Learn by doing: Iess theory, more results

Eclipse Plug-in Development

Second Edition

Develop skills to build powerful plug-ins with Eclipse IDE
through examples

Foreword by Mike Milinkovich, Executive Director of the Eclipse Foundation

Beginner's Guide

Dr Alex Blewitt | | oponsource

FPUBLISHING

Wwww.allitebooks.cond

http://www.allitebooks.org

Eclinse I'III!I-iII nevelonment
Beginner's Guide
Second Edition

Develop skills to build powerful plug-ins with Eclipse IDE
through examples

Dr Alex Blewitt

open source

community experience distilled
PUBLISHING

BIRMINGHAM - MUMBAI

[vww allitebooks.cond

http://www.allitebooks.org

Eclipse Plug-in Development Beginner's Guide
Second Edition

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First edition: June 2013

Second published: July 2016
Production reference: 1280716

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78398-069-7

www . packtpub.com

[vww allitebooks.cond

http://www.allitebooks.org

Author Project Coordinator
Dr Alex Blewitt Shweta H Birwatkar
Reviewers Proofreader
Carla Guillen Safis Editing
Tom Seidel
Indexer
Commissioning Editor Hemangini Bari

Kartikey Pandey

Graphics
Acquisition Editor Disha Haria
Denim Pinto
Production Coordinator
Content Development Editor Aparna Bhagat
Deepti Thore
Cover Work
Technical Editor Aparna Bhagat
Vivek Arora
Copy Editor
Vikrant Phadke

[vww allitebooks.cond

http://www.allitebooks.org

vww allitebooks.conl

http://www.allitebooks.org

The Eclipse platform is one of the world's most successful open source software projects.
Millions of developers use Eclipse every day as their development tools. Millions of people
use applications built on top of the Eclipse Rich Client Platform every day. The Eclipse
community has hundreds of dedicated committers and thousands of contributors. Speaking
on their behalf, | thank you for your interest in Eclipse, and wish you great success building
your project with our free software platform. This book will provide you with an excellent
introduction to the key aspects of the Eclipse platform, including the plug-in model, SWT,
JFace, user interactions, and resources.

The success of the Eclipse platform has been based to a very large extent on its extensibility.
Originally conceived as a platform for building integrated development environments, Eclipse
quickly evolved into a platform for building portable desktop applications as well. For over

a decade, the Eclipse Rich Client Platform has been one of the leading technologies for
creating compelling user interfaces for business applications. The major refresh of the Eclipse
application platform that came in 2012 with the launch of Eclipse 4 has seen even further
adoption. The chapters on Eclipse 4 and styling your user interface do an excellent job of
portraying those new features.

Eclipse projects are driven by great developers, and the Eclipse 4 project has had many
important contributors. | would like to recognize the contributions of just a few: the present
Eclipse platform leader Mike Wilson (IBM), and project leaders Dani Megert (IBM) and Lars
Vogel (vogella), and past leaders John Arthorne (formerly IBM, now Shopify), and Boris
Bokowski (formerly IBM, now Google). | would also like to recognize the special contributions
to Eclipse 4 of Brian de Alwis, Oleg Besedin, Danail Branekov, Eric Moffatt, Bogdan Gheorghe,
Paul Webster, Thomas Schindl, Remy Suen, Kai Todter, and Lars Vogel.

As an open source product, Eclipse owes its success to the contributions of many people.
I highly encourage everyone to follow the chapter on contributing to the Eclipse platform.
The Eclipse community is a worldwide phenomenon, and we would love to welcome your
contributions.

[vww allitebooks.cond

http://www.allitebooks.org

Alex Blewitt has been actively involved in the Eclipse community for many years. His
knowledge of both the Eclipse platform and plug-in development is second to none. He has
written an in-depth and fun-to-read introduction to plug-in development that | am sure will
help many to build, test, deploy, and update their Eclipse-based products or applications. |
am sure that you will find it to be an excellent addition to your Eclipse library.

Mike Milinkovich
Executive Director of the Eclipse Foundation

[vww allitebooks.cond

http://www.allitebooks.org

Dr Alex Blewitt has been developing Java applications since version 1.0 was released

in 1996, and has been using the Eclipse platform since its first release as part of the IBM
WebSphere Studio product suite. He got involved in the open source community as a tester
when Eclipse 2.1 was being released for macQOS, and then subsequently as an editor for
EclipseZone, including being a finalist for Eclipse Ambassador in 2007. More recently, Alex
has been writing for InfoQ, covering Java and specifically Eclipse and OSGi subjects.

He is co-founder of the Docklands.LJC, a regional branch of the London Java Community in
the Docklands, and a regular speaker at conferences.

Alex currently works for an investment bank in London, and is a Director of Bandlem Limited.
Alex blogs at https://alblue.bandlem.comand tweets as @alblue on Twitter, and is
the author of both Mastering Eclipse 4 Plug-in Development, and Swift Essentials, both by
Packt Publishing.

[vww allitebooks.cond

https://alblue.bandlem.com
http://www.allitebooks.org

I'd like to thank my wife Amy who has been behind me for over fifteen years, supporting me
during the development of this and other books. Behind every man is a great woman, and |
wouldn't be where | am today if it were not for her.

I'd also like to thank my parents, Derek and Ann, for introducing me to technology at an early
age with a ZX81 and setting me on a path and a career that would take me across the globe,
even if my first company's name could have been better chosen.

Special thanks are due to Ann Ford, Carla Guillen, Jeff Maury and Peter Rice who provided
detailed feedback about every chapter and the exercises therein for the first edition, and
to Tom Seidel and Roberto Lo Giacco for the second edition. Without their diligence and
attention, this book would contain many more errors than | would like. Thanks are also
due to the Packt editing team, Kajal Thapar, Preeti Singh and Mohita Vyas for making this
possible.

During the latter stages of the first edition of the book | was also fortunate enough to receive
some good feedback and advice from Lars Vogel and lan Bull, both of whom are heavily
involved in the Eclipse platform. | am especially grateful for Lars' website at www.vogella.com
which has been an invaluable resource.

Thanks to Scott James, David Jones and Charles Humble for all the help you have given me
over the years. Thanks also to my Docklands.LJC co-founder Robert Barr who tweets from
@DocklandsLJC.

Finally, congratulations to both Sam and Holly on all your achievements in music, maths and
school. Keep up the good work!

[vww allitebooks.cond

http://www.allitebooks.org

Carla Guillen, PhD, works at the Leibniz Supercomputing Centre of the Bavarian Academy
of Sciences in the field of performance and energy optimization of supercomputers. As

part of the annual courses offered at the Leibniz Supercomputing Centre, she has been
teaching a course on the use of the Eclipse IDE with the CDT and Photran plug-in for 4 years.
Additionally, she reviewed a book on advanced Eclipse plug-in development in 2014.

Tom Seidel works as an independent software engineer with focus on projects using Eclipse
technology. He has worked for over a decade with the Eclipse technology stack in many
projects and nearly every industry. Furthermore, he is an Eclipse committer and an active
member of the Eclipse community.

[vww allitebooks.cond

http://www.allitebooks.org

eBooks, discount offers, and more

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www. PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

[@ PACKT

https://www2.packtpub.com/books/subscription/packtlib

®

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscrihe?
¢ Fully searchable across every book published by Packt
¢ Copy and paste, print, and bookmark content

¢ Ondemand and accessible via a web browser

http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

This book is dedicated in memory of Anne Tongs
(née Blewitt)

Tahle of Contents

Preface ix
Chapter 1: Creating Your First Plug-in 1
Getting started 1
Time for action — setting up the Eclipse environment 2
Creating your first plug-in 5
Time for action — creating a plug-in 5
Running plug-ins 10
Time for action — launching Eclipse from within Eclipse 10
Debugging a plug-in 14
Time for action — debugging a plug-in 14
Time for action — updating code in the debugger 18
Debugging with step filters 19
Time for action — setting up step filtering 19
Using different breakpoint types 21
Time for action — breaking at method entry and exit 21
Using conditional breakpoints 22
Time for action — setting a conditional breakpoint 22
Using exceptional breakpoints 24
Time for action — catching exceptions 24
Time for action — inspecting and watching variables 26
Summary 30
Chapter 2: Creating Views with SWT 31
Creating views and widgets 31
Time for action - creating a view 32
Time for action — drawing a custom view 35
Time for action — drawing a seconds hand 37
Time for action — animating the second hand 39

Table of Contents

Time for action — running on the Ul thread 40
Time for action — creating a reusable widget 41
Time for action — using layouts 44
Managing resources 47
Time for action — getting colorful 48
Time for action — finding the leak 49
Time for action — plugging the leak 52
Interacting with the user 54
Time for action — getting in focus 54
Time for action — responding to input 56
Using other SWT widgets 58
Time for action — adding items to the tray 58
Time for action — responding to the user 60
Time for action — modal and other effects 62
Time for action — groups and tab folders 64
Summary 70
Chapter 3: Creating JFace Viewers 71
Why JFace? 71
Creating TreeViewers 72
Time for action — creating a tree viewer 72
Time for action — using Images in JFace 77
Time for action — styling label providers 82
Sorting and filtering 85
Time for action — sorting items in a viewer 85
Time for action - filtering items in a viewer 87
Interaction 89
Time for action — adding a double-click listener 90
Tabular data 93
Time for action — viewing time zones in tables 93
Selection 98
Time for action — propagating selection 98
Time for action — responding to selection changes 99
Summary 102
Chapter 4: Interacting with the User 103
Creating menus, commands, and handlers 103
Time for action — installing the E4 tools 104
Time for action — creating commands and handlers 106
Time for action — binding commands to keys 111

Time for action — changing contexts 114

Table of Contents

Time for action — enabling and disabling menus items 115
Time for action — contributing commands to pop-up menus 117
Jobs and progress 121
Time for action — running operations in the background 121
Time for action — reporting progress 123
Time for action — dealing with cancellation 124
Time for action — using subtasks and sub-progress monitors 125
Time for action — using null progress monitors and sub monitors 127
Time for action — setting job properties 129
Reporting errors 132
Time for action — showing errors 133
Summary 136
Chapter 5: Working with Preferences 137
Implementing additional FieldEditors Eclipse
preferences 137
Time for action — persisting a value 138
Time for action — injecting preferences 139
Time for action — injecting individual preferences 140
Time for action — responding to preference changes 141
Preference pages 142
Time for action — creating a preference page 142
Time for action — creating warning and error messages 144
Time for action: choosing from a list 145
Time for action — aligning field editors with a grid 146
Time for action — placing the preferences page 147
Time for action: using other field editors 149
Time for action — searching for preferences 151
Summary 152
Chapter 6: Working with Resources 153
Using the workspace and resources 153
Time for action — creating an editor 154
Time for action — writing the markup parser 157
Time for action — building the builder 158
Time for action — iterating through resources 161
Time for action — creating resources 164
Time for action — implementing incremental builds 165
Time for action: handling deletion 166
Using natures 169

Time for action — creating a nature 169

Table of Contents

Using markers 173
Time for action — error markers if file is empty 173
Time for action — registering a marker type 175
Summary 177
Chapter 7: Creating Eclipse 4 Applications 179
Time for action — installing E4 tooling 180
Time for action — creating an E4 application 182
Time for action — creating a part 186
Using services and contexts 191
Time for action — adding logging 191
Time for action — getting the window 193
Time for action — obtaining the selection 194
Time for action — dealing with events 197
Time for action — calculating values on demand 200
Time for action — interacting with the Ul 202
Using commands, handlers, and menu items 204
Time for action — wiring a menu to a command with a handler 204
Time for action: passing command parameters 208
Time for action — creating a direct menu and keybindings 211
Time for action — creating a pop-up menu and a view menu 213
Creating custom injectable classes 216
Time for action — creating a simple service 216
Time for action — injecting subtypes 218
Summary 220
Chapter 8: Migrating to Eclipse 4.x 221
Why Eclipse 4.x? 221
Time for action — creating a migration component 222
Time for action — updating to edview 224
Time for action — upgrading the actions 226
Time for action — creating toolbars 228
Time for action — adding the view menu 231
Time for action — adding the pop-up 233
Migrating to Eclipse 4.x patterns 235
Time for action — creating a model fragment 235
Time for action — migrating the commands and handlers 238
Time for action — creating the view menu 242
Time for action — defining the pop-up view in the fragment 243

Summary 246

Table of Contents

Chapter 9: Styling Eclipse 4 Applications 247
Styling Eclipse with CSS 247
Time for action — styling the Ul with CSS 248
Time for action — using custom CSS classes 254
Using the Eclipse spies 255
Time for action — using the CSS Spy 255
Time for action — integrating the spy into a product 258
Styling a custom widget 259
Time for action — adding the clock 259
Time for action — using a CSS property 261

Themes 265
Time for action — going to the dark side 266
Time for action — adding themes 267
Time for action — switching between themes 269
Summary 271

Chapter 10: Creating Features, Update Sites, Applications, and Products 273
Grouping plug-ins with features 273
Time for action — creating a feature 274
Time for action — exporting a feature 276
Time for action — installing a feature 278
Time for action — categorizing the update site 280
Time for action — depending on other features 284
Time for action — branding features 286
Building applications and products 289
Time for action — creating a headless application 289
Time for action — creating a product 293
Target platforms 297
Time for action — creating a target definition 297
Time for action — switching to a specific version 300
Summary 302

Chapter 11: Automated Testing of Plug-ins 303
Using JUnit for automated testing 303
Time for action — adding dependencies to the target platform 304
Time for action — writing a simple JUnit 4 test case 305
Time for action — writing a plug-in test 306
Using SWTBot for user interface testing 307
Time for action — writing an SWTBot test 308
Time for action — working with menus 310

