModeEnabled)

{

http:///

Integrating Direct3D with XAML and Windows 8.1

398

 d3dApp = new D3DApp(this);

 d3dApp.Initialize();

}

3. Within the D3DApp class, we update the CreateDeviceDependentResources

signature to include the async keyword as shown in the following snippet:

protected async override void
 CreateDeviceDependentResources(Common.DeviceManager
 deviceManager)

{

...

}

4. Now when we compile our shaders, load our meshes, or initialize our renderer

instances, we can do something like the following code snippet:

// Compile shader, the event caller will continue executing

using (var bytecode = await HLSLCompiler.
CompileFromFileAsync(@"Shaders\VS.hlsl", "VSMain", "vs_5_0"))

{ ... }

// Load mesh

var meshes = await Mesh.LoadFromFileAsync("Character.cmo");

// Other CPU-bound work

await Task.Run(() =>

{

... (e.g. initialize renderers)

});

Awaiting an asynchronous operation means that although our event

handler runs on a background thread, the logic within it still runs

in a synchronous manner. Where appropriate, we can also start

multiple tasks to take advantage of parallel processing (for example,

to initialize multiple renderers upon separate threads).

5. A full example of the CompileFromFileAsync function from the previous snippet is

shown in the following code snippet:

public static async Task<ShaderBytecode>
 CompileFromFileAsync(string hlslFile, string entryPoint,
 string profile, ShaderMacro[] defines = null)

{

 if (!Path.IsPathRooted(hlslFile))

 hlslFile = Path.Combine(Windows.ApplicationModel

 .Package.Current.InstalledLocation.Path,

http:///

Chapter 11

399

 hlslFile);

 CompilationResult result = null;

 // Compile the HLSL in a separate thread and await it

 await Task.Run(() =>

 {

 var shaderSource = SharpDX.IO.NativeFile

 .ReadAllText(hlslFile);

 // Compile the shader file

 ShaderFlags flags = ShaderFlags.None;

#if DEBUG

 flags |= ShaderFlags.Debug |

 ShaderFlags.SkipOptimization;

#endif

 var includeHandler = new HLSLFileIncludeHandler(

 Path.GetDirectoryName(hlslFile));

 result = ShaderBytecode.Compile(shaderSource,

 entryPoint, profile, flags,

 EffectFlags.None, defines, includeHandler,

 Path.GetFileName(hlslFile));

 if (!String.IsNullOrEmpty(result.Message))

 throw new CompilationException(

 result.ResultCode, result.Message);

 });

 return result;

}

6. To check when resources are ready, we use a new ResourcesReady lag as shown
in following code snippet:

bool ResourcesReady = false;

protected async override void
 CreateDeviceDependentResources(Common.DeviceManager
 deviceManager)

{

 ResourcesReady = false;

...

 ResourcesReady = true;

}

public override void Render()

{

 if (!ResourcesReady)

 return;

 var context = this.DeviceManager.Direct3DContext;

...

}

http:///

Integrating Direct3D with XAML and Windows 8.1

400

7. By incorporating some XAML on the MainPage.xaml to show a loading screen or

menu, we can keep our application responsive while the resources continue to load.

The following screenshot shows a simple example running in the Windows Store app

device simulator:

Running in simulator—top: showing loading message while compiling shaders and loading meshes.

How it works…

The async and await keywords are a language construct that leverages asynchronous

support in the .NET Framework 4.5. By using the async modiier, you specify that a method,
lambda expression, or anonymous method is asynchronous. The await operator on the other

hand, is applied to a task in an asynchronous method (a method decorated with the async

modiier) in order to suspend the execution of the method until the awaited task is completed.

In the previous recipe, where we were initializing the D3DApp instance within the constructor,

the CreateDeviceDependentResources event handler ends up running synchronously

regardless of the async/await commands used. By moving this initialization out of

the constructor and into the Loaded event, we are then able to take advantage of an

asynchronous implementation.

http:///

Chapter 11

401

The async keyword works for us here because CreateDeviceDependentResources

is an overridden event handler attached to the DeviceManager instance within the

D3DApplicationBase class constructor as shown here: DeviceManager.OnInitialize
+= CreateDeviceDependentResources;

As the CreateDeviceDependentResources event handler will now continue running

asynchronously while the CompositionTarget.Rendering event ires for each frame, we
must set a lag to indicate when the resources are ready to be used and then check this lag
within the D3DApp.Render function before attempting to render. With the main Direct3D

application class implementing asynchronous resource creation, there is no need to use the

async/await keywords within other renderers' CreateDeviceDependentResources

functions. If we did this, it would be necessary to also check when those renderers' resources

are ready before attempting to render a frame.

Loading a mesh at runtime uses the await keyword as well, because the Common.Mesh.
LoadFromFileAsync function utilizes the Windows.Storage.StorageFile class for ile
I/O in Windows Store app. The CompileFromFileAsync method provides a wrapper around

the Direct3D 11 Compile function, implementing the async/await keywords. The ability to

compile shaders at runtime within Windows Store apps is new to Windows 8.1. For Windows

Store apps under Windows 8.0, it was possible to do so within development environments and

only if copying the library manually to the build directory.

There's more…

In the downloadable content for this book, available on the Packt website, the projects

Ch11_03CreatingResourcesAsync and Common.WinRT also include changes necessary

to load textures from a ile. Windows Store apps do not support the ShaderResourceView.
FromFile function and instead require you to provide your own DirectDraw Surface (DDS)

ile and image-loading routines.

The static class Common.LoadTexture includes the following functions:

 f LoadBitmap: This loads a bitmap using Windows Imaging Component (WIC)

 f CreateTexture2DFromBitmap: This creates a Texture2D resource from

SharpDX.WIC.BitmapSource

 f SRVFromFile and LoadFromFile: These either load a DDS ile using a C# ported
version of DDS code from Microsoft or load regular image formats using WIC.

They return a ShaderResourceView method and/or a SharpDX.Direct3D11.
Resource (Texture1D/Texture2D/Texture3D) function.

The only change to the updated MeshRenderer class in the completed project for this recipe

is to call LoadTexture.SRVFromFile instead of ShaderResourceView.FromFile,

which is no longer available with Windows Store apps.

http:///

Integrating Direct3D with XAML and Windows 8.1

402

See also
 f Asynchronous programming with the async and await keywords at

http://msdn.microsoft.com/en-us/library/hh191443.aspx

 f For compiling mesh objects, see the Loading a static mesh from a ile recipe in

Chapter 3, Rendering Meshes

http:///

Further Reading

 f MeshLab, developed at the Visual Computing Lab of ISTI - CNR.

 f Blender, by Blender Foundation at http://www.blender.org/.

 f Compute Shader Filters, Alamia M., which can be found at

http://www.codinglabs.net/tutorial_compute_shaders_filters.aspx.

 f GPU PerfStudio 2, AMD.

 f DirectX 10 Tutorials, Anguelov B., which can be found at

http://takinginitiative.wordpress.com/directx10-tutorials/.

 f Phong Tessellation (ACM SIGGRAPH Asia 2008 papers), Boubekeur T. and Alexa M.

 f Fluid simulation: SIGGRAPH 2006 course notes (ACM SIGGRAPH 2006 Courses.

Boston, Massachusetts), Bridson R., R. Fedkiw, M. Müller-Fischer.

 f Exporting Animated Models From Blender To XNA, Brown J., which can be found at
http://blog.diabolicalgame.co.uk/2011/07/exporting-animated-
models-from-blender.html.

 f Nvidia-mesh-tools, Castaño I. The NVIDIA mesh processing tools is a collection

of tools and libraries, designed to be integrated in game tools and asset

conditioning pipelines.

 f Screen-aligned Quads, Chapman J., which can be found at

http://www.john-chapman.net/content.php?id=6.

 f SSAO Tutorial, Chapman J., which can be found at http://john-chapman-
graphics.blogspot.com.au/2013/01/ssao-tutorial.html.

 f The elements of nature: interactive and realistic techniques (ACM SIGGRAPH 2004

Course Notes), Deusen O., D. S. Ebert, R. Fedkiw, F. K. Musgrave, P. Prusinkiewicz, D.