Working with SWTBot 313

Table of Contents

Time for action — hiding the welcome screen 313
Time for action — avoiding SWTBot runtime errors 314
Working with views 314
Time for action: showing views 315
Time for action — interrogating views 316
Interacting with the Ul 317
Time for action — getting values from the Ul 317
Time for action — waiting for a condition 318
Summary 321
Chapter 12: Automated Builds with Tycho 323
Using Maven to build Eclipse plug-ins with Tycho 323
Time for action — installing Maven 324
Time for action — building with Tycho 326
Building features and update sites with Tycho 329
Time for action — creating a parent project 329
Time for action — building a feature 332
Time for action — building an update site 333
Time for action — building a product 335
Time for action — using the target platform 340
Testing and releasing 344
Time for action — running automated tests 344
Time for action — changing the version numbers 348
Signing update sites 350
Time for action — creating a self-signed certificate 350
Time for action — signing the plug-ins 351
Time for action — serving an update site 354
Summary 355
Chapter 13: Contributing to Eclipse 357
Open source contributions 357
Importing the source 358
Time for action — installing the sources 358
Time for action — debugging the platform 360
Time for action — modifying the platform 362
Checking out from git 363
Time for action — checking out from EGit and Git 364
Time for action — configuring the SWT project 367
Contributing to Eclipse 369
Creating bugs on Bugzilla 369

Time for action — creating an account at Eclipse 370

Table of Contents

Time for action — creating a bug 371
Submitting fixes 372
Time for action — setting up a Gerrit profile 372
Time for action — committing and pushing a patch 374
Summary 379
Appendix A: Using OSGi Services to Dynamically Wire Applications 381
Services overview 381
Registering a service programmatically 382
Creating an activator 382
Registering a service 384
Priority of services 386
Using the services 387
Lazy activation of bundles 388
Comparison of services and extension points 389
Registering a service declaratively 390
Declarative Services 391
Properties and Declarative Services 392
Service references in Declarative Services 393
Multiple components and debugging Declarative Services 395
Dynamic Service annotations 395
Processing annotations at Maven build time 396
Dynamic services 398
Resolving services each time 398
Using a ServiceTracker 399
Filtering services 400
Obtaining a BundleContext without using an activator 401
Dependent Services 401
Dynamic service configuration 402
Installing Felix Filelnstall 402
Installing ConfigAdmin 403
Configuring Declarative Services 403
Service factories 404
Creating the EchoService 405
Creating an EchoServiceFactory 406
Configuring the EchoServices 408
Summary 410
Appendix B: Pop Quiz Answers 411
Index 423

This book provides a general introduction to developing plug-ins for the Eclipse platform. No
prior experience, other than Java, is necessary to be able to follow the examples presented
in this book. By the end of the book, you should be able to create an Eclipse plug-in from
scratch, as well as be able to create an automated build of those plug-ins.

Chapter 1, Creating Your First Plug-in, provides an overview of how to download Eclipse,
set it up for plug-in development, create a sample plug-in, launch and debug it.

Chapter 2, Creating Views with SWT, provides an overview of how to build views with SWT,
along with other custom SWT components such as system trays and resource management.

Chapter 3, Creating JFace Viewers, will show how to create views with JFace using
TreeViewers and TableViewers, along with integration with the properties view and
user interaction.

Chapter 4, Interacting with the User, interacts with the user, as well as the Jobs and Progress
APIs, using commands, handlers, and menus.

Chapter 5, Storing Preferences and Settings, shows how to store preference information
persistently, as well as displaying information via the Preferences pages.

Chapter 6, Working with Resources, tells how to load and create Resources in the workbench,
as well as how to create a builder and nature for automated processing.

Chapter 7, Creating Eclipse 4 Applications, discusses the key differences between the Eclipse
3.x and Eclipse 4.x models, along with commands, handlers and menu items.

Chapter 8, Migrating to Eclipse 4.x, teaches how to efficiently migrate views created for
Eclipse 3.x to the new Eclipse 4.x model.

Preface

Chapter 9, Styling Eclipse 4 Applications, discusses how to style the Ul with CSS, and create
widgets that can adjust to CSS styles.

Chapter 10, Creating Features, Update Sites, Applications, and Products, takes the plug-ins
created so far in this book, aggregates them into features, publishes to update sites, and
teaches you how applications and products are used to create standalone entities.

Chapter 11, Automated Testing of Plug-ins, teaches how to write automated tests that
exercise Eclipse plug-ins, including both Ul and non-Ul components.

Chapter 12, Automated Builds with Tycho, shows how to build Eclipse plug-ins, features,
update sites, applications, and products automatically with Maven Tycho.

Chapter 13, Contributing to Eclipse, discusses how to use Git to check out Eclipse code bases,
how to report bugs with Bugzilla, and how to upload patches into Gerrit.

Appendix A, Using OSGi Services to Dynamically Wire Applications, looks at OSGi services as
an alternative means of providing dependent services in an Eclipse or OSGi application.

Appendix B, Pop Quiz Answers, covers all the answers enlisted in the pop quiz sections
in the book.

What you need for this hook

To run the exercises for this book, you will need a computer with an up-to-date operating
system running Windows, Linux, or Mac OS X. Java also needs to be installed; JDK 1.8 is the
current released version although the instructions should work for a newer version of Java.

This book has been tested with the Eclipse SDK (Classic/Standard) for Mars (4.5) and Neon
(4.6). Newer versions of Eclipse may also work. Care should be taken to not install the
Eclipse for RCP and RAP developers, as this will cause the applications created in Chapter 7,
Understanding the Eclipse 4 Model and RCP Applications and Chapter 8, Migrating Views to
the Eclipse 4 Model.

The first chapter explains how to get started with Eclipse, including how to obtain and install
both Eclipse and Java.

This book is aimed at Java developers who are interested in learning how to create plug-ins,
products and applications for the Eclipse platform.

This book will also be useful to those who already have some experience in building Eclipse
plug-ins and want to know how to create automated builds using Maven Tycho, which has
become the de facto standard for building Eclipse plug-ins.

[x]

Preface

Finally, those Eclipse developers who are familiar with the Eclipse 3.x model but are
interested in learning about the changes that the Eclipse 4.x model brings will find the
information presented in Chapter 8 a useful summary of what opportunities the new
model provides.

In this book, you will find several headings that appear frequently (Time for action, What just
happened?, Pop quiz, and Have a go hero).

To give clear instructions on how to complete a procedure or task, we use these sections
as follows:

Time for action - heading

1. Action1l
2. Action?2
3. Action3

Instructions often need some extra explanation to ensure they make sense, so they are
followed with these sections:

What just happened?

This section explains the working of the tasks or instructions that you have just completed.

You will also find some other learning aids in the book, for example:

These are short multiple-choice questions intended to help you test your own understanding.

These are practical challenges that give you ideas to experiment with what you have learned.

You will also find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

[xi]

Preface

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Running java -version should give output like this."

A block of code is set as follows:

public class Utility {
public static boolean breakpoint ()
System.out.println ("Breakpoint") ;
return false;

}
}

Any command-line input or output is written as follows:

java version "1.8.0 92"
Java (TM) SE Runtime Environment (build 1.8.0 92-bl4)
Java HotSpot (TM) 64-Bit Server VM (build 25.92-bl4, mixed mode)

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Choose a workspace, which
is the location in which projects are to be stored, and click on OK:"

% Warnings or important notes appear in a box like this.

~\l
Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

[xii]

www.packtpub.com/authors

Preface

Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

You can download the example code files for this book from your account at http://
www . packtpub. com. If you purchased this book elsewhere, you can visit http: //www.
packtpub.com/support and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.
Hover the mouse pointer on the SUPPORT tab at the top.

Click on Code Downloads & Errata.

1.

2.

3

4. Enter the name of the book in the Search box.

5. Select the book for which you're looking to download the code files.

6. Choose from the drop-down menu where you purchased this book from.
7

Click on Code Download.

You can also download the code files by clicking on the Code Files button on the book's
webpage at the Packt Publishing website. This page can be accessed by entering the book's
name in the Search box. Please note that you need to be logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

¢ WInRAR / 7-Zip for Windows

& Zipeg/iZip / UnRarX for Mac

& 7-Zip / PeaZip for Linux
The code bundle for the book is also hosted on GitHub at https://github.com/alblue/

com.packtpub.e4. We also have other code bundles from our rich catalog of books and
videos available at https://github.com/PacktPublishing/. Check them out!

[xiii]

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/alblue/com.packtpub.e4
https://github.com/alblue/com.packtpub.e4
https://github.com/PacktPublishing/

Preface

Downioading the color images of this hook

We also provide you with a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in the
output. You can download this file from http://www.packtpub.com/sites/default/
files/downloads/EclipsePluginDevelopmentBeginnersGuideSecondEdition
ColorImages.pdf.

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http: //www.packtpub.com/submit-errata,
selecting your book, clicking on the Errata Submission Form link, and entering the details of
your errata. Once your errata are verified, your submission will be accepted and the errata
will be uploaded to our website or added to any list of existing errata under the Errata
section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy of copyrighted material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

If you have a problem with any aspect of this book, you can contact us at questionse
packtpub.com, and we will do our best to address the problem.

[xiv]

http://www.packtpub.com/sites/default/files/downloads/EclipsePluginDevelopmentBeginnersGuideSecondEdition_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/EclipsePluginDevelopmentBeginnersGuideSecondEdition_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/EclipsePluginDevelopmentBeginnersGuideSecondEdition_ColorImages.pdf
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Creating Your First Plug-in

Eclipse — an IDE for everything and nothing in particular.

Eclipse is a highly modular application consisting of hundreds of plug-ins, and
can be extended by installing additional plug-ins. Plug-ins are developed and
debugged with the Plug-in Development Environment (PDE).

In this chapter we will:

Set up an Eclipse environment for doing plug-in development
Create a plug-in with the new plug-in wizard

Launch a new Eclipse instance with the plug-in enabled

* 6 o o

Debug the Eclipse plug-in

Developing plug-ins requires an Eclipse development environment. This book has been
developed and tested on Eclipse Mars 4.5 and Eclipse Neon 4.6, which was released in
June 2016. Use the most recent version available.

Eclipse plug-ins are generally written in Java. Although it's possible to use other JVM-based
languages (such as Groovy or Scala), this book will use the Java language.

1l

[vww allitebooks.cond

http://www.allitebooks.org

Creating Your First Plug-in

There are several different packages of Eclipse available from the downloads page, each of
which contains a different combination of plug-ins. This book has been tested with:

¢ Eclipse SDK from http://download.eclipse.org/eclipse/downloads/

¢ Eclipse IDE for Eclipse Committers from http://www.eclipse.org/downloads/

These contain the necessary Plug-in Development Environment (PDE) feature as well as
source code, help documentation, and other useful features. The RCP and RAP package

should not be used as it will cause problems with exercises in Chapter 7, Understanding

the Eclipse 4 Model and RCP Applications.

It is also possible to install the Eclipse PDE feature in an existing Eclipse instance. To do this,
go to the Help menu and select Install New Software, followed by choosing the General
Purpose Tools category from the selected update site. The Eclipse PDE feature contains
everything needed to create a new plug-in.

Time for action - setting up the Eclipse environment

Eclipse is a Java-based application; it needs Java installed. Eclipse is distributed as a
compressed archive and doesn't require an explicit installation step.

1. To obtain Java, gotohttp://java.comand follow the instructions to download
and install Java.

M Note that Java comes in two flavors: a 32-bit installation and a 64-bit
Q installation. If the running OS is 32-bit, then install the 32-bit JDK;
alternatively, if the running OS is 64-bit, then install the 64-bit JDK.

2. Running java -version should give output like this:
java version "1.8.0 92"
Java (TM) SE Runtime Environment (build 1.8.0 92-bl4)
Java HotSpot (TM) 64-Bit Server VM (build 25.92-bl4, mixed mode)

3. Goto http://www.eclipse.org/downloads/ and select the Eclipse IDE for
Eclipse Committers distribution.

4. Download the one that matches the installed JDK. Running java -version should
report either of these:

o Ifit'sa 32-bit JDK:
Java HotSpot(TM) Client VM

o Ifit's a 64-bit JDK:
Java HotSpot(TM) 64-Bit Server VM

21

http://download.eclipse.org/eclipse/downloads/
http://www.eclipse.org/downloads/
http://java.com
http://www.eclipse.org/downloads/

Chapter 1

* On Linux, Eclipse requires GTK+ 2 or 3 to be installed. Most Linux
distributions have a window manager based on GNOME, which
’ provides GTK+ 2 or 3.

5. Toinstall Eclipse, download and extract the contents to a suitable location. Eclipse is
shipped as an archive, and needs no administrator privileges to install. Do not run it
from a networked drive as this will cause performance problems.

6. Note that Eclipse needs to write to the folder where it is extracted, so it's normal
that the contents are writable afterwards. Generally, installing in /Applications
or C:\Program Files asan administrator account is not recommended.

7. Run Eclipse by double-clicking on the Eclipse icon, or by running eclipse.exe
(Windows), eclipse (Linux), or Eclipse.app (macOS).

8. On startup, the splash screen will be shown:

pse

neon

9. Choose a workspace, which is the location in which projects are to be stored, and
click on OK:

® ® Workspace Launcher

Select a workspace

Eclipse stores your projects in a folder called a workspace.
Choose a workspace folder to use for this session.

Workspace: |/Usersfeclipse/Documents/workspace ﬁ Browse...

Use this as the default and do not ask again

cancel | (ECIENND

Creating Your First Plug-in

10. Close the welcome screen by clicking on the cross in the tab next to the welcome
text. The welcome screen can be reopened by navigating to Help | Welcome:

0@ Eclipse
&%) welcome 53 FxEe= s
Welcome to Eclipse
5 Overview - Tutorials
‘.f};:_) Get an overview of the features g Go through tutorials
4, Samples /_ What's New
%\ Try out the samples \\/ Find out what is new
What just happened?

Eclipse needs Java to run, and so the first step involved in installing Eclipse is ensuring that an
up-to-date Java installation is available. By default, Eclipse will find a copy of Java installed on
the path or from one of the standard locations. It is also possible to specify a different Java
by using the -vm command-line argument.

If the splash screen doesn't show, then the Eclipse version may be incompatible with the

JDK (for example, a 64-bit JDK with a 32-bit Eclipse, or vice versa). Common error messages
shown at the launcher may include Unable to find companion launcher or a cryptic message
about being unable to find an SWT library.

On Windows, there is an additional eclipsec.exe launcher that allows log messages to
be displayed on the console. This is sometimes useful if Eclipse fails to load and no other
message is displayed. Other operating systems can use the eclipse command; and both
support the -consolelog argument, which can display more diagnostic information about
problems with launching Eclipse.

(a1

Chapter 1

The Eclipse workspace is a directory used for two purposes: as the default project location,
and to hold the .metadata directory containing Eclipse settings, preferences, and other
runtime information. The Eclipse runtime log is stored in the .metadata/.logfile.

The workspace chooser dialog has an option to set a default workspace. It can be changed
within Eclipse by navigating to File | Switch Workspace. It can also be overridden by
specifying a different workspace location with the -data command-line argument.

Finally, the welcome screen is useful for first-time users, but it is worth closing (rather than
minimizing) once Eclipse has started.

Creating your first plug-in

In this task, Eclipse's plug-in wizard will be used to create a plug-in.

Time for action - creating a plug-in

In PDE, every plug-in has its own individual project. A plug-in project is typically created
with the new project wizard, although it is also possible to upgrade an existing Java project
to a plug-in project by adding the PDE nature and the required files by navigating to
Configure | Convert to plug-in project.

1. To create a Hello World plug-in, navigate to File | New | Project...

| NN New Project

Select a wizard

Create a Plug-in Project

Wizards:
=]

1% Java Project

iﬁJava Project from Existing Ant Buildfile
(= General

(= CWS

[==Java

(= Plug-in Development

@ [Noxt> I

Creating Your First Plug-in

2. The project types shown may be different from this list but should include Plug-in
Project with Eclipse IDE for Eclipse Committers or Eclipse SDK. If nothing is shown
when you navigate to File | New, then navigate to Window | Open Perspective |
Other | Plug-in Development first; the entries should then be seen under the New
menu.

3. Choose Plug-in Project and click on Next. Fill in the dialog as follows:
1. Project name should be com.packtpub.e4.hello.ui.
2. Ensure that Use default location is selected.

3. Ensure that Create a Java project is selected. The Eclipse version should be
targeted to 3.5 or greater:

[oy | New Plug-in Project
Plug-in Project —)=

Create a new plug-in project

Project name: | com.packtpub.e4.hello.ui

Use default location
Location:
Project Settings

Create a Java project
Source folder: |src

Output folder: | bin

Target Platform

This plug-in is targeted to run with:

o Eclipse version: 3.5 or greater u

an OSGi framework: Equinox

@ < Back [Nexts | Caneel

4. Click on Next again, and fill in the plug-in properties:
1. IDissettocom.packtpub.e4.hello.ui.
2. \Versionissetto1.0.0.qualifier.

3. NameissettoHello.

4

Vendor is set to PacktPub.

Chapter 1

W e N o U

For Execution Environment, use the default (for example, JavaSE-1.8).
Ensure that Generate an Activator is selected.

Set Activator to com.packtpub.e4.hello.ui.Activator.

Ensure that This plug-in will make contributions to the Ul is selected.

Rich client application should be No:

[] [] New Plug-in Project
Content =§? |
Enter the data required to generate the plug-in.

Properties
1D: com.packtpub.ed.hello.ui |
Version: 1.0.0.qualifier
Marme: Hello
Vendor: PacktPub a
Execution Environment: = JavaSE-1.8 a Environments...
Options

Generate an activator, a Java class that controls the plug-in's life cycle
Activator: | com.packipub.ed.hello.uiActivator

This plug-in will make contributions to the Ul
Enable APl analysis

Rich Client Application

‘Would you like to create a 3.x rich client application? Yes o Mo

@' < Back Mext = Cancel

71

Creating Your First Plug-in

5. Click on Next and a set of templates will be provided:

1. Ensure that Create a plug-in using one of the templates is selected.

2. Choose the Hello, World Command template:

[EoN New Plug-in Project

Templates p—
! 3
Select one of the available templates to generate a fully-
functioning plug-in.

Create a plug-in using one of the templates

Available Templates:

4" Custom plug-in wizard This wizard creates standard plug-in
¥ Hello, World directory structure and adds the

¥ :)
1 Hello, World Command following: -)
0% Plug-in with a multi-page editor ¢ Command contribution. This
vl N template creates a simple
{5 Plug-in with a popup menu command contribution that adds
=-J<i Plug-in with a property page Sample Menu to the menu bar and
:,ﬁi Plug-in with a view a butten to the tool bar. Both the

0% Plug-in with di menu item in the new menu and

JPlug-in with an editor the button invoke the same Sample

fd‘f Plug-in with an incremental project k Action. Its role is to open a simple

0% Plug-in with sample help content message dialog with a message of
your choice.

@I = Back Mext = Cancel

6. Click on Next to customize the sample, including:

1. Java Package Name, which defaults to the project's name followed
by .handlers

2. Handler Class Name, which is the code that gets invoked for the action

3. Message Box Text, which is the message to be displayed:

[] [] New Hello World Command plug-in project
Sample Command Contribution =®:

This template will generate a sample command contributionwith a
menu, a menu item and a tool bar button.

Java Package Name: | com.packtpub.e4.hello.uihandlers
Handler Class Name: | SampleHandler

Message Box Text: Hello, Eclipse world

@. < Back Cancel

Chapter 1

7. Finally, click on Finish and the project will be generated.
8. If an Open Associated Perspective? dialog asks, click on Yes to show the Plug-in
Development perspective.
What just happened?

Creating a plug-in project is the first step towards creating a plug-in for Eclipse. The new
plug-in project wizard was used with one of the sample templates to create a project.

Plug-ins are typically named in reverse domain name format, so these examples will be
prefixed with com.packtpub.e4. This helps to distinguish between many plug-ins; the
stock Eclipse IDE for Eclipse Committers comes with more than 450 individual plug-ins; the
Eclipse-developed ones start with org.eclipse.

Conventionally, plug-ins that create additions to (or require) the use of
* the Ul have .ui. intheir name. This helps to distinguish those that
%“ don't, which can often be used headlessly. Of the more than 450 plug-ins
’ that make up the Eclipse IDE for Eclipse Committers, approximately 120
are Ul-related and the rest are headless.

The project contains a number of files that are automatically generated based on the content
filled in the wizard. The key files in an Eclipse plug-in are:

L 4

META- INF/MANIFEST.MF: The MANIFEST.MF file, also known as the OSGi
manifest, describes the plug-in's name, version, and dependencies. Double-clicking
on it will open a custom editor, which shows the information entered in the wizards;
or it can be opened in a standard text editor. The manifest follows standard Java
conventions; line continuations are represented by a newline followed by a single
space character, and the file must end with a newline.

plugin.xml: The plugin.xml file declares what extensions the plug-in provides
to the Eclipse runtime. Not all plug-ins need a plugin.xml file; headless (non-
Ul) plug-ins often don't need to have one. Extension points will be covered in
more detail later; but the sample project creates an extension for the commands,
handlers, bindings, and menus' extension points. Text labels for the commands/
actions/menus are represented declaratively in the plugin.xml file, rather than
programmatically; this allows Eclipse to show the menu before needing to load or
execute any code.

Creating Your First Plug-in

This is one of the reasons Eclipse starts so quickly; by not needing
. toload or execute classes, it can scale by showing what's needed
a at the time, and then load the class on demand when the user
A invokes the action. Java Swing's Action class provides labels and
tooltips programmatically, which can result in slower initialization
of Swing-based user interfaces.

¢ build.properties: Thebuild.properties fileis used by PDE at development
time and at build time. Generally it can be ignored, but if resources are added
that need to be made available to the plug-in (such as images, properties files,
HTML content and more), then an entry must be added here as otherwise it won't
be found. Generally the easiest way to do this is by going to the Build tab of the
build.properties file, which will gives a tree-like view of the project's contents.
This file is an archaic hangover from the days of Ant builds, and is generally useless
when using more up-to-date builds such as Maven Tycho, which will be covered in
Chapter 12, Automated Builds with Tycho.

Q1. What is an Eclipse workspace?
Q2. What is the naming convention for Eclipse plug-in projects?

Q3. What are the names of the three key files in an Eclipse plug-in?

To test an Eclipse plug-in, Eclipse is used to run or debug a new Eclipse instance with the
plug-in installed.

Time for action - launching Eclipse from within Eclipse

Eclipse can launch a new Eclipse application by clicking on the run icon, or via the Run menu.

1. Select the plug-in project in the workspace.

2. Click on the run icon @3 to launch the project. The first time this happens, a dialog
will be shown; subsequent launches will remember the chosen type:

[101

Chapter 1

[] [] Run As

Select a way to run 'MANIFEST.MF'":

= Eclipse Application
4+ 0SGI Framework

Description

Runs a separate Eclipse application

@ [cace | (EEIHEE

3. Choose the Eclipse Application type and click on OK. A new Eclipse instance will be
launched.

4. Close the Welcome page in the launched application, if shown.

5. Click on the hello world icon in the menu bar, or navigate to Sample Menu | Sample
Command from the menu, and the dialog box created via the wizard will be shown:

@ Hello

1 Hello, Eclipse world

6. Quit the target Eclipse instance by closing the window, or via the usual keyboard
shortcuts or menus (Cmd + Q on macOS or Alt + F4 on Windows).

What just happened?

Upon clicking on run 3 in the toolbar (or via Run | Run As | Eclipse Application) a launch
configuration is created, which includes any plug-ins open in the workspace. A second copy
of Eclipse—with its own temporary workspace—will enable the plug-in to be tested and
verify that it works as expected.

The run operation is intelligent, in that it launches an application based on what is selected
in the workspace. If a plug-in is selected, it will offer the opportunity to run as an Eclipse
Application; if a Java project with a class with a main method, it will run it as a standard
Java Application; and if it has tests, then it will offer to run the test launcher instead.

nl

Creating Your First Plug-in

However, the run operation can also be counter-intuitive; if clicked a second time, and in a
different project context, then something other than the expected launched might be run.

A list of the available launch configurations can be seen by going to the Run menu, or by
going to the dropdown to the right of the run icon. The Run | Run Configurations menu
shows all the available types, including any previously run:

[JoN Run Configurations
Create, manage, and run configurations —
Create a configuration to launch an Eclipse application. { I ;)
= =+,
= X = 5o Name: Eclipse Application
oL (T i) D Main ()= Arguments | L5 Plug-ins = Configuration E Tracing E Environment E Commen

¥ & Eclipse Application

& Eclipse Application LB 2EIE

4] Java Applet Lecation: | ${workspace_loc)/. .fruntime-Eclipsefpplication
[T Java Application
JurJUnit Clear: | Workspace... File System... Variables...

J& Junit Plug-in Test

aa . " Configure defaults...
4% 08Gi Framework

Program to Run

° Run a product: org.eclipse.platform.ide a

Run an application: org.eclipse.ui.ide.workbench

Java Runtime Environment

Java executable: ° default java
° Execution environment: | JavaSE-1.8 (Java SE B [1.8.0_31]) a Environments...
Runtime JRE: Java SE 8 [1.8.0_31]

Bootstrap entries:

Filter matched 7 of 7 items

@ cose | (EETES

By default, the runtime workspace is kept between runs. The launch configuration for an
Eclipse application has options that can be customized; in the preceding screenshot, the
Workspace Data section in the Main tab shows where the runtime workspace is stored, and
an option is shown that allows the workspace to be cleared (with or without confirmation)
between runs.

121

Chapter 1

Launch configurations can be deleted by clicking on the red delete icon on the top left,
and new launch configurations can be created by clicking on the new icon. Each launch
configuration has a type:

Eclipse Application

Java Applet

Java Application

JUnit

JUnit Plug-in Test

* 6 ¢ 6 o o

0SGi Framework

The launch configuration can be thought of as a pre-canned script that can launch

different types of programs. Additional tabs are used to customize the launch, such as the
environment variables, system properties, or command-line arguments. The type of the
launch configuration specifies what parameters are required and how the launch is executed.

When a program is launched with the run icon, changes to the project's source code while
it is running have no effect. However, as we'll see in the next section, if launched with the
debug icon, changes can take effect.

If the target Eclipse is hanging or otherwise unresponsive, in the host Eclipse instance, the
Console view (shown by navigating to Window | View | Show View | Other | General |
Console menu) can be used to stop the target Eclipse instance.

Q1. What are the two ways of terminating a launched Eclipse instance?
Q2. What are launch configurations?

Q3. How are launch configurations created and deleted?

Have a go hero — modifying the plug-in

Now that the Eclipse plug-in is running, try the following:

Change the message of the label and title of the dialog box to something else
Invoke the action by using the keyboard shortcut (defined in plugin.xml)

Change the tooltip of the action to a different message

* 6 o o

Switch the action icon to a different graphic (if a different filename is used,
remember to update it in plugin.xml and build.properties)

1131

Creating Your First Plug-in

Since it's rare that everything works first time, it's often necessary to develop iteratively,
adding progressively more functionality each time. Secondly, it's sometimes necessary
to find out what's going on under the cover when trying to fix a bug, particularly if it's

a hard-to-track-down exception such as Nul1PointerException.