Roble, J. Stam, and J. Tessendorf.

 f Energy Conservation in Games, Driscoll R., which can be found at http://www.
rorydriscoll.com/2009/01/25/energy-conservation-in-games/.

http:///

Further Reading

404

 f Vertex skinning, Galanakis R., which can be found at

http://tech-artists.org/wiki/Vertex_Skinning.

 f Introduction to the Direct3D 11 Graphics Pipeline (nvision 08), Gee K.

 f Open Asset Import Library (Assimp), Gessler A., T. Schulze, K. Kulling,

and D. Nadlinger.

 f General-Purpose Computation on Graphics Processing Units, (GPGPU.org),

which can be found at http://gpgpu.org/.

 f Deferred Shading, Hargreaves S.

 f Automatic pre-tessellation culling, Hasselgren J., J. Munkberg, and T. Akenine-Moller.

 f Dual-Paraboloid Relections, Hayward K., which can be found at
http://graphicsrunner.blogspot.com.au/2008/07/dual-paraboloid-
reflections.html.

 f View-independent environment maps, and Proceedings of the ACM SIGGRAPH/

EUROGRAPHICS workshop on Graphics hardware, Heidrich W., and H.P. Seidel.

 f Specular BRDF Reference, Karis B., which can be found at http://
graphicrants.blogspot.com.au/2013/08/specular-brdf-reference.
html.

 f Real-time creased approximate subdivision surfaces, Kovacs D. J., Mitchell, S. Drone,

and D. Zorin, and Proceedings of the 2009 symposium on Interactive 3D graphics

and games.

 f Deferred Rendering for Current and Future Rendering Pipelines, Lauritzen A.,

and Beyond Programmable Shading (SIGGRAPH 2010), which can be found at
http://visual-computing.intel-research.net/art/publications/
deferred_rendering/.

 f Computing Tangent Space Basis Vectors for an Arbitrary Mesh, Lengyel E.,

which can be found at http://www.terathon.com/code/tangent.html.

 f Mathematics for 3D Game Programming and Computer Graphics, Third Edition,

Course Technology Press, Lengyel E.

 f Approximating Catmull-Clark subdivision surfaces with bicubic patches, Loop C.

and S. Schaefer.

 f Approximating subdivision surfaces with Gregory patches for hardware tessellation

(SIGGRAPH Asia 2009 papers), Loop C., S. Schaefer, T. Ni, and I. Castaño.

 f Introduction to 3D Game Programming with DirectX 11, Mercury Learning and

Information, Luna F.

 f A fast, small-radius GPU median ilter, McGuire M., and ShaderX6: Advanced

Rendering Techniques, W. F. Engel, Course Technology.

 f Pipelines for Direct3D Version 11, Microsoft, which can be found at
http://msdn.microsoft.com/en-us/library/windows/hardware/
ff569022(v=vs.85).aspx.

http:///

Appendix

405

 f DirectX and XAML interop (Windows Store apps using C++ and DirectX), Microsoft

2013, which can be found at http://msdn.microsoft.com/en-us/library/
windows/desktop/hh825871.aspx.

 f Immediate and Deferred Rendering, Microsoft, which can be found at
http://msdn.microsoft.com/en-us/library/windows/desktop/
ff476892(v=vs.85).aspx.

 f DirectXTex texture processing library, S. Hargreaves and C. Walbourn, Microsoft,

and Codeplex: DirectXTex, a shared source library for reading and writing DDS iles.

 f Benchmarking C#/.Net Direct3D 11 APIs vs native C++, Mutel A., which can be

found at http://code4k.blogspot.com.au/2011/03/benchmarking-cnet-
direct3d-11-apis-vs.html.

 f Gpu gems 3, Nguyen H, Addison-Wesley Professional.

 f Eficient substitutes for subdivision surfaces in feature-quality games

(ACM SIGGRAPH ASIA 2010 Courses), Ni T.

 f Eficient substitutes for subdivision surfaces (ACM SIGGRAPH 2009 Courses),

Ni T., I. Castaño, R. Peters, J. Mitchell, P. Schneider, and V. Verma.

 f Feature-adaptive GPU rendering of Catmull-Clark subdivision surfaces, Niessner M.,

C. Loop, M. Meyer, and T. Derose.

 f Analysis and Implementation of Local Subdivision Algorithms in the GPU, Nunes G.,

R. Braga, A. Valdetaro, A. Raposo, and B. Feijo. Proceedings of the 2011 Brazilian

Symposium on Games and Digital Entertainment, IEEE Computer Society.

 f NVIDIA Graphics SDK 11 Direct3D.

 f Practical implementation of dual paraboloid shadow maps, Osman B., M.