Fortunately, Eclipse comes with excellent debugging support, which can be used to debug
both standalone Java applications as well as Eclipse plug-ins.

Time for action - debugging a plug-in

Debugging an Eclipse plug-in is much the same as running an Eclipse plug-in, except that
breakpoints can be used, the state of the program can be updated, and variables and minor
changes to the code can be made. Rather than debugging plug-ins individually, the entire
Eclipse launch configuration is started in debug mode. That way, all the plug-ins can be
debugged at the same time.

Although run mode is slightly faster, the added flexibility of being able to make changes
makes debug mode much more attractive to use as a default.

Start the target Eclipse instance by navigating to Debug | Debug As | Eclipse Application,
or by clicking on debug f_s: in the toolbar.

1. Click on the hello world icon in the target Eclipse to display the dialog, as before,
and click on OK to dismiss it.

2. Inthe host Eclipse, open the SampleHandler class and go to the first line of the
execute method.

(1]

Chapter 1

3. Add a breakpoint by double-clicking in the vertical ruler (the grey/blue bar on the
left of the editor), or by pressing Ctrl + Shift + B (or Cmd + Shift + B on macQS). A
blue dot representing the breakpoint will appear in the ruler:

[] ® | 7 Plug-in Development - com.packtpub.e4.hello.ui/src/com/packtpub/ed/hello/ui/handlers/SampleHandler.java - Eclipse

O SN 0 Qe 8 G s R i Gl G | m %

[Z Pack 32 Plug = g8 [J] sampleHandler.java £2]
E|<'==={> - 1 packoge com.packtpub.ed.hello.ui.handlers;

i@ import org.eclipse.core.commands.AbstractHandl er;|:|

v E‘}com.packtpub.ed_hello.ui
P =\ JRE System Library [Javat

b =i Plug-in Dependencies 11_ Ll
¥ s 11 * Qur sample handler extends AbstractHandler, an IHandler base class.
b £ com.packtpub.e4.hello. 12 * ee org.eclipse.core.commands.IHandler
¥ [} com.packtpub.ed.hello. 13 * Bsee org.eclipse.core.commands.AbstractHandler
> DSamplaHandlar.java 14 e R
b 15 public class SampleHandler extends AbstractHandler {
[=~icons 16e Se*
¥ (= META-INF 17 * The constructor.
@. build. properties 18 *
L plugin.xmi 19= public SampleHandler() {
28 }
S
23 * the command has been executed, so extract extract the needed informati
24 * from the application context.
25 */

public Object execute(ExecutionEvent event) throws ExecutionException {
Line breakpoint:SampleHandler [line: 27] - execute(ExecutionEvent)ti vellorkbenchifi ndowChecke:
MessageDialog.openlnformation(
window.getShell(),
"Hello",
"Hello, Eclipse world");
return null;

Writable Smart Insert 27 : BB

151

Creating Your First Plug-in

4. Click on the hello world icon in the target Eclipse to display the dialog, and the
debugger will pause the thread at the breakpoint in the host Eclipse:

[] @ | | Debug - com.packtpub.ed.hello.uifsrc/com/packtpub/ed/hello/ui‘handlers/SampleHandler.java - Eclipse
-

i iy > m R R T A O ® y I I | a4
%5 Debug 52 ¥ = O - variables 32 Breakpoints tlm Y= O
v eEcIipse Application [Eclipse Application] MNarme Value

T{%?org.ecIipse.equinox.launcher.Main at localhost: 49548 b @ this SampleHandler {id=82)
v u}}'l'hread [main] (Suspended (breakpoint at line 27 in SampleHa » & event ExecutionEvent (id=97)

= SampleHandler.execute{ExecutionEvent) line: 27
HandlerProxy.execute(ExecutionEvent) line: 295

= E4HandlerProxy.execute{lEclipseContext, Map, Event, |Evz
MativeMethodAccessorimplinvoke0{Method, Object, Objen
MativeMethodAccessorimplinvoke(Object, Object[]) line: &
= DelegatingMethodAccessorimplinvoke{Object, Object[]) lir
Method.invoke{Object, Object...) line: 483
MethodReguestor.executel) line: 55

[J] sampleHandlerjava &3 = 0
20 }) -
21
22 S
23 * the command has been executed, so extract extract the needed information
24 * from the application context.
25 */
albE public Object execute{ExecutionEvent event) throws ExecutionException {
|7 INorkbenchWindow window = HandlerUtil.getActiveWorkbenchiindowChecked(event);
] MessageDialog. openInformation(

window.getShell(),

"Hella",

"Hello, Eclipse world");
return null;

The debugger perspective will open whenever a breakpoint is triggered
% and the program will be paused. While it is paused, the target Eclipse is

L unresponsive. Any clicks on the target Eclipse application will be ignored,
and it will show a busy cursor.

5. Inthe top right, variables that are active in the line of code are shown. In this case,
it's just the implicit variables (via this), any local variables (none yet), as well as the
parameter (in this case, event).

1161

Chapter 1

6. Click on Step Over or press F6, and window will be added to the list of available
variables:

[] @ | | Debug - com.packtpub.ed.hello.uifsrc/com/packtpub/ed/hello/ui‘handlers/SampleHandler.java - Eclipse

Tw e > E BB R TR A O Qi | b B s
7&? Debug &3 ¥ = B - variables 32 | ®p Breakpoints B < = O
v eEcIipse Application [Eclipse Application] MNarme Value

T{%?org.ecIipse.equinox.launcher.Main at localhost: 49548 b @ this SampleHandler {id=82)
v m{l} Thread [main] (Suspended) b O event ExecutionEvent (id=97)

SampleHandler.execute{ExecutionEvent) line: 29 m WorkbenchWindow (id=130) |

HandlerProxy.execute(ExecutionEvent) line: 295

= E4HandlerProxy.execute{lEclipseContext, Map, Event, |Evz

MativeMethodAccessorimplinvoke0{Method, Object, Objen

MativeMethodAccessorimplinvoke(Object, Object[]) line: &

= DelegatingMethodAccessorimpl.invoke{Object, Object[]) lir ©org.eclipse.ui.internal.WorkbenchWindow@356f28b7
Method.invoke{Object, Object...) line: 483

MethodReguestor.executel) line: 55

[J] sampleHandlerjava 52 = 0
:;;. i“"_ S S

21

22 S

23 * the command has been executed, so extract extract the needed information

24 * from the application context.

25 */

public Object execute{ExecutionEvent event) throws ExecutionException {
IWorkbenchWindow window = HandlerUtil.getActiveWorkbenchWindowChecked(event);
MessageDialog. openInformation(
window.getShell(),
"Hella",
"Hello, Eclipse world");
return null;

7. When ready to continue, click on resume = or press F8 to keep running.

What just happened?

The built-in Eclipse debugger was used to launch Eclipse in debug mode. By triggering an
action that led to a breakpoint, the debugger was revealed, allowing the local variables to be
inspected.

When in the debugger, there are several ways to step through the code:

¢ Step Over: This allows stepping over line by line in the method

¢ Step Into: This follows the method calls recursively as execution unfolds

[l

Creating Your First Plug-in

There is also a Run | Step into Selection menu item; it does not have a

toolbar icon. It can be invoked with Ctrl + F5 (Alt + F5 on macOS) and is

used to step into a specific expression.

¢ Step Return: This jumps to the end of a method

¢ Drop to Frame: This returns to a stack frame in the thread to re-run an operation

Time for action — updating code in the debhugger

When an Eclipse instance is launched in run mode, changes made to the source code aren't
reflected in the running instance. However, debug mode allows changes made to the source
to be reflected in the running target Eclipse instance.

1. Launch the target Eclipse in debug mode by clicking on the debug icon.

2. Click on the hello world icon in the target Eclipse to display the dialog, as before, and
click on OK to dismiss it. It may be necessary to remove or resume the breakpoint in
the host Eclipse instance to allow execution to continue.

w

In the host Eclipse, open the SampleHandler class and go to the execute method.

4. Change the title of the dialog to Hello again, Eclipse world and save the file.
Provided the Build Automatically option in Project menu is enabled, the change will
be automatically recompiled.

5. Click on the hello world icon in the target Eclipse instance again. The new message
should be shown.

What just happened?

By default, Eclipse ships with the Build Automatically option in Project menu enabled.
Whenever changes are made to Java files, they are recompiled along with their
dependencies if necessary.

When a Java program is launched in run mode, it will load classes on demand and then
keep using that definition until the JVM shuts down. Even if the classes are changed, the
JVM won't notice that they have been updated, and so no differences will be seen in the
running application.

However, when a Java program is launched in debug mode, whenever changes to classes are
made, Eclipse will update the running JVM with the new code if possible. The limits to what
can be replaced are controlled by the JVM through the Java Virtual Machine Tools Interface
(JVMTI). Generally, updating an existing method and adding a new method or field will work,
but changes to interfaces and superclasses may not be.

[181

Chapter 1

_ The Hotspot JVM cannot replace classes if methods are added or
% interfaces are updated. Some JVMs have additional capabilities that
o can substitute more code on demand. Other JVMs, such as IBM's, can
deal with a wider range of replacements.

Note that there are some types of changes that won't be picked up, for example, new
extensions added to the plugin.xml file. In order to see these changes, it is possible to
start and stop the plug-in through the command-line OSGi console, or restart Eclipse inside
or outside of the host Eclipse to see the change.

Dehugging with step filters

When debugging using Step Into, the code will frequently go into Java internals, such as the
implementation of Java collections classes or other internal JVM classes. These don't usually
add value, so fortunately Eclipse has a way of ignoring uninteresting classes.

Time for action - setting up step filtering

Step filters allow for uninteresting packages and classes to be ignored during step debugging.

1. Runthe target Eclipse instance in debug mode.

2. Ensure that a breakpoint is set at the start of the execute method of the
SampleHandler class.

3. Click on the hello world icon, and the debugger should open at the first line, as
before.

4. Click on Step Into five or six times. At each point, the code will jump to the next
method in the expression, first through various methods in Handlerutil and then
into ExecutionEvent.

5. Click on resume [to continue.

6. Open Preferences and then navigate to Java | Debug | Step Filtering. Select the Use
Step Filters option.

1191

Creating Your First Plug-in

7. Click on Add Package and enter org.eclipse.ui, followed by a click on OK:

Step (=]

Vava
¥ Debug
Step Filtering "

Step Filtering

Use Step Filters

Defined step filters:

-

-

7

£ com.ibm.”

£ com.sun.”
Hjava.”

£ javax.”

£ jrockit.”

£ org.eclipse.ui.”
£ org.omg.”

£ sun.”

£ sunw.”

(® java.lang.ClassLoader

Filter synthetic methods (requires VM support)
Filter static initializers

Filter constructors

Filter simple getters

Filter simple setters

Step through filters

Restore Defaults

Cancel

Step filters are applied when the 'Use Step Filters' toggle is activated.

Add Filter...

Add Class...

Add Packages

Select All

Deselect All

Apply

Ok

@ @ Add Packages to Step Filters

Select a package to filter when stepping:
org.eclipse.ui

4 org.eclipse.ui

1 org.eclipse.ui.about

E} org.eclipse.ui.actions

E} org.eclipse.ui.activities
org.eclipse.ul.application
org.eclipse.ui.branding
org.eclipse.ui.browser
org.eclipse.ui.commands
org.eclipse.ui.contexts
org.eclipse.ul.databinding
org.eclipse.ui.dialogs
org.eclipse.ul.dnd
org.eclipse.ul.fieldassist
org.eclipse.ui.handlers
org.eclipse.ul.help
org.eclipse.ul.internal
org.eclipse.ul.internal. about
org.eclipse.ul.internal.actions
org.eclipse.ul.internal.activities
org.eclipse.ul.internal. activities. ws
org.eclipse.ul.internal . application
org.eclipse.ul.internal browser
org.eclipse.ul.internal.commands
org.eclipse.ul.internal. contexts
org.eclipse.ulinternal . decorators
org.eclipse.ul.internal.dialogs

(xgesgeagusguguReagengeagasgesgus gugeagesyeayusganyuaguigunl

Cancel

)
)

8. Click on the hello world icon again.

9. Click on Step Into as before. This time, the debugger goes straight to the
getApplicationContext method in the ExecutionEvent class.

10. click on resume [jj= to continue.

11. To make debugging more efficient by skipping accessors, go back to the Step Filters
preference and select Filter Simple Getters from the Step Filters preferences page.

12. Click on the hello world icon again.

13. Click on Step Into as before.

14. Instead of going into the getApplicationContext method, the execution will drop
through to the getvariable method of the ExpressionContext class instead.

What just happened?

Step Filters allows uninteresting packages to be skipped, at least from the point of
debugging. Typically, JVM internal classes (such as those beginning with sun or sunw) are
not helpful when debugging and can easily be ignored. This also avoids debugging through
the ClassLoader as it loads classes on demand.

[201

Chapter 1

Typically it makes sense to enable all the default packages in the Step Filters dialog, as it's
pretty rare to need to debug any of the JVM libraries (internal or public interfaces). This
means that when stepping through code, if a common method such as toStringis called,
debugging won't step through the internal implementation.

It also makes sense to filter out simple setters and getters (those that just set a variable or
those that just return a variable). If the method is more complex (like the getvariable
method previously), then it will still stop in the debugger.

Constructors and static initializers can also be filtered specifically.

Using different breakpoint types

Although it's possible to place a breakpoint anywhere in a method, a special breakpoint type
exists that can fire on method entry, exit, or both. Breakpoints can also be customized to
only fire in certain situations or when certain conditions are met.

Time for action - breaking at method entry and exit

Method breakpoints allow the user to see when a method is entered or exited.

1. Openthe sampleHandler class, and go to the execute method.

2. Double-click in the vertical ruler at the method signature, or select Toggle Method
Breakpoint from the method in one of the Outline, Package Explorer or Members
views.

3. The breakpoint should be shown on the line:

public Object execute(...) throws ExecutionException ({

4. Open the breakpoint properties by right-clicking on the breakpoint or via the
Breakpoints view, which is shown in the Debug perspective. Set the breakpoint
to trigger at method entry and method exit.

5. Click on the hello world icon again.
6. When the debugger stops at method entry, click on resume [lj.

7. When the debugger stops at method exit, click on resume [Jj.

What just happened?

The breakpoint triggers at the time the method enters and subsequently when the method's
return is reached. Note that the exit is only triggered if the method returns normally; if an
uncaught exception is raised, it is not treated as a normal method exit, and so the breakpoint
won't fire.

21

[vww allitebooks.cond

http://www.allitebooks.org

Creating Your First Plug-in

Other than the breakpoint type, there's no significant difference between creating a
breakpoint on method entry and creating one on the first statement of the method. Both
give the ability to inspect the parameters and do further debugging before any statements
in the method itself are called.

The method exit breakpoint will only trigger once the return statement is about to leave
the method. Thus any expression in the method's return value will have been evaluated
prior to the exit breakpoint firing. Compare and contrast this with the line breakpoint,
which will wait to evaluate the argument of the return statement.

Note that Eclipse's Step Return has the same effect; this will run until the method's return
statement is about to be executed. However, to find when a method returns, using a method
exit breakpoint is far faster than stopping at a specific line and then doing Step Return.

Breakpoints are useful since they can be invoked on every occasion when a line of code is
triggered. However, they sometimes need to break for specific actions only—such as when a
particular option is set, or when a value has been incorrectly initialized. Fortunately, this can
be done with conditional breakpoints.

Time for action - setting a conditional hreakpoint

Normally breakpoints fire on each invocation. It is possible to configure breakpoints such
that they fire when certain conditions are met; these are known as conditional breakpoints.
1. Gotothe execute method of the SampleHandler class.

2. Clear any existing breakpoints, by double-clicking on them or using Remove All
Breakpoints from the Breakpoints view.

w

Add a breakpoint to the first line of the execute method body.

4. Right-click on the breakpoint, and select the Breakpoint Properties menu (it can
also be shown by Ctrl + double-clicking—or Cmd + double-clicking on macOS—on
the breakpoint icon itself):

[22]

Chapter 1

@ @ Properties for com.packipub.e4.hello.ui.handlers.SampleHandler [line:27] - execute...
Line Breakpoint w v -
Breakpoint Properties)
Filtering Type: com.packtpub.ed.hello.ui.handlers.SampleHandler
Ling Number: 27
Member: execute{ExecutionEvent)
Enabled
Hit count: o Suspend thread Suspend VM
Conditional
<Choose a previously entered condition:>
® cancer | (TN

5. Set Hit Count to 3, and click on OK.

6. Click on the hello world icon button three times. On the third click, the debugger will
open up at that line of code.

7. Open the breakpoint properties, deselect Hit Count, and select the Enabled and
Conditional options. Put the following line into the conditional trigger field:

((org.eclipse.swt.widgets.Event) event.trigger) .stateMask==65536

8. Click on the hello world icon, and the breakpoint will not fire.
9. Hold down Alt + click on the hello world icon, and the debugger will open (65536 is
the value of SWT.MOD3, which is the Alt key).
What just happened?

When a breakpoint is created, it is enabled by default. A breakpoint can be temporarily
disabled, which has the effect of removing it from the flow of execution. Disabled breakpoints
can be easily re-enabled on a per breakpoint basis, or from the Breakpoints view. Quite often
it's useful to have a set of breakpoints defined in the code base, but not necessarily have them
all enabled at once.

It is also possible to temporarily disable all breakpoints using the Skip All Breakpoints
setting, which can be changed from the corresponding item in the Run menu (when the
Debug perspective is shown) or the corresponding icon in the Breakpoints view. When
this is enabled, no breakpoints will be fired.

[231

Creating Your First Plug-in

Conditional breakpoints must return a value. If the breakpoint is set to break whether or
not the condition is true, it must be a Boolean expression. If the breakpoint is set to stop
whenever the value changes, then it can be any Java expression. Multiple statements can
be used provided that there is a return keyword with a value expression.

Using exceptional hreakpoints

Sometimes when debugging a program, an exception occurs. Typically this isn't known about
until it happens, when an exception message is printed or displayed to the user via some
kind of dialog box.

Time for action - catching exceptions

Although it's easy to put a breakpoint in the catch block, this is merely the location where
the failure was ultimately caught, not where it was caused. The place where it was caught
can often be in a completely different plug-in from where it was raised, and depending

on the amount of information encoded within the exception (particularly if it has been
transliterated into a different exception type) may hide the original source of the problem.
Fortunately, Eclipse can handle such cases with a Java Exception Breakpoint.

1. Introduce a bug into the execute method of the SampleHandler class, by adding
the following just before the MessageDialog.openInformation () call:

window = null;

2. Click on the hello world icon.
3. Nothing will appear to happen in the target Eclipse, but in the Console view of the
host Eclipse instance, the error message should be seen:
Caused by: java.lang.NullPointerException
at com.packtpub.e4.hello.ui.handlers.SampleHandler.execute
at org.eclipse.ui.internal.handlers.HandlerProxy.execute

at org.eclipse.ui.internal.handlers.E4HandlerProxy.execute

4. Create aJava Exception Breakpoint in the Breakpoints view of the Debug
perspective. The Add Java Exception Breakpoint dialog will be shown:

[24]

Chapter 1

[] [] Add Java Exception Breakpoint
Cheoose an exception (7 = any character, * = any string) -
| Exception®)

Matching items:

@ AcceptPendingException - java.nio.channels
@ AccessControl Exception

(C] MccessDeniedException

@ AccessException

@ F AccessorException

Suspend on caught exceptions

Suspend on uncaught exceptions

1 java.nio.channels - [Java SE 8 [1.8.0_31]]

!

5. EnterNullPointerException in the search dialog, and click on OK.

6. Click on the hello world icon, and the debugger will stop at the line where the
exception is thrown, instead of where it is caught:

[] @ | | Debug - com.packtpub.ed.hello.ui/sre/com/packtpub/ed/hello/ui/handlers/SampleHandler.java - Eclipse

T N> E 2R FE 0 | & |28
% Debug 22 ¥ = B (4=varables % Breakpoints 53 = =l
v %Eclipse Application [Eclipse Application] ® 6* {:%3 @ A = <‘=,.=|> Jg -

T{f%?org.ecIipse.equinox.launchenMain at localhost: 49590
v uﬁ?Thread [main] (Suspended (exception NullPointerException))
=5 leHandler.execute(Es ionEvent) line: 30
= HandlerProxy.execute(ExecutionEvent) line: 285
E4HandlerProxy.execute{lEclipseContext, Map, Event, |[Ev
MativeMethodAccessorimplinvokeO{Methed, Object, Obje
MativeMethodAccessorimplinvoke(Object, Object[]) line: ¢
DelegatingMethodAccessorimpl.invoke{Object, Object[]) i _
Method.invoke{Object, Object...) line: 483 Hit count: ° Suspend thread Suspend VM
MethodRequestor.execute(line: 55

ullPointerException: caught and uncaught

+2 SampleHandler [line: 27] - execute{ExecutionEvent)

)] SampleHandler.java 52 -0

Caught locations Uncaught locations || Subclasses of this exc

= Sk

* the command has been executed, so extract extract the needed information

* from the application context.

*/
= public Object execute(ExecutionEvent event) throws ExecutionException {
IWorkbenchWindow window = HandlerUtil.getActivelorkbenchiWindowChecked{event);
window = null;
MessageDialog. openlnformation(

window.getShell(),

"Hella",

"Hello, Eclipse world");
33 return null;
34 }
5}

1251

Creating Your First Plug-in

What just happened?

The Java Exception Breakpoint stops when an exception is thrown, not when it is caught.
The dialog asks for a single exception class to catch, and by default, the wizard has

been pre-filled with any class whose name includes *Exception*. However, any name
(or filter) can be typed into the search box, including abbreviations such as FNFE for
FileNotFoundException. Wildcard patterns can also be used, which allows searching
for Nu*Ex or *Unknown*.

By default, the exception breakpoint corresponds to instances of that specific class. This
is useful (and quick) for exceptions such as NullPointerException, but not so useful
for ones with an extensive class hierarchy, such as T0Exception. In this case, there is a
checkbox visible on the breakpoint properties and at the bottom of the breakpoints view,
which allows the capture of all Subclasses of this exception, not just of the specific class.

There are also two other checkboxes that say whether the debugger should stop when
the exception is Caught or Uncaught. Both of these are selected by default; if both are
deselected, then the breakpoint effectively becomes disabled. Caught means that the
exception is thrown in a corresponding try/catch block, and Uncaught means that the
exception is thrown without a try/catch block (this bubbles up to the method's caller).

Time for action - inspecting and watching variables

Finally, it's worth seeing what the Variables view can do.

1. Create a breakpoint at the start of the execute method.

2. Click on the hello world icon again.

3. Highlight the openInformation call and navigate to Run | Step Into Selection.
4

. Select the title variable in the the Variables view.

1261

Chapter 1

5. Modify where it says Hello in the bottom half of the variables view and change it

to Goodbye:

[] [] Debug - org.eclipse.jface.dialogs.MessageDialog - Eclipse
i iy > W R DR T A O Y | W=
%5 Debug 52 ¥ = B - variables 32 % Breakpoints v I i
v % Eclipse Application [Eclipse Application] MNarme Value
T{%}org.eclipse.equinox.launcher.l‘-."lain at localhost: 49590 b @ parent Shell {id=155)
v iﬁ}Thread [main] (Suspended) b O title "Hello" (id=157)

= MessageDialog.openinformaticn(Shell, String, String) line: » & message
= SampleHandler.execute{ExecutionEvent) line: 28

= HandlerProxy.execute(ExecutionEvent) line: 285

= E4HandlerProxy.execute{lEclipseContext, Map, Event, |Ev
MativeMethodAccessorimplinvokeO{Methed, Object, Obje
NativeMethodAccessorlmplinvoke(Object, Object[]) line: ¢ Goodbye

= DelegatingMethodAccessorlimpl.invoke{Object, Object[]) li
Method.invoke{Object, Object...) line: 483

fub MessageDialog.class 52

435 */
436= public static void openInformation{Shell parent, String title,
437 String message) {
$ 438 open(INFORMATION, parent, title, message, SWT.NONE);
439 }
448
441 f**
442 * Convenience method to open a simple Yes/No question dialog.
443 *
444 * parent
445 * the parent shell of the dialog, or <code=null</code= if none
446 * title
447 * the dialog's title, or <code=null</code> if none
448 * message
449 * the message
450 * <code>true</code> if the user presses the Yes button,

1:8

"Hello, Eclipse world® {id=161)

o

Save the value with Ctr/ + S (or Cmd + S on macOS).

N

Click on the hello world icon again.

© %

Variables view.

[21]

Click on resume, and the newly updated title can be seen in the dialog.

With the debugger stopped in the execute method, highlight the event in the

Creating Your First Plug-in

10. Right-click on the value and choose Inspect (by navigating to Ctrl + Shift + | or Cmd +
Shift + 1 on macOS) and the value is opened in the Expressions view:

[] @ | | Debug - com.packtpub.ed.hello.uifsrc/com/packtpub/ed/hello/ui‘handlers/SampleHandler.java - Eclipse
e ey [7] S %Eﬁ:#vﬁv%v:@ LN v » o e v
| I B 43
% Debug £2 ¥ = B - variables % Breakpoints ¥ Expressions &3 =
¥ 4 Thread [main] (Suspended (breakpoint at line 27 in SampleH: = :u: % -
f SampleHandler.execute{ExecutionEvent) line: 27 Name Value
= HandlerP; £ te(E. ticnEvent) line: 295 "
= andlerProxy.execute(ExecutionEvent) line v () event (id=184)

= E4HandlerProxy.execute{lEclipseContext, Map, Event, IEv
NativeMethodAccessorimplinvokeO{Method, Object, Obje
MNativeMethodAccessorimplinvoke(Object, Object[]) line: ¢
= DelegatingMethodAccessorlimpl.invoke{Object, Object[]) li
Method.invoke{Object, Object...) line: 483
MethodReguestor.execute(line: 55

= Injecterimpl.invokelUsingClass{Object, Class<7:, Class<h
= Injectorimpl.invoke{Object, Class<Annotations, Object, Pt

[J] sampleHandilerjava &3
20 }
21

%

> ﬂapplicationComext
[2 rf command
» o parameters
b |:f trigger

> 5_}5" "new java.util. Date()"
o5 Add new expression

23 * the command has been executed, so extroct extract the needed informati

ExpressionContext (id=213)
Command (id=109)
CollectionsSEmptyMap<K, V> (id...
Event (id=220)

{id=241)

o= Outline £3 = 0
- 5
SRR T
com.packtpub.e4.hello.uiha
TG SampleHandler

@ ¢ SampleHandler()

24 * from the application context. E e)
, @ . execute(ExecutionEvent,

*/
public Object execute{ExecutionEvent event) throws ExecutionException {
INorkbenchWindow window = HandlerUtil.getActiveWorkbenchiindowChecke:
MessageDialog. openlnformation(
window.getShell(),
"Hello",
"Hello, Eclipse world");
32 return null;

11.
12.
13.