Bukowski, and C. McEvoy, and Proceedings of the 2006 ACM SIGGRAPH

symposium on Videogames.

 f Reconstructing position from depth, Pettineo M., which can be found at
http://mynameismjp.wordpress.com/2009/03/10/reconstructing-
position-from-depth/.

 f Position from depth 3: Back in the habit, Pettineo M., which can be found at
http://mynameismjp.wordpress.com/2010/09/05/position-from-
depth-3/.

 f Average luminance calculation using a compute shader, Pettineo M., which can

be found at http://mynameismjp.wordpress.com/2011/08/10/average-
luminance-compute-shader/.

 f Compact Normal Storage for Small G-Buffers, Pranckevičius A., which can be found

at http://aras-p.info/texts/CompactNormalStorage.html.

 f Gaussian blur with linear sampling, Rákos D., which can be found at http://
rastergrid.com/blog/2010/09/efficient-gaussian-blur-with-
linear-sampling/.

http:///

Further Reading

406

 f Real-time local displacement using dynamic GPU memory management, Schäfer

H., B. Keinert, and M. Stamminger, and Proceedings of the 5th High-Performance

Graphics Conference.

 f Creating DirectX Interop Libraries for XAML Metro Style Apps Part 1: Direct2D,

Skakun F., which can be found at http://labs.vectorform.com/2012/05/
creating-directx-interop-libraries-for-xaml-metro-style-apps-
part-1-direct2d/.

 f Ciclos Town - 10 Male Characters, Teixeira R., which can be found at.

Blendswap.com.

 f Silk Gaming Library: Vertex skinning a mesh, Trullinger M., which can be found

at http://silk-ge.blogspot.com.au/2010/11/tutorial-vertex-
skinning.html.

 f Understanding Shader Model 5.0 with DirectX 11, Valdetaro A., G. Nunes, A.

Raposo, and B. Feijó.

 f High-quality shadows with improved paraboloid mapping, Vanek J., J. Navrátil,

A. Herout, and P. Zemčík. Proceedings of the 7th international conference on

Advances in Visual Computing (Volume Part I), Springer Verlag.

 f Curved PN triangles, Vlachos A., J. Peters, C. Boyd, and J. L. Mitchell,

and Proceedings of the 2001 symposium on Interactive 3D graphics.

 f Spherical, Cubic, and Parabolic Environment Mappings, The University of

North Carolina, Zimmons P.

 f Dual Paraboloid Mapping In the Vertex Shader, Zink J, which can be

found at http://members.gamedev.net/JasonZ/Paraboloid/
DualParaboloidMappingInTheVertexShader.pdf.

 f Practical Rendering and Computation with Direct3D 11, Zink J., M. Pettineo,

and J. Hoxley, A. K. Peters, Ltd.

http:///

Index
Symbols

3D objects

lines 45

points 45

traingles 45

A

Adapter property 36

afine transformation matrix 136
ambient light 357, 360

ambient relection 109
AMD GPU PerfStudio

URL 44

animation blending 153

animation transforms 151

Append/Consume buffers 15

armature 131

axis-aligned bounding boxes (AABB) 264

axis-lines renderer class 70

B

back-face culling

about 80, 185

performing, face normal used 186, 187

performing, vertex normals used 187, 188

bicubic Bezier surfaces

tessellating 171-177

billboards 291

bind pose 132

Blender scenes

exporting to Autodesk FBX scenes, URL 130

blend-weights 132

Blinn-Phong pixel shader 308

Blinn-Phong shaders

about 117

implementing 115

bone partitioning 139

bones

animating 147-153

bone-weights 132

box blur

implementing 234-241

brightness

adjusting 231

buffer resource 14

BulletSharp library

about 258

downloading 258

Byte address buffer 15

C

Catmull-Clark subdivision surfaces 176

centroid method 81

CheckFormatSupport method 12

CheckThreadingSupport function 304

classic deferred rendering technique 334

ClearRenderTargetView command 31

clip space. See World/View/Projection (WVP)

collision detection 264

Collosseum cube map 305

COM 8

command list 11

Common.DeviceManager class 48

Common.HLSLCompiler class 104

Common.HLSLCompiler.CompileFromFile

method 104

http:///

408

Common.LoadTexture class

CreateTexture2DFromBitmap function 401

LoadBitmap function 401

LoadFromFile function 401

SRVFromFile function 401

CompileComputeShader function 286

compiled mesh object (CMO) models 202

Component Object Model. See COM

Compute Shader (CS) stage 22

ComputeShader property 22

compute shaders

about 223

advantages 224

manipulations 234

running 224-231

using 223

constant buffers

about 15

C# structures, using with HLSL constant

buffers 107, 108

preparing, to perform lighting operations

99-107

preparing, to perform material operations

99-107

contrast

adjusting 231

contrast adjustment shader

implementing 232

convolution matrix 239

CoreWindow

rendering to 384-390

CorrectStructA 108

CPU-based physics engine. See physics

engine

CreateDeviceDependentResources()

method 50, 70, 96, 336, 337

CreateSizeDependentResources

method 50, 53

CreateSwapChain function 385

Crytek

URL 334

cube

rendering 92-99

cube map 118, 305

D

D3DApp class 69, 398

D3DApplicationBase.CreateSwapChainDe-

scription() method 82

D3DApplicationDesktop class 50

D3DApp.Run method 259

D3DApp.Run() method 77

De Casteljau’s algorithm 171

deferred context 10

deferred rendering 333

Depth Stencil View (DSV) 14, 56, 312,

327, 337

desaturation 229

desc.BindFlags method 227

device context

about 9

deferred context 10

immediate context 9

DeviceContext.DomainShader property 19

DeviceContext.DrawInstancedIndirect method

291

DeviceContext.HullShader property 19

device dependent resources

creating 51-56

working 57, 58

Device manager class 46

DeviceManager.OnInitialize event 51

diffuse relection color 109
diffuse shaders

implementing 113, 114

Direct3D

about 7

components 8

Finalization stage 28

initialization stage 28

Render loop stage 28

Direct3D 11

improved multithreading support 295, 304

Direct3D 11.1

about 22

initializing 32-37

Direct3D 11.2

enhancements 23

initializing 32-37

http:///

409

Direct3D 11 application

building, with C# 24-28

building, with SharpDX 25, 28

inalization stage 31
initialization 29, 30

rendering loop 30

Direct3D application

debugging 39-44

Direct3D errors, debugging 38

pixel, debugging 39

resources, tracking 39

Direct3D, components

command list 11

device 8, 9

device context 9

HLSL 16

resources 12

states 12

swap chain 11

Direct3D integration, into Windows store apps

about 379

CoreWindow, rendering to 384-390

resources, compiling asynchronously 397-

401

resources, loading asynchronously 397-402

swap chain, preparing 380-383

XAML SwapChainPanel, rendering to 390-396

Direct3D renderer class

about 59

creating 59, 60

DirectCompute 22, 223

DirectDraw Surface (DDS) ile 401
directional light 357, 360

DirectX Graphics Infrastructure (DXGI) 11

DirectX Graphics Infrastructure (DXGI) 1.3

383

DirectX Tool Kit

URL 91

Dispatch Pipeline

about 21

Compute Shader (CS) stage 22

displacement adaptive tessellation

about 220

applying, to triangle tessellation hull

shader 220-222

optimizing 220

displacement decals

implementing 212-219

displacement mapping

about 191-211

working 208-210

Domain Shader (DS) stage 19

DoRender implementation 287

DoRender method 97

DrawIndexed method 80

dual paraboloid environment mapping

implementing 322-330

dual paraboloid map (DPM) 322

DXGI 1.2

enhancements 23

DXGI 1.3

enhancements 24

dynamic Level-of-Detail (LoD)