Click on Add new expression at the bottom of the Expressions view.
Add new java.util.Date () and the right-hand side will show the current time.

Right-click on the new java.util.Date () and choose Re-evaluate Watch
Expression. The right-hand-side pane shows the new value.

14.

Step through the code line by line, and notice that the watch expression is re-
evaluated after each step.

15.
16.

Disable the watch expression by right-clicking on it and choosing Disable.

Step through the code line by line, and the watch expression will not be updated.

1281

Chapter 1

What just happened?

The Eclipse debugger has many powerful features, and the ability to inspect (and change)
the state of the program is one of the more important ones.

Watch expressions, when combined with conditional breakpoints, can be used to find out
when data becomes corrupted or used to show the state of a particular object's value.

Expressions can also be evaluated based on objects in the variables view, and code
completion is available to select methods, with the result being shown with Display.

Q1. How can an Eclipse plug-in be launched in debug mode?

Q2. How can certain packages be avoided when debugging?

Q3. What are the different types of breakpoints that can be set?

Q4. How can a loop that only exhibits a bug after 256 iterations be debugged?
Q5. How can a breakpoint be set on a method when its argument is null?

Q6. What does inspecting an object do?

Q7. How can the value of an expression be calculated?

Q8. How can multiple statements be executed in breakpoint conditions?

Have a go hero — working with hreakpoints

Using a conditional breakpoint to stop at a certain method is fine if the data is simple, but
sometimes there needs to be more than one expression. Although it is possible to use
multiple statements in the breakpoint condition definition, the code is not very reusable.
To implement additional reusable functionality, the breakpoint can be delegated to a
breakpoint utility class.

1. Createautilityclassinthe com.packtpub.e4.hello.ui.handlers package
with a static method breakpoint that returns a true value if the breakpoint
should stop, and false otherwise:

public class Utility {
public static boolean breakpoint ()
System.out.println ("Breakpoint") ;
return false;

1291

Creating Your First Plug-in

2. Create a conditional breakpoint in the execute method that calls Utility.
breakpoint ().

3. Click on the hello world icon again, and the message will be printed to the host
Eclipse's Console view. The breakpoint will not stop.

4. Modify the breakpoint method to return true instead of false. Run the action
again. The debugger will stop.

5. Modify the breakpoint method to take the message as an argument, along with a
Boolean value that is returned to say whether the breakpoint should stop.

6. Set up a conditional breakpoint with the expression:
Utility.breakpoint (
((org.eclipse.swt.widgets.Event)event.trigger) .stateMask != 0,
"Breakpoint")

7. Modify the breakpoint method to take a variable Object array, and use that in
conjunction with the message to use String. format () for the resulting message:
Utility.breakpoint (

((org.eclipse.swt.widgets.Event)event.trigger) .stateMask != 0,
"Breakpoint %s %h",

event,

java.time.Instant.now())

In this chapter, we covered how to get started with Eclipse plug-in development. From
downloading the right Eclipse package to getting started with a wizard-generated plug-in, you
should now have the tools to follow through with the remainder of the chapters of this book.

Specifically, we learned these things:
¢ The Eclipse SDK and the Eclipse IDE for Eclipse Committers have the necessary
plug-in development environment to get you started

¢ The plug-in creation wizard can be used to create a plug-in project, optionally using
one of the example templates

¢ Testing an Eclipse plug-in launches a second copy of Eclipse with the plug-in installed
and available for use

¢ Launching Eclipse in debug mode allows you to update code and stop execution at
breakpoints defined via the editor

Now that we've learned how to get started with Eclipse plug-ins, we're ready to look at
creating plug-ins that contribute to the IDE, starting with SWT and Views—which is the
topic of the next chapter.

Creating Views with SWT

SWT — the Standard Widget Toolkit

SWT is the widget toolkit used by Eclipse that gives performant access to the
platform’'s native tools in a portable manner. Unlike Swing, which is rendered
with Java native drawing operations, SWT delegates the drawing to the
underlying operating system.

In this chapter we will:

Create an Eclipse view with SWT widgets

Create a custom SWT widget

Work with SWT resources and learn how to detect and fix resource leaks
Handle focus operations

Group components and resize them automatically

Create system tray items

Display nonrectangular windows

® 6 & 6 6 o o o

Provide scrolling and tabbed navigation

This section introduces views and widgets by creating clocks that can be used to display time
zones in Eclipse.

[311

Creating Views with SWT

Time for action - creating a view

The Eclipse Ul consists of multiple views, which are the rectangular areas that display
content, such as the Outline, Console, or Package Explorer. In Eclipse 3.x, views are created
by adding an extension point to an existing plug-in, or using a template. A clock.ui plug-in
will be created to host the clock widgets and views.

1. Open the plug-in wizard by navigating to File | New | Other | Plug-in Project. Enter
the details as follows:

1. Set Project name to com.packtpub.e4.clock.ui.
2. Ensure that Use default location is selected.

3. Ensure that Create a Java project is selected.
4

The Eclipse Version should be targeted to 3.5 or greater.

2. Click on Next again, and fill in the plug-in properties:
1. SetlIDto com.packtpub.e4.clock.ui.

2. SetVersionto1.0.0.qualifier.

3. Set Name to Clock.

4. Set Vendor to PacktPub.

5. Ensure that Generate an Activator is selected.

6. Set the Activator to com.packtpub.e4.clock.ui.Activator.

7. Ensure that This plug-in will make contributions to the Ul is selected.
8

Rich client application should be No.

3. Click on Next to choose from a set of templates:
1. Ensure that Create a plug-in using one of the templates is selected.

2. Choose the Plug-in with a view template.
4. Click on Next to customize the aspects of the sample; set:
Java package name to com.packtpub.e4.clock.ui.views.
View class name to ClockView.
View name to Clock View.

1
2
3
4. View category ID to com.packtpub.e4.clock.ui.
5. View category name to Timekeeping.

6

Viewer type to Table Viewer.

[321

Chapter 2

5. Deselect the Add checkboxes as these are not required.
6. Click on Finish to create the project.
7. Run the target Eclipse application via the run toolbar icon.
8. Navigate to Window | Show View | Other | Timekeeping | Clock View to show the
Clock View, which has a simple list view with One, Two, and Three listed:
& Clock View i3 T TS
[Zone
= Twe
Three
What just happened?

Functionality in Eclipse will typically be implemented in multiple plug-ins. Since the clock
functionality developed in this chapter is unrelated to that of the hello plug-in, a new
plug-in was created to host the code. Plug-ins typically will have more than just one view
or extension, grouped logically.

The plug-in wizard created an empty plug-in project as well as two key files: MANIFEST . MF
and plugin.xml.

Manifest.mf
The manifest contains references to dependent plug-ins and interfaces, and includes the
following:

Bundle-SymbolicName: com.packtpub.ed4.clock.ui;singleton:=true
Bundle-Version: 1.0.0.qualifier

Bundle-Activator: com.packtpub.e4.clock.ui.Activator
Require-Bundle: org.eclipse.ui,

org.eclipse.core.runtime

Plug-ins that contribute to the user interface need to do two things:

¢ Dependonorg.eclipse.ui

¢ Have ;singleton:=true after the bundle's symbolic name

Creating Views with SWT

The dependency on the org.eclipse.ui bundle gives access to the Standard Widget
Toolkit and other key parts of the Eclipse framework.

The clause ; singleton:=true is an OSGi directive, which means that only
one version of this plug-in can be installed in Eclipse at a time. For plug-ins that
% add dependencies to the Ul, there is a restriction that they must be singletons
g (this constraint is one of the main reasons why installing a new plug-requires the
IDE to restart).

The manifest sets up the project's class path. Any additional plug-in dependencies need to
be to the manifest.

The plugin.xml file defines a list of extensions that this plug-in provides. Extension points
are how Eclipse advertises the plug-in extensions, much like a USB hub provides a generic
connector that allows many other types of device to be plugged in.

The Eclipse extension points are documented in the help system, and each has a point
identifier, with optional children that are point-specific. In this case, the extension is defined
using the org.eclipse.ui.views point, which expects a combination of category and
view elements. In this case, it will look like the following:

<plugin>
<extension point="org.eclipse.ui.views">
<category name="Timekeeping"
id="com.packtpub.e4.clock.ui"/>
<view name="Clock View"
icon="icons/sample.gif"
category="com.packtpub.e4.clock.ui"
class="com.packtpub.e4.clock.ui.views.ClockView"
id="com.packtpub.e4.clock.ui.views.ClockView"/>
</extension>

</plugin>

The class in this case extends the viewPart abstract class, which is used for all views in the
Eclipse 3.x model.

The Eclipse 4 (E4) model defines views in a different way, which is covered in
% more detail in Chapter 7, Creating Eclipse 4 Applications. The Eclipse 4.x SDK
’ includes a 3.x compatibility layer, so these examples will work in Eclipse 4.x SDKs.

The viewer component is a default table view, which will be replaced in the next section.

[3a1

Chapter 2

Time for action — drawing a custom view

An SWT Ccanvas can be used to provide custom rendering for a view. As a starting point for
drawing a clock, the canvas will use drawArc to create a circle.

1. Remove the content of the ClockView, leaving behind an empty implementation of
the setFocus and createPartControl methods.

2. Run the target Eclipse instance and you will see that the ClockView is now empty.

3. Create a new method called drawClock that takes a PaintEvent, and use the
graphics context gc from the event to draw the circle.

4. Inthe createPartControl method, do the following:
1. Create anew Canvas, Which is a drawable widget.

2. AddaPpaintListener to the Canvas that uses a method reference to the
drawClock method.

5. The code will look like this:

package com.packtpub.ed.clock.ui.views;
import org.eclipse.swt.*;
import org.eclipse.swt.events.*;
import org.eclipse.swt.widgets.*;
import org.eclipse.ui.part.ViewPart;
public class ClockView extends ViewPart {
public void createPartControl (Composite parent) {
final Canvas clock = new Canvas (parent, SWT.NONE) ;
clock.addPaintListener (this: :drawClock) ;
}
private void drawClock (PaintEvent e) {
e.gc.drawArc(e.x, e.y, e.width-1, e.height-1, 0, 360);
}
public void setFocus() {
}
}

6. Run the target Eclipse instance, and show the ClockView.

Creating Views with SWT

7. Resize the view, and the clock should change size with it:

& Clock View 52 = d

What just happened?

In SWT, the widget used for custom drawing is Canvas. The View is constructed with a call
to createPartControl, which is invoked once when the view is shown for the first time.
If the view is minimized and then maximized, it will not be invoked again; however, if the
view is closed and a new view is opened, then a call will be made to a new instance of the
ClockView to initialize it.

Unlike other Java GUI frameworks, a widget is not added to or removed from a containing
parent after creation; instead, the widget's parent is specified at construction time. The
constructor also takes a style flag. This is used by widgets in different ways; for example,
the Button widget takes various flags to indicate whether it should be rendered as a push
button, radio button, checkbox, toggle, or arrow. For consistency, in SWT all widgets have an
int style flag, which enables up to 32 bits of different options to be configured.

These are defined as constants in the SWT class; for example, the checkbox
button style is represented as SWT . CHECKBOX. Options can be combined. To
% specify a flat button, the SWT . PUSH and SWT . FLAT options can be combined
g together with new Button (parent, SWT.PUSH | SWT.FLAT). Generally,
the value SWT . NONE is used to represent default options.

The code adds an empty Canvas to the view, but how can graphics be drawn? SWT does not
expose a paint method on any of its widgets. Instead, a PaintListener is called whenever
the canvas needs to be repainted.

Chapter 2

All in the name of performance

You may wonder why all these little things are different between the way SWT
handles its widgets compared to how AWT or Swing handles them. The answer
is in the name of speed and delegation to native rendering and controls if at all
possible. This mattered back in the early days of Java (Eclipse 1.0 was released
* when Java 1.3 was the most advanced runtime available), when neither the JITs
%;%‘ nor CPUs were as powerful as today.

Secondly, the goal of SWT was to offload as much of the processing onto native
components (such as AWT) as possible and let the OS do the heavy work instead
of Java. By doing that, the time spent in the JVM could be minimized, while
allowing the OS to render the graphics in the most appropriate (and performant)
way. The PaintListener is one such example of avoiding performing
unnecessary drawing-related calls unless a component actually needs it.

The drawClock method is called with a PaintEvent argument, which contains references
to all of the data needed to draw the component. To minimize method calls, the fields are
publicly readable. It also contains a reference to the graphics context (gc) which can be used
to invoke drawing commands.

Finally, the event also records the region in which the paint event is to be fired. The x and y
fields show the position of the top left to start from, and the width and height fields of the
event show the drawing bounds.

In this case, the graphics context is set up with the necessary foreground color, and drawArc
is called between the bounds specified. Note that the arc is specified in degrees (from 0 with
a 360 span) rather than radians.

Time for action - drawing a seconds hand

A clock with no hands and no numbers is just a circle. To change this, a second hand will be
drawn using a filled arc.

Since arcs are drawn anticlockwise from 0 (on the right, or 3 o'clock) through 90 degrees

(12 o'clock), then 180 degrees (9 o'clock), then 270 degrees (6 o'clock), and finally back to
360 degrees (3 o'clock), it is possible to calculate the arc's position for the second hand using
the expression (15 —seconds) * 6 % 360.

1. Gotothe drawClock method of the ClockView class.

2. Add avariable called seconds that is initialized to LocalTime .now () .
getSecond().

3. Getthe SWT.COLOR_BLUE via the display, and store it in a local variable, blue.

[311

Creating Views with SWT

4. Set the background color of the graphics context to blue.
5. Draw an arc using the formula mentioned earlier to draw the second hand.