used, for improving silhouettes 188, 189

E

edges

detecting, Sobel edge-detection ilter used
246-250

emissive lighting 110

Event Tracing for Windows (ETW) 23

Extensible Application Markup Language. See

XAML

F

Fast Fourier Transform (FFT) 274

ile
static mesh, loading from 121-123

Filter property 89

limmering 57
lip presentation model

about 383

URL 384

fragments 58

frustum culling 78

http:///

410

G

Gaussian blur ilter
implementing 243-245

G-Buffer

illing 334-345
reading 352-356

GBuffer class 344

General-purpose computing on graphics pro-

cessing units. See GPGPU

geometry buffer. See G-Buffer

Geometry Shader (GS) stage 19

GetParent method 36

GPGPU 7

GPUView 304

graphics pipeline

about 16

Domain Shader (DS) stage 19

Geometry Shader (GS) stage 19

Hull Shader (HS) stage 18

Input Assembler (IA) stage 18

Output Merger (OM) stage 21

Pixel Shader (PS) stage 21

Rasterizer Stage (RS) 20

Stream Output (SO) stage 20

Tessellator stage 19

Vertex Shader (VS) stage 18

H

HasTexture property 126

High Dynamic Range (HDR) 364

high-dynamic-range (HDR) rendering 118

High Level Shader Language (HLSL) 16

HLSL constant buffer

C# structures, using with 107, 108

URL 109

HLSL (High-level Shader Language) 156

homogeneous projection space 75

Hull Shader (HS) stage 18

I

IDXGIFactory2 documentation

URL 38

image processing techniques

box blur, implementing 234

compute shader, running 224-231

contrast adjustment shader, implementing

231

Gaussian blur ilter, implementing 243-245
horizontal blur compute shader, creating 235

luminance histogram, calculating 250-255

Sobel edge-detection ilter, implementing 246
immediate context 10

Index buffer 15

Input Assembler (IA) 45, 127

Input Assembler (IA) stage 18, 134

input layout 75, 92

Intel® GPA

URL 44

interpolated VertexShaderOutput structure

75

interpolation modiiers
centroid 81

linear 81

nointerpolation 81

noperspective 81

sample 81

inverse transpose matrix

URL 108

K

kernel 239

L

Lambert azimuthal equal-area projection

(LAEAP) 345

left-handed coordinate system 68

light direction 109

lighting

about 117, 118

adding 109-113

Linear interpolation (LERP)

about 31, 152, 229

working 233

linear method 81

LoadFromFile function 401

luminance histogram, image

calculating 250-255

http:///

411

M

mask 239

material

adding 109-113

properties 109

material diffuse color 109

material, properties

ambient relection 109
diffuse relection color 109
emissive lighting 110

material diffuse color 109

specular relection 110
mesh

about 91

renderer 123-129

mesh renderer

bones, loading 139-146

MeshRenderer class 334

Microsoft Developer Network (MSDN) 32

Mipmaps 117

MSAA

about 82, 333, 383

enabling 82, 83

incorporating 373-377

multiple lights

adding 357-372

Multiple Render Targets (MRT) 13, 334, 337

multiple textures

referencing, in material 192-194

multisample anti-aliasing. See MSAA

multithreaded dynamic cubic environment

mapping

implementing 305-321

multithreaded rendering

benchmarking 296-304

N

nointerpolation method 81

noperspective method 81

normal mapping

about 194

used, for adding surface detail 194-204

Nsight Visual Studio Edition (NVIDIA)