6. The code should look like this:

public void paintControl (PaintEvent e) {
e.gc.drawArc(e.x, e.y, e.width-1, e.height-1, 0, 360);
int seconds = LocalTime.now () .getSecond() ;
int arc = (15 - seconds) * 6 % 360;
Color blue = e.display.getSystemColor (SWT.COLOR BLUE) ;
e.gc.setBackground (blue) ;

e.gc.fillArc(e.x, e.y, e.width-1, e.height-1, arc-1, 2);

|
‘Q Make sure that org.eclipse.swt.graphics.Color is used

rather than the same-named classes from java . awt.

7. Start Eclipse and show the Clock View. The second hand will be shown once but
won't change.

8. Resize the view. Then the second hand will be drawn in the new location:

2 Clock View 52 = 8

What just happened?

The code calculates the position on the arc at which the second hand will need to be drawn.
Since the arc degrees go anticlockwise, the seconds have to be negative. The offset of 15
represents the fact that an arc of 0 is at the 3 o'clock position, which is 15 seconds. This is
then multiplied by 6 (60 seconds = 360 degrees) and finally the result is calculated modulus
360, to ensure that it's up to 360 degrees (the value can be negative; the arc calculation
works in this way as well).

Chapter 2

Although drawArc colors in the foreground color, the £i11Arc colors in the background color.
The GC maintains two colors; a foreground color and a background color. Normally an SWT
Color object needs to have a dispose after use, but to simplify this example, the Display
class's getSystemColor method is used, whose result does not need to be disposed.

Finally, the arc is drawn 2 degrees wide. To center it, the arc starts from pos-1, so it is drawn
from pos-1 to pos+1.

When the view is resized, a redraw is issued on the canvas, and so the second hand is drawn
in the correct position. However, to be useful as a clock, this should be done automatically
do this while the view is visible.

Time for action - animating the second hand

The second hand is drawn with a redraw on the Canvas, but this will need to be run
periodically. If it is redrawn once per second, it can emulate a clock ticking.

Eclipse has a jobs plug-in, which would be just right for this task, but this will be covered in
Chapter 4, Interacting with the User. So to begin with, a simple Thread will be used to issue
the redraw.

1. Openthe ClockvView class.

2. Add the following at the bottom of the createPartControl method:

Runnable redraw = () -> {
while (!clock.isDisposed()) {
clock.redraw () ;
try {
Thread.sleep(1000) ;
} catch (InterruptedException e) ({

return;

}
}
Vi

new Thread (redraw, "TickTock") .start();

w

Relaunch the test Eclipse instance, and open the Clock View.

4. Open the host Eclipse instance and look in the Console View for the errors.

Creating Views with SWT

What just happened?

When the ClockView is shown, a Thread is created and started, which redraws the clock
once per second. When it is shown, an exception is generated, which can be seen in the host
Eclipse instance's Console View:

Exception in thread "TickTock"
org.eclipse.swt.SWTException: Invalid thread access
at org.eclipse.swt.SWT.error (SWT.java:4477)
at org.eclipse.swt.SWT.error (SWT.java:4392)
at org.eclipse.swt.SWT.error (SWT.java:4363)
at org.eclipse.swt.widgets.Widget.error (Widget.java:783)
at org.eclipse.swt.widgets.Widget.checkWidget (Widget.java:574)
at org.eclipse.swt.widgets.Control.redraw(Control.java:2279)
at com.packtpub.e4.clock.ui.views.ClockView$2.run(ClockView.java:29)

This is expected behavior in this case, but it's worth taking a dive into the SWT internals to
understand why.

Many windowing systems have a Ul thread, which is responsible for coordinating the user
interface updates with the program code. If long-running operations execute on the Ul
thread, then the program can appear to hang and become unresponsive. Many windowing
systems will have an automated process that changes the cursor into an hourglass or
spinning beach ball if the Ul thread for an application is blocked for more than a short
period of time.

SWT mirrors this by providing a Ul thread for interacting with the user interface, and ensures
that updates to SWT components are performed on this thread. Redraws occur on the SWT
thread, as do calls to methods such as createPartControl.

In the clock update example, updates are being fired on a different thread (in this case, the
TickTock thread), and this results in the exception shown earlier. So how are these updates
run on the correct thread?

Time for action - running on the Ul thread

To execute code on the Ul thread, Runnable instances must be posted to the Display

via one of two methods, syncExec or asyncExec. The syncExec method runs the code
synchronously (the caller blocks until the code has been run) while the asyncExec method
runs the code asynchronously (the caller continues while the code is run in the background).

[401

Chapter 2

The Display class is SWT's handle to a monitor (so a runtime may have more than one
Display object, and each may have its own resolution). To get hold of an instance, call
either Display.getCurrent () or Display.getDefault (). However, it's much better
to get a Display from an associated view or widget. In this case, the Canvas has an
associated Display.

1. Gotothe TickTock thread inside the createPartControl method of the
ClockView class.

2. Inside the redraw lambda, replace the call to clock.redraw () with this:

// clock.redraw() ;
clock.getDisplay () .asyncExec(() -> clock.redraw()) ;

3. Run the target Eclipse instance and show the Clock View. The second hand should
now update automatically.

What just happened?

This time, the event will execute as expected. One thread (TickTock) is running in the
background, and every second it posts a Runnable to the Ul thread, which then runs
asynchronously. This example could have used syncExec and the difference would not have
been noticeable—but in general, using asyncExec should be preferred unless there is a
specific reason to need the synchronous blocking behavior.

The thread is in a while loop and is guarded with a call to clock.isDisposed (). Each
SWT widget can be disposed with a call to dispose. Once a widget is disposed, any native
operating system resources are returned and any further operations will throw an exception.
In this example, the Canvas is disposed when the view is closed, which in turn disposes any
components contained. As a result, when the view is closed, the Thread automatically ceases
its loop (the thread can also be aborted by interrupting it during its 1-second sleep pauses).

Time for action - creating a reusahle widget

Although the ClockView shows a single animated clock, creating an independent widget
will allow the clock to be reused in other places.

1. Create anew classin the com.packtpub.e4.clock.ui package, called
ClockWidget, that extends Canvas.

2. Create a constructor that takes a Composite parent and an int style bits
parameter, and pass them to the superclass:

public ClockWidget (Composite parent, int style) {
super (parent, style);

}

[al]

Creating Views with SWT

3.

Move the implementation of the drawClock method from the Clockview
to the ClockWidget. Remove the PaintListener references from the
ClockView class.

In the ClockWidget constructor, register a PaintListener that delegates the call
to the drawClock method:

addPaintListener (this: :drawClock) ;

Move the TickTock thread from the ClockView to the ClockWidget constructor;
this will allow the ClockwWidget to operate independently. Change any references
for clock to this:

Runnable redraw = () -> {
while (!this.isDisposed()) {
this.getDisplay () .asyncExec(() -> this.redraw()) ;
try {

Thread.sleep(1000) ;
} catch (InterruptedException e) ({

return;

}

new Thread (redraw, "TickTock") .start();

Add a computeSize method to allow the clock to have a square appearance that is
the minimum of the width and height. Note that SWT . DEFAULT may be passed in,
which has the value -1, so this needs to be handled explicitly:

public Point computeSize(int w, int h, boolean changed) {

int size;

if (w == SWT.DEFAULT)
size = h;

} else if (h == SWT.DEFAULT) ({
size = w;

} else {
size = Math.min(w, h);

}

if (size == SWT.DEFAULT) ({
size = 50;

}

return new Point (size, size);

[42]

Chapter 2

7. Finally, change the ClockView to instantiate the ClockWidget instead of the
Canvas in the createPartControl method:

new ClockWidget (parent, SWT.NONE) ;

8. Run the target Eclipse instance and the clock should be shown as earlier.

What just happened?

The drawing logic was moved into its own widget, and registered a PaintListener to
a method in the ClockWidget to render itself. This allows the Clock to be used as a
standalone in any Eclipse or SWT application.

In a real application, the clocks would not have their own thread; it would either be the case
that a single Thread would control updates to all Clock instances, or they would be set

up with repeating Job instances using the Eclipse jobs framework, which will be covered in
Chapter 4, Interacting with the User.

The technique of using a method reference (or anonymous class) to bind a specific listener
type to the instance of the class is a common pattern in SWT. When using inner classes,
the convention is to use the same method name in the enclosing class; this helps to
disambiguate the use.

sl . . .
~ Remember to set the listener at startup, as otherwise it can be confusing as
to why it's not getting called.

It's also possible for the ClockWidget to implement PaintListener directly; in this case,
addPaintListener (this) would be called in the constructor. Modern JITs will optimize
the calls to equivalent code paths in any case; it comes down to a style decision as to
whether the ClockWidget class should implement the PaintListener interface or not.

Finally, the size can be computed based on the hints. This is called by the layout manager to
determine what size the widget should be. For widgets with a fixed size (say, a text string or
an image), the size can vary depending on the layout. In this case, it returns a square, based
on the minimum size of the supplied width and height hints, or 50, whichever is bigger. The
SWT .DEFAULT value is -1, which has to be dealt with specifically.

[431

Creating Views with SWT

Time for action - using layouts

Now that the ClockWidget has been created, multiple instances can be added into the
ClockView.

1. Modify the createPartControl method in the ClockView class to create three
ClockWidget instances, and assign them to local variables:

final ClockWidget clockl = new ClockWidget (parent, SWT.NONE) ;
final ClockWidget clock2 = new ClockWidget (parent, SWT.NONE) ;
final ClockWidget clock3 = new ClockWidget (parent, SWT.NONE) ;

2. Run the target Eclipse instance, and show the Clock View. Three clocks will be
shown, counting in seconds:

& Clock View &3 = a8

3. Atthe start of the ClockView class's createPartControl method, create a new
RowLayout With SWT.HORIZONTAL, and then set it as the layout on the parent
Composite:

public void createPartControl (Composite parent) {
RowLayout layout = new RowLayout (SWT.HORIZONTAL) ;
parent.setLayout (layout) ;

4. Run the code again now, and the clocks will be in a horizontal row:

& Clock View 2 = 0

OO0

[a4]

Chapter 2

5. Resize the view; the clocks will flow into different rows:

Sclock 3 — O

The RowLayout has a number of fields that can affect how widgets are laid
out:

& center: If components are centered (vertically or horizontally)

& f£ill:If the entire size of the parent should be taken up

¢ justify:If the components should be spaced so that they reach the

end
% ¢ pack: If components should get their preferred size or be expanded to
g fill space

¢ wrap: If the components should wrap at the end of the line

There are also options to control any pixel spacing between elements
(spacing) and any margins at the edge (marginHeight and
marginWidth, or ones that can be specified individually such as marginTop,
marginBottom, marginLeft, and marginRight).

6. Every SWT widget has an optional layout data object, which is specific to the
kind of layout being used by its containing parent. In the Clockview method
createPartControl, add a RowData object to the clocks with a different size:

7

clockl.setLayoutData (new RowData (20,20))
clock2.setLayoutData (new RowData (50,50)) ;
clock3.setLayoutData (new RowData (100,100)) ;

7. Open the Clock View, and the clocks will be shown in increasing size:

& Clock View &2 = B8

O

451

Creating Views with SWT

What just happened?

A Composite is capable of handling multiple widgets, and the job of deciding where to
put these components is performed by the associated LayoutManager. The standard
layout managers include FillLayout, RowLayout, GridLayout, FormLayout, and
CellLayout. The default for Eclipse views is to use a FillLayout, though a manually
created Composite has no associated layout by default.

Both FillLayout and RowLayout create a horizontal or vertical set of widgets with
controlled sizes. The FillLayout is the default for views and expands the size of the
widgets to the space available. RowLayout will set the component's sizes to their default
as calculated by computeSize (0,0).

Layout managers have different properties, such as SWT . HORIZONTAL and SWT . VERTICAL,
and to change how elements are wrapped if the row gets full. The documentation for each
layout manager has information as to what it supports.

Layout data objects are used to specify different values for objects within the Composite.
The preceding example looked at the RowData options.

The corresponding FillData class for the FillLayout has no public fields. Other layout
managers such as GridLayout have more extensive customization options in the GridData
class. Remember that when changing a LayoutManager, the associated layout data objects
will need to be modified accordingly.

Pop quiz: understanding views

Q1. What is the parent class of any view in the Eclipse 3.x model?

Q2. How do you register views with the Eclipse workbench?

Q3. Which two arguments are passed into every SWT widget and what are they for?
Q4. What does it mean for a widget to be disposed?

Q5. How do you draw a circle on a Canvas?

Q6. What listener do you have to register to execute drawing operations?

Q7. What happens if you try and update an SWT object from outside a Ul thread?
Q8. How do you update SWT components from a different thread?

Q9. What value is SWT . DEFAULT used for?

Q10. How do you specify a specific size for a widget in a RowLayout?

1461

Chapter 2

Now that the clock view is animating a second hand, do the same calculation for the hour
and minute hands. Minutes will be calculated the same way as seconds; for hours, multiply
the hours by 5 to map onto the same path.

Draw lines for every five minutes using the drawLine method. Some simple math will be
required to calculate the start and end points of the line.

Finally, draw the text lettering for the numbers in the right locations. The drawText method
can be used to place a string at a particular place. Use this to print out the current time in
the center of the clock, or print out the date.

One of the challenges in adopting SWT is that native resources must be disposed when they
are no longer needed. Unlike AWT or Swing, which perform these operations automatically
when an object is garbage-collected, SWT needs manual resource management.

Why does SWT need manual resource management?

A common question asked is why SWT has this rule when Java has had perfectly
acceptable garbage collection for many years. In part, it's because SWT pre-dates
acceptable garbage collection, but it's also to try and return native resources as
soon as they are no longer needed.

%‘ From a performance perspective, adding a finalize method to an object
also causes the garbage collector to work harder; much of the speed in today's
garbage collectors is because they don't need to call methods as they are
invariably missing. It also hurts in SWT's case because the object must post its
dispose request onto the Ul thread, which delays its garbage collection until the
object becomes reachable again.

Not all objects need to be disposed; in fact, there is an abstract class called Resource which
is the parent of all resources that need disposal. It is this class that implements the dispose
method, as well as the isDisposed call. Once a resource is disposed, subsequent calls to its
methods will throw an exception with a Widget is disposed or Graphic is disposed message.

Further confusing matters, some Resource instances should not be disposed by the

caller. Generally, instances owned by other classes in accessors should not be disposed; for
example, the Color instance returned by the Display method getSystemColor is owned
by the Display class, so it shouldn't be disposed by the caller. Resource objects that are
instantiated by the caller must be disposed of explicitly.

(411

Creating Views with SWT

Time for action - getting colorful

To add an option for the ClockwWidget to have a different color, an instance must be
obtained instead of the hardcoded BLUE reference. Since Color objects are Resource
objects, they must be disposed correctly when the widget is disposed.

To avoid passing in a Color directly, the constructor will be changed to take an RGB value
(which is three int values), and use that to instantiate a Color object to store for later.
The lifetime of the Color instance can be tied to the lifetime of the ClockWidget.

1. Add a private final Color field called color to the ClockwWidget:

private final Color color;

2. Modify the constructor of the ClockWidget to take an RGB instance, and use it
to instantiate a Color object. Note that the color is leaked at this point, and will
be fixed later:
public ClockWidget (Composite parent, int style, RGB rgb) ({

super (parent, style);
// FIXME color is leaked!
this.color = new Color (parent.getDisplay (), rgb);

3. Modify the drawClock method to use this custom color:

protected void drawClock (PaintEvent e) {

e.gc.setBackground (color) ;
e.gc.fillArc(e.x, e.y, e.width-1, e.height-1, arc-1, 2);

4. Finally, change the ClockView to instantiate the three clocks with different colors:

public void createPartControl (Composite parent) {

final ClockWidget clock =

new ClockWidget (parent, SWT.NONE, new RGB(255,0,0)) ;
final ClockWidget clock2 =

new ClockWidget (parent, SWT.NONE, new RGB(0,255,0)) ;
final ClockWidget clock3 =

new ClockWidget (parent, SWT.NONE, new RGB(0,0,255)) ;

[481

Chapter 2

5. Now run the application and see the new colors in use:

& Clock View 52

O

What just happened?

The Color was created based on the red, green, blue value passed into the Clockwidget
constructor. Since the RGB is just a value object (it isn't a Resource), it doesn't need to be
disposed afterwards.

Once the Color is created, it is assigned to the instance field. When the clocks are drawn,
the second hands are in the appropriate colors.

One problem with this approach is that the Color instance is leaked. When the

view is disposed, the associated Color instance is garbage-collected, but the
resources associated with the native handle are not.

Time for action - finding the leak

It is necessary to know how many resources are allocated in order to know whether the leak
has been plugged or not. Fortunately, SWT provides a mechanism to do this via the Display
and the DeviceData class. Normally, this is done by a separate plug-in, but in this example,

the Clockview will be modified to show this behavior.

1. Atthe start of the ClockView class's createPartControl method, add a call to
obtain the number of allocated objects, via the DeviceData of the Display class:

public void createPartControl (Composite parent) {
Object [] objects = parent.getDisplay () .getDeviceData() .objects;

1491

Creating Views with SWT

2. lterate through the allocated objects, counting how many are instances of Color:

int count = 0;
for (int i = 0; i < objects.length; i++) ({
if (objects[i] instanceof Color) {

count++;

}
}

3. Print the count to the standard error stream:

System.err.println("There are " + count + " Color instances");

4. Now run the code in debug mode and show the Clock View. The following lines will
be displayed in the host Eclipse Console View:

There are 0 Color instances
There are 0 Color instances
There are 0 Color instances

For efficiency, SWT doesn't log all the allocated resources all the time. Instead,
it's an option that is enabled at startup through an options file, which is a
% text properties file with name=value pairs. This can be passed to an Eclipse
g instance at launch via the -debug flag. Fortunately, it is easy to set within
Eclipse from the launch configuration's tracing tab.

o4

Close the target Eclipse application, if it is running.

o

Go to the launch configuration via the Debug | Debug Configurations menu.

7. Select the Eclipse Application (if it's not selected already) and go to the Tracing tab.
Enable the tracing option, and select the org.eclipse.ui plug-in. Select both the
debug (at the top) and the trace/graphics options:

Chapter 2

| BN) Debug Cenfigurations

Create, manage, and run configurations

Create a configuration to launch an Eclipse applicaticn in debug mode.

—+I,
X B Name: |Eclipse Application
(<]

E| Main | (9= Arguments % Plug-ins Configuration @ Tracing E Environment E Common
¥ & Eclipse Application e
2 Eclipse Application
5] Java Applet
[3] Java Application
JuJunit
¥ dUnit Plug-in Test
'39 OSGi Framework
E Remaote Java Application

Enable tracing

A e e e 1

E"I::org.eclipse.osgi {3.10.100.v20150129-2253) debug
E'J.::org.eclipse.pde.api.tools(1_0.?00.v201501 14-
E'J::org.eclipse.pde.build {3.9.100.v20140729-192
- org.eclipse.pde.core (3.10.100.v20150122-111 debug/declaredimages
- org.eclipse.search (3.10.0.v20150129-2029) ttt
E'Jkorg.eclipse.team.cor& (3. 7100020141 117-111
E'Jrsorg.eclipse.team.cvs.core (3.3.700.v20141117 trace/handlers
:I::org.eclipse.team .cvs.ssh2 (3.2.500.v2014111¢
:I::arg.eclipse.team.cvs.ui{3.3.?00.\.'20141118-1
:I::arg.eclipse.team.ui (3.7.200.v20141118-1725)
org.eclipse.ui (3.107.0.v20150107-08903) trace/handlers.verbose.commandid
?‘I::org.eclipse.ui.browser {3.4.200.v20131003-14
E"I::org.eclipse.ui.ide (3.10.100.v20150126-1117)

debug/contributions

trace/graphics

trace/handlers.performance

trace/handlers.verbose

trace/keyBindings

1 org.eclipse.uiintro (3.4.300.v20141007-1449) trace/keyBindings.verbose

Q’-:I::org.ecIipse.ui.intro.universal (3.2.800.v201408 trace/multipageeditor

a) S

org.eclipse.ui.navigator (3.5.500.v20150126-1

;‘I:‘ g !p ' g { trace/operations

=l oo eelingss. i workhench (3,107 0.v20150127-

Select All Deselect All

Apply Revert

Filter matched & of & items
@ Close Debug

8. Now launch the application by hitting Debug, and open and close the ClockView a
few times:

There are 87 Color instances
There are 92 Color instances
There are 95 Color instances
There are 98 Color instances

What just happened?

Clearly, something is leaking three Color instances each time the Clock View is opened.
Not surprisingly, three instances of the Color are allocated in the three instances

of ClockwWidget. This suggests that there is a resource leak in the Clockview or
ClockWidget.

[51]

Creating Views with SWT

When SWT is running in trace mode, it will keep a list of previously allocated resources in

a global list, which is accessible through the DeviceData object. When the resource is
disposed, it will be removed from the allocated list. This allows monitoring of the state of
resources at play in the Eclipse workbench and discovering leaks, typically through repeated
actions, noting an increase each time in the resource count.

Other object types are also stored in this list (for example, Font and Image instances), so
it's important to filter by type when looking for a resource set. It's also important to note
that Eclipse has its own runtime resources which are used, and so during tracing, these are
included in the list as well.

By learning how to enable tracing and how to programmatically detect what objects are
allocated, it will be possible to discover such leaks or check whether they have been
fixed afterwards.

Time for action - plugging the leak

Now that the leak has been discovered, it needs to be fixed. The solution is to call dispose
on the Color once the view itself is removed.

A quick investigation of the ClockWidget suggests that overriding dispose might work,
though this is not the correct solution; see later for why.

1. Create adispose method in ClockWidget with the following code:

@Override
public void dispose() {
if (color != null && !color.isDisposed())

color.dispose() ;
super.dispose() ;

}

2. Run the target Eclipse application in debug mode (with the tracing enabled, as
before) and open and close the view. The output will show something like this:
There are 87 Color instances
There are 91 Color instances
There are 94 Color instances
There are 98 Color instances

3. Remove the dispose method (since it doesn't work as intended) and modify the
constructor of the ClockWidget to add an anonymous DisposeListener that
disposes of the associated Color:
public ClockWidget (Composite parent, int style, RGB rgb) {

super (parent, style);

521

Chapter 2

this.color = new Color (parent.getDisplay (), rgb);
addDisposelListener (e -> color.dispose());

}

4. Now run the code and see what happens when the view is opened and closed a few
times:
There are 87 Color instances
There are 88 Color instances
There are 88 Color instances
There are 88 Color instances

5. The leak has been plugged.

What just happened?

Once the source of the leak has been identified, the correct course of action is to dispose
the Color when no longer needed. However, although it is tempting to think that overriding
the dispose method of the ClockWidget would be all that is needed, it doesn't work.

The only time dispose is called is at the top level Shell (or View), and if there are no
registered listeners, then the dispose method is not called on any components beneath.
Since this can be quite counter-intuitive, it is of value to step through the code to verify that
that is the behavior so that it can be avoided in the future.

Detecting and resolving resource leaks can be a time-consuming process. There are SWT
Tools plug-ins developed by the SWT team that can perform a snapshot of resources and
check whether there are any leaks using a similar technique. The plug-ins are located at the
SWT tools update site (which are listed at http://www.eclipse.org/swt/updatesite.
php) and can be installed to avoid having to modify code (for the purpose of monitoring
allocated resources).

Don't forget when performing tests that the first one or two runs may give different results
by virtue of the fact that other resources may be getting initialized at the time. Take a couple
of readings first before relying on any data, and bear in mind that other plug-ins (which may
be executing in the background) could be doing resource allocation at the same time.

Finally, when working with any SWT widget, it is good practice to check whether the resource
is already disposed. The JavaDoc for the dispose method says that this is not strictly
necessary, and that resources that are already disposed will treat this as a no-op method.

http://www.eclipse.org/swt/updatesite.php
http://www.eclipse.org/swt/updatesite.php

Creating Views with SWT

Pop yuiz - understanding resources

Q1. Where do resource leaks come from?

Q2. What are the different types of Resource classes?
Q3. How can you enable SWT resource tracking?
Q4. Once enabled, how do you find out what objects are tracked?

Q5. What's the right way, and wrong way, to free resources after use?

Have a go hero
Now that the ClockWidget is running, try the following:

Write a Sleak-like view that periodically counts allocated objects by type
Modify any text written by acquiring a Font object, with disposal

Create a generic dispose listener that takes an instance of Resource

* & o o

Provide a setColor method that allows you to change the color

The whole point of a user interface is to interact with the user. Having a view that displays
information may be useful, but it is often necessary to ask the user for data or respond to
user actions.

Time for action - getting in focus

To allow the time zone of the clock widgets to be changed, a drop-down box (known as
Combo) as well as a But ton will be added to the view. The Combo will be created from
a set of ZonelId instances.

1. CreateatimeZones field in the ClockView class:

private Combo timeZones;

2. Atthe end of the createPartControl method, add this snippet to create the
drop-down list:

public void createPartControl (Composite parent) {

timeZones = new Combo (parent, SWT.DROP_ DOWN) ;
timeZones.setVisibleItemCount (5) ;

[541

Chapter 2

for (String zone : Zoneld.getAvailableZoneIds()) ({

timeZones.add (zone) ;

}
}

3. Run the target Eclipse and open the Clock View again; a list of time zone names will
be shown in a drop-down:

@ Clock View 23

Q Europe/London
Europe/Luxembourg

Europa/Madrid
Europe/Malta
Europe/Milton_Keynes

4. It's conventional to set the focus on a particular widget when a view is opened.
Implement the appropriate call in the ClockView method setFocus:

public void setFocus()
timeZones.setFocus () ;

}

5. Run Eclipse and show the Clock View; the time zone drop-down widget will be
focused automatically.

What just happened?

Every SWT Control has a setFocus method, which is used to switch focus for the
application to that particular widget. When the view is focused (which happens both
when it's opened and also when the user switches to it after being in a different view),
its set Focus method is called.

As will be discussed in Chapter 7, Creating Eclipse 4 Applications, in E4 the

method may be called anything and annotated with the @ Focus annotation.
’ Conventionally, and to save sanity, it helps to call this method setFocus.

[551

Creating Views with SWT

Time for action - responding to input

To show the effect of changing the TimeZone, it is necessary to add an hour hand to the
clock. When the TimeZone is changed in the drop-down, the hour hand will be updated.

1.

Add a zone field to the ClockWidget along with a setter:

private Zoneld zone = Zoneld.systemDefault () ;
public void setZone (ZoneId zone) {
this.zone = zone;

}

Getters and setters can be generated automatically. Once the field is added, navigate
to Source | Generate Getters and Setters. It can be used to generate all missing
getters and/or setters; in addition, a single getter/setter can be generated by typing
set in the class body, followed by Ctrl + Space (Cmd + Space on macQOS).

Add an hour hand in the drawClock method using the following:

e.gc.setBackground (e.displ