URL 44

N-tap ilter 239
NuGet Package Manager

URL 384

O

object space or model space 79

ocean waves

simulating 266-272

octaves 272

OnInitialize event 52

Output Merger (OM) stage 16, 21, 53

P

packoffset HLSL keyword

URL 109

parallax occlusion mapping 211

parametric surfaces

tessellating 178, 179

particles

rendering 274-289

PerArmature.Size() method 136

Perlin Noise 274

PerMaterial buffer 121

PerMaterialBuffer instance 126

PerMaterialBuffer property 128

PerObject constant buffer 128

Phong shaders

implementing 114, 115

Phong tessellation

about 179

advantage 188

impact 184

used, for reining triangle meshes 179-185
physics engine

BulletSharp, using 258

using 257-263

working 264, 265

Pixel Shader (PS) stage 21

point light 357, 360

Present method 37

http:///

412

primitives

loop, rendering 77, 78

renderers 79, 80

rendering 61-74

resource, initializing 75, 76

working 74, 75

programmable pipeline, stages

Dispatch Pipeline 21

graphics pipeline 16

Prt Scr key 41

PSMain function 85

public void Run() method 47

Q

quad renderer 73

QuadRenderer class 79, 120

quaternion 152

R

ragdoll physics 153

Rasterizer Stage (RS) 20, 53

RasterizerStateDescription.IsFrontCounter-

Clockwise property 80

Read/Write buffers 15

references 403

renderer 59

RendererBase class 60

render target view (RTV) 13, 55

Render Target View (RTV) 326, 363

resource

about 12

buffer resource 14

compiling asynchronously 397-401

loading asynchronously 397-401

textures 12, 13

views 13, 14

rest pose 132

right-handed coordinate system

using 119, 121

rigid bodies 153

Run() method 50

S

sample method 81

sample rendering framework

about 46

Device manager class 46

Direct3D application class 46

project, preparing 46

Renderer class 46

using 47-50

scissor test 372

screen-aligned quad renderer

implementing 346-352

screen space ambient occlusion (SSAO) 346

separable convolution ilters 234
SetViewport method 55

Shader Model 4 (SM4) 16, 211

Shader Model 5 (SM5) 16

Shader Resource View (SRV) 13, 224, 326,

363

Shader Resource Views (SRVs) 125, 336

SharpDX

URL 380

SharpDX API 7

SharpDX.Component.RemoveAndDispose

method 52

SharpDX.Component.ToDispose<T>(T obj)

method 50

skin matrix 137

SkinningVertex structure 133

SkinVertex method 135

Sobel edge-detection ilter
used, for detecting edges 246-250

Sobel edge detector 224

SpecularBlinnPhong method 117

SpecularPhong method 117

specular relection 110
sphere

rendering 92-99

spherically linear interpolate (Slerp) 152

sprites 291

SRVFromFile function 401

state types 12

static mesh

loading, from ile 121-123

http:///

413

Stream Output (SO) stage 20

Structured buffer 15

surface detail

adding, with displacement mapping 204-211

adding, with normal mapping 194-204

swap chain 11

preparing, for Windows Store apps 380-383

T

Tangent Bitangent Normal (TBN) matrix 202

tangent vector 194

tessellation

about 155

applying 155

buffers, preparing for 156-158

optimizing, through back-face culling 185,

189

optimizing, through LoD 185, 189

performing, on bicubic Bezier surfaces 171-

177

performing, on parametric surfaces 178, 179

performing, on quad 158--170

performing, on triangle 158-170

using 156

vertex shader, preparing for 156-158

Tessellator stage 19

texels 12

texture cube 118, 305

texture sampling

implementing 83-89

tiled deferred rendering 372

ToDispose method 50

tone mapping 118

triangle meshes

reining, with Phong tessellation 179-185
triangle renderer 72

TriangleRenderer class 79, 86

U

UAV 17, 22

unordered access buffers 15

Unordered Access View (UAV) 224

UV coordinate 88

UV mapping 116

UVW coordinate 88

V

vertex buffers

about 15, 79

preparing, to perform lighting

operations 99-107

preparing, to perform material

operations 99-107

vertex layout

updating 92

vertex shader

preparing 131-138

Vertex Shader (VS) stage 18

vertex skinning 131

view frustum 78

Visual Shader Graph

about 92

creating 192

Visual Studio graphics content pipeline

build targets for C#, URL 130

URL 130

W

Windows Display Driver Model (WDDM) 22

Windows Imaging Component (WIC) 401

Windows Presentation Foundation (WPF) 379

Worklow Foundation (WF) 379

X

XAML 379

XAML SwapChainPanel

rendering to 390-396

Z

z-ighting 57

http:///

http:///

Thank you for buying

Direct3D Rendering Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its irst book "Mastering phpMyAdmin for Effective MySQL

Management" in April 2004 and subsequently continued to specialize in publishing highly focused

books on speciic technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and

customizing today's systems, applications, and frameworks. Our solution based books give you the

knowledge and power to customize the software and technologies you're using to get the job done.

Packt books are more speciic and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what

you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,

cutting-edge books for communities of developers, administrators, and newbies alike.

For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be

sent to author@packtpub.com. If your book idea is still at an early stage and you would like to

discuss it irst before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing

experience, our experienced editors can help you develop a writing career, or simply get some

additional reward for your expertise.

http:///

DirectX 11.1 Game

Programming
ISBN: 978-1-84969-480-3 Paperback: 146 pages

A step-by-step guide to creating 3D applications and

interactive games in Windows 8

1. Learn new features in Direct3D 11.1

2. Discover how to develop a multithreaded

pipeline game engine

3. Understand shader model 5 and learn how

to create an editor for the game

KeyShot 3D Rendering
ISBN: 978-1-84969-482-7 Paperback: 124 pages

Showcase your 3D models and create hyperrealistic

images with KeyShot in the fastest and most eficient
way possible

1. Create professional quality images from your 3D

models in just a few steps

2. Thorough overview of how to work and navigate in

KeyShot

3. A step-by-step guide that quickly gets you started

with creating realistic images

Please check www.PacktPub.com for information on our titles

http:///

HLSL Development Cookbook
ISBN: 978-1-84969-420-9 Paperback: 224 pages

Implement stunning 3D rendering techniques using the

power of HLSL and DirectX 11

1. Discover powerful rendering techniques utilizing

HLSL and DirectX 11

2. Augment the visual impact of your projects while

taking full advantage of the latest GPUs

3. Experience the practical side of 3D rendering with

a comprehensive set of excellent demonstrations

Learning Windows 8 Game

Development
ISBN: 978-1-84969-744-6 Paperback: 244 pages

Learn how to develop exciting tablet and PC games for

Windows 8 using practical, hands-on examples

1. Use cutting-edge technologies like DirectX

to make awesome games

2. Discover tools that will make game

development easier

3. Bring your game to the latest touch-enabled

PCs and tablets

Please check www.PacktPub.com for information on our titles

http:///

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with Direct3D
	Introduction
	Introducing Direct3D 11.1 and 11.2
	Building a Direct3D 11 application with C# and SharpDX
	Initializing a Direct3D 11.1/11.2 device and swap chain
	Debugging your Direct3D application

	Chapter 2: Rendering with Direct3D
	Introduction
	Using the sample rendering framework
	Creating device-dependent resources
	Creating size-dependent resources
	Creating a Direct3D renderer class
	Rendering primitives
	Applying multisample anti-aliasing
	Implementing texture sampling

	Chapter 3: Rendering Meshes
	Introduction
	Rendering a cube and sphere
	Preparing the vertex and constant buffers for materials and lighting
	Adding material and lighting
	Using a right-handed coordinate system
	Loading a static mesh from a file

	Chapter 4: Animating Meshes with Vertex Skinning
	Introduction
	Preparing the vertex shader and buffers for vertex skinning
	Loading bones in the mesh renderer
	Animating bones

	Chapter 5: Applying Hardware Tessellation
	Introduction
	Preparing the vertex shader and buffers for tessellation
	Tessellating a triangle and quad
	Tessellating bicubic Bezier surfaces
	Refining meshes with Phong tessellation
	Optimizing tessellation through back-face culling and dynamic Level-of-Detail

	Chapter 6: Adding Surface Detail with Normal and Displacement Mapping
	Introduction
	Referencing multiple textures in a material
	Adding surface detail with normal mapping
	Adding surface detail with displacement mapping
	Implementing displacement decals
	Optimizing tessellation based on displacement decal (displacement
adaptive tessellation)

	Chapter 7: Performing Image Processing Techniques
	Introduction
	Running a compute shader – desaturation (grayscale)
	Adjusting the contrast and brightness
	Implementing box blur using separable convolution filters
	Implementing a Gaussian blur filter
	Detecting edges with the Sobel edge-detection filter
	Calculating an image's luminance histogram

	Chapter 8: Incorporating Physics and Simulations
	Introduction
	Using a physics engine
	Simulating ocean waves
	Rendering particles

	Chapter 9: Rendering on Multiple Threads and Deferred Contexts
	Introduction
	Benchmarking multithreaded rendering
	Implementing multithreaded dynamic cubic environment mapping
	Implementing dual paraboloid environment mapping

	Chapter 10: Implementing Deferred Rendering
	Introduction
	Filling the G-Buffer
	Implementing a screen-aligned quad renderer
	Reading the G-Buffer
	Adding multiple lights
	Incorporating multisample anti-aliasing

	Chapter 11: Integrating Direct3D with XAML and Windows 8.1
	Introduction
	Preparing the swap chain for a Windows Store app
	Rendering to a CoreWindow
	Rendering to an XAML SwapChainPanel
	Loading and compiling resources asynchronously

	Appendix: Further Reading
	Index

